2014—2015高数(3)上半期考试题答案

合集下载

2014年考研数三真题及答案解析(完整版)

2014年考研数三真题及答案解析(完整版)

2014年考研数三真题与答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设lim ,n a a =且0,a ≠则当n 充分大时有( ) (A )2n a a >(B )2n a a <(C )1n a a n >-(D )1n a a n<+(2)下列曲线有渐近线的是( ) (A )sin y x x =+ (B )2sin y x x =+(C )1siny x x =+ (D )21sin y x x=+(3)设23(x)a P bx cx dx =+++ ,当0x → 时,若(x)tanx P - 是比x 3高阶的无穷小,则下列试题中错误的是 (A )0a = (B )1b = (C )0c = (D )16d =(4)设函数()f x 具有二阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上( ) (A )当'()0f x ≥时,()()f x g x ≥ (B )当'()0f x ≥时,()()f x g x ≤ (C )当'()0f x ≤时,()()f x g x ≥ (D )当'()0f x ≤时,()()f x g x ≥(5)行列式00000000a b abc d c d= (A )2()ad bc - (B )2()ad bc -- (C )2222a d b c -(D )2222b c a d -(6)设123,,a a a 均为3维向量,则对任意常数,k l ,向量组1323,k l αααα++线性无关是向量组123,,ααα线性无关的(A )必要非充分条件 (B )充分非必要条件 (C )充分必要条件(D )既非充分也非必要条件(7)设随机事件A 与B 相互独立,且P (B )=0.5,P(A-B)=0.3,求P (B-A )=( ) (A )0.1 (B )0.2 (C )0.3 (D )0.4(8)设123,,X X X 为来自正态总体2(0,)N σ的简单随机样本,则统计量1232X X X -服从的分布为(A )F (1,1) (B )F (2,1) (C )t(1) (D )t(2)二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)设某商品的需求函数为402Q P =-(P 为商品价格),则该商品的边际收益为_________。

2014考研数学三真题及答案

2014考研数学三真题及答案

2014 年全国硕士研究生入学统一考试数学三试题一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项 符合题目要求的,请将所选项前的字母填在答.题.纸.指定位置上. (1)设 lim a n = a , 且 a ≠ 0, 则当 n 充分大时有()(A ) a n >2(B ) a n <2 1(C ) a n > a -n (D ) a n< a + 1 n(2)下列曲线有渐近线的是( )(A ) y = x + sin x (B ) y = x 2+ sin x (C ) y = x + sin 1x(D ) y = x 2+ sin 1x(3)设 P (x) = a + bx + cx 2 + dx3,当 x → 0 时,若P (x) - tanx 是比 x 3高阶的无穷小,则下列试题中错误的是 (A ) a = 0 (B ) b = 1 (C ) c = 0 1 (D ) d =6(4)设函数 f (x ) 具有二阶导数, g (x ) = (A )当 f '(x ) ≥ 0 时, f (x ) ≥ g (x ) (B )当 f '(x ) ≥ 0 时, f (x ) ≤ g (x ) (C )当 f '(x ) ≤ 0 时, f (x ) ≥ g (x ) (D )当 f '(x ) ≤ 0 时, f (x ) ≥ g (x )f (0)(1 - x ) + f (1)x ,则在区间[0,1] 上( )a a0 a b 0 a 0 0 b (5)行列式=0 c d 0 c 0 0 d(A ) (ad - bc )2(B ) -(ad - bc )2(C ) a 2 d 2- b 2c2(D ) b 2c 2 - a 2 d 2(6)设 a 1 , a 2 , a 3 均为 3 维向量,则对任意常数 k , l ,向量组α1 + k α3 ,α2 + l α3 线性无关是向量组α1,α2 ,α3 线性无关的 (A )必要非充分条件 (B )充分非必要条件 (C )充分必要条件 (D )既非充分也非必要条件(7)设随机事件 A 与 B 相互独立,且 P (B )=0.5,P(A-B)=0.3,求 P (B-A )=( )(A )0.1 (B )0.2 (C )0.3 (D )0.4(8)设 X , X , X 为来自正态总体N (0,σ2) 的简单随机样本,则统计量X 1 - X 2123分布为 (A )F (1,1) (B )F (2,1) (C )t(1) (D )t(2)二、填空题:9-14 小题,每小题 4 分,共 24 分,请将答案写在答.题.纸.指定位置上. (9)设某商品的需求函数为 Q = 40 - 2P (P 为商品价格),则该商品的边际收益为 。

2014-2015年山东省青岛三中高三(上)期中数学试卷及参考答案(理科)

2014-2015年山东省青岛三中高三(上)期中数学试卷及参考答案(理科)

