江西省中考数学试题含答案
2023年江西省(中考)初中学业水平考试试卷及参考答案(数学答案)
一、单项选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.A2.B3.D4.A5.C6.D 二、填空题(本大题共6小题,每小题3分,共18分)7.-58.1.8×1079.2a +110.211.612.90°或180°或270°三、解答题(本大题共5小题,每小题6分,共30分)13.(1)解:原式=2+1-1=2.(2)证明:∵AC 平分∠BAD ,∴∠BAC =∠DAC .在△ABC 和△ADC 中,∴△ABC △ADC (SAS ).14.解:(1)如下左图(右图中的C 1~C 5亦可):ABC12C C 答:△ABC 即为所求.(2)如下图:(方法一)(方法二)(方法三)答:点Q 即为所求.15.解:(1)②,③;(2)按甲同学的解法化简:原式=éëêùûúx (x -1)(x +1)(x -1)+x (x +1)(x -1)(x +1)·x 2-1xA B CDìíîïïAB =AD ,∠BAC =∠DAC ,AC =AC ,江西省2023年初中学业水平考试数学试题参考答案=x (x -1)+x (x +1)(x +1)(x -1)·(x +1)(x -1)x =2x 2(x +1)(x -1)·(x +1)(x -1)x =2x .按乙同学的解法化简:原式=x x +1·x 2-1x +x x -1·x 2-1x=x x +1·(x +1)(x -1)x +x x -1·(x +1)(x -1)x =x -1+x +1=2x .16.解:(1)随机.(2)解法一列表如下:甲乙丙丁甲(甲,乙)(甲,丙)(甲,丁)乙(乙,甲)(乙,丙)(乙,丁)丙(丙,甲)(丙,乙)(丙,丁)丁(丁,甲)(丁,乙)(丁,丙)同学1同学2由上表可知,所有可能结果共有12种,且每种结果出现的可能性相等,其中甲、丁同学都被选为宣传员的结果有2种.所以P (甲、丁同学都被选为宣传员)=212=16.解法二画树状图如下:甲乙丙丁乙甲丙丁丙甲乙丁丁甲乙丙由树状图可以看出,所有可能结果共有12种,且每种结果出现的可能性相等,其中甲、丁同学都被选为宣传员的结果有2种.所以P (甲、丁同学都被选为宣传员)=212=16.17.解:(1)∵直线y =x +b 与反比例函数y =kx(x >0)的图象交于点A (2,3),∴2+b =3,3=k2.∴b =1,k =6.∴直线AB 的表达式为y =x +1,反比例函数图象的表达式为y =6x(x >0).(2)过点A作AD⊥BC,垂足为D.∵直线y=x+1与y轴交点B的坐标为(0,1),BC∥x轴,∴C点的纵坐标为1.∴6x=1,x=6,即BC=6.由BC∥x轴,得BC与x轴的距离为1.∴AD=2.∴S△ABC=12BC·AD=12×6×2=6.四、解答题(本大题共3小题,每小题8分,共24分)18.解:(1)设该班的学生人数为x人.依题意,得3x+20=4x-25.解得x=45.答:该班的学生人数为45人.(2)由(1)可知,树苗总数为3x+20=155.设购买甲种树苗y棵,则购买乙种树苗(155-y)棵.依题意,得30y+40(155-y)≤5400.解得y≥80.答:至少购买了甲种树苗80棵.19.(1)证法一证明:∵AB=AC,∴∠B=∠ACB.∵AC=AD,∴∠ADC=∠ACD.∴∠BCD=∠ACB+∠ACD=12(∠ACB+∠B+∠ACD+∠ADC)=12×180°=90°.∴DC⊥BC.证法二证明:∵AB=AC=AD,∴点B,C,D在以点A为圆心,BD为直径的圆上.∴∠BCD=90°,即DC⊥BC.(2)解:过点E作EF⊥BC,垂足为F.在Rt△BCD中,cos B=BCBD,BC=1.8,∴BD=BCcos B=1.8cos55°≈3.16.∴BE=BD+DE=3.16+2=5.16.在Rt△EBF中,sin B=EF BE,∴EF=BE·sin B=5.16×sin55°≈4.2.因此,雕塑的高约为4.2m.EDAB C F20.解:(1)连接OE .∵∠ADE =40°,∴∠AOE =2∠ADE =80°.∴∠BOE =180°-∠AOE =100°.∴ BE 的长l =100∙π∙2180=109π.(2)证明:∵OA =OE ,∠AOE =80°,∴∠OAE =180°-∠AOE2=50°.∵∠EAD =76°,∴∠BAC =∠EAD -∠OAE =26°.又∠C =64°,∴∠ABC =180°-∠BAC -∠C =90°.即AB ⊥BC .又OB 是⊙O 的半径,∴CB 为⊙O 的切线.五、解答题(本大题共2小题,每小题9分,共18分)21.解:(1)68,23%.(2)320.(3)①小胡的说法正确.理由如下:理由一:从中位数看,初中生视力的中位数为1.0,高中生视力的中位数为0.9,所以初中生的视力水平好于高中生.理由二:从众数看,初中生视力的众数为1.0,高中生视力的众数为0.9,所以初中生的视力水平好于高中生.②方法一:26000×8+16+28+34+14+44+60+82200+320=14300(名).方法二:26000×(1-68+46+65+55200+320)=14300(名).所以,估计该区有14300名中学生视力不良.建议:①勤做眼保健操;②不要长时间用眼;③不要在强光下看书;④加强户外运动.22.(1)证法一证明:∵四边形ABCD 是平行四边形,∴OA =OC .又BD ⊥AC ,∴BD 垂直平分AC .∴BA =BC .∴□ABCD 是菱形.证法二证明:∵四边形ABCD 是平行四边形,∴OA =OC .A BCD OE A CBD O图1∵BD⊥AC,∴∠AOB=∠COB.又OB=OB,∴△AOB△COB(SAS).∴BA=BC.∴□ABCD是菱形.(2)①证明:∵四边形ABCD为平行四边形,AC=8,BD=6,∴OA=12AC=4,OD=12BD=3.∴OA2+OD2=42+32=25.又AD2=52=25,∴OA2+OD2=AD2.∴∠AOD=90°.即BD⊥AC.∴□ABCD是菱形.②方法一解:如图2,取CD的中点G,连接OG.∵□ABCD是菱形,∴BC=AD=5,OB=OD,∠ACB=∠ACD.∵∠E=12∠ACD,∴∠E=12∠ACB.即∠ACB=2∠E.又∠ACB=∠E+∠COE,∴∠E=∠COE.∴CE=CO=4.∵OB=OD,GC=GD,∴OG为△DBC的中位线.∴OG//BC,且OG=12BC=52.∴OG//CE.∴△OGF△ECF.∴OFEF=OGCE=58.方法二解:如图3,延长FO交AB于点H.同方法一可得CE=CO=4.∵□ABCD是菱形,∴BH//CF.∴HFFE=BCCE=54,HOOF=BOOD=1.∴HF=2OF.∴OFFE=58.ACBDOFEG图2ACBDO FEH图3六、解答题(本大题共12分)23.解:(1)①3.②S=t2+2.(2)方法一由图象可知,当点P运动到点B时,S=6.将S=6代入S=t2+2,得6=t2+2,解得t=2或t=-2(舍去).当点P由点B运动到点A时,设S关于t的函数解析式为S=a(t-4)2+2.将(2,6)代入,得6=a(2-4)2+2.解得a=1.故S关于t的函数解析式为S=(t-4)2+2.由图象可知,当P运动到A点时,S=18.由18=(t-4)2+2,得t=8或t=0(舍去)∴AB=(8-2)×1=6.方法二由图象可知,当点P运动到点B时,S=6,即BD2=6.∴BD=6.在Rt△DBC中,由勾股定理,得BC=BD2-CD2=2.∴点P由C运动到B的时间为2÷1=2s.当点P由点B运动到点A时,设S关于t的函数解析式为S=a(t-4)2+2.将(2,6)代入,得6=a(2-4)2+2.解得a=1.故S关于t的函数解析式为S=(t-4)2+2.由图象可知,当P运动到A点时,S=18.由18=(t-4)2+2,得t=8或t=0(舍去)∴AB=(8-2)×1=6.(3)①4.由(1)(2)可得S={t2+2,0≤t<2,(t-4)2+2,2≤t≤8.在图2中补全0≤t<2内的图象.根据图象可知0≤t≤2内的图象与2≤t≤4内的图象关于直线x=2对称.因此t1+t2=4.②方法一函数S=t2+2的图象向右平移4个单位与函数S=(t-4)2+2的图象重合.∵当t=t1和t=t3时,S的值相等,∴t3-t1=4.又t3=4t1,∴4t1-t1=4,得t1=43.此时正方形DPEF的面积S=t21+2=349.图1AFEB P CD图2方法二根据二次函数的对称性,可知t2+t3=8.由①可知t1+t2=4,∴t3-t1=4.又t3=4t1,∴4t1-t1=4,得t1=43.此时正方形DPEF的面积S=t21+2=349.。
【解析版】江西省中考数学试卷样卷
江西省中考数学试卷样卷一、选择题:本大题共6小题,每小题3分,共18分,每小题只有一个正确选项。
1.9的算术平方根是()A.﹣3 B. 3 C.±3 D. 812.下列运算,正确的是()A. a2•a=a2B. a+a=a2C. a6÷a3=a2D.(a3)2=a63.如图是由一个圆柱和长方体组合而成的几何体,它的俯视图是()A.B.C.D.4.如图,在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为()A. 16a B. 12a C. 8a D. 4a5.二次函数y=kx2﹣6x+7的图象过点(1,2),且与x轴有两个交点A(x1,0),B(x2,0),则x1x2的值是()A. 1 B. 3 C. 6 D. 76.如图,在矩形ABCD中,AB=4,BC=5,点E、F、G、H分别在已知矩形的四条边上,且四边形EFGH也是矩形,GF=2EF.若设AE=a,AF=b,则a与b满足的关系为()A.B.C.D.二、填空题:本大题共8小题,每小题3分,共24分。
7.﹣3的相反数是.8.不等式组的解集是.9.小亮家新房屋装修,购进了同为50×50cm规格但品牌不同的两种瓷砖,他从这两种瓷砖(都是正方形)中各随机抽取五块测量,并将这十块瓷砖的边长(单位:cm)记录下表中:A种品牌50.1 49.9 50.2 49.8 50.0B种品牌50.3 49.6 50.0 50.4 49.7算得两种品牌瓷砖边长的平均数相等,则从边长上可确定更标准的品牌为.10.化简的结果是.11.梁老师驾车从家乡出发,上国道到南昌,其间用了4.5h;返回时走高速公路,路程缩短了5km,平均速度提高了10km/h,比去时少用了0.5h回到家乡,若设他家乡到南昌走国道的路程为xkm,则可列方程为.12.如图1,教室里有一只倒地的装垃圾的灰斗,BC与地面的夹角为50°,∠C=25°,小贤同学将它扶起平放在地面上(如图2),则灰斗柄AB绕点C转动的角度为.13.如图,△ABC是⊙O的内接三角形,平移△ABC使点B与圆心O重合,A、C两点恰好落在圆上的D、E两点处.若AC=2,则平移的距离为.14.如图,在四边形ABCD中,AB⊥BC,AD∥BC,∠BCD=120°,BC=2,AD=DC.若P是四边形边上一动点,且∠BPC=30°,则CP的长为.三、解答题:本大题共4小题,每小题6分,共24分。
2023年江西省中考数学真题
江西省2023年初中学业水平考试数学试题卷说明:1.本试题卷满分120分,考试时间为120分钟。
2.请按试题序号在答题卡相应位置作答,答在试题卷或其它位置无效。
一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置。
错选、多选或未选均不得分。
1.下列各数中,正整数是()A.3B.2.1C.0D.-22.下列图形中,是中心对称图形的是()有意义,则a 的值可以是()A.-1 B.0 C.2D.64.计算()322m的结果为()A.68m B.66m C.62m D.52m5.如图,平面镜MN 放置在水平地面CD 上,墙面PD⊥CD 于点D,一束光线AO 照射到镜面MN 上,反射光线为OB,点B 在PD 上,若∠AOC=35°,则∠OBD 的度数为()A.35°B.45°C.55°D.65°(第5题)(第6题)6.如图,点A,B,C,D 均在直线l 上,点P 在直线l 外,则经过其中任意三个点,最多可画出圆的个数为()A.3个B.4个C.5个D.6个二、填空题(本大题共6小题,每小题3分,共18分)7.单项式5ab -的系数为.8.我国海洋经济复苏态势强劲,在建和新开工海上风电项目建设总规模约1800万千瓦,比上一年同期翻一番,将18000000用科学记数法表示应为.9.化简:()221a a +-=.10.将含30°角的直角三角板和直尺按如图所示的方式放置,已知∠α=60°,点B,C 表示的刻度分别为1cm,3cm,则线段AB 的长为cm.(第10题)(第11题)(第12题)11.《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度.如图,点A,B,Q在同一水平线上,∠ABC和∠AQP均为直角,AP与BC相交于点D.测得AB=40cm,BD=20cm,AQ=12m,则树高PQ=m.12.如图,在□ABCD中,∠B=60°,BC=2AB,将AB绕点A逆时针旋转角α(0°<α<360°)得到AP,连接PC,PD.当△PCD为直角三角形时,旋转角α的度数为.三、解答题(本大题共5小题,每小题6分,共30分)453tan︒-;(2)如图,AB=AD,AC平分∠BAD.求证:△ABC≌△ADC.14.如图是4×4的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图①中作锐角△ABC,使点C在格点上;(2)在图②中的线段AB上作点Q,使PQ最短.15.化简2111x x xx x x-⎛⎫+⋅⎪+-⎝⎭.下面是甲、乙两同学的部分运算过程:(1)甲同学解法的依据是,乙同学解法的依据是;(填序号)①等式的基本性质;②分式的基本性质;③乘法分配律;④乘法交换律.(2)请选择一种解法,写出完整的解答过程。
2022年江西省中考数学真题(解析版)
(2)知识应用:如图4,若 的半径为2, 分别与 相切于点A,B, ,求 的长.
14.以下是某同学化筒分式 的部分运算过程:
解:原式 ①
②
③
…
解:
(1)上面的运算过程中第__________步出现了错误;
(2)请你写出完整的解答过程.
【答案】(1)③(2)见解析
【解析】(1)第③步出现错误,原因是分子相减时未变号,
故答案为:③;
(2)解:原式=
【点睛】本题主要考查了分式的混合运算,熟练掌握分式的运算法则是解决本题的关键.
(2)如图2,连接 、 、 、 ,直线经过点 和点 ,设小正方形的边长为1个单位,
∴ , ,
, ,
∴ ,
∴
∴ ,
∵ ,
∴ ,
∴ ,
∴四边形 是正方形,
∴ , ,且 ,
∴直线即为所作.
【点睛】本题考查作图一应用与设计作图,考查了等腰三角形三线合一的性质,矩形的性质,正方形的判定和性质,全等三角形的判定和性质,直角三角形两锐角互余,勾股定理等知识.解题的关键是理解题意,学会利用数形结合的思想解决问题.
【答案】1
【解析】解:一元二次方程有两个相等的实数根,
可得判别式 ,
∴ ,
解得: .
故答案为:
【点睛】本题考查的是一元二次方程根的判别式,掌握根的判别式的含义是解题的关键.
10.甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x人,则可列分式方程为__________.
