随机信号处理上机作业——张xx

合集下载

随机信号处理-题目整理

随机信号处理-题目整理

第一章1、某离散时间因果LTI 系统,当输入)1()31(41)()31(x(n)1n -+=-n n n εε时,输出)()21()(y n n n ε= (1)确定系统的函数H(Z) (3分) (2)求系统单位序列相应h (n )(3分) (3)计算系统的频率特性H (e j θ)(3分)(4)写出系统的差分方程(3分)解:(1))41)(21()31(31413121)()()(1+--=-+--==-Z Z Z Z Z Z Z Z Z Z ZZ X Z Y Z H |Z|>21(2)497292)4)(2(31)(++-=+--=Z Z Z Z Z Z Z H |Z| >21)()41(97)()21(92)(h n n n n n εε-+=(3)因为H (z )收敛域为 |Z| >21,包含单位圆所以H (e j θ)存在41972192|)()(++-===θθθθθθj j j j e Z j e ee e Z H e H j(4)21121281-41131-181-4131)()()(-----=--==Z Z Z Z Z Z Z Z X Z Y Z H==>121)(31)()(81)(41)(----=--Z Z X Z X z z Y z z Y z Y )1(31)()2(81)1(41)(--=----n x n x n y n y n y2、x(n)的z 变换为X(z)=1(1-z -1)(1-2z -1) , ROC :1<│z │<2 ,z 的变换。

(12分) 设X(z)=A 1-z -1 +B1-2z -1 =X 1(z)+X 2(z) %写出此形式2分 则由部分分式分解法,可得A=(1-z -1)X(z)│z=1=-1, B=(1-2z -1)│z=2=2 %求出此结果6分 由ROC 的形式,可以判定x(n)是一个右边序列和一个左边序列之和。

《随机信号分析与处理》教学大纲

《随机信号分析与处理》教学大纲

《随机信号分析与处理》教学大纲(执笔人:罗鹏飞教授学院:电子科学与工程学院)课程编号:070504209英文名称:Random Signal Analysis and Processing预修课程:概率论与数理统计、信号与系统、数字信号处理学时安排:60学时,其中讲授54学时,实践6学时学分:3一、课程概述(一)课程性质地位本课程是电子工程、通信工程专业的一门学科基础课程。

该课程系统地介绍随机信号的基本概念、随机信号的统计特性分析方法以及随机信号通过系统的分析方法;介绍信号检测、估计、滤波等信号处理理论的基本原理和信息提取方法。

其目的是使学生通过本课程的学习,掌握随机信号分析与处理的基本概念、基本原理和基本方法,培养学生运用随机信号分析与处理的理论解决工程实际问题的能力,提高综合素质,为后续课程的学习打下必要的理论基础。

本课程是电子信息技术核心理论基础。

电子信息系统中的关键技术是信息获取、信息传输、信息处理,这些技术的理论基础就是随机信号的分析、检测、估计、滤波等理论,这正是本课程的主要内容。

因此,本课程内容是电子信息类应用型人才知识结构中不可或缺的必备知识。

二、课程目标(一)知识与技能通过本课程的学习,掌握随机信号分析与处理基本概念和基本分析方法。

内容包括:1.理解和掌握随机过程基本概念和统计描述;2.掌握随机过程通过线性和非线性系统分析方法3.理解和掌握典型随机过程的特点及分析方法;4.掌握参数估计的概念、规则和性能分析方法;5.掌握信号检测的概念、规则和性能分析方法;6.掌握高斯白噪声中最佳检测器的结构和性能分析。

通过本课程的学习,要达到的能力目标是:1.具有正确地理解、阐述、解释生活中的随机现象的能力,即培养统计思维能力;2.运用概率、统计的数学方法和计算机方法分析和处理随机信号的能力;3.初步具备雷达、通信、导航等技术领域的信号处理系统的分析、设计、仿真的科学研究能力;4.培养自主学习能力;5.培养技术交流能力(包括论文写作和口头表达);6.培养协作学习的能力;(二)过程与方法依托“理论、实践、第二课堂”三个基本教学平台,通过课堂教学、概念测试、课堂研讨、案例研究、作业、实验、课程论文、网络教学等多种教学形式,采用研究型、案例式、互动研讨、基于团队学习、基于MATLAB的教学以及基于多媒体的教学等多种教学方法和手段,使学生加深对随机信号分析与处理的基本概念、基本原理以及应用的理解,并使学生通过自主学习、小组作业、案例研究、实验、课题论文等主动学习形式,培养自学能力和协同学习的能力,使学生不仅获得知识、综合素质得到提高。

数字信号处理上机作业

数字信号处理上机作业

数字信号处理上机作业学院:电子工程学院班级:021215组员:实验一:信号、系统及系统响应1、实验目的(1) 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。

(2) 熟悉时域离散系统的时域特性。

(3) 利用卷积方法观察分析系统的时域特性。

(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。

2、实验原理与方法(1) 时域采样。

(2) LTI系统的输入输出关系。

3、实验内容及步骤(1) 认真复习采样理论、离散信号与系统、线性卷积、序列的傅里叶变换及性质等有关内容,阅读本实验原理与方法。

(2) 编制实验用主程序及相应子程序。

①信号产生子程序,用于产生实验中要用到的下列信号序列:a. xa(t)=A*e^-at *sin(Ω0t)u(t)b. 单位脉冲序列:xb(n)=δ(n)c. 矩形序列: xc(n)=RN(n), N=10②系统单位脉冲响应序列产生子程序。

本实验要用到两种FIR系统。

a. ha(n)=R10(n);b. hb(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3)③有限长序列线性卷积子程序用于完成两个给定长度的序列的卷积。

可以直接调用MATLAB语言中的卷积函数conv。

conv 用于两个有限长度序列的卷积,它假定两个序列都从n=0 开始。

调用格式如下:y=conv (x, h)4、实验结果分析①分析采样序列的特性。

a. 取采样频率fs=1 kHz,,即T=1 ms。

b. 改变采样频率,fs=300 Hz,观察|X(e^jω)|的变化,并做记录(打印曲线);进一步降低采样频率,fs=200 Hz,观察频谱混叠是否明显存在,说明原因,并记录(打印)这时的|X(e^j ω)|曲线。