2014-2015学年山东省青岛三中高三(上)期中数学试卷(理科)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U=R,A={x|y=},则∁U A=()A.[1,+∞)B.(﹣∞,1)C.(1,+∞)D.(﹣∞,1]2.(5分)已知命题p,q,“¬p为假”是“p∨q为真”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)向量,,且∥,则cos2α=()A.B.C.D.4.(5分)已知a>0且a≠1,函数y=log a x,y=a x,y=x+a在同一坐标系中的图象可能是()A.B. C.D.5.(5分)定义运算=ad﹣bc,若函数f(x)=在(﹣∞,m)上单调递减,则实数m的取值范围是()A.(﹣2,+∞)B.[﹣2,+∞)C.(﹣∞,﹣2)D.(﹣∞,﹣2] 6.(5分)设x,y满足约束条件,若目标函数的最小值为,则a的值为()A.2 B.4 C.6 D.87.(5分)设、都是非零向量,下列四个条件中,一定能使+=成立的是()A.=﹣B.∥C.=2D.⊥8.(5分)下列命题中正确的是()A.y=x+的最小值是2B.y=的最小值是2C.y=sin2x+的最小值是4D.y=2﹣3x﹣(x<0)的最小值是2﹣49.(5分)已知,则=()A.B.C.﹣1 D.±110.(5分)已知函数f(x)的导函数图象如图所示,若△ABC为锐角三角形,则一定成立的是()A.f(cosA)<f(cosB)B.f(sinA)<f(cosB)C.f(sinA)>f(sinB)D.f(sinA)>f(cosB)第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)已知函数f(x)=,则f(f())的值是=.12.(5分)曲线y=sinx(0)与y轴、直线y=1围成的封闭图形的面积为.13.(5分)已知0<<β<π,且cos,sin(α+β)=,则sinα=.14.(5分)已知函数f(x)是(﹣∞,+∞)上的奇函数,且f(x)的图象关于直线x=1对称,当x∈[﹣1,0]时,f(x)=﹣x,则f(2013)+f(2014)=.15.(5分)有以下四个命题:①命题“∃x∈R,x2﹣x>0”的否定是“∀x∈R,x2﹣x≤0”;②已知a>0,b>0,则>是a>b的充要条件;③命题“若m>0,则方程x2+x﹣m=0有实根”的逆命题为真命题;④命题“∀∈R,|x+4|﹣|x﹣1|<k”是真命题,则k>5.其中正确命题的序号是.三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16.(12分)用数学归纳法证明:l3+23+33+…+n3=(n∈N﹡).17.(12分)已知函数f(x)=x2+alnx(a≠0)(Ⅰ)a=﹣2时,求函数f(x)的单调增区间;(Ⅱ)判断函数f(x)在定义域内有无极值,若有,求之.18.(12分)设集合A为函数y=ln(﹣x2﹣2x+8)的定义域,集合B为函数的值域,集合C为不等式的解集.(1)求A∩B;(2)若C⊆∁R A,求a的取值范围.19.(12分)已知函数f(x)=2sinωxcosωx+2sin2ωx﹣(ω>0)的最小正周期为π.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)将函数f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象.若y=g(x)在[0,b](b>0)上至少含有10个零点,求b 的最小值.20.(13分)已知函数f(x)=x2+2x+b(b∈R).(Ⅰ)若函数f(x)的值域为[0,+∞),若关于x的不等式f(x)<c(c>0)的解集为(k,k+6)(k∈R),求c的值;(Ⅱ)当b=0时,m为常数,且0<m<1,1﹣m≤t≤m+1,求的取值范围.21.(14分)已知函数f(x)=e x﹣x2﹣ax(a∈R).(Ⅰ)若函数f(x)的图象在x=0处的切线方程为y=2x+b,求a,b的值;(Ⅱ)若函数在R上是增函数,求实数a取值范围;(Ⅲ)如果函数g(x)=f(x)﹣(a﹣)x2有两个不同的极值点x1,x2,证明:a>.2014-2015学年山东省青岛三中高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U=R,A={x|y=},则∁U A=()A.[1,+∞)B.(﹣∞,1)C.(1,+∞)D.(﹣∞,1]【解答】解:A={x|y=}={x|1﹣x>0}={x|x<1},则∁U A={x|x≥1},故选:A.2.(5分)已知命题p,q,“¬p为假”是“p∨q为真”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:若¬p为假,则p为真,则p∨q为真,即充分性成立,当p假q真时,满足p∨q为真,但¬p为真,则必要性不成立,则“¬p为假”是“p∨q为真”的充分不必要条件,故选:A.3.(5分)向量,,且∥,则cos2α=()A.B.C.D.【解答】解:∵,,且∥,∴,即,化简得sinα=,∴cos2α=1﹣2sin2α=1﹣=故选:D.4.(5分)已知a>0且a≠1,函数y=log a x,y=a x,y=x+a在同一坐标系中的图象可能是()A.B. C.D.【解答】解:∵函数y=a x与y=log a x互为反函数,∴它们的图象关于直线y=x对称.再由函数y=a x的图象过(0,1),y=log a x,的图象过(1,0),A选项中的y=a x,a>1,y=log a x,a>1,但y=x+a中的a<1,不符合题意;B选项中的y=a x,a>1,y=log a x,0<a<1,但y=x+a中的a<1,不符合题意;C选项中的y=a x,0<a<1,y=log a x,0<a<1,但y=x+a中的a<1,符合题意;D选项中的y=a x,0<a<1,y=log a x,0<a<1,但y=x+a中的a>1,不符合题意;观察图象知,只有C正确.故选:C.5.(5分)定义运算=ad﹣bc,若函数f(x)=在(﹣∞,m)上单调递减,则实数m的取值范围是()A.(﹣2,+∞)B.[﹣2,+∞)C.(﹣∞,﹣2)D.(﹣∞,﹣2]【解答】解:∵,∴=(x﹣1)(x+3)﹣2×(﹣x)=x2+4x﹣3=(x+2)2﹣7,∴f(x)的单调递减区间为(﹣∞,﹣2),∵函数在(﹣∞,m)上单调递减,∴(﹣∞,m)⊆(﹣∞,﹣2),即m≤﹣2,∴实数m的取值范围是m≤﹣2.故选:D.6.(5分)设x,y满足约束条件,若目标函数的最小值为,则a的值为()A.2 B.4 C.6 D.8【解答】解:目标函数的几何意义为动点P(x,y)到点M(﹣1,﹣1)的斜率,即k.作出不等式对应的平面区域如图(阴影部分),由图象可知当点P位于点B(,0)时,目标函数有最小值,即,解得a=2,故选:A.7.(5分)设、都是非零向量,下列四个条件中,一定能使+=成立的是()A.=﹣B.∥C.=2D.⊥【解答】解:由+=得若=﹣=,即,则向量、共线且方向相反,因此当向量、共线且方向相反时,能使+=成立,对照各个选项,可得B项中向量、的方向相同或相反,C项中向量向量、的方向相同,D项中向量、的方向互相垂直.只有A项能确定向量、共线且方向相反.故选:A.8.(5分)下列命题中正确的是()A.y=x+的最小值是2B.y=的最小值是2C.y=sin2x+的最小值是4D.y=2﹣3x﹣(x<0)的最小值是2﹣4【解答】解:A.x<0时,y<0,因此最小值不是2;B.∵≥2,当且仅当x=1时取等号,其最小值为2;C.∵0<sin2x≤1,∴y>4,因此不正确;D.∵x<0,∴﹣x>0.∴y=2﹣3x﹣==2+4,当且仅当时取等号.其最小值为:2+4,因此不正确.综上可得:只有B正确.故选:B.9.(5分)已知,则=()A.B.C.﹣1 D.±1【解答】解:∵cos(x﹣)=﹣,∴cosx+cos(x﹣)=cosx+cosx+sinx=cosx+sinx=(cosx+sinx)=cos(x﹣)=﹣1.故选:C.10.(5分)已知函数f(x)的导函数图象如图所示,若△ABC为锐角三角形,则一定成立的是()A.f(cosA)<f(cosB)B.f(sinA)<f(cosB)C.f(sinA)>f(sinB)D.f(sinA)>f(cosB)【解答】解:根据导数函数图象可判断;f(x)在(0,1)单调递增,(1,+∞)单调递减,∵△ABC为锐角三角形,∴A+B,0﹣B<A,∴0<sin(﹣B)<sinA<1,0<cosB<sinA<1f(sinA)>f(sin(﹣B)),即f(sinA)>f(cosB)故选:D.第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)已知函数f(x)=,则f(f())的值是=﹣2.【解答】解:∵函数,∴f()=2+=4.=f(4)==﹣2.故答案为:﹣2.12.(5分)曲线y=sinx(0)与y轴、直线y=1围成的封闭图形的面积为﹣1.【解答】解:y=sinx(0)与y轴、直线y=1的交点分别为(0,0),(,1),故曲线y=sinx(0)与y轴、直线y=1围成的封闭图形的面积为S=(1﹣sinx)dx=(x+cosx)|=﹣1,故答案为:﹣1,13.(5分)已知0<<β<π,且cos,sin(α+β)=,则sinα=.【解答】解:由于0<<β<π,cos,则sinβ==.由于,则cos(α+β)=﹣=﹣,则有sinα=sin(α+β﹣β)=sin(α+β)cosβ﹣cos(α+β)sinβ=×(﹣)﹣(﹣)×=.故答案为:.14.(5分)已知函数f(x)是(﹣∞,+∞)上的奇函数,且f(x)的图象关于直线x=1对称,当x∈[﹣1,0]时,f(x)=﹣x,则f(2013)+f(2014)=﹣1.【解答】解:∵f(x)的图象关于直线x=1对称,∴f(x)=f(2﹣x),又f(x)是(﹣∞,+∞)上的奇函数,∴f(x)=﹣f(x﹣2),∴f(x+4)=﹣f(x+2)=﹣[﹣f(x)]=f(x),即4为f(x)的周期,∴f(2013)=f(4×503+1)=f(1),f(2014)=f(4×503+2)=f(2),由x∈[﹣1,0]时,f(x)=﹣x,得f(1)=﹣f(﹣1)=﹣1,由f(x)=f(2﹣x),得f(2)=f(0)=0,∴f(2013)+f(2014)=﹣1+0=﹣1,故答案为:﹣1.15.(5分)有以下四个命题:①命题“∃x∈R,x2﹣x>0”的否定是“∀x∈R,x2﹣x≤0”;②已知a>0,b>0,则>是a>b的充要条件;③命题“若m>0,则方程x2+x﹣m=0有实根”的逆命题为真命题;④命题“∀∈R,|x+4|﹣|x﹣1|<k”是真命题,则k>5.其中正确命题的序号是①②④.【解答】解:①命题“∃x∈R,x2﹣x>0”的否定是“∀x∈R,x2﹣x≤0”,正确;②已知a>0,b>0,则>是a>b的充要条件,正确;③若方程x2+x﹣m=0有实根,则△=1+4m≥0,解得.命题“若m>0,则方程x2+x﹣m=0有实根”的逆命题为“若方程x2+x﹣m=0有实根,则m>0”,是假命题;④令f(x)=|x+4|﹣|x﹣1|,则f(x)=,可得﹣5≤f(x)≤5,因此命题“∀∈R,|x+4|﹣|x﹣1|<k”是真命题,则k>5,正确.其中正确命题的序号是①②④.故答案为:①②④.三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16.(12分)用数学归纳法证明:l3+23+33+…+n3=(n∈N﹡).【解答】证明:①当n=1时,左边=1,右边=1,∴n=1时,等式成立.②假设n=k时,等式成立,即13+23+33++k3+(k+1)3=∴n=k+1时,等式成立.综合①、②原等式获证.17.(12分)已知函数f(x)=x2+alnx(a≠0)(Ⅰ)a=﹣2时,求函数f(x)的单调增区间;(Ⅱ)判断函数f(x)在定义域内有无极值,若有,求之.【解答】解:(1)当a=﹣2时,f(x)=x2﹣2lnx,其定义域为(0,+∞),∴f′(x)=2x﹣=,令f′(x)=0,解得x=1,当x>1时,f′(x)>0,此时函数f(x)单调递增;当0<x<1时,f′(x)<0,此时函数f(x)单调递减.∴函数的单调递增区间为(1,∞);递减区间为(0,1].(2)∵f(x)=x2+alnx,其定义域为(0,+∞),∴f′(x)=2x+=,①当a>0时,f′(x)>0恒成立,故函数f(x)在(0,+∞)上单调递增,无极值,②当a<0时,令f′(x)=0,解得x=,当0<x<时,f′(x)<0,此时函数f(x)单调递减;当x>时,f′(x)>0,此时函数f(x)单调递增.∴当x=时,函数f(x)取得极小值,f()=﹣+ln(﹣)18.(12分)设集合A为函数y=ln(﹣x2﹣2x+8)的定义域,集合B为函数的值域,集合C为不等式的解集.(1)求A∩B;(2)若C⊆∁R A,求a的取值范围.【解答】解:(1)∵﹣x2﹣2x+8>0,∴解得A=(﹣4,2).∵,∴B=(﹣∞,﹣3]∪[1,+∞);所以A∩B=(﹣4,﹣3]∪[1,2);(2)∵C R A=(﹣∞,﹣4]∪[2,+∞),C⊆C R A,若a<0,则不等式的解集只能是(﹣∞,﹣4]∪[,+∞),故定有≥2得解得﹣≤a<0若a>0,则不等式的解集[﹣4,],但C⊆C R A,故a∈∅.∴a的范围为<0.19.(12分)已知函数f(x)=2sinωxcosωx+2sin2ωx﹣(ω>0)的最小正周期为π.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)将函数f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象.若y=g(x)在[0,b](b>0)上至少含有10个零点,求b 的最小值.【解答】解:(Ⅰ)由题意,可得f(x)==.∵函数的最小正周期为π,∴=π,解之得ω=1.由此可得函数的解析式为.令,解之得∴函数f(x)的单调增区间是.(Ⅱ)将函数f(x)的图象向左平移个单位,再向上平移1个单位,可得函数y=f(x+)+1的图象,∵∴g(x)=+1=2sin2x+1,可得y=g(x)的解析式为g(x)=2sin2x+1.令g(x)=0,得sin2x=﹣,可得2x=或2x=解之得或.∴函数g(x)在每个周期上恰有两个零点,若y=g(x)在[0,b]上至少含有10个零点,则b不小于第10个零点的横坐标即可,即b的最小值为.20.(13分)已知函数f(x)=x2+2x+b(b∈R).(Ⅰ)若函数f(x)的值域为[0,+∞),若关于x的不等式f(x)<c(c>0)的解集为(k,k+6)(k∈R),求c的值;(Ⅱ)当b=0时,m为常数,且0<m<1,1﹣m≤t≤m+1,求的取值范围.【解答】解:(Ⅰ)由值域为[0,+∞),当x2+2x+b=0时有△=4﹣4b=0,即b=1.则f(x)=x2+2x+1=(x+1)2,由已知f(x)=(x+1)2<c解得,,∵不等式f(x)<c的解集为(k,k+6),∴,解得c=9.(Ⅱ)当b=0时,f(x)=x2+2x,∴.∵0<m<1,1﹣m≤t≤m+1,∴0<1﹣m≤t≤m+1<2.令,则,当0<t<1时,g'(t)>0,g(t)单调增,当1<t<2时,g'(t)<0,g(t)单调减,∴当t=1时,g(t)取最大值,.∵=,∴g(1﹣m)<g(1+m).∴的范围为.21.(14分)已知函数f(x)=e x﹣x2﹣ax(a∈R).(Ⅰ)若函数f(x)的图象在x=0处的切线方程为y=2x+b,求a,b的值;(Ⅱ)若函数在R上是增函数,求实数a取值范围;(Ⅲ)如果函数g(x)=f(x)﹣(a﹣)x2有两个不同的极值点x1,x2,证明:a>.【解答】解:(Ⅰ)∵f(x)=e x﹣x2﹣ax,∴f′(x)=e x﹣x﹣a,∴根据导数的几何意义可得,切线的斜率k=f'(0)=1﹣a,∵切线方程为y=2x+b,则k=2,∴1﹣a=2,解得a=﹣1,∴f(x)=e x﹣x2+x,∴f(0)=1,即切点(0,1),∴1=2×0+b,解得b=1;(Ⅱ)由题意f'(x)>0即e x﹣x﹣a≥0恒成立,∴a≤e x﹣x恒成立.设h(x)=e x﹣x,则h′(x)=e x﹣1.当x变化时,h′(x)、h(x)的变化情况如下表:∴h(x)min=h(0)=1,∴a≤1;(Ⅲ)∵g(x)=f(x)﹣(a﹣)x2,∴g(x)=e x﹣x2﹣ax﹣ax2+x2=e x﹣ax2﹣ax,∴g′(x)=e x﹣2ax﹣a,∵x1,x2是函数g(x)的两个不同极值点(不妨设x1<x2),∴e x﹣2ax﹣a=0(*)有两个不同的实数根x1,x2当时,方程(*)不成立则,令,则由p′(x)=0得:当x变化时,p(x),p′(x)变化情况如下表:∴当时,方程(*)至多有一解,不合题意;当时,方程(*)若有两个解,则所以,.。

