2020年宜昌市近五届中考数学抛物线压轴题(24题)汇编及答案
2018年宜昌市近五届中考数学抛物线压轴题(24题)汇编及答案
2018年宜昌市近五届中考数学抛物线压轴题(24题)汇编及答案(本大题一般3小问,共12分)上传校勘:柯老师【2013/24】如图1,平面之间坐标系中,等腰直角三角形的直角边BC在x轴正半轴上滑动,点C 的坐标为(t,0),直角边AC=4,经过O,C两点做抛物线y1=ax(x﹣t)(a为常数,a>0),该抛物线与斜边AB交于点E,直线OA:y2=kx(k为常数,k>0)(1)填空:用含t的代数式表示点A的坐标及k的值:A,k=;(2)随着三角板的滑动,当a=时:①请你验证:抛物线y1=ax(x﹣t)的顶点在函数y=的图象上;②当三角板滑至点E为AB的中点时,求t的值;(3)直线OA与抛物线的另一个交点为点D,当t≤x≤t+4,|y2﹣y1|的值随x的增大而减小,当x≥t+4时,|y2﹣y1|的值随x的增大而增大,求a与t的关系式及t的取值范围.【2014/24】如图,在平面直角坐标系中,已知点P(0,4),点A在线段OP上,点B在x轴正半轴上,且AP=OB=t,0<t<4,以AB为边在第一象限内作正方形ABCD;过点C、D依次向x轴、y 轴作垂线,垂足为M,N,设过O,C两点的抛物线为y=ax2+bx+c.(1)填空:△AOB≌△≌△BMC(不需证明);用含t的代数式表示A点纵坐标:A(0,);(2)求点C的坐标,并用含a,t的代数式表示b;(3)当t=1时,连接OD,若此时抛物线与线段OD只有唯一的公共点O,求a的取值范围;(4)当抛物线开口向上,对称轴是直线x=2﹣,顶点随着的增大向上移动时,求t的取值范围.【2015/24】如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC 绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线y=ax2+bx+n(a≠0)过E,A′两点.(1)填空:∠AOB=°,用m表示点A′的坐标:A′(,);(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且=时,△D′OE与△ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:①求a,b,m满足的关系式;②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.【2016/24】已知抛物线y=x2+(2m+1)x+m(m﹣3)(m为常数,﹣1≤m≤4).A(﹣m﹣1,y1),B(,y2),C(﹣m,y3)是该抛物线上不同的三点,现将抛物线的对称轴绕坐标原点O逆时针旋转90°得到直线a,过抛物线顶点P作PH⊥a于H.(1)用含m的代数式表示抛物线的顶点坐标;(2)若无论m取何值,抛物线与直线y=x﹣km(k为常数)有且仅有一个公共点,求k的值;(3)当1<PH≤6时,试比较y1,y2,y3之间的大小.【2017/24】24.已知抛物线y=ax 2+bx+c ,其中20a b c =>>,且0a b c ++=.(1) 直接写出关于x 的一元二次方程ax 2+bx+c=0的一个根;(2) 证明:抛物线y=ax 2+bx+c 的顶点A 在第三象限;(3) 直线 y=x+m 与x ,y 轴分别相交于,B C 两点,与抛物线y=ax 2+bx+c 相交于A ,D 两点.设抛物线y=ax 2+bx+c 的对称轴与x 轴相交于E ,如果在对称轴左侧的抛物线上存在点F ,使得ADF ∆与BOC ∆相似.并且12ADF ADE S S ∆∆=,求此时抛物线的表达式.参考答案:【2013/24】解:(1)∵点C的坐标为(t,0),直角边AC=4,∴点A的坐标是(t,4).又∵直线OA:y2=kx(k为常数,k>0),∴4=kt,则k=(k>0).(2)①当a=时,y1=x(x﹣t),其顶点坐标为(,﹣).对于y=来说,当x=时,y=×=﹣,即点(,﹣)在抛物线y=上.故当a=时,抛物线y1=ax(x﹣t)的顶点在函数y=的图象上;②如图1,过点E作EK⊥x轴于点K.∵AC⊥x轴,∴AC∥EK.∵点E是线段AB的中点,∴K为BC的中点,∴EK是△ACB的中位线,∴EK=AC=2,CK=BC=2,∴E(t+2,2).∵点E在抛物线y1=x(x﹣t)上,∴(t+2)(t+2﹣t)=2,解得t=2.(3)如图2,,则x=ax(x﹣t),解得x=+4,或x=0(不合题意,舍去)..故点D的横坐标是+t.当x=+t时,|y2﹣y1|=0,由题意得t+4=+t,解得a=(t>0).【2014/24】解:(1)如图,∵∠DNA=∠AOB=90°,∴∠NAD=∠OBA(同角的余角相等).在△AOB与△DNA中,,∴△AOB≌△DNA(SAS).同理△DNA≌△BMC.∵点P(0,4),AP=t,∴OA=OP﹣AP=4﹣t.故答案是:DNA或△DPA;4﹣t;(2)由题意知,NA=OB=t,则OA=4﹣t.∵△AOB≌△BMC,∴CM=OB=t,∴OM=OB+BM=t+4﹣t=4,∴C(4,t).又抛物线y=ax2+bx+c过点O、C,∴,解得b=t﹣4a;(3)当t=1时,抛物线为y=ax2+(﹣4a)x,NA=OB=1,OA=3.∵△AOB≌△DNA,∴DN=OA=3,∵D(3,4),∴直线OD为:y=x.联立方程组,得,消去y,得ax2+(﹣﹣4a)x=0,解得x=0或x=4+,所以,抛物线与直线OD总有两个交点.讨论:①当a>0时,4+>3,只有交点O,所以a>0符合题意;②当a<0时,若4+>3,则a<﹣.又a<0所以a<﹣.若4+<0,则得a>﹣.又a<0,所以﹣<a<0.综上所述,a的取值范围是a>0或a<﹣或﹣<a<0.(4)抛物线为y=ax2+(﹣4a)x,则顶点坐标是(﹣,﹣(t﹣16a)2).又∵对称轴是直线x=﹣+2=2﹣,∴a=t2,∴顶点坐标为:(2﹣,﹣(1﹣4t)2),即(2﹣,﹣(t﹣)2).∵抛物线开口向上,且随着t的增大,抛物线的顶点向上移动,∴只与顶点坐标有关,∴t的取值范围为:0<t≤.【2015/24】解:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO为等腰直角三角形,∴∠AOB=45°,由旋转的性质得:OD′=D′A′=m,即A′(m,﹣m);故答案为:45;m,﹣m;(2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵=,∴P(2m,m),∵A′为抛物线的顶点,∴设抛物线解析式为y=a(x﹣m)2﹣m,∵抛物线过点E(0,n),∴n=a(0﹣m)2﹣m,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;(3)①当点E与点O重合时,E(0,0),∵抛物线y=ax2+bx+c过点E,A,∴,整理得:am+b=﹣1,即b=﹣1﹣am;②∵抛物线与四边形ABCD有公共点,∴抛物线过点C时的开口最大,过点A时的开口最小,若抛物线过点C(3m,0),此时MN的最大值为10,∴a(3m)2﹣(1+am)•3m=0,整理得:am=,即抛物线解析式为y=x2﹣x,由A(2m,2m),可得直线OA解析式为y=x,联立抛物线与直线OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,当m=2时,a=;若抛物线过点A(2m,2m),则a(2m)2﹣(1+am)•2m=2m,解得:am=2,∵m=2,∴a=1,则抛物线与四边形ABCD有公共点时a的范围为≤a≤1.【2016/24】解:(1)∵﹣=﹣,==﹣,∴顶点坐标(﹣,﹣).(2)由消去y得x2+2mx+(m2+km﹣3m)=0,∵抛物线与x轴有且仅有一个公共点,∴△=0,即(k﹣3)m=0,∵无论m取何值,方程总是成立,∴k﹣3=0,∴k=3,(3)PH=|﹣﹣(﹣)|=||,∵1<PH≤6,∴当>0时,有1<≤6,又﹣1≤m≤4,∴<m,当<0时,1<﹣≤6,又∵﹣1≤m≤4,∴﹣1,∴﹣1≤m<﹣或<m≤,∵A(﹣m﹣1,y1)在抛物线上,∴y1=(﹣m﹣1)2+(2m+1)(﹣m﹣1)+m(m+3)=﹣4m,∵C(﹣m,y3)在抛物线上,∴y3=(﹣m)2+(2m+1)(﹣m)+m(m﹣3)=﹣4m,∴y1=y3,①令<﹣m﹣1,则有m<﹣,结合﹣1≤m≤﹣,∴﹣1≤m<﹣,此时,在对称轴的左侧y随x的增大而减小,如图1,∴y2>y1=y3,即当﹣1≤m<﹣时,有y2>y1=y3.②令=﹣m﹣1,则A与B重合,此情形不合题意,舍弃.③令>﹣m﹣1,且≤﹣时,有﹣<m≤﹣,结合﹣1≤m<﹣,∴﹣<m≤﹣,此时,在对称轴的左侧,y随x的增大而减小,如图2,∴y1=y3>y2,即当﹣<m≤﹣时,有y1=y3>y2,④令﹣≤<﹣m,有﹣≤m<0,结合﹣1≤m<﹣,∴﹣≤m<﹣,此时,在对称轴的右侧y随x的增大而增大,如图3,∴y2<y3=y1.⑤令=﹣m,B,C重合,不合题意舍弃.⑥令>﹣m,有m>0,结合<m≤,∴<m≤,此时,在对称轴的右侧,y随x的增大而增大,如图4,∴y2>y3=y1,即当<m≤时,有y2>y3=y1,综上所述,﹣1≤m<﹣或<m≤时,有y2>y1=y3,﹣<m<﹣时,有y2<y1=y3.【2017/24】。
湖北省宜昌市2020年中考数学试题(解析版)
故选:A.
【点睛】本题考查垂直平分线的定义,关键在于牢记基础知识.
5.小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是( ).
【详解】解:
=
= .
故选:C.
【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.对于无理数 ,添加关联的数或者运算符号组成新的式子,其运算结果能成为有理数的是( ).
A. B. C. D.
【答案】D
D、如图4,∠4是锐角,且∠4= ,所以此图说明“锐角 ,锐角 的和是锐角”是真命题,故本选项不符合题意.
故选:C.
【点睛】本题考查了真假命题、举反例说明一个命题是假命题以及三角形的外角性质等知识,属于基本题型,熟练掌握上述基本知识是解题的关键.
7.诗句“横看成岭侧成峰,远近高低各不同”,意思是说要认清事物的本质,就必须从不同角度去观察.下图是对某物体从不同角度观察的记录情况,对该物体判断最接近本质的是( ).
【解析】
【分析】
分别计算出各选项的结果再进行判断即可.
【详解】A. 不能再计算了,是无理数,不符合题意;
B. ,是无理数,不符合题意;
C. ,是无理数,不符合题意;
D. ,是有理数,正确.
故选:D.
【点睛】此题主要考查了二次根式的运算,辨别运算结果,区分运算结果是否是有理数是解题的关键.
4.如图,点E,F,G,Q,H在一条直线上,且 ,我们知道按如图所作的直线 为线段 的垂直平分线.下列说法正确的是( ).
2020年湖北省宜昌市中考数学试卷(解析版)
湖北省宜昌市2020年中考数学试题一、选择题(下列各小题中,只有一个选项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.每小题3分,计33分.)1.下面四幅图是摄影爱好者抢拍的一组照片,从对称美的角度看,拍得最成功的是().A. B. C. D.2.我国渤海、黄海、东海、南海海水含有不少化学元素,其中铝、锰元素总量均约为6810⨯吨.用科学记数法表示铝、锰元素总量的和,接近值是().A.6810⨯ B.61610⨯ C.71.610⨯ D.121610⨯3.,添加关联的数或者运算符号组成新的式子,其运算结果能成为有理数的是().A.-B.C.3D.04.如图,点E ,F ,G ,Q ,H 在一条直线上,且EF GH =,我们知道按如图所作的直线l 为线段FG 的垂直平分线.下列说法正确的是().A.l 是线段EH 的垂直平分线B.l 是线段EQ 的垂直平分线C.l 是线段FH 的垂直平分线D.EH 是l 的垂直平分线5.小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是().A.小李现在位置为第1排第2列B.小张现在位置为第3排第2列C.小王现在位置为第2排第2列D.小谢现在位置为第4排第2列6.能说明“锐角α,锐角β的和是锐角”是假命题的例证图是().A. B. C. D.7.诗句“横看成岭侧成峰,远近高低各不同”,意思是说要认清事物的本质,就必须从不同角度去观察.下图是对某物体从不同角度观察的记录情况,对该物体判断最接近本质的是().A.是圆柱形物体和球形物体的组合体,里面有两个垂直的空心管B.是圆柱形物体和球形物体的组合体,里面有两个平行的空心管C.是圆柱形物体,里面有两个垂直的空心管D.是圆柱形物体,里面有两个平行的空心管8.某车间工人在某一天的加工零件数只有5件,6件,7件,8件四种情况.图中描述了这天相关的情况,现在知道7是这一天加工零件数的唯一众数.设加工零件数是7件的工人有x 人,则()A.16x >B.16x =C.1216x <<D.12x =9.游戏中有数学智慧,找起点游戏规定:从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行.成功的招数不止一招,可助我们成功的一招是().A.每走完一段直路后沿向右偏72°方向行走B.每段直路要短C.每走完一段直路后沿向右偏108°方向行走D.每段直路要长10.如图,E ,F ,G 为圆上的三点,50FEO ∠=︒,P 点可能是圆心的是().A. B. C. D.11.已知电压U 、电流I 、电阻R 三者之间的关系式为:U IR =(或者U I R=),实际生活中,由于给定已知量不同,因此会有不同的可能图象,图象不可能是()A. B.C. D.二、填空题(将答案写在答题卡上指定的位置.每小题3分,计12分)12.向指定方向变化用正数表示,向指定方向的相反方向变化用负数表示,“体重减少1.5kg ”换一种说法可以叙述为“体重增加_______kg ”.13.数学讲究记忆方法.如计算()25a 时若忘记了法则,可以借助()25555510a a a a a +=⨯==,得到正确答案.你计算()5237a a a -⨯的结果是__________.14.技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以估计该产品合格的概率为_______.(结果要求保留两位小数)15.如图,在一个池塘两旁有一条笔直小路(B ,C 为小路端点)和一棵小树(A 为小树位置)测得的相关数据为:60,60,48ABC ACB BC ∠=︒∠=︒=米,则AC =________米.三、解答题(将解答过程写在答题卡上指定的位置,本大题共有9小题,计75分.)16.在“-”“×”两个符号中选一个自己想要的符号,填入212212⎛⎫+⨯ ⎪⎝⎭中的□,并计算.17.先化简,再求值:20441(1)12x x x x x x ++----+ ,其中2020x =.18.光线在不同介质中传播速度不同,从一种介质射向另一种介质时会发生折射,如图,水面AB 与水杯下沿CD 平行,光线EF 从水中射向空气时发生折射,光线变成FH ,点G 在射线EF 上,已知20,45HFB FED ∠=︒∠=︒,求GFH ∠的度数.19.红光中学学生乘汽车从学校去研学旅行基地,以75千米/小时的平均速度,用时2小时到达,由于天气原因,原路返回时汽车平均速度控制在不低于50千米/小时且不高于60千米/小时的范围内,这样需要用t 小时到达,求t 的取值范围.20.宜昌景色宜人,其中三峡大坝、清江画廊、三峡人家景点的景色更是美不胜收.某民营单位为兼顾生产和业余生活,决定在下设的A ,B ,C 三部门利用转盘游戏确定参观的景点,两转盘各部分圆心角大小以及选派部门、旅游景点等信息如图.(1)若规定老同志相对偏多的部门选中的可能性大,试判断这个部门是哪个部门?请说明理由;(2)设选中C 部门游三峡大坝的概率为1P ,选中B 部门游清江画廊或者三峡人家的概率为2P ,请判断1P ,2P 大小关系,并说明理由.21.如图,在四边形ABCD 中,//,,60AD BC AB ABC =∠=︒,过点B 的O 与边,AB BC 分别交于E ,F 两点.OG BC ⊥,垂足为G ,OG a =.连接,,OB OE OF .(1)若2BF a =,试判断BOF 的形状,并说明理由;(2)若BE BF =,求证:O 与AD 相切于点A .22.资料:公司营销区域面积是指公司营销活动范围内的地方面积,公共营销区域面积是指两家及以上公司营销活动重叠范围内的地方面积.材料:某地有A ,B 两家商贸公司(以下简称A ,B 公司).去年下半年A ,B 公司营销区域面积分别为m 平方千米,n 平方千米,其中3m n =,公共营销区域面积与A 公司营销区域面积的比为29;今年上半年,受政策鼓励,各公司决策调整,A 公司营销区域面积比去年下半年增长了%x ,B 公司营销区域面积比去年下半年增长的百分数是A 公司的4倍,公共营销区域面积与A 公司营销区域面积的比为37,同时公共营销区域面积与A ,B 两公司总营销区域面积的比比去年下半年增加了x 个百分点.问题:(1)根据上述材料,针对去年下半年,提出一个你喜欢的数学问题(如求去年下半年公共营销区域面积与B 公司营销区域面积的比),并解答;(2)若同一个公司去年下半年和今年上半年每平方千米产生的经济收益持平,且A 公司每半年每平方千米产生的经济收益均为B 公司的1.5倍,求去年下半年与今年上半年两公司总经济收益之比.23.菱形ABCD 的对角线,AC BD 相交于点O ,060ABO ︒<∠≤︒,点G 是射线OD 上一个动点,过点G 作//GE DC 交射线OC 于点E ,以,OE OG 为邻边作矩形EOGF .(1)如图1,当点F 在线段DC 上时,求证:DF FC =;(2)若延长AD 与边GF 交于点H ,将GDH 沿直线AD 翻折180°得到MDH .①如图2,当点M 在EG 上时,求证:四边形EOGF 为正方形:②如图3,当tan ABO ∠为定值m 时,设DG k DO =⋅,k 为大于0的常数,当且仅当2k >时,点M 在矩形EOGF 的外部,求m 的值.24.已知函数1221,(21)1y x m y m x =+-=++均为一次函数,m 为常数.(1)如图1,将直线AO 绕点()1,0A -逆时针旋转45°得到直线l ,直线l 交y 轴于点B .若直线l 恰好是1221,(21)1y x m y m x =+-=++中某个函数的图象,请直接写出点B 坐标以及m 可能的值;(2)若存在实数b ,使得||(10m b b ---=成立,求函数1221,(21)1y x m y m x =+-=++图象间的距离;(3)当1m >时,函数121y x m =+-图象分别交x 轴,y 轴于C ,E 两点,(21)1y m x =++图象交x 轴于D 点,将函数11y y y = 的图象最低点F 向上平移5621m +个单位后刚好落在一次函数121y x m =+-图象上,设12y y y = 的图象,线段OD ,线段OE 围成的图形面积为S ,试利用初中知识,探究S 的一个近似取值范围.(要求:说出一种得到S的更精确的近似值的探究办法,写出探究过程,得出探究结果,结果的取值范围两端的数值差不超过0.01.)湖北省宜昌市2020年中考数学试题一、选择题(下列各小题中,只有一个选项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.每小题3分,计33分.)1.下面四幅图是摄影爱好者抢拍的一组照片,从对称美的角度看,拍得最成功的是().A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的特点进行判断即可.【详解】A ,C ,D 三幅图都不是轴对称图形,只有B 是轴对称图形,故选:B【点睛】本题考查了轴对称图形的性质,熟知此知识点是解题的关键.2.我国渤海、黄海、东海、南海海水含有不少化学元素,其中铝、锰元素总量均约为6810⨯吨.用科学记数法表示铝、锰元素总量的和,接近值是().A.6810⨯ B.61610⨯ C.71.610⨯ D.121610⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是非负数;当原数的绝对值<1时,n 是非正数.在这里,要先求出铝、锰元素总量的和,再科学记数法表示即可.【详解】解:68210⨯⨯=61610⨯=71.610⨯.