程序代码如下:close all;clear all;clc;A=50;a=50*sqrt(2)*pi;m=50*sqrt(2)*pi;fs1=1000;fs2=300;fs3=200;T1=1/fs1;T2=1/fs2;T3=1/fs3;N=100;x1=A*exp(-a*n*T1).*sin(m*n*T1);x2=A*exp(-a*n*T2).*sin(m*n*T2);x3=A*exp(-a*n*T3).*sin(m*n*T3);w=linspace(-pi,pi,10000);X1=x1*exp(-j*n'*w);X2=x2*exp(-j*n'*w);X3=x3*exp(-j*n'*w);figure(1)subplot(1,3,1)plot(w/pi,abs(X1));xlabel('\omega/π');ylabel('|H(e^j^\omega)|')title('采样频率为1000Hz时的频谱图');subplot(1,3,2)plot(w/pi,abs(X2));xlabel('\omega/π');ylabel('|H(e^j^\omega)|')title('采样频率为300Hz时的频谱图');subplot(1,3,3)plot(w/pi,abs(X3));xlabel('\omega/π');ylabel('|H(e^j^\omega)|')title('采样频率为200Hz时的频谱图');②时域离散信号、系统和系统响应分析。

随机信号分析上机实验指导书

随机信号分析上机实验指导书

目录实验1 离散随机变量的仿真与计算(验证性实验) (1)实验2 离散随机信号的计算机仿真(验证性实验) (5)实验3 随机信号平稳性分析(验证性实验) (8)实验4 实验数据分析(综合性实验) (10)实验5 窄带随机过程仿真分析 (验证性实验) (11)实验6 高斯白噪声通过线性系统分析(综合实验) (13)实验1 离散随机变量的仿真与计算(验证性实验)一、实验目的掌握均匀分布的随机变量产生的常用方法。

掌握由均匀分布的随机变量产生任意分布的随机变量的方法。

掌握高斯分布随机变量的仿真,并对其数字特征进行估计。

二、实验步骤无论是系统数学模型的建立,还是原始实验数据的产生,最基本的需求就是产生一个所需分布的随机变量。

比如在通信与信息处理领域中,电子设备的热噪声,通信信道的畸变,图像中的灰度失真等都是遵循某一分布的随机信号。

在产生随机变量时候,虽然运算量很大,但是基本上都是简单的重复,利用计算机可以很方便的产生不同分布的随机变量。

各种分布的随机变量的基础是均匀分布的随机变量。

有了均匀分不得阿随机变量,就可以用函数变换等方法得到其他分布的随机变量。

1.均匀分布随机数的产生利用混合同余法产生均匀分布的随机数,并显示所有的样本,如图1所示。

yn+1=ayn+c (mod M)xn+1=yn+1/M2.高斯分布随机数的仿真根据随机变量函数变换的原理,如果能将两个分布之间的函数关系用显式表达,那么就可以利用一种分布的随机变量通过变换得到另一种分布的随机变量。

若X 是分布函数为FX (x )的随机变量,且分布函数FX (x )为严格单调升函数,令Y=FX (x ),则Y 必是在[0,1]上均匀分布的随机变量。

繁殖,若Y 是在[0,1]上均匀分布的随机变量,那么X=F-1X(Y) (1.4.5)就是分布函数为FX (x )的随机变量。

这样,欲求某个分布的随机变量,先产生[0,1]区间上的均匀分布随机数,在经过(1.4.5)的变换,便可以求得所需要分布的随机数,产生指数分布的随机数 fX(x)=ae-ax Y=FX(X)=1-e-aX X=-ln(1-Y)/a利用函数变换法产生高斯分布的随机数的方法:图1-1生成均匀分布随机数的结果如果X1X2是两个互相独立的均匀分布随机数,那么下式给出的Y1Y2就是数学期望为m ,方差为σ2的高斯分布随机数mX X Y +-=)2cos(ln 2211πσmX X Y +-=)2s i n (ln 2212πσ生成高斯分布随机数的结果如图1-2所示:3.随机变量数字特征的计算(均值)在很多情况下我们不能得到随机变量所有的样本,只能利用部分样本来获得随机变量数字特征的估计值。

中国科学院刘艳老师现代数字信号处理第二章上机作业

中国科学院刘艳老师现代数字信号处理第二章上机作业
四实验结果及分析图1x方向上的期望信号误差信号观测信号滤波后信号图2y方向上的期望信号误差信号观测信号滤波后信号图3滤波后的信号与原始信号的对比图3中原始信号为红色滤波后信号为绿色
一、上机作业要求
假设一个点目标在 x,y 平面上绕单位圆做圆周运动,由于外界干扰,其运 动轨迹发生了偏移。其中,x 方向的干扰为均值为 0,方差为 0.05 的高斯噪声; y 方向干扰为均值为 0,方差为 0.06 的高斯噪声。 1、产生满足要求的 x 方向和 y 方向随机噪声 500 个样本; 2、明确期望信号和观测信号; 3、试设计一 FIR 维纳滤波器,确定最佳传递函数:hopt Rxx 1Rxs ,并用该滤波器 处理观测信号,得到其最佳估计。 (注:自行设定误差判定阈值,根据阈值确 定滤波器的阶数或传递函数的长度) 。 4、要求 3 中,也可以选择 Kalman 滤波器进行滤波处理,采用哪种滤波器可以自 由选择。 5、分别绘制出 x 方向和 y 方向的期望信号、噪声信号、观测信号、滤波后信号、 误差信号的曲线图; 6、在同一幅图中绘制出期望信号、观测信号和滤波后点目标的运动轨迹。 7、实验报告要求: 给出求解思路和结果分析,给出 MATLAB 实现源程序和程序注 解。
三、源程序代码
clear all N=500; %x 方向上的信号% vx=normrnd(0,0.05.^0.5,1,N); n=1:N; sx=cos(0.004*pi*n); x=sx+vx; %清除之前所有的程序代码,以防引起干扰 %定义样本数 %定义 x 方向上噪声 %采样点 %期望信号,周期为 500 即与观测点数目一致 %叠加得观测信号
rxx=xcorr(x,x,'unbiased'); %观测信号的自相关函数 Rxx rxsx=xcorr(x,sx,'unbiased'); %观测信号与期望信号的互相关函数 Rxdx bx=sx*(sx)'/N; %期望信号均方值 for Lx=2:N %确定滤波器长度 for i=1:Lx %确定观测信号的自相关函数矩阵 for j=1:Lx if i<=j Rxx(i,j)=rxx(N+j-i); else Rxx(i,j)=rxx(N+i-j); end end end Rxx=inv(Rxx); %求逆矩阵 Rxsx=(rxsx(N:N+Lx-1))'; %截取相同长度向量以便可以进行矩阵乘法 hx=Rxx*Rxsx; %滤波器单位脉冲响应 hopt=Rxx-1Rxsx ex=bx-(Rxsx)'*hx; %均方误差 if ex<1e-2 %判断均方误差是否最小 (以 1%作为衡量度) break; end end ax=[1 zeros(1,Lx-1)]'; %确定滤波器系数 fx=filter(hx,ax,x); %滤波 %y 方向上的信号% vy=normrnd(0,0.06.^0.5,1,N); %噪声 sy=sin(0.004*pi*n); %期望信号 y=sy+vy; %观测信号 ryy=xcorr(y,y,'unbiased'); % 观 测 信 号 的 自 相 关 函 数 rysy=xcorr(y,sy,'unbiased'); %观测信号与期望信号的互相关函数 by=sy*(sy)'/N; %期望信号均方值 for Ly=2:N %确定滤波器长度 for i=1:Ly %确定观测信号的自相关函数矩阵 for j=1:Ly if i<=j Ryy(i,j)=ryy(N+j-i); else Ryy(i,j)=ryy(N+i-j); end end end Ryy=inv(Ryy); %求逆矩阵 Rysy=(rysy(N:N+Ly-1))'; %截取相同长度向量 hy=Ryy*Rysy; %滤波器单位脉冲响应 ey=by-(Rysy)'*hy; %均方误差