2020年江西省中考数学试卷和答案解析
2020年江西省中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.(3分)﹣3的倒数是()A.3B.﹣3C.﹣D.解析:根据倒数的定义即可得出答案.【解答】解:﹣3的倒数是﹣.故选:C.点拨:此题主要考查了倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a 解析:根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、a3÷a2=a,正确.故选:D.点拨:本题主要考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,不是同类项的一定不能合并.3.(3分)教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为()A.5.0175×1011B.5.0175×1012C.0.50175×1013D.0.50175×1014解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:50175亿=5017500000000=5.0175×1012.故选:B.点拨:此题考查科学记数法的表示方法,表示时关键要正确确定a 的值以及n的值.4.(3分)如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A.AB∥CD B.∠B=30°C.∠C+∠2=∠EFC D.CG>FG解析:依据平行线的判定与性质,以及三角形外角性质,即可得出结论.【解答】解:∵∠1=∠2=65°,∴AB∥CD,故A选项正确,又∵∠3=35°,∴∠C=65°﹣35°=30°,∴∠B=∠C=30°,故B选项正确,∵∠EFC是△CGF的外角,∴∠EFC=∠C+∠3,故C选项错误,∵∠3>∠C,∴CG>FG,故D选项正确,故选:C.点拨:本题主要考查了平行线的判定与性质,以及三角形外角性质,解题时注意:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.5.(3分)如图所示,正方体的展开图为()A.B.C.D.解析:根据正方体的展开与折叠,正方体展开图的形状进行判断即可.【解答】解:根据“相间、Z端是对面”可得选项B不符合题意;再根据“上面∧”符号开口,可以判断选项A符合题意;选项C、D不符合题意;故选:A.点拨:本题考查正方体的展开与折叠,掌握正方体展开图的特征是正确判断的前提.6.(3分)在平面直角坐标系中,点O为坐标原点,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt △OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为()A.y=x B.y=x+1C.y=x+D.y=x+2解析:求得A、B的坐标以及抛物线的对称轴,根据题意设出A′(1,n),则B′(4,n+3),把B′(4,n+3)代入抛物线解析式求得n,即可求得A′、B′的坐标,然后根据待定系数法即可求得直线A'B'的表达式.【解答】解:如图,∵抛物线y=x2﹣2x﹣3与y轴交于点A,与x 轴正半轴交于点B,令y=0,解得x=﹣1或3,令x=0,求得y=﹣3,∴B(3,0),A(0,﹣3),∵抛物线y=x2﹣2x﹣3的对称轴为直线x=﹣=1,∴A′的横坐标为1,设A′(1,n),则B′(4,n+3),∵点B'落在抛物线上,∴n+3=16﹣8﹣3,解得n=2,∴A′(1,2),B′(4,5),设直线A'B'的表达式为y=kx+b,∴,解得∴直线A'B'的表达式为y=x+1,故选:B.点拨:本题考查了抛物线与x轴的交点,坐标和图形变换﹣平移,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据题意表示出A′、B′的坐标是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)计算:(a﹣1)2=a2﹣2a+1.解析:直接利用完全平方公式计算即可解答.【解答】解:(a﹣1)2=a2﹣2a+1.点拨:本题考查了完全平方公式,熟记公式是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.8.(3分)若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为﹣2.解析:利用根与系数的关系可得出方程的两根之积为﹣2,结合方程的一个根为1,可求出方程的另一个根,此题得解.【解答】解:∵a=1,b=﹣k,c=﹣2,∴x1•x2==﹣2.∵关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,∴另一个根为﹣2÷1=﹣2.故答案为:﹣2.点拨:本题考查了根与系数的关系以及一元二次方程的解,牢记两根之积等于是解题的关键.9.(3分)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是25.解析:根据题意可知,这个两位数的个位上的数是5,十位上的数是2,故这个两位数我25.【解答】解:由题意可得,表示25.故答案为:25.点拨:本题主要考查了用数字表示事件,理清题目中的符号表示的意义是解答本题的关键.10.(3分)祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下统计:数字0123456789频数881211108981214那么,圆周率的小数点后100位数字的众数为9.解析:直接根据众数的定义可得答案.【解答】解:圆周率的小数点后100位数字的众数为9,故答案为:9.点拨:本题主要考查众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.11.(3分)如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE的度数为82°.解析:证明△ABC≌△ADC得∠D+∠ACD=∠B+∠ACB=49°,进而根据三角形内角和定理得结果.【解答】解:∵AC平分∠DCB,∴∠BCA=∠DCA,∵CB=CD,∵AC=AC,∴△ABC≌△ADC(SAS),∴∠B=∠D,∴∠B+∠ACB=∠D+∠ACD,∵∠CAE=∠D+∠ACD=49°,∴∠B+∠ACB=49°,∴∠BAE=180°﹣∠B﹣∠ACB﹣∠CAE=82°,故答案为:82°.点拨:本题主要考查了角平分线的定义,全等三角形的性质与判定,三角形的内角和定理,三角形的外角定理,关键是证明三角形全等,求得∠B+∠ACB=49°.12.(3分)矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A'处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其它线段.当图中存在30°角时,AE的长为厘米或4厘米或厘米.解析:根据翻折可得∠ABE=∠A′BE,分3种情况讨论:当∠ABE =30°时或当∠AEB=30°时或当∠ABA′=30°时求AE的长.【解答】解:①当∠ABE=30°时,AE=AB×tan30°=;②当∠AEB=30°时,AE===4;③∠ABE=15°时,∠ABA′=30°,延长BA′交AD于F,如下图所示,设AE=x,则EA′=x,EF=,∵AF=AE+EF=ABtan30°=,∴x+=,∴x=8﹣4,∴AE=8﹣4.故答案为:厘米或4厘米或8﹣4厘米.点拨:本题考查了翻折变换、矩形的性质,解决本题的关键是掌握矩形性质.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)计算:(1﹣)0﹣|﹣2|+()﹣2;(2)解不等式组:解析:(1)先计算零指数幂、绝对值和负整数指数幂,再计算加减可得答案;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)原式=1﹣2+4=﹣1+4=3;(2)解不等式3x﹣2≥1,得:x≥1,解不等式5﹣x>2,得:x<3,则不等式组的解集为1≤x<3.点拨:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.(6分)先化简,再求值:(﹣)÷,其中x=.解析:先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=[﹣]÷=•=,当x=时,原式==.点拨:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.15.(6分)某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.解析:(1)共有4种可能出现的结果,抽到小艺的只有1种,可求出抽到小艺的概率;(2)用列表法表示所有可能出现的结果,进而求出两个同学均来自八年级的概率.【解答】解:(1)共有4种可能出现的结果,抽到小艺的只有1种,因此恰好抽到小艺的概率为,故答案为:;(2)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中都是八年级,即抽到小志、小晴的有2种,∴P(小志、小晴)==.点拨:本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提.16.(6分)如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A'B'C';(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.解析:(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)根据AB=2,BC=,AC=5,利用数形结合的思想解决问题即可.【解答】解:(1)如图1中,△A'B'C'即为所求.(2)如图2中,△AB'C'即为所求.点拨:本题考查作图﹣旋转变换,解题的关键是理解题意,学会利用数形结合的思想解决问题,属于中考常考题型.17.(6分)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.解析:(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y 元,根据“小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)先求两人带的总钱数,再求出两人合在一起买文具所需费用,由二者的差大于2个小工艺品所需钱数,可找出:他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【解答】解:(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y元,依题意,得:,解得:.答:笔记本的单价为5元,单独购买一支笔芯的价格为3元.(2)小贤和小艺带的总钱数为19+2+26=47(元).两人合在一起购买所需费用为5×(2+1)+(3﹣0.5)×10=40(元).∵47﹣40=7(元),3×2=6(元),7>6,∴他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.点拨:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.四、(本大题共3小题,每小题8分,共24分)18.(8分)如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.解析:(1)根据题意求得A(2,2),然后代入y=(x>0),求得k的值,即可求得反比例函数的解析式;(2)根据AB=2OA时,点E恰为AB的中点,得出OA=AE=BE,根据直角三角形斜边中线的性质得出CE=AE=BE,根据等腰三角形的性质以及三角形外角的性质即可得出∠AOE=2∠EOD,从而求得∠EOD=15°.【解答】解:(1)∵直线AC⊥x轴,垂足为D,∠AOD=45°,∴△AOD是等腰直角三角形,∵OA=2,∴OD=AD=2,∴A(2,2),∵顶点A在反比例函数y=(x>0)的图象上,∴k=2×2=4,∴反比例函数的解析式为y=;(2)∵AB=2OA,点E恰为AB的中点,∴OA=AE,∵Rt△ABC中,∠ACB=90°,∴CE=AE=BE,∴∠AOE=∠AEO,∠ECB=∠EBC,∵∠AEO=∠ECB+∠EBC=2∠EBC,∵BC∥x轴,∴∠EOD=∠ECB,∴∠AOE=2∠EOD,∵∠AOD=45°,∴∠EOD=15°.点拨:本题考查了待定系数法求反比例函数的解析式,直角三角形斜边中线的性质,三角形外角的性质,等腰三角形的性质,证得∠AOE=2∠EOD,是解题的关键.19.(8分)为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).复学一个月后,根据第二次测试的数学成绩得到如下统计表:成绩30≤x<4040≤x<5050≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100人数133815m6根据以上图表信息,完成下列问题:(1)m=14;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有20人,至多有34人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80解析:(1)根据前后两次抽取的人数一样多,可以计算出m的值;(2)根据直方图中的数据和表格中的数据,可以将图2中的图补充完整,然后即可写出成绩的变化情况;(3)根据表格中的数据,可以得到分数高于78分的至少有多少人,至多有多少人;(4)根据表格中的数据,可以计算出复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.【解答】解:(1)m=(2+8+10+15+10+4+1)﹣(1+3+3+8+15+6)=14,故答案为:14;(2)折线图如下图所示,复学后,学生的成绩总体上有了明显的提升;(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有14+6=20(人),至多有14+6+(15﹣1)=34(人),故答案为:20,34;(4)800×=320(人),答:复学一个月后该校800名八年级学生数学成绩优秀(80分及点拨:本题考查频数分布直方图、折线统计图、统计表、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.(8分)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)解析:(1)通过作垂线,构造直角三角形,利用直角三角形的边角关系,求出CB、AF,即可求出点A到直线DE的距离;(2)画出旋转后的图形,结合图形,明确图形中的已知的边角,再利用直角三角形的边角关系求出相应的角度即可.【解答】解:(1)如图2,过A作AM⊥DE,交ED的延长线于点M,过点C作CF⊥AM,垂足为F,过点C作CN⊥DE,垂足为N,由题意可知,AC=80,CD=80,∠DCB=80°,∠CDE=60°,在Rt△CDN中,CN=CD•sin∠CDE=80×=40(mm)=FM,∠DCN=90°﹣60°=30°,又∵∠DCB=80°,∴∠BCN=80°﹣30°=50°,∵AM⊥DE,CN⊥DE,∴AM∥CN,∴∠A=∠BCN=50°,∴∠ACF=90°﹣50°=40°,在Rt△AFC中,AF=AC•sin40°=80×0.643≈51.44,∴AM=AF+FM=51.44+40≈120.7(mm),答:点A到直线DE的距离约为120.7mm;(2)旋转后,如图3所示,根据题意可知∠DCB=80°+10°=90°,在Rt△BCD中,CD=80,BC=40,∴tan∠D===0.500,∴∠D=26.6°,因此旋转的角度为:60°﹣26.6°=33.4°,答:CD旋转的角度约为33.4°.点拨:本题考查直角三角形的边角关系,锐角三角函数的意义,通过作辅助线构造直角三角形是常用的方法,也是基本的方法.五、(本大题共2小题,每小题9分,共18分)21.(9分)已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC 为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).解析:(1)连接OA,OB,由切线的性质可求∠PAO=∠PBO=90°,由四边形内角和可求解;(2)当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由切线长定理可得PA=PB,∠APC=∠BPC=30°,由“SAS”可证△APC≌△BPC,可得∠ACP=∠BCP=30°,AC=BC,可证AP=AC =PB=BC,可得四边形APBC是菱形;(3)分别求出AP,PD的长,由弧长公式可求,即可求解.【解答】解:(1)如图1,连接OA,OB,∵PA,PB为⊙O的切线,∴∠PAO=∠PBO=90°,∵∠APB+∠PAO+∠PBO+∠AOB=360°,∴∠APB+∠AOB=180°,∵∠APB=80°,∴∠AOB=100°,∴∠ACB=50°;(2)如图2,当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由(1)可知,∠AOB+∠APB=180°,∵∠APB=60°,∴∠AOB=120°,∴∠ACB=60°=∠APB,∵点C运动到PC距离最大,∴PC经过圆心,∵PA,PB为⊙O的切线,∴PA=PB,∠APC=∠BPC=30°,又∵PC=PC,∴△APC≌△BPC(SAS),∴∠ACP=∠BCP=30°,AC=BC,∴∠APC=∠ACP=30°,∴AP=AC,∴AP=AC=PB=BC,∴四边形APBC是菱形;(3)∵⊙O的半径为r,∴OA=r,OP=2r,∴AP=r,PD=r,∵∠AOP=90°﹣∠APO=60°,∴==,∴阴影部分的周长=PA+PD+=r+r+r=(+1+)r.点拨:本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,弧长公式,菱形的判定等知识,灵活运用这些性质解决问题是本题的关键.22.(9分)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…﹣2﹣1012…y…m0﹣3n﹣3…(1)根据以上信息,可知抛物线开口向上,对称轴为直线x=1;(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P',描出相应的点P',再把相应的点P'用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>﹣2)与抛物线及(3)中的点P'所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系A3A4﹣A1A2=1.解析:(1)观察表格中的数据,得到x=0和x=2时,y值相等都为﹣3,且其他y的值比﹣3大,可得出抛物线开口方向及对称轴;(2)把三点坐标代入抛物线解析式求出a,b,c的值确定出解析式,进而求出m与n的值即可;(3)画出抛物线图象,确定出点P'运动的轨迹即可;(4)根据(3)中图象可得答案.【解答】解:(1)根据表格信息,可知抛物线开口向上,对称轴为直线x=1;故答案为:上,直线x=1;(2)把(﹣1,0),(0,﹣3),(2,﹣3)代入y=ax2+bx+c,得:,解得:,∴抛物线解析式为y=x2﹣2x﹣3,当x=﹣2时,m=4+4﹣3=5;当x=1时,n=1﹣2﹣3=﹣4;(3)画出抛物线图象,如图1所示,描出P'的轨迹,是一条抛物线,如备用图所示,(4)根据题意及(3)中图象可得:A3A4﹣A1A2=1.故答案为:A3A4﹣A1A2=1.点拨:本题考查了待定系数法求二次函数的解析式及二次函数的图象与性质,数形结合并熟练掌握二次函数的相关性质是解题的关键.六、(本大题共12分)23.(12分)某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC 为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为S1+S2=S3;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC 为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC =90°,AB=2,DE=2,点P在AE上,∠ABP=30°,PE=,求五边形ABCDE的面积.解析:类比探究(1)通过证明△ADB∽△BFC,可得=()2,同理可得=()2,由勾股定理可得AB2+AC2=BC2,可得结论;推广验证(2)通过证明△ADB∽△BFC,可得=()2,同理可得=()2,由勾股定理可得AB2+AC2=BC2,可得结论;拓展应用(3)过点A作AH⊥BP于H,连接PD,BD,由直角三角形的性质可求AP=,BP=BH+PH=3+,可求S△ABP=,通过证明△ABP∽△EDP,可得∠EPD=∠APB=45°,,S△PDE=,可得∠BPD=90°,PD=1+,可求S△BPD=2+3,由(2)的结论可求S△BCD=S△ABP+S△DPE=+=2+2,即可求解.【解答】解:类比探究(1)∵∠1=∠3,∠D=∠F=90°,∴△ADB∽△BFC,∴=()2,同理可得:=()2,∵AB2+AC2=BC2,∴=()2+()2==1,∴S1+S2=S3,故答案为:S1+S2=S3.(2)结论仍然成立,理由如下:∵∠1=∠3,∠D=∠F,∴△ADB∽△BFC,∴=()2,同理可得:=()2,∵AB2+AC2=BC2,∴=()2+()2==1,∴S1+S2=S3,(3)过点A作AH⊥BP于H,连接PD,BD,∵∠ABH=30°,AB=2,∴AH=,BH=3,∠BAH=60°,∵∠BAP=105°,∴∠HAP=45°,∵AH⊥BP,∴∠HAP=∠APH=45°,∴PH=AH=,∴AP=,BP=BH+PH=3+,∴S△ABP===,∵PE=,ED=2,AP=,AB=2,∴=,=,∴,且∠E=∠BAP=105°,∴△ABP∽△EDP,∴∠EPD=∠APB=45°,,∴∠BPD=90°,PD=1+,∴S△BPD===2+3,∵△ABP∽△EDP,∴=()2=,∴S△PDE=×=∵tan∠PBD=,∴∠PBD=30°,∴∠CBD=∠ABC﹣∠ABP﹣∠CBD=30°,∴∠ABP=∠PDE=∠CBD,又∵∠A=∠E=∠C=105°,∴△ABP∽△EDP∽△CBD,由(2)的结论可得:S△BCD=S△ABP+S△DPE=+=2+2,∴五边形ABCDE的面积=++2+2+2+3=6+7.点拨:本题是四边形综合题,考查了相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,利用相似三角形的性质求三角形的面积是本题的关键.。
【高频真题解析】2022年江西省中考数学真题汇总 卷(Ⅱ)(含答案及详解)
