中考数学第一轮复习学案(第35-36课时)三角形基础知识

合集下载

2012年中考数学一轮精品复习教案:三角形

2012年中考数学一轮精品复习教案:三角形
(2)选择情形一,即条件①③ 在⊿BOE 和⊿COD 中 ∠BOE=∠COD,∠EBO=∠DCO,BE=CD, ∴⊿BOE≌⊿COD(AAS). ∵∠EBO=∠DCO, ∴AB=AC. 即⊿ABC 是等腰三角形. 【说明】本题第(1)小题是开放性问题, 属于条件开放型,需解题者经过探索补 ∴OB=OC. ∴∠OBC=∠OCB. ∴∠ABC=∠ACB.
七 、 三


(4 课时)
教学目标: 1.立足教材,打好基础,查漏补缺,系统复习,熟练掌握本部分的基本知识、 基本方法和基本技能. 2.让学生自己总结交流所学内容,发展学生的语言表达能力和合作交流能力. 3.通过学生自己归纳总结本部分内容,使他们在动手操作方面,探索研究方面, 语言表达方面,分类讨论、归纳等方面都有所发展. 教学重点与难点 重点:将本部分的知识有机结合,强化训练学生综合运用数学知识的能力, . 难点:把数学知识转化为自身素质. 增强用数学的意识. 教学时间:4 课时 【课时分布】 三角形部分在第一轮复习时大约需要 4 时,其中包括单元测试. 课 时 数 1 1 2 三角形的有关概念、等腰三角形 直角三角形、勾股定理 单元测试与评析 内 容
【解】(1)分两种情况: ①若腰长为 12,底边长为 5,则第三边长为 12. ②若腰长为 5,底边长为 12,则第三边长为 5.但此时两边之和小于第三边,故不 合题意. 因此第三边长为 12. (2)分两种情况: ①若顶角为 80°,则另两个内角均为底角分别是 50°、50°. ②若底角 为 80°,则另两个内角分别是 80°、20°. 因此这个三角形的另两个内角分别是 50°、50°或 80°、2 0°. 【说明】此题运用“分类讨论”的数学思想,本题着重考查等腰三角形的性质、 三角形的三边关系. 例 2 如图,⊿ABC 中,D、E 分别是 AC、AB 上的点,BD 与 CE 交于 O,给出下列三个 条件: ①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC. (1)上述三个条件中,哪两个条件可判定⊿ABC 是等腰三角形(用序号写出所有 情形);[来源:学.科.网] (2)选择第(1)小题中一种情形,证明⊿ABC 是等腰三角形.

《三角形》全章复习与巩固(基础)知识讲解教案

《三角形》全章复习与巩固(基础)知识讲解教案

《三角形》全章复习与巩固(基础)【学习目标】1. 理解三角形有关的概念,掌握三角形内角和定理的证明,能应用内角和定理进行相关的计算及证明问题.2. 理解并会应用三角形三边关系定理;3.了解三角形中三条重要的线段并能正确的作图.4.了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式,而且要用利用图形全等的解决实际生活中存在的问题.5. 掌握常见的尺规作图方法,并根据三角形全等判定定理利用尺规作一个三角形与已知三角形全等.【知识网络】【要点梳理】要点一、三角形的内角和三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.要点二、三角形的分类【高清课堂:与三角形有关的线段三角形的分类】1.按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形 要点诠释:①锐角三角形:三个内角都是锐角的三角形;②钝角三角形:有一个内角为钝角的三角形.2.按边分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 要点诠释:①不等边三角形:三边都不相等的三角形;②等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;③等边三角形:三边都相等的三角形.要点三、三角形的三边关系1.定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系.2.三角形的重要线段:一个三角形有三条中线,它们交于三角形内一点,这点称为三角形的重心.一个三角形有三条角平分线,它们交于三角形内一点.三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.要点四、全等三角形的性质与判定1.全等三角形的性质全等三角形对应边相等,对应角相等.2.全等三角形的判定定理全等三角形判定1——“边边边”:三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”). “全等三角形判定2——“角边角”:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).全等三角形判定3——“角角边”:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)全等三角形判定4—— “边角边”:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:(1)如何选择三角形证全等,可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.要点五、用尺规作三角形1.基本作图利用尺规作图作一条线段等于已知线段、作一个角等于已知角,并利用全等三角形的知识作一个三角形与已知三角形全等;要点诠释:要熟练掌握直尺和圆规在作图中的正确应用,对于作图要用正确语言来进行表达.【典型例题】类型一、三角形的内角和1.在△ABC中,∠B=20°+∠A,∠C=∠B-10°,求∠A的度数.【思路点拨】由三角形的内角和,建立方程解决.【答案与解析】∵∠C=∠B-10°=∠A+10°,由三角形的内角和定理,得∠A+∠B+∠C=∠A+∠A+20°+∠A+10°=180°,∴∠A=50°.【总结升华】本题根据三角形的内角和定理列出以∠A为未知数的方程,解方程即可求得∠A.建立方程求解,是本章求解角度数的常用方法.举一反三【变式】若∠C=50°,∠B-∠A=10°,那么∠A=________,∠B=_______【答案】60°,70°.类型二、三角形的三边关系及分类2.一个若三角形的两边长分别是2和7,则第三边长c的取值范围是_______.【思路点拨】三角形的两边a、b,那么第三边c的取值范围是│a-b│<c<a+b.【答案与解析】三角形的两边长分别是2和7, 则第三边长c的取值范围是│2-7│<c<2+7,即5<c<9.【总结升华】三角形任意两边之差小于第三边,若这两边之差是负数时需加绝对值.举一反三(2015•泉州)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()【变式】A.11 B.5C.2D.1【答案】B.解:根据三角形的三边关系,6﹣4<AC<6+4,即2<AC<10,符合条件的只有5.3.一个三角形的三个内角分别是75°、30°、75°,这个三角形是()A 锐角三角形B 等腰三角形C 等腰锐角三角形【答案】C举一反三【变式】一个三角形中,一个内角的度数等于另外两个内角的和的2倍,这个三角形是()三角形A 锐角B 直角C 钝角 D无法判断【答案】C【解析】利用三角形内角和是180°以及已知条件,可以得到其中较大内角的度数为120°,所以三角形为钝角三角形.类型三、三角形的重要线段4.(2015•常德)如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=.【思路点拨】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得∠DAC+∠ACF=(∠B+∠B+∠1+∠2);最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.【答案】70°.【解析】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF;又∵∠B=40°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2)=110°(外角定理),∴∠AEC=180°﹣(∠DAC+∠ACF)=70°.故答案为:70°.【总结升华】此题主要考查了三角形内角和定理以及角平分线的性质,熟练应用角平分线的性质是解题关键.举一反三【变式】在△ABC中,∠B=60°,∠C=40°,AD、AE分别是△ABC的高线和角平分线, 则∠DAE 的度数为_________.【答案】10°.类型四、全等三角形的性质和判定5.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE .【思路点拨】△ABE与△ACD中,已经有两边,夹角可以通过等量代换找到,从而证明△ABE ≌△ACD;通过全等三角形的性质,通过倒角可证垂直.【答案与解析】解:(1)△ABE≌△ACD证明:∠BAC=∠EAD=90°∠BAC +∠CAE=∠EAD +∠CAE即∠BAE=∠CAD又AB=AC,AE=AD,△ABE≌△ACD(SAS)(2)由(1)得∠BEA=∠CDA,又∠COE=∠AOD∠BEA+∠COE =∠CDA+∠AOD=90°则有∠DCE=180°- 90°=90°,所以DC⊥BE.【总结升华】我们可以试着从变换的角度看待△ABE与△ACD,后一个三角形是前一个三角形绕着A点逆时针旋转90°得到的,对应边的夹角等于旋转的角度90°,即DC⊥BE.举一反三【变式】如图,已知:AE⊥AB,AD⊥AC,AB=AC,∠B=∠C,求证:BD=CE.【答案】证明:∵AE⊥AB,AD⊥AC,∴∠EAB=∠DAC=90°∴∠EAB+∠DAE=∠DAC+∠DAE ,即∠DAB=∠EAC.在△DAB与△EAC中,DAB EACAB ACB C∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DAB≌△EAC (ASA)∴BD=CE.6.己知:在ΔABC中,AD为中线.求证:AD<()12AB AC+【答案与解析】证明:延长AD至E,使DE=AD,∵AD为中线,∴BD=CD在△ADC与△EDB中DC DBADC BDEAD ED=⎧⎪∠=∠⎨⎪=⎩∴△ADC≌△EDB(SAS)∴AC=BE在△ABE中,AB+BE>AE,即AB+AC>2AD∴AD<()12AB AC+.【总结升华】用倍长中线法可将线段AC,2AD,AB转化到同一个三角形中,把分散的条件集中起来.倍长中线法实际上是绕着中点D旋转180°.举一反三【变式】若三角形的两边长分别为5和7, 则第三边的中线长x的取值范围是( )A.1 <x< 6B.5 <x< 7C.2 <x< 12D.无法确定【答案】A ;提示:倍长中线构造全等三角形,7-5<2x<7+5,所以选A选项.类型五、全等三角形判定的实际应用7.如图,小叶和小丽两家分别位于A、B两处隔河相望,要测得两家之间的距离,请你设计出测量方案.【答案与解析】本题的测量方案实际上是利用三角形全等的知识构造两个全等三角形,是一个三角形在河岸的同一边,通过测量这个三角形中与AB相等的线段的长,从而得知两家的距离.解:在点B所在的河岸上取点C,连结BC,使CD=CB,利用测角仪器使得∠B=∠D,且A、C、E三点在同一直线上,测量出DE的长,就是AB的长.在△ABC和△ECD中B DCD CBACB ECD∠=∠=∠=∠⎧⎪⎨⎪⎩∴△ABC≌△ECD(ASA)∴AB=DE.【总结升华】对于实际应用问题,首先要能将它化成数学模型,再根据数学知识去解决.由已知易证△ABC≌△ECD,可得AB=DE,所以测得DE的长也就知道两家的距离是多少.类型六、用尺规作三角形8.作图:请你作出一个以线段a为底边,以∠α为底角的等腰三角形(要求:用尺规作图,并写出已知,求作,保留作图痕迹,不写作法和结论)已知:求作:【思路点拨】可先画线段BC=a,进而在BC的同侧作∠MBC=∠α,∠NCB=∠α,MB,CN交于点A,△ABC就是所求的三角形.【答案与解析】解:已知:线段a,∠α.求作:△ABC,使BC=a,AB=AC,∠ABC=∠α.△ABC就是所求作的三角形.【总结升华】考查等腰三角形的画法;会作一个角等于已知角是解决本题的突破点;注意画图的顺序为边,角,角.举一反三【变式】作图题:(要求:用直尺、圆规作图,保留作图痕迹,不写作法.)已知:线段a与线段b.求作:线段AB,使AB=2a﹣b.【答案】解:如图所示:作线段AB即为所求.。