中国科学院刘艳老师现代数字信号处理第四章上机作业

中国科学院刘艳老师现代数字信号处理第四章上机作业

1、假设一平稳随机信号为()()()0.81x n x n w n =−+,其中)(n w 是均值为0,方差为1的白噪声,数据长度为1024。

(1)、产生符合要求的)(n w 和)(n x ;(2)、给出信号x(n)的理想功率谱;(3)、编写周期图谱估计函数,估计数据长度N=1024及256时信号功率谱,分析估计效果。

(4)、编写Bartlett 平均周期图函数,估计当数据长度N=1024及256时,分段数L 分别为2和8时信号)(n x 的功率谱,分析估计效果。

一、一、解题思路解题思路w(n)可以通过随机序列randn(1,N)来产生,x(n)可以通过对w(n)滤波产生(由递推式可得系统的传递函数),也可以直接由递推式迭代产生。

由于线性系统的输出功率谱等于输入功率谱乘以传递函数模的平方,X(n)可以看做w(n)通过一线性系统的输出,H(z)=1/(1-0.8z)。

所以x(n)的理想功率谱P(ejw)=σw2|H(ejw)|2。

周期图方法:直接对观测数据做FFT变换,变换的结果取模的平方再除以数据长度,作为估计的功率谱。

256个观测点时可以对原观测数据以4为间隔提取得到。

Bartlett法:将L组独立的观测数据分别求周期图,再将L个周期图求平均作为信号的功率谱估计。

L组数据可以通过对原观测数据以L为间隔提取得到。

二、二、MATLAB MATLAB MATLAB实现程序及注解实现程序及注解clear all;clear;close all;Fs=500;%采样率N=1024;%观测数据w=sqrt(1)+randn(1,N);%0均值,方差为1的白噪声,长度1024x=[w(1)zeros(1,N-1)];%初始化x(n),长度1024,x(1)=w(1)for i=2:Nx(i)=0.8*x(i-1)+w(i);%迭代产生观测数据x(n)end%%%%%%%%%%%%%%%%%%%%%理想功率谱%%%%%%%%%%%%%%%%%%%%[h,w1]=freqz(x);figure,plot(w1*500/(2*pi),10*log10(abs(h).^2));grid on;title('理想功率谱');xlabel('频率');ylabel('功率db');%%%%%%%%%%%%%%%%%%%%%周期图法%%%%%%%%%%%%%%%%%%%%%%1024个观测点Pxx=abs(fft(x)).^2/N;%周期图公式Pxx=10*log10(Pxx(index+1));%化为dbfigure;plot(k,Pxx);grid on;title('周期图1024点');xlabel('频率');ylabel('功率db');%周期图256个观测点x1=x(1:4:N);Pxx1=abs(fft(x1,1024)).^2/N;figure;plot(k,Pxx1);grid on;title('周期图256点');xlabel('频率');ylabel('功率db');%%%%%%%%%%%%%%%Bartlett平均周期图,N=1024%%%%%%%%%%%%%%%%%%%分段L=2L=2;x_21=x(1:L:N);x_22=x(2:L:N);Pxx_21=abs(fft(x_21,1024)).^2/length(x_21);Pxx_22=abs(fft(x_22,1024)).^2/length(x_22);Pxx_2=(Pxx_21+Pxx_22)/L;figure;subplot(2,2,1),plot(k,10*log10(Pxx_2(index+1)));grid on;title('N=1024,L=2');xlabel('频率');ylabel('功率db');%分段L=8L1=8;x3=zeros(L1,N/L1);%产生L1行,N/L1列的矩阵用以存储分组的数据for i=1:L1x3(i,:)=x(i:L1:N);%将原始数据分为8组endPxx3=zeros(L1,1024);%产生L1行,1024列矩阵用以存储分组的周期图for i=1:L1Pxx3(i,:)=abs(fft(x3(i,:),1024)).^2/length(x3(i,:));%分别求周期图,结果保存在Pxx3中,FFT长度为1024endfor i=1:1024Pxx3_m(i)=sum(Pxx3(:,i))/L1;%求平均endsubplot(2,2,2),plot(k,10*log10(Pxx3_m(index+1)));grid on;title('N=1024,L=8');xlabel('频率');ylabel('功率db');%%%%%%%%%%%%%%%Bartlett平均周期图,N=256,求法同上%%%%%%%%%%%%%%分段L=2,分别计算周期图,再取平均x=x(1:4:N);L2=2;x_31=x(1:L2:length(x));x_32=x(2:L2:length(x));Pxx_31=abs(fft(x_31,1024)).^2/length(x_31);Pxx_32=abs(fft(x_32,1024)).^2/length(x_32);Pxx_3=(Pxx_31+Pxx_32)/L2;subplot(2,2,3),plot(k,10*log10(Pxx_3(index+1)));grid on;title('N=256,L=2');xlabel('频率');ylabel('功率db');%分段L=8L3=8;x4=zeros(L3,length(x)/L3);for i=1:L3x4(i,:)=x(i:L3:length(x));%将原始数据分为8组endPxx4=zeros(L3,1024);for i=1:L3Pxx4(i,:)=abs(fft(x4(i,:),1024)).^2/length(x4(i,:));%分别求周期图,FFT长度为1024endfor i=1:1024Pxx4_m(i)=sum(Pxx4(:,i))/L3;%求平均endsubplot(2,2,4),plot(k,10*log10(Pxx4_m(index+1)));grid on;title('N=256,L=8');xlabel('频率');ylabel('功率db');三、实验结果理想功率谱图如图1-1所示图1-1理想功率谱图1024点的周期图以及256点的周期图分别如图1-2、1-3所示图2-21024点的周期图图2-3256点的周期图Bartlett平均周期图法的相应图像如图1-4所示图1-4Bartlett平均周期图法的相应图像四、实验结果分析由图1-2、1-3可以看出,周期图法得到的功率谱估计,谱线的起伏较大,即估计所得的均方误差较大。