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.,添加关联的数或者运算符号组成新的式子,其运算结果能成为有理数的是().A.-B.C.3D.0【答案】D【解析】【分析】分别计算出各选项的结果再进行判断即可.【详解】A.-不能再计算了,是无理数,不符合题意;B=,是无理数,不符合题意;C.3D.00=,是有理数,正确.故选:D.【点睛】此题主要考查了二次根式的运算,辨别运算结果,区分运算结果是否是有理数是解题的关键.=,我们知道按如图所作的直线l为线段FG的垂4.如图,点E,F,G,Q,H在一条直线上,且EF GH直平分线.下列说法正确的是().A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线【答案】A【解析】【分析】根据垂直平分线的定义判断即可.【详解】∵l为线段FG的垂直平分线,∴FO=GO,又∵EF=GH,∴EO=HO,∴l是线段EH的垂直平分线,故A正确由上可知EO≠QO,FO≠OH,故B、C错误∵l是直线并无垂直平分线,故D错误故选:A.【点睛】本题考查垂直平分线的定义,关键在于牢记基础知识.5.小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是().A.小李现在位置为第1排第2列B.小张现在位置为第3排第2列C.小王现在位置为第2排第2列D.小谢现在位置为第4排第2列【答案】B【解析】【分析】由于撤走一排,则四人所在的列数不变、排数减一,据此逐项排除即可.【详解】解:A.小李现在位置为第1排第4列,故A选项错误;B.小张现在位置为第3排第2列,故B选项正确;C.小王现在位置为第2排第3列,故C选项错误;D.小谢现在位置为第4排第4列,故D选项错误.故选:B.【点睛】本题考查了位置的确定,根据题目信息、明确行和列的实际意义是解答本题的关键.6.能说明“锐角α,锐角β的和是锐角”是假命题的例证图是().A. B. C. D.【答案】C【解析】【分析】先将每个图形补充成三角形,再利用三角形的外角性质逐项判断即得答案.+,所以此图说明“锐角α,锐角β的和是锐角”是真命【详解】解:A、如图1,∠1是锐角,且∠1=αβ题,故本选项不符合题意;B、如图2,∠2是锐角,且∠2=αβ+,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意;C、如图3,∠3是钝角,且∠3=αβ+,所以此图说明“锐角α,锐角β的和是锐角”是假命题,故本选项符合题意;D、如图4,∠4是锐角,且∠4=αβ+,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意.故选:C.【点睛】本题考查了真假命题、举反例说明一个命题是假命题以及三角形的外角性质等知识,属于基本题型,熟练掌握上述基本知识是解题的关键.7.诗句“横看成岭侧成峰,远近高低各不同”,意思是说要认清事物的本质,就必须从不同角度去观察.下图是对某物体从不同角度观察的记录情况,对该物体判断最接近本质的是().A.是圆柱形物体和球形物体的组合体,里面有两个垂直的空心管B.是圆柱形物体和球形物体的组合体,里面有两个平行的空心管C.是圆柱形物体,里面有两个垂直的空心管D.是圆柱形物体,里面有两个平行的空心管【答案】D【解析】【分析】由三视图的图形特征进行还原即可.【详解】由三视图可知:几何体的外部为圆柱体,内部为两个互相平行的空心管故选:D【点睛】本题考查了根据三视图还原简单几何体,熟知其还原过程是解题的关键.8.某车间工人在某一天的加工零件数只有5件,6件,7件,8件四种情况.图中描述了这天相关的情况,现在知道7是这一天加工零件数的唯一众数.设加工零件数是7件的工人有x 人,则()A.16x > B.16x = C.1216x << D.12x =【答案】A【解析】【分析】根据众数的定义直接判断即可.【详解】解:∵加工零件数是5件的工人有12人,加工零件数是6件的工人有16人,加工零件数是8件的工人有10人,且这一天加工零件数的唯一众数是7,∴加工零件数是7件的人数16x >.故选:A .【点睛】本题考查众数的意义,读懂统计图、熟练掌握众数的定义是解题的关键.9.游戏中有数学智慧,找起点游戏规定:从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行.成功的招数不止一招,可助我们成功的一招是().A.每走完一段直路后沿向右偏72°方向行走B.每段直路要短C.每走完一段直路后沿向右偏108°方向行走D.每段直路要长【答案】A【解析】【分析】根据题意可知封闭的图形是正五边形,求出正五边形内角的度数即可解决问题.【详解】根据题意可知,从起点走五段相等直路之后回到起点的封闭图形是正五边形,∵正五边形的每个内角的度数为:(52)1801085-⨯︒=︒∴它的邻补角的度数为:180°-108°=72°,因此,每走完一段直路后沿向右偏72°方向行走,故选:A .【点睛】此题主要考查了求正多边形内角的度数,掌握并能运用多边形内角和公式是解题的关键.10.如图,E ,F ,G 为圆上的三点,50FEO ∠=︒,P 点可能是圆心的是().A. B. C. D.【答案】C【解析】【分析】根据圆心角与圆周角的角度关系判断即可.【详解】同弧的圆心角是圆周角的两倍,因此C 满足该条件.故选C .【点睛】本题考查圆周角定理,关键在于牢记基础知识.11.已知电压U 、电流I 、电阻R 三者之间的关系式为:U IR =(或者U I R=),实际生活中,由于给定已知量不同,因此会有不同的可能图象,图象不可能是()A. B.C. D.【答案】A【解析】【分析】在实际生活中,电压U 、电流I 、电阻R 三者之中任何一个不能为负,依此可得结果.【详解】A 图象反映的是U I R=,但自变量R 的取值为负值,故选项A 错误;B 、C 、D 选项正确,不符合题意.故选:A .【点睛】此题主要考查了现实生活中函数图象的确立,注意自变量取值不能为负是解答此题的关键.二、填空题(将答案写在答题卡上指定的位置.每小题3分,计12分)12.向指定方向变化用正数表示,向指定方向的相反方向变化用负数表示,“体重减少1.5kg ”换一种说法可以叙述为“体重增加_______kg ”.【答案】-1.5【解析】【分析】根据负数在生活中的应用来表示.【详解】减少1.5kg 可以表示为增加﹣1.5kg,故答案为:﹣1.5.【点睛】本题考查负数在生活中的应用,关键在于理解题意.13.数学讲究记忆方法.如计算()25a 时若忘记了法则,可以借助()25555510a a a a a +=⨯==,得到正确答案.你计算()5237a a a -⨯的结果是__________.【答案】0【解析】【分析】根据幂的乘方运算法则和同底数幂的乘法运算法则进行计算即可得到结果.【详解】()5237a a a -⨯=2537a a ⨯+-=1010a a -=0.故答案为:0.【点睛】此题主要考查了幂的乘方运算和同底数幂的乘法,熟练掌握运算法则是解答此题的关键.14.技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以估计该产品合格的概率为_______.(结果要求保留两位小数)【答案】0.99【解析】【分析】根据产品合格的频率已达到0.9911,保留两位小数,所以估计合格件数的概率为0.99.【详解】解:合格频率为:0.9911,保留两位小数为0.99,则根据产品合频率,估计该产品合格的概率为0.99.故答案为0.99.【点睛】本题考查了利用频率估计概率.用到的知识点为:概率=所求情况数与总情况数之比及运用样本数据去估计总体数据的基本解题思想.15.如图,在一个池塘两旁有一条笔直小路(B ,C 为小路端点)和一棵小树(A 为小树位置)测得的相关数据为:60,60,48ABC ACB BC ∠=︒∠=︒=米,则AC =________米.【答案】48【解析】【分析】先说明△ABC 是等边三角形,然后根据等边三角形的性质即可解答.【详解】解:∵60,60ABC ACB ∠=︒∠=︒∴∠BAC=180°-60°-60°=60°∴∠BAC=∠ABC=∠BCA=60°∴△ABC 是等边三角形∴AC=BC=48米.故答案为48.【点睛】本题考查了等边三角形的判定和性质,证得△ABC 是等边三角形是解答本题的关键.三、解答题(将解答过程写在答题卡上指定的位置,本大题共有9小题,计75分.)16.在“-”“×”两个符号中选一个自己想要的符号,填入212212⎛⎫+⨯ ⎪⎝⎭中的□,并计算.【答案】-;5或×;5【解析】【分析】先选择符号,然后按照有理数的四则运算进行计算即可.【详解】解:(1)选择“-”212212⎛⎫+⨯- ⎪⎝⎭1422=+⨯41=+5=(2)选择“×”212212⎛⎫+⨯⨯ ⎪⎝⎭1422=+⨯41=+5=【点睛】本题考查了有理数的四则运算,熟知有理数的四则运算法则是解题的关键.17.先化简,再求值:20441(1)12x x x x x x ++----+ ,其中2020x =.【答案】1x +;2021【解析】【分析】先把244x x ++分解因式,再进行约分化简,最后把x=2020代入进行计算即可.【详解】20441(1)12x x x x x x ++----+ 2(2)1112x x x x +-=⋅--+21x =+-1x =+当2020x =时,原式20201=+2021=.【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值,在化简过程中要注意运算顺序和分式的化简,注意运算的结果要化成最简分式或整式.18.光线在不同介质中传播速度不同,从一种介质射向另一种介质时会发生折射,如图,水面AB 与水杯下沿CD 平行,光线EF 从水中射向空气时发生折射,光线变成FH ,点G 在射线EF 上,已知20,45HFB FED ∠=︒∠=︒,求GFH ∠的度数.【答案】25°【解析】【分析】使用平行线的性质得到45GFB FED ∠=∠=︒,再根据GFH GFB HFB ∠=∠-∠得到结果.【详解】解:∵//AB CD∴45GFB FED ∠=∠=︒∵20HFB ∠=︒∴GFH GFB HFB∠=∠-∠452025=︒-︒=︒【点睛】本题考查了平行线的性质,及角度间的加减计算,熟知平行线的性质是解题的关键.19.红光中学学生乘汽车从学校去研学旅行基地,以75千米/小时的平均速度,用时2小时到达,由于天气原因,原路返回时汽车平均速度控制在不低于50千米/小时且不高于60千米/小时的范围内,这样需要用t 小时到达,求t 的取值范围.【答案】2.53t ≤≤【解析】【分析】根据平均速度可以算出总路程,往返路程不变,再根据时间=路程÷速度的等量关系列出不等式,即可作答.【详解】解:752150⨯=(千米)15060 2.5÷=(小时)150503÷=(小时)∴t 的取值范围2.53t ≤≤【点睛】本题主要考查了不等式的实际应用,根据时间=路程÷速度的公式列出不等式,其中明确往返路程不变是解题的关键.20.宜昌景色宜人,其中三峡大坝、清江画廊、三峡人家景点的景色更是美不胜收.某民营单位为兼顾生产和业余生活,决定在下设的A ,B ,C 三部门利用转盘游戏确定参观的景点,两转盘各部分圆心角大小以及选派部门、旅游景点等信息如图.(1)若规定老同志相对偏多的部门选中的可能性大,试判断这个部门是哪个部门?请说明理由;(2)设选中C 部门游三峡大坝的概率为1P ,选中B 部门游清江画廊或者三峡人家的概率为2P ,请判断1P ,2P 大小关系,并说明理由.【答案】(1)C 部门,理由见解析;(2)P 1=P 2,理由见解析【解析】【分析】(1)利用圆心角为360°,A,B,C 分别占90°,90°和180°,分别求出所占百分比即可;(2)列出所有可能的情况,然后得出C ,B 所占比例,即可得出结果.【详解】解:(1)C 部门,理由:∵0.25,0.25,0.5A B C P P P ===∴C A BP P P >=(2)12P P =,理由:A B 1C 2C 三峡大坝(D )AD BD 1C D 2C D清江画廊(E )AE BE 1C E 2C E三峡人家(F )AF BF 1C F 2C F 备注:部门转盘平均分成了4等份,C 部门占两份分别用1C ,2C 表示由表可得,所有可能出现的结果共有12种,这些结果出现的可能性相等,其中C 选中三峡大坝的结果有2种,B 选中清江画廊或者三峡人家的结果有2种∴121126P ==221126P ==∴21P P =【点睛】本题考查了扇形图的知识.用到的知识点为:概率=所求情况数与总情况数之比.关键是分析扇形图,得到相关的数据信息.21.如图,在四边形ABCD 中,//,,60AD BC AB ABC =∠=︒,过点B 的O 与边,AB BC 分别交于E ,F 两点.OG BC ⊥,垂足为G ,OG a =.连接,,OB OE OF .(1)若2BF a =,试判断BOF 的形状,并说明理由;(2)若BE BF =,求证:O 与AD 相切于点A .【答案】(1)等腰直角三角形,理由见解析(2)见解析【解析】【分析】(1)根据题目中已知信息,可知2BF a =,有BG GF OG a ===,所以BOG △,GOF △都是等腰直角三角形,得到90BOF ∠=︒,BO OF =即可得出BOF 是等腰直角三角形;(2)通过BE BF =,可以等到BOE BOF ≌,有30EBO FBO ∠=∠=︒,又因为,OG BC OG a ⊥=,可以知道E 与点A 重合,再证明OA OD ⊥即可.【详解】解:(1)BOF 是等腰直角三角形理由如下:∵2OG BC BF a⊥=,∴BG GF a==∵OG a=∴BG GF OG a===∴BOG △,GOF △都是等腰直角三角形∴45BOG GOF ∠=∠=︒∴90BOF ∠=︒∵BO OF=∴BOF 是等腰直角三角形(2)证明:BE BF OB OB OE OF===,,∴BOE BOF≌∴EBO FBO∠=∠∵60ABC ∠=︒∴30EBO FBO ∠=∠=︒∵,OG BC OG a⊥=∴BG FG ==∵BF =∴BE BF AB===∴点E 与点A 重合以下有多种方法:方法一∵OA OB=∴30ABO OAB ∠=∠=︒∵//60AD BC ABC ∠=︒,∴120BAD ∠=︒∴90OAD ∠=︒∴OA OD⊥∵OA 是O 的半径∴O 与AD 相切于点A方法二∵OA OB =,∴30ABO OAB ∠=∠=︒∴120AOB ∠=︒又9060GOB OBG ∠=︒-∠=︒∴12060180AOB BOG ∠+∠=︒+︒=︒∴G ,A ,O 三点共线∵//AD BC∴OA AD⊥∴O 与AD 相切于点A .方法三:如图∵//AD BC∴AD 与BC 之间距离:sin 603a︒⋅=延长GO 交DA 的延长线交于点A '∵//AD BC OG BC⊥,∴OA AD'⊥∵OG a=∴2OA a'=∵60,ABO AB ∠=︒=∴BG =,2=OB a∴O 与AD 相切于点A '又2OA a OA'==∴点A '与点A 重合∴O 与AD 相切于点A .【点睛】(1)证明三角形形状需要找到边的关系以及角的大小,通过题目中的已知信息先判断出特殊三角形,再找到所求三角形与特殊三角形边与角的关系是解题的关键;(2)本题主要考查了全等三角形的性质以及如何求切线,通过三角形全等得到角的大小,从而可以证明点E 与点A 重合,再证明OA AD ⊥即可得O 与AD 相切于点A ,其中证明点E 与点A 重合是解题的关键.22.资料:公司营销区域面积是指公司营销活动范围内的地方面积,公共营销区域面积是指两家及以上公司营销活动重叠范围内的地方面积.材料:某地有A ,B 两家商贸公司(以下简称A ,B 公司).去年下半年A ,B 公司营销区域面积分别为m 平方千米,n 平方千米,其中3m n =,公共营销区域面积与A 公司营销区域面积的比为29;今年上半年,受政策鼓励,各公司决策调整,A 公司营销区域面积比去年下半年增长了%x ,B 公司营销区域面积比去年下半年增长的百分数是A 公司的4倍,公共营销区域面积与A 公司营销区域面积的比为37,同时公共营销区域面积与A ,B 两公司总营销区域面积的比比去年下半年增加了x 个百分点.问题:(1)根据上述材料,针对去年下半年,提出一个你喜欢的数学问题(如求去年下半年公共营销区域面积与B 公司营销区域面积的比),并解答;(2)若同一个公司去年下半年和今年上半年每平方千米产生的经济收益持平,且A 公司每半年每平方千米产生的经济收益均为B 公司的1.5倍,求去年下半年与今年上半年两公司总经济收益之比.【答案】(1)见解析;(2)55:72【解析】【分析】(1)根据题意任意写出问题解答即可.(2)根据题意列出等式,解出增长率再代入A ,B 的收益中计算即可.【详解】解(1)问题1:求去年下半年公共营销区域面积与B 公司营销区域面积的比解答:22393n n ⨯=22:33n n =问题2:A 公司营销区域面积比B 公司营销区域的面积多多少?解答:32n n n-=问题3:求去年下半年公共营销区域面积与两个公司总营销区域面积的比解答:22393n n ⨯=2213335n n n n ⎛⎫÷+-= ⎪⎝⎭(2)方法一:33223(1%)3(1%)(14%)3(1%)33%7793n x n x n x n x n n n n x ⎤⎡⎫⎡⎤⎛⎫⨯+=+++-⨯+⨯÷+-+⎥ ⎪⎪⎢⎢⎥⎣⎦⎝⎭⎣⎭⎦方法二:()6332231%3(1%)(14%)3(1%)33%7793n x n x n x n x m n n n x ⎡⎤⎡⎤⎛⎫⨯+÷+++-⨯+=⨯÷+-+ ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭方法三:()33322(1%)1%(14%)(1%)33%7793m n m x m x n x xm x n n n n x =⎧⎪⎨⎡⎤⎡⎤⎛⎫⨯+÷+++-+=⨯÷+-+ ⎪⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭⎩2100(%)45%130x x +-=解得%20%x =,%65%x =(舍去)设B 公司每半年每平方千米产生的经济收益为a ,则A 公司每半年每平方千米产生的经济收益为1.5a 今年上半年A ,B 公司产生的总经济收益为1.53(120%)(1420%)7.2a n an na⨯⨯++⨯+⨯=去年下半年A ,B 公司产生的总经济收益为1.53 5.5a n a n na⨯+⨯=去年下半年与今年上半年两公司总经济收益之比为(5.5):(7.2)55:72na na =【点睛】本题考查一元二次方程增长率的问题,关键在于理解题意列出等式方程.23.菱形ABCD 的对角线,AC BD 相交于点O ,060ABO ︒<∠≤︒,点G 是射线OD 上一个动点,过点G 作//GE DC 交射线OC 于点E ,以,OE OG 为邻边作矩形EOGF.(1)如图1,当点F 在线段DC 上时,求证:DF FC =;(2)若延长AD 与边GF 交于点H ,将GDH 沿直线AD 翻折180°得到MDH .。
2020湖北省宜昌市中考数学试题(解析版)
B、如图 2,∠2 是锐角,且∠2=α + β ,所以此图说明“锐角α ,锐角 β 的和是锐角”
是真命题,故本选项不符合题意;
C、如图 3,∠3 是钝角,且∠3=α + β ,所以此图说明“锐角α ,锐角 β 的和是锐角”
是假命题,故本选项符合题意;
D、如图 4,∠4 是锐角,且∠4=α + β ,所以此图说明“进行判断即可. 【详解】A,C,D 三幅图都不是轴对称图形,只有 B 是轴对称图形, 故选:B
【点睛】本题考查了轴对称图形的性质,熟知此知识点是解题的关键. 2.我国渤海、黄海、东海、南海海水含有不少化学元素,其中铝、锰元素总量均约为 8 ×106
吨.用科学记数法表示铝、锰元素总量的和,接近值是( ).
是真命题,故本选项不符合题意.
5 / 33
故选:C. 【点睛】本题考查了真假命题、举反例说明一个命题是假命题以及三角形的外角性质 等知识,属于基本题型,熟练掌握上述基本知识是解题的关键. 7.诗句“横看成岭侧成峰,远近高低各不同”,意思是说要认清事物的本质,就必须从不 同角度去观察.下图是对某物体从不同角度观察的记录情况,对该物体判断最接近本 质的是( ).
数的是( ). A. 2 3 − 3 2 【答案】D
B. 3 + 3
( )3
C. 3
D. 0 × 3
【解析】
【分析】
分别计算出各选项的结果再进行判断即可. 【详解】A. 2 3 − 3 2 不能再计算了,是无理数,不符合题意; B. 3 + 3 = 2 3 ,是无理数,不符合题意;