2022年江西省中考数学真题汇总 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )A .45︒B .135︒C .75︒D .165︒ 2、有理数a ,b 在数轴上对应的位置如图所示,则下列结论正确的是( ).A .0a >B .1b >C .0a b ->D .a b >3、点()4,9-关于x 轴的对称点是( ) A .()4,9--B .()4,9-C .()4,9-D .()4,9 4、利用如图①所示的长为a 、宽为b 的长方形卡片4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的等式为( )·线○封○密○外A .22()4()a b ab a b -+=+B .22()()a b a b a b -+=-C .222()2a b a ab b +=++D .222()2a b a ab b ---+5、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程1y (米),2y (米)与运动时间x (分)之间的函数关系如图所示,下列结论中错误的是( )A .两人前行过程中的速度为180米/分B .m 的值是15,n 的值是2700C .爸爸返回时的速度为90米/分D .运动18分钟或31分钟时,两人相距810米6、下列图形是全等图形的是( ) A . B . C . D .7、已知ab =a ,b 的关系是( ) A .相等 B .互为相反数C .互为倒数D .互为有理化因式8、如图,将一副三角板平放在一平面上(点D 在BC 上),则1∠的度数为( )A .60︒B .75︒C .90︒D .105︒9、如图,在平面直角坐标系xOy 中,已知点A (1,0),B (3,0),C 为平面内的动点,且满足∠ACB =90°,D 为直线y =x 上的动点,则线段CD 长的最小值为( )A .1B .2 C1 D110、已知单项式5xayb +2的次数是3次,则a +b 的值是( ) A .1 B .3 C .4 D .0 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分) 1、如图,在ABC 中,3cm AB =,6cm BC ,5cm AC =,蚂蚁甲从点A 出发,以1.5cm/s 的速度沿着三角形的边按A B C A →→→的方向行走,甲出发1s 后蚂蚁乙从点A 出发,以2cm/s 的速度沿着三角形的边按A C B A →→→的方向行走,那么甲出发________s 后,甲乙第一次相距2cm .·线○封○密○外2、如图, 已知在 Rt ABC △ 中, 90,30,1,ACB B AC D ∠∠=== 是 AB 边上一点, 将 ACD △ 沿 CD 翻折, 点 A 恰好落在边 BC 上的点 E 处,那么AD =__________3、班主任从甲、乙、丙、丁四位同学中选择一位同学参加学校的演讲比赛.甲同学被选中的概率是______.4、据统计我国微信用户数量已突破8.87亿人,近似数8.87亿有__个有效数字.5、如图,围棋盘的方格内,白棋②的位置是()5,2--,白棋④的位置是()4,6--,那么黑棋①的位置应该表示为______.三、解答题(5小题,每小题10分,共计50分)1、如图1,把一副三角板拼在一起,边OA ,OC 与直线EF 重合,其中45AOB ∠=︒,60COD ∠=︒.(1)求图1中BOD ∠的度数;(2)如图2,三角板COD 固定不动,将三角板AOB 绕点O 顺时针旋转一个角度,在转动过程中,三角板AOB 一直在EOD ∠的内部,设EOA α∠=. ①若OB 平分EOD ∠,求α; ②若4AOC BOD ∠=∠,求α. 2、数学课上,王老师准备了若干个如图1的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为b ,宽为a 的长方形.并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积: 方法1: ; 方法2: ; (2)观察图2,请你写出代数式:(a +b )2,a 2+b 2,ab 之间的等量关系 ; (3)根据(2)题中的等量关系,解决如下问题: ①已知:a +b =5,(a ﹣b )2=13,求ab 的值; ②已知(2021﹣a )2+(a ﹣2020)2=5,求(2021﹣a )(a ﹣2020)的值. 3、问题发现: (1)如图1,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一直线上,连接BE , ·线○封○密○外①求证:△ACD ≌△BCE ;②求∠AEB 的度数.(2)拓展探究:如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB=∠DCE =90°,点A 、D 、E 在同一直线上,CM 为△DCE 中DE 边上的高交AE 于M ,连接BE .请求∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由.4、如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,且80AOD DOB ∠-∠=︒.求∠AOC 和∠DOE 的度数.5、计算:(a ﹣2b )(a +2b )﹣(a ﹣2b )2+8b 2.-参考答案-一、单选题1、D【解析】【分析】根据题意得出∠1=15°,再求∠1补角即可.【详解】由图形可得1453015∠=︒-︒=︒∴∠1补角的度数为18015165︒-︒=︒故选:D .【点睛】本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键. 2、D 【解析】 【分析】 先根据数轴可得101a b <-<<<,再根据有理数的减法法则、绝对值性质逐项判断即可得. 【详解】 解:由数轴的性质得:101a b <-<<<. A 、0a <,则此项错误; B 、1b <,则此项错误; C 、0a b -<,则此项错误; D 、1a b >>,则此项正确; 故选:D . 【点睛】 本题考查了数轴、有理数的减法、绝对值,熟练掌握数轴的性质是解题关键. 3、A 【解析】 【分析】·线○封○密○外直接利用关于x 轴对称点的性质得出答案.【详解】解:点P (−4,9)关于x 轴对称点P ′的坐标是:(−4,−9).故选:A .【点睛】此题主要考查了关于x 轴对称点的性质,正确得出横纵坐标的关系是解题关键.4、A【解析】【分析】整个图形为一个正方形,找到边长,表示出面积;也可用1个小正方形的面积加上4个矩形的面积表示,然后让这两个面积相等即可.【详解】∵大正方形边长为:()a b +,面积为:()2a b +; 1个小正方形的面积加上4个矩形的面积和为:()24a b ab -+; ∴()()2222424a b ab a ab b ab a b -+=-++=+.故选:A .【点睛】此题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键.5、D【解析】【分析】两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A ;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m =15,由此即可计算出n 的值和爸爸返回的速度,即可判断B 、C ;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案. 【详解】 解:∵3600÷20=180米/分, ∴两人同行过程中的速度为180米/分,故A 选项不符合题意; ∵东东在爸爸返回5分钟后返回即第20分钟返回 ∴m =20-5=15, ∴n =180×15=2700,故B 选项不符合题意; ∴爸爸返回的速度=2700÷(45-15)=90米/分,故C 选项不符合题意; ∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米, ∴运动18分钟时两人相距3240-2430=810米; ∵返程过程中东东45-20=25分钟走了3600米, ∴东东返程速度=3600÷25=144米/分, ∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米, ∴运动31分钟两人相距756米,故D 选项符合题意; 故选D . 【点睛】 本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像. 6、D 【解析】 【详解】·线○封○密○外解:A 、不是全等图形,故本选项不符合题意;B 、不是全等图形,故本选项不符合题意;C 、不是全等图形,故本选项不符合题意;D 、全等图形,故本选项符合题意;故选:D【点睛】本题主要考查了全等图形的定义,熟练掌握大小形状完全相同的两个图形是全等图形是解题的关键.7、A【解析】【分析】求出a 与b 的值即可求出答案.【详解】解:∵a=,b =∴a =b ,故选:A .【点睛】本题考查了分母有理化,解题的关键是求出a 与b 的值,本题属于基础题型.8、B【解析】【分析】根据三角尺可得45,30EDB ABC ∠=︒∠=︒,根据三角形的外角性质即可求得1∠【详解】 解:45,30EDB ABC ∠=︒∠=︒175EDB ABC ∴∠=∠+∠=︒ 故选B 【点睛】 本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键. 9、C 【解析】 【分析】 取AB 的中点E ,过点E 作直线y =x 的垂线,垂足为D ,求出DE 长即可求出答案. 【详解】 解:取AB 的中点E ,过点E 作直线y =x 的垂线,垂足为D ,∵点A (1,0),B (3,0), ∴OA =1,OB =3, ∴OE =2,∴ED∵∠ACB =90°, ∴点C 在以AB 为直径的圆上, ·线○封○密○外∴线段CD−1.故选:C .【点睛】本题考查了垂线段最短,一次函数图象上点的坐标特征,圆周角定理等知识,确定C ,D 两点的位置是解题的关键.10、A【解析】【分析】根据单项式的次数的概念求解.【详解】解:由题意得:a+b +2=3,∴a+b =1.故选:A .【点睛】本题考查了单项式的有关概念,解答本题的关键是掌握单项式的次数:所有字母的指数和.二、填空题1、4【解析】【分析】根据题意,找出题目的等量关系,列出方程,解方程即可得到答案.【详解】 解:根据题意, ∵3cm AB =,6cm BC ,5cm AC =, ·线∴周长为:35614++=(cm ),∵甲乙第一次相距2cm ,则甲乙没有相遇,设甲行走的时间为t ,则乙行走的时间为(1)t -,∴1.52(1)214t t +-+=,解得:4t =;∴甲出发4秒后,甲乙第一次相距2cm .故答案为:4.【点睛】本题考查了一元一次方程的应用,解题的关键是熟练掌握题意,正确的列出方程.21##1-【解析】【分析】翻折的性质可知AD DE AC CE ==,,A CED ∠=∠;在Rt ABC 中有60A ∠=︒,BC =CED B EDB ∠=∠+∠,得DEB 是等腰三角形,AD DE BE BC CE BC AC ===-=-即可求出长度.【详解】解:翻折可知:ACD ECD ≌,AD DE AC CE ==,∵30B ∠=︒,1AC =,90ACB ∠=︒∴在Rt ABC 中,22AB AC ==∴60A CED ∠=∠=︒,BC =∵CED B EDB ∠=∠+∠∴30EDB B ∠=∠=︒∴DEB 是等腰三角形∴DE EB =∴1AD EB BC CE ==-=1.【点睛】本题考查了轴对称的性质,等腰三角形的判定与性质,三角形的外角,勾股定理等知识点.解题的关键在于找出边相等的关系.3、14或0.25【解析】【分析】由题意得出从4位同学中选取1位共有4种等可能结果,其中选中甲同学的只有1种结果,根据概率公式可得.【详解】解:从4位同学中选取1位共有4种等可能结果,其中选中甲同学的只有1种结果, ∴恰好选中乙同学的概率为14, 故答案为:14.【点睛】本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n . 4、3【解析】 【分析】 根据有效数字的定义求解.·线【详解】解:近似数8.87亿有3个有效数字,它们为8、8、7.故答案为:3.【点睛】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.5、()1,5--【解析】【分析】先根据白棋②的位置是()5,2--,白棋④的位置是()4,6--确定坐标系,然后再确定黑棋①的坐标即可.【详解】根据图形可以知道,黑棋①的位置应该表示为()1,5--故答案为:()1,5--【点睛】此题主要考查了坐标确定位置,解决问题的关键是正确建立坐标系.三、解答题1、 (1)75°;(2)①15°;②40°.【解析】【分析】(1)根据平角定义,利用角的差∠BOD =180°-∠AOB -∠COD 运算即可;(2)①根据补角性质求出∠EOD =180°-∠COD =180°-60°=120°,根据角平分线定义求出∠EOB =12∠EEE =12×120°=60°,再根据两角差E =∠EEE −∠EEE =15°即可;②根据角的和求出∠AOC =∠AOB +∠BOD +∠COD =105°+∠BOD ,然后列方程求出∠EEE =35°,求出∠EEE =4∠EEE =4×35°=140°,再求补角即可.(1)解:∵45AOB ∠=︒,60COD ∠=︒,∴∠BOD =180°-∠AOB -∠COD =180°-45°-60°=75°;(2)解:①∵60COD ∠=︒,∴∠EOD =180°-∠COD =180°-60°=120°,∵OB 平分EOD ∠,∴∠EOB =12∠EEE =12×120°=60°,∵45AOB ∠=︒,∴E =∠EEE −∠EEE =60°−45°=15°;②∵45AOB ∠=︒,60COD ∠=︒.∴∠AOC =∠AOB +∠BOD +∠COD =45°+∠BOD +60°=105°+∠BOD ,∵4AOC BOD ∠=∠,∴105°+∠EEE =4∠EEE ,解得:∠EEE =35°,∴∠EEE =4∠EEE =4×35°=140°,∴α=180°-∠AOC =180°-140°=40°. 【点睛】 本题考查三角板中形成的角计算,平角,补角,角平分线有关的计算,角的和差倍分,一元一次方·线程,本题难度不大,是角中计算的典型题.2、 (1)(E+E)2;E2+E2+2EE(2)(E+E)2=E2+E2+2EE;(3)①EE=3;②-2【解析】【分析】(1)方法1,由大正方形的边长为(a+b),直接求面积;方法2,大正方形是由2个长方形,2个小正方形拼成,分别求出各个小长方形、正方形的面积再求和即可;(2)由(1)直接可得关系式;(3)①由(a-b)2=a2+b2-2ab=13,(a+b)2=a2+b2+2ab=25,两式子直接作差即可求解;②设2021-a=x,a-2020=y,可得x+y=1,再由已知可得x2+y2=5,先求出xy=-2,再求(2021-a)(a-2020)=-2即可.(1)方法一:∵大正方形的边长为(a+b),∴S=(a+b)2;方法二:大正方形是由2个长方形,2个小正方形拼成,∴S=b2+ab+ab+a2=a2+b2+2ab;故答案为:(a+b)2,a2+b2+2ab;(2)由(1)可得(a+b)2=a2+b2+2ab;故答案为:(a+b)2=a2+b2+2ab;(3)①∵(a-b)2=a2+b2-2ab=13①,(a+b)2=a2+b2+2ab=25②,由①-②得,-4ab=-12,解得:ab=3;②设2021-a=x,a-2020=y,∴x+y=1,∵(2021-a)2+(a-2020)2=5,∴x2+y2=5,∵(x+y)2=x2+2xy+y2=1,∴2xy=1-(x2+y2)=1-5=-4,解得:xy=-2,∴(2021-a)(a-2020)=-2.【点睛】本题考查完全平方公式的几何背景,熟练掌握正方形、长方形面积的求法,灵活应用完全平方公式的变形是解题的关键.3、(1)①见解析;②∠AEB=60°(2)∠AEB=90°,AE=BE+2CM.理由见解析【解析】【分析】(1)①先证明∠EEE=∠EEE,再结合等边三角形的性质,利用EEE证明△ACD≌△BCE即可;②先求解∠EEE=120°,由△ACD≌△BCE可得∠ADC=∠BEC,再利用角的和差关系可得答案;(2)先证明△EEE≌△EEE,∠EEE=135°,再结合全等三角形的性质与等腰直角三角形的性质可得∠EEE=90°,由EE⊥EE,结合等腰直角三角形的性质,可得EE=EE=EE,结合全等三角形的性质可得EE=EE+2EE.(1) 证明:①∵△ACB 和△DCE 均为等边三角形,∴CA =CB ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD =60°﹣∠DCB =∠BCE . 在△ACD 和△BCE 中,{EE =EE ∠EEE =∠EEEEE =EE, ∴△ACD ≌△BCE (SAS ).解:②∵△ACD ≌△BCE ,∴∠ADC =∠BEC .∵△DCE 为等边三角形,∴∠CDE =∠CED =60°.∵点A ,D ,E 在同一直线上,∴∠ADC =120°,∴∠BEC =120°.∴∠AEB =∠BEC ﹣∠CED =60°.(2)解:∠AEB =90°,AE =BE +2CM .理由如下: 如图2所示:由题意得:EE⊥EE ,·线○封○密○外∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,{EE=EE∠EEE=∠EEEEE=EE,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°,∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.【点睛】本题考查的是全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质,确定每一问中的两个全等三角形是解本题的关键.4、50°,25°.【解析】【分析】 根据邻补角的性质,可得∠AOD +∠BOD =180°,即∠EEE =180°−∠EEE ,代入80AOD DOB ∠-∠=︒可得∠BOD ,根据对顶角的性质,可得∠∠AOC 的度数,根据角平分线的性质,可得∠DOE 的数. 【详解】 解:由邻补角的性质,得∠AOD +∠BOD =180°,即∠EEE =180°−∠EEE ∵80AOD DOB ∠-∠=︒, ∴180°−∠EEE −∠EEE =80°. ∴∠EEE =50°,∴∠AOC =∠BOD =50°, ∵OE 平分∠BOD ,得 ∠DOE =12∠DOB =25°.【点睛】 本题考查了角平分线的定义,对顶角、邻补角的性质,解题关键是熟记相关性质,根据角之间的关系建立方程求解. 5、4EE 【解析】 【分析】 根据整式的乘法公式及运算法则化简,合并即可求解. 【详解】 (a ﹣2b )(a +2b )﹣(a ﹣2b )2+8b 2 =a 2-4b 2-a 2+4ab -4b 2+8b 2 =4ab . ·线○封○密·○外【点睛】此题主要考查整式的乘法运算,解题的关键是熟知其运算法则及运算公式.。
江西九年级试卷和答案数学【含答案】
江西九年级试卷和答案数学【含答案】专业课原理概述部分一、选择题1. 下列哪个数是负数?()A. -5B. 3C. 0D. 22. 如果 a > b,那么下列哪个选项是正确的?()A. a b > 0B. a + b < 0C. a b > 0D. a / b < 03. 下列哪个数是偶数?()A. 21B. 16C. 9D. 174. 下列哪个数是素数?()A. 27B. 29C. 35D. 395. 下列哪个数是无理数?()A. √9B. √16C. √25D. √2二、判断题1. 任何数乘以0都等于0。
()2. 两个负数相乘的结果是正数。
()3. 任何数除以1都等于它本身。
()4. 两个奇数相加的结果是偶数。
()5. 两个偶数相乘的结果是偶数。
()三、填空题1. 如果 a = 3,那么 2a 5 = _______。
2. 如果 x 是一个负数,那么 -x 是一个_______数。
3. 5的平方根是_______。
4. 两个质数相乘的结果是_______。
5. 1的倒数是_______。
四、简答题1. 解释什么是偶数。
2. 解释什么是奇数。
3. 解释什么是质数。
4. 解释什么是合数。
5. 解释什么是无理数。
五、应用题1. 如果一个数是6的倍数,那么这个数除以3的结果是什么?2. 如果一个数是4的倍数,那么这个数除以2的结果是什么?3. 如果一个数是9的倍数,那么这个数除以3的结果是什么?4. 如果一个数是5的倍数,那么这个数乘以2的结果是什么?5. 如果一个数是7的倍数,那么这个数乘以3的结果是什么?六、分析题1. 解释为什么两个负数相乘的结果是正数。
2. 解释为什么两个奇数相加的结果是偶数。
七、实践操作题1. 使用计算器计算√9 的值,并解释为什么它是无理数。
2. 使用计算器计算√16 的值,并解释为什么它是有理数。
八、专业设计题1. 设计一个函数,使其输入一个整数n,输出n的阶乘。
2023年江西省中考数学试卷及答案解析
2023年江西省中考数学试卷及答案解析一、选择题1. 小华骑自行车从家到学校需要20分钟,而他骑电动车只需要10分钟。
假设他骑电动车的速度是自行车的3倍,那么从家到学校的距离是多少?A) 2公里B) 3公里C) 4公里D) 5公里答案:A) 2公里解析:设自行车的速度为v,从题意可知用自行车骑到学校需要20分钟,即距离为20v。
而用电动车骑到学校只需要10分钟,即距离为10(3v)。
根据题意可得20v = 10(3v),解得v = 2。
因此,从家到学校的距离为20v = 20 × 2 = 40分钟。
2. 下列哪个数是3的倍数?A) 186B) 245C) 312D) 419解析:判断一个数是否是3的倍数有一个小技巧,即将该数的各个位数相加,如果和能被3整除,那么该数也能被3整除。
例如,312的个位数、十位数和百位数之和为3+1+2=6,6能被3整除,故312也能被3整除。
3. 若一辆汽车以每小时60公里的速度行驶,行驶8小时后所走的距离是多少?A) 400公里B) 480公里C) 520公里D) 560公里答案:D) 560公里解析:题目已给出汽车的速度是每小时60公里,而行驶的时间是8小时,因此,所走的距离为60 × 8 = 480公里。
4. 某数的2倍减去5等于8,那么这个数是多少?A) 6B) 7C) 8D) 9解析:设这个数为x,根据题意可以得到2x - 5 = 8,解得2x = 13,x = 6。
5. 某数的5倍减去32等于38,那么这个数是多少?A) 4B) 5C) 6D) 7答案:D) 7解析:设这个数为x,根据题意可以得到5x - 32 = 38,解得5x = 70,x = 7。
二、填空题6. 已知两个数相加是48,其中一个数是3/4,求另一个数。
答案:16解析:设另一个数为x,由题意可得 x + 3/4x = 48,解得 x = 16。
7. 若3/4 ÷ x = 12,则x的值为多少?答案:1/48解析:根据题意可得 3/4 ÷ x = 12,解得 x = 1/48。
2022年江西省中考数学真题(解析版)
【点睛】本题考查的是用列表法或画树状图法求概率,随机事件.解决本题的关键是掌握列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率所求情况数与总情况数之比.