随机信号分析与处理答案(罗鹏飞,张文明编著)

随机信号分析与处理答案(罗鹏飞,张文明编著)
画系统模型时, n(t ) 为输入, Y (t ) 为输出。带一个加法器和延时器 T 传 递 函 数 幅 频 图 , 即 H( f )
H( f )
2 2
f 图 ( 利 用 w 2 f , 得 到
2
4 2si nT)f ( ) H( f ) (注意图中要标出最大值及所对应的频率,且
为正数) 4.
(2)
R(0,1) E[ X (0) X (1)] E[2 cos 2 cos(2 )] 4 E[cos cos ] 1 1 4 [(cos 2 0) (cos 2 ) ] 2 2 2 1 4 2 2
5. P85:2.6 问题还需增加“求均值,自相关函数及验证平稳性”
作业一的参考答案 1. P28:1.10
f XY ( x, y ) fY ( y )
1 0
解:利用 f X /Y ( x / y )
fY ( y )
所以


f XY ( x, y)dx
2ax 2by a 2by dx ab ab
f X /Y ( x / y )
解: (1)
互相关系数 XY
Cov( X , Y ) 2 3 D( X ) D(Y )
CZW Cov(2 X Y , X 2Y )
(2)
E[(2 X Y )( X 2Y )] E (2 X Y ) E ( X 2Y ) 2
(3)
因为 X , Y 为高斯随机变量 所以
解:
因为 A , B 为独立的高斯随机变量 所以
E( AB) E( A) E( B) 0 E[ X ] E( A)cos wt E( B)cos wt 0

随机信号处理作业南理工(有程序)

随机信号处理作业南理工(有程序)

《随机信号处理》上机实验仿真报告学院:电子工程与光电技术学院指导老师:顾红日期:2014年11月10日题目1:<问题>线性调频脉冲信号,时宽10us ,带宽543MHz ,对该信号进行匹配滤波后,即脉压处理,处理增益为多少?脉压后的脉冲宽度为多少?并用图说明脉压后的脉冲宽度,内差点看3dB 带宽,以该带宽说明距离分辨率与带宽的对应关系。

建议补充:比较矩形视频脉冲信号、矩形包络单个中频脉冲信号、线性调频矩形脉冲信号匹配滤波,说明脉压后的脉冲3dB 宽度变化,与原脉冲的宽度比较得出压缩比即增益。

另外,通过仿真加噪声0dB 信噪比来看脉压后信噪比有没有提升。

<理论分析>:(1)线性调频信号(LFM )是雷达中常用的信号,其数学表达式为:212()2()()c j f t kt t s t rect eTπ+= 式中c f 为载波频率,t rect T ⎛⎫⎪⎝⎭为矩形信号: 11()0,t t rect TT elsewise⎧ , ≤⎪=⎨⎪ ⎩当TB>1时,LFM 信号特征表达式如下:(2)在输入为确知加白噪声的情况下,所得输出信噪比最大的线性滤波器就是匹配滤波器。

线性调频信号叠加上噪声其表达式为:2()j kt t t S rect e Tπ=()(,10)t S t awgn S =白噪声条件下,匹配滤波器的脉冲响应:*()()o h t ks t t =-<仿真程序>:B=543e6; %带宽(这里设置带宽为学号后三位),程序段①从这行开始 fs=10*B; %采样频率 ts=1/fs;T=10e-6; %脉宽10μs N=T/ts; %采样点数 t=linspace(-T/2,T/2,N); K=B/T;a=1; %这里调频信号幅值假设为1 %% 线性调频信号si=a*exp(j*pi*K*t.^2); figure(1)plot(t*1e6,si);xlabel('t/μs');ylabel('si');title('线性调频信号时域波形图');grid on; sfft=fft(si);f=(0:length(sfft)-1)*fs/length(sfft)-fs/2;%f=linspace(-fs/2,fs/2,N); figure(2)plot(f*1e-6,fftshift(abs(sfft)));xlabel('f/MHz');ylabel('sfft');title('线性调频信号频域波形图');grid on; axis([-300,300,-inf,inf]);%程序段①到这行结束 %% 叠加高斯白噪声 ni=rand(1,N);disp('输入信噪比为:');SNRi=10*log10(a^2/var(ni)/2) xi=ni+si; figure(3)plot(t*1e6,real(xi));xlabel('t/us');ylabel('xi');title('叠加噪声后实际信号时域波形图'); x1fft=fft(xi); %输入信号频谱f=(0:length(x1fft)-1)*fs/length(x1fft)-fs/2; figure(4)plot(f*1e-6,fftshift(abs(x1fft)));xlabel('f/MHz');ylabel('x1fft');title('叠加噪声后实际信号频谱图');grid on; %% 匹配滤波器ht=exp(-j*pi*K*t.^2);x2=conv(ht,xi);L=2*N-1;ti=linspace(-T,T,L);ti=ti*B; %换算为B的倍数X2=abs(x2)/max(abs(x2));figure(5)plot(ti,20*log10(X2+1e-6));xlabel('t/B');ylabel('匹配滤波幅度');title('匹配滤波结果图');grid on; axis([-3,3,-4,inf]);%% 计算信噪比X22=abs(x2);%实际信号n2=conv(ht,ni);%噪声n22=abs(n2);s2=conv(ht,si);%信号s22=abs(s2);SNRo=(max(s22)^2)/(var(n2))/2;disp('输出信噪比为:');SNRo=10*log10(SNRo)disp('信噪比增益为:');disp(SNRo-SNRi)%% 匹配滤波器的幅频特性hw=fft(ht);f2=(0:length(hw)-1)*fs/length(hw)-fs/2;f2=f2/B;hw1=abs(hw);hw1=hw1./max(hw1);plot(f2,fftshift(20*log(hw1+1e-6)));xlabel('f/B');ylabel('幅度');title('匹配滤波器的幅频特性图');%% 匹配滤波器处理后的信号Sot=conv(si,ht);subplot(211)L=2*N-1;t1=linspace(-T,T,L);Z=abs(Sot);Z=Z/max(Z);Z=20*log10(Z+1e-6);Z1=abs(sinc(B.*t1));Z1=20*log10(Z1+1e-6);t1=t1*B;plot(t1,Z,t1,Z1,'r.');axis([-15,15,-50,inf]);grid on;legend('emulational','sinc');xlabel('Time in sec \times\itB');ylabel('Amplitude,dB');title('匹配滤波器处理后信号');subplot(212)N0=3*fs/B;t2=-N0*ts:ts:N0*ts; t2=B*t2;plot(t2,Z(N-N0:N+N0),t2,Z1(N-N0:N+N0),'r.'); axis([-inf,inf,-50,inf]);grid on;set(gca,'Ytick',[-13.4,-4,0],'Xtick',[-3,-2,-1,-0.5,0,0.5,1,2,3]); xlabel('Time in sec \times\itB'); ylabel('Amplitude,dB');title('匹配滤波器处理后信号(放大)'); %% 输出频谱 xfft=fft(x2);f3=(0:length(xfft)-1)*fs/length(xfft)-fs/2; xfft1=abs(xfft);xfft1=xfft1./max(xfft1); figure(7)plot(f3/B,fftshift(20*log(xfft1+1e-6)));xlabel('f/B');ylabel('幅度');title('输出信号频谱图');<仿真结果与分析>:对于一个理想的脉冲压缩系统,要求发射信号具有非线性的相位谱,并使其包络接近矩形;其中)(t S 就是信号s(t)的复包络。