( )3
C. 3 =3 3 ,是无理数,不符合题意; D. 0× 3 = 0 ,是有理数,正确. 故选:D.
2020年湖北宜昌中考数学试题(含答案)
2020年湖北宜昌中考数学试题(本试卷共24小题,满分120分,考试时间120分钟)参考公式:抛物线2y ax bx c=++的顶点坐标是24,24b ac ba a⎛⎫-- ⎪⎝⎭一、选择题:本大题共11个小题,每小题3分,共33分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下面四幅图是摄影爱好者抢拍的一组照片.从对称美的角度看,拍得最成功的是()A.B.C.D.2.我国渤海、黄海、东海、南海海水含有不少化学元素,其中铝、锰元素总量均约为6810⨯吨用科学记数法表示铝、锰元素总量的和,接近值是()A.6810⨯B.61610⨯C.71.610⨯D.121610⨯3.3,添加关联的数或者运算符号组成新的式子,其运算结果能成为有理数的是()A.233233.33D.034.如图,点,,,,E F G Q H在一条直线上,且,EF GH=我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是()A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线5.小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是()A.小李现在位置为第1排第2列B.小张现在位置为第3排第2列C.小王现在位置为第2排第2列D.小谢现在位置为第4排第2列6.能说明“锐角,a锐角 的和是锐角”是假命题的例证图是()A.B.C.D.7.诗句“横看成岭侧成峰,远近高低各不同”,意思是说要认清事物的本质,就必须从不同角度去观察,下图是对某物体从不同角度观察的记录情况,对该物体判断最接近本质的是()A.是圆柱形物体和球形物体的组合体,里面有两个垂直的空心管B.是圆柱形物体和球形物体的组合体,里面有两个平行的空心管C.是圆柱形物体,里面有两个垂直的空心管D.是圆柱形物体,里面有两个平行的空心管8.某车间工人在某一天的加工零件数只有5件,6件,7件,8件四种情况.图中描述了这天相关的情况,现在知道7是这一天加工零件数的唯一众数.设加工零件数是7件的工人有x人,则()A.16x=x<<D.12x>B.16x=C.12169.游戏中有数学智慧.找起点游戏规定:从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行,成功的招数不止一招,可助我们成功的一招是()A .每走完一段直路后沿向右偏72方向行走B .每段直路要短C .每走完一段直路后沿向右偏108方向行走D .每段直路要长10.如图,,,E F G 为圆上的三点,50,FEG P ∠=︒点可能是圆心的是( )A .B .C .D .11.已知电压,U 电流I 、电阻R 三者之间的关系式为:U IR =(或者UI R=),实际生活中,由于给定已知量不同,因此会有不同的可能图象,图象不可能是( )A .B .C .D .二、填空题(每题3分,满分12分,将答案填在答题纸上)12.向指定方向变化用正数表示,向指定方向的相反方向变化用负数表示,“体重减少1.5kg ”换一种说法可以叙述为“体重增加______kg ” 13.数学讲究记忆方法.如计算()25a 时若忘记了法则,可以借助()25555510a a a a a +=⨯==,得到正确答案.你计算()5237a a a -⨯的结果是___.14.技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以估计该产品合格的概率为 (结果要求保留两位小数).15.如图,在一个池塘两旁有一条笔直小路(,B C 为小路端点)和一棵小树(A 为小树位置) .测得的相关数据为:60,60,48ABC ACB BC ∠=︒∠=︒=米,则AC =___米.三、解答题 (本大题共9小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.在“-”“⨯”两个符号中选一个自己想要的符号,填入212212⎛⎫+⨯ ⎪⎝⎭中的,并计算.17. 先化简,再求值:()20441112x x x x x x ++-⋅---+,其中2020x =. 18.光线在不同介质中传播速度不同,从一种介质射向另一种介质时会发生折射.如图,水面AB 与水杯下沿CD 平行,光线EF 从水中射向空气时发生折射,光线变成,FH 点G 在射线EF 上,已知20,HFB ∠=︒45FED ∠=,求GFH ∠的度数.19.红光中学学生乘汽车从学校去研学旅行基地,以75千米/小时的平均速度,用时2小时到达,由于天气原因,原路返回时汽车平均速度控制在不低于50千米/小时且不高于60千米/小时的范围内,这样需要用t 小时到达,求t 的取值范围. 20.宜昌景色宜人,其中三峡大坝、清江画廊、三峡人家景点的景色更是美不胜收.某民营单位为兼顾生产和业余生活,决定在下设的,,A B C 三部门利用转盘游戏确定参观的景点,两转盘各部分圆心角大小以及选派部门、旅游景点等信息如图.()1若规定老同志相对偏多的部门选中的可能性大,试判断这个部门是哪个部门?请说明理由;()2设选中C 部门游三峡大坝的概率为1,P 选中B 部门游清江画廊或者三峡人家的概率为2,P 请判断12,P P 大小关系,并说明理由.21.如图,在四边形ABCD中,//,23,60=∠=︒,过点B的O与边AD BC AB a ABC=.连接,,⊥垂足为,G OG aOB OE OF.,AB BC分别交于,E F两点.,OG BC()1若2,=试判断BOF的形状,并说明理由:BF a()2若,=求证:O与AD相切于点A.BE BF22. 资料:公司营销区域面积是指公司营销活动范围内的地方面积,公共营销区域面积是指两家及以上公司营销活动重叠范围内的地方面积.材料:某地有,A B两家商贸公司(以下简称,A B公司).去年下半年,A B公司营销区域面积分别为m平方千米,n平方千米,其中3,m n=公共营销区域面积与A公司营销区域面积的比为:今年上半年,受政策鼓励,各公司决策调整,A公司营销区域面积比去年下半年增长了%,x B公司营销区域面积比去年下半年增长的百分数,同时公共营是A公司的4倍,公共营销区域面积与A公司营销区域面积的比为37销区域面积与,A B两公司总营销区域面积的比比去年下半年增加了x个百分点. 问题:()1根据上述材料,针对去年下半年,提出一个你喜欢的数学问题(如求去年下半年公共营销区域面积与B公司营销区域面积的比),并解答:()2若同一个公司去年下半年和今年上半年每平方千米产生的经济收益持平,且A 公司每半年每平方千米产生的经济收益均为B公司的1.5倍,求去年下半年与今年上半年两公司总经济收益之比.23.菱形ABCD的对角线,︒<∠≤︒,点G是射线OD上一个AC BD相交于点,060O ABO动点,过点G 作//GE DC 交射线OC 于点,E 以,OE OG 为邻边作矩形EOGF .()1如图1,当点F 在线段DC 上时,求证:DF FC =;()2若延长AD 与边GF 交于点,H 将GDH 沿直线AD 翻折180︒得到MDH .①如图2,当点M 在EG 上时,求证:四边形为EOGF 正方形;②如图3,当tan ABO ∠为定值m 时,设,DG k DO k =⋅为大于0的常数,当且仅当2k >时,点M 在矩形EOGF 的外部,求m 的值.24.已知函数()1221,211y x m y m x =+-=++均为-次函数,m 为常数.()1如图1,将直线AO 绕点()1,0A -逆时针旋转45︒得到直线l ,直线l 交y 轴于点B .若直线l 恰好是()1221,211y x m y m x =+-=++中某个函数的图象,请直接写出点B 坐标以及m 可能的值;()2若存在实数,b 使得(110m b b ---=成立,求函数()1221,211y x m y m x =+-=++图象间的距离;()3当1m >时,函数121y x m =+-图象分别交x 轴,y 轴于,C E 两点,()2211y m x =++图象交x 轴于D 点,将函数12y y y =⋅的图象最低点向上F 平移5621m +个单位后刚好落在一次函数121y x m =+-图象上.设12y y y =⋅的图象,线段,OD 线段OE 围成的图形面积为S ,试利用初中知识,探究S 的一个近似取值范围. (要求:说出一种得到S 的更精确的近似值的探究办法,写出探究过程,得出探究结果,结果的取值范围两端的数值差不超过0.01.)答案一、选择题 题号 1234567891011二、填空题三、解答题16.解:()1选择“-”212212⎛⎫+⨯- ⎪⎝⎭1422=+⨯41=+5=()2选择“⨯”212212⎛⎫+⨯⨯ ⎪⎝⎭1422=+⨯41=+5=17.解:原式()221112x x x x +-=⋅--+ 21x =+- 1x =+当2020x =时, 原式20201=+2021=18.解://,AB CD45,GFB FED ∴∠=∠=︒20,HFB ∠=︒,GFH GFB HFB ∴∠=∠-∠452025=︒-︒=19.解:方法一:752150,⨯=15060 2.5,÷=150503,÷=t ∴的取值范围2.53,t ≤≤方法二:5075275260t t ≤⨯⎧⎨⨯≤⎩①②解①得3t ≤解②得 2.5t ≥t ∴的取值范围2.53t ≤≤20.解:()1C 部门理由:0.25,0.25,0.5A B c P P P ===c A B P P P ∴>=()122,P P =理由:备注:部门转盘平均分成了4等份,C 部门占两份分别用12,C C 表示由表可得,所有可能出现的结果共有12种,这些结果出现的可能性相等,其中C 选中三峡大坝的结果有2种,B 选中清江画廊或者三峡人家的结果有2种 121126P ∴== 221126P == 21P P ∴=其它方法参照得分21.解:()1BOF 是等腰直角三角形.理由如下:,2OG BC BF a ⊥=,BG GF a ∴==,OG a =,BG GF OG a ∴===,BOG GOF ∴都是等腰直角三角形45,BOG GOF ∴∠=∠=︒90,BOF ∴∠=︒,BO OF =BOF ∴是等腰直角三角形()2,,BE BF OB OB OE OF ===,BOE BOF ∴≌,EBO FBO ∴∠=∠60,ABC ∠=︒30,EBO FBO ∠=∠=︒,,OG BC OG a ⊥=,BG FG ∴== 2,BF =,BE BF AB ∴===∴点E 与点A 重合以下有多种方法: 方法一:,OA OB =30,ABO OAB ∴∠=∠=︒// ,60AD BC ABC ∠=︒120,BAD ∴∠=︒90,OAD ∴∠=︒,OA OD ∴⊥OA 是O 的半径O ∴与AD 相切于点A . 方法二:,OA OB =30,ABO OAB ∴∠=∠=︒120,AOB ∴∠=︒又9060,GOB OBG ∠=︒-∠=︒12060180AOB BOG ∴∠+∠=+︒=︒,,G A O ∴三点共线//,AD BC,OA AD ∴⊥O ∴与AD 相切于点A .方法三:如图2//,AD BCAD ∴与BC 之间距离:23603a sin a ⋅︒=延长GO 交DA 的延长线交于点'A//,AD BC OG BC ⊥',OA AD ∴⊥,OG a ='2,OA a ∴=6023ABO AB a ∠=︒=,3,2BG a OB a ∴==O ∴与AD 相切于点'A又'2,OA a OA ==∴点'A 与点A 重合O ∴与AD 相切于点A22.解()1问题1:求去年下半年公共营销区域面积与B 公司营销区域面积的比. .解答:22393n n ⨯=,22:33n n =问题2:A 公司营销区域面积比B 公司营销区域的面积多多少? 解答:32n n n -=.问题3:求去年下半年公共营销区域面积与两个公司总营销区域面积的比解答:22393n n ⨯=,221335n n n n ⎛⎫÷+-= ⎪⎝⎭ 其它提出问题2分,解答2分()2方法一:()()()()332231%31%14%31%33%7793n x n x n x n x n n n n x ⎡⎤⎡⎤⎛⎫⨯+=+++⨯+⨯÷+-+ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦- 方法二:()()()()332231%31%14%31%33%7793n x n x n x n x n n n n x ⎡⎤⎛⎫⨯+÷+++⨯+=⨯÷+-+ ⎪⎢⎥⎣⎦⎝⎭- 方法三:()()()()331%1%32214%33%719%73m nm x m x n x m n n n n x x =⎧⎪⎨⎡⎤⨯+++⎡⎤⎛⎫÷++-⨯=⨯÷+-+ ⎪⎢⎥⎪⎢⎥⎣⎦⎣⎝⎭⎩⎦ ()2100%45%130x x +-= 解得%20%%65%x x ==-,(舍去)设B 公司每半年每平方千米产生的经济收益为,a则A 公司每半年每平方千米产生的经济收益为1.5,a今年上半年,A B 公司产生的总经济收益为()()1.53120%1420%7.2a n an na ⨯⨯++⨯+⨯= 去年下半年,A B 公司产生的总经济收益为1.53 5.5a n a n na ⨯+⨯=去年下半年与今年上半年两公司总经济收益之比为()()5.5:7.255:72na na = 23.() 1证明:如图1,四边形EOGF 为矩形.∴==GF C GF OE EF OD EF OG //0,,//,GE DC//,ECFG DGEF是平行四边形∴四边形,方法一:∴=FG EC,=FG OE,∴==,OE EC GFFE OD//,OE EC FD FC∴=::,∴=DF FC方法二:四边形,ECFG DGEF是平行四边形,∴==DF EG FC GE∴=DF FC方法三:,∴==OE EC GFGF OC//,∴,DFG DCO∴==::1:2,FD DC GF OC∴=DF FC()2如图2证明:,≌GDH MDH∴=∠=∠DG DM,56,∴⊥∠=∠,12DH EG四边形ABCD为菱形∴∠=∠34,GE CD//,31,∴∠=∠∠=∠45,15,∴∠=∠∠+∠=︒1590,,152455690∴∠=∠=∠=︒∠+∠=︒方法一:DM OE点M在GE上//,45,∴∠=GEO∴=,OG OE四边形EOGF为矩形∴矩形EOGF为正方形方法二:如图3连接,OF//,DM OE点M在GE上∴=::,GD OG GM GE同理可得:::,=GH FG GM GE GD OG GH FG∴=::,∴DH OF//,DH EG⊥,OF EG∴⊥,四边形EOGF为矩形∴矩形EOGF为正方形()3如图4四边形ABCD为菱形∴∠=∠=∠126,GE CD//,∴∠=∠46,≌,GDH MDH∴∠=∠35,∴∠=∠=∠=∠=∠=∠123456,∠=为定值)(tan ABO m m∴∠=∠GDM ABO2,∴点M始终在固定射线DM上并随k的增大向上运动当且仅当2k>时,M点在矩形EOGF的外部∴=时,M点在矩形EOGF上,k2即点M在EF上设,OB b=用三角函数可以表示或者利用三角形相似可得()∴======+=OA OC mb DG DM kb b OG k b b,2,13()13,2=+====OE m k b mb GH HM mkb mb()1∴=-=+-=FH OE GH m k b mkb mb方法一:过点D作DN EF⊥于点,N∠=-︒-∠=︒-∠1809090,HMF DMN DMN又90,∠=︒-∠MDN DMNHMF MDN∴∠=∠,F DNM∠=∠=︒90,∴,HFM MND::,FH MN MH DM ∴= ()()():2:2mb MN mb b ∴= MN b ∴= DMN 是直角三角形 222,DM DN MN ∴=+ ()()22223b mb b ∴=+213m ∴=3m ∴=±(负值舍去) 060,ABO ︒<∠≤︒3m ∴= 方法二: HMF 是直角三角形 222HM MF HF ∴=+ ()()2222mb FM mb ∴=+,FM ∴= )():tan FHM mb ∠==60,FHM ∴∠=︒()18060260GHD ∴∠=︒-÷=︒ 330,∴∠=︒330,ABO ∠=∠=︒m ∴= 24.解:()101(1),B m =,或者0m =()2如图1,() 110m b b ---=(110m b b ∴+--=.0,10m b ≥-≥0,10m b ∴=-=0,m ∴=121,1y x y x ∴=-=+方法一:设1y 与x 轴、y 轴交于2,,T P y 分别与x 轴、y 轴交于,G H ,连接,GP TH1,,OG OH OP OT PH GT ====⊥∴四边形GPTH 是正方形//,90GH PT HGP ∴∠=即,HG GP ⊥2,HP =2,GP ∴=方法二:121,1y x y x =-=+121k k ∴==//,45GH PT HGO ∠=∴1,OG OH OP ===GP ∴=()()12321,211y x m y m x =+-=++121y x m =+-分别交x 轴,y 轴于,C E 两点()(),1221,00C m E m ∴--,()2211y m x =++图象交x 轴于D 点1,021D m ⎛⎫∴- ⎪+⎝⎭()()()22122121121421y y y x m m x m x m x m =⋅=+-++=+++⎡⎤⎣⎦- 1,m >210,m ∴+>∴二次函数()2221421y m x m x m =+++-开口向上,它的图象最低点在顶点∴顶点()222212,2121m m F m m ⎛⎫- ⎪-- ⎪++⎝⎭ 抛物线顶点F 向上平移5621m +刚好在一次函数121y x m =+-图象上 ()()2222156221212121m m m m m m -∴-+=-+-+++且1m > 2,m ∴=212125163,3,51y y y x x y x y x ∴=⋅=++=+=+∴由123,51y x y x =+=+得到()0,0,1,53D E ⎛⎫- ⎪⎝⎭由25163y x x =++得到与x 轴,y 轴交点是()3,001(,,),50,3⎛⎫- ⎪⎝⎭- ∴抛物线经过()0,0,1,53D E ⎛⎫- ⎪⎝⎭两点12y y y ∴=⋅的图象,线段,OD 线段OE 围成的图形是封闭图形,则S 即为该封闭图形的面积探究办法:利用规则图形面积来估算不规则图形的面积.探究过程:①观察大于S 的情况.很容易发现ODE S S <()01,,5,03D E ⎛⎫- ⎪⎝⎭11332510ODE S ∴=⨯⨯= 310S ∴< (若有S 小于其他值情况,只要合理,参照赋分.)②观察小于S 的情况.选取小于S 的几个特殊值来估计更精确的S 的近似值,取值会因人而不同,下面推荐一种方法,选取以下三种特殊位置:位置一:如图2当直线MN 与DE 平行且与抛物线有唯一交点时,设直线MN 与,x y 轴分别交于,M N()01,,5,03D E ⎛⎫- ⎪⎝⎭∴直线:153DE y x =+设直线:15MN y x b =+25163y x x =++21530x x b ∴++-=()159143020b b ∴=-⨯-==, ∴直线59:1520MN y x =+ ∴点59,0300M ⎛⎫- ⎪⎝⎭15959348122030012000OMN S∴=⨯⨯= 348112000S ∴> 位置二:如图3当直线DR 与抛物线有唯一交点时,直线DR 与y 轴交于点R设直线2:,DR y kx b =+1,05D ⎛⎫- ⎪⎝⎭ ∴直线1:5DR y kx k =+ 25163y x x =++()21516305x k x k ∴+-+-= ()1164530,145k k k ⎛⎫∴=--⨯⨯-= ⎪⎭=⎝∴直线14:145DR y x =+∴点140,5R ⎛⎫ ⎪⎝⎭1141725525ODR S ∴=⨯⨯= 725S ∴> 位置三:如图4当直线EQ 与抛物线有唯一交点时,直线EQ 与x 轴交于点Q设直线:3EQ y x =+25163y x x =++()25160x t x ∴+-= ()2160,16t t ∴=-== ∴直线:163,EQ y x =+ ∴点3,016Q ⎛⎫- ⎪⎝⎭139321632OEQ S ∴=⨯⨯= 932S ∴> 348197120003225>> 我们发现:在曲线DE 两端位置时的三角形的面积远离S 的值,由此估计在曲线DE 靠近中间部分时取值越接近S 的值探究的结论:按上述方法可得一个取值范围348131200010S << (备注:不同的探究方法会有不同的结论,因而会有不同的答案.只要来龙去脉清晰、合理,即可参照赋分,但若直接写出一个范围或者范围两端数值的差不在0.01之间不得分.)白雪歌送武判官归京北风卷地白草折,胡天八月即飞雪。
2019年宜昌市近五届中考数学抛物线压轴题(24题)汇编及答案