16.如图是 的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).
【答案】
【解析】
【分析】先表示乙每小时采样(x-10)人,进而得出甲采样160人和乙采样140人所用的时间,再根据时间相等列出方程即可.
【详解】根据题意可知乙每小时采样(x-10)人,根据题意,得
.
故答案为: .
【点睛】本题主要考查了列分式方程,确定等量关系是列方程的关键.
11.沐沐用七巧板拼了一个对角线长为2的正方形,再用这副七巧板拼成一个长方形(如图所示),则长方形的对角线长为__________.
(2)根据点C和D的坐标列方程可得m的值,从而得k的值,再利用待定系数法可得直线AC的解析式.
【小问1详解】
∵点B在y轴上, ,
∴B(0,2),
∵点D落在x轴正半轴上,且
∴D(1,0),
∴线段AB向下平移2个单位,再向右平移1个单位,得到线段CD,
∵点A(m,4),
∴C(m+1,2),
故答案为:(0,2),(1,0),(m+1,2);
6.甲、乙两种物质的溶解度 与温度 之间的对应关系如图所示,则下列说法中,错误的是( )
A. 甲、乙两种物质的溶解度均随着温度的升高而增大
B. 当温度升高至 时,甲的溶解度比乙的溶解度大
C. 当温度为 时,甲、乙的溶解度都小于
D. 当温度为 时,甲、乙 溶解度相等
【答案】D
【解析】
2024年江西省中考数学试卷+答案解析
2024年江西省中考数学试卷一、选择题:本题共6小题,每小题3分,共18分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.的相反数是()A. B.5 C. D.2.“长征是宣言书,长征是宣传队,长征是播种机”.二万五千里长征是中国历史上的伟大壮举,也是人类史上的奇迹.将25000用科学记数法可表示为()A. B. C. D.3.如图所示的几何体,其主视图为()A.B.C.D.4.将常温中的温度计插入一杯的热水恒温中,温度计的读数与时间的关系用图象可近似表示为()A. B.C. D.5.如图是某地去年一至六月每月空气质量为优的天数的折线统计图,关于各月空气质量为优的天数,下列结论错误的是()A.五月份空气质量为优的天数是16天B.这组数据的众数是15天C.这组数据的中位数是15天D.这组数据的平均数是15天6.如图是的正方形网格,选择一空白小正方形,能与阴影部分组成正方体展开图的方法有()A.1种B.2种C.3种D.4种二、填空题:本题共6小题,每小题3分,共18分。
7.计算:______.8.因式分解:______.9.在平面直角坐标系中,将点向右平移2个单位长度,再向上平移3个单位长度得到点B,则点B 的坐标为______.10.观察a,,,,…,根据这些式子的变化规律,可得第100个式子为______.11.将图1所示的七巧板,拼成图2所示的四边形ABCD,连接AC,则______.12.如图,AB是的直径,,点C在线段AB上运动,过点C的弦,将沿DE翻折交直线AB于点F,当DE的长为正整数时,线段FB的长为______.三、解答题:本题共11小题,共84分。
解答应写出文字说明,证明过程或演算步骤。
13.本小题6分计算:;化简:14.本小题6分如图,AC为菱形ABCD的对角线,请仅用无刻度的直尺按要求完成以下作图保留作图痕迹如图1,过点B作AC的垂线;如图2,点E为线段AB的中点,过点B作AC的平行线.15.本小题6分某校一年级开设人数相同的A,B,C三个班级,甲、乙两位学生是该校一年级新生,开学初学校对所有一年级新生进行电脑随机分班.“学生甲分到A班”的概率是______;请用画树状图法或列表法,求甲、乙两位新生分到同一个班的概率.16.本小题6分如图,是等腰直角三角形,,双曲线经过点B,过点作x 轴的垂线交双曲线于点C,连接点B的坐标为______;求BC所在直线的解析式.17.本小题6分如图,AB是半圆O的直径,点D是弦AC延长线上一点,连接BD,BC,求证:BD是半圆O的切线;当时,求的长.18.本小题8分如图,书架宽84cm,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚,每本语文书厚数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本;如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?19.本小题8分图1是世界第一“大碗”——景德镇昌南里文化艺术中心主体建筑,其造型灵感来自于宋代湖田窑影青斗笠碗,寓意“万瓷之母”.如图2,“大碗”的主视图由“大碗”主体ABCD和矩形碗底BEFC组成,已知,AM,DN是太阳光线,,,点M,E,F,N在同一条直线上.经测量,,,结果精确到求“大碗”的口径AD的长;求“大碗”的高度AM的长.参考数据:,,20.本小题8分追本溯源题来自于课本中的习题,请你完成解答,提炼方法并完成题如图1,在中,BD平分,交AC于点D,过点D作BC的平行线,交AB于点E,请判断的形状,并说明理由.方法应用如图2,在▱ABCD中,BE平分,交边AD于点E,过点A作交DC的延长线于点F,交BC于点①图中一定是等腰三角形的有______.A.3个B.4个C.5个D.6个②已知,,求CF的长.21.本小题9分近年来,我国肥胖人群的规模快速增长.目前,国际上常用身体质量指数,缩写来衡量人体胖瘦程度,其计算公式是中国人的BMI数值标准为:为偏瘦;为正常;为偏胖;为肥胖.某数学兴趣小组对本校七年级学生的胖瘦程度进行统计调查,从该校所有七年级学生中随机抽出10名男生、10名女生,测得他们的身高和体重值,并计算出相应的BMI数值,再参照BMI数值标准分成四组:;;;将所得数据进行收集、整理、描述.收集数据七年级10名男生数据统计表编号12345678910身高体重BMI s七年级10名女生数据统计表编号12345678910身高体重BMI整理、描述数据七年级20名学生BMI频数分布表组别BMI男生频数女生频数A32B46C t2D10应用数据______,______,______;已知该校七年级有男生260人,女生240人.①估计该校七年级男生偏胖的人数;②估计该校七年级学生的人数.根据以上统计数据,针对该校七年级学生的胖瘦程度,请你提出一条合理化建议.22.本小题9分如图,一小球从斜坡O点以一定的方向弹出,球的飞行路线可以用二次函数刻画,斜坡可以用一次函数刻画,小球飞行的水平距离米与小球飞行的高度米的变化规律如表:x012m4567…y068n…①______,______;②小球的落点是A,求点A的坐标.小球飞行高度米与飞行时间秒满足关系:①小球飞行的最大高度为______米;②求v的值.23.本小题12分综合与实践如图,在中,点D是斜边AB上的动点点D与点A不重合,连接CD,以CD为直角边在CD的右侧构造,,连接BE,特例感知如图1,当时,BE与AD之间的位置关系是______,数量关系是______.类比迁移如图2,当时,猜想BE与AD之间的位置关系和数量关系,并证明猜想.拓展应用在的条件下,点F与点C关于DE对称,连接DF,EF,BF,如图已知,设,四边形CDFE的面积为①求y与x的函数表达式,并求出y的最小值;②当时,请直接写出AD的长度.答案和解析1.【答案】B【解析】【分析】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是根据相反数的定义直接求得结果.【解答】解:的相反数是故选:2.【答案】C【解析】解:,故选:将一个数表示成的形式,其中,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.3.【答案】B【解析】解:由题干中的几何体可得其主视图为,故选:结合图形,根据主视图的定义即可求得答案.本题考查简单组合体的三视图,此为基础且重要知识点,必须熟练掌握.4.【答案】C【解析】解:将常温中的温度计插入一杯的热水中,温度计的度数与时间的关系,图象是C;故选:根据温度计上升到一定的温度后不变,可得答案;本题考查了函数图象,注意温度计的温度升高到60度时温度不变.5.【答案】D【解析】解:A、根据折线图,五月份空气质量为优的天数是16天,故不符合题意;B、根据折线图,这组数据的众数是15天,故不符合题意;C、这组数据的中位数是天,故不符合题意;D、这组数据的平均数是,故符合题意.故选:分析折线统计图中的数据即可求出答案.本题考查了折线统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.6.【答案】B【解析】解:如图所示:选择标有1或2的位置的空白小正方形,能与阴影部分组成正方体展开图,所以能与阴影部分组成正方体展开图的方法有2种.故选:依据正方体的展开图的结构特征进行判断,即可得出结论.此题主要考查了几何体的展开图,关键是掌握正方体展开图的特点.7.【答案】1【解析】解:,故答案为:利用有理数的乘方法则计算即可.本题考查有理数的乘方,熟练掌握其运算法则是解题的关键.8.【答案】【解析】解:故答案为:直接提取公因式a,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.9.【答案】【解析】解:将点向右平移2个单位长度,再向上平移3个单位长度得到点B,则点B的坐标为,即故答案为:根据向右平移横坐标加,向上平移纵坐标加计算即可.本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10.【答案】【解析】解:根据题意可知,有一列按照一定规律排列的单项式:a,,,,…,第100个式子为:,故答案为:根据题意可知,有一列按照一定规律排列的单项式:a,,,,…,据此可以得出第100个式子为:本题考查的是数字的变化规律和单项式,熟练找出数字间的变化规律是解题的关键.11.【答案】【解析】解:令AC与BD的交点为O,,,又,四边形ABCD是平行四边形,与BD互相平分,,在中,故答案为:根据所给拼图,得出四边形ABCD是平行四边形,根据平行四边形的性质及正切的定义即可解决问题.本题考查解直角三角形、七巧板及平行四边形的判定与性质,能根据所拼图形得出四边形ABCD是平行四边形及熟知正切的定义是解题的关键.12.【答案】或或2【解析】解:为直径,DE为弦,,当DE的长为正整数时,或2,当时,即DE为直径,,将DBE沿DE翻折交直线AB于点F,此时F与点A重合,故;当时,且在点C在线段OB之间,如图,连接OD,此时,,,,,;当时,且点C在线段OA之间,连接OD,同理可得,;综上,可得线段FB的长为或或2,故答案为:或或根据,可得或2,利用勾股定理进行解答即可.本题考查了圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.13.【答案】解:原式;原式【解析】利用零指数幂及绝对值的性质计算即可;利用分式的加减法则计算即可.本题考查零指数幂,绝对值,分式的加减,熟练掌握相关运算法则是解题的关键.14.【答案】解:如图1,连接BD,四边形ABCD为菱形,,则BD即为所求.如图2,连接CE并延长,交DA的延长线于点F,作直线BF,四边形ABCD为菱形,,,,点E为线段AB的中点,,≌,,四边形ACBF为平行四边形,,则直线BF即为所求.【解析】连接BD,根据菱形的性质可知,BD即为所求.结合菱形的性质、平行四边形的判定与性质、全等三角形的判定与性质,连接CE并延长,交DA的延长线于点F,作直线BF,则直线BF即为所求.本题考查作图-复杂作图、菱形的性质、平行四边形的判定与性质、全等三角形的判定与性质,解题的关键是理解题意,灵活运用所学知识解决问题.15.【答案】【解析】解:由题意知,共有3种等可能的结果,其中学生甲分到A班的结果有1种,“学生甲分到A班”的概率是故答案为:列表如下:A B CABC共有9种等可能的结果,其中甲、乙两位新生分到同一个班的结果有3种,甲、乙两位新生分到同一个班的概率为由题意知,共有3种等可能的结果,其中学生甲分到A班的结果有1种,利用概率公式可得答案.列表可得出所有等可能的结果数以及甲、乙两位新生分到同一个班的结果数,再利用概率公式可得出答案.本题考查列表法与树状图法、概率公式,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.16.【答案】【解析】解:过点B作x轴的垂线,垂足为M,点A坐标为,又是等腰直角三角形,,点B的坐标为故答案为:将点B坐标代入反比例函数解析式得,,反比例函数解析式为轴,将代入反比例函数解析式得,,点C的坐标为令直线BC的函数解析式为,将点B和点C的坐标代入函数解析式得,,解得,所以直线BC的函数解析式为过点B作x轴的垂线,根据等腰直角三角形的性质即可解决问题.求出点C的坐标,再利用待定系数法即可解决问题.本题考查待定系数法求反比例函数和一次函数解析式及等腰直角三角形的性质,熟知待定系数法及等腰直角三角形的性质是解题的关键.17.【答案】证明:是半圆O的直径,,,,,,是半圆O的直径,是半圆O的切线;解:连接OC,,,,是等边三角形,,的长【解析】根据圆周角定理得到,得到,求得,根据切线的判定定理即可得到结论;连接OC,根据圆周角定理得到,根据等边三角形的性质得到,根据弧长公式即可得到的长本题考查了切线的判定和性质,弧长的计算,圆周角定理,正确地作出辅助线是解题的关键.18.【答案】解:设书架上数学书x本,则语文书本,根据题意得,,解得,所以,答:书架上数学本60本,语文书30本.设数学书还可以摆m本,则,解得,所以数学书最多还可以摆90本.【解析】根据数学本和语文本的厚度,结合数学书和语文书的本书即可解决问题.用书架宽减去10本语文书的厚度,再利用数学书的本书即可解决问题.本题考查二元一次方程组的应用及一元一次不等式的应用,能根据题意找出题中的等量关系并建立方程及不等式是解题的关键.19.【答案】解:,,,,,四边形AMND是矩形,,“大碗”的口径AD的长为;延长CB交AM于点G,由题意得:,,,,,,在中,,,“大碗”的高度AM的长约为【解析】根据垂直定义可得,再利用平行线的性质可得,从而可得四边形AMND是矩形,然后利用矩形的性质可得,从而利用线段的和差关系进行计算即可解答;延长CB交AM于点G,根据题意可得:,,,,从而可得,然后在中,利用锐角三角函数的定义求出AG的长,从而利用线段的和差关系进行计算,即可解答.本题考查了解直角三角形的应用,矩形的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.20.【答案】B【解析】解:的形状是等腰三角形,理由如下:平分,,,,,是等腰三角形.①共有四个等腰三角形.分别是:,,,,故答案为:B;②由可知,,,,,,,,,,,,,由角平分线的定义得出由平行线的性质得出,证出,则可得出结论;①由等腰三角形的判定可得出结论;②由可知,,证出,则可得出答案.本题考查了等腰三角形的判定与性质,平行线的性质,角平分线的定义,熟练掌握等腰三角形的性质是解题的关键.21.【答案】【解析】解:由题意得,,,,故答案为:22,2,;①估计该校七年级男生偏胖的人数有:人;②估计该校七年级学生的人数有:人;由统计表可知,该校七年级学生的偏瘦、偏胖或肥胖的人数约半数,建议该校加强学生的体育锻炼,加强科学饮食习惯的宣传.答案不唯一根据公式计算可得s;用10分别减去其它组男生的频数可得t的值;用乘C组人数所占比例可得的值;利用样本估计总体即可;根据七年级20名学生BMI频数分布表数据解答即可答案不唯一本题考查了频数分布表和用样本估计总体,熟练掌握用样本估计总体的方法是解题的关键.22.【答案】368【解析】解:①根据小球飞行的水平距离米与小球飞行的高度米的变化规律表可知,抛物线顶点坐标为,,解得:,二次函数解析式为,当时,,解得:或舍去,,当时,,故答案为:3,②联立得:,解得:或,点A的坐标是①由题干可知小球飞行最大高度为8米,故答案为:②,则,解得负值舍去①由抛物线的顶点坐标为可建立过于a,b的二元一次方程组,求出a,b的值即可;②联立两函数解析式求解,可求出交点A的坐标;①根据第一问可知最大高度为8米;②将小球飞行高度与飞行时间的函数关系式化简为顶点式即可求得v值.本题主要考查二次函数的应用,从图象和表格中获取数据是解题的关键.23.【答案】【解析】解:,,理由:,,,,,,≌,,,,;故答案为:,;,,证明:,,,∽,,,,,,,;①连接CF交DE于O,由知,,,,,,,,点F与点C关于DE对称,垂直平分CF,,,,,,四边形CDFE是正方形,,与x的函数表达式为,,的最小值为18;②过D作于H,则是等腰直角三角形,,,连接OB,,,,,,,,,解得或,或由,得到,,根据等腰直角三角形的性质得到,,根据全等三角形的性质得到,,根据垂直的定义得到;根据相似三角形的判定定理得到∽,求得,,得到,根据垂直的定义得到;①连接CF交DE于O,由知,,,求得,得到,根据勾股定理得到,根据线段垂直平分线的性质得到,,推出四边形CDFE是正方形,根据正方形的面积公式即可得到,根据二次函数的性质即可得到结论;②过D作于H,根据等腰直角三角形到现在得到,求得,连接OB,推出,得到,根据勾股定理得到结论.本题是相似形的综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,正方形的判定和性质.勾股定理,正确地作出辅助线是解题的关键.。
2023年江西省(中考)初中学业水平考试试卷及参考答案(数学)
机密★启用前江西省2023年初中学业水平考试数学试题卷准考证号____________________姓名____________说明:1.本试题卷满分120分,考试时间为120分钟。
2.请按试题序号在答题卡相应位置作答,答在试题卷或其它位置无效。
一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置。
错选、多选或未选均不得分。