2014考研数学三真题及答案

2014考研数学三真题及答案

2014年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设lim ,n a a =且0,a ≠则当n 充分大时有( )(A )2n a a >(B )2n a a <(C )1n a a n >-(D )1n a a n<+(2)下列曲线有渐近线的是( ) (A )sin y x x =+ (B )2sin y x x =+(C )1siny x x =+ (D )21sin y x x=+(3)设23(x)a P bx cx dx =+++ ,当0x → 时,若(x)tanx P - 是比x 3高阶的无穷小,则下列试题中错误的是 (A )0a = (B )1b = (C )0c = (D )16d =(4)设函数()f x 具有二阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上( ) (A )当'()0f x ≥时,()()f x g x ≥ (B )当'()0f x ≥时,()()f x g x ≤ (C )当'()0f x ≤时,()()f x g x ≥(D )当'()0f x ≤时,()()f x g x ≥(5)行列式00000000a b abc d c d= (A )2()ad bc - (B )2()ad bc -- (C )2222a d b c - (D )2222b c a d -(6)设123,,a a a 均为3维向量,则对任意常数,k l ,向量组1323,k l αααα++线性无关是向量组123,,ααα线性无关的(A )必要非充分条件 (B )充分非必要条件 (C )充分必要条件(D )既非充分也非必要条件(7)设随机事件A 与B 相互独立,且P (B )=0.5,P(A-B)=0.3,求P (B-A )=( ) (A )0.1 (B )0.2 (C )0.3 (D )0.4(8)设123,,X X X 为来自正态总体2(0,)N σ服从的分布为(A )F (1,1) (B )F (2,1) (C )t(1) (D )t(2)二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)设某商品的需求函数为402Q P =-(P 为商品价格),则该商品的边际收益为_________。

2014年考研数学三真题及答案

2014年考研数学三真题及答案

三、 解答题: 15~23 小题,共 94 分.请将解答写在答题纸 指定位置上.解答应写出文字说明、 ... 证明过程或演算步骤. (15)(本题满分 10 分)

求极限 lim
x
x
1
2 1 t e t 1 t dt . 1 2 x ln 1 x
2
(2) 下列曲线有渐近线的是( (A) y x sin x (C) y x sin
1 x
(D) y x 2 sin
1 x
【答案】(C) 【金程解析】本题主要考查渐近线的定义、分类及求法:
1 1 sin 1 1 x lim1 lim x 1 0 1 , C 选项: 又 lim[ x sin x] lim sin 0 , lim x x x x x x x x x 1 所以 y x sin 存在斜渐近线 y x . 故选(C).对于(A) (B) (D)均可验证没有渐近线. x x sin
(5) 行列式
0 a b a 0 0
0 b
0 c d 0 c 0 0 d
2

(
)
(A) (ad bc)
(B) (ad bc)
2
(C) a 2 d 2 b2c 2
(D)
b2c 2 a 2 d 2
【答案】(B) 【金程解析】本题考查行列式的计算和展开定理.由行列式的展开定理按照第一列展开

名校之路 源自金程
2014 年全国硕士研究生入学统一考试数学三试题答案
一、选择题:1 8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项符 合题目要求的,请将所选项前的字母填在答题纸 指定位置上. ... (1) 设 lim an a ,且 a 0 ,则当 n 充分大时有 (

高等数学考试题库(附答案解析)

高等数学考试题库(附答案解析)

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xe C -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰ ②()220dx a x a >-⎰ ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题 1.2- 2.- 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②162.11xy x y '=+- 3. ①11ln ||23x C x +++②ln ||x C + ③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }.(A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫ ⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C) 1,ln 22⎛⎫ ⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ). (A) ()121x x e - (B)12x x e - (C) ()121x x e + (D) 12xxe8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '.3.求下列不定积分: ①3tan sec x xdx ⎰ ②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x td e dt dx -=⎰8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2. ln(1)x x dx +⎰.3.120xedx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==--四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y e e edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx =C 、)5(x d dx --=D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x- C 、 C x +2sin D 、2sin 2x -7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→B 、x x arctan lim ∞→C 、x x sin lim ∞→D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0D 、241a π 10、方程( )是一阶线性微分方程. A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxeC e C 221+.三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ;4、C x ++ln 22 ;5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略。