三角形的初步认识复习教案

三角形的初步认识复习教案

三角形的初步认识复习教案一、教学目标:1. 复习并巩固学生对三角形的基本概念、性质和分类的理解。

2. 提高学生运用三角形知识解决实际问题的能力。

3. 培养学生的逻辑思维能力和团队协作精神。

二、教学内容:1. 三角形的基本概念:三角形的定义、三角形的组成。

2. 三角形的性质:三角形的内角和、三角形的边长关系。

3. 三角形的分类:锐角三角形、直角三角形、钝角三角形。

4. 三角形的画法:如何准确地画出一个三角形。

5. 三角形在实际生活中的应用:举例说明三角形在现实生活中的应用。

三、教学重点与难点:1. 教学重点:三角形的基本概念、性质和分类,以及三角形在实际生活中的应用。

2. 教学难点:三角形内角和、边长关系的理解和运用。

四、教学方法:1. 采用问题驱动的教学方法,引导学生通过思考和讨论来复习三角形的相关知识。

2. 利用实物模型、图片等教学资源,帮助学生直观地理解三角形的性质和分类。

3. 设计具有挑战性的练习题,激发学生的学习兴趣,提高学生解决问题的能力。

五、教学过程:1. 导入:通过提问方式引导学生回顾三角形的基本概念,激发学生的学习兴趣。

2. 讲解:详细讲解三角形的基本概念、性质和分类,并通过实物模型、图片等进行展示。

3. 练习:设计一些具有针对性的练习题,让学生独立完成,巩固所学知识。

4. 讨论:组织学生进行小组讨论,分享彼此的学习心得和解决问题的方法。

5. 总结:对本节课的主要内容进行总结,强调三角形的内角和、边长关系等关键知识点。

6. 作业布置:布置一些有关三角形应用的问题,让学生在课后思考和解决。

六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况以及小组讨论表现,评估学生的学习积极性。

2. 练习题评价:对学生的练习题进行批改,评估学生对三角形基本概念、性质和分类的掌握程度。

3. 课后作业评价:对学生的课后作业进行批改,了解学生对三角形在实际生活中应用的理解和运用能力。

中考数学全景透视一轮复习学案三角形

中考数学全景透视一轮复习学案三角形
(3)三角形的高:从三角形的一个顶点向它的对边(或其延长线)引垂线,顶点和垂足间的线段叫做三角形的高.
(4)三角形的中位线:连接三角形两边的中点的线段。
2.三角形的边角关系
(1)三角形边与边的关系:三角形中两边之和大于第三边;三角形任意两边之差小于第三边;
(2)三角形中角与角的关系:三角形三个内角之和等于180o.
5.在ΔABC中,AC=5,中线AD=4,则AB边的取值范围是()
A.1<AB<9 B.3<AB<13
C.5<AB<13 DCD中,AB∥CD,CB⊥AB,△ABD是等边
三角形,若AB=2,则CD=_______,BC=_________.
7.如图所示,在△ABC中,∠A=50°,BO、CO分别平分
三:【课后训练】
1.下列每组数分别是三根小木棒、的长度,用它们能摆成三角形的一组是()
A.1cm,2cm,3cm B.3cm,4cm,5cm
C.5cm,7cm,13cm D.7cm,7cm,15cm
2.过△ABC的顶点C作边AB的垂线,如果这条垂线将∠ACB分为50°和20°的两个角,那么∠A、∠B中较大的角的度数是________.
(3)如图1-1-29,若P点是外角 CBF和 BCE的角平分线的交点,则 P= 。
10.已知:如图,正△ABC的边长为a,D为AC边上的一个动点,延长AB至E,使BE=CD,连结DE,交BC于点P.
(1)求证:PD=PE;
(2)若D为AC的中点,求BP的长.
四:【课后小结】
布置作业
地纲
教后记
3.如图,OE是∠AOB的平分线,CD∥OB交OA于C,交OE于D,
∠ACD=50o,则∠CDE的度数是()
A.175°B.130°C.140°D.155°

2018年初中数学中考一轮复习--三角形基础知识导学案

2018年初中数学中考一轮复习--三角形基础知识导学案

2018年初中数学中考一轮复习第15课 三角形基础知识 导学案【考点梳理】:一、三角形的种类(1)按边分⎪⎩⎪⎨⎧⎩⎨⎧等边三角形底和腰不等的三角形等腰三角形不等边三角形三角形 (2)按角分⎪⎩⎪⎨⎧⎩⎨⎧直角三角形钝角三角形锐角三角形斜三角形三角形二、三角形的一些重要性质(1)边与边的关系:任意两边之和(或差)大于(或小于)第三边。