(完整版)随机信号处理考题答案

(完整版)随机信号处理考题答案

(完整版)随机信号处理考题答案填空:1.假设连续随机变量的概率分布函数为F(x)则F(-∞)=0, F (+∞)=12.随机过程可以看成是样本函数的集合,也可以看成是随机变量的集合3.如果随机过程X(t)满足任意维概率密度不随时间起点的变化而变化,则称X(t)为严平稳随机过程,如果随机过程X(t)满足均值为常数,自相关函数只与时间差相关则称X(t)为广义平稳随机过程4.如果一零均值随机过程的功率谱,在整个频率轴上为一常数,则称该随机过程为白噪声,该过程的任意两个不同时刻的状态是不相关5. 宽带随机过程通过窄带线性系统,其输出近似服从正态分布,窄带正态噪声的包络服从瑞利分布,而相位服从均匀分布6.分析平稳随机信号通过线性系统的两种常用的方法是冲激响应法,频谱法7.若实平稳随机过程相关函数为Rx(τ)=25+4/(1+6τ),则其均值为5或-5,方差为4 7.匹配滤波器是输出信噪比最大作为准则的最佳线性滤波器。

1.广义各态历经过称的信号一定是广义平稳随机信号,反之,广义平稳的随机信号不一定是广义各态历经的随机信号2.具有高斯分布的噪声称为高斯噪声,具有均匀分布的噪声叫均匀噪声,而如果一个随机过程的概率谱密度是常数,则称它为白噪声3.白噪声通过都是带宽的线性系统,输出过程为高斯过程4.平稳高斯过程与确定的信号之和是高斯过程,确定的信号可以认为是该过程的数学期望5.平稳正态随机过程的任意概率密度只由均值和协方差阵确定1.白噪声是指功率谱密度在整个频域内均匀分布的噪声。

3.对于严格平稳的随机过程,它的均值与方差是与时间无关的函数,即自相关函数与时间间隔有关,与时间起点无关。

4.冲激响应满足分析线性输出,其均值为_____________________。

5.偶函数的希尔伯特变换是奇函数。

6.窄带随机过程的互相关函数公式为P138。

1.按照时间和状态是连续还是离散的,随机过程可分为四类,这四类是连续时间随机过程,离散型随机过程、随机序列、离散随机序列。

随机信号分析仿真

随机信号分析仿真

随机信号分析原理大作业报告专业:水声工程姓名:xxx学号:xxxxxxxxxx 题目要求:给定一个白噪声信号,它的均值和方差自定。

1.设计一个线性滤波器,使该滤波器的输出为一个窄带信号。

并给出该窄带信号在不同的3 个典型中心频率和带宽时的波形。

2.对该滤波器输出的上述窄带信号,用莱斯表示法对其进行建模,画出a(t)和b(t )的波形。

3.计算上述3 种窄带信号对应的瞬时频率和瞬时相位,并进行包络检测。

1 窄带信号的生成1.1 高斯白噪声的产生若N(t) 为一个具有零均值的平稳随机过程,其功率谱密度均匀分布在( )整个频率区间,即S n(w) 1N0 (1)2其中,N 0为一个正实常数,则称N(t) 为白噪声。

白噪声的自相关函数为1R N ( ) 2N0 ( ) (2)白噪声在任意两个相邻时刻(不管这两个时刻多么的近)的取值都是不相关的,这意味着白噪声过程随时间的起伏很快,过程的功率谱极宽。

这种形式定义的白噪声只是一种理想化的模型,实际上这种白噪声是不存在的,因为按照定义,白噪声的均方值为无限大,而物理上存在的随机过程,其均方值总是有限的。

在实际工作中,当所研究的随机过程通过某一系统时,只要过程的功率谱密度在一个比系统宽大的多的频率范围内近似均匀分布,就可以把它作为白噪声来处理。

现产生一均值为0,方差为3 高斯白噪声,如图1 所示:均值为0方差为3的高斯白噪声图 1 白噪声时域波形图1.2 设计线性滤波器为了产生一个窄带信号,让白噪声通过一理想带通线性系统。