2014年全国硕士研究生入学统一考试数学三试题及答案解析

2014年全国硕士研究生入学统一考试数学三试题及答案解析

2014年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若a a n n =∞→lim ,且0≠a ,则当n 充分大时有( )(A )2a a n > (B )2a a n <(C )n a a n 1-> (D )na a n 1+< 【答案】A【考点】极限的概念 【详解】 【解法一】lim 0n n a a ε→∞=⇔∀>,当n 充分大时,有-n a a ε<取2a ε=,有-2n a a a <即22n a a a a a -<<+当0a >时,322n a a a <<;当0a <时,322n a aa <<.从而2n a a >. 故选A .【解法二】根据极限的保号性推论:若,0lim ≠=∞→a a n n 则存在0>N ,当N n >时,10,<<>θθa a n取21=θ,故选A . 【解法三】令⎪⎪⎩⎪⎪⎨⎧-+--=为偶数为奇数n n a n n a a n 1111,则排除D C B ,,,故选A .(2)下列曲线中有渐近线的是( )(A )sin y x x =+ (B )2sin y x x =+ (C )1sin y x x =+ (D )21sin y x x=+ 【答案】C【考点】函数的渐近线 【详解】对于选项A , lim(sin )x x x →∞+ 不存在,因此没有水平渐近线,同理可知,选项A 没有铅直渐近线, 而sinxlimlim x x y x x x→∞→∞+=不存在,因此选项A 中的函数没有斜渐近线; 对于选项B 和D ,我们同理可知,对应的函数没有渐近线;对于C 选项,1siny x x=+.由于1sin lim lim1x x x yx x x→∞→∞+==,又()1lim 1lim sin0x x y x x→∞→∞-⋅==.所以1sin y x x =+存在斜渐近线y x =.故选C.(3)设23()P x a bx cx dx =+++,当0→x 时,若()tan P x x -是比3x 高阶的无穷小,则下列选项错误的是( )(A )0=a (B )1=b (C )0=c (D )61=d 【答案】D【考点】高阶无穷小、泰勒公式、洛必达法则 【详解】 【解法一】由泰勒展开式:)(31tan 33x o x x x ++=知,若()tan P x x -是比3x 高阶的无穷小 则必有:31,0,1,0====d c b a ,故选D.【解法二】由题意可知2330tan lim 0x a bx cx dx xx →+++-= 230lim(tan )00x a bx cx dx x a →∴+++-=⇒=23223200tan 23sec lim lim 03x x a bx cx dx x b cx dx x x x →→+++-++-== 220lim(23sec )01x b cx dx x b →∴++-=⇒=22222222220000123sec 23tan 23tan lim lim lim lim 3333x x x x cx dx x cx dx x cx dx x x x x x →→→→++-+--==+ 20211lim()00,333x cx d c d x →=+-=⇒==(4)设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]内( ) (A )当()0f x '≥时,()()f x g x ≥ (B )当()0f x '≥时,()()f x g x ≤ (C )当()0f x ''≥时,()()f x g x ≥ (D )当()0f x ''≥时,()()f x g x ≤ 【答案】D【考点】函数单调性的判别、函数图形的凹凸性 【详解】 【解法一】令)()()(x f x g x F -=则)()1()0()(x f f f x F '-+-='由拉格朗日中值定理知,存在)1,0(∈ξ,使得)()()01()0()1(ξξf f f f '='-=- 即0)(='ξF又因为)()(x f x F ''-=''若()0f x ''≥,则()0F x ''≤,所以)(x F '单调递减, 当(0,),()0,()x F x F x ξ'∈>单调递增, 当(,1),()0,()x F x F x ξ'∈<单调递减,又0)1(.0)0(==F F ,所以()0F x ≥,即()()f x g x ≤,故选D 【解法二】令2()f x x =,则函数()f x 具有2阶导数,且()0f x ''≥ 所以()(0)(1)(1)g x f x f x x =-+= 当]1,0[∈x 时,()()f x g x ≤,故选D(5)行列式00000000a ba bc dc d=( ) (A )2()ad bc - (B )2()ad bc -- (C )2222a dbc - (D )2222b c a d - 【答案】B【考点】行列式的性质、行列式按行(列)展开定理 【详解】 【解法一】1323000000000000000000000000a b b a b a a ba bd c c c r r c d d c a b c d c d c d↔-↔ 2()()()b a a b bc ad ad bc ad bc d c c d=⋅=--=-- 故选B 【解法二】21410a 00000(1)0(1)000000000b a b a b a ba c d cbcd d c d c d++=⨯-+⨯-3323(1)(1)a b a ba d cbcd c d++=-⨯⨯--⨯⨯- 2()()a b a b a bad bc bc ad ad bc c d c d c d=-+=-=--(6)设123,,ααα为3维向量,则对任意常数,k l ,向量组1323,k l αααα++线性无关是向量组123,,ααα线性无关的( )(A )必要非充分条件 (B )充分非必要条件 (C )充分必要条件 (D )既非充分也非必要条件 【答案】A【考点】向量组的线性无关性 【详解】132312310(,)(,,)01k l k l ααααααα⎛⎫⎪++= ⎪ ⎪⎝⎭记132312310(,),(,,),01A k l B C k l ααααααα⎛⎫⎪=++== ⎪ ⎪⎝⎭若123,,ααα线性无关,则1323()()()2,r A r BC r C k l αααα===⇒++线性无关. 由1323,k l αααα++线性无关不一定能推出123,,ααα线性无关.如:123100=0=1=0000ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,1323,k l αααα++线性无关,但此时123,,ααα线性相关.故选A.(7)设随机事件A 与B 相互独立,且()0.5P B =,()0.3P A B -=,则=-)(A B P ( ) (A )0.1 (B)0.2 (C)0.3 (D)0.4 【答案】B【考点】事件的概率、事件的独立性【详解】()()()()()()P A B P A P AB P A P A P B -=-=- ()0.5()0.5()0.3()0.6P A P A P A P A =-==⇒=.()()()()()()0.50.50.60.2P B A P B P AB P B P A P B -=-=-=-⨯=.故选B.(8)若321,,X X X 是来自正态总体),(2σμN 的简单随机样本,则统计量3212X X X S -=服从的分布为( )(A ))1,1(F (B))1,2(F (C))1(t (D))2(t 【答案】C 【考点】t 分布 【详解】 【解法一】21212~(0,2),~(0,1),2X X X X N N σσ-- 2233~(0,1),()~(1)X X N χσσ12122332S==~(1)2()X X X X t X x σσ--∴【解法二】因为分子为正态分布,故不是F 分布,为t 分布, 又因为分母仅一项,故自由度为1,选C二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)设某商品的需求函数为P Q 240-=(P 为商品的价格),则商品的边际收益为【答案】Q -20 【考点】导数的经济意义【详解】40()24012022QR QP Q dR Q Q QdQ -==-=-=-收益边际收益(10)设D 是由曲线01=+xy 与直线0=+x y 及2=y 围成的有界区域,则D 的面积为【答案】2ln 23- 【考点】平面图形的面积 【详解】2212113(ln )ln 2122S y dy y y y =+=-+=-⎰面积(-)(11)设412=⎰dx xe ax ,则=a【答案】21 【考点】分部积分法 【详解】222200011()022aa a x xx x a xe dx xde xe e dx ==-⎰⎰⎰ 2222111111()()0222224a x a a a ae e ae e =-=-+=12a ∴=(12)二次积分=-⎰⎰dx e xe dy y y x110)(22【答案】)1(21-e 【考点】交换累次积分的次序、二重积分的计算 【详解】2222111111000()x xy y y y y e e dy e dx dy dx dy e dx x x -=-⎰⎰⎰⎰⎰⎰ 222221111100000(1)x xy x y y edx dy y e dy e dx e dy ye dy x =--=-+⎰⎰⎰⎰⎰⎰221201111(1)0222y y e dy e e ===-⎰ (13)设二次型3231222132142),,(x x x ax x x x x x f ++-=的负惯性指数为1,则a 的取值范围是【答案】]2,2[-【考点】惯性指数、矩阵的特征值、配方法化二次型为标准形 【详解】 【解法一】二次型对应的系数矩阵为:O a a ≠⎪⎪⎪⎭⎫⎝⎛-0221001,记特征值为321,,λλλ则0011)(321=+-==++A tr λλλ,即特征值必有正有负,共3种情况; 因二次型的负惯性指数为⇔1特征值1负2正或1负1正1零;0402210012≤+-=-⇔a a a,即]2,2[-∈a【解法二】2222222212312132311332233(,,)2424f x x x x x ax x x x x ax x a x x x x a x =-++=++-+- 2222222213233123()(2)(4)(4)x ax x x a x y y a y =+--+-=-+-若负惯性指数为1,则240[2,2]a a -≥⇒∈-(14)设总体X 的概率密度为⎪⎩⎪⎨⎧<<=其他,02,32),(2θθθθx xx f ,其中θ是未知参数,n X X X ,,,21 为来自总体X 的简单随机样本,若212θ=⎥⎦⎤⎢⎣⎡∑=n i i X c E ,则=c【答案】n52【考点】统计量的数字特征 【详解】322222112()()()3n ni i i i x E c X c E X ncE X nc dx θθθ======∑∑⎰4222221523425nc nc x c nθθθθθ=⋅==∴= 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限)11ln(])1([lim2112xx dtt e t xtx +--⎰+∞→【考点】函数求极限、变限积分函数求导、等价无穷小、洛必达法则 【详解】11221122((1))((1))limlim11ln(1)xxttx x t e t dt t e t dtx x xx→+∞→+∞----=+⋅⎰⎰1122(1)1lim lim (1)1xx x x x e x x e x→+∞→+∞--==-- 20001111lim lim lim 222t t t t t t e t e e t x t t +++→→→---====令 (16)(本题满分10分)设平面区域}0,0,41|),{(22≥≥≤+≤=y x y x y x D ,计算⎰⎰++Ddxdy y x y x x )sin(22π 【考点】二重积分的计算、轮换对称性【详解】积分区域D 关于y x =对称,利用轮换对称性,2222sin()ysin()D D x x y x y dxdy dxdy x y x y ππ++=++⎰⎰⎰⎰ 2222sin()ysin()1()2D x x y x y dxdy x y x yππ++=+++⎰⎰ 221sin()2Dx y dxdy π=+⎰⎰ 22201111sin()d cos()24d r r r rd r πθππ==-⎰⎰⎰221111cos()|cos()d 44r r r r ππ=-+⎰ 34=-(17)(本题满分10分)设函数)(u f 具有2阶连续导数,)cos (y e f z x=满足cos sin (4cos )x x z zyy z e y e x y∂∂-=+∂∂,若0)0(=f ,求)(u f 的表达式. 【考点】多元函数求偏导、一阶线性微分方程 【详解】 令y e u xcos =,()cos x zf u e y x∂'∴=⋅∂ ()(sin )x zf u e y y ∂'=⋅-∂ cos sin (4cos )x x z zyy z e y e x y∂∂-=+∂∂ 22()cos ()sin [4()]x x x f u e y f u e y f u u e ''∴⋅+⋅=+即:u u f u f =-')(4)(u u ue u f u f e 44)](4)([--=-'∴两边积分得:)41(41)(4444C e ue du ue u f eu u u u++-==----⎰即:)41(41)(4uCe u u f ++-=因为0)0(=f ,解得41-=C所以41()(41)16uf u e u =-- (18)(本题满分10分) 求幂级数(1)(3)nn n n x∞=++∑的收敛域及和函数.【考点】幂级数求收敛域、和函数 【详解】 (Ⅰ)(2)(4)lim1(1)(3)n n n n n ρ→∞++==++ ,∴收敛半径11R ρ==当1x =±时,级数发散,故收敛域为(1,1)-(Ⅱ)令0()(1)(3)nn S x n n x ∞==++∑, 则1201()(3)(3),0xn n n n S t dt n xn x x x ∞∞++===+=+≠∑∑⎰令210()(3)n n S x n x∞+==+∑,则3310()1xn n x S t dt xx∞+===-∑⎰3231232()1(1)x x x S x x x '⎛⎫-∴== ⎪--⎝⎭2321223132323()(),0(1)(1)(1)x x x x x S x S x x x x x x x '''⎛⎫⎛⎫---⎛⎫∴===≠ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭=又03S =(),所以33,(1,1)(1)xS x x x -=∈--()(19)(本题满分10分)设函数)(),(x g x f 在区间],[b a 上连续,且)(x f 单调增加,1)(0≤≤x g . 证明:(I )a x dt t g xa-≤≤⎰)(0,],[b a x ∈;(II )⎰⎰⎰≤+badtt g a abadx x g x f dx x f )()()()(【考点】定积分中值定理、不等式的证明 【详解】 (I )【解法一】因为函数)(x g 在区间],[b a 上连续,且1)(0≤≤x g . 所以⎰⎰⎰≤≤xax axadt dt t g dt 1)(0即a x dt t g x a-≤≤⎰)(0【解法二】由定积分中值定理知:存在),(b a ∈ξ,使得)()()(ξg a x dt t g xa-=⎰,又因为],[b a x ∈时1)(0≤≤x g , 所以)()()(0a x g a x -≤-≤ξ 即a x dt t g xa-≤≤⎰)(0【解法三】 设1()()xah x g t dt =⎰,则1()0h a =,1'()()0h x g x =≥1()h x ∴单调增加∴当[],x a b ∈时,1()0h x ≥.设2()()xah x g t dt x a =-+⎰,则2'()()1h x g x =-0()1g x ≤≤ ,2'()0h x ∴≤2()h x ∴单调减少.又2()0h a =,∴当[],x a b ∈时,2()0h x ≤∴当[],x a b ∈时,a x dt t g xa-≤≤⎰)(0(II )令()()()()()xa xa g t dt aaF x f u g u du f u du+⎰=-⎰⎰'()()()[()]()()[()]()x xa a F x f x g x f a g t dt g x f x f a g t dt g x ⎡⎤∴=-+⋅=-+⎢⎥⎣⎦⎰⎰由(I )知()xaa g t dt a x a x +≤+-=⎰,又()f x 单调增加,()[()]x af x f ag t dt ∴≥+⎰;又因为(x)0g ≥'()0F x ∴≥ ()F x ∴在区间[],a b 上单调增加又()0F a =,()0F b ∴≥即()()()()ba ba g t dtaaf xg x dx f x dx +⎰≥⎰⎰(20)(本题满分11分)设E A ,302111104321⎪⎪⎪⎭⎫⎝⎛----=为3阶单位矩阵.(I )求方程组0=Ax 的一个基础解系; (II )求满足E AB =的所有矩阵B .【考点】齐次线性方程组的基础解系、非齐次线性方程组的通解 【详解】1234100()01110101203001A E --⎛⎫ ⎪=- ⎪ ⎪-⎝⎭1205412301021310013141--⎛⎫ ⎪→--- ⎪ ⎪--⎝⎭ 100126101021310013141-⎛⎫ ⎪→--- ⎪ ⎪---⎝⎭(I ) 方程组0=Ax 的同解方程组为⎪⎪⎩⎪⎪⎨⎧===-=4443424132x x x x x x x x ,即方程组0=Ax 的一个基础解系为1231α-⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭(II )⎪⎪⎪⎭⎫ ⎝⎛=001Ax 的同解方程组为:⎪⎪⎩⎪⎪⎨⎧+=-=-=+-=01312244434241x x x x x x x x ,即通解为12110k α⎛⎫⎪- ⎪+ ⎪- ⎪⎝⎭⎪⎪⎪⎭⎫ ⎝⎛=010Ax 的同解方程组为:⎪⎪⎩⎪⎪⎨⎧+=-=-=+-=04332644434241x x x x x x x x ,即通解为26340k α⎛⎫⎪- ⎪+ ⎪- ⎪⎝⎭⎪⎪⎪⎭⎫ ⎝⎛=100Ax 的同解方程组为:⎪⎪⎩⎪⎪⎨⎧+=+=+=--=01312144434241x x x x x x x x ,即通解为31110k α-⎛⎫⎪ ⎪+ ⎪ ⎪⎝⎭,123261131(,,)141000B k k k ααα-⎛⎫⎪-- ⎪∴=+ ⎪-- ⎪⎝⎭,321,,k k k 为任意常数 (21)(本题满分11分)证明:n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛111111111与⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n 00200100 相似. 【考点】矩阵的特征值、相似对角化 【详解】设⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 111111111A ,⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦00010002000n B 因为1)(,1)(==B r A r所以A 的特征值为:n A tr n n ======-)(,0121λλλλB 的特征值为:n B tr n n =='='=='='-)(,0121λλλλ 关于A 的特征值0,因为1)()()0(==-=-A r A r A E r ,故有1-n 个线性无关的特征向量,即A 必可相似对角化于⎪⎪⎪⎪⎪⎭⎫⎝⎛n 00 同理,关于B 的特征值0,因为1)()()0(==-=-B r B r B E r ,故有1-n 个线性无关的特征向量,即B 必可相似对角化于⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n 00 由相似矩阵的传递性可知,A 与B 相似. (22)(本题满分11分)设随机变量X 的概率分布为21}2{}1{====X P X P ,在给定i X =的条件下,随机变量Y 服从均匀分布)2,1)(,0(=i i U ,(I )求Y 的分布函数)(y F Y ; (II )求EY .【考点】一维随机变量函数的分布、随机变量的数字特征(期望) 【详解】(I )()()y F y P Y y =≤(1)(1)(2)(2)P Y y X P X P Y y X P X =≤==+≤==11(1)(2)22P Y y X P Y y X =≤=+≤= ① 当0y < 时,(y)0Y F =② 当01y ≤<时,1113(y)2224Y F y y y =+⨯= ③ 当12y ≤<时,1111(y)22224Y yF y =+⨯=+④ 当2y ≥时,11(y)122Y F =+=综上:003y 014(y)1122412Y y y F y y y <⎧⎪⎪≤<⎪=⎨⎪+≤<⎪⎪≥⎩(II )'30141(y)(y)1240Y Y y f F y ⎧<<⎪⎪⎪==≤<⎨⎪⎪⎪⎩其他12-013131133()4442424Y EY yf y dy ydy ydy +∞∞==+=⨯+⨯=⎰⎰⎰(23)(本题满分11分)设随机变量Y X ,的概率分布相同,X 的概率分布为32}1{,31}0{====X P X P ,且X 与Y 的相关系数为21=XY ρ. (I )求),(Y X 的概率分布; (II )求}1{≤+Y X P .【考点】二维离散型随机变量及其概率 【详解】 (I )由题意有:1cov(,)11222XY X Y EXY EXEY DX DY DX DYρ-=⇒=⇒=2212,3339EX EY DX DY ====⨯=112225229339EXY DX DY EX EY ∴=⋅+⋅=⨯+⨯=所以XY 的概率分布为XY0 1 P4/9 5/9即:95)1,1()1(=====Y X P XY P 所以,(X,Y )的概率分布为:YX 0 1 0 2/9 1/9 11/95/9(II)54(1)1(1)1(1,1)199P X Y P X Y P X Y +≤=-+>=-===-=。