2019年宜昌市近五届中考数学抛物线压轴题(24题)汇编及答案(本大题一般3小问,共12分)上传校勘:柯老师【2014/24】如图,在平面直角坐标系中,已知点P(0,4),点A在线段OP上,点B在x轴正半轴上,且AP=OB=t,0<t<4,以AB为边在第一象限内作正方形ABCD;过点C、D依次向x轴、y 轴作垂线,垂足为M,N,设过O,C两点的抛物线为y=ax2+bx+c.(1)填空:△AOB≌△≌△BMC(不需证明);用含t的代数式表示A点纵坐标:A(0,);(2)求点C的坐标,并用含a,t的代数式表示b;(3)当t=1时,连接OD,若此时抛物线与线段OD只有唯一的公共点O,求a的取值范围;(4)当抛物线开口向上,对称轴是直线x=2﹣,顶点随着的增大向上移动时,求t的取值范围.【2015/24】如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC 绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线y=ax2+bx+n(a≠0)过E,A′两点.(1)填空:∠AOB=°,用m表示点A′的坐标:A′(,);(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且=时,△D′OE与△ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:①求a,b,m满足的关系式;②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.【2016/24】已知抛物线y=x2+(2m+1)x+m(m﹣3)(m为常数,﹣1≤m≤4).A(﹣m﹣1,y1),B(,y2),C(﹣m,y3)是该抛物线上不同的三点,现将抛物线的对称轴绕坐标原点O逆时针旋转90°得到直线a,过抛物线顶点P作PH⊥a于H.(1)用含m的代数式表示抛物线的顶点坐标;(2)若无论m取何值,抛物线与直线y=x﹣km(k为常数)有且仅有一个公共点,求k的值;(3)当1<PH≤6时,试比较y1,y2,y3之间的大小.24.已知抛物线y=ax 2+bx+c ,其中20a b c =>>,且0a b c ++=.(1) 直接写出关于x 的一元二次方程ax 2+bx+c=0的一个根;(2) 证明:抛物线y=ax 2+bx+c 的顶点A 在第三象限;(3) 直线 y=x+m 与x ,y 轴分别相交于,B C 两点,与抛物线y=ax 2+bx+c 相交于A ,D 两点.设抛物线y=ax 2+bx+c 的对称轴与x 轴相交于E ,如果在对称轴左侧的抛物线上存在点F ,使得ADF ∆与BOC ∆相似.并且12ADF ADE S S ∆∆=,求此时抛物线的表达式.24.如图,在平面直角坐标系中,矩形OAOB 的顶点,A B 的坐标分别为(6,0)A -,(0,4)B .过点(6,1)C -的双曲线(0)k y k x=≠与矩形OAOB 的边BD 交于点E . (1)填空:OA =_____,k =_____,点E 的坐标为__________; (2)当16t ≤≤时,经过点213(1,5)22M t t t --+-与点217(3,3)22N t t t ---+-的直线交y 轴于点F ,点P 是过,M N 两点的抛物线212y x bx c =-++的顶点. ①当点P 在双曲线k y x =上时,求证:直线MN 与双曲线k y x=没有公共点; ②当抛物线212y x bx c =-++与矩形OAOB 有且只有三个公共点,求t 的值; ③当点F 和点P 随着t 的变化同时向上运动时,求t 的取值范围,并求在运动过程中直线MN 在四边形...OAEB 中扫过的面积.参考答案:【2014/24】解:(1)如图,∵∠DNA=∠AOB=90°,∴∠NAD=∠OBA(同角的余角相等).在△AOB与△DNA中,,∴△AOB≌△DNA(SAS).同理△DNA≌△BMC.∵点P(0,4),AP=t,∴OA=OP﹣AP=4﹣t.故答案是:DNA或△DPA;4﹣t;(2)由题意知,NA=OB=t,则OA=4﹣t.∵△AOB≌△BMC,∴CM=OB=t,∴OM=OB+BM=t+4﹣t=4,∴C(4,t).又抛物线y=ax2+bx+c过点O、C,∴,解得b=t﹣4a;(3)当t=1时,抛物线为y=ax2+(﹣4a)x,NA=OB=1,OA=3.∵△AOB≌△DNA,∴DN=OA=3,∵D(3,4),∴直线OD为:y=x.联立方程组,得,消去y,得ax2+(﹣﹣4a)x=0,解得x=0或x=4+,所以,抛物线与直线OD总有两个交点.讨论:①当a>0时,4+>3,只有交点O,所以a>0符合题意;②当a<0时,若4+>3,则a<﹣.又a<0所以a<﹣.若4+<0,则得a>﹣.又a<0,所以﹣<a<0.综上所述,a的取值范围是a>0或a<﹣或﹣<a<0.(4)抛物线为y=ax2+(﹣4a)x,则顶点坐标是(﹣,﹣(t﹣16a)2).又∵对称轴是直线x=﹣+2=2﹣,∴a=t2,∴顶点坐标为:(2﹣,﹣(1﹣4t)2),即(2﹣,﹣(t﹣)2).∵抛物线开口向上,且随着t的增大,抛物线的顶点向上移动,∴只与顶点坐标有关,∴t的取值范围为:0<t≤.【2015/24】解:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO为等腰直角三角形,∴∠AOB=45°,由旋转的性质得:OD′=D′A′=m,即A′(m,﹣m);故答案为:45;m,﹣m;(2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵=,∴P(2m,m),∵A′为抛物线的顶点,∴设抛物线解析式为y=a(x﹣m)2﹣m,∵抛物线过点E(0,n),∴n=a(0﹣m)2﹣m,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;(3)①当点E与点O重合时,E(0,0),∵抛物线y=ax2+bx+c过点E,A,∴,整理得:am+b=﹣1,即b=﹣1﹣am;②∵抛物线与四边形ABCD有公共点,∴抛物线过点C时的开口最大,过点A时的开口最小,若抛物线过点C(3m,0),此时MN的最大值为10,∴a(3m)2﹣(1+am)•3m=0,整理得:am=,即抛物线解析式为y=x2﹣x,由A(2m,2m),可得直线OA解析式为y=x,联立抛物线与直线OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,当m=2时,a=;若抛物线过点A(2m,2m),则a(2m)2﹣(1+am)•2m=2m,解得:am=2,∵m=2,∴a=1,则抛物线与四边形ABCD有公共点时a的范围为≤a≤1.【2016/24】解:(1)∵﹣=﹣,==﹣,∴顶点坐标(﹣,﹣).(2)由消去y得x2+2mx+(m2+km﹣3m)=0,∵抛物线与x轴有且仅有一个公共点,∴△=0,即(k﹣3)m=0,∵无论m取何值,方程总是成立,∴k﹣3=0,∴k=3,(3)PH=|﹣﹣(﹣)|=||,∵1<PH≤6,∴当>0时,有1<≤6,又﹣1≤m≤4,∴<m,当<0时,1<﹣≤6,又∵﹣1≤m≤4,∴﹣1,∴﹣1≤m<﹣或<m≤,∵A(﹣m﹣1,y1)在抛物线上,∴y1=(﹣m﹣1)2+(2m+1)(﹣m﹣1)+m(m+3)=﹣4m,∵C(﹣m,y3)在抛物线上,∴y3=(﹣m)2+(2m+1)(﹣m)+m(m﹣3)=﹣4m,∴y1=y3,①令<﹣m﹣1,则有m<﹣,结合﹣1≤m≤﹣,∴﹣1≤m<﹣,此时,在对称轴的左侧y随x的增大而减小,如图1,∴y2>y1=y3,即当﹣1≤m<﹣时,有y2>y1=y3.②令=﹣m﹣1,则A与B重合,此情形不合题意,舍弃.③令>﹣m﹣1,且≤﹣时,有﹣<m≤﹣,结合﹣1≤m<﹣,∴﹣<m≤﹣,此时,在对称轴的左侧,y随x的增大而减小,如图2,∴y1=y3>y2,即当﹣<m≤﹣时,有y1=y3>y2,④令﹣≤<﹣m,有﹣≤m<0,结合﹣1≤m<﹣,∴﹣≤m<﹣,此时,在对称轴的右侧y随x的增大而增大,如图3,∴y2<y3=y1.⑤令=﹣m,B,C重合,不合题意舍弃.⑥令>﹣m,有m>0,结合<m≤,∴<m≤,此时,在对称轴的右侧,y随x的增大而增大,如图4,∴y2>y3=y1,即当<m≤时,有y2>y3=y1,综上所述,﹣1≤m<﹣或<m≤时,有y2>y1=y3,﹣<m<﹣时,有y2<y1=y3.【2017/24】解:(1)∵抛物线y=ax2+bx+c,a+b+c=0,∴关于x的一元二次方程ax2+bx+c=0的一个根为x=1;(2)证明:∵2a=b,∴对称轴x=﹣=﹣1,把b=2a代入a+b+c=0中得:c=﹣3a,∵a>0,c<0,∴△=b2﹣4ac>0,∴<0,则顶点A(﹣1,)在第三象限;(3)由b=2a,c=﹣3a,得到x==,解得:x1=﹣3,x2=1,二次函数解析式为y=ax2+2ax﹣3a,∵直线y=x+m与x,y轴分别相交于点B,C两点,则OB=OC=|m|,∴△BOC是以∠BOC为直角的等腰直角三角形,即此时直线y=x+m与对称轴x=﹣1的夹角∠BAE=45°,∵点F在对称轴左侧的抛物线上,则∠DAF>45°,此时△ADF与△BOC相似,顶点A只可能对应△BOC的直角顶点O,即△ADF是以A为直角顶点的等腰直角三角形,且对称轴为x=﹣1,设对称轴x=﹣1与OF 交于点G ,∵直线y=x +m 过顶点A (﹣1,﹣4a ),∴m=1﹣4a ,∴直线解析式为y=x +1﹣4a ,联立得:,解得:或,这里(﹣1,﹣4a )为顶点A ,(﹣1,﹣4a )为点D 坐标,点D 到对称轴x=﹣1的距离为﹣1﹣(﹣1)=,AE=|﹣4a |=4a ,∴S △ADE =××4a=2,即它的面积为定值,这时等腰直角△ADF 的面积为1,∴底边DF=2,而x=﹣1是它的对称轴,此时D 、C 重合且在y 轴上,由﹣1=0,解得:a=1,此时抛物线解析式为y=x 2+2x ﹣3.【2018/24】24.解:(1)填空:6,6OA k ==-,点E 的坐标为3,42⎛⎫-⎪⎝⎭; (2)①设直线11,MN y k x b =+ 由题意得211211135(1)22173(3)22t t k t b t t k t b ⎧-+-=-+⎪⎪⎨⎪-+-=--+⎪⎩ 解得211111,422k b t t ==-+- ∴直线211:422MN y x t t =-+- ∵抛物线212y x bx c =-++过点,M N 22221315(1)(1)2221713(3)(3)222t t t b t c t t t b t c ⎧-+-=--+-+⎪⎪∴⎨⎪-+-=---+--+⎪⎩解得1,52b c t =-=- ∴抛物线21522y x x t =--+- ∴顶点3(1,5)2P t -- ∵顶点3(1,5)2P t --在双曲线6y x-=上 3(5)(1)62t ∴-⨯-=- 32t ∴= 此时直线35:8MN y x =+ 联立3586y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩,得3568x x -+= 2835480x x ∴++=2354848122515360∴∆=-⨯⨯=-<∴直线MN 与双曲线6y x =-没有公共点 ②当抛物线过B 点,此时抛物线与矩形OADB 有且只有三个公共点,则6452,5t t =-=当顶点P 在线段DB 上,此时抛物线与矩形OADB 有且只有三个公共点,则10342t -=,1110t = 65t ∴=或1110t = ③点P 的坐标为3(1,5)2t --,352r y t ∴=- 当16t ≤≤时,p y 随着t 的增大而增大,此时,当16t ≤≤时,随着t 的增大,点P 在直线1x =-上向上运动. 又点F 的坐标为211(0,4)22t t -+- 2115(4)22F y t ∴=--+ ∴当14t ≤≤时,F y 随着t 的增大而增大,此时当14t ≤≤时,随着t 的增大而增大,点F 在y 轴上向上运动.14t ∴≤≤当1t =时,直线:3MN y x =+与x 轴交于(3,0)G -,与y 轴交于()0,3H当4t =MN 过点A ,当14t ≤≤时,直线MN 在四边形AEBO 中扫过的面积为1312164332222GHO AEBO S S S ∆⎛⎫=-=⨯+⨯-⨯⨯= ⎪⎝⎭四边形。
2020年湖北省宜昌市中考数学试题及参考答案(word解析版)
2020年湖北省宜昌市初中学业水平考试数学试题(满分120分,考试时间120分钟)参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为24,24b ac ba a⎛⎫-- ⎪⎝⎭.一、选择题(下列各小题中,只有一个选项是符合题目要求的.每小题3分,计33分.)1.下面四幅图是摄影爱好者抢拍的一组照片.从对称美的角度看,拍得最成功的是()A.B.C.D.2.我国渤海、黄海、东海、南海海水含有不少化学元素,其中铝、锰元素总量均约为8×106吨.用科学记数法表示铝、锰元素总量的和,接近值是()A.8×106B.16×106C.1.6×107D.16×10123.对于无理数,添加关联的数或者运算符号组成新的式子,其运算结果能成为有理数的是()A.2﹣3B.+C.()3D.0×4.如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是()A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线5.小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是()A.小李现在位置为第1排第2列B.小张现在位置为第3排第2列C.小王现在位置为第2排第2列D.小谢现在位置为第4排第2列6.能说明“锐角α,锐角β的和是锐角”是假命题的例证图是()A.B.C.D.7.诗句“横看成岭侧成峰,远近高低各不同”,意思是说要认清事物的本质,就必须从不同角度去观察.如图是对某物体从不同角度观察的记录情况,对该物体判断最接近本质的是()A.是圆柱形物体和球形物体的组合体,里面有两个垂直的空心管B.是圆柱形物体和球形物体的组合体,里面有两个平行的空心管C.是圆柱形物体,里面有两个垂直的空心管D.是圆柱形物体,里面有两个平行的空心管8.某车间工人在某一天的加工零件数只有5件,6件,7件,8件四种情况.图中描述了这天相关的情况,现在知道7是这一天加工零件数的唯一众数.设加工零件数是7件的工人有x人,则()A.x>16 B.x=16 C.12<x<16 D.x=129.游戏中有数学智慧,找起点游戏规定:从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行,成功的招数不止一招,可助我们成功的一招是()A.每走完一段直路后沿向右偏72°方向行走B.每段直路要短C.每走完一段直路后沿向右偏108°方向行走D.每段直路要长10.如图,E,F,G为圆上的三点,∠FEG=50°,P点可能是圆心的是()A.B.C.D.11.已知电压U、电流I、电阻R三者之间的关系式为:U=IR(或者I=),实际生活中,由于给定已知量不同,因此会有不同的可能图象,图象不可能是()A.B.C.D.二、填空题(将答案写在答题卡上指定的位置.每小题3分,计12分.)12.向指定方向变化用正数表示,向指定方向的相反方向变化用负数表示,“体重减少1.5kg”换一种说法可以叙述为“体重增加kg”.13.数学讲究记忆方法.如计算(a5)2时若忘记了法则,可以借助(a5)2=a5×a5=a5+5=a10,得到正确答案.你计算(a2)5﹣a3×a7的结果是.14.技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以估计该产品合格的概率为.(结果要求保留两位小数)15.如图,在一个池塘两旁有一条笔直小路(B,C为小路端点)和一棵小树(A为小树位置).测得的相关数据为:∠ABC=60°,∠ACB=60°,BC=48米,则AC=米.三、解答题(将解答过程写在答题卡上指定的位置.本大题共有9小题,计75分.)16.(6分)在“﹣”“×”两个符号中选一个自己想要的符号,填入22+2×(1□)中的□,并计算.17.(6分)先化简,再求值:•﹣(x﹣1)0,其中x=2020.18.(7分)光线在不同介质中传播速度不同,从一种介质射向另一种介质时会发生折射.如图,水面AB与水杯下沿CD平行,光线EF从水中射向空气时发生折射,光线变成FH,点G在射线EF上,已知∠HFB=20°,∠FED=45°,求∠GFH的度数.19.(7分)红光中学学生乘汽车从学校去研学旅行基地,以75千米/小时的平均速度,用时2小时到达.由于天气原因,原路返回时汽车平均速度控制在不低于50千米/小时且不高于60千米/小时的范围内,这样需要用t小时到达.求t的取值范围.20.(8分)宜昌景色宜人,其中三峡大坝、清江画廊、三峡人家景点的景色更是美不胜收.某民营单位为兼顾生产和业余生活,决定在下设的A,B,C三部门利用转盘游戏确定参观的景点.两转盘各部分圆心角大小以及选派部门、旅游景点等信息如图.(1)若规定老同志相对偏多的部门选中的可能性大,试判断这个部门是哪个部门?请说明理由;(2)设选中C部门游三峡大坝的概率为P1,选中B部门游清江画廊或者三峡人家的概率为P2,请判断P1,P2大小关系,并说明理由.21.(8分)如图,在四边形ABCD中,AD∥BC,AB=2a,∠ABC=60,过点B的⊙O与边AB,BC分别交于E,F两点.OG⊥BC,垂足为G,OG=a.连接OB,OE,OF.(1)若BF=2a,试判断△BOF的形状,并说明理由;(2)若BE=BF,求证:⊙O与AD相切于点A.22.(10分)资料:公司营销区域面积是指公司营销活动范围内的地方面积,公共营销区域面积是指两家及以上公司营销活动重叠范围内的地方面积.材料:某地有A,B两家商贸公司(以下简称A,B公司).去年下半年A,B公司营销区域面积分别为m平方千米,n平方千米,其中m=3n,公共营销区域面积与A公司营销区域面积的比为;今年上半年,受政策鼓励,各公司决策调整,A公司营销区域面积比去年下半年增长了x%,B公司营销区域面积比去年下半年增长的百分数是A公司的4倍,公共营销区域面积与A公司营销区域面积的比为,同时公共营销区域面积与A,B两公司总营销区域面积的比比去年下半年增加了x个百分点.问题:(1)根据上述材料,针对去年下半年,提出一个你喜欢的数学问题(如求去年下半年公共营销区域面积与B公司营销区域面积的比),并解答;(2)若同一个公司去年下半年和今年上半年每平方千米产生的经济收益持平,且A公司每半年每平方千米产生的经济收益均为B公司的1.5倍,求去年下半年与今年上半年两公司总经济收益之比.23.(11分)菱形ABCD的对角线AC,BD相交于点O,0°<∠ABO≤60°,点G是射线OD上一个动点,过点G作GE∥DC交射线OC于点E,以OE,OG为邻边作矩形EOGF.(1)如图1,当点F在线段DC上时,求证:DF=FC;(2)若延长AD与边GF交于点H,将△GDH沿直线AD翻折180°得到△MDH.①如图2,当点M在EG上时,求证:四边形EOGF为正方形;②如图3,当tan∠ABO为定值m时,设DG=k•DO,k为大于0的常数,当且仅当k>2时,点M在矩形EOGF的外部,求m的值.24.(12分)已知函数y1=x+2m﹣1,y2=(2m+1)x+1均为一次函数,m为常数.(1)如图1,将直线AO绕点A(﹣1,0)逆时针旋转45°得到直线l,直线l交y轴于点B.若直线l恰好是y1=x+2m﹣1,y2=(2m+1)x+1中某个函数的图象,请直接写出点B坐标以及m 可能的值;(2)若存在实数b,使得|m|﹣(b﹣1)=0成立,求函数y1=x+2m﹣1,y2=(2m+1)x+1图象间的距离;(3)当m>1时,函数y1=x+2m﹣1图象分别交x轴,y轴于C,E两点,y2=(2m+1)x+1图象交x轴于D点,将函数y=y1•y2的图象最低点F向上平移个单位后刚好落在一次函数y1=x+2m﹣1图象上.设y=y1•y2的图象,线段OD,线段OE围成的图形面积为S,试利用初中知识,探究S的一个近似取值范围.(要求:说出一种得到S的更精确的近似值的探究办法,写出探究过程,得出探究结果,结果的取值范围两端的数值差不超过0.01.)答案与解析一、选择题(下列各小题中,只有一个选项是符合题目要求的.每小题3分,计33分.)1.下面四幅图是摄影爱好者抢拍的一组照片.从对称美的角度看,拍得最成功的是()A.B.C.D.【知识考点】轴对称图形.【思路分析】根据轴对称图形的概念对各选项分析判断即可得解.【解题过程】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选:B.【总结归纳】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.我国渤海、黄海、东海、南海海水含有不少化学元素,其中铝、锰元素总量均约为8×106吨.用科学记数法表示铝、锰元素总量的和,接近值是()A.8×106B.16×106C.1.6×107D.16×1012【知识考点】科学记数法—表示较大的数.【思路分析】直接将铝、锰元素总量相加,再将其用科学记数法表示即可得到答案.【解题过程】解:∵铝、锰元素总量均约为8×106吨,∴铝、锰元素总量的和,接近值是:8×106+8×106=1.6×107.故选:C.【总结归纳】本题考查了科学记数法,科学记数法的表示方法:a×10n,其中1≤|a|<10,确定n 的值是解题关键,n是整数数位减1.3.对于无理数,添加关联的数或者运算符号组成新的式子,其运算结果能成为有理数的是()A.2﹣3B.+C.()3D.0×【知识考点】实数.【思路分析】选项A、B根据二次根式的加减法法则判断即可;选项C根据乘方的定义以及二次根式的性质判断即可;选项D根据任何数与0相乘得0判断即可.【解题过程】解:A.与不是同类二次根式,所以不能合并,故本选项不合题意;B.,故本选项不合题意;C.()3=,故本选项不合题意;D.,故本选项符合题意.故选:D.【总结归纳】本题主要考查了二次根式的混合运算,熟练掌握二次根式的性质是解答本题的关键.4.如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l为线段FG 的垂直平分线.下列说法正确的是()A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线【知识考点】线段垂直平分线的性质.【思路分析】根据垂直平分线的性质定理判断即可.【解题过程】解:如图:A.∵直线l为线段FG的垂直平分线,∴FO=GO,l⊥FG,∵EF=GH,∴EF+FO=OG+GH,即EO=OH,∴l为线段EH的垂直平分线,故此选项正确;B.∵EO≠OQ,∴l不是线段EQ的垂直平分线,故此选项错误;C.∵FO≠OH,∴l不是线段FH的垂直平分线,故此选项错误;D.∵l为直线,EH不能平分直线l,∴EH不是l的垂直平分线,故此选项错误;故选:A.【总结归纳】本题主要考查了垂直平分线的性质和判定定理,熟练运用定理是解答此题的关键.5.小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是()A.小李现在位置为第1排第2列B.小张现在位置为第3排第2列C.小王现在位置为第2排第2列D.小谢现在位置为第4排第2列【知识考点】坐标确定位置.【思路分析】根据坐标确定位置,从有序数对的两个数的实际意义考虑解答.【解题过程】解:根据题意画出图形可得:A、小李现在位置为第1排第4列,此选项说法错误;B、小张现在位置为第3排第2列,此选项说法正确;C、小王现在位置为第2排第3列,此选项说法错误;D、小谢现在位置为第4排第4列,此选项说法错误;故选:B.【总结归纳】本题考查了确定位置,理解有序数对的两个数的实际意义是解题的关键.6.能说明“锐角α,锐角β的和是锐角”是假命题的例证图是()A.B.C.D.【知识考点】命题与定理.【思路分析】判断“两个锐角的和是锐角”什么情况下不成立,即找出两个锐角的和>90°即可.【解题过程】解:例如C选项图中:三角形三个内角都是锐角,则∠α+∠β>90°.故选:C.【总结归纳】此题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.诗句“横看成岭侧成峰,远近高低各不同”,意思是说要认清事物的本质,就必须从不同角度去观察.如图是对某物体从不同角度观察的记录情况,对该物体判断最接近本质的是()A.是圆柱形物体和球形物体的组合体,里面有两个垂直的空心管B.是圆柱形物体和球形物体的组合体,里面有两个平行的空心管C.是圆柱形物体,里面有两个垂直的空心管D.是圆柱形物体,里面有两个平行的空心管【知识考点】由三视图判断几何体.【思路分析】根据三视图的特征,即可得到该几何体的形状.【解题过程】解:由图可得,该物体是圆柱形物体,里面有两个平行的空心管,故选:D.