九年级数学上册第21章一元二次方程21.3实际问题与一元二次方程2变化率问题课件新版新人教版
人教九年级数学上册- 实际问题与一元二次方程(变化率问题和销售问题)(附习题)
推进新课
知识点1 有关增长/下降率的问题
探究2 两年前生产1t甲种药品的成本是5000元,生产1t 乙种药品的成本是6000元,随着生产技术的进步,现在 生产1t甲种药品的成本是3000元,生产1t乙种药品的成 本是3600元,哪种药品成本的年平均下降率较大? 下降率是什么意思?它与原成本、终成本之间有何数量关系?
解:设平均每月的增长率为x. 依题意,32+32(1+x)+32(1+x)2=122. 解得x1=0.25,x2=-3.25(舍去). 二月份发行图书32×(1+0.25)=40(万册) 三月份发行图书32×(1+0.25)2=50(万册)
答:二月份发行图书40万册,三月份发行图书50万册.
课堂小结
下降率是下降额与原成本的比值;
原成本-终成本
下降率=
原成本
×100%
①如果甲种药品成本平均每年的下降率为x,则 下降一次后的成本变为 5000(1-x) ,再次下降 后的成本变为 5000(1-x) 2 .(用代数式表示)
②设甲种药品成本平均每年的下降率为x,由等 量关系 终成本=原成本×(1-下降率)2 可得方 程 5000(1-x)2=3000 ,解这个方程,得到方程的 两根,根据问题的实际意义,应选择哪个根呢? 为什么?
21.3 实际问题与一元二次方程 第2课时 实际问题与一元二次方程(2)
变化率问题和销售问题
新课导入
两年前生产1t甲种药品的成本是5000元, 生产1t乙种药品的成本是6000元,随着生产技 术的进步,现在生产1t甲种药品的成本是3000 元,生产1t乙种药品的成本是3600元,哪种药 品成本的年平均下降率较大?
九年级数学上册 第21章 一元二次方程 21.3 实际问题与一元二次方程(第2课时 平均变化率与销售
整理方程,得 4x2+12x-7=0,
增长率不能为 负数,但可以超 过1.
解这个方程得 x1=-3.5(舍去),x2=0.5.
所以这个增长率为50%.
例3 电商平台发现:某款手机平均每天可售出20台,每台盈利 400元.为了迎接“双十一”,平台决定采取适当的降价措施,扩大 销售量来增加盈利,并尽快占领市场.经市场调查发现:如果每台 手机每降低40元,那么平均每天就可多售出8台.如果想要平均每天 通过销售这款手机盈利12000元,那么每台手机应降价多少元?
解方程,得 y1≈0.225,y2≈1.775. 根据问题的实际意义,乙种药品成本的年平均下降率约为 22.5%.
第2课时 平均变化率与销售问题
问题1 药品年平均下降额(元)大能否说年平均下降率(百分 数)就大呢?
答:不能.甲种药品成本的年平均下降额为(5000-3000) ÷2=1000元,乙种药品成本的年平均下降额为(6000-3600) ÷2=1200元.显然,乙种药品成本的年平均下降额较大.但是, 两种药品的年平均下降率是一样的.
第二十一章 一元二次方程
21.3 实际问题与一元二次方程
第2课时 平均变化率与销售问题
例1 两年前生产1吨甲种药品的成本是5000元,随着生产技术的 进步,现在生产1吨甲种药品的成本是3000元,试求该药品成本的年 平均下降率是多少?
解:设甲种药品的年平均下降率为x.根据题意,列方程,得
5000 ( 1-x )2 = 3000, 解方程,得 x1≈0.225,x2≈1.775. 根据问题的实际意义,甲种药品成本的 年平均下降率约为22.5%.
两次下降后的值为a(1-x)2,n次下降后的值为a(1-x)ⁿ.
第2课时 平均变化率与销售问题
人教版数学九年级上册21.3实际问题与一元二次方程(教案)
4.通过解决实际问题,提高学生运用数学知识解决实际问题的能力。
本节课将结合具体实例,让学生在实际问题中感受一元二次方程的应用,培养他们运用数学知识解决实际问题的能力。
二、核心素养目标
本节课的核心素养目标主要包括以下几方面:
1.培养学生运用数学知识分析实际问题的能力,提高他们从实际问题中抽象出一元二次方程模型的能力;
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如利用一元二次方程计算不规则图形的面积,演示其基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元二次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
五、教学反思
在本次教学过程中,我发现学生们对一元二次方程解决实际问题的兴趣还是相当高的。他们在分组讨论和实验操作环节表现出了很高的积极性和主动性。然而,通过这个过程,我也发现了一些问题。
首先,部分学生在从实际问题中抽象出一元二次方程的过程中存在困难。他们很难把握问题的核心,从而无法准确地列出方程。这说明我们在今后的教学中,需要加强对学生问题分析能力的培养,让他们学会如何从复杂的问题中抓住关键信息。
4.培养学生严谨的数学思维,加强对结果的检验。
3.重点难点解析:在讲授过程中,我会特别强调一元二次方程的求解方法和步骤,以及如何从实际问题中抽象出一元二次方程这两个重点。对于难点部分,我会通过具体例题和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元二次方程相关的实际问题,如面积计算、成本分析等。
人教版初中数学九上第二十一章 一元二次方程 实际问题与一元二次方程 第2课时 平均变化率与利润问题
返回首页 上一页 下一页
先 锋 图 书 基础题组 中档题组 综合运用
9.某市蔬菜批发市场2月大蒜价格猛涨,原价为4元/kg的大蒜,经过2月和3月连 续两个月增长后,价格较高.物价部门紧急协调以控制价格,4月大蒜价格下降 了36%,恰好与涨价前的价格相同,则2月、3月的平均增长率为 25% .