2014年考研数学三真题及答案

2014年考研数学三真题及答案

2014年考研数学三真题一、选择题(18小题,每小题4分,共32分。

下列媒体给出的四个选项中,只有一个选项是符合题目要求的。

)(1)设且≠0,则当充分大时有(A) (B)(C) (D)【答案】A。

【解析】【方法1】直接法:由且≠0,则当充分大时有【方法2】排除法:若取显然,且(B)和(D)都不正确;取显然,且(C)不正确综上所述,本题正确答案是(A)【考点】高等数学—函数、极限、连续—极限的概念与性质(2)下列曲线中有渐近线的是(A) (B)(C) (D)【答案】C。

【解析】【方法1】由于所以曲线有斜渐近线,故应选(C)解法2考虑曲线与直线纵坐标之差在时的极限则直线是曲线的一条斜渐近线,故应选(C)综上所述,本题正确答案是(C)【考点】高等数学—一元函数微分学—曲线的凹凸、拐点及渐近线(3)设当时,若是比高阶的无穷小,则下列选项中错误的是(A) (B)(C) (D)【答案】D。

【解析】【方法1】当时,知,的泰勒公式为又则【方法2】显然,由上式可知,,否则等式右端极限为∞,则左端极限也为∞,与题设矛盾。

故综上所述,本题正确答案是(D)。

【考点】高等数学—函数、极限、连续—无穷小量及其阶的比较(4)设函数具有二阶导数,,则在区间[0,1]上(A)当时,(B)当时,(C)当时,(D)当时,【答案】D。

【解析】【方法1】由于则直线过点和(),当时,曲线在区间[0,1]上是凹的,曲线应位于过两个端点和的弦的下方,即【方法2】令,则,,当时,。

则曲线,又,从而,当时,,即【方法3】令,则,=当时,单调增,,从而,当时,,即综上所述,本题正确答案是D。

【考点】高等数学—一元函数微分学—函数不等式证明(5)行列式(A) (B)(C) (D)【答案】B。

【解析】灵活使用拉普拉斯公式==综上所述,本题正确答案是(B)【考点】线性代数—行列式—数字型行列式的计算(6)设均为三维向量,则对任意常数,向量组线性无关是向量组线性无关的(A)必要非充分条件 (B)充分非必要条件(C)充分必要条件 (D)既非充分又非必要条件【答案】A。

2014-2015学年福建省福州三中高三(上)期中数学试卷和答案(理科)

2014-2015学年福建省福州三中高三(上)期中数学试卷和答案(理科)