【总结归纳】本题主要考查了由三视图判断几何体,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.8.某车间工人在某一天的加工零件数只有5件,6件,7件,8件四种情况.图中描述了这天相关的情况,现在知道7是这一天加工零件数的唯一众数.设加工零件数是7件的工人有x人,则()A.x>16 B.x=16 C.12<x<16 D.x=12【知识考点】条形统计图;众数.【思路分析】根据统计图中的数据和题意,可知x>16,本题得以解决.【解题过程】解:∵10<12<16,7是这一天加工零件数的唯一众数,加工零件数是7件的工人有x人,∴x>16,故选:A.【总结归纳】本题考查条形统计图、众数,解答本题的关键是明确题意,利用数形结合的思想解答.9.游戏中有数学智慧,找起点游戏规定:从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行,成功的招数不止一招,可助我们成功的一招是()A.每走完一段直路后沿向右偏72°方向行走B.每段直路要短C.每走完一段直路后沿向右偏108°方向行走D.每段直路要长【知识考点】多边形内角与外角.【思路分析】根据题意可得行走路线是正五边形,再根据正五边形的每个外角等于72度即可判断.【解题过程】解:∵从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行,∴=72°,∴每走完一段直路后沿向右偏72°方向行走.故选:A.【总结归纳】本题考查了多边形内角与外角,解决本题的关键是掌握多边形外角定义.10.如图,E,F,G为圆上的三点,∠FEG=50°,P点可能是圆心的是()A.B.C.D.【知识考点】圆周角定理.【思路分析】利用圆周角定理对各选项进行判断.【解题过程】解:∵∠FEG=50°,若P点圆心,∴∠FPG=2∠FEG=100°.故选:C.【总结归纳】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.11.已知电压U、电流I、电阻R三者之间的关系式为:U=IR(或者I=),实际生活中,由于给定已知量不同,因此会有不同的可能图象,图象不可能是()A.B.C.D.【知识考点】反比例函数的应用.【思路分析】分不同的已知量分别讨论后即可确定符合题意的选项.【解题过程】解:当U一定时,电压U、电流I、电阻R三者之间的关系式为I=,I与U成反比例函数关系,但R不能小于0,所以图象A不可能,B可能;当I一定时,电压U、电流I、电阻R三者之间的关系式为:U=IR,U和I成正比例函数关系,所以C、D均有可能,故选:A.【总结归纳】考查了反比例函数的应用,解题的关键是能够根据不同的定值确定函数关系类型,难度不大.二、填空题(将答案写在答题卡上指定的位置.每小题3分,计12分.)12.向指定方向变化用正数表示,向指定方向的相反方向变化用负数表示,“体重减少1.5kg”换一种说法可以叙述为“体重增加kg”.【知识考点】正数和负数.【思路分析】根据正负数的意义解答即可.【解题过程】解:“体重减少1.5kg”换一种说法可以叙述为“体重增加﹣1.5kg”.故答案为:﹣1.5.【总结归纳】本题考查了正数和负数,熟练掌握正数和负数的定义是解题的关键.13.数学讲究记忆方法.如计算(a5)2时若忘记了法则,可以借助(a5)2=a5×a5=a5+5=a10,得到正确答案.你计算(a2)5﹣a3×a7的结果是.【知识考点】同底数幂的乘法;幂的乘方与积的乘方.【思路分析】直接利用幂的乘方运算以及同底数幂的乘法运算计算得出答案.【解题过程】解:(a2)5﹣a3×a7=a10﹣a10=0.故答案为:0.【总结归纳】此题主要考查了幂的乘方运算法则以及同底数幂的乘法运算,正确掌握相关运算法则是解题关键.14.技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格(结果要求保留两位小数)的频率已达到0.9911,依此我们可以估计该产品合格的概率为.【知识考点】利用频率估计概率.【思路分析】根据抽检某一产品2020件,发现产品合格的频率已达到0.9911,所以估计合格件数的概率为0.99,问题得解.【解题过程】解:∵抽检某一产品2020件,发现产品合格的频率已达到0.9911,∴依此我们可以估计该产品合格的概率为0.99,故答案为:0.99.【总结归纳】本题考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比及运用样本数据去估计总体数据的基本解题思想.15.如图,在一个池塘两旁有一条笔直小路(B,C为小路端点)和一棵小树(A为小树位置).测得的相关数据为:∠ABC=60°,∠ACB=60°,BC=48米,则AC=米.【知识考点】等边三角形的判定与性质.【思路分析】根据等边三角形的判定与性质即可求解.【解题过程】解:∵∠ABC=60°,∠ACB=60°,∴∠BAC=60°,∴△ABC是等边三角形,∵BC=48米,∴AC=48米.故答案为:48.【总结归纳】考查了等边三角形的判定与性质,关键是得到△ABC是等边三角形.三、解答题(将解答过程写在答题卡上指定的位置.本大题共有9小题,计75分.)16.(6分)在“﹣”“×”两个符号中选一个自己想要的符号,填入22+2×(1□)中的□,并计算.【知识考点】有理数的混合运算.【思路分析】添加想要的符号“﹣”,先算乘方,再算乘法,最后算加减;如果有括号,要先做括号内的运算;添加想要的符号“×”,先算乘方,再算乘法,最后算加法;如果有括号,要先做括号内的运算.【解题过程】解:添加想要的符号“﹣”,22+2×(1﹣)=4+2×=4+1=5;添加想要的符号“×”,22+2×(1×)=4+2×=4+1=5.【总结归纳】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.17.(6分)先化简,再求值:•﹣(x﹣1)0,其中x=2020.【知识考点】分式的化简求值;零指数幂.【思路分析】先对分式的分子进行因式分解,然后通过约分进行化简,再代入求值即可.【解题过程】解:原式=•﹣1=x+2﹣1=x+1.当x=2020时,原式=2020+1=2021.【总结归纳】此题主要考查了分式的化简求值,零指数幂,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.18.(7分)光线在不同介质中传播速度不同,从一种介质射向另一种介质时会发生折射.如图,水面AB与水杯下沿CD平行,光线EF从水中射向空气时发生折射,光线变成FH,点G在射线EF上,已知∠HFB=20°,∠FED=45°,求∠GFH的度数.【知识考点】平行线的性质.【思路分析】根据平行线的性质知∠GFB=∠FED=45°,结合图形求得∠GFH的度数.【解题过程】解:∵AB∥CD,∴∠GFB=∠FED=45°.∵∠HFB=20°,∴∠GFH=∠GFB﹣∠HFB=45°﹣20°=25°.【总结归纳】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.19.(7分)红光中学学生乘汽车从学校去研学旅行基地,以75千米/小时的平均速度,用时2小时到达.由于天气原因,原路返回时汽车平均速度控制在不低于50千米/小时且不高于60千米/小时的范围内,这样需要用t小时到达.求t的取值范围.【知识考点】一元一次不等式组的应用.【思路分析】根据路程=速度×时间结合原路返回时汽车平均速度控制在不低于50千米/小时且不高于60千米/小时的范围内,即可得出关于t的一元一次不等式组,解之即可得出t的取值范围.【解题过程】解:依题意,得:,解得:2.5≤t≤3.答:t的取值范围为2.5≤t≤3.【总结归纳】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.20.(8分)宜昌景色宜人,其中三峡大坝、清江画廊、三峡人家景点的景色更是美不胜收.某民营单位为兼顾生产和业余生活,决定在下设的A,B,C三部门利用转盘游戏确定参观的景点.两转盘各部分圆心角大小以及选派部门、旅游景点等信息如图.(1)若规定老同志相对偏多的部门选中的可能性大,试判断这个部门是哪个部门?请说明理由;(2)设选中C部门游三峡大坝的概率为P1,选中B部门游清江画廊或者三峡人家的概率为P2,请判断P1,P2大小关系,并说明理由.【知识考点】列表法与树状图法.【思路分析】(1)计算各个部门的被选中的概率,得出答案;(2)用列表法或树状图列举出所有可能出现的结果情况,从中找出“C部门游三峡大坝”频数,“B部门游清江画廊或者三峡人家”的频数,进而求出相应的概率,比较得出答案.【解题过程】解:(1)C部门,理由:∵P A==,P B==,P C==,∴选择C部门的可能性大;(2)P1=P2;用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中“C部门游三峡大坝”的有2种,“B部门游清江画廊或者三峡人家”的也有2种,∴P1==,P2==,因此,P1=P2.【总结归纳】本题考查列表法或树状图求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的关键.21.(8分)如图,在四边形ABCD中,AD∥BC,AB=2a,∠ABC=60,过点B的⊙O与边AB,BC分别交于E,F两点.OG⊥BC,垂足为G,OG=a.连接OB,OE,OF.(1)若BF=2a,试判断△BOF的形状,并说明理由;(2)若BE=BF,求证:⊙O与AD相切于点A.【知识考点】勾股定理;垂径定理;切线的判定.【思路分析】(1)由垂径定理得到BG=FG=a,则BG=OG,FG=OG,所以△BOG和△OFG 都是等腰直角三角形,则∠BOF=90°,从而可判断△BOF为等腰直角三角形.(2)连接EF,如图,先证明△BEF为等边三角形,再证明点E、O、G共线,即EG⊥BF,接着计算出BE=2BG=2a=AB,则可判断点A与点E重合,然后证明AG⊥AD,从而得到⊙O 与AD相切于点A.【解题过程】(1)解:△BOF为等腰直角三角形.理由如下:∵OG⊥BC,∴BG=FG=BF=a,∵OG=a,∴BG=OG,FG=OG,∴△BOG和△OFG都是等腰直角三角形,∴∠BOG=∠FOG=45°,∴∠BOF=90°,而OB=OF,∴△BOF为等腰直角三角形.(2)证明:连接EF,如图,∵∠EBF=60°,BF=BE,∴△BEF为等边三角形,∴EB=EF,∵OG垂直平分BF,∴点E、O、G共线,即EG⊥BF,∵OG=a,∠OBG=30°,∴BG=OG=a,∴BE=2BG=2a,而AB=2a,∴点A与点E重合,∵AD∥BC,AG⊥BF,∴AG⊥AD,∴⊙O与AD相切于点A【总结归纳】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了等边三角形的判定与性质和垂径定理.22.(10分)资料:公司营销区域面积是指公司营销活动范围内的地方面积,公共营销区域面积是指两家及以上公司营销活动重叠范围内的地方面积.材料:某地有A,B两家商贸公司(以下简称A,B公司).去年下半年A,B公司营销区域面积分别为m平方千米,n平方千米,其中m=3n,公共营销区域面积与A公司营销区域面积的比为;今年上半年,受政策鼓励,各公司决策调整,A公司营销区域面积比去年下半年增长了x%,B公司营销区域面积比去年下半年增长的百分数是A公司的4倍,公共营销区域面积与A公司营销区域面积的比为,同时公共营销区域面积与A,B两公司总营销区域面积的比比去年下半年增加了x个百分点.问题:(1)根据上述材料,针对去年下半年,提出一个你喜欢的数学问题(如求去年下半年公共营销区域面积与B公司营销区域面积的比),并解答;(2)若同一个公司去年下半年和今年上半年每平方千米产生的经济收益持平,且A公司每半年。
2020年湖北省宜昌市中考数学样题(珍藏版)
2020年湖北省宜昌市中考数学样题(本试卷共24小题,满分120分,考试时间120分钟)注意事项:本试卷分试题卷和答题卡两部分,请将答案写在答题卡上每题对应的答题区域内,写在试题卷上无效.考试结束,请将本试题卷和答题卡一并上交.参考公式:二次函数2y ax bx c图象的顶点坐标是(2ba-,244ac ba-),一元二次方程20ax bx c的求根公式是242b b acxa-±-=,扇形面积是2360n rSπ=.一、选择题(下列各小题中,只有一个选项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号. 每小题3分,计33分.)1.我国古代《九章算术》中注有“今两算得失相反,要令正负以名之”意思是仅有两数其意义相反,则分别叫做正数与负数.如果向北走两步记作+2步,那么向南走5步记作(※).A.+5步B.-5步C.-3步D.-2步2.第七届世界军人运动会于2019年10月18日在中国武汉举行,下图是某赛场的颁奖台,其主视图是(※).A.B.C.D.3.中华人民共和国成立70周年阅兵式于2019年10月1日在北京天安门广场举行,这次阅兵编59个方(梯)队和联合军乐团,总规模约1.5万人,装备580台套,是近几次阅兵中规模最大的一次.以上数据中是近似数的是(※).A.70 B.2019 C.1.5 D.5804.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是(※).A.70°B.60°C.55°D.50°5.下列式子一定成立的是(※).A.x+x=2x2B.x3•x2=x6 C.(x4)2 =x8D.(-2x)2 =-4x26.矩形、菱形、正方形都一定具有的性质是(※).A.邻边相等B.四个角都是直角C.对角线相等D.对角线互相平分7.在一次社会调查活动中,小明调查了一个路口的车流量,具体数据如下:时间段7~8点8~9点9~10点10~11点11~12点数量/辆68 56 50 68 54 在这组数据中,众数和中位数依次是(※).A.56,68 B.68,56 C.68,55 D.68,50 (第2题)(第4题)8.用教材中的科学计算器依次按键如下,显示的结果在数轴上对应点的位置介于(※).A .A 与B 之间 B .C 与D 之间 C .E 与F 之间 D .B 与C 之间 9.根据图中的程序,当输入x =3时,输出的结果y =(※).A .2B . 8C .8或2D .16 10.下列尺规作图,能判断AD 是△ABC 边上的高是(※)..A .B .C .D .11.一个矩形被直线分成面积为x 和y 的两部分,则y 随x 的变化而变化的图象可能是(※).二、填空题(将答案写在答题卡上指定的位置.每小题3分,计12分.)12.2019年4月17日国家统计局网站消息,初步核算,2019年第一季度国内生产总值约213万亿元,按可比价格计算,同比增长6.4%,与上年第四季度相比持平.将数213用科学记数法表示为 ※※※ . 13.分解因式:=+-x x x 232 ※※※ .14.一个等腰三角形的两边长分别为4 cm 和5 cm ,则这个三角形的周长是 ※※※ .15.如图,矩形ABCD 中,AB =4,BC =3,F 是AB 中点,以点A为圆心,AD 为半径作弧交AB 于点E ,以点B 为圆心,BF 为半径作弧交BC 于点G ,则图中阴影部分面积的差S 1-S 2为 ※※※ .输出y输入xy =x +5 (x ≤1) y =-x +5(x >1)(第9题)xyOxyOxyOxyOA .B .C .D .A BC DA BC DABC DABCD(第15题)三、解答题(将解答过程写在答题卡上指定的位置.本大题共有9小题,计75分.) 16.(6分)计算:()113274sin 603π-⎛⎫--+-︒ ⎪⎝⎭.17.(6分)如图,在四边形ABCD 中,AB =AD ,CB =CD .求证:∠B =∠D .18.(7分)已知甲、乙两车沿直路同向行驶,车速分别为20 m/s 和v (m/s),起初甲车在乙车前a (m)处,两车同时出发,当乙车追上甲车时,两车都停止行驶.设x (s)后两车相距y (m),y 与x 的函数关系如图所示. (1)求a 的值; (2)求v 的值.19.(7分)为了提高学生的身体素质,某班级决定开展球类活动,要求每个学生必须在篮球、足球、排球、乒乓球、羽毛球中选择一项参加训练(只选择一项),根据学生的报名情况制成如下统计表:项目 篮球 足球 排球 乒乓球 羽毛球 报名人数 12 8 4 a 10 占总人数的百分比24%b(1)该班学生的总人数为____人;(2)由表中的数据可知:a =____,b =_____;(3)报名参加排球训练的四个人为两男(分别记为A ,B )两女(分别记为C ,D ),现要随机在这4人中选2人参加学校组织的校级训练,请用列表或树状图的方法求出刚好选中一男一女的概率.(第17题)(第18题)20.(8分)国庆70周年,大街小巷到处悬挂国旗.按照国旗法规定,在一般街巷两侧的单位、商户用4号国旗.插挂国旗的不锈钢旗杆或竹竿长度为2 m ,国旗展开后下端离人行道地面的距离不低于2 m ,与地面夹角呈45°角.升挂国旗要规格、高度一致,国旗旗面整洁鲜艳.中华人民共和国国旗的型号如下:(单位:mm )(1)观察表中的数据,写出长y 与宽x 之间的函数关系式; (2)如图1,国旗展开时,F 离墙面AB 的距离;(3)如图2,国旗下垂时,G 点离地面AH 最近距离为2 m ,求AC 的长(精确到十分位).(提示:2≈1.41,1730960144022≈+,5≈2.24,13≈3.61)21.(8分)如图,P 是⊙O 上一点,直径BD 的延长线与切线P A 相较于A 点,PC ⊥BA 交⊙O 于点C ,垂足为点E ,CD 的延长线交AP 于点F ,连接BC . (1)求证:∠AOP =2∠CBD ; (2)若CF ∥OP ,DF =2,求⌒C D 的长度.型号 长 宽 1号 2880 1920 2号 2400 1600 3号 1920 1280 4号 1440 5号960640(第21题)(第20题图1)(第20题图2)22.(10分)材料一:2019年国庆阅兵用的2.4万平方米红地毯是以回收的废旧矿泉水瓶为原料生产而成,具有阻燃、抗污、抗紫外线的功能,共消耗掉40万个废旧矿泉水瓶,重10吨.“原来我们纺织是要以石油为原料,而现在我们用废旧塑料矿泉水瓶作原料.每一吨废旧矿泉水瓶可以减少6吨石油消耗,减少3.2吨的二氧化碳排放,相当于200棵树1年吸收的二氧化碳量.”材料二:SY 中学有2000名学生,调查发现,每天只有20%学生自带水杯喝学校提供的直饮水,其余学生买矿泉水喝(假设每个学生每天只买一瓶矿泉水喝),矿泉水瓶废旧回收率为15%;学校在开展“垃圾分类回收”活动中,提倡“一增一减”,即增加矿泉水瓶的废旧回收,减少矿泉水的购买(鼓励自带水杯喝学校提供的直饮水),同学们参与活动热情很高,再次统计发现现在每天自带水杯学生数的增长百分数是m ,矿泉水瓶废旧回收个数的增长百分数是2m,矿泉水瓶废旧回收率是3532m . 问题解决:(1)利用1个废旧矿泉水瓶相当减少多少千克石油消耗?(2)若SY 学校现在每天回收的废旧矿泉水瓶全部用于生产红地毯,试问每天可以减少多少吨石油消耗?23.(11分)已知矩形ABCD 绕点C 顺时针旋转到ECGF 位置,FE 与边AB ,AD 交于点P ,H 点.延长AD ,CD 交GF 分别交于Q ,M 点.AB =6 ,BC =8. (1)如图1,求证:∠APH =∠MCG ;(2)如图2,若M 与F 重合,求tan ∠BCP 的值; (3)如图3,当CM =CE 时,求HE 的值.(第23题图1)(第23题图2)(第23题图3)24.(12分)如图,点P的坐标是(0,8),PQ∥x轴,点A在线段PO上,点B是x轴正半轴上一点,以AB为边在第一象限作正方形ABCD,P A=BO=m,反比例函数y=xk(k>0)经过点C交PQ于点H.(1)求点H的横坐标;(用含m的代数式表示)(2)过A,H,C三点的抛物线y=ax²+bx+c交x轴于点E,F(E在F左边),顶点为K.①求a的值;②A,C点到抛物线对称轴的距离分别记为d1,d2,若|d1-d2|≤3,求抛物线的顶点纵坐标y k的取值范围;(3)过C点作CG⊥x轴,垂足为点G,24FG EG⋅=,求四边形ABCD的面积.(第24题)(第24题参考图1)(第24题参考图2)。
2020年宜昌市近五届中考数学应用题压轴题(22题)汇编及答案
2020年宜昌市近五届中考数学应用题压轴题(22题)汇编及答案2020年宜昌市近五届中考数学应用题(22题)汇编及答案(本大题一般2~3小问,共10分)上传校勘:柯老师【2015/22】全民健身和医疗保健是社会普遍关注的问题,2014年,某社区共投入30万元用于购买健身器材和药品.(1)若2014年社区购买健身器材的费用不超过总投入的,问2014年最低投入多少万元购买药品?(2)2015年,该社区购买健身器材的费用比上一年增加50%,购买药品的费用比上一年减少,但社区在这两方面的总投入仍与2014年相同.①求2014年社区购买药品的总费用;②据统计,2014年该社区积极健身的家庭达到200户,社区用于这些家庭的药品费用明显减少,只占当年购买药品总费用的,与2014年相比,如果2015年社区内健身家庭户数增加的百分比与平均每户健身家庭的药品费用降低的百分比相同,那么,2015年该社区用于健身家庭的药品费用就是当年购买健身器材费用的,求2015年该社区健身家庭的户数.【2016/22】某蛋糕产销公司A品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2014年底就投入资金10.89万元,新增一条B品牌产销线,以满足市场对蛋糕的多元需求,B品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年,A、B两品牌产销线销售量总和将达到11.4万份,B品牌产销线2017年销售获利恰好等于当初的投入资金数.(1)求A品牌产销线2018年的销售量;(2)求B品牌产销线2016年平均每份获利增长的百分数.【2017/22】某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在 2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的1.5倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3: 2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.【2018/22】某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”( 下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n 计算,第一年有40家工厂用乙方案治理,共使Q值降低了12。
2020年中考湖北宜昌数学卷
[来源:学科网 ZXXK]
4
23.如图 1,Rt△ABC 两直角边的边长为 AC=1,BC=2.