解得x1=5,x2=10. ∵要尽快减少库存,∴x=5符合题意.
答:该商场要保证每天盈利6 000元,且要尽快减少库存,那么每千克应涨价5
元.
返回首页 上一页 下一页
先 锋 图 书 基础题组 中档题组 综合运用
12.某工厂把500万元资金投入新产品生产,第一年获得了一定的利润,在不抽 调资金和利润(即将第一年获得的利润也作为生产资金)的前提下,继续生 产.第二年的利润率(即所获利润与投入生产资金的比)对比第一年的利润率增 长了8%.若第二年的利润为112万元,则第一年的利润率为 12% . 解析:设第一年的利润率为x,则第一年的利润为500x万元,第二年的投入资金 为(500+500x)万元,第二年的利润率为x+8%.根据题意,得(500+500x) (x+8%)=112,解得x1=-1.2(不合题意,舍去),x2=0.12=12%,∴第 一年的利润率为万元,6月份盈利达到24.2万元,且从4月份到6
月份,每月盈利的平均增长率都相同.
(1)求每月盈利的平均增长率;
(2)按照这个平均增长率,预计7月份这家商场盈利多少元.
解:(1)设每月盈利的平均增长率为x.
根据题意,得20(1+x)2=24.2,
21.3实际问题和一元二次方程(变化率)
1998 1999 2000 2001
解:设2002年,2003年两年绿地面积的年平均 增长率为x,根据题意,得 60 (1+x)2=72.6 . (1+x)2=1.21. ∴1+x=±1.1. ∴ x1 = 0.1=10%, x2 =-2.1(不合题意,舍去)
答: 2002年,2003年两年绿地面积的年平均增长率 为10%.
例1:雪融超市今年的营业额为280万元,计划后年的 营业额为403.2万元,求平均每年增长的百分率?
分析:今年到后年间隔2年,
2
今年的营业额×(1+平均增长率) =后年的营业额。
解:平均每年增长的百分率为x,
根据题意得:
28(10x)240.23
(1x)2 1.44
1+x=±1.2
解得: xLeabharlann 2.2(舍去)x2 0.2
答:平均每年的增长20%
增长率与方程
1.甲公司前年缴税40万元,今年缴税48.4万元.该 公司缴税的年平均增长率为多少?
解 :设每年平均增长率为x,根据题意,得
40(1 x)2 48.4.
解这个方程 : (1 x)2 1.21, (1 x) 1.1, x 1 1.1,
x1 1 1.1 10%; x2 1 1.1 0(不 合 题 意, 舍 去). 答 : 每 年 的 平 均 增 长 率 为10%.
探究2
两年前生产1吨甲种药品的成本是5000元,生产1吨 乙种药品的成本是6000元,随着生产技术的进步, 现在生产1吨甲种药品的成本是3000元,生产1吨乙 种药品的成本是3600元,哪种药品成本的年平均
500(10x)2 3000
解方程,得
x10.2,2 x2 5 1.7(7 不 5 合 ,舍 题 )去
九年级数学上册21.3.2实际问题与一元二次方程 增长率问题教案新人教版
九年级数学上册21.3.2实际问题与一元二次方程增长率问题教案新人教版九年级数学上册21.3.2实际问题与一元二次方程-增长率问题教案新人教版21.3.2实际问题与一元二次方程―增长率问题一、教学目标1.掌握建立数学模型以解决增长率与降低率问题2.正确分析问题中的数量关系并建立一元二次方程模型.二、课时安排1课时三、教学重点创建数学模型以化解增长率与减少率为问题四、教学难点正确分析问题中的数量关系并建立一元二次方程模型.五、教学过程(一)导入新课小明自学非常深入细致,学习成绩直线下降,第一次月托福数学成绩就是80分后,第二次月托福快速增长了10%,第三次月托福又快速增长了10%,反问他第三次数学成绩就是多少?教师引导学生积极讨论,引入新课。
(二)讲授新课两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?思索:(1)怎样认知上升额和上升率为的关系?(2)若设甲种药品平均下降率为x,则一年后,甲种药品的成本下降了元,此时成本为元;两年后,甲种药品上升了元,此时成本为元。
(3)对甲种药品而言根据等量关系列方程并求解、选择根?解:设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5000(1-x)元,两年后甲种药品成本为5000(1-x)元.依题意,得5000(1-x)=3000解得:x1≈0.225,x2≈1.775(不合题意,舍去)(4)同样的方法恳请同学们尝试排序乙种药品的平均值上升率为,并比较哪种药品成本的平均值上升率为很大。
2设立乙种药品成本的平均值上升率仅y.则:6000(1-y)=3600整理,得:(1-y)=0.6Champsaur:y≈0.225答:两种药品成本的年平均下降率一样大(5)思考经过计算,你能得出什么结论?小结:经过排序,成本上升额很大的药品,它的成本上升率为不一定很大,应当比较降前及再降后的价格.小结:类似地,这种增长率的问题有一定的模式.若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为a(1±x)=b(增长取+,降低取-).(三)重难点通识科例2某公司2021年的各项经营中,一月份的营业额为200万元,一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率.求解:设立这个增长率为x.根据题意,得200+200(1+x)+200(1+x)=950整理方程,得4x+12x-7=0,解这个方程得x1=-3.5(舍去),x2=0.5.答:这个增长率为50%.特别注意:增长率不容为负,但可以少于1.(四)归纳小结小结:1.列一元二次方程求解应用题的步骤:检、设立、打听、列于、求解、请问。