1.下列各数中,正整数···是A.3B.2.1C.0D.-22.下列图形中,是中心对称图形的是A B C D3.若a-4有意义,则a的值可以是A.-1B.0C.2D.64.计算(2m2)3的结果为A.8m6B.6m6C.2m6D.2m55.如图,平面镜MN放置在水平地面CD上,墙面PD⊥CD于点D,一束光线AO照射到镜面MN上,反射光线为OB,点B在PD上,若∠AOC=35°,则∠OBD的度数为A.35°B.45°C.55°D.65°(第5题)(第6题)6.如图,点A,B,C,D均在直线l上,点P在直线l外,则经过其中任意三个点,最多可画出圆的个数为A.3个B.4个C.5个D.6个B C DPl二、填空题(本大题共6小题,每小题3分,共18分)7.单项式-5ab 的系数为______.8.我国海洋经济复苏态势强劲.在建和新开工海上风电项目建设总规模约1800万千瓦,比上一年同期翻一番,将18000000用科学记数法表示应为______.9.化简:(a +1)2-a 2=______.10.将含30°角的直角三角板和直尺按如图所示的方式放置,已知∠α=60°,点B ,C 表示的刻度分别为1cm ,3cm ,则线段AB 的长为______cm .(第11题)B QCD PAC B P AD (第12题)B Cα(第10题)A023451cm 11.《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC ).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度.如图,点A ,B ,Q 在同一水平线上,∠ABC 和∠AQP 均为直角,AP 与BC 相交于点D .测得AB =40cm ,BD =20cm ,AQ =12m ,则树高PQ =______m.12.如图,在□ABCD 中,∠B =60°,BC =2AB ,将AB 绕点A 逆时针旋转角α(0°<α<360°)得到AP ,连接PC ,PD .当△PCD 为直角三角形时,旋转角α的度数为______.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:83+tan45°-30;(2)如图,AB =AD ,AC 平分∠BAD .求证:△ABC△ADC .14.如图是4×4的正方形网格,请仅用无刻度的直尺······按要求完成以下作图(保留作图痕迹).(1)在图1中作锐角△ABC ,使点C 在格点上;(2)在图2中的线段AB 上作点Q ,使PQ 最短.图1图2ABC DA B15.化简(x x +1+x x -1)·x 2-1x .下面是甲、乙两同学的部分运算过程:甲同学乙同学(1)甲同学解法的依据是______,乙同学解法的依据是______;(填序号)①等式的基本性质;②分式的基本性质;③乘法分配律;④乘法交换律.(2)请选择一种解法,写出完整的解答过程.16.为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动.根据活动要求,每班需要2名宣传员.某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.(1)“甲、乙同学都被选为宣传员”是______事件;(填“必然”、“不可能”或“随机”)(2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.17.如图,已知直线y =x +b 与反比例函数y =k x (x >0)的图象交于点A (2,3),与y 轴交于点B ,过点B 作x 轴的平行线交反比例函数y =kx(x >0)的图象于点C .(1)求直线AB 和反比例函数图象的表达式;(2)求△ABC 的面积.四、解答题(本大题共3小题,每小题8分,共24分)18.今年植树节,某班同学共同种植一批树苗,如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?19.图1是某红色文化主题公园内的雕塑,将其抽象成如图2所示的示意图,已知点B ,A ,D ,E 均在同一直线上,AB =AC =AD ,测得∠B =55°,BC =1.8m ,DE =2m.(结果保留小数点后一位)(1)连接CD ,求证:DC ⊥BC ;(2)求雕塑的高(即点E 到直线BC 的距离).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)图2ED ABC图120.如图,在△ABC 中,AB =4,∠C =64°,以AB 为直径的⊙O 与AC 相交于点D ,E 为ABD 上一点,且∠ADE =40°.(1)求 BE 的长;(2)若∠EAD =76°,求证:CB 为⊙O 的切线.五、解答题(本大题共2小题,每小题9分,共18分)21.为了解中学生的视力情况,某区卫健部门决定随机抽取本区部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.整理描述高中学生视力情况统计图以下以上初中学生视力情况统计表视力0.6及以下0.70.80.91.01.1及以上合计人数8162834m 46200百分比4%8%14%17%34%n 100%(1)m =______,n =______;(2)被调查的高中学生视力情况的样本容量为______;分析处理(3)①小胡说:“初中学生的视力水平比高中学生的好.”请你对小胡的说法进行判断,并选择一个能反映总体的统计量···说明理由;②约定:视力未达到1.0为视力不良.若该区有26000名中学生,估计该区有多少名中学生视力不良?并对视力保护提出一条合理化建议.22.课本再现定理证明(1)为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.已知:在□ABCD 中,对角线BD ⊥AC ,垂足为O .求证:□ABCD 是菱形.图1图2知识应用(2)如图2,在□ABCD 中,对角线AC 和BD 相交于点O ,AD =5,AC =8,BD =6.①求证:□ABCD 是菱形;②延长BC 至点E ,连接OE 交CD 于点F ,若∠E =12∠ACD ,求OF EF 的值.思考我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形的一个判定定理:对角线互相垂直的平行四边形是菱形.AC BDOAC BDOF E六、解答题(本大题共12分)23.综合与实践问题提出某兴趣小组开展综合实践活动:在Rt △ABC 中,∠C =90°,D 为AC 上一点,CD =2.动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C →B →A 匀速运动,到达点A 时停止,以DP 为边作正方形DPEF .设点P 的运动时间为t s ,正方形DPEF 的面积为S ,探究S 与t 的关系.初步感知(1)如图1,当点P 由点C 运动到点B 时,①当t =1时,S =______;②S 关于t 的函数解析式为______.(2)当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象.请根据图象信息,求S 关于t 的函数解析式及线段AB 的长.延伸探究(3)若存在3个时刻t 1,t 2,t 3(t 1<t 2<t 3)对应的正方形DPEF 的面积均相等.①t 1+t 2=______;②当t 3=4t 1时,求正方形DPEF 的面积.图2图1AF EBP CD一、单项选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.A2.B3.D4.A5.C6.D 二、填空题(本大题共6小题,每小题3分,共18分)7.-58.1.8×1079.2a +110.211.612.90°或180°或270°三、解答题(本大题共5小题,每小题6分,共30分)13.(1)解:原式=2+1-1=2.(2)证明:∵AC 平分∠BAD ,∴∠BAC =∠DAC .在△ABC 和△ADC 中,∴△ABC △ADC (SAS ).14.解:(1)如下左图(右图中的C 1~C 5亦可):ABC12C C 答:△ABC 即为所求.(2)如下图:(方法一)(方法二)(方法三)答:点Q 即为所求.15.解:(1)②,③;(2)按甲同学的解法化简:原式=éëêùûúx (x -1)(x +1)(x -1)+x (x +1)(x -1)(x +1)·x 2-1xA B CDìíîïïAB =AD ,∠BAC =∠DAC ,AC =AC ,江西省2023年初中学业水平考试数学试题参考答案=x (x -1)+x (x +1)(x +1)(x -1)·(x +1)(x -1)x =2x 2(x +1)(x -1)·(x +1)(x -1)x =2x .按乙同学的解法化简:原式=x x +1·x 2-1x +x x -1·x 2-1x=x x +1·(x +1)(x -1)x +x x -1·(x +1)(x -1)x =x -1+x +1=2x .16.解:(1)随机.(2)解法一列表如下:甲乙丙丁甲(甲,乙)(甲,丙)(甲,丁)乙(乙,甲)(乙,丙)(乙,丁)丙(丙,甲)(丙,乙)(丙,丁)丁(丁,甲)(丁,乙)(丁,丙)同学1同学2由上表可知,所有可能结果共有12种,且每种结果出现的可能性相等,其中甲、丁同学都被选为宣传员的结果有2种.所以P (甲、丁同学都被选为宣传员)=212=16.解法二画树状图如下:甲乙丙丁乙甲丙丁丙甲乙丁丁甲乙丙由树状图可以看出,所有可能结果共有12种,且每种结果出现的可能性相等,其中甲、丁同学都被选为宣传员的结果有2种.所以P (甲、丁同学都被选为宣传员)=212=16.17.解:(1)∵直线y =x +b 与反比例函数y =kx(x >0)的图象交于点A (2,3),∴2+b =3,3=k2.∴b =1,k =6.∴直线AB 的表达式为y =x +1,反比例函数图象的表达式为y =6x(x >0).(2)过点A作AD⊥BC,垂足为D.∵直线y=x+1与y轴交点B的坐标为(0,1),BC∥x轴,∴C点的纵坐标为1.∴6x=1,x=6,即BC=6.由BC∥x轴,得BC与x轴的距离为1.∴AD=2.∴S△ABC=12BC·AD=12×6×2=6.四、解答题(本大题共3小题,每小题8分,共24分)18.解:(1)设该班的学生人数为x人.依题意,得3x+20=4x-25.解得x=45.答:该班的学生人数为45人.(2)由(1)可知,树苗总数为3x+20=155.设购买甲种树苗y棵,则购买乙种树苗(155-y)棵.依题意,得30y+40(155-y)≤5400.解得y≥80.答:至少购买了甲种树苗80棵.19.(1)证法一证明:∵AB=AC,∴∠B=∠ACB.∵AC=AD,∴∠ADC=∠ACD.∴∠BCD=∠ACB+∠ACD=12(∠ACB+∠B+∠ACD+∠ADC)=12×180°=90°.∴DC⊥BC.证法二证明:∵AB=AC=AD,∴点B,C,D在以点A为圆心,BD为直径的圆上.∴∠BCD=90°,即DC⊥BC.(2)解:过点E作EF⊥BC,垂足为F.在Rt△BCD中,cos B=BCBD,BC=1.8,∴BD=BCcos B=1.8cos55°≈3.16.∴BE=BD+DE=3.16+2=5.16.在Rt△EBF中,sin B=EF BE,∴EF=BE·sin B=5.16×sin55°≈4.2.因此,雕塑的高约为4.2m.EDAB C F20.解:(1)连接OE .∵∠ADE =40°,∴∠AOE =2∠ADE =80°.∴∠BOE =180°-∠AOE =100°.∴ BE 的长l =100∙π∙2180=109π.(2)证明:∵OA =OE ,∠AOE =80°,∴∠OAE =180°-∠AOE2=50°.∵∠EAD =76°,∴∠BAC =∠EAD -∠OAE =26°.又∠C =64°,∴∠ABC =180°-∠BAC -∠C =90°.即AB ⊥BC .又OB 是⊙O 的半径,∴CB 为⊙O 的切线.五、解答题(本大题共2小题,每小题9分,共18分)21.解:(1)68,23%.(2)320.(3)①小胡的说法正确.理由如下:理由一:从中位数看,初中生视力的中位数为1.0,高中生视力的中位数为0.9,所以初中生的视力水平好于高中生.理由二:从众数看,初中生视力的众数为1.0,高中生视力的众数为0.9,所以初中生的视力水平好于高中生.②方法一:26000×8+16+28+34+14+44+60+82200+320=14300(名).方法二:26000×(1-68+46+65+55200+320)=14300(名).所以,估计该区有14300名中学生视力不良.建议:①勤做眼保健操;②不要长时间用眼;③不要在强光下看书;④加强户外运动.22.(1)证法一证明:∵四边形ABCD 是平行四边形,∴OA =OC .又BD ⊥AC ,∴BD 垂直平分AC .∴BA =BC .∴□ABCD 是菱形.证法二证明:∵四边形ABCD 是平行四边形,∴OA =OC .A BCD OE A CBD O图1∵BD⊥AC,∴∠AOB=∠COB.又OB=OB,∴△AOB△COB(SAS).∴BA=BC.∴□ABCD是菱形.(2)①证明:∵四边形ABCD为平行四边形,AC=8,BD=6,∴OA=12AC=4,OD=12BD=3.∴OA2+OD2=42+32=25.又AD2=52=25,∴OA2+OD2=AD2.∴∠AOD=90°.即BD⊥AC.∴□ABCD是菱形.②方法一解:如图2,取CD的中点G,连接OG.∵□ABCD是菱形,∴BC=AD=5,OB=OD,∠ACB=∠ACD.∵∠E=12∠ACD,∴∠E=12∠ACB.即∠ACB=2∠E.又∠ACB=∠E+∠COE,∴∠E=∠COE.∴CE=CO=4.∵OB=OD,GC=GD,∴OG为△DBC的中位线.∴OG//BC,且OG=12BC=52.∴OG//CE.∴△OGF△ECF.∴OFEF=OGCE=58.方法二解:如图3,延长FO交AB于点H.同方法一可得CE=CO=4.∵□ABCD是菱形,∴BH//CF.∴HFFE=BCCE=54,HOOF=BOOD=1.∴HF=2OF.∴OFFE=58.ACBDOFEG图2ACBDO FEH图3六、解答题(本大题共12分)23.解:(1)①3.②S=t2+2.(2)方法一由图象可知,当点P运动到点B时,S=6.将S=6代入S=t2+2,得6=t2+2,解得t=2或t=-2(舍去).当点P由点B运动到点A时,设S关于t的函数解析式为S=a(t-4)2+2.将(2,6)代入,得6=a(2-4)2+2.解得a=1.故S关于t的函数解析式为S=(t-4)2+2.由图象可知,当P运动到A点时,S=18.由18=(t-4)2+2,得t=8或t=0(舍去)∴AB=(8-2)×1=6.方法二由图象可知,当点P运动到点B时,S=6,即BD2=6.∴BD=6.在Rt△DBC中,由勾股定理,得BC=BD2-CD2=2.∴点P由C运动到B的时间为2÷1=2s.当点P由点B运动到点A时,设S关于t的函数解析式为S=a(t-4)2+2.将(2,6)代入,得6=a(2-4)2+2.解得a=1.故S关于t的函数解析式为S=(t-4)2+2.由图象可知,当P运动到A点时,S=18.由18=(t-4)2+2,得t=8或t=0(舍去)∴AB=(8-2)×1=6.(3)①4.由(1)(2)可得S={t2+2,0≤t<2,(t-4)2+2,2≤t≤8.在图2中补全0≤t<2内的图象.根据图象可知0≤t≤2内的图象与2≤t≤4内的图象关于直线x=2对称.因此t1+t2=4.②方法一函数S=t2+2的图象向右平移4个单位与函数S=(t-4)2+2的图象重合.∵当t=t1和t=t3时,S的值相等,∴t3-t1=4.又t3=4t1,∴4t1-t1=4,得t1=43.此时正方形DPEF的面积S=t21+2=349.图1AFEB P CD图2方法二根据二次函数的对称性,可知t2+t3=8.由①可知t1+t2=4,∴t3-t1=4.又t3=4t1,∴4t1-t1=4,得t1=43.此时正方形DPEF的面积S=t21+2=349.。
2023年江西省中考数学真题试卷(解析版)