设理想带通系统的频幅特性为A H(w) 0A w w0其他w/2(3)若输入白噪声的物理谱GX (w) N0, 则输出的物理谱为2G Y(w) H(w) G X (w) N0A2w w0其他w/2(4)输出相关函数为R Y ( )120N0 A wsin cosw02G Y (w)cosw dw 1w02 w0w/ 22N0 A2cosww/2a( )cosw0dw式中若 w w 0,即 (3) 式所示的系统的中心频率远大于系统的带宽,则 称这样的系统为窄带系统。

信号处理上机

信号处理上机

B. LMS algorithm
function [c,e] = lplms(x,y,mu,M,c0)
N = length(x); % Length of x(n) x = reshape(x,N,1); % x as a column vector y = x(2:end); % Generate y(n) N = length(y); % Number of iterations c = zeros(M,N); % Initialization of c X = zeros(M,N); % Data matrix xx = [zeros(M-1,1);x]; for i = 1:M X(i,:) = xx(M-i+1:end-i); end e = zeros(1,N); %--LMS Algorithm for Linear Prediction - real-valued case % Algorithm initialization yhat = c0*X(:,1); e(1) = y(1) - yhat; c(:,1) = 2*mu*X(:,1)*e(1); for n = 2:N yhat = c(:,n-1)*X(:,n); e(n) = y(n) - yhat; c(:,n) = c(:,n-1) + 2*mu*X(:,n)*e(n); end c = [c0,c]; e = [x(1),e];
Where w(n)~WGN(0, w ). Implement the LMS algorithm.
2
2、原理:
LMS 自适应滤波器是使滤波器的输出信号与期望响应之间的误差的均方值为最 小,因此称为最小均方(LMS)自适应滤波器。 滤波过程中输入为:
X N x(n ),x(n 1),..., x(n N 1)

随机信号处理计算机作业

随机信号处理计算机作业

计算机作业1题目要求设有AR(2)模型X(n)=-0.3X(n-1)-0.5X(n-2)+W(n),W(n)是零均值正态白噪声,方差为4。

(1)用MATLAB模拟产生X(n)的500观测点的样本函数,并绘出波形;(2)用产生的500个观测点估计X(n)的均值和方差;(3)画出理论的功率谱;(4)估计X(n)的相关函数和功率谱。

实验目的通过本实验,加深对信号均值,方差,相关函数和功率谱估计的理解。

实验程序代码(在matlab的环境下)%%%AR(2)模型%%产生样本函数wn=2.*randn(1,500);n=1:500;xn(1)=1;xn(2)=2;for i=3:500xn(i)=-0.3*xn(i-1)-0.5*xn(i-2)+wn(i);endfigure;plot(xn);title('离散信号样本函数原始波形');%%%估计x(n)的均值和方差m_xn=mean(xn);m_xnvar_xn=var(xn);var_xn%%%画出理论的功率谱figure;Rxx=xcorr(xn)/25000;Pww=fft(Rxx);f=(0:length(Pww)-1)*1000/length(Pww); plot(f,10*log10(abs(Pww)));title('信号理论功率谱');%%%画出估计的相关函数和功率谱figure;subplot(211);R=xcorr(xn);plot(R);title('信号估计相关函数');[P,w]=periodogram(xn,(hamming(500))'); subplot(212);plot(P);title('信号估计功率谱');实验结果1.离散信号原始样本函数波形2.估计xn的均值(m_xn)和方差(var_xn)m_xn = -0.0933var_xn =5.71413.信号的理论功率谱4.信号估计的相关函数和功率谱计算机作业2题目要求1、模拟一个均匀分布的白噪声通过一个低通滤波器,观测输出信号的概率密度。

随机信号分析大作业

随机信号分析大作业

随机信号分析大作业2016.12.6希尔伯特变换及其应用一、背景及意义在通信系统中,经常需要对一个信号进行正交分解,即分解为同相分量和正交分量。

由于希尔伯特变换可以提供90度的相位变化而不影响频谱分量的幅度,即对信号进行希尔伯特变换就相当于对该信号进行正交移相,使它成为自身的正交对。

因此,希尔伯特在通信领域获得了广泛应用。

对HHT采样频率、终止准则、曲线拟合、边界处理以及模态混叠等问题进行了分析,并基于HHT的时间特征尺度概念,提出了一种新的边界处理方法:边界局部特征尺度延拓法,较好地改善了边界效应对EMD分解的影响。

将HHT用于电力系统的信号处理,并根据HHT的信号突变检测性能,提出了一种超高压输电线路的EMD故障测距方法。

仿真实验表明,该方法能很好地实现故障定位及测距。

物理意义:希尔伯特可看成一种滤波,其本质上是对所有输入信号的90度相移器;对于稳定的实因果信号,其傅立叶变换的实部和虚部满足希尔伯特变换关系,同时其对数幅度谱和相位谱之间也满足此关系,前提是该信号为最小相位信号。

工程意义:对于自由度为一维的条信号,比如PAM,其等效基带信号是实的,这意味着对应的基带频谱是共轭对称的,即一半的频谱是冗余的,那么就可以将频谱滤除一半再进行传输,这就形成了所谓的单边带调制(SSB)。

而理论上,一个信号和其Hilbert 变化后的值相加,就可以得到所谓解析信号,该信号只保留原信号的正频谱。

而单边带调制虽然节省传输频率,但为了进行边带滤波,必须进行复杂的频谱成形,发送和接收的复杂度都比较高,相干载波的相位误差所造成的影响大。

所以,选择PAM信号进行频谱滤除的滤波器具有一定的滚降,即保留部分PAM信号中的冗余频谱,这样就成为VSB调制。

二、希尔伯特变换的发展现状近年来,随着现代信号的向前发展,人们从不同的研究领域和应用角度出发,提出了拓展经典Hilbert变换,提出了分数阶Hilbert变换,拓展了它的应用范围。