(2)角与角的关系:三角形三内角之和等于180邻的内角且等于和它不相邻的两内角之和。

三、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。

四、全等三角形的判定(1)有两边和它们的夹角对应相等的两个三角形全等(简称:“SAS ”)。

(2)有两角和它们的夹边对应相等的两个三角形全等(简称:“ASA ”)。

(3)有两角和其中一角的对边对应相等的两个三角形全等(简称:“AAS ”)。

(4)有三边对应相等的两个三角形全等(简称:“SSS ”)。

(5)有斜边和一条直角边对应相等的两个直角三角形全等(简称:“HL ”)。

五、全等三角形的性质(1)全等三角形的对应角相等,对应线段(边、高、中线、角平分线)相等。

(2)全等三角形的周长相等、面积相等。

【思想方法】方程思想,分类讨论等【考点一】:三角形三边之间的关系【例题赏析】(2015•江苏南通,第5题3分)下列长度的三条线段能组成三角形的是(A.5,6,10B.5,6,11C.3,4,8D.4a,4a,8a(a>0)考点:三角形三边关系..分析:根据三角形的三边关系对各选项进行逐一分析即可.解答:解:A、∵10﹣5<6<10+5,∴三条线段能构成三角形,故本选项正确;B、∵11﹣5=6,∴三条线段不能构成三角形,故本选项错误;C、∵3+4=7<8,∴三条线段不能构成三角形,故本选项错误;D、∵4a+4a=8a,∴三条线段不能构成三角形,故本选项错误.故选A.点评:本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,小于第三边是解答此题的关键.【考点二】:三角形的内角和定理及其推论【例题赏析】(2015•滨州,第7题3分)在△ABC中,∠A:∠B:∠C=3:4:5,则∠C()A.45° B.60° C.75° D.90°考点:三角形内角和定理.分析:首先根据∠A:∠B:∠C=3:4:5,求出∠C然后根据分数乘法的意义,用180°乘以∠C的度数占三角形的内角和的分率,求出∠C于多少度即可.解答:解:180°×==75°即∠C等于75°.故选:C.点评:角形的内角和是180°.【考点三】:多边形的内角和与外角和【例题赏析】(2015•安徽, 第8题4分)在四边形ABCD中,∠A=∠B=∠C,点E在边AB∠AED=60°,则一定有()A.∠ADE=20°B.∠ADE=30°C.∠ADE=∠ADC D.∠ADE=∠ADC考点:多边形内角与外角;三角形内角和定理.分析:利用三角形的内角和为180°,四边形的内角和为360°,分别表示出∠A,∠B ∠C,根据∠A=∠B=∠C,得到∠ADE=∠EDC,因为∠ADC=∠ADE+∠EDC=∠EDC+∠EDC=∠EDC 所以∠ADC=∠ADC,即可解答.解答:解:如图,在△AED中,∠AED=60°,∴∠A=180°﹣∠AED﹣∠ADE=120°﹣∠ADE,在四边形DEBC中,∠DEB=180°﹣∠AED=180°﹣60°=120°,∴∠B=∠C=(360°﹣∠DEB﹣∠EDC)÷2=120°﹣∠EDC,∵∠A=∠B=∠C,∴120°﹣∠ADE=120°﹣∠EDC,∴∠ADE=∠EDC,∵∠ADC=∠ADE+∠EDC=∠EDC+∠EDC=∠EDC,∴∠ADE=∠ADC,故选:D.点评:本题考查了多边形的内角和,解决本题的关键是根据利用三角形的内角和为四边形的内角和为360°,分别表示出∠A,∠B,∠C.【考点四】:全等三角形的判定【例题赏析】(2015•贵州省贵阳,第8题3分)如图,点E,F在AC上,AD=BC,DF=BE使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE考点:全等三角形的判定与性质.分析:利用全等三角形的判定与性质进而得出当∠D=∠B时,△ADF≌△CBE.解答:解:当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS),故选:B.点评:此题主要考查了全等三角形的判定与性质,关键.【考点五】:全等三角形的性质【例题赏析】(2015,广西柳州,14,3分)如图,△ABC≌△DEF,则EF= 5 .考点:全等三角形的性质.分析:利用全等三角形的性质得出BC=EF,进而求出即可.解答:解:∵△ABC≌△DEF,∴BC=EF则EF=5.故答案为:5.点评:此题主要考查了全等三角形的性质,得出对应边是解题关键.【真题专练】1.(2015•江苏宿迁,第2题3分)若等腰三角形中有两边长分别为2和5的周长为()A.9 B.12 C.7或9 D.9或122.(2015•桂林)(第2题)如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD 是()A. 110°B. 120°C. 130°D. 140°3..(2015•长沙,第10题3分)如图,过△ABC的顶点A,作BC的是()A. B. C. D.4.(2015•山东德州,第8题3分)下列命题中,真命题的个数是()①若﹣1<x<﹣,则﹣2;②若﹣1≤x≤2,则1≤x2≤4③凸多边形的外角和为360°;④三角形中,若∠A+∠B=90°,则sinA=cosB.A.4 B.3 C.2 D.15.(2015•四川巴中,第13题3分)若a、b、c为三角形的三边,且a、b满足+(b﹣2)2=0,则第三边c 的取值范围是.6.(2015,广西玉林,21,6分)根据图中尺规作图的痕迹,先判断得出结论:,然后证明你的结论(不要求写已知、求证)7.(2015•贵州省黔东南州,第13题4分)如图,在四边形ABCD中,AB∥CD,连接BD添加一个适当的条件,使△ABD≌△CDB.(只需写一个)8.(2015•齐齐哈尔,第13题3分)如图,点B、A、D、E在同一直线上,BD=AE,BC∥EF要使△ABC≌△DEF,则只需添加一个适当的条件是.(只填一个即可)9.(2015•青海,第10题2分)如图,点B,F,C,E在同一直线上,BF=CE,AB∥DE添加一个条件,使△ABC≌△DEF,这个添加的条件可以是(只需写一个,不添加辅助线).10.(2015•甘南州第19题 7分)已知△ABC,AB=AC,将△ABC沿BC方向平移得到△DEF (1)如图1,连接BD,AF,则BD AF(填“>”、“<”或“=”);(2)如图2,M为AB边上一点,过M作BC的平行线MN分别交边AC,DE,DF于点G,H,N 连接BH,GF,求证:BH=GF.【真题演练参考答案】1.(2015•江苏宿迁,第2题3分)若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9 B.12 C.7或9 D.9或12考点:等腰三角形的性质;三角形三边关系..分析:题目给出等腰三角形有两条边长为5和2,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.[来&源:中国^%教@育出版~网] 解答:解:当腰为5时,根据三角形三边关系可知此情况成立,周长=5+5+2=12;当腰长为2时,根据三角形三边关系可知此情况不成立;所以这个三角形的周长是12.故选:B.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.2.(2015•桂林)(第2题)如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A. 110°B. 120°C. 130°D. 140°考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:由三角形的外角性质的,∠ABD=∠A+∠C=50°+70°=120°.故选B.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.3..(2015•长沙,第10题3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B. C. D.考点:三角形的角平分线、中线和高.分析:根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.解答:解:为△ABC中BC边上的高的是A选项.故选A.点评:本题考查了三角形的角平分线、中线、高线,熟记高线的定义是解题的关键.4.(2015•山东德州,第8题3分)下列命题中,真命题的个数是()①若﹣1<x<﹣,则﹣2;②若﹣1≤x≤2,则1≤x2≤4③凸多边形的外角和为360°;④三角形中,若∠A+∠B=90°,则sinA=cosB.A.4 B.3 C.2 D.1考点:命题与定理..分析:根据分式成立的条件对①进行判断;根据乘方的意义对②进行判断;根据多边形外角和定理对③进行判断;根据互余公式对④进行判断.解答:解:若﹣1<x<﹣,﹣2,所以①正确;若﹣1≤x≤2,则0≤x2≤4,所以②错误;凸多边形的外角和为360°,所以③正确;三角形中,若∠A+∠B=90°,则sinA=cosB,所以④正确.故选B.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.(2015•四川巴中,第13题3分)若a、b、c为三角形的三边,且a、b满足+(b﹣2)2=0,则第三边c的取值范围是1<c<5 .考点:三角形三边关系;非负数的性质:偶次方;非负数的性质:算术平方根.分析:根据非负数的性质列式求出a、b,再根据三角形的任意两边之和大于第三边,两边只差小于第三边求解即可.解答:由题意得,a2﹣9=0,b﹣2=0,解得a=3,b=2,∵3﹣2=1,3+2=5,∴1<c<5.故答案为:1<c<5.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0;三角形的三边关系.6.(2015,广西玉林,21,6分)根据图中尺规作图的痕迹,先判断得出结论:OM平分∠BOA ,然后证明你的结论(不要求写已知、求证)考点:作图—基本作图;全等三角形的判定与性质.分析:根据图中尺规作图的痕迹可知,OC=OD,CM=DM,根据全等三角形的判定和性质得到答案.解答:解:结论:OM平分∠BOA,证明:由作图的痕迹可知,OC=OD,CM=DM,在△COM和△DOM中,,∴△COM≌△DOM,∴∠COM=∠DOM,∴OM平分∠BOA.点评:本题考查的是角平分线的作法和全等三角形的判定和性质,掌握基本尺规作图的步骤和全等三角形的判定定理和性质定理是解题的关键.7.(2015•贵州省黔东南州,第13题4分)如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件AB=CD ,使△ABD≌△CDB.(只需写一个)考点:全等三角形的判定.专题:开放型.分析:先根据平行线的性质得∠ABD=∠CDB,加上公共边BD,所以根据“SAS”判断△ABD ≌△CDB时,可添加AB=CD.解答:解:∵AB∥CD,∴∠ABD=∠CDB,而BD=DB,∴当添加AB=CD时,可根据“SAS”判断△ABD≌△CDB.故答案为AB=CD.点评:本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.8.(2015•齐齐哈尔,第13题3分)如图,点B、A、D、E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是BC=EF或∠BAC=∠EDF .(只填一个即可)考点:全等三角形的判定.专题:开放型.分析: BC=EF或∠BAC=∠EDF,若BC=EF,根据条件利用SAS即可得证;若∠BAC=∠EDF,根据条件利用ASA即可得证.解答:解:若添加BC=EF,∵BC∥EF,∴∠B=∠E,∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);若添加∠BAC=∠EDF,∵BC∥EF,∴∠B=∠E,∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),故答案为:BC=EF或∠BAC=∠EDF点评:此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.9.(2015•青海,第10题2分)如图,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是AC=DF (只需写一个,不添加辅助线).考点:全等三角形的判定.专题:开放型.分析:求出BC=EF,∠ABC=∠DEF,根据SAS推出两三角形全等即可.解答:解:AC=DF,理由是:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,∵AB∥DE,∴∠ABC=∠DEF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故答案为:AC=DF.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,答案不唯一.10.(2015•甘南州第19题 7分)已知△ABC,AB=AC,将△ABC沿BC方向平移得到△DEF.(1)如图1,连接BD,AF,则BD = AF(填“>”、“<”或“=”);(2)如图2,M为AB边上一点,过M作BC的平行线MN分别交边AC,DE,DF于点G,H,N,连接BH,GF,求证:BH=GF.考点:全等三角形的判定与性质;等腰三角形的性质;平移的性质..分析:(1)根据等腰三角形的性质,可得∠ABC与∠ACB的关系,根据平移的性质,可得AC与DF 的关系,根据全等三角形的判定与性质,可得答案;(2)根据相似三角形的判定与性质,可得GM与HN的关系,BM与FN的关系,根据全等三角形的判定与性质,可得答案.解答:(1)解:由AB=AC,得∠ABC=ACB.由△ABC沿BC方向平移得到△DEF,得DF=AC,∠DFE=∠ACB.在△ABF和△DBF中,,△ABF≌△DBF(SAS),BD=AF,故答案为:BD=AF;(2)证明:如图:,MN∥BF,△AMG∽△ABC,△DHN∽△DEF,=,,∴MG=HN,MB=NF.在△BMH和△FNG中,,△BMH≌△FNG(SAS),∴BH=FG.点评:本题考查了全等三角形的判定与性质,利用了平移的性质,相似三角形的判定与性质,全等三角形的判定与性质.。