(1)如图 2,⊙O 与 Rt△ABC 的边 AB 相切于点 X,与边 CB 相切于点 Y.请你在图 2 中作出
并标明⊙O 的圆心 O。(用尺规作图,保留作图痕迹,不写作法和证明)
(2)P 是这个 Rt△ABC 上和其内部的动点,以 P 为圆心的⊙P 与 Rt△ABC 的两条边相
H A
(D)(2,-1)
DG C F
E
B
第12题
y
C
B(2,1)
A1 OA x
B1
C1
第13题
30
25 20 15 10 5 0 巴山舞
乒乓球
篮球 巴山舞 50%
乒乓球
2020年湖北省宜昌市中考数学试卷及答案
2020年湖北省宜昌市初中学业水平考试数学试题(本试卷共24小题,满分120分,考试时间120分钟)参考公式:抛物线2y ax bx c =++的顶点坐标是24(,)24b ac b a a −− 一、选择题(每小题3分,计33分)1.下面四幅图是摄影爱好者抢拍的一组照片,从对称美的角度看,拍的最成功的是( )2.我国渤海、黄海,东海、南海海水含有不少化学元素,其中铝、锰元素总量均为6810⨯吨。
用科学计数法表示铝、锰元素总量的和,接近值是( )A. 6810⨯B. 61610⨯C. 71.610⨯D. 121610⨯3. )A. B. C. 3 D. 04.如图,点E,F,G,Q,H 在一条直线上,且EF=GH ,我们知道按如图所示做直线l 为线段FG 的垂直平分线。
下列说法正确的是( )A.l 是线段EH 的垂直平分线B.l 是线段EQ 的垂直平分线C.l 是线段FH 的垂直平分线D.EH 是l 的垂直平分线5.小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列。
撤走第一排,仍按照原有的确定位置的方法确定新的位置,下列说法正确的是( )A.小李现在位置为第1排第2列B.小张现在位置为第3排第2列C.小王现在位置为第2排第2列D.小谢现在位置为第4排第2列6.能说明“锐角α,锐角β的和是锐角”是假命题的例证图是( )7.诗句“横看成岭侧成峰,远近高低各不同”,意思是说要认清事务的本质,就必须从不同的角度去观察。
下图是对某物体从不同角度观察的记录情况,对该物体判定最接近本质的是( )A.是圆柱体和球体的组合体,里面有两个垂直的空心管B.是圆柱体和球体的组合体,里面有两个平行的空心管C. 是圆柱体,里面有两个垂直的空心管D. 是圆柱体,里面有两个平行的空心管8.某车间工人在某一天的加工零件数只有5件,6件,7件,8件四种情况。
【2020年中考超凡押题】湖北省宜昌市2020年中考数学真题试题(含解析)
湖北省宜昌市2020年中考数学真题试题一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.有理数15-的倒数为()A. 5 B.15C.15- D.5-【答案】D 【解析】试题分析:根据倒数的定义:乘积为1的两数互为倒数,可知:﹣15的倒数为﹣5.故选:D.【点评】本题考查了倒数,熟练掌握倒数的定义是解题的关键.考点:倒数2.如下字体的四个汉字中,是轴对称图形的是()A. B. C. D.【答案】A考点:轴对称图形3.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是()A.美 B.丽 C.宜 D.昌【答案】C【解析】试题分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点可知,有“爱”字一面的相对面上的字是宜.故选:C.考点:正方体相对两个面上的文字4.谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为()A.量角器 B.直尺 C. 三角板 D.圆规【答案】D考点:数学常识5.5月18 日,新平社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实观了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC报验点,电缆拉放长度估计1200千米.其中准确数是()A.27354 B.40000 C.50000 D.1200【答案】A【解析】试题分析:利用精确数和近似数的区别,可知27354为准确数,4000、50000、1200都是近似数.故选:A.考点:近似数和有效数字6.九一(1)班在参加学校4100m接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为()A. 1 B.12C.13D.14【答案】D【解析】试题分析:根据概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数,可得甲跑第一棒的概率为14. 故选:D . 考点:概率公式7.下列计算正确的是( )A .325a a a +=B .325a a a ⋅= C. ()235a a = D .623a a a ÷=【答案】B考点:1、同底数幂的除法;2、合并同类项;3、同底数幂的乘法;4、幂的乘方与积的乘方8.如图,在AEF ∆中,尺规作图如下:分别以点E ,点F 为圆心,大于12EF 的长为半径作弧,两弧相交于,G H 两点,作直线GH ,交EF 于点O ,连接AO ,则下列结论正确的是( )A .AO 平分 EAF ∠B .AO 垂直平分EF C. GH 垂直平分EF D .GH 平分AF 【答案】C 【解析】试题分析:根据线段垂直平分线的作法可得,GH 垂直平分线段EF . 故选:C .考点:1、作图—基本作图;2、线段垂直平分线的性质9.如图,要测定被池塘隔开的,A B 两点的距离.可以在AB 外选一点C ,连接,AC BC ,并分别找出它们的中点,D E, 连接E D.现测得304024,,,则AB=()AC m BC m DE m===A.50m B.48m C.45m D.35m【答案】B考点:三角形中位线定理10.如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是()A.①② B.①③ C. ②④ D.③④【答案】B【解析】试题分析:根据多边形的内角和定理可知:①剪开后的两个图形是四边形,它们的内角和都是360°,③剪开后的两个图形是三角形,它们的内角和都是180°;因此可知①③剪开后的两个图形的内角和相等,故选:B.考点:多边形内角与外角11.如图,四边形ABCD内接Oe,AC平分BAD∠,则下列结论正确的是()A .AB AD = B .BC CD = C.»»AB AD = D .BCA DCA ∠=∠ 【答案】B考点:圆心角、弧、弦的关系12.今年5月21日是全国第27个助残日,某地开展“心手相连,共浴阳光”为主题的手工制品义卖销售活动.长江特殊教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是( )手工制品 手串 中国结 手提包 木雕笔筒 总数量(个) 200 100 80 70 销售数量(个)1901007668A .手串B .中国结 C. 手提包 D .木雕笔筒 【答案】B 【解析】试题分析:根据图表可知:手串的销售率=19019=20020<1;中国结的销售率=100100=1;手提包的销售率=7619=8020<1;木雕笔筒的销售率=6834=7035<1,比较可知销售率最高的是中国结.故选:B .考点:1、有理数大小比较;2、有理数的除法13.ABC ∆在网格中的位置如图所示(每个小正方体边长为1),AD BC ⊥于D ,下列选项中,错误..的是( )A .sin cos αα=B .tan 2C = C. sin cos ββ=D .tan 1α= 【答案】C③∵sinβ=5CD AC =,cosβ=25, ∴sinβ≠cosβ,故C 错误. 故选:C .考点:1、锐角三角函数,2、等腰直角三角形的判定和性质,3、勾股定理 14.计算()()224x y x y xy+--的结果为( )A .1B .12 C.14D .0 【答案】A【点评】本题考查了约分.. 考点:约分15.某学校要种植一块面积为1002m 的长方形草坪,要求两边长均不小于5m ,则草坪的一边长为y (单位:m )随另一边长x (单位:m )的变化而变化的图象可能是( )A .B . C. D .【答案】C 【解析】试题分析:由草坪面积为100m 2,可知x 、y 存在关系y=100x,然后根据两边长均不小于5m ,可得x ≥5、y ≥5,则x ≤20, 故选 :C .考点:反比例函数的应用二、解答题 (本大题共9小题,共75分.解答应写出文字说明、证明过程或演算步骤.) 16.计算:31210.54⎛⎫⨯-⨯ ⎪⎝⎭【答案】3 【解析】试题分析:原式先计算括号中的减法运算,再计算乘方运算,最后算乘法运算即可得到结果.试题解析:原式=8×34×12=3.考点:有理数的混合运算17.解不等式组122(1)43 xx x ⎧≥-⎪⎨⎪--⎩<【答案】﹣2≤x<2考点:解一元一次不等式组18.YC市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格.请回答下列问题:时间第一天7:00﹣8:00 第二天7:00﹣8:00第三天7:00﹣8:00第四天7:00﹣8:00第五天7:00﹣8:00需要租用自行车却未租到车的人数(人)1500 1200 1300 1300 1200 (1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00-8:00 :需要租用公共自行车的人数是多少?【答案】(1)1300(2)2000【解析】试题分析:(1)表格中5个数据按从小到大的顺序排列后,中位数应是第3个数据;考点:1、中位数;2、用样本估计总体19.“和谐号”火车从车站出发,在行驶过程中速度y (单位:/m s )与时间x (单位:s )的关系如图所示,其中线段//BC x 轴.(1)当010x ≤≤,求y 关于x 的函数解析式; (2)求C 点的坐标.【答案】(1)y=5x (2)(60,90) 【解析】试题分析:(1)根据函数图象和图象中的数据可以求得当0≤x ≤10,y 关于x 的函数解析式;(2)根据函数图象可以得到当10≤x ≤30时,y 关于x 的函数解析式,然后将x=30代入求出相应的y 值,然后线段BC ∥x 轴,即可求得点C 的坐标.试题解析:(1)当0≤x ≤10时,设y 关于x 的函数解析式为y=kx , 10k=50,得k=5,即当0≤x ≤10时,y 关于x 的函数解析式为y=5x ; (2)设当10≤x ≤30时,y 关于x 的函数解析式为y=ax+b ,10502580a b a b +=⎧⎨+=⎩,得230a b =⎧⎨=⎩,即当10≤x ≤30时,y 关于x 的函数解析式为y=2x+30, 当x=30时,y=2×30+30=90, ∵线段BC ∥x 轴,∴点C 的坐标为(60,90). 考点:一次函数的应用20.阅读:能够成为直角三角形三条边长的三个正整数,,a b c ,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:()()22221,2,1.2a m n b mn c m n ⎧=-⎪⎪=⎨⎪⎪=+⎩其中0m n >>,mn 是互质的奇数. 应用,当1n =时,求有一边长为5的直角三角形的另外两条边长. 【答案】直角三角形的另外两条边长分别为12,13或3,4 【解析】试题分析:由n=1,得到a=12(m 2﹣1)①,b=m ②,c=12(m 2+1)③,根据直角三角形有一边长为5,列方程即可得到结论.考点:1、勾股数;2、勾股定理21.已知,四边形ABCD 中,E 是对角线AC 上一点,DE EC =,以AE 为直径的O e 与边CD 相切于点D .B 点在O e 上,连接OB .(1)求证:DE OE;(2)若//CD AB,求证:四边形ABCD是菱形.【答案】(1)证明见解析(2)证明见解析【解析】试题分析:(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE,∴▱ABCD是菱形.考点:1、切线的性质;2、菱形的判定22.某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2020年初开始遂年按同一百分数递减,依此规律,在 2020年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2020年年初的投资在前一年基础上的增长率是线路敷设2020年投资增长率的1.5倍,2020年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3: 2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.【答案】(1)36(2)35亿元(3)50%【解析】试题分析:(1)由线路敷设三年总投资为54亿元及这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2,可得答案.(2)设2015年年初,对辅助配套的投资为x亿元,则线路敷设的投资为2x亿元,搬迁安置的投资是4x 亿元,根据“线路敷设三年总投资为54亿元、辅助配套三年的总投资为36亿元”列方程组,解之求得x、b 的值可得答案.(3)由x=5得出2015年初搬迁安置的投资为20亿元,设从2020年初开始,搬迁安置投资逐年递减的百分数为y ,根据“2020年年初搬迁安置的为投资5亿”列方程求解可得.试题解析:(1)三年用于辅助配套的投资将达到54×23=36(亿元);(3)由x=5得,2015年初搬迁安置的投资为20亿元,设从2020年初开始,搬迁安置投资逐年递减的百分数为y ,由题意,得:20(1﹣y )2=5,解得:y 1=0.5,y 2=1.5(舍)答:搬迁安置投资逐年递减的百分数为50%.考点:1、一元二次方程的应用;2、分式方程的应用23. 正方形ABCD 的边长为1,点O 是BC 边上的一个动点(与,B C 不重合),以O 为顶点在BC 所在直线的上方作90MON ∠=︒.(1)当OM 经过点A 时,①请直接填空:ON (可能,不可能)过D 点;(图1仅供分析)②如图2,在ON 上截取OE OA =,过E 点作EF 垂直于直线BC ,垂足为点F ,册EH CD ⊥于H ,求证:四边形EFCH 为正方形.(2)当OM 不过点A 时,设OM 交边AB 于G ,且1OG =.在ON 上存在点P ,过P 点作PK 垂直于直线BC ,垂足为点K ,使得4PKO OBG S S ∆∆=,连接GP ,求四边形PKBG 的最大面积.【答案】(1)①不可能②证明见解析(2)9 4试题解析:(1)①若ON过点D,则OA>AB,OD>CD,∴OA2>AD2,OD2>AD2,∴OA2+OD2>2AD2≠AD2,∴∠AOD≠90°,这与∠MON=90°矛盾,∴ON不可能过D点,故答案为:不可能;②∵EH⊥CD,EF⊥BC,∴∠EHC=∠EFC=90°,且∠HCF=90°,∴四边形EFCH为矩形,∵∠MON=90°,∴∠EOF=90°﹣∠AOB,在正方形ABCD中,∠BAO=90°﹣∠AOB,∴∠EOF=∠BAO,在△OFE和△ABO中EOF BAO EFO BOE AO ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△OFE ≌△ABO (AAS ),∴EF=OB ,OF=AB ,又OF=CF+OC=AB=BC=BO+OC=EF+OC ,∴CF=EF ,∴四边形EFCH 为正方形;设OB=a ,BG=b ,则a 2+b 2=OG 2=1,∴b=21a -, ∴S △OBG =12ab=12a 21a -=1242a a -+=122211()24a --+, ∴当a 2=12时,△OBG 有最大值14,此时S △PKO =4S △OBG =1, ∴四边形PKBG 的最大面积为1+1+14=94. 考点:1、矩形的判定和性质,2、全等三角形的判定和性质,3、相似三角形的判定和性质,4、三角形的面积,5、二次函数的性质,6、方程思想24.已知抛物线2y ax bx c =++,其中20a b c =>>,且0a b c ++=.(1)直接写出关于x 的一元二次方程20ax bx c ++=的一个根;(2)证明:抛物线2y ax bx c =++的顶点A 在第三象限;(3)直线y x m =+与,x y 轴分别相交于,B C 两点,与抛物线2y ax bx c =++相交于,A D 两点.设抛物线2y ax bx c =++的对称轴与x 轴相交于E ,如果在对称轴左侧的抛物线上存在点F ,使得ADF ∆与BOC ∆相似.并且12ADF ADE S S ∆∆=,求此时抛物线的表达式.【答案】(1)x=1(2)证明见解析(3)y=x 2+2x ﹣3试题解析:(1)∵抛物线y=ax 2+bx+c ,a+b+c=0,∴关于x 的一元二次方程ax 2+bx+c=0的一个根为x=1;(2)证明:∵2a=b ,∴对称轴x=﹣2b a=﹣1, 把b=2a 代入a+b+c=0中得:c=﹣3a ,∵a >0,c <0,∴△=b 2﹣4ac >0,∴244ac b a-<0, 则顶点A (﹣1,244ac b a -)在第三象限; 设对称轴x=﹣1与OF 交于点G ,∵直线y=x+m 过顶点A (﹣1,﹣4a ),∴m=1﹣4a ,∴直线解析式为y=x+1﹣4a ,联立得:21423y x ay ax ax a =+-⎧⎨=+-⎩,解得:14x y a =-⎧⎨=-⎩或1114x a y a a ⎧=-⎪⎪⎨⎪=-⎪⎩, 这里(﹣1,﹣4a )为顶点A ,(1a ﹣1,1a﹣4a )为点D 坐标, 点D 到对称轴x=﹣1的距离为1a ﹣1﹣(﹣1)=1a,AE=|﹣4a|=4a , ∴S △ADE =12×1a ×4a=2,即它的面积为定值, 这时等腰直角△ADF 的面积为1,∴底边DF=2,而x=﹣1是它的对称轴,此时D 、C 重合且在y 轴上,由1a﹣1=0,解得:a=1,此时抛物线解析式为y=x2+2x﹣3.考点:1、二次函数的图象与性质,2、二次函数与一次函数的关系,3、待定系数法求函数解析式。
【2020年中考超凡押题】湖北省宜昌市2020年中考数学真题试题(含解析)
湖北省宜昌市2020年中考数学真题试题一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.有理数15-的倒数为()A. 5 B.15C.15- D.5-【答案】D 【解析】试题分析:根据倒数的定义:乘积为1的两数互为倒数,可知:﹣15的倒数为﹣5.故选:D.【点评】本题考查了倒数,熟练掌握倒数的定义是解题的关键.考点:倒数2.如下字体的四个汉字中,是轴对称图形的是()A. B. C. D.【答案】A考点:轴对称图形3.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是()A.美 B.丽 C.宜 D.昌【答案】C【解析】试题分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点可知,有“爱”字一面的相对面上的字是宜.故选:C.考点:正方体相对两个面上的文字4.谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为()A.量角器 B.直尺 C. 三角板 D.圆规【答案】D考点:数学常识5.5月18 日,新平社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实观了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC报验点,电缆拉放长度估计1200千米.其中准确数是()A.27354 B.40000 C.50000 D.1200【答案】A【解析】试题分析:利用精确数和近似数的区别,可知27354为准确数,4000、50000、1200都是近似数.故选:A.考点:近似数和有效数字6.九一(1)班在参加学校4100m接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为()A. 1 B.12C.13D.14【答案】D【解析】试题分析:根据概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数,可得甲跑第一棒的概率为14. 故选:D . 考点:概率公式7.下列计算正确的是( )A .325a a a +=B .325a a a ⋅= C. ()235a a = D .623a a a ÷=【答案】B考点:1、同底数幂的除法;2、合并同类项;3、同底数幂的乘法;4、幂的乘方与积的乘方8.如图,在AEF ∆中,尺规作图如下:分别以点E ,点F 为圆心,大于12EF 的长为半径作弧,两弧相交于,G H 两点,作直线GH ,交EF 于点O ,连接AO ,则下列结论正确的是( )A .AO 平分 EAF ∠B .AO 垂直平分EF C. GH 垂直平分EF D .GH 平分AF 【答案】C 【解析】试题分析:根据线段垂直平分线的作法可得,GH 垂直平分线段EF . 故选:C .考点:1、作图—基本作图;2、线段垂直平分线的性质9.如图,要测定被池塘隔开的,A B 两点的距离.可以在AB 外选一点C ,连接,AC BC ,并分别找出它们的中点,D E, 连接E D.现测得304024,,,则AB=()AC m BC m DE m===A.50m B.48m C.45m D.35m【答案】B考点:三角形中位线定理10.如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是()A.①② B.①③ C. ②④ D.③④【答案】B【解析】试题分析:根据多边形的内角和定理可知:①剪开后的两个图形是四边形,它们的内角和都是360°,③剪开后的两个图形是三角形,它们的内角和都是180°;因此可知①③剪开后的两个图形的内角和相等,故选:B.考点:多边形内角与外角11.如图,四边形ABCD内接Oe,AC平分BAD∠,则下列结论正确的是()A .AB AD = B .BC CD = C.»»AB AD = D .BCA DCA ∠=∠ 【答案】B考点:圆心角、弧、弦的关系12.今年5月21日是全国第27个助残日,某地开展“心手相连,共浴阳光”为主题的手工制品义卖销售活动.长江特殊教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是( )手工制品 手串 中国结 手提包 木雕笔筒 总数量(个) 200 100 80 70 销售数量(个)1901007668A .手串B .中国结 C. 手提包 D .木雕笔筒 【答案】B 【解析】试题分析:根据图表可知:手串的销售率=19019=20020<1;中国结的销售率=100100=1;手提包的销售率=7619=8020<1;木雕笔筒的销售率=6834=7035<1,比较可知销售率最高的是中国结.故选:B .考点:1、有理数大小比较;2、有理数的除法13.ABC ∆在网格中的位置如图所示(每个小正方体边长为1),AD BC ⊥于D ,下列选项中,错误..的是( )A .sin cos αα=B .tan 2C = C. sin cos ββ=D .tan 1α= 【答案】C③∵sinβ=5CD AC =,cosβ=25, ∴sinβ≠cosβ,故C 错误. 故选:C .考点:1、锐角三角函数,2、等腰直角三角形的判定和性质,3、勾股定理 14.计算()()224x y x y xy+--的结果为( )A .1B .12 C.14D .0 【答案】A【点评】本题考查了约分.. 考点:约分15.某学校要种植一块面积为1002m 的长方形草坪,要求两边长均不小于5m ,则草坪的一边长为y (单位:m )随另一边长x (单位:m )的变化而变化的图象可能是( )A .B . C. D .【答案】C 【解析】试题分析:由草坪面积为100m 2,可知x 、y 存在关系y=100x,然后根据两边长均不小于5m ,可得x ≥5、y ≥5,则x ≤20, 故选 :C .考点:反比例函数的应用二、解答题 (本大题共9小题,共75分.解答应写出文字说明、证明过程或演算步骤.) 16.计算:31210.54⎛⎫⨯-⨯ ⎪⎝⎭【答案】3 【解析】试题分析:原式先计算括号中的减法运算,再计算乘方运算,最后算乘法运算即可得到结果.试题解析:原式=8×34×12=3.考点:有理数的混合运算17.