郑州大学随机信号处理大作业

郑州大学随机信号处理大作业

2.2
傅里叶变换
傅立叶变换(DFT)认为:有限长的数据段可看作无限长的取样序列进行加窗 截断后的结果。不论是数据加窗还是自相关函数加窗,在频率域都会发生“泄 露”现象,即功率谱主瓣的能量泄露到旁瓣中去,这样,弱信号的主瓣很容易 被强信号的旁瓣淹没或畸变,造成谱的模糊与失真。为了降低旁瓣,很多学者 在选择窗口函数的形式上和窗口处理函数方法上想办法,但是所有的旁瓣抑制
4 / 20
2.3.3 Levinson-Durbin 快速递推法 用线性方程组的常用算法(例如高斯消元法)求解(2. 3. 9)式, 需要的运算量数 量级为 p 3 。 但若利用系数矩阵的对称性和 Toeplitz 性质, 则可构成一些高效算法, Levinson-Durbin 算法是其中最著名、应用最广泛的一种。这种算法的运算量量 级为 p 2 。这是一种按阶次进行递推的算法,即首先以 AR (0)和 AR (1)模型参数作
2 / 20
技术都是以损失谱分辨率为代价的。谱分析应用中,谱分辨率和低旁瓣是同样 重要的指标,在作 DFT 时,人们常在有效数据后面补一些零,使得补零后的数 据 N 为 2 的整数次幂以便于快速傅立叶变换,而那些认为在傅立叶变换之前对 数据段补零可以改善周期图的谱分辨率是一种模糊的错误概念,因为补零后, 虽然谱线能够增密,但因为补零没有增加任何新的信息,因此不可能提高分辨 率。谱分辨率的极限只能由取样数据段的长度决定。 2.3 AR 模型
1 / 20
第2章 谱估计理论基础
2.1 几种主要的谱估计方法 信号处理的核心,说到底就是如何保证在信号受到干扰产生失真的情况下, 正确恢复原有信号,提取有用信息。而功率谱(简称谱)估计就是信号处理的一个 重要分支,它应用范围很广,日益受到各学科和应用领域的极大重视。它是在 频率域研究随机信号的统计规律,其中心目的为了估计出随机干扰信号并将其 去除,提取有用信号,对语音、声纳、雷达等信号处理,有着重要的意义,广 泛应用于通信、控制、地球物理,它的研究对象主要是零均值平稳高斯过程。 以傅立叶变换为基础谱估计一般称为的传统(或经典)谱估计方法,传统谱估计法 又可以分为直接法和间接法, 后来由于 FFT 的出现, 直接法和间接法往往被结合 起来使用。在信号分析方法中,傅立叶变换是较常用的数学工具。时间信号经 过傅立叶变换后,可得到它的频谱,平稳随机过程的相关函数和它的功率谱密 度是一对傅立叶变换对。 近几年,在信号功率谱密度估计方面出现了许多新的算法,其中应用最广 泛的算法是 1967 年由 Burg 提出的最大嫡谱估计, 这些新方法连同演变出来的各 种算法不下几十种,统称为现代谱估计。它是相对经典谱估计方法而言的。其 比较有名的是:Levinson-Durbin 算法自回归模型、Burg 算法的最大嫡分析、正反 向线性预测的最小二乘算法、自回归模型、滑动平均模型、自回归一滑动平均 模型 Pisarenko 谐波分解法、Prony 提取极点法、Prony 谱线分解法以及 Capon 最大似然估计法。根据算法的基本属性,把这些算法归纳在图 2. l

研究生教材内容介绍 .doc

研究生教材内容介绍 .doc

研究生教材内容介绍(1) 《数字信号处理——时域离散随机信号处理》丁玉美、阔永红等编450千字定价:22.00元本书在本科生学习完确定性数字信号处理的基础上,系统地介绍了时域离散随机信号处理的基本理论与分析方法。

全书共分七章,第一章时域离散随机信号分析是全书的理论基础。

第二、三章讲述了维纳滤波、卡尔曼滤波、自适应滤波等最佳滤波器。

第四章学习功率谱分析。

第五章介绍了一种非平稳随机数字信号地分析方法,即时频分析。

第六章讲述小波分析的基本原理及其应用。

本书在阐述基本理论的同时,也介绍了数字信号处理的新发展内容。

本书作为教材,选材少而精,努力做到深入浅出,说理详细,论述清楚。

为帮助读者深入理解书中的基本理论和基本分析方法,精选了例题,章后有习题,以及上机作业指导。

本书适合于作为理工科大学与信号处理有关专业的硕士研究生学位课或选修课的教材或参考书,也适合于教师、博士生和广大科技工作者自学与进修用。

(2) 《数字信号处理——时域离散随机信号处理》学习指导阔永红等编著198千字定价:10.00元本书是与研究生教材《数字信号处理——时域离散随机信号处理》配套的辅导用书。

该书在原教材的基础上,对各章内容进行了简单的总结,并指明了各章的内容要求。

为了配合书中的理论知识,作者精选了部分例题,并给出了书后习题的解答,最后,又给出了一些补充习题供同学练习。

参考《硕士学位全国统一考试大纲及指南》和其他院校《数字信号处理Ⅱ》的大纲,以及考虑到教材第五章《时频分析》和第六章《小波分析的基本原理和应用》都有专门的课程进行深入讨论,本书仅对教材的前四章内容进行了讨论,没有涉及后两章内容。

本书可供理工科研究生、高年级本科生阅读,也可作为从事相关专业的工程人员参考。

(3)《现代数字信号处理》王炳和等编著430千字定价:37.00元本书系统介绍了现代数字信号处理的主要内容和方法, 并对此领域内近十年来出现的新进展, 如高阶谱、时频分析与小波变换等也进行了讨论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机信号处理作业题目:上机题4两个数据文件,第一个文件数据中只包含一个正弦波,通过MATLAB 仿真计算信号频谱和功率谱来估计该信号的幅度,功率,归一化频率和相位?对第二个文件数据估计其中正弦波的幅度,功率和归一化频率?写出报告,包含理论分析,仿真程序及说明,误差精度分析等。

第一文件调用格式load FileDat01_1 s1,数据在变量s1中;第二文件调用格式load FileDat01_2 s,数据在变量s 中。

1、原理简介信号的数学表达式虽然有时可以详尽而确切地表示信号分解的结果,但往往不够直观。

为了能既方便又明白地表示一个信号含有哪些频率分量,可对信号做傅里叶变换,将信号在时间域中的波形转变为频率域的频谱,进行频谱分析,进而可以对信号的信息作定量解释。

对于离散时间序列,其频谱分析通常是对序列做离散傅里叶变换(DFT )。

对一模拟信号)(t x 进行采样,设采样点为N ,可以得到一离散时间序列10]},[{-≤≤N n n x ,对该序列做N 点的离散傅里叶变化(DFT )为:][][102n x ek x N n nk Nj ∑-=-=π1,...,2,1,0-=N k功率谱估计就是通过信号相关性估计出接收到信号的功率随频率变化的关系,主要研究信号在频域中的各种特征,目的是根据有限数据在频域内提取被淹没在噪声中的有用信号。