2023年江西省中考数学真题试卷及答案一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置.错选、多选或未选均不得分.1. 下列各数中,正整数是()A. B. C. D.【答案】A【解析】根据有理数的分类即可求解.解:是正整数,是小数,不是整数,不是正数,不是正数,故选:A.【点拨】本题考查了有理数的分类,熟练掌握有理数的分类是解题的关键.2. 下列图形中,是中心对称图形的是()A. B. C.D.【答案】B【解析】根据中心对称图形的定义:把一个图形绕某一点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.解:选项A.C.D均不能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以不是中心对称图形;选项B能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以是中心对称图形;故选:B.【点拨】本题主要考查了中心对称图形,关键找出对称中心.3. 若有意义,则的值可以是( )A. B.C.D.【答案】D 【解析】根据二次根式有意义的条件即可求解.解:∵有意义,∴,解得:,则的值可以是故选:D .【点拨】本题考查了二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键. 4. 计算的结果为( )A. B.C.D.【答案】A 【解析】根据积的乘方计算法则求解即可.解:,故选A .【点拨】本题主要考查了积的乘方计算,熟知相关计算法则是解题的关键.5. 如图,平面镜放置在水平地面上,墙面于点,一束光线照射到镜面上,反射光线为,点在上,若,则的度数为( )A. B. C. D.【答案】C 【解析】根据题意可得,进而根据直角三角形的两个锐角互余即可求解.解:依题意,,∴,∵,∴,故选:C.【点拨】本题考查了直角三角形中两个锐角互余,入射角等于反射角,熟练掌握以上知识是解题的关键.6. 如图,点,,,均在直线上,点在直线外,则经过其中任意三个点,最多可画出圆的个数为()A. 3个B. 4个C. 5个D. 6个【答案】D【解析】根据不共线三点确定一个圆可得,直线上任意2个点加上点可以画出一个圆,据此列举所有可能即可求解.解:依题意,;;;;,加上点可以画出一个圆,∴共有6个,故选:D.【点拨】本题考查了确定圆的条件,熟练掌握不共线三点确定一个圆是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7. 单项式的系数为______.【答案】【解析】根据单项式系数的定义:单项式中的数字因数,得出结果即可.解:单项式的系数是.故答案是:.【点拨】本题考查单项式的系数,解题的关键是掌握单项式系数的定义.8. 我国海洋经济复苏态势强劲.在建和新开工海上风电项目建设规模约1800万千瓦,比上一年同期翻一番,将18000000用科学记数法表示应为_______.【答案】【解析】根据科学记数法的表示形式进行解答即可.解:,故答案为:.【点拨】本题考查科学记数法,熟练掌握科学记数法的表示形式为(,a为整数)的形式,n的绝对值与小数点移动的位数相同是解题的关键.9. 计算:(a+1)2﹣a2=_____.【答案】2a+1【解析】原式利用完全平方公式展开,然后合并同类项即可得到结果.(a+1)2﹣a2=a2+2a+1﹣a2=2a+1,故答案为2a+1.【点拨】本题考查了整式的混合运算,熟练掌握完全平方公式以及合并同类项的法则是解题的关键.10. 将含角的直角三角板和直尺按如图所示的方式放置,已,点,表示的刻度分别为,则线段的长为_______cm.【答案】【解析】根据平行线的性质得出,进而可得是等边三角形,根据等边三角形的性质即可求解.解:∵直尺的两边平行,∴,又,∴是等边三角形,∵点,表示的刻度分别为,∴,∴∴线段的长为,故答案为:.【点拨】本题考查了平行线的性质,等边三角形的性质与判定,得出是解题的关键.11. 《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点,,在同一水平线上,和均为直角,与相交于点.测得,则树高______m.【答案】【解析】根据题意可得,然后相似三角形的性质,即可求解.解:∵和均为直角∴,∴,∴∵,∴,故答案为:.【点拨】本题考查了相似三角形的应用,熟练掌握相似三角形的性质与判定是解题的关键.12. 如图,在中,,将绕点逆时针旋转角()得到,连接,.当为直角三角形时,旋转角的度数为_______.【答案】或或【解析】连接,根据已知条件可得,进而分类讨论即可求解.解:连接,取的中点,连接,如图所示,∵在中,,∴,∴是等边三角形,∴,,∴∴,∴∴,如图所示,当点在上时,此时,则旋转角的度数为,当点在的延长线上时,如图所示,则当在的延长线上时,则旋转角的度数为,如图所示,∵,,∴四边形是平行四边形,∵∴四边形是矩形,∴即是直角三角形,综上所述,旋转角的度数为或或故答案为:或或.【点拨】本题考查了平行四边形的性质与判定,等边三角形的性质与判定,矩形的性质与判定,旋转的性质,熟练掌握旋转的性质是解题的关键.三、解答题(本大题共5小题,每小题6分,共30分)13. (1)计算:(2)如图,,平分.求证:.【答案】(1)2;(2)证明见解析【解析】(1)先计算立方根,特殊角三角函数值和零指数幂,再计算加减法即可;(2)先由角平分线的定义得到,再利用证明即可.解:(1)原式;(2)∵平分,∴,在和中,,∴.【点拨】本题主要考查了实数的运算,零指数幂,特殊角三角函数值,全等三角形的判定,角平分线的定义等等,灵活运用所学知识是解题的关键.14. 如图是的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作锐角,使点C在格点上;(2)在图2中的线段上作点Q,使最短.【答案】(1)作图见解析(2)作图见解析【解析】(1)如图,取格点,使,在的左上方的格点满足条件,再画三角形即可;(2)利用小正方形的性质取格点,连接交于,从而可得答案.【小问1详解】解:如图,即为所求作的三角形;【小问2详解】如图,即为所求作的点;【点拨】本题考查的是复杂作图,同时考查了三角形的外角的性质,正方形的性质,垂线段最短,熟记基本几何图形的性质再灵活应用是解本题的关键.15. 化简.下面是甲、乙两同学的部分运算过程:解:原式……解:原式……(1)甲同学解法的依据是________,乙同学解法的依据是________;(填序号)①等式的基本性质;②分式的基本性质;③乘法分配律;④乘法交换律.(2)请选择一种解法,写出完整的解答过程.【答案】(1)②,③ (2)见解析【解析】(1)根据所给的解题过程即可得到答案;(2)甲同学的解法:先根据分式的基本性质把小括号内的分式先同分,然后根据分式的加法计算法则求解,最后根据分式的乘法计算法则求解即可;乙同学的解法:根据乘法分配律去括号,然后计算分式的乘法,最后合并同类项即可.【小问1详解】解:根据解题过程可知,甲同学解法的依据是分式的基本性质,乙同学解法的依据是乘法分配律,故答案为:②,③;【小问2详解】解:甲同学的解法:原式;乙同学的解法:原式.【点拨】本题主要考查了分式的混合计算,熟知相关计算法则是解题的关键.16. 为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动,根据活动要求,每班需要2名宣传员,某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.(1)“甲、乙同学都被选为宣传员”是_______事件:(填“必然”、“不可能”或“随机”)(2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.【答案】(1)随机(2)【解析】(1)由确定事件与随机事件的概念可得答案;(2)先画树状图得到所有可能的情况数与符合条件的情况数,再利用概率公式计算即可.【小问1详解】解:“甲、乙同学都被选为宣传员”是随机事件;【小问2详解】画树状图为:共有12种等可能的结果,其中选中的两名同学恰好是甲,丁的结果数为2,所以选中的两名同学恰好是甲,丁的概率.【点拨】本题考查的是事件的含义,利用画树状图求解随机事件的概率,熟记事件的概念与分类以及画树状图的方法是解本题的关键.17. 如图,已知直线与反比例函数的图象交于点,与y轴交于点B,过点B 作x轴的平行线交反比例函数的图象于点C.(1)求直线和反比例函数图象的表达式;(2)求的面积.【答案】(1)直线的表达式为,反比例函数的表达式为(2)6【解析】(1)利用待定系数法求函数解析式即可;(2)由一次函数解析式求得点B的坐标,再根据轴,可得点C的纵坐标为1,再利用反比例函数表达式求得点C坐标,即可求得结果.【小问1详解】解:∵直线与反比例函数的图象交于点,∴,,即,∴直线的表达式为,反比例函数的表达式为.【小问2详解】解:∵直线的图象与y轴交于点B,∴当时,,∴,∵轴,直线与反比例函数的图象交于点C,∴点C纵坐标为1,∴,即,∴,∴,∴.【点拨】本题考查用待定系数法求一次函数和反比例函数解析式、一次函数与反比例函数的交点、一次函数与y轴的交点,熟练掌握用待定系数法求函数解析式是解题的关键.四、解答题(本大题共3小题,每小题8分,共24分)18. 今年植树节,某班同学共同种植一批树苗,如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?【答案】(1)该班的学生人数为45人(2)至少购买了甲树苗80棵【解析】(1)设该班的学生人数为x人,根据两种方案下树苗的总数不变列出方程求解即可;(2)根据(1)所求求出树苗的总数为155棵,设购买了甲树苗m棵,则购买了乙树苗棵树苗,再根据总费用不超过5400元列出不等式求解即可.【小问1详解】解:设该班的学生人数为x人,由题意得,,解得,∴该班的学生人数为45人;【小问2详解】解:由(1)得一共购买了棵树苗,设购买了甲树苗m棵,则购买了乙树苗棵树苗,由题意得,,解得,∴m得最小值为80,∴至少购买了甲树苗80棵,答:至少购买了甲树苗80棵.【点拨】本题主要考查了一元一次方程的实际应用,一元一次不等式的实际应用,正确理解题意找到等量关系列出方程,找到不等关系列出不等式是解题的关键.19. 如图1是某红色文化主题公园内的雕塑,将其抽象成加如图2所示的示意图,已知点,,,均在同一直线上,,测得.(结果保小数点后一位)(1)连接,求证:;(2)求雕塑的高(即点E到直线BC的距离).(参考数据:)【答案】(1)见解析(2)雕塑的高约为米【解析】(1)根据等边对等角得出,根据三角形内角和定理得出,进而得出,即可得证;(2)过点作,交的延长线于点,在中,得出,则,在中,根据,即可求解.(1)解:∵,∴∵即∴即∴;(2)如图所示,过点作,交的延长线于点,在中,∴,∴∴在中,,∴(米).答:雕塑的高约为米.【点拨】本题考查了等腰三角形的性质,三角形内角和定理的应用,解直角三角形的应用,熟练掌握三角函数的定义是解题的关键.20. 如图,在中,,以为直径的与相交于点D,E为上一点,且.(1)求长;(2)若,求证:为的切线.【答案】(1)(2)证明见解析【解析】(1)如图所示,连接,先求出,再由圆周角定理得到,进而求出,再根据弧长公式进行求解即可;(2)如图所示,连接,先由三角形内角和定理得到,则由圆周角定理可得,再由是的直径,得到,进而求出,进一步推出,由此即可证明是的切线.(1)解:如图所示,连接,∵是的直径,且,∴,∵E为上一点,且,∴,∴,∴的长;(2)证明:如图所示,连接,∵,,∴,∴,∵是的直径,∴,∴,∵,∴,即,∵是的半径,∴是的切线.【点拨】本题主要考查了切线的判定,求弧长,圆周角定理,三角形内角和定理等等,正确作出辅助线是解题的关键.五、解答题(本大题共2小题,每小题9分,共18分)21. 为了解中学生的视力情况,某区卫健部门决定随机抽取本区部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.整理描述初中学生视力情况统计表视力人数百分比0.6及以下80.7160.8280.934m及以上46n合计200高中学生视力情况统计图(1)_______,_______;(2)被调查的高中学生视力情况的样本容量为_______;(3)分析处理:①小胡说:“初中学生的视力水平比高中学生的好.”请你对小胡的说法进行判断,并选择一个能反映总体的统计量说明理由:②约定:视力未达到为视力不良.若该区有26000名中学生,估计该区有多少名中学生视力不良?并对视力保护提出一条合理化建议.【答案】(1);;(2);(3)①小胡的说法合理,选择中位数,理由见解析;②14300人,合理化建议见解析,合理即可.【解析】(1)由总人数乘以视力为的百分比可得的值,再由视力1.1及以上的人数除以总人数可得的值;(2)由条形统计图中各数据之和可得答案;(3)①选择视力的中位数进行比较即可得到小胡说法合理;②由中学生总人数乘以样本中视力不良的百分比即可,根据自身体会提出合理化建议即可.(1)解:由题意可得:初中样本总人数:人,∴(人),;(2)由题意可得:,∴被调查的高中学生视力情况的样本容量为;(3)①小胡说:“初中学生的视力水平比高中学生的好.”小胡的说法合理;初中学生视力的中位数为第100个与第101个数据的平均数,落在视力为这一组,而高中学生视力的中位数为第160个与第161个数据的平均数,落在视力为的这一组,而,∴小胡的说法合理.②由题意可得:(人),∴该区有26000名中学生,估计该区有名中学生视力不良;合理化建议为:学校可以多开展用眼知识的普及,规定时刻做眼保健操.【点拨】本题考查的是从频数分布表与频数分布直方图中获取信息,中位数的含义,利用样本估计总体,理解题意,确定合适的统计量解决问题是解本题的关键.22. 课本再现思考我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形一个判定定理;对角线互相垂直的平行四边形是菱形.(1)定理证明:为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.己知:在中,对角线,垂足为.求证:是菱形.(2)知识应用:如图,在中,对角线和相交于点,.①求证:是菱形;②延长至点,连接交于点,若,求的值.【答案】(1)见解析(2)①见解析;②【解析】(1)根据平行四边形的性质证明得出,同理可得,则,,进而根据四边相等的四边形是菱形,即可得证;(2)①勾股定理的逆定理证明是直角三角形,且,得出,即可得证;②根据菱形的性质结合已知条件得出,则,过点作交于点,根据平行线分线段成比例求得,然后根据平行线分线段成比例即可求解.(1)证明:∵四边形是平行四边形,∴,,∵∴,在中,∴∴,同理可得,则,又∵∴∴四边形是菱形;(2)①证明:∵四边形是平行四边形,.∴在中,,,∴,∴是直角三角形,且,∴,∴四边形是菱形;②∵四边形是菱形;∴∵,∴,∵,∴,∴,如图所示,过点作交于点,∴,∴,∴.【点拨】本题考查了菱形的性质与判定,勾股定理以及勾股定理的逆定理,等腰三角形的性质与判定,平行线分线段成比例,熟练掌握菱形的性质与判定是解题的关键.六、解答题(本大题共12分)23. 综合与实践问题提出:某兴趣小组开展综合实践活动:在中,,D为上一点,,动点P以每秒1个单位的速度从C点出发,在三角形边上沿匀速运动,到达点A时停止,以为边作正方形设点P的运动时间为,正方形的而积为S,探究S与t的关系(1)初步感知:如图1,当点P由点C运动到点B时,①当时,_______.②S关于t的函数解析式为_______.(2)当点P由点B运动到点A时,经探究发现S是关于t的二次函数,并绘制成如图2所示的图象请根据图象信息,求S关于t的函数解析式及线段的长.(3)延伸探究:若存在3个时刻()对应的正方形的面积均相等.①_______;②当时,求正方形的面积.【答案】(1)①3;②(2),(3)①4;②【解析】(1)①先求出,再利用勾股定理求出,最后根据正方形面积公式求解即可;②仿照(1)①先求出,进而求出,则;(2)先由函数图象可得当点P运动到B点时,,由此求出当时,,可设S关于t的函数解析式为,利用待定系数法求出,进而求出当时,求得t的值即可得答案;(3)①根据题意可得可知函数可以看作是由函数向右平移四个单位得到的,设是函数上的两点,则,是函数上的两点,由此可得,则,根据题意可以看作,则;②由(3)①可得,再由,得到,继而得答案.(1)解:∵动点P以每秒1个单位的速度从C点出发,在三角形边上沿匀速运动,∴当时,点P在上,且,∵,,∴,∴,故答案为:3;②∵动点P以每秒1个单位的速度从C点出发,在匀速运动,∴,∵,,∴,∴;(2)解:由图2可知当点P运动到B点时,,∴,解得,∴当时,,由图2可知,对应的二次函数的顶点坐标为,∴可设S关于t的函数解析式为,把代入中得:,解得,∴S关于t的函数解析式为,在中,当时,解得或,∴;(3)解:①∵点P在上运动时,,点P在上运动时,∴可知函数可以看作是由函数向右平移四个单位得到的,设是函数上的两点,则,是函数上的两点,∴,∴,∵存在3个时刻()对应的正方形的面积均相等.∴可以看作,∴,故答案为:4;②由(3)①可得,∵,∴,∴,∴..【点拨】本题主要考查了二次函数与图形运动问题,待定系数法求函数解析式,勾股定理等等,正确理解题意利用数形结合的思想求解是解题的关键.。
2020年江西省中考数学试题及参考答案(word解析版)
江西省2020年中等学校招生考试数学试题卷(全卷满分120分,考试时间120分钟)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.﹣3的倒数是()A.3 B.﹣3 C.﹣D.2.下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a3.教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为()A.5.0175×1011B.5.0175×1012C.0.50175×1013D.0.50175×10144.如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A.AB∥CD B.∠B=30°C.∠C+∠2=∠EFC D.CG>FG5.如图所示,正方体的展开图为()A.B.C.D.6.在平面直角坐标系中,点O为坐标原点,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为()A.y=x B.y=x+1 C.y=x+D.y=x+2二、填空题(本大题共6小题,每小题3分,共18分)7.计算:(a﹣1)2=.8.若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为.9.公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是.10.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下统计:数字0 1 2 3 4 5 6 7 8 9频数8 8 12 11 10 8 9 8 12 14 那么,圆周率的小数点后100位数字的众数为.11.如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC =49°,则∠BAE的度数为.12.矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A'处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其它线段.当图中存在30°角时,AE的长为厘米.三、(本大题共5小题,每小题6分,共30分)13.(本题共2小题,每小题3分)(1)计算:(1﹣)0﹣|﹣2|+()﹣2;(2)解不等式组:14.先化简,再求值:(﹣)÷,其中x=.15.某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.16.如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A'B'C';(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.17.(6分)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.四、(本大题共3小题,每小题8分,共24分)18.如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.19.为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).