解不等式组122(1)43 xx x ⎧≥-⎪⎨⎪--⎩<【答案】﹣2≤x<2考点:解一元一次不等式组18.YC市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格.请回答下列问题:时间第一天7:00﹣8:00 第二天7:00﹣8:00第三天7:00﹣8:00第四天7:00﹣8:00第五天7:00﹣8:00需要租用自行车却未租到车的人数(人)1500 1200 1300 1300 1200 (1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00-8:00 :需要租用公共自行车的人数是多少?【答案】(1)1300(2)2000【解析】试题分析:(1)表格中5个数据按从小到大的顺序排列后,中位数应是第3个数据;考点:1、中位数;2、用样本估计总体19.“和谐号”火车从车站出发,在行驶过程中速度y (单位:/m s )与时间x (单位:s )的关系如图所示,其中线段//BC x 轴.(1)当010x ≤≤,求y 关于x 的函数解析式; (2)求C 点的坐标.【答案】(1)y=5x (2)(60,90) 【解析】试题分析:(1)根据函数图象和图象中的数据可以求得当0≤x ≤10,y 关于x 的函数解析式;(2)根据函数图象可以得到当10≤x ≤30时,y 关于x 的函数解析式,然后将x=30代入求出相应的y 值,然后线段BC ∥x 轴,即可求得点C 的坐标.试题解析:(1)当0≤x ≤10时,设y 关于x 的函数解析式为y=kx , 10k=50,得k=5,即当0≤x ≤10时,y 关于x 的函数解析式为y=5x ; (2)设当10≤x ≤30时,y 关于x 的函数解析式为y=ax+b ,10502580a b a b +=⎧⎨+=⎩,得230a b =⎧⎨=⎩,即当10≤x ≤30时,y 关于x 的函数解析式为y=2x+30, 当x=30时,y=2×30+30=90, ∵线段BC ∥x 轴,∴点C 的坐标为(60,90). 考点:一次函数的应用20.阅读:能够成为直角三角形三条边长的三个正整数,,a b c ,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:()()22221,2,1.2a m n b mn c m n ⎧=-⎪⎪=⎨⎪⎪=+⎩其中0m n >>,mn 是互质的奇数. 应用,当1n =时,求有一边长为5的直角三角形的另外两条边长. 【答案】直角三角形的另外两条边长分别为12,13或3,4 【解析】试题分析:由n=1,得到a=12(m 2﹣1)①,b=m ②,c=12(m 2+1)③,根据直角三角形有一边长为5,列方程即可得到结论.考点:1、勾股数;2、勾股定理21.已知,四边形ABCD 中,E 是对角线AC 上一点,DE EC =,以AE 为直径的O e 与边CD 相切于点D .B 点在O e 上,连接OB .(1)求证:DE OE;(2)若//CD AB,求证:四边形ABCD是菱形.【答案】(1)证明见解析(2)证明见解析【解析】试题分析:(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE,∴▱ABCD是菱形.考点:1、切线的性质;2、菱形的判定22.某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2020年初开始遂年按同一百分数递减,依此规律,在 2020年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2020年年初的投资在前一年基础上的增长率是线路敷设2020年投资增长率的1.5倍,2020年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3: 2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.【答案】(1)36(2)35亿元(3)50%【解析】试题分析:(1)由线路敷设三年总投资为54亿元及这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2,可得答案.(2)设2015年年初,对辅助配套的投资为x亿元,则线路敷设的投资为2x亿元,搬迁安置的投资是4x 亿元,根据“线路敷设三年总投资为54亿元、辅助配套三年的总投资为36亿元”列方程组,解之求得x、b 的值可得答案.(3)由x=5得出2015年初搬迁安置的投资为20亿元,设从2020年初开始,搬迁安置投资逐年递减的百分数为y ,根据“2020年年初搬迁安置的为投资5亿”列方程求解可得.试题解析:(1)三年用于辅助配套的投资将达到54×23=36(亿元);(3)由x=5得,2015年初搬迁安置的投资为20亿元,设从2020年初开始,搬迁安置投资逐年递减的百分数为y ,由题意,得:20(1﹣y )2=5,解得:y 1=0.5,y 2=1.5(舍)答:搬迁安置投资逐年递减的百分数为50%.考点:1、一元二次方程的应用;2、分式方程的应用23. 正方形ABCD 的边长为1,点O 是BC 边上的一个动点(与,B C 不重合),以O 为顶点在BC 所在直线的上方作90MON ∠=︒.(1)当OM 经过点A 时,①请直接填空:ON (可能,不可能)过D 点;(图1仅供分析)②如图2,在ON 上截取OE OA =,过E 点作EF 垂直于直线BC ,垂足为点F ,册EH CD ⊥于H ,求证:四边形EFCH 为正方形.(2)当OM 不过点A 时,设OM 交边AB 于G ,且1OG =.在ON 上存在点P ,过P 点作PK 垂直于直线BC ,垂足为点K ,使得4PKO OBG S S ∆∆=,连接GP ,求四边形PKBG 的最大面积.【答案】(1)①不可能②证明见解析(2)9 4试题解析:(1)①若ON过点D,则OA>AB,OD>CD,∴OA2>AD2,OD2>AD2,∴OA2+OD2>2AD2≠AD2,∴∠AOD≠90°,这与∠MON=90°矛盾,∴ON不可能过D点,故答案为:不可能;②∵EH⊥CD,EF⊥BC,∴∠EHC=∠EFC=90°,且∠HCF=90°,∴四边形EFCH为矩形,∵∠MON=90°,∴∠EOF=90°﹣∠AOB,在正方形ABCD中,∠BAO=90°﹣∠AOB,∴∠EOF=∠BAO,在△OFE和△ABO中EOF BAO EFO BOE AO ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△OFE ≌△ABO (AAS ),∴EF=OB ,OF=AB ,又OF=CF+OC=AB=BC=BO+OC=EF+OC ,∴CF=EF ,∴四边形EFCH 为正方形;设OB=a ,BG=b ,则a 2+b 2=OG 2=1,∴b=21a -, ∴S △OBG =12ab=12a 21a -=1242a a -+=122211()24a --+, ∴当a 2=12时,△OBG 有最大值14,此时S △PKO =4S △OBG =1, ∴四边形PKBG 的最大面积为1+1+14=94. 考点:1、矩形的判定和性质,2、全等三角形的判定和性质,3、相似三角形的判定和性质,4、三角形的面积,5、二次函数的性质,6、方程思想24.已知抛物线2y ax bx c =++,其中20a b c =>>,且0a b c ++=.(1)直接写出关于x 的一元二次方程20ax bx c ++=的一个根;(2)证明:抛物线2y ax bx c =++的顶点A 在第三象限;(3)直线y x m =+与,x y 轴分别相交于,B C 两点,与抛物线2y ax bx c =++相交于,A D 两点.设抛物线2y ax bx c =++的对称轴与x 轴相交于E ,如果在对称轴左侧的抛物线上存在点F ,使得ADF ∆与BOC ∆相似.并且12ADF ADE S S ∆∆=,求此时抛物线的表达式.【答案】(1)x=1(2)证明见解析(3)y=x 2+2x ﹣3试题解析:(1)∵抛物线y=ax 2+bx+c ,a+b+c=0,∴关于x 的一元二次方程ax 2+bx+c=0的一个根为x=1;(2)证明:∵2a=b ,∴对称轴x=﹣2b a=﹣1, 把b=2a 代入a+b+c=0中得:c=﹣3a ,∵a >0,c <0,∴△=b 2﹣4ac >0,∴244ac b a-<0, 则顶点A (﹣1,244ac b a -)在第三象限; 设对称轴x=﹣1与OF 交于点G ,∵直线y=x+m 过顶点A (﹣1,﹣4a ),∴m=1﹣4a ,∴直线解析式为y=x+1﹣4a ,联立得:21423y x ay ax ax a =+-⎧⎨=+-⎩,解得:14x y a =-⎧⎨=-⎩或1114x a y a a ⎧=-⎪⎪⎨⎪=-⎪⎩, 这里(﹣1,﹣4a )为顶点A ,(1a ﹣1,1a﹣4a )为点D 坐标, 点D 到对称轴x=﹣1的距离为1a ﹣1﹣(﹣1)=1a,AE=|﹣4a|=4a , ∴S △ADE =12×1a ×4a=2,即它的面积为定值, 这时等腰直角△ADF 的面积为1,∴底边DF=2,而x=﹣1是它的对称轴,此时D 、C 重合且在y 轴上,由1a﹣1=0,解得:a=1,此时抛物线解析式为y=x2+2x﹣3.考点:1、二次函数的图象与性质,2、二次函数与一次函数的关系,3、待定系数法求函数解析式。
2020年宜昌市近五届中考数学几何压轴题(23题)汇编及答案
2020年宜昌市近五届中考数学几何压轴题(23题)汇编及答案(本大题一般3~4小问,共11分)上传校勘:柯老师【2015/23】如图四边形ABCD为菱形,对角线AC,BD相交于点E,F是边BA延长线上一点,连接EF,以EF为直径作⊙O,交边DC于D,G两点,AD分别与EF,GF交于I,H两点。
(1)求∠FDE的度数;(2)试判断四边形FACD的形状,并证明你的结论;(3)当G为线段DC的中点时,①求证:FD=FI;②设AC=2m,BD=2n,求⊙O的面积与菱形ABCD的面积之比。
【2016/23】在△ABC中,AB=6,AC=8,BC=10 . D是△ABC内部或BC边上的一个动点(与B,C不重合). 以D为顶点作△DEF,使△DEF∽△ABC(相似比k>1),EF∥BC.(1)求∠D的度数;(2)若两三角形重叠部分的形状始终是四边形AGDH,①如图1,连接GH,AD,当GH⊥AD时,请判断四边形AGDH的形状,并证明;②当四边形AGDH的面积最大时,过A作AP⊥EF于P,且AP=AD,求k的值.(第23题图1)(第23题图2供参考用)(第23题图3供参考用)23. 正方形ABCD 的边长为1,点O 是BC 边上的一个动点(与,B C 不重合),以O 为顶点在BC 所在直线的上方作90MON ∠=︒.(1)当OM 经过点A 时,①请直接填空:ON (可能,不可能)过D 点;(图1仅供分析)②如图2,在ON 上截取OE OA =,过E 点作EF 垂直于直线BC ,垂足为点F ,册EH CD ⊥于H ,求证:四边形EFCH 为正方形.(2)当OM 不过点A 时,设OM 交边AB 于G ,且1OG =.在ON 上存在点P ,过P 点作PK 垂直于直线BC ,垂足为点K ,使得4PKO OBG S S ∆∆=,连接GP ,求四边形PKBG 的最大面积.23. 在矩形ABCD 中,12AB =,P 是边AB 上一点,把PBC 沿直线PC 折叠,顶点B 的对应点是点G ,过点B 作BE CG ⊥,垂足为E 且在AD 上,BE 交PC 于点F .(1)如图1,若点E 是AD 的中点,求证:AEB DEC ∆∆≌; (2) 如图2,①求证: BP BF =;②当AD 25=,且AE DE <时,求cos PCB ∠的值; ③当BP 9=时,求BE EF 的值.图1 图2 图2备用图【2019/23】已知:在矩形ABCD中,E,F分别是边AB,AD上的点,过点F作EF的垂线交DC于点H,以EF为直径作半圆O。
最新宜昌市中考数学第24题抛物线综合大题训练(2)教师版有答案
宜昌市中考数学第24题抛物线综合大题训练(2)1.如图1,在平面直角坐标系中,直线4y x =+与抛物线21(2y x bx c b =-++,c 是常数)交于A 、B 两点,点A 在x 轴上,点B 在y 轴上.设抛物线与x 轴的另一个交点为点C .(1)求该抛物线的解析式;(2)P 是抛物线上一动点(不与点A 、B 重合),①如图2,若点P 在直线AB 上方,连接OP 交AB 于点D ,求PDOD的最大值; ②如图3,若点P 在x 轴的上方,连接PC ,以PC 为边作正方形CPEF ,随着点P 的运动,正方形的大小、位置也随之改变.当顶点E 或F 恰好落在y 轴上,直接写出对应的点P 的坐标.【解答】解:(1)直线4y x =+与坐标轴交于A 、B 两点, 当0x =时,4y =,4x =-时,0y =, (4,0)A ∴-,(0,4)B ,把A ,B 两点的坐标代入解析式得,484b c c -+=⎧⎨=⎩,解得,14b c =-⎧⎨=⎩,∴抛物线的解析式为2142y x x =--+;(2)如图1,作//PF BO 交AB 于点F , PFD OBD ∴∆∆∽,∴PD PFOD OB=, OB Q 为定值,∴当PF 取最大值时,PDOD有最大值, 设21(,4)2P x x x --+,其中40x -<<,则(,4)F x x +,22114(4)222P F PF y y x x x x x ∴=-=--+-+=--,Q 102-<且对称轴是直线2x =-,∴当2x =-时,PF 有最大值,此时2PF =,12PD PF OD OB ==; (3)Q 点(2,0)C , 2CO ∴=,()i 如图2,点F 在y 轴上时,若P 在第二象限,过点P 作PH x ⊥轴于H ,在正方形CPEF 中,CP CF =,90PCF ∠=︒, 90PCH OCF ∠+∠=︒Q ,90PCH HPC ∠+∠=︒, HPC OCF ∴∠=∠,在CPH ∆和FCO ∆中,HPC OCF PHC COF PC CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()CPH FCO AAS ∴∆≅∆, 2PH CO ∴==,∴点P 的纵坐标为2,∴21422x x --+=,解得,15x =-±,15x =-+(舍去). ∴1(15,2)P --,如图3,点F 在y 轴上时,若P 在第一象限, 同理可得点P 的纵坐标为2, 此时2P 点坐标为(15-+,2)()ii 如图4,点E 在y 轴上时,过点PK x ⊥轴于K ,作PS y ⊥轴于S ,同理可证得EPS CPK ∆≅∆, PS PK ∴=,P ∴点的横纵坐标互为相反数,∴2142x x x --+=-,解得22x =(舍去),22x =-, ∴3(22,22)P -,如图5,点E 在y 轴上时,过点PM x ⊥轴于M ,作PN y ⊥轴于N , 同理可证得PEN PCM ∆≅∆, PN PM ∴=,P ∴点的横纵坐标相等,∴2142x x x --+=,解得223x =-+,223x =--(舍去),∴4(22P -+-+,综合以上可得P 点坐标为(22-+-+,(-,(11-+-.2.如图,已知抛物线经过坐标原点O 和x 轴上另一点E ,顶点M 的坐标为(2,4);矩形ABCD 的顶点A 与点O 重合,AD 、AB 分别在x 轴、y 轴上,且2AD =,3AB =.(1)求该抛物线所对应的函数关系式;(2)将矩形ABCD 以每秒1个单位长度的速度从图1所示的位置沿x 轴正方向匀速平行移动,同时一动点P 也以相同的速度从点A 出发向B 匀速移动,设它们运动的时间为t 秒(03)t 剟,直线AB 与该抛物线的交点为N (如图2所示). ①当52t =时,判断点P 是否在直线ME 上,并说明理由; ②设以P 、N 、C 、D 为顶点的多边形面积为S ,试问S 是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.【解答】解:(1)设抛物线解析式为2(2)4y a x =-+, 把(0,0)代入解析式得2(02)40a -+=, 解得,1a =-,∴函数解析式为2(2)4y x =--+,即24y x x =-+.(2)①2(2)4y x =--+Q ,∴当0y =时,2(2)40x --+=,10x ∴=,24x =,(4,0)E ∴,设直线ME 的解析式为:y kx b =+,则4204k b k b =+⎧⎨=+⎩,解得:28k b =-⎧⎨=⎩,∴直线ME 的解析式为:28y x =-+,∴当52t =时,5(2P ,5)2,∴当52x =时,583y =-+=,532≠, ∴当52t =时,点P 不在直线ME 上. ②S 存在最大值.理由如下:Q 点A 在x 轴的非负半轴上,且N 在抛物线上,OA AP t ∴==.∴点P ,N 的坐标分别为(,)t t 、2(,4)t t t -+,24(03)AN t t t ∴=-+剟,22(4)3(3)0AN AP t t t t t t t ∴-=-+-=-+=-…, 23PN t t ∴=-+,(ⅰ)当0PN =,即0t =或3t =时,以点P ,N ,C ,D 为顶点的多边形是三角形,此三角形的高为AD ,∴1123322S CD AD ==⨯⨯=g , (ⅱ)当0PN ≠时,以点P ,N ,C ,D 为顶点的多边形是四边形, //PN CD Q ,AD CD ⊥,∴1()2S CD PN AD =+g , 221[3(3)]2332t t t t =+-+⨯=-++, 2321()24t =--+,03t <<Q , 32t ∴=时,S 有最大值为214, 综合以上可得,当32t =时,以点P ,N ,C ,D 为顶点的多边形面积有最大值,这个最大值为214.3.如图,二次函数2y x bx c =++的图象与x 轴交于点(1,0)A -和点(3,0)B ,与y 轴交于点N ,以AB 为边在x 轴上方作正方形ABCD ,点P 是x 轴上一动点,连接CP ,过点P 作CP 的垂线与y 轴交于点E . (1)求该抛物线的函数关系表达式;(2)当点P 在线段OB (点P 不与O 、B 重合)上运动至何处时,线段OE 的长有最大值?并求出这个最大值; (3)在第四象限的抛物线上任取一点M ,连接MN 、MB .请问:MBN ∆的面积是否存在最大值?若存在,求出此时点M 的坐标;若不存在,请说明理由.【解答】解:(1))Q 抛物线2y x bx c =++经过(1,0)A -,(3,0)B , 把A 、B 两点坐标代入上式,10930b c b c -+=⎧⎨++=⎩,解得:23b c =-⎧⎨=-⎩,故抛物线函数关系表达式为223y x x =--; (2)(1,0)A -Q ,点(3,0)B , 134AB OA OB ∴=+=+=,Q 正方形ABCD 中,90ABC ∠=︒,PC BE ⊥,90OPE CPB ∴∠+∠=︒, 90CPB PCB ∠+∠=︒, OPE PCB ∴∠=∠,又90EOP PBC ∠=∠=︒Q , POE CBP ∴∆∆∽,∴BC OPPB OE=, 设OP x =,则3PB x =-,∴43xx OE=-, 221139(3)()44216OE x x x ∴=-+=--+,03x <<Q ,∴32x =时,线段OE 长有最大值,最大值为916. 即32OP =时,点P 在线段OB 上运动至3(2P ,0)时,线段OE 有最大值.最大值是916. (3)存在.如图,过点M 作//MH y 轴交BN 于点H , Q 抛物线的解析式为223y x x =--,0x ∴=,3y =-, N ∴点坐标为(0,3)-,设直线BN 的解析式为y kx b =+,∴303k b b +=⎧⎨=-⎩,∴13k b =⎧⎨=-⎩,∴直线BN 的解析式为3y x =-,设2(,23)M a a a --,则(,3)H a a -,223(23)3MH a a a a a ∴=----=-+,22113327(3)3()22228MNB BMH MNH S S S MH OB a a a ∆∆∆∴=+==⨯-+⨯=--+g , Q 302-<,32a ∴=时,MBN ∆的面积有最大值,最大值是278,此时M 点的坐标为315(,)24-. 4.定义:在平面直角坐标系中,图形G 上点(,)P x y 的纵坐标y 与其横坐标x 的差y x -称为点P 的“坐标差”,而图形G 上所有点的“坐标差”中的最大值称为图形G 的“特征值”(1)点(2,6)A 的“坐标差”为 4 ; (2)求抛物线254y x x =-++的“特征值”;(3)某二次函数2(0)y x bx c c =-++≠的“特征值”为1-,点B 与点C 分别是此二次函数的图象与x 轴和y 轴的交点,且点B 与点C 的“坐标差”相等,求此二次函数的解析式;(4)二次函数2y x px q =-++的图象的顶点在“坐标差”为2的一次函数的图象上,四边形DEFO 是矩形,点E 的坐标为(7,3),点O 为坐标原点,点D 在x 轴上,点F 在y 轴上,当二次函数2y x px q =-++的图象与矩形的边只有三个交点时,求此二次函数的解析式及特征值. 【解答】解:(1)624-=, (2,6)A Q ,∴ “坐标差”为4,故答案为:4;(2)解:2225444(2)8y x x x x x x x -=-++-=-++=--+,特征值是8; (3)解:由题意,得点C 的为(0,)c , Q 点B 与点C 的“坐标差”相等,(.0)B c ∴-,把(,0)B c -代入2y x bx c =-++,得:20()()c b c c =--+⨯-+, 1b c ∴=-,2(1)y x c x c ∴=-+-+,Q 二次函数2(1)y x c x c =-+-+的“特征值”为1-.22(1)y x x c x c x x cx c ∴-=-+-+-=--+, ∴24(1)14(1)c c ⨯--=-⨯-,2c ∴=-,3b ∴=,∴二次函数的解析式为232y x x =-+-;(4)解:“坐标差”为2的一次函数为2y x =+,Q 二次函数2y x px q =-++的图象的顶点在直线2y x =+上,∴设二次函数为2()2y x m m =--++,二次函数的图象与矩形有三个交点,如图①、②,把(1,3)代入2()2y x m m =--++,得23(1)2x m =--++,解得11m =,22m =(合去),∴二次函数的表达式为2(1)3y x =--+,22219(1)32()24y x x x x x x ∴-=--+-=-++=--+,特征值是94;把(7,3)代入2()2y x m m =--++,得23(7)2m m =--++, 解得15m =,210m =(舍去),二次函数的表达式为:2(5)7y x =--+,22299(5)7918()24y x x x x x x ∴-=--+-=-+-=--+,特征值是945.如图,在矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线249y x bx c =-++经过点A 、C ,与AB 交于点D .(1)求抛物线的函数解析式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ CP =,连接PQ ,设CP m =,CPQ ∆的面积为S .①求S 关于m 的函数表达式;②当S 最大时,在抛物线249y x bx c =-++的对称轴l 上,若存在点F ,使DFQ ∆为直角三角形,请直接写出所有符合条件的点F 的坐标;若不存在,请说明理由.【解答】解:(1)将A 、C 两点坐标代入抛物线,得 8436609c b c =⎧⎪⎨-⨯++=⎪⎩,解得:438b c ⎧=⎪⎨⎪=⎩, ∴抛物线的解析式为244893y x x =-++; (2)①8OA =Q ,6OC =,2210AC OA OC ∴=+=,过点Q 作QE BC ⊥与E 点,则3sin 5QE AB ACB QC AC ∠===, ∴3105QE m =-, 3(10)5QE m ∴=-,21133(10)322510S CP QE m m m m ∴==⨯-=-+g g ;②221133315(10)3(5)22510102S CP QE m m m m m ==⨯-=-+=--+Q g g ,∴当5m =时,S 取最大值;在抛物线对称轴l 上存在点F ,使FDQ ∆为直角三角形, Q 抛物线的解析式为244893y x x =-++的对称轴为32x =,D 的坐标为(3,8),(3,4)Q ,当90FDQ ∠=︒时,13(2F ,8),当90FQD ∠=︒时,则23(2F ,4),当90DFQ ∠=︒时,设3(2F ,)n ,则222FD FQ DQ +=,即2299(8)(4)1644n n +-++-=,解得:76n =±,33(2F ∴,76)+,43(2F ,76)-,满足条件的点F 共有四个,坐标分别为13(2F ,8),23(2F ,4),33(2F ,76)+,43(2F ,76)-.6.