21.3实际问题与一元二次方程教案
21.3实际问题与一元二次方程教案篇一:21.3实际问题与一元二次方程教学设计教案教学准备1.教学目标知识技能1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.2.能根据具体问题的实际意义,检验结果是否合理.过程方法经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
情感态度与价值观通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.2.教学重点/难点教学重点:列一元二次方程解有关传播问题的应用题教学难点:发现传播问题中的等量关系3.教学用具制作课件,精选习题4.标签教学过程一、导入新课师:同学们好,我们已经学过用一元一次方程来解决实际问题,你还记得列一元一次方程解决实际问题的步骤吗?生:审题、设未知数、找等量关系、列方程、解方程,最后答题.试:同一元一次方程、二元一次方程(组)等一样,一元二次方程也可以作为反映某些实际问题中数量关系的数学模型.这一节我们就讨论如何利用一元二次方程解决实际问题.二、探索新知【问题情境】有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?【分析】(1)本题中有哪些数量关系?(2)如何理解“两轮传染”?(3)如何利用已知的数量关系选取未知数并列出方程?(4)能否把方程列得更简单,怎样理解?(5)解方程并得出结论,对比几种方法各有什么特点?【解答】设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有x+1人患了流感,第二轮传染后有x(1+x)人患了流感。
于是可列方程:1+x+x(1+x)=121解方程得x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.【思考】如果按这样的传播速度,三轮传染后有多少人患了流感?【活动方略】教师提出问题学生分组,分别按问题(3)中所列的方程来解答,选代表展示解答过程,并讲解解题过程和应注意问题.【设计意图】使学生通过多种方法解传播问题,验证多种方法的正确性;通过解题过程的对比,体会对已知数量关系的适当变形对解题的影响,丰富解题经验.三、例题分析例1、某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支、主干,如果支干和小分支的总数是91,每个支干长出多少小分支?解:设每个支干长出x个小分支,则1+x+xx=91,即x2+x-90=0.解得x1=9,x2=-10(不合题意,舍去)答:每个支干长出9个小分支.例2、参加足球联赛的每两队之间都进行了两次比赛(双循环比赛),共要比赛90场,共有多少个队参加了比赛?例3、学校组织了一次篮球单循环比赛(每两队之间都进行了一次比赛),共进行了15场比赛,那么有几个球队参加了这次比赛?【分析】(1)两题中有哪些数量关系?(2)由这些数量关系还能得到什么新的结论?你想如何利用这些数量关系?为什么?如何列方程?(3)对比两题,它们有什么联系与区别?【活动方略】教师活动:操作投影,将例题显示,组织学生讨论.学生活动:合作交流,讨论解答。
人教版九年级数学上册 第21章 一元二次方程 21.3 实际问题与一元二次方程 同步训练题 含答案
人教版九年级数学上册第21章一元二次方程 21.3 实际问题与一元二次方程同步训练题含答案人教版九年级数学上册 第21章 一元二次方程 21.3 实际问题与一元二次方程同步训练题1. 小明家前年的日常开支为3.26万元,去年提高了x%,如果今年的提高率与去年相同,那么预计今年的日常开支为( )A .3.26(1+2x)万元B .3.26(1+2x%)万元C .3.26(1+x)2万元D .3.26(1+x%)2万元2. 某果园2019年水果产量为100吨,2019年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( )A .144(1-x)2=100B .100(1-x)2=144C .144(1+x)2=100D .100(1+x)2=1443. 某中学九年级(1)班在七年级时植树400棵,计划到今年毕业时,使植树总数达到1324棵,该班植树平均每年的增长率是( )A .10%B .100%C .20%D .231%4. 在某次聚会上,每两人都握了一次手,所有人共握手10次.设有x 人参加这次聚会,则列出方程正确的是( )A .x(x -10)=10 B.x x -12=10 C .x(x +1)=10 D .x x +12=105. 一个多边形共有14条对角线,则这个多边形的边数是( )A .6B .7C .8D .96. 要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队有( )A .5个B .6个C .7个D .8个7. 某校九年级毕业时,每个同学都将自己的相片向全班其他同学各送一张留念,全班共送了2550张相片.如果全班有x 名同学,根据题意列方程为 .18. 看下列一组数据:直线l上有2个点,共有1条构成的线段.直线l上有3个点,共有3条构成的线段.直线l上有4个点,共有6条构成的线段.(1)直线l上有n个点(n为正整数,n≥2),共有12n(n-1)条构成的线段;(2)若直线l上有n个点构成的线段的条数为36条,则直线l上有多少个点?