复学一个月后,根据第二次测试的数学成绩得到如下统计表:成绩30≤x<40 40≤x<50 50≤x<60 60≤x<70 70≤x<80 80≤x<90 90≤x≤100 人数 1 3 3 8 15 m 6 根据以上图表信息,完成下列问题:(1)m=;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有人,至多有人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.20.如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)五、(本大题共2小题,每小题9分,共18分)21.已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).22.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x …﹣2 ﹣1 0 1 2 …y …m 0 ﹣3 n ﹣3 …(1)根据以上信息,可知抛物线开口向,对称轴为;(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P',描出相应的点P',再把相应的点P'用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>﹣2)与抛物线及(3)中的点P'所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系.六、(本大题共12分)23.某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC=90°,AB=2,DE =2,点P在AE上,∠ABP=30°,PE=,求五边形ABCDE的面积.答案与解析一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.﹣3的倒数是()A.3 B.﹣3 C.﹣D.【知识考点】倒数.【思路分析】根据倒数的定义即可得出答案.【解答过程】解:﹣3的倒数是﹣.故选:C.【总结归纳】此题主要考查了倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a【知识考点】合并同类项;同底数幂的乘法;同底数幂的除法.【思路分析】根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答过程】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、a3÷a2=a,正确.故选:D.【总结归纳】本题主要考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,不是同类项的一定不能合并.3.教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为()A.5.0175×1011B.5.0175×1012C.0.50175×1013D.0.50175×1014【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答过程】解:50175亿=5017500000000=5.0175×1012.故选:B.【总结归纳】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.4.如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A.AB∥CD B.∠B=30°C.∠C+∠2=∠EFC D.CG>FG【知识考点】平行线的判定;三角形的外角性质.【思路分析】依据平行线的判定与性质,以及三角形外角性质,即可得出结论.【解答过程】解:∵∠1=∠2=65°,∴AB∥CD,故A选项正确,又∵∠3=35°,∴∠C=65°﹣35°=30°,∴∠B=∠C=30°,故B选项正确,∵∠EFC是△CGF的外角,∴∠EFC=∠C+∠3,故C选项错误,∵∠3>∠C,∴CG>FG,故D选项正确,故选:C.【总结归纳】本题主要考查了平行线的判定与性质,以及三角形外角性质,解题时注意:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.5.如图所示,正方体的展开图为()A.B.C.D.【知识考点】几何体的展开图.【思路分析】根据正方体的展开与折叠,正方体展开图的形状进行判断即可.【解答过程】解:根据“相间、Z端是对面”可得选项B不符合题意;再根据“上面∧”符号开口,可以判断选项A符合题意;选项C、D不符合题意;故选:A.【总结归纳】本题考查正方体的展开与折叠,掌握正方体展开图的特征是正确判断的前提.6.在平面直角坐标系中,点O为坐标原点,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为()A.y=x B.y=x+1 C.y=x+D.y=x+2【知识考点】待定系数法求一次函数解析式;二次函数的性质;二次函数图象上点的坐标特征;抛物线与x轴的交点;坐标与图形变化﹣平移.【思路分析】求得A、B的坐标以及抛物线的对称轴,根据题意设出A′(1,n),则B′(4,n+3),把B′(4,n+3)代入抛物线解析式求得n,即可求得A′、B′的坐标,然后根据待定系数法即可求得直线A'B'的表达式.【解答过程】解:如图,∵抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,令y=0,解得x=﹣1或3,令x=0,求得y=﹣3,∴A(3,0),B(0,﹣3),∵抛物线y=x2﹣2x﹣3的对称轴为直线x=﹣=1,∴A′的横坐标为1,设A′(1,n),则B′(4,n+3),∵点B'落在抛物线上,∴n+3=16﹣8﹣3,解得n=2,∴A′(1,2),B′(4,5),设直线A'B'的表达式为y=kx+b,∴,解得∴直线A'B'的表达式为y=x+1,故选:B.【总结归纳】本题考查了抛物线与x轴的交点,坐标和图形变换﹣平移,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据题意表示出A′、B′的坐标是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7.计算:(a﹣1)2=.【知识考点】完全平方公式.【思路分析】直接利用完全平方公式计算即可解答.【解答过程】解:(a﹣1)2=a2﹣2a+1.【总结归纳】本题考查了完全平方公式,熟记公式是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.8.若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为.【知识考点】一元二次方程的解;根与系数的关系.【思路分析】利用根与系数的关系可得出方程的两根之积为﹣2,结合方程的一个根为1,可求出方程的另一个根,此题得解.【解答过程】解:∵a=1,b=﹣k,c=﹣2,∴x1•x2==﹣2.∵关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,∴另一个根为﹣2÷1=﹣2.故答案为:﹣2.【总结归纳】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之积等于是解题的关键.9.公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是.【知识考点】用数字表示事件.【思路分析】根据题意可知,这个两位数的个位上的数是5,十位上的数是2,故这个两位数我25.【解答过程】解:由题意可得,表示25.故答案为:25.【总结归纳】本题主要考查了用数字表示事件,理清题目中的符号表示的意义是解答本题的关键.10.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下统计:数字0 1 2 3 4 5 6 7 8 9频数8 8 12 11 10 8 9 8 12 14 那么,圆周率的小数点后100位数字的众数为.【知识考点】近似数和有效数字;数学常识;频数(率)分布表;众数.【思路分析】直接根据众数的定义可得答案.【解答过程】解:圆周率的小数点后100位数字的众数为9,故答案为:9.【总结归纳】本题主要考查众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.11.如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE的度数为.【知识考点】全等三角形的判定与性质.【思路分析】证明△ABC≌△ADC得∠D+∠ACD=∠B+∠ACB=49°,进而根据三角形内角和定理得结果.【解答过程】解:∵AC平分∠DCB,∴∠BCA=∠DCA,∵CB=CD,∵AC=AC,∴△ABC≌△ADC(SAS),∴∠B=∠D,∴∠B+∠ACB=∠D+∠ACD,∵∠CAE=∠D+∠ACD=49°,∴∠B+∠ACB=49°,∴∠BAE=180°﹣∠B﹣∠ACB﹣∠CAE=82°,故答案为:82°.【总结归纳】本题主要考查了角平分线的定义,全等三角形的性质与判定,三角形的内角和定理,三角形的外角定理,关键是证明三角形全等,求得∠B+∠ACB=49°.12.矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A'处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其它线段.当图中存在30°角时,AE的长为厘米.【知识考点】矩形的性质;翻折变换(折叠问题).【思路分析】根据翻折可得∠ABE=∠A′BE,分3种情况讨论:当∠ABE=30°时或当∠AEB =30°时或当∠ABA′=30°时求AE的长.【解答过程】解:①当∠ABE=30°时,AE=AB×tan30°=;②当∠AEB=30°时,AE===4;③∠ABE=15°时,∠ABA′=30°,延长BA′交AD于F,如下图所示,设AE=x,则EA′=x,EF=,∵AF=AE+EF=ABtan30°=,∴x+=,∴x=8﹣4,∴AE=8﹣4.故答案为:厘米或4厘米或8﹣4厘米.【总结归纳】本题考查了翻折变换、矩形的性质,解决本题的关键是掌握矩形性质.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)计算:(1﹣)0﹣|﹣2|+()﹣2;(2)解不等式组:【知识考点】实数的运算;零指数幂;负整数指数幂;解一元一次不等式组.【思路分析】(1)先计算零指数幂、绝对值和负整数指数幂,再计算加减可得答案;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答过程】解:(1)原式=1﹣2+4=﹣1+4=3;(2)解不等式3x﹣2≥1,得:x≥1,解不等式5﹣x>2,得:x<3,则不等式组的解集为1≤x<3.【总结归纳】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.(6分)先化简,再求值:(﹣)÷,其中x=.【知识考点】分式的化简求值.【思路分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答过程】解:原式=[﹣]÷=•=,当x=时,原式==.【总结归纳】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.15.(6分)某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.【知识考点】列表法与树状图法.【思路分析】(1)共有4种可能出现的结果,抽到小艺的只有1种,可求出抽到小艺的概率;(2)用列表法表示所有可能出现的结果,进而求出两个同学均来自八年级的概率.【解答过程】解:(1)共有4种可能出现的结果,抽到小艺的只有1种,因此恰好抽到小艺的概率为,故答案为:;(2)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中都是八年级,即抽到小志、小晴的有2种,∴P(小志、小晴)==.【总结归纳】本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提.16.(6分)如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A'B'C';(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.【知识考点】作图﹣旋转变换.【思路分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)根据AB=2,BC=,AC=5,利用数形结合的思想解决问题即可.【解答过程】解:(1)如图1中,△A'B'C'即为所求.(2)如图2中,△AB'C'即为所求.【总结归纳】本题考查作图﹣旋转变换,解题的关键是理解题意,学会利用数形结合的思想解决问题,属于中考常考题型.17.(6分)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.【知识考点】一元一次方程的应用;二元一次方程组的应用.【思路分析】(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y元,根据“小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)先求两人带的总钱数,再求出两人合在一起买文具所需费用,由二者的差大于2个小工艺品所需钱数,可找出:他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【解答过程】解:(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y元,依题意,得:,解得:.答:笔记本的单价为5元,单独购买一支笔芯的价格为3元.(2)小贤和小艺带的总钱数为19+2+26=47(元).两人合在一起购买所需费用为5×(2+1)+(3﹣0.5)×10=40(元).∵47﹣40=7(元),3×2=6(元),7>6,∴他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【总结归纳】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.四、(本大题共3小题,每小题8分,共24分)18.(8分)如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.【知识考点】反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式;直角三角形斜边上的中线.【思路分析】(1)根据题意求得A(2,2),然后代入y=(x>0),求得k的值,即可求得反比例函数的解析式;(2)根据AB=2OA时,点E恰为AB的中点,得出OA=AE=BE,根据直角三角形斜边中线的性质得出CE=AE=BE,根据等腰三角形的性质以及三角形外角的性质即可得出∠AOE=2∠EOD,从而求得∠EOD=15°.【解答过程】解:(1)∵直线AC⊥x轴,垂足为D,∠AOD=45°,∴△AOD是等腰直角三角形,∵OA=2,∴OD=AD=2,∴A(2,2),∵顶点A在反比例函数y=(x>0)的图象上,∴k=2×2=4,∴反比例函数的解析式为y=;(2)∵AB=2OA,点E恰为AB的中点,∴OA=AE,∵Rt△ABC中,∠ACB=90°,∴CE=AE=BE,∴∠AOE=∠AEO,∠ECB=∠EBC,∵∠AEO=∠ECB+∠EBC=2∠EBC,∵BC∥x轴,∴∠EOD=∠ECB,∴∠AOE=2∠EOD,∵∠AOD=45°,∴∠EOD=15°.【总结归纳】本题考查了待定系数法求反比例函数的解析式,直角三角形斜边中线的性质,三角形外角的性质,等腰三角形的性质,证得∠AOE=2∠EOD,是解题的关键.19.(8分)为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).复学一个月后,根据第二次测试的数学成绩得到如下统计表:成绩30≤x<40 40≤x<50 50≤x<60 60≤x<70 70≤x<80 80≤x<90 90≤x≤100 人数 1 3 3 8 15 m 6 根据以上图表信息,完成下列问题:(1)m=;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有人,至多有人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.【知识考点】用样本估计总体;频数(率)分布表;频数(率)分布直方图;频数(率)分布折线图.【思路分析】(1)根据前后两次抽取的人数一样多,可以计算出m的值;(2)根据直方图中的数据和表格中的数据,可以将图2中的图补充完整,然后即可写出成绩的变化情况;(3)根据表格中的数据,可以得到分数高于78分的至少有多少人,至多有多少人;(4)根据表格中的数据,可以计算出复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.【解答过程】解:(1)m=(2+8+10+15+10+4+1)﹣(1+3+3+8+15+6)=14,故答案为:14;(2)折线图如下图所示,复学后,学生的成绩总体上有了明显的提升;(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有14+6=20(人),至多有14+6+(15﹣1)=34(人),故答案为:20,34;(4)800×=320(人),答:复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的有320人.【总结归纳】本题考查频数分布直方图、折线统计图、统计表、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.(8分)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)【知识考点】解直角三角形的应用.【思路分析】(1)通过作垂线,构造直角三角形,利用直角三角形的边角关系,求出CB、AF,即可求出点A到直线DE的距离;(2)画出旋转后的图形,结合图形,明确图形中的已知的边角,再利用直角三角形的边角关系求出相应的角度即可.【解答过程】解:(1)如图2,过A作AM⊥DE,交ED的延长线于点M,过点C作CF⊥AM,垂足为F,过点C作CN⊥DE,垂足为N,由题意可知,AC=80,CD=80,∠DCB=80°,∠CDE=60°,在Rt△CDN中,CN=CD•sin∠CDE=80×=40(mm)=FM,∠DCN=90°﹣60°=30°,又∵∠DCB=80°,∴∠BCN=80°﹣30°=50°,∵AM⊥DE,CN⊥DE,∴AM∥CN,∴∠A=∠BCN=50°,∴∠ACF=90°﹣50°=40°,在Rt△AFC中,AF=AC•sin40°=80×0.643≈51.44,∴AM=AF+FM=51.44+40≈120.7(mm),答:点A到直线DE的距离约为120.7mm;(2)旋转后,如图3所示,根据题意可知∠DCB=80°+10°=90°,在Rt△BCD中,CD=80,BC=40,∴tan∠D===0.500,∴∠D=26.6°,因此旋转的角度为:60°﹣26.6°=33.4°,答:CD旋转的角度约为33.4°.【总结归纳】本题考查直角三角形的边角关系,锐角三角函数的意义,通过作辅助线构造直角三角形是常用的方法,也是基本的方法.五、(本大题共2小题,每小题9分,共18分)21.(9分)已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).【知识考点】圆的综合题.【思路分析】(1)连接OA,OB,由切线的性质可求∠PAO=∠PBO=90°,由四边形内角和可求解;(2)当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由切线长定理可得PA=PB,∠APC=∠BPC=30°,由“SAS”可证△APC≌△BPC,可得∠ACP=∠BCP=30°,AC=BC,可证AP=AC=PB=BC,可得四边形APBC是菱形;(3)分别求出AP,PD的长,由弧长公式可求,即可求解.【解答过程】解:(1)如图1,连接OA,OB,∵PA,PB为⊙O的切线,∴∠PAO=∠PBO=90°,∵∠APB+∠PAO+∠PBO+∠AOB=360°,∴∠APB+∠AOB=180°,∵∠APB=80°,。