中考数学第一轮复习 三角形

中考数学第一轮复习 三角形
正整数,则这样的三角形个数为( B ) A.2 B.3 C.5 D.13
类型之二 三角形的重要线段的应用 命题角度: 1.三角形的中线、角平分线、高 2.三角形的中位线
[2011·成都] 如图 19-1,在△ABC 中,D、E 分别是边 AC、 BC 的中点,若 DE=4,则 AB=___8_____.
1.三条边对应相等的两个三角形全等(简记为________)S.SS 2.两个角和它们的夹边对应相等的两个三角形全等(简记为________). ASA3.两个角和其中一个角的对边对应相等的两个三角形全等(简记为
________).
4.两条边和它们的夹角对应相等的两个三角形全等(简记为________).
命题角度: 1.等腰三角形的性质 2.等腰三角形“三线合一”的性质 3.等腰三角形两腰上的高(中线)、两底角的平分线的性质
[2011·株洲] 如图 21-1,△ABC 中,AB=AC,∠A=36°, AC 的垂直平分线交 AB 于 E,D 为垂足,连接 EC.
__5_0_°____.
图 19-2
全等三角形
考点1 全等图形及全等三角形
1.能够完全_____重__合_的两个图形称为全等形,全等图形的形状和 ______大__小都相同.
2.能够完全______重_合_的两个三角形叫全等三角形. [注意] 完全重合有两层含义:(1)图形的形状相同;(2)图形的大小相等
大于
[总结] 任意三角形中,最多有三个锐角,最少有两个锐角,最多有一个钝
角,最多有一个直角.
互余
类型之一 三角形三边的关系
命题角度: 1.利用三角形三边的关系判断三条线段能否组成三角形 2.利用三角形三边的关系求字母的取值范围 3.三角形的稳定性

初三数学三角形中考复习教案

初三数学三角形中考复习教案

初三数学三角形中考复习教案课型复习课教法讲练结合教学目标(知识、能力、教育) 1.进一步认识三角形的有关概念,了解三边之间关系以及三角形的内角和.2.掌握勾股定理及逆定理,并能运用它解决一些实际问题.3.掌握等腰三角形有关性质,并能运用它解决一些实际问题.4.能够证明与三角形、线段垂直平分线、角平分线等有关的性质、定理及判定定理.教学重点三角形分类,特殊三角形有关性质及其应用教学难点三角形有关性质、判定的综合运用教学媒体学案教学过程一:【课前预习】(一):【知识梳理】1.三角形中的主要线段(1)三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(2)三角形的中线:连结三角形的一个顶点和它的对边中点的线段叫做三角形的中线.(3)三角形的高:从三角形的一个顶点向它的对边(或其延长线)引垂线,顶点和垂足间的线段叫做三角形的高.(4) 三角形的中位线:连接三角形两边的中点的线段。

2.三角形的边角关系(1)三角形边与边的关系:三角形中两边之和大于第三边;三角形任意两边之差小于第三边;(2)三角形中角与角的关系:三角形三个内角之和等于180o.3.三角形的分类(1)按边分:(2)按角分:4.特殊三角形(1)直角三角形性质①角的关系:∠A+∠B=900;②边的关系:③边角关系:;④⑤;⑥(2)等腰三角形性质①角的关系:∠A=∠B;②边的关系:AC=BC;③④轴对称图形,有一条对称轴。

(3)等边三角形性质①角的关系:∠A=∠B=∠C=600;②边的关系:AC=BC=AB;③;④轴对称图形,有三条对称轴。

(4)三角形中位线:5.特殊三角形的判定6.两个重要定理:(1)角平分线性质定理及逆定理:角平分线上的点到角的两边的距离相等;到角的两边的距离相等的点在这个角的平分线上;三角形的三条角平分线相交于一点(内心)(2)垂直平分线性质定理及逆定理:线段垂直平分线上的点到两个端点的距离相等;到线段两端点的距离相等的点在这条线段的垂直平分线上;三角形的三边的垂直平分线相交于一点(外心)(二):【课前练习】1.以下列各组线段长为边,能组成三角形的是()A.1cm,2cm,4 cm B.8 crn,6cm,4cmC.12 cm,5 cm ,6 cm D.2 cm,3 cm ,6 cm2.若线段AB=6,线段DC=2,线段AC= a,则()A.a =8 B.a =4 C.a =4或8 D.4<a<83.等腰三角形的两边长分别为5 cm和10 cm,则此三角形的周长是()A.15cm B.20cm C.25 cm D.20 cm或25 cm4.一个三角形三个内角之比为1:1:2,则这个三角形的三边比为_______.5.如图,四边形ABCD中,AB=3,BC=6,AC=3 ,AD=2,∠D=90○,求CD的长和四边形ABCD的面积.二:【经典考题剖析】1.三角形中,最多有一个锐角,至少有_____个锐角,最多有______个钝角(或直角),三角形外角中,最多有______个钝角,最多有______个锐角.2.两根木棒的长分别为7cm和10cm,要选择第三根棒,将它钉成一个三角形框架,那么第三根木棒长xcm的范围是__________3.已知D、E分别是ΔABC的边AB、BC的中点,F是BE的中点.若面ΔDEF的面积是10,则ΔADC的面积是多少?4.正三角形的边长为a,则它的面积为_____.5.如图,DE是△ABC的中位线,F是DE的中点,BF的延长线交AC于点H,则AH:HE等于()A.l:1 B.2:1 C.1:2 D.3:2三:【课后训练】1.下列每组数分别是三根小木棒、的长度,用它们能摆成三角形的一组是()A.1cm,2cm,3cm B.3cm,4cm,5cmC.5cm,7cm,13cm D.7c m,7cm,15cm2.过△ABC的顶点C作边AB的垂线,如果这条垂线将∠ACB分为50°和20°的两个角,那么∠A、∠ B中较大的角的度数是___ _____.3.如图,OE是∠AOB的平分线,CD∥OB交OA于C,交OE于D,∠A CD=50o,则∠CDE的度数是()A.175°B.130°C.140°D.155°4.如图,△ABC中,∠C=90○ ,点E在AC上,ED⊥AB,垂足为D,且ED平分△ABC的面积,则AD:AC等于()A.1:1 B.1:2 C.1:2 D.1:45.在ΔABC中,AC=5,中线AD=4,则AB边的取值范围是()A.1<AB<9 B.3<AB<13C.5<AB<13 D.9<AB<136.如图,直角梯形ABCD中,AB∥CD,CB⊥AB,△ABD是等边三角形,若AB=2,则CD=_______,BC=_________.7.如图所示,在△ABC中,∠A=50°,BO、CO分别平分∠ABC和∠ACB.求∠BOC的度数.8. 已知:△ABC的两边AB=3cm,AC=8cm.(1)求第三边BC的取值范围;(2)若第三边BC长为偶数,求BC的长;(3)若第三边BC长为整数,求BC的长9. 已知△ABC,(1)如图1-1-27,若P点是ABC和ACB的角平分线的交点,则P= ;(2)如图1-1-28,若P点是ABC和外角ACE的角平分线的交点,则P= ;(3)如图1-1-29,若P点是外角CBF和BCE的角平分线的交点,则P= 。