传统的谱估计主要有两种方法:BT 法和周期图法。

这里主要利用BT 法,在matlab 中编程实现求功率谱。

BT 法就是利用信号的有限个观察值]1[],...1[],0[-N x x x 估计出自相关函数,然后根据维纳辛钦定理在(-M,M )区间上对自相关函数做傅里叶变换就可以得到功率谱,注意这里1-≤N M 。

通常采用有偏自相关函数估计(方差较小),公式为:)(m R xx 称为取样自相关函数,是渐进一致估计,对上式进行傅氏变换,得到BT法的功率谱估计值为:2、程序及结果分析2.1波形1(1)matlab程序clc;clear all; %清除所有变量close all; %关闭所有打开的文件load G:/FileDat01_1 s1;figure(1);plot(s1);title('信号的时域波形');xlabel('t');ylabel('幅度');fs=1;N=length(s1);freq=linspace(-fs/2,fs/2,N);y=fftshift(fft(s1,N)); %将fft结果乘以2除以N得到的是真实的振幅figure(2);subplot(2,1,1);plot(freq,abs(y/max(abs(y))));title('信号的频域波形');xlabel('频率');ylabel('|幅度|');subplot(2,1,2);plot(freq,abs(y/max(abs(y))));axis([0,0.1,0,1.5]);title('将上图放大');xlabel('频率');ylabel('|幅度|');grid on;a=fft(s1);[F,I]=max(abs(a)); % 对S11求相位Amp=max(abs(y*2/N));Ang=angle((a(I)))*180/pi;%%求功率谱Y=xcorr(s1,'unbiased');Y1=fftshift(fft(Y,N));figure(3);subplot(2,1,1);plot(freq,10*log10(abs(Y1))); title('信号的功率谱'); xlabel('频率');ylabel('功率谱/dB'); subplot(2,1,2);plot(freq,10*log10(abs(Y1))); axis([0,0.25,0,50]); title('将上图放大'); xlabel('频率');ylabel('功率谱/dB'); grid on;(2)仿真结果及分析将文件FileDat0_1中的数据导入到matlab 中,并作出信号的时域波形如图1所示。

从图中可以看出原始信号为一加了噪声的正弦波形。

图1信号的频域波形如图2 所示。

从图二中可以看出,在频率为0.02处出现一个峰值,由于这里的采样频率设置为1Hz ,所以信号的归一化频率就是0.02。

从上面的理论分析我们知道,信号的频谱峰值乘以N 2即为原始信号的幅值。

则计算可得正弦信号的幅度约为2,并且求得信号的相位为 45 。

图2Matlab中输出结果如下:信号的功率谱如图3所示,从图中可以看出信号的功率约为36dBw。

图3(3)误差分析DFT 算法误差来源主要是泄露误差。

N 点DFT 是在频率区间]2:0[π上对时域离散信号的频谱进行N 点等间隔采样,而采样点之间的谱线是看不到的。

这就好像从N 个栅栏缝隙中观看信号的频谱情况,仅得到N 个缝隙中看到的频谱样值函数值,这种现象就成为栅栏效应。

如果相邻采样点之间距离比较大的话,栅栏效应有可能漏掉大的频谱分量,使得到的频谱与实际情况不相符。

然而实际中遇到的信号x(n)可能是无限长的,用DFT 对其进行谱分析时,必须将其截断,形成有限长度的序列y(n)=x(n)* w(n),其中w(n)是长度为Tp 窗函数,由卷积定理可知,y(n)频谱是x(n)的频谱(e )j X ω-与w(n)的频谱()W j ω的卷积。

加窗前,x(n)是离散谱线,加窗后,原来的离散谱线向附近展宽(通常称之为泄露),使频谱变得模糊,分辨率降低。

同时,主谱线两边形成很多旁瓣,引起不同频率分量间产生干扰(通常称之为谱间干扰),弱信号的主谱线可能被强信号的旁瓣所淹没,或者把强信号的旁瓣误认为是弱信号的主瓣,使频谱分析产生较大误差。

上述两种影响是有信号截断引起的,因此称为截断效应。

在本题中因为噪声与信号幅度相差相对较大,频谱图主旁瓣明显,因此上述误差现象较小,估计信号与真实信号比较接近。

如下图4为第一个正弦波滤波后的波形,可发现与上面的理论分析基本一致。

图42.2波形2(1)matlab程序clc;clear all; %清除所有变量close all; %关闭所有打开的文件load G:/FileDat01_2.mat s;fs=1;N=length(s);figure(1);plot(s);title('信号的时域波形');xlabel('频率');ylabel('t');freq=linspace(-fs/2,fs/2,N);y=fftshift(fft(s,N)); %将fft结果乘以2除以N得到的是真实的振幅figure(2);subplot(2,1,1);plot(freq,abs(y/max(abs(y))));title('信号的频域波形');xlabel('频率');ylabel('|幅度|');subplot(2,1,2);plot(freq,abs(y/max(abs(y))));axis([0,0.05,0,1.5]);title('放大后的波形');xlabel('频率');ylabel('|幅度|');grid on;a=fft(s);Amp=max(abs(y*2/N));Y=xcorr(s,'unbiased');Y1=fftshift(fft(Y,N));figure(3);subplot(2,1,1);plot(freq,10*log10(abs(Y1)));title('信号的功率谱');xlabel('频率');ylabel('功率谱/dB');subplot(2,1,2);plot(freq,10*log10(abs(Y1)));axis([0,0.05,0,50]);title('将上图放大');xlabel('频率');ylabel('功率谱/dB');grid on;(2)仿真结果及分析将文件FileDat0_2中的数据导入到matlab中,并作出信号的时域波形如图5所示。

从图中可以看出原始信号为两个加了噪声的正弦波形。

图5信号的频域波形如图6 所示。

从图6中可以看出,在频率为0.02和0.021处分别出现一个峰值,由于这里的采样频率设置为1Hz ,所以信号的归一化频率就是0.02和0.021。

从上面的理论分析我们知道,信号的频谱峰值乘以N2即为原始信号的幅值。

则计算可得正弦信号的幅度分别约为2和4。

图6Matlab中输出结果如下:信号的功率谱如图7所示,从图中可以看出信号的功率分别约为38dBw和44dBw。

图7。

相关文档
最新文档