如图,已知正比例函数和反比例函数的图象都经过点(3,3)A . (1)求正比例函数和反比例函数的解析式;(2)把直线OA 向下平移后与反比例函数的图象交于点(6,)B m ,求m 的值和这个一次函数的解析式; (3)第(2)问中的一次函数的图象与x 轴、y 轴分别交于C 、D ,求过A 、B 、D 三点的三角形的面积. (4)在第(3)问的条件下,二次函数的图象上是否存在点E ,使四边形OECD 的面积1S 与四边形OABD 的面积S 满足:123S S =?若存在,求点E 的坐标;若不存在,请说明理由.【解答】解:(1)设正比例函数的解析式是y kx =,代入(3,3),得:33k =,解得:1k =, 则正比例函数的解析式是:y x =; 设反比例函数的解析式是1k y x =,把(3,3)代入解析式得:19k =, 则反比例函数的解析式是:9y x=; (2)9362m ==,则点B 的坐标是3(6,)2,3y k x b =+Q 的图象是由y x =平移得到,31k ∴=,即y x b =+,一次函数的解析式是:92y x =-; (3)92y x =-Q 的图象交y 轴于点D ,D ∴的坐标是9(0,)2-,作AM y ⊥轴于点M ,作BN y ⊥轴于点N . A Q 的坐标是(3,3),B 的坐标是3(6,)2,M ∴的坐标是(0,3),N 的坐标是3(0,)2.3OM ∴=,32ON =. 则915322MD =+=,39622DN =+=,33322MN =-=. 则115453224ADM S ∆=⨯⨯=,166182BDN S ∆=⨯⨯=,()132736224ABNM S =+⨯=梯形.则27991844BDN ABDM ABNM S S S ∆=+=+=四边形梯形, 994554274442ABD ADM ABDM S S S ∆∆=-=-==四边形; (4)设二次函数的解析式是292y ax bx =+-,则993329336622a b a b ⎧+-=⎪⎪⎨⎪+-=⎪⎩,解得:124a b ⎧=-⎪⎨⎪=⎩,则这个二次函数的解析式是:219422y x x =-+-;点C 的坐标是9(2,0).则15119981666334518222424S =⨯-⨯⨯-⨯⨯=---=. 假设存在点0(E x ,0)y ,使12812273432S S ==⨯=. Q 四边形CDOE 的顶点E 只能在x 轴的上方, 00y ∴>,1019992222OCD OCE S S S y ∆∆∴=+=⨯⨯+081984y =+,∴081927842y +=, 032y ∴=, 0(E x Q ,0)y 在二次函数的图象上,2001934222x x ∴-+-=,解得:02x =或6.当06x =时,点3(6,)2E 与点B 重合,这时CDOE 不是四边形,故06x =,(舍去).E ∴的坐标是3(2,)2.7.如图,在平面直角坐标系中,点(2,3)A 为二次函数22(0)y ax bx a =+-≠与反比例函数(0)ky k x=≠在第一象限的交点,已知该抛物线22(0)y ax bx a =+-≠交x 轴正负半轴分别于E 点、D 点,交y 轴负半轴于B 点,且1tan 2ADE ∠=.(1)求二次函数和反比例函数的解析式; (2)已知点M 为抛物线上一点,且在第三象限,顺次连接点D 、M 、B 、E ,求四边形DMBE 面积的最大值;(3)在(2)中四边形DMBE 面积最大的条件下,过点M 作MH x ⊥轴于点H ,交EB 的延长线于点F ,Q 为线段HF 上一点,且点Q 到直线BE 的距离等于线段OQ 的长,求Q 点的坐标.【解答】解:(1)将(2,3)A 代入k y x =中,解得:6k =, ∴6y x=, 又Q 且1tan 2ADE ∠=, (4,0)D ∴-,将A ,D 代入22(0)y ax bx a =+-≠中得:422316420a b a b +-=⎧⎨--=⎩,解得:1232a b ⎧=⎪⎪⎨⎪=⎪⎩, 213222y x x ∴=+-; (2)过M 作MH DE ⊥于H ,设M 的坐标为213(,2)22a a a +-, 则DHM OEB DMBE HOBM S S S S ∆∆=++四边形四边形,(4)(2)()12222a MH MH a ++-⨯=++g g , 421212aMH MH a aMH MH a +--=+=-+,2132(2)122a a a =--+-+, 245a a =--+,2(2)9a =-++,∴当2a =-时,四边形DMBE 的面积最大为9;(3)213222y x x =+-Q , ∴抛物线的对称轴为322b x a =-=-, ∴点E 的坐标为(1,0),又(0,2)B -Q ,EB ∴的解析式为22y x =-,F ∴的坐标为(2,6)--,223635EF ∴=+=,设(2,)Q b -,6FQ b ∴=+,24QP OQ b ==+,QPF EHF ∆∆Q ∽,∴QP QF EH EF=,∴=,22205(6)b b ∴+=+, 2340b b ∴--=,14b ∴=(舍),21b =-,又Q Q 在线段HF 上,(2,1)Q ∴--.8.如图,已知正比例函数和反比例函数的图象都经过点(3,3)A --.(1)求正比例函数和反比例函数的表达式;(2)把直线OA 向上平移后与反比例函数的图象交于点(6,)B m -,与x 轴交于点C ,求m 的值和直线BC 的表达式;(3)在(2)的条件下,直线BC 与y 轴交于点D ,求以点A ,B ,D 为顶点的三角形的面积;(4)在(3)的条件下,点A ,B ,D 在二次函数的图象上,试判断该二次函数在第三象限内的图象上是否存在一点E ,使四边形OECD 的面积1S 与四边形OABD 的面积S 满足:11718S S =?若存在,求点E 的坐标;若不存在,请说明理由.【解答】解:(1)设正比例函数的解析式是y kx =,代入(3,3)--,得:33k -=-,解得:1k =, 则正比例函数的解析式是:y x =; 设反比例函数的解析式是1k y x=,把(3,3)--代入解析式得:19k =, 则反比例函数的解析式是:9y x =; (2)9362m ==--,则点B 的坐标是3(6,)2--, 3y k x b =+Q 的图象是由y x =平移得到,31k ∴=,即y x b =+, 故一次函数的解析式是:92y x =+;(3)92y x =+Q 的图象交y 轴于点D , D ∴的坐标是9(0,)2, 作AM y ⊥轴于点M ,作BN y ⊥轴于点N . A Q 的坐标是(3,3)--,B 的坐标是3(6,)2--, M ∴的坐标是(0,3)-,N 的坐标是3(0,)2-. 3OM ∴=,32ON =. 则915322MD =+=,39622DN =+=,33322MN =-=. 则115453224ADM S ∆=⨯⨯=,166182BDN S ∆=⨯⨯=,()132736224ABNM S =⨯+⨯=梯形. 则27991844BDN ABDM ABNM S S S ∆=+=+=四边形梯形, 994527442ABD ADM ABDM S S S ∆∆=-=-=四边形; (4)设二次函数的解析式是292y ax bx =++, 则993329336622a b a b ⎧-+=-⎪⎪⎨⎪-+=-⎪⎩,解得:124a b ⎧=⎪⎨⎪=⎩, 则这个二次函数的解析式是:219422y x x =++; 点C 的坐标是9(2-,0). 则四边形OABD 的面积27198132224ABD AOD S S S ∆∆=+=+⨯⨯=. 假设存在点0(E x ,0)y ,使1171781153181848S S ==⨯=. Q 四边形CDOE 的顶点E 只能在x 轴的下方,00y ∴<,100199198192222284OCD OCE S S S y y ∆∆∴=+=⨯⨯-⨯=-, ∴081981844y -=, 092y ∴=-, 0(E x Q ,0)y 在二次函数的图象上,∴2001994222x x ++=-,解得:04x =-. E ∴的坐标是9(4,)2--.9.如图,二次函数223y x x =-++与x 轴交于A ,B 两点,与y 轴交于点C ,顶点D .点E 在x 轴上方且在对称轴左侧的抛物线上运动:点F 在抛物线上并且和点E 关物线的对称轴对称,作矩形EFGH ,其中点G ,H 都在x 轴上.(1)用配方法求顶点D 的坐标;(2)设点F 横坐标为m ,①用含有m 的代数式表示点E 的横坐标为 2m - (直接填空);②当矩形EFGH 为正方形时,求点G 的坐标;③连接AD ,当EG 与AD 垂直时,直接写出点G 的坐标;(3)过顶点D 作DM x ⊥轴于点M ,过点F 作FP AD ⊥于点P ,直接写出DFP ∆与DAM ∆相似时点F 的坐标.【解答】解:(1)2(1)4y x =--+Q ,∴顶点D 的坐标为(1,4);(2)①当0y =时,2230x x -++=,解得11x =-,23x =,则(1,0)A -,(3,0)B ,13m ∴<<,设E 点的横坐标为t ,11m t -=-Q ,2t m ∴=-,∴点E 的横坐标为2m -;故答案为2m -;②设(F m ,223)(13)m m m -++<<,则2(2,23)E m m m --++,Q 矩形EFGH 为正方形,FG FE ∴=,即223(2)m m m m -++=--,整理得25m =,解得15m =-(舍去),25m =,G ∴点坐标为(5,0);③EG AD ⊥Q ,而DM x ⊥轴,14∴∠=∠,Rt GEH Rt DAM ∴∆∆∽,EH GH AM DM =,即24EH GH =,2GH EH ∴=, 即2222(23)m m m -=-++,整理得240m m --=,解得:117m ±=(舍去负值), G ∴点坐标为117(+,0); (3)AD 交EF 于Q ,如图,FP AD ⊥Q ,90DPF ∴∠=︒,DFP ∆Q 与DAM ∆相似13∴∠=∠,12∠=∠Q ,23∴∠=∠,而FP DQ ⊥,FDQ ∴∆为等腰三角形,FD FQ ∴=,设直线AD 的解析式为y px q =+,把(1,0)A -,(1,4)D 代入并解得:直线AD 的解析式为22y x =+,当223y m m =-++时,22223x m m +=-++,解得21122x m m =-++,则211(22Q m m -++,223)m m -++, 2211111()(1)(1)22222FQ m m m m m m ∴=--++=-=+-, 而222224(1)(234)(1)(1)DF m m m m m =-+-++-=-+-,2421(1)(1)[(1)(1)]2m m m m ∴-+-=+-, 而1m ≠,2211(1)(1)4m m ∴+-=+,整理得231070m m -+=,解得11m =(舍去),273m =, F ∴点坐标为7(3,20)9. 10.如图, 二次函数212y x bx c =-++的图象经过点A ,(2,0)B -,(0,4)C ,作直线AC ,点M 是二次函数图象上的一动点, 过点作MD x ⊥轴, 垂足为点D ,交直线AC 于点N ,连结CM .(1) 求二次函数的表达式;(2) 当四边形OCMD 为矩形时, 求点M 的坐标;(3) 设点M 的横坐标为m ,MN 的长度为d ,求d 关于m 的函数关系式;(4) 若E 是OC 的中点, 以点M 、N 、E 、C 为顶点的四边形为平行四边形, 求m 的值 .【解答】解: (1) 将点(2,0)B -、(0,4)C 分别代入212y x bx c =-++中, 得142024b c c ⎧-⨯-+=⎪⎨⎪=⎩解得14b c =⎧⎨=⎩,∴所求二次函数表达式为2142y x x =-++; (2) 若四边形OCMD 为矩形, 则90MCO CMD ∠=∠=︒,OC MD =.21442x x ∴-++=,解得10x =,22x =. 则点M 坐标为(2,4);(3) 令0y =,即21402x x -++=,解得12x =-,24x =. 则点A 坐标为(4,0). 设直线AC 的函数表达式为y kx b =+.由题意, 得404k b b +=⎧⎨=⎩解得14k b =-⎧⎨=⎩, 直线AC 的函数表达式为4y x =-+.Q 点M 的横坐标为m ,∴点M 的坐标为21(,4)2m x x -++, 点N 的坐标为(,4)m m -+,当M 在N 的上方, 即04m 剟时,22114(4)222d m m m m m =-++--+=-+, 当M 在N 的下方, 即0m <或4m >时2211(4)(4)222d m m m m m =-+--++=-, 综上()()221204212042m m m d m m m m ⎧-+⎪⎪=⎨⎪-⎪⎩或剟.(4)Q 点E 是OC 的中点, 点C 的坐标为(0,4), 2OE ∴=,①当点M 在点N 的上方时,21222MN m m =-+=, 解得122m m ==, 2m ∴=,②当点M 在点N 的下方时,21222MN m m =-=,解得12m =-22m =+2m ∴=-,2m =+ 综合所述, 当以点M 、N 、E 、C 为顶点的四边形是平行四边形时,m 的值为12m =,22m =-32m =+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年宜昌市近五届中考数学抛物线压轴题(24题)汇编及答案(本大题一般3-4小问,共12分)上传校勘:柯老师【2015/24】如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC 绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线y=ax2+bx+n(a≠0)过E,A′两点.(1)填空:∠AOB=°,用m表示点A′的坐标:A′(,);(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且=时,△D′OE与△ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:①求a,b,m满足的关系式;②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.【2016/24】已知抛物线y=x2+(2m+1)x+m(m﹣3)(m为常数,﹣1≤m≤4).A(﹣m﹣1,y1),B(,y2),C(﹣m,y3)是该抛物线上不同的三点,现将抛物线的对称轴绕坐标原点O逆时针旋转90°得到直线a,过抛物线顶点P作PH⊥a于H.(1)用含m的代数式表示抛物线的顶点坐标;(2)若无论m取何值,抛物线与直线y=x﹣km(k为常数)有且仅有一个公共点,求k的值;(3)当1<PH≤6时,试比较y1,y2,y3之间的大小.24.已知抛物线y=ax 2+bx+c ,其中20a b c =>>,且0a b c ++=.(1) 直接写出关于x 的一元二次方程ax 2+bx+c=0的一个根;(2) 证明:抛物线y=ax 2+bx+c 的顶点A 在第三象限;(3) 直线 y=x+m 与x ,y 轴分别相交于,B C 两点,与抛物线y=ax 2+bx+c 相交于A ,D 两点.设抛物线y=ax 2+bx+c 的对称轴与x 轴相交于E ,如果在对称轴左侧的抛物线上存在点F ,使得ADF ∆与BOC ∆相似.并且12ADF ADE S S ∆∆=,求此时抛物线的表达式.24.如图,在平面直角坐标系中,矩形OAOB 的顶点,A B 的坐标分别为(6,0)A -,(0,4)B .过点(6,1)C -的双曲线(0)k y k x=≠与矩形OAOB 的边BD 交于点E . (1)填空:OA =_____,k =_____,点E 的坐标为__________; (2)当16t ≤≤时,经过点213(1,5)22M t t t --+-与点217(3,3)22N t t t ---+-的直线交y 轴于点F ,点P 是过,M N 两点的抛物线212y x bx c =-++的顶点. ①当点P 在双曲线k y x =上时,求证:直线MN 与双曲线k y x=没有公共点; ②当抛物线212y x bx c =-++与矩形OAOB 有且只有三个公共点,求t 的值; ③当点F 和点P 随着t 的变化同时向上运动时,求t 的取值范围,并求在运动过程中直线MN 在四边形...OAEB 中扫过的面积.【2019/24】在平面直角坐标系中,正方形ABCD 的四个顶点坐标分别为A (-2,4),B (-2,-2),C (4,-2),D (4,4).(1)填空:正方形的面积为 ;当双曲线)0(≠=k xk y 与正方形ABCD 有四个交点时,k 的取值范围是: ;(2)已知抛物线L :)0()(2>+-=a n m x a y 顶点P 在边BC 上,与边AB ,DC 分别相交于点E ,F ,过点B 的双曲线)0(≠=k x k y 与边DC 交于点N ; ①点)32,(2+--m m m Q 是平面内一动点,在抛物线L 的运动过程中,点Q 随m 运动,分别求运动过程中点Q 在最高位置和最低位置时的坐标;②当点F 在点N 下方,AE=NF ,点P 不与B ,C 两点重合时,求CPCF BP BE -的值; ③求证:抛物线L 与直线1=x 的交点M 始终位于x 轴下方。
参考答案:【2015/24】解:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO为等腰直角三角形,∴∠AOB=45°,由旋转的性质得:OD′=D′A′=m,即A′(m,﹣m);故答案为:45;m,﹣m;(2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵=,∴P(2m,m),∵A′为抛物线的顶点,∴设抛物线解析式为y=a(x﹣m)2﹣m,∵抛物线过点E(0,n),∴n=a(0﹣m)2﹣m,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;(3)①当点E与点O重合时,E(0,0),∵抛物线y=ax2+bx+c过点E,A,∴,整理得:am+b=﹣1,即b=﹣1﹣am;②∵抛物线与四边形ABCD有公共点,∴抛物线过点C时的开口最大,过点A时的开口最小,若抛物线过点C(3m,0),此时MN的最大值为10,∴a(3m)2﹣(1+am)•3m=0,整理得:am=,即抛物线解析式为y=x2﹣x,由A(2m,2m),可得直线OA解析式为y=x,联立抛物线与直线OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,当m=2时,a=;若抛物线过点A(2m,2m),则a(2m)2﹣(1+am)•2m=2m,解得:am=2,∵m=2,∴a=1,则抛物线与四边形ABCD有公共点时a的范围为≤a≤1.【2016/24】解:(1)∵﹣=﹣,==﹣,∴顶点坐标(﹣,﹣).(2)由消去y得x2+2mx+(m2+km﹣3m)=0,∵抛物线与x轴有且仅有一个公共点,∴△=0,即(k﹣3)m=0,∵无论m取何值,方程总是成立,∴k﹣3=0,∴k=3,(3)PH=|﹣﹣(﹣)|=||,∵1<PH≤6,∴当>0时,有1<≤6,又﹣1≤m≤4,∴<m,当<0时,1<﹣≤6,又∵﹣1≤m≤4,∴﹣1,∴﹣1≤m<﹣或<m≤,∵A(﹣m﹣1,y1)在抛物线上,∴y1=(﹣m﹣1)2+(2m+1)(﹣m﹣1)+m(m+3)=﹣4m,∵C(﹣m,y3)在抛物线上,∴y3=(﹣m)2+(2m+1)(﹣m)+m(m﹣3)=﹣4m,∴y1=y3,①令<﹣m﹣1,则有m<﹣,结合﹣1≤m≤﹣,∴﹣1≤m<﹣,此时,在对称轴的左侧y随x的增大而减小,如图1,∴y2>y1=y3,即当﹣1≤m<﹣时,有y2>y1=y3.②令=﹣m﹣1,则A与B重合,此情形不合题意,舍弃.③令>﹣m﹣1,且≤﹣时,有﹣<m≤﹣,结合﹣1≤m<﹣,∴﹣<m≤﹣,此时,在对称轴的左侧,y随x的增大而减小,如图2,∴y1=y3>y2,即当﹣<m≤﹣时,有y1=y3>y2,④令﹣≤<﹣m,有﹣≤m<0,结合﹣1≤m<﹣,∴﹣≤m<﹣,此时,在对称轴的右侧y随x的增大而增大,如图3,∴y2<y3=y1.⑤令=﹣m,B,C重合,不合题意舍弃.⑥令>﹣m,有m>0,结合<m≤,∴<m≤,此时,在对称轴的右侧,y随x的增大而增大,如图4,∴y2>y3=y1,即当<m≤时,有y2>y3=y1,综上所述,﹣1≤m<﹣或<m≤时,有y2>y1=y3,﹣<m<﹣时,有y2<y1=y3.【2017/24】解:(1)∵抛物线y=ax2+bx+c,a+b+c=0,∴关于x的一元二次方程ax2+bx+c=0的一个根为x=1;(2)证明:∵2a=b,∴对称轴x=﹣=﹣1,把b=2a代入a+b+c=0中得:c=﹣3a,∵a>0,c<0,∴△=b2﹣4ac>0,∴<0,则顶点A (﹣1,)在第三象限;(3)由b=2a ,c=﹣3a ,得到x==,解得:x 1=﹣3,x 2=1, 二次函数解析式为y=ax 2+2ax ﹣3a ,∵直线y=x +m 与x ,y 轴分别相交于点B ,C 两点,则OB=OC=|m |,∴△BOC 是以∠BOC 为直角的等腰直角三角形,即此时直线y=x +m 与对称轴x=﹣1的夹角∠BAE=45°,∵点F 在对称轴左侧的抛物线上,则∠DAF >45°,此时△ADF 与△BOC 相似,顶点A 只可能对应△BOC 的直角顶点O ,即△ADF 是以A 为直角顶点的等腰直角三角形,且对称轴为x=﹣1,设对称轴x=﹣1与OF 交于点G ,∵直线y=x +m 过顶点A (﹣1,﹣4a ),∴m=1﹣4a ,∴直线解析式为y=x +1﹣4a ,联立得:,解得:或,这里(﹣1,﹣4a )为顶点A ,(﹣1,﹣4a )为点D 坐标,点D 到对称轴x=﹣1的距离为﹣1﹣(﹣1)=,AE=|﹣4a |=4a ,∴S △ADE =××4a=2,即它的面积为定值,这时等腰直角△ADF 的面积为1,∴底边DF=2,而x=﹣1是它的对称轴,此时D 、C 重合且在y 轴上,由﹣1=0,解得:a=1,此时抛物线解析式为y=x 2+2x ﹣3.【2018/24】24.解:(1)填空:6,6OA k ==-,点E 的坐标为3,42⎛⎫-⎪⎝⎭; (2)①设直线11,MN y k x b =+由题意得211211135(1)22173(3)22t t k t b t t k t b ⎧-+-=-+⎪⎪⎨⎪-+-=--+⎪⎩ 解得211111,422k b t t ==-+- ∴直线211:422MN y x t t =-+- ∵抛物线212y x bx c =-++过点,M N 22221315(1)(1)2221713(3)(3)222t t t b t c t t t b t c ⎧-+-=--+-+⎪⎪∴⎨⎪-+-=---+--+⎪⎩ 解得1,52b c t =-=- ∴抛物线21522y x x t =--+- ∴顶点3(1,5)2P t -- ∵顶点3(1,5)2P t --在双曲线6y x-=上 3(5)(1)62t ∴-⨯-=- 32t ∴= 此时直线35:8MN y x =+ 联立3586y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩,得3568x x -+= 2835480x x ∴++= 2354848122515360∴∆=-⨯⨯=-<∴直线MN 与双曲线6y x=-没有公共点 ②当抛物线过B 点,此时抛物线与矩形OADB 有且只有三个公共点,则6452,5t t =-=当顶点P 在线段DB 上,此时抛物线与矩形OADB 有且只有三个公共点,则10342t -=,1110t = 65t ∴=或1110t = ③点P 的坐标为3(1,5)2t --,352r y t ∴=- 当16t ≤≤时,p y 随着t 的增大而增大,此时,当16t ≤≤时,随着t 的增大,点P 在直线1x =-上向上运动. 又点F 的坐标为211(0,4)22t t -+- 2115(4)22F y t ∴=--+ ∴当14t ≤≤时,F y 随着t 的增大而增大,此时当14t ≤≤时,随着t 的增大而增大,点F 在y 轴上向上运动. 14t ∴≤≤当1t =时,直线:3MN y x =+与x 轴交于(3,0)G -,与y 轴交于()0,3H当4t =MN 过点A ,当14t ≤≤时,直线MN 在四边形AEBO 中扫过的面积为1312164332222GHO AEBO S S S ∆⎛⎫=-=⨯+⨯-⨯⨯= ⎪⎝⎭四边形【2019/24】。