高三数学第一轮复习 解三角形教案

高三数学第一轮复习 解三角形教案

高三数学第一轮复习解三角形教案三角形是几何学中研究的一个重要的图形,它拥有许多特征和性质,因此在数学中被广泛地研究和应用。

在高三数学第一轮复习中,对于三角形的解题方法和相关知识的掌握是非常重要的。

本文将为大家介绍三角形的基本概念、常用定理和解题技巧。

一、三角形的基本概念1. 三角形的定义:三角形是由三条线段组成的图形,其中任意两条线段的长度之和大于第三条线段的长度。

2. 三角形的分类:(1) 根据边长分类:等边三角形、等腰三角形、一般三角形。

(2) 根据角度分类:锐角三角形、直角三角形、钝角三角形。

(3) 根据边角关系分类:外角、内角、对角、邻角等。

3. 三角形的元素:三角形的边、角和顶点。

二、三角形的常用定理1. 三角形内角和定理:一个三角形的三个内角的和为180°。

2. 直角三角形的性质:(1) 斜边平方等于两直角边平方和的定理(勾股定理)。

(2) 直角三角形内角的关系:直角对顶角为90°,直角三角形的其它两个内角为锐角。

三、三角形的解题技巧1. 判断三角形的类型:(1) 根据边长关系判断三角形的类型:边长相等的三角形为等边三角形,两边相等的三角形为等腰三角形,其余为一般三角形。

(2) 根据角度关系判断三角形的类型:有一个角大于90°的三角形为钝角三角形,有一个角等于90°的三角形为直角三角形,其余为锐角三角形。

2. 运用三角形的性质和定理解题:(1) 利用三角形内角和定理解决求角度的问题。

(2) 运用勾股定理解决用已知信息求三角形边长的问题。

(3) 利用等腰三角形的性质解决求角度或边长的问题。

四、三角形解题的思路1. 首先,根据问题中给出的已知条件判断三角形的类型,并利用已知信息列写方程。

2. 其次,根据三角形的性质和定理对三角形进行推导和运算,求解未知量。

3. 最后,验证解答的合理性,并作出结论。

通过掌握三角形的基本概念、常用定理和解题技巧,我们不仅可以更好地理解三角形的属性和性质,还能够灵活运用这些知识解决实际问题。

中考第一轮复习三角形

中考第一轮复习三角形

龙文教育一对一个性化辅导教案学生学校汇景年级九年级次数第次科目数学教师日期2015-1-24 时段18-19 课题三角形复习学案教学重点掌握三角形、三角形的全等教学难点掌握三角形、三角形的全等教学目标掌握三角形、三角形的全等教学步骤及教学内容一、课前热身:1、检查学生的作业,及时指点;2、通过沟通了解学生的思想动态和了解学生的本周学校的学习内容。

3、课前小测二、内容讲解:三、课堂小结:带领学生对本次课授课内容进行回顾、总结四、作业布置:布置适量的作业学生课外进行巩固管理人员签字:日期:年月日作业布置1、学生上次作业评价:○好○较好○一般○差备注:2、本次课后作业:课堂小结家长签字:日期:年月日三角形的边角关系:任意两边的和大于第三边,任意两边的差小于第三边。

三角形的内角和是1800 特殊的三角形:等腰三角形的两大特性: 1、三线合一2、底所在的直线上的点到两腰上的距离与腰上的高的关系。

如何构造等腰三角形:(1)垂直平分线造等腰(2)平行线加角平分线(3)平行线截等腰三角形(4)圆构造等腰三角形3、等腰直角三角形:4、等腰直角三角形5、顶角是120度的等腰三角形直角三角形: 两锐角互余。

三边满足勾股定理。

边角间满足三角函数。

特殊直角三角形:有30度角的等腰直角三角形两个斜边的一半是( )直角三角形中的特殊线(直角三角形斜边上的中线 斜边上的高 )等腰直角三角形:例:如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC 为等腰三角形.....,则点C 的个数是 A .6B .7C .8D .9例:在平面直角坐标系中,点A 的坐标为(4,0),点B 的坐标为(4,10), 点C 在y 轴上,且ABC △是直角三角形,则满足条件的C 点的坐标为( ).B A【课前热身】1、一副三角板,如图所示叠放在一起.则图中∠α的度数是()E DCBAFA .75°B .60°C .65°D .55°2、如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形的周长是( ) A.15cm B.16cm C.17cm D. 16cm 或17cm3、边长为6cm 的等边三角形中,其一边上高的长度为 .4、等腰三角形的周长为14,其一边长为4,那么,它的底边为 .5. ABC △中,D E ,分别是AB AC ,的中点,当10cm BC =时,DE = cm .6. 如图,⊿ABC 中,∠A = 40°,∠B = 72°,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE ,则∠DCE = ,∠CDF = .7.如图,为估计池塘岸边A B 、的距离,小方在池塘的一侧选取一点O ,测得15OA =米,OB =10米,A B 、间的距离不可能是() A .20米 B .15米 C .10米 D .5米【考点链接】一、三角形的分类:1.三角形按角分为______________,______________,_____________. 2.三角形按边分为_______________,__________________. 二、三角形的性质:1.三角形中任意两边之和____第三边,两边之差_____第三边2.三角形的内角和为_______,外角与内角的关系:__________________. 三、三角形中的主要线段:1.___________________________________叫三角形的中位线.2.中位线的性质:____________________________________________. 3.三角形的中线、高线、角平分线都是____________.(线段、射线、直线) 四、三角形的分类(一)等腰三角形的性质与判定: 1. 等腰三角形的两底角__________;2. 等腰三角形底边上的______,底边上的________,顶角的_______,三线合一;3. 有两个角相等的三角形是_________. (二).等边三角形的性质与判定:1. 等边三角形每个角都等于_______,同样具有“三线合一”的性质;2. 三个角相等的三角形是________,三边相等的三角形是_______,一个角等于60°的_______三角形是等边三角形.(三).直角三角形的性质与判定: 1. 直角三角形两锐角________.OAB第7题2. 直角三角形中30°所对的直角边等于斜边的________.3. 直角三角形中,斜边的中线等于斜边的______.;4. 勾股定理:_________________________________________.5. 勾股定理的逆定理:_________________________________________________.熟悉以下三角形中常见的基本图形和结论:∠A+∠B=∠C+∠D △ABC 的角平分线交于内部一点O ,有AB OC ∠+︒=∠2190△ABC 两外角平分线 △ABC 的内角平分线延长 交于外部一点O , 线与外角平分线交于O 点,有ABOC ∠-︒=∠2190有∠A=2∠O【典例精析】例:三角形两条边分别是2cm ,7cm ,则第三边c 的范围_____________________例:等腰三角形的一边长为6cm ,另一边长为12cm ,则其周长( ) A 、24cm B 、30cm C 、24cM 或30cm例如图,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC=63°. 求∠DAC 的度数.4321D CB A例、如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC=3,则折痕CE 的长为( )A 、B 、C 、D 、6【强化训练】1、 如图,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,……,如此作下去,若OA =OB =1,则第n 个等腰直角三角形的面积S n =________。

初三数学复习教案(三角形边与角)

初三数学复习教案(三角形边与角)

初三数学复习教案(三角形边角关系)一、知识梳理1、三角形的分类:(1)按边分类:(2)按角分类:2.三角形的边与边之间的关系:(1)三角形两边的和大于第三边;(2)三角形两边的差小于第三边;3.三角形的角与角之间的关系:(1)三角形三个内角的和等于180︒;(2)三角形的一个外角等于和它不相邻的两个内角的和;(3)三角形的一个外角大于任何一个和它不相邻的内角.(4)直角三角形的两个锐角互余. 4.适当添加辅助线,寻找基本图形(1)基本图形一,如图9,如果CO是∠AOB的角平分线,DE∥OB交OA,OC于D,E,那么∆DOE是等腰三角形,DO=DE.当几何问题的条件和结论中,或在推理过程中出现有角平分线,平行线,等腰三角形三个条件中的两个时,就应找出这个基本图形,并立即推证出第三个作为结论.即:角平分线+平行线→等腰三角形.(2)基本图形二,如图10,如果BD是∠ABC的角平分线,M是AB上一点,MN⊥BD,且与BP,BC 相交于P,N.那么BM=BN,即∆BMN是等腰三角形,且MP=NP,即:角平分线+垂线→等腰三角形. 当几何证题中出现角平分线和向角平分线所作垂线时,就应找出这个基本图形,如等腰三角形不完整就应将基本图形补完整,如图11,图12. 二、例题分析例1、已知:等腰三角形的周长是24cm,(1)腰长是底边长的2倍,求腰长;(2)已知其中一边长为6cm,求其他两边长.例2. 已知∆ABC中,AB=AC,D是BA的延长线上的一点,E是AC上的一点,AD=AE,DE的延长线交BC于F,如图,求证:DF⊥BC例3. 已知,如图,AD是∆ABC的角平分线,BF⊥AD交AD的延长线于F,E是BC的中点,求证:EF=(AB-AC )例4. 已知:∆ABC中,D是AB边上任意一点,连结CD,求证:AB+AC>DB+DC例⒌已知:∆ABC中,AB>AC,AD平分∠BAC,EF⊥AD于G,交AB于E,AC于F,交BC的延长线于M,求证:∠M=(∠ACB -∠B).三角形直角三象形斜三角形锐角三角形钝角三角形图11图9A BCDEF 例 6 用长度相等的100根火柴,摆放成一个三角形,使最大边的长度是最小边长度的3倍,求满足此条件的每个三角形各边所用火柴的根数.例7.如图,已知∠A=15°,∠ABC=90°,∠ACB= ∠DCE ,∠ADC=∠EDF ,∠CED=∠FEG ,求∠F 的大小.例8 已知:∆ABC 中,∠B 和∠C 的平分线相交于D ,过D 作BC 的平行线交AB,AC 于E ,F 求证:EF=BE+CF三、同步练习:⒈ 一个三角形的三个内角的度数的比为1:2:3,则这个三角形是______三角形. ⒉ 一个等腰三角形的两边长分别是3 cm 和6 cm ,则它的周长是_____cm. ⒊ 在∆ABC 中,∠A =30︒,∠B =2∠C ,则∠C =______度,∠B =______度.4. 如果一个等腰三角形的顶角是底角的4倍,那么顶角的度数是_____度.5.有两块同样大小且含角60°的三角板,把它们相等的边拼在一起(两块三角板不重叠),可以拼出 个四边形。