参考答案:1---6 DDABB C7. x(x-1)=25508. 20%9. 1+a+a210. 1+x+x(1+x)=225或(1+x)2=22511. 50+50(1+x)+50(1+x)2=19612. 913. 解:设一台电脑每轮感染给x台电脑,由题意得:(1+x)2=81,解得x1=8,x2=-10(不合题意,舍去)故每轮感染中平均一台电脑会感染8台电脑.∵(1+x)3=(1+8)3=729>700,∴若病毒得不到有效控制,三轮感染后,被感染的电脑会超过700台.14. 设3月份到5月份营业额的月平均增长率为x,由题意,得:400×(1+10%)(1+x)2=633.6.解得:x1=0.2=20%,x2=-2.2(不合题意,舍去).答:3月份到5月份营业额的月平均增长率为20%.15. 解:设该市这两年(从2019年底到2019年底)拥有的养老床位数的平均年增长率为x,由题意可列出方程2(1+x)2=2.88,解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.16. 解:设该厂今年产量的月增长率为x ,根据题意,得:5(1+x)2-5(1+x)=1.2,整理得:25x 2+25x -6=0,解得:x 1=15=20%,x 2=-65(不合题意,舍去) 答:该厂今年产量的月增长率为20%.17. 解:设南瓜亩产量的增长率为x ,则种植面积的增长率为2x ,依题意,得 10(1+2x)·2019(1+x)=60000解这个方程,得x 1=0.5,x 2=-2(不合题意,舍去)答:南瓜亩产量的增长率为50%.18. 解:依题意有12n(n -1)=36即n 2-n -72=0解得n 1=9,n 2=-8(舍去)答:直线l 上有9个点.。
人教版九年级数学上册第21章《 21.3 实际问题与一元二次方程》(1)
21.3 实际问题与 一元二次方程(1)
随着社会的不断发展,营销问题在我们的生活 中越来越重要,今天我们就来学习一下利用一元二 次方程解决与营销有关的问题.
第二十一章 一元二次方程
【例1】两年前生产1 t甲种药品的成本是5 000元,生 产1 t乙种药品的成本是6 000元.随着生产技术的进步, 现在生产1 t甲种药品的成本是3 000元,生产1 t乙种药品 的成本是3 600元.哪种药品成本的年平均下降率较大?
第二十一章 一元二次方程
1. 平均变化率问题常列方程:a(1±x)n=b.
其中a为基数,x为平均增长(降低)率,
n为增长(降低)次数,b为增长(降低)后的量.
2. 解决利润问题常用的关系有:
(1)利润=售价-进价.
(2)利润率=
利润 进价
×100% =售价进-价进价
×100%.
(3)售价=进价(1+利润率).
第二十一章 一元二次方程
2.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植 3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利 减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株? 设每盆多植x株,则可以列出的方程是( A ) A.(3+x)(4-0.5x)=15 B.(x+3)(4+0.5x)=15 C.(x+4)(3-0.5x)=15 D.(x+1)(4-0.5x)=15
药品成本为5 000(1-x)元,两年后甲种药品成本为 5 000(1-x)2元,于是有 5 000(1-x)2=3 000. 解方程,得 x1≈0.225,x2≈1.775.
根据问题的实际意义,甲种药品成本的年平均 下降率约为22.5%.
第二十一章 一元二次方程
人教版九年级数学上册第21章 变化率问题和利润问题_教学课件
A.560(1+x)2=315
B.560(1-x)2=315
C.560(1-2x)2=315
D.560(1-x2)=315
新课讲解
2 某商场第一季度的利润是82.75万元,其中一月份的利 润是25万元,若利润平均每月的增长率为x,则依题意 列方程为( D ) A.25(1+x)2=82.75 B.25+50x=82.75 C.25+25(1+x)2=82.75 D.25[1+(1+x)+(1+x)2]=82.75
解方程,得 y1≈0.225,y2≈1.775. 根据问题的实际意义,乙种药品成本的年 平均下降率约为22.5%. 综上所述,甲乙两种药品成本的年平均下 降率相同,都是22.5%.
新课讲解
思考:经过计算,你能得出什么结论?成本下降额大的药品, 它的成本下降率一定也大吗? 应怎样全面地比较几个 对象的变化状况?
答:甲乙两种药的平均下降率相同;成本下降额较大的药 品, 它的成本下降率不一定较大.不但要考虑它们的 平均下降额,而且要考虑它们的平均下降率.
新课讲解
练一练
1 某种品牌运动服经过两次降价,每件零售价由560元降为 315元,已知两次降价的百分率相同,求每次降价的百分 率.设每次降价的百分率为x,下面所列的方程中正确的 是( B )
∴每千克核桃应降价6元. 此时,售价为60-6=54(元) , 54 ×100%=90%.
60
答: 该店应按原售价的九折出售.
课堂小结
增长率问题 平 均 变 化 率 问 题 降低率问题
a(1+x)2=b,其中 a 为增长前的量,x 为 增长率,2 为增长次数,b 为增长后的量.
a(1-x)2=b,其中 a 为降低前的量,x 为降低率,2 为降低次数,b 为降低 后的量.注意 1 与 x 位置不可调换.