2014-2015学年福建省福州三中高三(上)期中数学试卷(理科)一、选择题:本太题共10小题,每小题5分,共50分,在每小题给潞的四个选项中,只有一项是符合题目要求的.1.(5分)设函数f(x)=的定义域为M,函数g(x)=1n(1+x)的定义域为N,则()A.M∩N=(﹣1,1]B.C R N=(﹣∞,﹣1)C.M∩N=R D.∁R M=[1,+∞)2.(5分)复数z满足(z﹣3)(2+i)=5(i为虚数单位),则z的共轭复数为()A.2+i B.2﹣i C.5+i D.5﹣i3.(5分)正项等比数列{a n}中,若log2(a1a9)=4,则a3a7等于()A.16 B.﹣16 C.10 D.2564.(5分)设f(x)=,则函数f(x)的单调递增区间是()A.(﹣∞2)B.(2,+∞)C.(0,+∞)D.(﹣∞,l)和(1,2)5.(5分)若函数f(x)=3﹣|x﹣2|﹣c的图象与x轴有交点,则实数c的取值范围是()A.[﹣1,0)B.[0,1]C.(0,1]D.[1,+∞)6.(5分)若α为锐角,且sinα:sin=8:5,则cosα的值为()A.B.C.D.7.(5分)若|+|=|﹣|=2||,则向量+与的夹角为()A.B.C. D.8.(5分)设向量,t是实数,|﹣t|的最小值为()A.B.C.1 D.9.(5分)已知函数f(x)=,若a、b、c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是()A.(1,2014)B.(1,2015)C.(2,2015)D.[2,2015]10.(5分)若在数列{a n}中,对任意正整数n,都有(常数),则称数列{a n}为“等方和数列”,称p为“公方和”,若数列{a n}为“等方和数列”,其前n 项和为S n,且“公方和”为1,首项a1=1,则S2014的最大值与最小值之和为()A.2014 B.1007 C.﹣1 D.2二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置.11.(4分)已知角θ的顶点在坐标原点,始边与x轴正半轴重合,终边在直线3x﹣y=0上,则=.12.(4分)已知f(x)=x+sinx,则满足不等式f(2m)+f(2﹣m)>0的实数m 的取值范围是.13.(4分)已知数列{a n}的通项a n=,若数列{a n}的最大项为a M则M=.14.(4分)已知a=sinxdx则二项式(1﹣)5的展开式中x﹣3的系数为.15.(4分)若存在实常数k和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为f(x)和g(x)的“隔离直线”.已知函数f(x)=x2﹣1和函数g(x)=2lnx,那么函数f (x)和函数g(x)的隔离直线方程为.三、解答题:本大题共5小题,共80分,解答应写出文字说明、证明过程或演算步骤.’16.(13分)已知等差数列{a n}的公差d不为零,其前n项和为S n,若S5=70,且a2,a7,a22成等比数列.(1)求数列{a n}的通项公式;(2)设数列{}的前n项和为T n,求证:T n<(n∈N*).17.(13分)已知函数f(x)=sin(ωx)﹣cos(ωx)+m(ω>0,x∈R,m是实数常数)的图象上的一个最高点(,1),且与点(,1)最近的一个最低点是(﹣,﹣3).(1)求函数f(x)的解析式及其单调递增区间;(2)在锐角△ABC中,角A、B、C所对的边分别为a,b,c,且•=ac,求函数f(A)的值域.18.(13分)某中学有4位学生申请A,B,C三所大学的自主招生.若每位学生只能申请其中一所大学,且申请其中任何一所大学是等可能的.(1)求恰有2人申请A大学的概率;(2)求被申请大学的个数X的概率分布列与数学期望E(X).19.(13分)如图,港口A在港口O的正东120海里处,小岛B在港口O的北偏东60°的方向,且在港口A北偏西30°的方向上.一艘科学考察船从港口O出发,沿北偏东30°的OD方向以20海里/小时的速度驶离港口O.一艘给养快艇从港口A以60海里/小时的速度驶向小岛B,在B岛转运补给物资后以相同的航速送往科考船.已知两船同时出发,补给装船时间为1小时.(1)求给养快艇从港口A到小岛B的航行时间;(2)给养快艇驶离港口A后,最少经过多少时间能和科考船相遇?20.(14分)已知函数f(x)=e x﹣1﹣ax,(a∈R).(Ⅰ)求函数y=f(x)的单调区间;(Ⅱ)试探究函数F(x)=f(x)﹣xlnx在定义域内是否存在零点,若存在,请指出有几个零点;若不存在,请说明理由.(Ⅲ)若g(x)=ln(e x﹣1)﹣lnx,且f(g(x))<f(x)在x∈(0,+∞)上恒成立,求实数a的取值范围.三.本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分7分.如果多做,则按所做的前两殛计分.[选修4-2:矩阵与变换]21.(7分)已知矩阵A的逆矩阵A﹣1=,求矩阵A的特征值以及属于每个特征值的一个特征向量.[选修4-4:坐标系与参数方程]22.(7分)已知曲线C的参数方程为(α为参数),在极坐标系中(极坐标系与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴),直线l的极坐标方程为p(3cosθ﹣2sinθ)=6(I)求直线l的直角坐标方程;(Ⅱ)求曲线C上动点P到直线l距离的最大值和最小值.[选修4-5:不等式选讲]23.已知函数f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集为[﹣1,1].(Ⅰ)求m的值;,且++=m,求a+2b+3c的最小值.(Ⅱ)若a,b,c∈R+2014-2015学年福建省福州三中高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本太题共10小题,每小题5分,共50分,在每小题给潞的四个选项中,只有一项是符合题目要求的.1.(5分)设函数f(x)=的定义域为M,函数g(x)=1n(1+x)的定义域为N,则()A.M∩N=(﹣1,1]B.C R N=(﹣∞,﹣1)C.M∩N=R D.∁R M=[1,+∞)【解答】解:由1﹣x>0得x<1,即M=(﹣∞,1),由1+x>0,得x>﹣1,即N=(﹣1,+∞),则∁R M=[1,+∞),故选:D.2.(5分)复数z满足(z﹣3)(2+i)=5(i为虚数单位),则z的共轭复数为()A.2+i B.2﹣i C.5+i D.5﹣i【解答】解:∵(z﹣3)(2+i)=5,∴z===2﹣i+3=5﹣i,∴z的共轭复数=5+i.故选:C.3.(5分)正项等比数列{a n}中,若log2(a1a9)=4,则a3a7等于()A.16 B.﹣16 C.10 D.256【解答】解:∵正项等比数列{a n}中,log2(a1a9)=4,∴a1a9=24=16,∴a3a7=a1a9=16.故选:A.4.(5分)设f(x)=,则函数f(x)的单调递增区间是()A.(﹣∞2)B.(2,+∞)C.(0,+∞)D.(﹣∞,l)和(1,2)【解答】解:函数的定义域为{x|x≠1},函数的导数f′(x)==,由f′(x)>0,解得x>2,故函数的单调递减区间为(2,+∞),故选:B.5.(5分)若函数f(x)=3﹣|x﹣2|﹣c的图象与x轴有交点,则实数c的取值范围是()A.[﹣1,0)B.[0,1]C.(0,1]D.[1,+∞)【解答】解:∵f(x)=3﹣|x﹣2|﹣c的图象与x轴有交点,∴函数c=3﹣|x﹣2|的图象与x轴有交点,∴即求函数c=3﹣|x﹣2|的值域问题.∴m=3﹣|x﹣1|,画出函数的图象如图所示,由图象可知c的取值范围是(0,1]故选:C.6.(5分)若α为锐角,且sinα:sin=8:5,则cosα的值为()【解答】解:∵sinα:sin=8:5,∴可得:5sinα=8sin,两边平方可得:25﹣25cos2α=64×,∴可得:25cos2α﹣32cosα+7=0,α为锐角,∴可得:cosα=1(舍去)或,故选:D.7.(5分)若|+|=|﹣|=2||,则向量+与的夹角为()A.B.C. D.【解答】解:作,,以OA,OB为邻边作平行四边形OACB,则=.∵|+|=|﹣|=2||,∴四边形OACB为矩形,∴==,∴向量+与的夹角为.故选:A.8.(5分)设向量,t是实数,|﹣t|的最小值为()【解答】解:因为=1,,所以=t2+2t(cos55°cos25°+sin55°sin25°)+1=t2+2tcos30°+1=所以当时,|﹣t|的最小值为故选:B.9.(5分)已知函数f(x)=,若a、b、c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是()A.(1,2014)B.(1,2015)C.(2,2015)D.[2,2015]【解答】解:作出函数的图象如图,直线y=m交函数图象于如图,不妨设a<b<c,由正弦曲线的对称性,可得(a,m)与(b,m)关于直线x=对称,因此a+b=1,当直线y=m=1时,由log2014x=1,解得x=2014,即x=2014,∴若满足f(a)=f(b)=f(c),(a、b、c互不相等),由a<b<c可得1<c<2014,因此可得2<a+b+c<2015,即a+b+c∈(2,2015).故选:C.10.(5分)若在数列{a n}中,对任意正整数n,都有(常数),则称数列{a n}为“等方和数列”,称p为“公方和”,若数列{a n}为“等方和数列”,其前n 项和为S n,且“公方和”为1,首项a1=1,则S2014的最大值与最小值之和为()A.2014 B.1007 C.﹣1 D.2【解答】解:由题意,=1,首项a1=1,∴a2=0,a3=±1,a4,=0,a5=±1,…∴从第2项起,数列的奇数项为1或﹣1,偶数项为0,∴S2014的最大值为1007,最小值为﹣1005,∴S2014的最大值与最小值之和为2.故选:D.二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置.11.(4分)已知角θ的顶点在坐标原点,始边与x轴正半轴重合,终边在直线3x﹣y=0上,则=.【解答】解:∵角θ的顶点坐标原点,始边与x轴正半轴重合,终边在直线3x ﹣y=0上,∴可得tanθ=3.