2019-2020学年中考数学一轮复习 直角三角形导学案.doc

2019-2020学年中考数学一轮复习 直角三角形导学案.doc

2019-2020学年中考数学一轮复习直角三角形导学案通过观察、操作、归纳等活动,掌握直角三角形的性质和判定.
组向展讲人声音宏亮,语言流畅,运用彩笔分析图形,板书必要的步骤。

及展讲的问题,回扣目标,反思你有哪些
.同伴之间互相讲述自己的个性目标,并互相补充、监督使目标更明确。

时要分层差、中、好各有一个能将本节课的目标补充完整)
教师行为:①对小组交流进行指导督促(最好督促学科长在组内展讲一次)
引领。

鼓励每个学生都能发表自己的见解,使自己小组的方案更完备,提醒学生要有集体
展讲指导
相似三角形有哪些判定方法?涉及到的图形有哪些?请你画下来
1.68
C=8,对
合作评价1.任务:认真完成训练单中的测试题
2.要求:合上课本,独立完成,认真书写,规范答题
3.巡视、批阅各组数学学科长的训练单,并用红笔作出评价。

三角形的初步认识复习教案

三角形的初步认识复习教案

三角形初步认识复习教案一、教学目标1. 让学生复习并巩固三角形的定义、特征和分类。

2. 培养学生运用三角形知识解决实际问题的能力。

3. 提高学生对三角形的兴趣,培养学生的观察、思考和表达能力。

二、教学内容1. 三角形的定义和特征2. 三角形的分类3. 三角形的性质4. 三角形在实际生活中的应用三、教学重点与难点1. 重点:复习三角形的定义、特征和分类,以及三角形性质的应用。

2. 难点:运用三角形知识解决实际问题。

四、教学方法1. 采用讲解、演示、练习、讨论等方法进行教学。

2. 利用图形、模型等教具,直观展示三角形的特点。

3. 引导学生通过观察、思考、交流,深入理解三角形的性质和应用。

五、教学过程1. 导入:回顾上节课的内容,引导学生复习三角形的定义、特征和分类。

2. 新课:讲解三角形的性质,如三角形的内角和、两边之和大于第三边等。

3. 练习:让学生绘制不同类型的三角形,并判断给出的图形是否为三角形。

4. 应用:讨论三角形在实际生活中的应用,如建筑、设计等。

5. 总结:对本节课的内容进行总结,强调三角形的性质和应用。

6. 作业:布置练习题,巩固所学内容。

六、教学评估1. 课堂练习:观察学生绘制三角形的过程,评估他们对三角形特征的理解程度。

2. 讨论参与度:在讨论环节,观察学生的参与情况,评估他们的思考深度和表达能力。

3. 作业完成情况:评估学生作业中的解题思路和答案准确性,了解他们对课堂内容的理解和掌握程度。

七、教学反思1. 学生对三角形的基本概念是否已经牢固掌握?2. 学生在应用三角形知识解决实际问题时是否存在困难?3. 教学方法和教学内容是否适合学生的学习需求?4. 如何改进教学策略,以提高学生对三角形知识的学习兴趣和效果?八、教学拓展1. 组织学生进行三角形模型制作,鼓励他们运用创新材料和设计。