21.3 实际问题与一元二次方程 2024-2025学年人教版数学九年级上册
解:(2)设第一次降价售出 a 件,则第二次降价售出
(20- a )件.由题意,得
[60(1-10%)-40] a +(48.6-40)×(20- a )
≥200,解得 a ≥5 .
∵ a 为非负整数,∴ a 的最小值是6.
答:第一次降价至少售出6件后,方可进行第二次降价.
典例导思
根据题意,得60(1- x )2=48.6,
解得 x 1=0.1=10%, x 2=1.9(舍去).
答:该商品每次降价的百分率为10%.
典例导思
(2)若该商品每件的进价为40元,计划通过以上两次降价的方
式,将库存的该商品20件全部售出,并且确保两次降价销售的总
利润不少于200元,那么第一次降价至少售出多少件后,方可进
(1+ x )2.当问题变为下降(或减产)率为 x 时,第二
次减少后的数量则为 a (1- x )2.
知识导航
例如:某品牌某羽绒服在冬季来临之际涨价销售,10、
11月份的平均增长率为 x ,9月份的售价为1 000元,10
月份的售价为
元,11月份的售
1 000(1+ x )
价为
元.若11月份的售价为1
典例导思
题型二 列一元二次方程解循环问题
例2 要组织一次篮球联赛,赛制为单循环形式(每两
队之间都赛一场),计划安排21场比赛,则参赛球队的
个数是( C )
A. 5个
B. 6个
C. 7个
D. 8个
典例导思
3. 在一次同学聚会上,每两人都互赠了一份礼物,所有人共送
了210份礼物,则参加聚会的同学有
知识导航
2022-2023学年九年级上数学:实际问题与一元二次方程(附答案解析)
【分析】设每轮传染中平均一个人传染的人数为 ,根据“一个人患了流感,经过两轮传染后共有64人患了流感”,即可得出关于 的一元二次方程,解之即可得出 的值,再将其正值代入 中即可求出结论.
【答案】D
【解析】解:设每轮传染中平均一个人传染的人数为 ,
依题意得: ,
解得: , (不合题意,舍去),
,
经过三轮传染后患流感的人数共有512个.
故选: .
【精讲2】襄阳市要组织一次少年足球联赛,要求参赛的每两队之间都要进行两场比赛,共要比赛90场,则共有个队参加比赛.
【分析】设共有 个队参加比赛,利用比赛的总场数 参加比赛的队伍数 (参加比赛的队伍数 ,即可得出关于 的一元二次方程析】设这种商品每件涨价 元,则销售量为 件,根据“总利润 每件商品的利润 销售量”列出一元二次方程.
【答案】C
【解析】解:设这种商品每件涨价 元,则销售量为 件,
根据题意,得: ,
故选: .
【精讲2】某水果店销售一种新鲜水果,平均每天可售出120箱,每箱盈利60元,为了扩大销售减少库存,水果店决定采取适当的降价措施,经调查发现,如果每箱水果每降价5元,水果店平均每天可多售出20箱.
2022-2023学年九年级上数学第21章一元二次方程
21.3实际问题与一元二次方程
自学笔记:
设基准数为a,两次增长(或下降)后为b;增长率(下降率)为x,第一次增长(或下降)后为 ;第二次增长(或下降)后为 .可列方程为 =b.
命题方向:
与增长率或下降率有关的一元二次方程的应用.
名师点拨:
列一元二次方程解决增长(降低)率问题时,要理清原来数、后来数、增长率或降低率,以及增长或降低的次数之间的数量关系.如果列出的方程是一元二次方程,那么应在原数的基础上增长或降低两次.