∴则====.故答案为:.12.(4分)已知f(x)=x+sinx,则满足不等式f(2m)+f(2﹣m)>0的实数m 的取值范围是(﹣2,+∞).【解答】解:∵f(x)=x+sinx,∴f(﹣x)=﹣x﹣sinx=﹣f(x),则函数f(x)是奇函数.函数的导数f′(x)=1+cosx≥0,则函数f(x)单调递增,为增函数.则不等式f(2m)+f(2﹣m)>0等价为f(2m)>﹣f(2﹣m)=f(m﹣2),则2m>m﹣2,解得m>﹣2,故答案为:(﹣2,+∞)13.(4分)已知数列{a n}的通项a n=,若数列{a n}的最大项为a M则M=7.【解答】解:,当n≤6时,∵,∴a n<1;当n≥7时,数列{a n}单调递减,且a7>1.综上可得:当n=7时,a7最大.故答案为:7.14.(4分)已知a=sinxdx则二项式(1﹣)5的展开式中x﹣3的系数为﹣80.【解答】解:a=sinxdx=﹣cosx=﹣(cosπ﹣cos0)=2.二项式(1﹣)5的展开式中x﹣3的系数为:,故答案为:﹣80.15.(4分)若存在实常数k和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为f(x)和g(x)的“隔离直线”.已知函数f(x)=x2﹣1和函数g(x)=2lnx,那么函数f (x)和函数g(x)的隔离直线方程为y=2x﹣2.【解答】解:作出函数f(x)=x2﹣1和函数g(x)=2lnx的图象,由图象可知,两个函数的交点坐标为(1,0),要使f(x)≥kx+b和g(x)≤kx+b,则y=kx+b,必须是两个函数在(1,0)处的公共切线,即k+b=0,解得b=﹣k,函数f′(x)=2x,即k=f′(1)=2,∴b=﹣2,即隔离直线方程为y=2x﹣2,故答案为:y=2x﹣2三、解答题:本大题共5小题,共80分,解答应写出文字说明、证明过程或演算步骤.’16.(13分)已知等差数列{a n}的公差d不为零,其前n项和为S n,若S5=70,且a2,a7,a22成等比数列.(1)求数列{a n}的通项公式;(2)设数列{}的前n项和为T n,求证:T n<(n∈N*).【解答】(1)解:∵等差数列{a n}的公差d不为零,其前n项和为S n,S5=70,且a2,a7,a22成等比数列,∴,由d≠0,解得a1=6,d=4,∴a n=4n+2,n∈N*.(2)证明:∵a1=6,d=4,∴S n=6n+=2n2+4n,∴==,∴T n=(1﹣+)=﹣(),∵,∴T n<.17.(13分)已知函数f(x)=sin(ωx)﹣cos(ωx)+m(ω>0,x∈R,m是实数常数)的图象上的一个最高点(,1),且与点(,1)最近的一个最低点是(﹣,﹣3).(1)求函数f(x)的解析式及其单调递增区间;(2)在锐角△ABC中,角A、B、C所对的边分别为a,b,c,且•=ac,求函数f(A)的值域.【解答】解:(1)∵f(x)=sinωx﹣cosωx+m,∴f(x)=2sin(ωx﹣)+m,∵(,1),点(﹣,﹣3)分别是函数f(x)图象上相邻的最高点和最低点,∴,且m=,∴T=π,又ω>0,于是,∴f(x)=2sin(2x﹣)﹣1,∴由2k≤2x﹣≤2kπ,k∈Z,可解得﹣+kπ≤x≤kπ,k∈Z,∴函数f(x)的单调递增区间是:[﹣+kπ,kπ],k∈Z.(2)∵在△ABC中,,∴accos(π﹣B)=﹣ac,∴cosB=,又0<B<π,∴B=,于是A+C=,∵0,0,∴,于是,∴,又f(A)=2sin(2A﹣)﹣1,∴0<f(A)≤1,∴f(A)的值域为(0,1].18.(13分)某中学有4位学生申请A,B,C三所大学的自主招生.若每位学生只能申请其中一所大学,且申请其中任何一所大学是等可能的.(1)求恰有2人申请A大学的概率;(2)求被申请大学的个数X的概率分布列与数学期望E(X).(1)所有可能的方式有34种,恰有2人申请A大学的申请方式有【解答】解:种,从而恰有2人申请A大学的概率为.(II)X=1,2,3,则P(X=1)==;P(X=2)==;P(X=3)==,申请大学数量X的概率分布::EX=1×+2×+3×=.19.(13分)如图,港口A在港口O的正东120海里处,小岛B在港口O的北偏东60°的方向,且在港口A北偏西30°的方向上.一艘科学考察船从港口O出发,沿北偏东30°的OD方向以20海里/小时的速度驶离港口O.一艘给养快艇从港口A以60海里/小时的速度驶向小岛B,在B岛转运补给物资后以相同的航速送往科考船.已知两船同时出发,补给装船时间为1小时.(1)求给养快艇从港口A到小岛B的航行时间;(2)给养快艇驶离港口A后,最少经过多少时间能和科考船相遇?【解答】解:(1)由题意知,在△OAB中,OA=120,∠AOB=30°,∠OAB=60°.于是AB=60,而快艇的速度为60海里/小时,所以快艇从港口A到小岛B的航行时间为1小时.…(5分)(2)由(1)知,给养快艇从港口A驶离2小时后,从小岛B出发与科考船汇合.为使航行的时间最少,快艇从小岛B驶离后必须按直线方向航行,设t小时后恰与科考船在C处相遇.…(7分)在△OAB中,OA=120,∠AOB=30°,∠OAB=60°,所以,而在△OCB中,BC=60t,OC=20(2+t),∠BOC=30°,…(9分)由余弦定理,得BC2=OB2+OC2﹣2OB•OC•cos∠BOC,即,亦即8t2+5t﹣13=0,解得t=1或(舍去).…(12分)故t+2=3.即给养快艇驶离港口A后,最少经过3小时能和科考船相遇.…(14分)20.(14分)已知函数f(x)=e x﹣1﹣ax,(a∈R).(Ⅰ)求函数y=f(x)的单调区间;(Ⅱ)试探究函数F(x)=f(x)﹣xlnx在定义域内是否存在零点,若存在,请指出有几个零点;若不存在,请说明理由.(Ⅲ)若g(x)=ln(e x﹣1)﹣lnx,且f(g(x))<f(x)在x∈(0,+∞)上恒成立,求实数a的取值范围.【解答】解:(Ⅰ)∵f(x)=e x﹣1﹣ax,(x∈R,a∈R),∴f′(x)=e x﹣a,①当a≤0时,则∀x∈R有f′(x)>0,∴函数f(x)在区间(﹣∞,+∞)单调递增;②当a>0时,f′(x)>0⇒x>lna,f′(x)<0⇒x<lna∴函数f(x)的单调增区间为(lna,+∞),单调减区间为(﹣∞,lna).综合①②的当a≤0时,函数f(x)的单调增区间为(﹣∞,+∞);当a>0时,函数f(x)的单调增区间为(lna,+∞),单调减区间为(﹣∞,lna).(Ⅱ)函数F(x)=f(x)﹣xlnx定义域为(0,+∞),又,令h(x)=,则h′(x)=,∴h′(x)>0⇒x>1,h′(x)<0⇒0<x<1,∴函数h(x)在(0,1)上单调递减,在(1,+∞)上单调递增.∴h(x)≥h(1)=e﹣1由(1)知当a=1时,对∀x>0,有f(x)>f(lna)=0,即∴当x>0且x趋向0时,h(x)趋向+∞随着x>0的增长,y=e x﹣1的增长速度越来越快,会超过并远远大于y=x2的增长速度,而y=lnx的增长速度则会越来越慢.故当x>0且x趋向+∞时,h(x)趋向+∞.得到函数h(x)的草图如图所示故①当a>e﹣1时,函数F(x)有两个不同的零点;②当a=e﹣1时,函数F(x)有且仅有一个零点;③当a<e﹣1时,函数F(x)无零点;(Ⅲ)由(2)知当x>0时,e x﹣1>x,故对∀x>0,g(x)>0,先分析法证明:∀x>0,g(x)<x要证∀x>0,g(x)<x只需证即证∀x>0,xe x﹣e x+1>0构造函数H(x)=xe x﹣e x+1,(x>0)∴H′(x)=xe x>0,∀x>0故函数H(x)=xe x﹣e x+1在(0,+∞)单调递增,∴H(x)>H(0)=0,则∀x>0,xe x﹣e x+1>0成立.①当a≤1时,由(1)知,函数f(x)在(0,+∞)单调递增,则f(g(x))<f(x)在x∈(0,+∞)上恒成立.②当a>1时,由(1)知,函数f(x)在(lna,+∞)单调递增,在(0,lna)单调递减,故当0<x<lna时,0<g(x)<x<lna,∴f(g(x))>f(x),则不满足题意.综合①②得,满足题意的实数a的取值范围(﹣∞,1].三.本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分7分.如果多做,则按所做的前两殛计分.[选修4-2:矩阵与变换]21.(7分)已知矩阵A的逆矩阵A﹣1=,求矩阵A的特征值以及属于每个特征值的一个特征向量.【解答】解:∵A=(A﹣1)﹣1,且A﹣1=,∴,.设矩阵A的特征值为λ,对应的特征向量为(x,y).则矩阵A的特征多项式为f(λ)==λ2﹣3λ﹣4,故特征方程为λ2﹣3λ﹣4=0,解得λ1=﹣1,λ2=4.当λ1=﹣1时,有,即x+y=0,取x=1,则y=﹣1;当λ2=4时,有,即2x﹣3y=0,取x=3,则y=2.因此特征值为﹣1的一个特征向量为,特征值为4的一个特征向量为.[选修4-4:坐标系与参数方程]22.(7分)已知曲线C的参数方程为(α为参数),在极坐标系中(极坐标系与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴),直线l的极坐标方程为p(3cosθ﹣2sinθ)=6(I)求直线l的直角坐标方程;(Ⅱ)求曲线C上动点P到直线l距离的最大值和最小值.【解答】解:(I)由直线l的极坐标方程为ρ(3cosθ﹣2sinθ)=6,可得直角坐标方程:3x﹣2y﹣6=0.(II)可设P(2cosα,3sinα),∴曲线C上动点P到直线l距离d==,∵,∴d max=,d min=0.∴曲线C上动点P到直线l距离的最大值和最小值分别为;0.[选修4-5:不等式选讲]23.已知函数f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集为[﹣1,1].(Ⅰ)求m的值;(Ⅱ)若a,b,c∈R,且++=m,求a+2b+3c的最小值.+【解答】解:(Ⅰ)由题意可得f(x+2)=m﹣|x|,故由f(x+2)≥0,可得|x|≤m,解得﹣m≤x≤m.再根据f(x+2)≥0的解集为[﹣1,1],可得m=1.(Ⅱ)若a,b,c∈R,且++=1,+∴由柯西不等式可得a+2b+3c=(a+2b+3c)•(++)≥=9,故a+2b+3c的最小值为:9.。