2. 让学生调查生活中常见的三角形应用实例,并在班级分享。

3. 引入简单的三角形几何证明题目,激发学生对几何学的兴趣。

2019北师大版中考数学第一轮复习导学案 第六章 三角形

2019北师大版中考数学第一轮复习导学案 第六章 三角形

2019北师大版中考数学第一轮复习导学案第六章 三角形课时1.几何初步及平行线、相交线【课前热身】1. 如图,延长线段AB 到C ,使4BC =, 若8AB =,则线段AC 是BC 的 倍.2.如图,已知直线a b ∥,135=∠,则2∠的度数是 .3.如图,在不等边ABC △中,DE BC ∥,60ADE =∠,图中等于60的角还有______________.4.经过任意三点中的两点共可以画出的直线条数是( )A .一条或三条B .三条C .两条D .一条5.如图,直线a b ∥,则A ∠的度数是( )A .28B .31C .39D .42【考点链接】1. 两点确定一条直线,两点之间线段最短._______________叫两点间距离.2. 1周角=__________平角=_____________直角=____________.3. 如果两个角的和等于90度,就说这两个角互余,同角或等角的余角相等;如果_____________________互为补角,__________________的补角相等.4. ___________________________________叫对顶角,对顶角___________.5. 过直线外一点心___________条直线与这条直线平行.6. 平行线的性质:两直线平行,_________相等,________相等,________互补.7. 平行线的判定:________相等,或______相等,或______互补,两直线平行.8. 平面内,过一点有且只有_____条直线与已知直线垂直.【典例精析】例1 如图:AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,EG 平分∠BEF ,若∠1=720,则∠2等于多少度?(第1题)A BCE C D1 2 AB ADBCE(第3题)abc1 2 (第2题)(第4题)图ABCDab70°31°A BC例2 如图,ABC △中,B C ∠∠,的平分线相交于点O ,过O 作DE BC ∥,若5BD EC +=,则DE 等于多少?【中考演练】 1. 如图,直线a 、b 被直线c 所截,若要a ∥ b ,需增加条件 _____________.(填一个即可) 2. 如图直线l 1//l 2,AB ⊥CD ,∠1=34°,那么∠2的度数是 .3. 如图, 已知直线25,115,//=∠=∠A C CD AB , 则=∠E ( ) A.70B. 80C. 90D.10021DCBAl2l 1( 第1题) ( 第2题) (第3题) 4. 如图,在△ABC 中,AB =BC =12cm ,∠ABC =80°,BD 是∠ABC 的平分线,DE ∥BC . (1) 求∠EDB 的度数;(2) 求DE 的长.5. 如图,AB ∥CD , AC ⊥BC ,∠BAC =65°,求∠BCD 度数.﹡6. 如图,在ΔABC 中,AB =AC =10,BC =8.用尺规作图作BC 边上的中线AD (保留作图痕迹,不要求写作法、证明),并求AD 的长.AB C O DEABCDE课时2.三角形的有关概念【课前热身】1. 如图,在△ABC 中,∠A =70°,∠B =60°,点D 在BC 的延长线上,则∠ACD = 度.2. ABC △中,D E ,分别是AB AC ,的 中点,当10cm BC =时,DE = cm . (第1题)3. 如图在△ABC 中,AD 是高线,AE 是角平分线,AF 中线.(1) ∠ADC = =90°; (2) ∠CAE = =12 ;(3) CF = =12; (4) S △ABC = .E DC BAF(第3题) (第4题)4. 如图,⊿ABC 中,∠A = 40°,∠B = 72°,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE ,则∠CDF = 度. 5. 如果两条平行直线被第三条直线所截,一对同旁内角的度数之比为3:6,那么这两个角分别等于 °和 °.【考点链接】一、三角形的分类:1.三角形按角分为______________,______________,_____________. 2.三角形按边分为_______________,__________________. 二、三角形的性质:1.三角形中任意两边之和____第三边,两边之差_____第三边2.三角形的内角和为_______,外角与内角的关系:__________________. 三、三角形中的主要线段:1.___________________________________叫三角形的中位线.2.中位线的性质:____________________________________________. 3.三角形的中线、高线、角平分线都是____________.(线段、射线、直线)【典例精析】例1 如图,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC=63°. 求∠DAC 的度数.C DB7060AAB CDE4321D CB A例2 如图,已知D 、E 分别是△ABC 的边BC 和边AC 的中点,连接DE 、AD ,若S ABC △=24cm 2,求△DEC 的面积.例3 如图,在等腰三角形ACB 中,5AC BC ==,8AB =,D 为底边AB 上一动点(不与点A B ,重合),DE AC ⊥,DF BC ⊥,垂足分别为E F ,,求DE DF +的长.【中考演练】1.在△ABC 中,若∠A =∠C =13∠B ,则∠A = ,∠B = ,这个三角形是 .2.已知三角形的三边长分别为3、8、x ,若x 的值为偶数,则x 的值有( )A. 6个B. 5个C. 4 个D. 3个3.已知一个三角形三个内角度数的比是1:5:6,则其最大内角度数为( )A.60°B.75°C.90°D.120°4.如图,AB ∥CD ,AE 平分∠BAC ,CE 平分∠ACD ,求∠E 的度数.5. 如图,已知DE ∥BC ,CD 是∠ACB 的平分线,∠B =70°,∠ACB =50°, 求∠EDC 和∠BDC 的度数.ABCDE F EDCBAAD C B E课时3.等腰三角形与直角三角形【课前热身】1.等腰三角形的一个角为50°,那么它的一个底角为______.2. 在△ABC中,AB=AC,∠A=50°,BD为∠ABC的平分线,则∠BDC=_____°.3.在△ABC中,AB=AC,D为AC边上一点,且BD=BC=AD.•则∠A等于()A.30° B.36° C.45° D.72°(第2题)(第3题)(第4题)4.一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B地,再由B地向北偏西10º的方向行驶40海里到达C地,则A、C两地相距()A.30海里 B.40海里 C.50海里 D.60海里【考点链接】一.等腰三角形的性质与判定:1. 等腰三角形的两底角__________;2. 等腰三角形底边上的______,底边上的________,顶角的_______,三线合一;3. 有两个角相等的三角形是_________.二.等边三角形的性质与判定:1. 等边三角形每个角都等于_______,同样具有“三线合一”的性质;2. 三个角相等的三角形是________,三边相等的三角形是_______,一个角等于60°的_______三角形是等边三角形.三.直角三角形的性质与判定:1. 直角三角形两锐角________.2. 直角三角形中30°所对的直角边等于斜边的________.3. 直角三角形中,斜边的中线等于斜边的______.;4. 勾股定理:_________________________________________.5. 勾股定理的逆定理:_________________________________________________.【典例精析】例1 如图,等腰三角形ABC中,AB=AC,一腰上的中线BD•将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长.例2《中华人民共和国道路交通管理条例》规定:“小汽车在城市街道上的行驶速度不得超PD CBA过70千米/时”.•一辆小汽车在一条城市街道上由西向东行驶(如图所示),在距离路边25米处有“车速检测仪O”,•测得该车从北偏西60°的A 点行驶到北偏西30°的B 点,所用时间为1.5秒.(1)试求该车从A 点到B 的平均速度; (2)试说明该车是否超过限速.【中考演练】1.已知等腰三角形的一个底角为70,则它的顶角为____________.度.2.已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为____. 3. 如图,小雅家(图中点O处)门前 有一条东西走向的公路,经测得有一水塔(图中点A处)在她家北偏东60度500m 处,那么水塔 所在的位置到公路的距离AB 是____________.(第3题)4.如图,已知在直角三角形中,∠C=90°,BD 平分∠ABC 且交AC 于D . ⑴ 若∠BAC=30°,求证:AD=BD ;⑵ 若AP 平分∠BAC 且交BD 于P ,求∠BPA 的度数.5. 如图,小明用一块有一个锐角为30的直角三角板测量树高,已知小明离 树的距离为4米,DE 为1.68米,那么这棵树大约有多高?(精确到0.1米)A O B东北课时4.全等三角形【课前热身】1.如图1所示,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD=____.(第1题)(第2题)(第3题)2.如图2,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去3.如图,已知AE∥BF, ∠E=∠F,要使△ADE≌△BCF,可添加的条件是________.4. 在⊿ABC和⊿A/B/C/中,AB=A/B/,∠A=∠A/,若证⊿ABC≌⊿A/B/C/还要从下列条件中补选一个,错误的选法是()A. ∠B=∠B/B. ∠C=∠C/C. BC=B/C/,D. AC=A/C/,【考点链接】1.全等三角形:____________、______________的三角形叫全等三角形.2. 三角形全等的判定方法有:_______、______、_______、______.直角三角形全等的判定除以上的方法还有________.3. 全等三角形的性质:全等三角形___________,____________.4. 全等三角形的面积_______、周长_____、对应高、______、_______相等.【典例精析】例1 已知:在梯形ABCD中,AB//CD,E是BC的中点,直线AE与DC的延长线交于点F. 求证:AB=CF.例2 (如图所示,A、D、F、B在同一直线上,AD=BF,AE=BC,且AE∥BC.求证:(1)△AEF≌△BCD;(2)EF∥CD.BAEFCD【中考演练】1.如图,OA OB =,OC OD =,50O ∠=,35D ∠=,则AEC ∠等于( )A .60B .50C .45D .302.如图,点P 在AOB ∠的平分线上,AOP BOP △≌△,则需添加的一个条件是 (只写一个即可,不添加辅助线):(第1题) (第2题) (第3题)3.如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC 上F 处,若50B ∠=︒,则BDF ∠= __________度.4. 如图,矩形ABCD 中,点E 是BC 上一点,AE =AD ,DF ⊥AE 于F ,连结DE ,求证:DF =DC .5. 如图,AB=AD ,BC=DC ,AC 与BD 交于点E ,由这些条件你能推出哪些结论?(不再添加辅助线,不再标注其它字母,不写推理过程,只要求写出四个你认为正确的结论即可)AB P O F ED C B AECD AO E AB D CA B C D F E﹡课时5.相似三角形【课前热身】1.两个相似三角形对应边上中线的比等于3:2,则对应边上的高的比为______,周长之比为________,面积之比为_________. 2.若两个相似三角形的周长的比为4:5,且周长之和为45,则这两个三角形的周长分别为__________.3.如图,在△ABC 中,已知∠ADE=∠B ,则下列等式成立的是( )A .ADAE AB AC = B .AE ADBC BD = C .DEAE BCAB =D .DE ADBC AC=4.在△ABC 与△A′B ′C ′中,有下列条件: (1)''''AB BC A B B C =;(2)''''BC ACB C A C =;(3)∠A=∠A′;(4)∠C=∠C′. 如果从中任取两个条件组成一组,那么能判断△ABC ∽△A′B ′C ′的共有多少组( ) A .1 B .2 C .3 D .4【考点链接】一、相似三角形的定义三边对应成_________,三个角对应________的两个三角形叫做相似三角形. 二、相似三角形的判定方法1. 若DE ∥BC (A 型和X 型)则______________.2. 射影定理:若CD 为Rt △ABC 斜边上的高(双直角图形)则Rt △ABC ∽Rt △ACD ∽Rt △CBD 且AC 2=________,CD 2=_______,BC 2=__ ____.E A D CBEA DCBAD CB3. 两个角对应相等的两个三角形__________.4. 两边对应成_________且夹角相等的两个三角形相似.5. 三边对应成比例的两个三角形___________. 三、相似三角形的性质1. 相似三角形的对应边_________,对应角________.2. 相似三角形的对应边的比叫做________,一般用k 表示.3. 相似三角形的对应角平分线,对应边的________线,对应边上的_______•线的比等于_______比,周长之比也等于________比,面积比等于_________.【典例精析】例1 在△ABC 和△DEF 中,已知∠A=∠D ,AB=4,AC=3,DE=1,当DF 等于多少时,这两个三角形相似.C B O DA E例2 如图,△ABC 是一块锐角三角形余料,边BC=120mm ,高AD=80mm ,•要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,•这个正方形零件的边长是多少?例3 一般的室外放映的电影胶片上每一个图片的规格为:3.5cm ×3.5cm ,放映的荧屏的规格为2m ×2m ,若放映机的光源距胶片20cm 时,问荧屏应拉在离镜头多远的地方,放映的图象刚好布满整个荧屏?【中考演练】1.如图,若△ABC ∽△DEF ,则∠D 的度数为______________.2. 在Rt ABC ∆中, C ∠为直角, AB CD ⊥于点D ,5,3==AB BC , 写出其中的一对相似三角形是 _ 和 _ ; 并写出它的面积比_____.(第1题) (第2题) (第3题) 3.如图,在△ABC 中,若DE ∥BC,AD DB =12,DE =4cm,则BC 的长为 ( ) A.8cm B.12cm C.11cm D.10cm 4. 如图,已知E 是矩形ABCD 的边CD 上一点,BF AE ⊥于F ,试证明ABF EAD △∽△.ABCD EB(0,-4) A(3,0)xy课时6.锐角三角函数【课前热身】1.在△ABC 中,∠C =90°,BC =2,sinA =23,则AC 的长是( ) A .5 B .3 C .45D .13 2.Rt ∆ABC 中,∠C=︒90,∠A ∶∠B=1∶2,则sinA 的值( )A .21B .22C .23D .13.如图,在平面直角坐标系中,已知点A (3,0),点B (0,-4),则cos OAB ∠ 等于_______. 4.︒+︒30sin 130cos =____________.【考点链接】1.sin α,cos α,tan α定义sin α=____,cos α=_______,tan α=______ . 2.特殊角三角函数值【典例精析】例1 在Rt △ABC 中,a =5,c =13,求sinA ,cosA ,tanA .例2 计算:4sin 302cos 453tan 60︒-︒+︒.例3 等腰△ABC 中,AB =AC =5,BC =8,求底角∠B 的四个三角函数值.30° 45°60° sin α cos α tan αα ab c【中考演练】1. 在△ABC 中,∠C = 90°,tan A =13,则sin B =( ) A .1010 B .23 C .34D .31010 2.若3cos 4A =,则下列结论正确的为( ) A . 0°< ∠A < 30° B .30°< ∠A < 45° C . 45°< ∠A < 60° D .60°< ∠A < 90°3.在Rt ABC △中,90C ∠=,5AC =,4BC =,则tan A = .4.计算45tan 30cos 60sin -的值是 . 5. 已知3tan 30 A -=∠A =则 .6.△ABC 中,若(sinA -12)2+|32-cosB|=0,求∠C 的大小.﹡7.图中有两个正方形,A ,C 两点在大正方形的对角线上,△HAC •是等边三角形,若AB=2,求EF 的长.﹡8. 矩形ABCD 中AB =10,BC =8, E 为AD 边上一点,沿BE 将△BDE 对折,点D 正好落在AB 边上,求 tan ∠AFE ._E _A _F _ D _C _B _ O _H _ G课时7.解直角三角形及其应用【课前热身】1.如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米.(结果保留根号) (第1题)2. 某坡面的坡度为1:3,则坡角是_______度.3.(山东)王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )A .150mB .350mC .100 mD .3100m【考点链接】1.解直角三角形的概念:在直角三角形中已知一些_____________叫做解直角三角形. 2.解直角三角形的类型: 已知____________;已知___________________. 3.如图(1)解直角三角形的公式:(1)三边关系:__________________.(2)角关系:∠A+∠B =_____,(3)边角关系:sinA=___,sinB=____,cosA=_______.cosB=____,tanA=_____ ,tanB=_____.4.如图(2)仰角是____________,俯角是____________.5.如图(3)方向角:OA :_____,OB :_______,OC :_______,OD :________. 6.如图(4)坡度:AB 的坡度i AB =_______,∠α叫_____,tanα=i =____.(图2) (图3) (图4)【典例精析】例1 Rt ABC ∆的斜边AB =5, 3cos 5A =,求ABC ∆中的其他量.例2 海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里到达B 点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.αACB45︒南北西东60︒A DC B70︒OO A B C FA BCDEcba A C B例3为了农田灌溉的需要,某乡利用一土堤修筑一条渠道,在堤中间挖出深为1.2米,下底宽为2米,坡度为1:0.8的渠道(其横断面为等腰梯形),并把挖出来的土堆在两旁,使土堤高度比原来增加了0.6米.(如图所示) 求:(1)渠面宽EF ;(2)修200米长的渠道需挖的土方数.【中考演练】1.在Rt ABC ∆中,090C ∠=,AB =5,AC =4,则 sinA 的值是_________.2.升国旗时,某同学站在离旗杆24m 处行注目礼,当国旗升至旗杆顶端时, 该同学视线的仰角恰为30°,若两眼距离地面1.2m ,则旗杆高度约为_______.(取3 1.73=,结果精确到0.1m )3.已知:如图,在△ABC 中,∠B = 45°,∠C = 60°,AB = 6.求BC 的长. (结果保留根号)﹡4.如图,在测量塔高AB 时,选择与塔底在同一水平面的同一直线上的C 、D 两点,用测角仪器测得塔顶A 的仰角分别是30°和60°.已知测角仪器高CE=1.5米,CD=30米,求塔高AB .(保留根号)。