2024年人教版九年级数学上册教案及教学反思全册第21章 一元二次方程(教案)
21.3实际问题与一元二次方程第1课时一、教学目标【知识与技能】会根据具体问题中的数量关系,列出一元二次方程并求解,能根据问题中的实际意义,检验所得结果的合理性.【过程与方法】经过“问题情境——建立模型——求解——解释与应用”的过程中,进一步锻炼学生的分析问题,解决问题的能力.【情感态度与价值观】通过建立一元二次方程解决实际问题,体验数学的应用价值,增强学习数学的兴趣.二、课型新授课三、课时第1课时,共3课时。
四、教学重难点【教学重点】构建一元二次方程解决实际问题.【教学难点】会用代数式表示问题中的数量关系,能根据问题的实际意义,检验所得结果的合理性.五、课前准备课件六、教学过程(一)导入新课有一人患了流感,经过两轮传染后共有121个人患了流感,每轮传染中平均一个人传染了几个人?(出示课件2)你能解决这个问题吗?(出示课件4)(二)探索新知出示课件5:设每轮传染中平均一个人传染了x个人.传染源记作小明,其传染示意图如下:(1)第一轮传染后共有人患了流感;(2)第二轮传染后共人患了流感.根据示意图,列表如下:(出示课件6)第1轮传染后的人数第2轮传染后的人数传染源人数1最后师生共同完成解答过程:解:设每轮传染中平均一个人传染了x个人,列方程为1+x+(1+x)·x=121提取公因式,得(1+x)(1+x)=121,即(1+x)2=121.∴x1=10,x2=-12(不合题意,应舍去),故平均一个人传染了10个人.教师强调:一元二次方程的解有可能不符合题意,所以舍去.想一想:如果按照这样的传染速度,三轮传染后有多少人患流感?(出示课件7)师生共同分析:第一轮传染后的人数第二轮传染后的人数第三轮传染后的人数生1口答:第1种做法:以1人为传染源,3轮传染后的人数是:(1+x)3=(1+10)3=1331(人).生2口答:第2种做法:以第2轮传染后的人数121为传染源,传染一次后就是:121(1+x)=121(1+10)=1331(人).思考:如果按这样的传染速度,n轮后传染后有多少人患了流感?(出示课件8)师生共同分析:传染源新增患者人数本轮结束患者总人数第一轮第二轮第三轮第n轮达成共识:经过n轮传染后共有(1+x)n人患流感.出示课件9:例1某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少小分支?师生共同分析后解答如下:解:设每个支干长出x个小分支,由题意可列方程为1+x+x2=91,即x2+x-90=0.解得x1=9,x2=-10(不合题意,应舍去),答:每个支干长出9个小分支.出示课件10:引导学生思考并解答如下问题:1.在分析引例和例1中的数量关系时它们有何区别?答案:每个树枝只分裂一次,每名患者每轮都传染.2.解决这类传播问题有什么经验和方法?答案:(1)审题,设元,列方程,解方程,检验,作答;(2)可利用表格梳理数量关系;(3)关注起始值、新增数量,找出变化规律.教师问:运用一元二次方程模型解决实际问题的步骤有哪些?(出示课件11)学生自主思考后,教师归纳如下:出示课件12:电脑勒索病毒的传播非常快,如果开始有6台电脑被感染,经过两轮感染后共有2400台电脑被感染.每轮感染中平均一台电脑会感染几台电脑?学生思考后自主解决.解:设每轮感染中平均一台电脑会感染x台电脑.依题意得6+6x+6x(1+x)=2400.6(1+x)²=2400.解得x1=19或x2=-21(舍去).答:每轮感染中平均一台电脑会感染19台电脑.出示课件13:例2一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共多少人?引导学生积极思考,寻求出实际问题中所蕴含的等量关系,最后师生共同完成解答过程.解:设这个小组共x人,根据题意列方程,得x(x-1)=72.化简,得x2-x-72=0.解方程,得x1=9,x2=-8(舍去).答:这个小组共9人.出示课件14:生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,求全组有多少名同学?学生独立思考,自主探究,找出题目中的等量关系后自主解答:解:全组有x名同学,根据题意,得x(x-1)=182.解得x1=14,x2=-13(不合题意,舍去).答:全组有14名同学.(三)课堂练习(出示课件15-22)1.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人2.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4B.5C.6D.73.元旦将至,九年级一班全体学生互赠贺卡,共赠贺卡1980张,问九年级一班共有多少名学生?设九年级一班共有x名学生,那么所列方程为()A.x2=1980B.x(x+1)=1980C.x(x-1)=1980D.x(x-1)=19804.有一根月季,它的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干、小分支的总数是73,设每个枝干长出x个小分支,根据题意可列方程为()A.1+x+x(1+x)=73B.1+x+x2=73C.1+x2=73D.(1+x)²=735.早期,甲肝流行,传染性很强,曾有2人同时患上甲肝.在一天内,一人平均能传染x人,经过两天传染后128人患上甲肝,则x的值为()?A.10B.9C.8D.76.为了宣传环保,小明写了一篇倡议书,决定用微博转发的方式传播,他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个好友转发倡议书,每个好友转发倡议书之后,又邀请n个互不相同的好友转发倡议书,以此类推,已知经过两轮传播后,共有111个人参与了传播活动,则n=______.7.某校初三各班进行篮球比赛(单循环制),每两班之间共比赛了6场,求初三有几个班?8.某生物实验室需培育一群有益菌,现有60个活体样本,经过两轮培植后,总和达24000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后共有多少个有益菌?参考答案:1.C2.C3.D4.B5.D6.107.解:初三有x个班,根据题意列方程,得1(1) 6.x x-=2化简,得x2-x-12=0.解方程,得x1=4,x2=-3(舍去).答:初三有4个班.8.分析:设每轮分裂中平均每个有益菌可分裂出x个有益菌.传染源本轮分裂成有益菌数目本轮结束有益菌总数第一轮6060x60(1+x)第二轮60(1+x)60(1+x)x60(1+x)2第三轮60(1+x)260(1+x)2x60(1+x)3解:设每个有益菌一次分裂出x个有益菌.60+60x+60(1+x)x=24000.x1=19,x2=-21(舍去).因此每个有益菌一次分裂出19个有益菌.三轮后有益菌总数为24000×(1+19)=480000.(四)课堂小结通过这节课的学习,你对传播类的应用问题的处理有哪些体会和收获?谈谈你的看法.(五)课前预习预习下节课(21.3第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.教师引导学生熟悉列一元二次方程解应用题的步骤,创设问题推导出列一元二次方程解应用题的步骤,有利于学生熟练掌握用一元二次方程解应用题的步骤.2.传播类和增长率问题是一元二次方程中的重点问题,本设计问题中反映出不同的“传播”和增长率,有利于学生更好地掌握这一问题.。
新人教版九年级上册 第21章 21.3实际问题与一元二次方程 教案
师生行为
点题,板书课 题.