江西省中考数学真题试题(含解析)
江西省中考数学真题试题说明:1.全卷满分120分,考试时间120分钟。
2.请将答案写在答题卡上,否则不给分。
一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1. ﹣2的绝对值是A. B. C. D.【解析】本题考察有理数中的绝对值的概念,容易,但注意与倒数,相反数的区别. 【答案】 B ★2.计算的结果为A. B. C. D.【解析】本题考察代数式的乘法运算,容易,注意 ,约分后值为.【答案】 A★3.如图所示的几何体的左视图为第3题A B C D【解析】本题考察三视图,容易,但注意错误的选项B和C.【答案】 D ★4.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10 %【解析】本题考察条形统计图,容易,对相关概念要理解清楚. 【答案】 C ★频数(人数)2084612(第4题)乓球径毛球球球252015105D5.小同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有A. 3个B. 4个C. 5个D. 无数个【解析】本题考察图形变换,平移的方向只有5个,向上,下,右,右上45°,右下45°方向,否则两个图形不轴对称.【答案】 C ★★6.在平面直角坐标系中,分别过点,作轴的垂线和 ,探究直线和与双曲线的关系,下列结论中错误..的是A.两直线中总有一条与双曲线相交B.当=1时,两条直线与双曲线的交点到原点的距离相等C.当时,两条直线与双曲线的交点在轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2【解析】本题考察直线与双曲线的关系,当=0时,与双曲线有交点,当=-2时,与双曲线有交点,当时,和双曲线都有交点,所以正确;当时,两交点分别是(1,3),(3,1),到原点的距离都是,所以正确;当时,在轴的左侧,在轴的右侧,所以正确;两交点分别是),两交点的距离是 ,当无限大时,两交点的距离趋近于2,所以不正确;注意是错误的选项.【答案】 D ★★★二、填空题(本大题共6小题,每小题3分,共18分)7.若分式有意义,则的取值范围是 .【解析】本题考察分式有意义的条件,当分母不为0时,分式有意义,所以.【答案】★8.5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为 .【解析】 本题考察科学记数法,把60000写成的形式,注意【答案】★9.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十 两。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项)1.下列四个数中,最大的一个数是().A. 2 B .阖C. 0 D. -2【答案】 A.2 .将不等式加易已]的解集表示在数轴上,正确的是().【答案】 D.3. 下列运算正确的是是().A . 一二二■-B .卜庐严一一靜C.〕]二二「D .■进 W【答案】B.4. 有两个完全相同的长方体,按下面右图方式摆放,其主视图是()【答案】C.5. 设乩|£是一元二次方程■[-:=【的两个根,则邮的值是()【答案】D.6. 如图,在正方形网格中,每个小正方形的边长均相等,网格中三个多边形(分别标记为,,)的顶点都在网格上,被一个多边形覆盖的网格线• •中,竖直部分线段长度之和为,水平部分线段长度之和为,则这三个多边形满足育;的是()A.只有B.只有C.D.【答案】C.二、填空题(本大题共6小题,每小题3分,共18分)7. __________________ 计算:-3+2= .【答案】-1.8 .分解因式- ay 2二 ____________ .【答案- .9.如图所示,胡BO , kBAC 二3冗^MBC 绕点A 按顺时针方向旋转50°得到血BC ,则 z ^c 的度数是 ________________ . 第9题第10题第11题 【答案】17°.10.如图所示,在二丄巴〕二」:二二:,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长 线于点F ,则Z BEF 的度数为 ________ .【答案】50°.交于点A ,B ,连接0A,0B ,已知础训的面积为2,则一-- 【答案】4.12 .如图,是一张长方形纸片 ABCD ,已知AB=8,AD=7,E 为AB 上一11.如图,直线口小于点P ,且与反比例函数 -- 及[ 的图象分别点,AE=5,现要剪下一张等腰三角形纸片(AEP),使点P落在长方形ABCD【答案】5词,5,粉訂.如下图所示:(本大题共5小题,每小题6分,共30分)13.(本题共2小题,每小题3分)【解析】由得:制艸喝,代入得:卜卜⑦爭门艸愆,解得|把戸讣代入得: ,•••原方程组的解是产ly=i(2)如图,Rt 丄囲C 中,/ ACB=90,将R 痕C 向下翻折,使点A 与C 重合,折痕为DE 求证:DE// BC.【解析】由折叠知:A 舫胆fiCffi ,•丄顾"園), 又点A 与点C 重合,」就品鴉 •丄烦丄/芮,•••/晞一勢,•丄爛讪朋/财 •••/.咖覚 ,••• DE // BC.(1)解方程组14•先化简,再求值:,其中:*: 6.占 八【解析】原式=+ )把r 二:$代入得:原式=—=-6 215•如图,过点A(2,0)的两条直线分别交 轴于B , C,其中点B 在原点上方,点C 在 原点下方,已知AB =TL (1)求点B 的坐标;⑵若…:「讨■- r【解析】(1)在 Rt 澀」加姑「魁卡••••••点B 的坐标是(0, 3).(2)曲個•••用討••泡(11爵+■3-j设I a : y=fct + h 把(2, o ),師 -1)代入得:16 •为了了解家长关注孩子成长方面的情况,学校开展了针对学生家长的“你最关注孩子 哪方面成长”的主题调查,调查设置了 “健康安全”,“日常学习”,“习惯养成”,“情感品质”四个项目,并随机抽取甲,乙两班共 100位学生家长进行调查,根据调查结 果,绘制了如下不完整的条形统计图•(1) 补全条形统计图;(2) 若全校共有3600位家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成 长?⑶综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关 注和 指导?【解析】(1)如下图所示:⑵(4+6) - 100 X 3600=360•••约有360位家长最关心孩子“情感品质”方面的成长•(3) 没有确定答案,说的有道理即可.17.如图,六个完全相同的小长方形拼成一个大长方形, AB 是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:仅用无刻度直尺,保留必要的画图痕迹•(1)在图(1)中画一个45°角,使点A 或点B 是这个角的顶点,且AB 为这个角的一边; (2)在图(2)中画出线段AB 的垂直平分线.2k+b = 0 b =-1丄:阳忙式的解析式是【解析】如图所示:⑴/ BAC=45o; ( 2) OH是AB的垂直平分线.四、(本大题共4小题,每小题8分,共32 分)18 •如图,AB是O O的直径,点P是弦AC上一动点(不与A、C重合),过点P作PE± AB,垂足为E,射线EP交于点F,交过点C的切线于点D.⑴求证DC=DP AC⑵若/ CAB=30,当F是的中点时,判断以A O C F为顶点的四边形是什么特殊四边形?说明理由;【解析】(1)如图1连接OC,:CD是O O的切线,••• OC X CD AZ OCD=90o, •••/ DCA=90o — Z OCA.又PE丄AB,点D在EP的延长线上,•••Z DEA=90o,•••Z DPC=Z APE=90o—Z OAC.B ••• OA=OC, AZ OCA= Z OAC.• Z DCA= Z DPC,• DC=DP.⑵如图2四边形AOCF是菱形A/ AF - 0^连接CF、AFF是的中点,二D ••• AF=FC.BCBAC=30o , • =60o, ACB又AB是。
O的直径,• =1Apo,= CF•=60o,•/ ACF= / FAC=30o.••• OA=OC, OCA= / BAC=30o,•/ OAC 6 FAC(ASA), • AF=OA,•AF=FC=OC=OA, •四边形AOCF 是菱形.19•如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成,闲置时鱼竿可收缩,完全收缩后,鱼竿的长度的长度即为第1节套管的长度(如图1所示),使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示),图3是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图,已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管都比前一节套管少4cm,完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为R em.(1)请直接写出第5节套管的长度;⑵当这根鱼竿完全拉伸时,其长度为311cm,求巾的值.【解析】⑴第5节的套管的长是34cm.(注:50—( 5- 1)X 4)⑵(50+46+…+14) —9x=311••• 320 —9x=311,.°. x=1••• x的值是1.20. 甲、乙两人利用扑克牌玩“ 1(点”游戏,游戏规则如下:将牌面数字作为点数”,如红桃6的点数”就是6 (牌面点数与牌的花色无关);两人摸牌结束时,将所得牌的点数”相加,若点数”之和小于或等于10,此时点数”之和就是最终点数”,若点数”之和大于10,则最终点数”是0;游戏结束之前双方均不知道对方点数”;判定游戏结果的依据是:最终点数”大的一方获胜,最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1) 若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为(2) 若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌,请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的最终点数”,并求乙获胜的概率.r~ -------------- a【解析】⑴卩勻擁二:.(2) 如图:(7,4)( 7,5)( 7,6)共12 种.甲5[4567甲最终点数”9101112乙5567467457456乙最终点数”101112911129101291011获胜情况乙胜甲胜甲胜甲胜甲胜甲胜乙胜乙胜平乙胜乙胜平21. 如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,0B是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可以绕点A旋转作出圆•已知OA=OB=10cm.⑴当/AOB=18o时,求所作圆的半径;(结果精确到0.01cm)(2)保持/ AOB=18o不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1) 中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)(参考数据:sin9o 〜0.1564,com9o 〜0.9877o,sin18o〜0.3090,com18o〜0.9可使用科学计算器)【解析】⑴图1,作0C丄AB , O ••• OA=OB,OC 丄AB,二AC=BC, Z AOC= / BOC= / A0B=9在Rt/AOC 中,sin Z AOC=,二AC〜0.1564X 10=1.564,M ■ L1B _C—A ••• AB=2AC=3.128 〜3.13.•••所作圆的半径是3.13cm.⑵图2,以点A为圆心,AB长为半径画弧,交OB于点C, 作AD丄BC于点D;v AC=AB,AD 丄BC,• BD=CD, Z BAD= Z CAD= Z BAC,vZ AOB=18 ,OA=OB,AB=AC,• Z BAC=18 ° ,•••/ BAD=9 °Qy在Rt/BAD 中,sin Z BAD=一,• BD 〜0.1564X 3.128" 0.4892,• BC=2BD=0.9784 〜0.98•铅笔芯折断部分的长度约为0.98cm.图2五、(本大题共10分)22. 【图形定义】如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点0,连接A0, 我们称A0为叠弦”再将叠弦” AC所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P连接P0,我们称/ 0AB为叠弦角” / A0P为叠弦三角形”.【探究证明】⑴请在图1和图2中选择其中一个证明:叠弦三角形”即/ A0P)是等边三角形;⑵如图2,求证:/ 0AB= / 0AE/ .【归纳猜想】(3) 图1、图2中叠弦角”的度数分别为,;(4) 图n中,叠弦三角形”等边三角形(填是”或不是”;(5) 图n中,叠弦角”的度数为(用含n的式子表示).【解析】(1)如图1 v 四ABCD是正方形,由旋转知:AD=AD D= / D/ =90° ,Z DAD / =Z 0AP=60° •••/ DAP= / D z A0,•••/ APD 6 A0D /(ASA)••• AP=A0,又/ 0AP=6O°,:/ A0P 是等边三角形.⑵如右图,作AM丄DE于M,作AN丄CB于N.v•五ABCDE是正五边形,由旋转知:AE=AE E= / E z=108° ,/ EAE/ =Z OAP=60•••/ EAP=Z E z AO , •••/ APE6 AOE /(ASA ) •••/ OAE / =Z PAE.••• Rt / APM 也Rt / AON(HL). •••/ PAM= / OAN,•••/ PAE=Z OAB •••/ OAE / =Z OAB(等量代换). (3) 15 °4⑷是190*⑸ / OAB= -2=60°— — 六、(本大题共共12分)I ZM=ZN= 90°ZAEM = ZABN= 72^••• Rt /AEM 也 Rt / ABN(AAS)•••/ EAM= / BAN,AM=AN.在 Rt /APM 和 Rt /AON 中,fAP = AD23•设抛物线的解析式为y=ax2,过点B i(1,0)作x轴的垂线,交抛物线于点A i(1,2);过点B2(1,0)作x轴的垂线,交抛物线于点A2,…;过点B n((护,0)(n为正整数)作x轴的垂线, '2'交抛物线于点A n,连接A n B n+1,得直角三角形A n B n B n+1.(1)求a的值;⑵直接写出线段A n B n,B n B n+1的长(用含n的式子表示);⑶在系列Rt/A n B n B n+1中,探究下列问题:当n为何值时,Rt/A n B n B n+1是等腰直角三角形?设K kv m< n(k,m均为正整数),问是否存在Rt/A k B k B k+1与Rt/ A m B m B m+1相似?若存在,求出其相似比;若不存在,说明理由.【解析】(1)把A(1,2)代入y二丹得:2=沈卩,二乱二2'.(2)扎Bn=2X [护:卜2s■曲%=铲冷少⑶若Rt/ A n B n B n+1是等腰直角三角形,则丸B社二B込屮....旷也二21二n=3.若Rt/A k B k B k+1 与Rt/A m B m B m+1 相似,A kB k --恥I或A k B k -E k B k+i则■L轧或m=k(舍去)或k+m=6■/ m>k,且m,k都是正整数,•相似比二.二= 5 1,或AI•••相似比是8:1或64:1。