初三数学总复习教案-三角形1

初三数学总复习教案-三角形1

初三数学总复习教案-三角形(一)一、知识要点1、三角形ⅰ)三角形的角平分线、中线、高线为三种重要线段,理解①三角形有关概念及性质其性质并会画出内心、外心、垂心、重心ⅱ)三角形三边关系:任意两边之和大于第三边,两边之差小于第三边a、内角和180˚ⅲ)三角形中角的关系b、外角等于与它不相邻两内角和c、外角大于任一不相邻内角iv)面积公式按边分不等边三角形等腰三角形只有两边相等三边都相等(等边三角形)②三角形的分类掌握其判定、性质锐角三角形斜角三角形按角分钝角三角形直角三角形a、合30˚角直角三角形性质b、直角三角形斜边上中线性质c、勾股(逆)定理③全等三角形ⅰ)了解全等有关概念、性质以定义ⅱ)熟练掌握全等三角形的判定方法SASASA (AAS)SSSHL(只用于Rt∆)ⅲ)熟练掌握全等三角形的性质:对应..线段(边、角平分线、中线、高)相等..角等,对应ⅳ)命题、定理、逆命题、逆定理有关概念2、基本作图(尺规作图)二、例题分析例1、在∆ABC中,BC=2 AC=7 周长为奇数,求AB的长。

分析:由三角形任意两边之和大于第三边,两边之差小于第三边,可求出AB的范围,再求周长为奇数可确定AB的值。

解:∵BC=2 AC=7∴7-2<AB<7+2 即5<AB<9 ∴AB=6、7、8又∵周长为奇数∴AB+ BC+ AC= AB+2+7= AB+9为奇数∴AB=6或8题后反思:利用三角形三边关系可以解决的问题①任意给出的三条线段能否构成三角形;②利用勾股逆定理,判定是否为Rt∆;③已知两边,可求出第三边的取值范围,再利用其它条件,可确定第三边的取值。

例2、在∆ABC 中,∠A=50˚(1)如图(1) ∆ABC的两条高BD、CE交于O点,求∠BOC的度数(2)如图(2) ∆ABC的两条角平分线BM、CN交于P,求∠BPC的度数A AEN MD PO 1 2B 1 2C B C (1) (2)分析:(1)题中,由高可知有直角,由直角三角形两锐角互余及三角形内角和定理可求得∠BOC ,亦可用四边形内角和去求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4
321
D
C
B A A
B C
D
E
第35_36课时 三角形基础知识
【知识梳理】
1、三角形三边的关系;三角形的分类
2、三角形内角和定理;
3、三角形的高,中线,角平分线
4、三角形中位线的定义及性质 【 思想方法】
方程思想,分类讨论等
【例题精讲】 例1. 如图,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC=63°.求∠DAC 的度数.
例2. 如图,已知DE∥BC,CD 是∠ACB 的平分线,∠B=70°,∠ACB=50°, 求∠EDC 和∠BDC 的度数.
例3.现有2cm 、4cm 、8cm 长的四根木棒,任意选取三根组成一个三角形,那么可以组成三角形的个数为( ). A. 1个
B. 2个
C. 3个
D. 4个
例4.如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于( ) A .42° B .48° C .52° D .58°
例5如图2所示,A 、B 、C 分别表示三个村庄,AB=1000米,BC=600米,AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建
一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在( ) A .AB 中点 B .BC 中点
C .AC 中点
D .∠C 的平分线与AB 的交点 【当堂检测】 1.如图,在△ABC 中,∠A =70°,∠B =60°,点D 在
BC 的延长线上,则∠ACD = 度. 2.ABC △中,D E ,分别是AB AC ,的
中点,当10cm BC =时,DE = cm . 第1题图
D
3.如图在△ABC 中,AD 是高线,AE 是角平分线,AF 中线.
(1) ∠ADC= =90°;(2) ∠CAE= =0.5 ; (3) CF = =0.5 ; (4) S △ABC = .
E D
C B
A
F
第3题图 第4题图
4. 如图,⊿ABC 中,∠A = 40°,∠B = 72°,CE 平分∠ACB,CD⊥AB 于D ,DF⊥CE,则∠CDF = 度.
5.下列命题中,错误的是( ).
A .三角形两边之和大于第三边
B .三角形的外角和等于360°
C .三角形的一条中线能将三角形面积分成相等的两部分
D .等边三角形既是轴对称图形,又是中心对称图形
6.(2009年重庆)观察下列图形,则第n 个图形中三角形的个数是( )
A .22n +
B .44n +
C .44n -
D .4n 7.如图,将ABC △沿D
E 折叠,使点A 与BC 边的中点
F 重合,下列结论中:①EF AB ∥且
1
2
EF AB =
;②BAF CAF ∠=∠;③S 四边形
ADFE =0.5AF ·DE ;④2BDF FEC BAC ∠+∠=∠,正确的个数是( ) A . 1 B .2 C .3 D .4 8. △ABC 中,
AD 是高,AE
、BF 是角角平分线相交于点O
,∠C=70°.
求∠DAC,∠BOA 的度数
.
……
第1个
第2个
第3个
第7题图。

相关文档
最新文档