教师提出问 题,并指导学 生进行阅读, 独立思考,学 生根据个人理 解,回答教师 提出的问题. 弄清题意,设 出未知数,并 表示相关量, 根据相等关系 尝试列方程, 求根.根据实 际问题要求, 对根进行选择 确定问题的 解.教师组织
二次备 课 .
1
○1 正中央的长方形与整个封面的长宽比例 相同,是什么含
学生合作交 流,达到共 识,
师生汇总生活 中常见的类似 问题,总结这 类题的做题技 巧.
教师提出问 题,让学生结 合画图独立理 解并解答问 题,培养学生 对几何图形的 分析能力,将 数学知识和实 际问题相结合 的 应用意识
教师总结,学 生体会
学生独立完 成,教师巡视 指导,了解学 生 掌握情况, 并集中订正
个面积为 8m2•的长方形花台,要使花坛四周的宽地宽度一
样,则这个宽度为多少?
四小结 归纳
谈一节课的收获和体会.
五、作业设计
必做:P48:4-8
选做:P49:10
补充作业:
某林场•上口宽比渠深多 2m,渠底比渠深多 0.4m.
(1)渠道的上口宽与渠底宽各是多少?
教 学 目 标
教学重点 教学难点 教学过程设计
实际问题与一元二次方程
知识 技能
过程 方法 情感 态度
1.能根据○1 以流感为问题背景,按一定传播速度 逐步传播的问题;○2 以封面设计为问题背景,边衬 的宽度问题中的数量关系列出一元二次方程,体会 方程刻画现实世界的模型作用. 2.培养学生的阅读能力与分析能力. 3.能根据具体问题的实际意义,检 验结果是否合 理. 通过自主探究,独立思考与合作交流,使学生弄清 实际问题的背景,挖掘隐藏的数量关系,把有关数 量关系分析透彻,找出可以作为列方程依据的主要 相等关系,正确的建立一元二次方程. 在分析解决问题的过程中逐步深入地体会一元二 次方程的应用价值.
21.3 实际问题与一元二次方程(传播问题和变化率问题)九年级数学上册(人教版)
针针对对训训练练
一个人传染了几个人?
具体传播过程
【问题】如果按照这样的传播速度,第
三轮传染过后总共会有多少人得流感?
[分析]经过两轮传染后共有___1_2_1__个人患了流感,平
x
…
均每轮传染___1_0____人,则第三轮有_____1_2_1_0___人 患了流感。
一轮传染
121+121×10 = 1 331(人)
直接开方法
x2=a (a≥0)
配方法
(x+m)2=n (n≥0)
公式法
因式分解法
(x-x1)(x-x2)=0
复习巩固
【提问】回顾列方程解决实际问题的基本步骤? 1)审:分清已知未知,明确数量关系; 2)设:设未知数; 3)列:列方程; 4)解:解方程; 5)验:根据实际验结果; 6) 答:写出答案。
1.2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题 教育学习活动,我市“红二方面军长征出发地纪念馆”成为重要的活动基地.据了解,今年3 月份该基地接待参观人数10万人,5月份接待参观人数增加到12.1万人. (1)求这两个月参观人数的月平均增长率; (2)按照这个增长率,预计6月份的参观人数是多少?
两种药品成本的年平均下降率相等
【问题】成本下降额大的药品,它的成本下降率一定也大吗? 成本下降额较大的产品,其成本下降率不一定较大。
人教版初中数学九年级上册第二十一章21.3.2平均变化率问题与一元二次方程
21.3 实际问题与一元二次方程
用一元二次方程解决平均变化率问题
【问题1】思考,并填空:
1.某户的粮食产量年平均增长率为 10%,第一年的产量为6t,第二年的
产量为___________t,第三年的产量___________t.
2.某厂今年一月份的总产量为500吨,二月份的总产量为720吨,则第 一个月比第二个月产量增长_________,增长率是 __________.
2.解决“传播问题” 探究 有一个人患了流感,经过两轮传染后共有 121
个人患了流感,每轮传染中平均一个人传染了几个人?
分析:
(1)本题中的数量关系是什么? (2)每一轮的传染源和传染之后的患流感人数是 多少?
2.解决“传播问题”
探究 有一个人患了流感,经过两轮传染后共有 121个人患了流感,每轮传染中平均一个人传染了几个 人?
种药品的成本是
元.
【问题2】你能归纳上述两个问题中蕴含的共同等量关系吗?
两年后: “变化率”问题公式:a(1±x)n=b
x为平均增长(或降低)百分率, a是增长(或降低)前的量, b是增长(或降低)n次后的量, 其中增长取“+”,降低取“-” 。
【例1】两年前生产1吨甲种药品的成本是5000元,生产1吨乙
设甲种药品成本的年平均下降率为 y
6000(1-y)2=3600
解得y1≈0.225,y2≈1.775(不合题意,舍去)
∴乙种药品成本的年平均下降率约为 22.5%.
答:两种药品成本的年平均下降率一样大。
【例2】某公司去年的各项经营中,一月份的营业额为200万元 ,第一季度的营业额共950万元,如果平均每月营业额的增长率 相同,求这个增长率. 解:设这个增长率为x.根据题意,得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【合作交流】——解决实际问题
◆B同学认为,不需要这么麻烦,只要分别计算 出两种药品成本的年平均下降额,然后进行比较 就可以得出结论。 解:甲种药品成本的年平均下降额为 (5 000 - 3 000 ) ÷ 2 = 1 000(元), 乙种药品成本的年平均下降额为 (6 000 - 3 600) ÷ 2 = 1 200(元). 因为: 1000 元 1200 元 所以,乙种药品成本的年平均下降额较大, 则乙种药品成本的年平均下降率也较大。
1001 x% 元. ___________
2
(2)一种产品原来的售价为a元,第一次降价x﹪后售
a1 x% 元,第二次再降价x﹪则售价为 价为_____________
a1 x% 元. ___________
2
ቤተ መጻሕፍቲ ባይዱ
【自主学习】——分析平均变化率问题的数量关系
2.逐步提升 (1)某商场销售额3月份为16万元,
4.形成规律: 若平均增长(或降低)百分率为x, 若变化前的量为a, 变化n次后的量为b, 则它们的数量关系可表示为 2 _____________ a1 x b
【合作交流】——解决实际问题
探究2 两年前生产 1 t 甲种药品的成本是 5 000 元,生产 1 t 乙种药品的成本是 6 000 元,随着生产技 术的进步,现在生产 1 t 甲种药品的成本是 3 000 元, 生产 1 t 乙种药品的成本是 3 600 元,哪种药品成本的 年平均下降率较大?
【合作交流】——解决实际问题
◆很明显A、B两名同学的答案不一致,你认为, 哪位同学的做法正确?为什么?你从中获得了什么启示? 两种药品成本的年平均下降率相等,成本下降额较 大的产品,其成本下降率不一定较大.成本下降额表示 绝对变化量,成本下降率表示相对变化量,两者兼顾才 能全面比较对象的变化状况.
【合作交流】——解决实际问题
解:设甲种药品成本的年平均下降率为 x 一年后甲种药品成本为 5 000(1 - x ) 元, 2 两年后甲种药品成本为 5 000(1 - x) 元. 2 列方程得 5 000(1 - x) =3 000 . 解方程,得 x1≈0.225, x2≈1.775. 根据问题的实际意义,成本的年平均下降率应是小 于 1 的正数,应选 0.225.所以,甲种药品成本的年平均 下降率约为 22.5%. 类似于乙种药品成本年平均下降率的计算,由方程 2 6 000(1 - x) =3 600 解方程,得 x1≈0.225, x2≈1.775. 得乙种药品成本年平均下降率为 0.225. 答:两种药品成本的年平均下降率相等。
【自主学习】——分析平均变化率问题的数量关系
1.基础演练:
1001 10% 1001 10%1 10% 第一次提价 第二次提价 110 原价100元 10%后 ( )元 10%后 ( 121 )元
(1)一种产品原来的售价为100元,第一次提价x﹪后
1001 x% 元,第二次再提价x﹪则售价为 售价为_____________
3.巩固成果: 某型号的手机连续两次降价, 每个售价由原来的1185元降到了580元, 设平均每次降价的百分率为x, 则列出方程正确的是( D ) A.580(1+x)2=1185 B.1185(1+x)2=580 C.580(1-x)2=1185 D.1185(1-x)2=580
【自主学习】——分析平均变化率问题的数量关系
【归纳小结】
你能概括一下“变化率问题”的基本特征 吗?解决“变化率问题”的关键步骤是什么?
“变化率问题”的基本特征:平均变化率保持不变; 解决“变化率问题”的关键步骤:找出变化前的数量、 变化后的数量,找出相应的等量关系.
【课堂检测】
1.市政府为了解决市民看病难的问题,决定下调药品的价格. 某种药品经过两次连续降价后,由每盒200元下调至128元,求 这种药品平均每次降价的百分率是多少? 2.2005年一月份越南发生禽流感的养鸡场100家,后来二、 • 三月份新发生禽流感的养鸡场共250家,设二、三月份平均 每月禽流感的感染率为x,依题意列出的方程是( ) A.100(1+x)2=250 B.100(1+x)+100(1+x)2=250 C.100(1-x)2=250 D.100(1+x)2
九年级
上册
21.3 实际问题与一元二次方程(2) ——变化率问题
• 学习目标: 1.会建立一元二次方程的数学模型解决连续增长(或 下降)问题; 2.会全面地比较几个对象的变化状况。 • 学习重点: 会建立一元二次方程的数学模型解决连续增长(或下 降)问题 • 学习难点: 会全面地比较几个对象的变化状况。
若该商场每月销售额的平均增长率为a,
则5月份的销售额为16 ________ 1 a 万元.
2
(2)某商场销售额3月份为16万元,
若该商场每月销售额的平均增长率为a, 5月份的销售额为25万元.
2
161 a 25 则可列等式为_____________
【自主学习】——分析平均变化率问题的数量关系