2014年考研数学三真题与解析

2014年考研数学三真题与解析

F ( x ) = f ( x ) − g ( x ) = f ( x ) − f (0)(1 − x ) − f (1) x ,则 F (0) = F (1) = 0 ,且 F " ( x ) = f " ( x ) ,故当 f ′′( x ) ≥ 0 时,曲线是凹的,从而 F ( x ) ≤ F (0) = F (1) = 0 ,即 F ( x ) = f ( x ) − g ( x ) ≤ 0 ,也就是 f ( x ) ≤ g ( x ) ,应该选(D)
0 0 1 而 当 α 1 = 0 , α 2 = 1 , α 3 = 0 时,对 任意的常 数 k , l ,向 量 α 1 + kα 3 , α 2 + lα 3 线性 无关, 但 0 0 0
∫ = lim
x → +∞
x
1
( t (e − 1) − t )dt
2
1 t
x
= lim ( x (e − 1) − x )
2 x →∞
1 x
1 1 1 1 = lim x 2 ( + + o( 2 ) − x = 2 x →∞ x 2x x 2
16. (本题满分 10 分) 设平面区域 D = ( x , y ) | 1 ≤ x + y ≤ 4, x ≥ 0. y ≥ 0 .计算
2
1 0 ( α 1 + kα 3 , α 2 + lα 3 ) = (α 1 , α 2 , α 3 ) 0 1 = (α 1 , α 2 , α 3 ) K ,对任意的常数 k , l ,矩阵 K 的秩都等 k l
于 2,所以向量 α 1 + kα 3 , α 2 + lα 3 一定线性无关.

2014年全国硕士研究生入学统一考试数学三及参考答案

2014年全国硕士研究生入学统一考试数学三及参考答案

2014年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1)设lim ,n a a =且0,a ≠则当n 充分大时有( )(A )2n a a >(B )2n a a <(C )1n a a n >- (D )1n a a n<+(2)下列曲线有渐近线的是( ) (A )sin y x x =+ (B )2sin y x x =+ (C )1siny x x=+ (D )21siny x x=+ (3)设23(x)a P bx cx dx =+++ ,当0x → 时,若(x)tanx P - 是比x 3高阶的无穷小,则下列试题中错误的是 (A )0a =(B )1b = (C )0c = (D )16d =(4)设函数()f x 具有二阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上( ) (A )当'()0f x ≥时,()()f x g x ≥ (B )当'()0f x ≥时,()()f x g x ≤ (C )当'()0f x ≤时,()()f x g x ≥ (D )当'()0f x ≤时,()()f x g x ≥(5)行列式0000000aba b c dc d= (A )2()ad bc - (B )2()ad bc -- (C )2222a d b c - (D )2222b c a d -(6)设123,,a a a 均为3维向量,则对任意常数,k l ,向量组1323,k l αααα++线性无关是向量组123,,ααα线性无关的 (A )必要非充分条件(B )充分非必要条件 (C )充分必要条件(D )既非充分也非必要条件(7)设随机事件A 与B 相互独立,且P (B )=0.5,P(A-B)=0.3,求P (B-A )=( ) (A )0.1 (B )0.2 (C )0.3 (D )0.4(8)设123,,X X X 为来自正态总体2(0,)N σ的简单随机样本,服从的分布为(A )F (1,1) (B )F (2,1) (C )t(1) (D )t(2)二、填空题:9?14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上.(9)设某商品的需求函数为402Q P =-(P 为商品价格),则该商品的边际收益为_________。

2014年全国硕士研究生入学考试数学三真题完整版及答案解析

2014年全国硕士研究生入学考试数学三真题完整版及答案解析

3
32
(2)下列曲线有渐近线的是
(A) y = x + sin x (B) y = x2 + sin x
(C) y = x + sin 1
(D)
x
y = x2 + sin 1 x
【解析】 a
=
lim
f
(x)
=
lim
x + sin
1 x
=
lim(1 +
1 sin
1)
=1
x→∞ x
x→∞
x
x→∞ x x
0 k
0
1 l
知,
(D)既非充分也非必
α1,α2 ,α3
线性无关时,因为
1 0
0
≠0
0
所以α1 + kα3,α2 + lα3 线性无关 反之不成立. 如当α3 = 0 ,且α1 与α2 线性无关时,α1,α2 ,α3 线性相关
【答案】A
(7)设随机事件 A 与 B 相互独立,且 P(B)=0.5,P(A-B)=0.3,则 P(B-A)=( )
b = lim[ f (x) − ax] = lim[x + sin 1 − x] = lim sin 1 = 0
x→∞ 是 y = x + sin 1 的斜渐近线 x
(3)设 P ( x) = a + bx + cx2 + dx2,当x → 0 时,若 P(x)− tan x 是比 x3 高阶的
∴P(B-A)=P(B)-P(BA)=0.5-0.3=0.2
【答案】B
(8)设 X1,X2,X3 为来自正态总体 N(0,σ 2 )的简单随机样本,则统计量 S = X1 − X 2 服 2 X3

2014考研数学三真题及答案

2014考研数学三真题及答案

1
2 (13)设二次型 f ( x1 , x2 , x3 ) x12 x2 2ax1 x3 4 x2 x3 的负惯性指数为 1,则 a 的取
值范围是_________
2x ( 14 )设总体 X 的概率密度为 f ( x; ) 3 2 0
X1 , X 2 ,..., X n , 为来自总体
1 0 0 1 0 0 与 1 0 0
1 2 相似。 n
1 ,在给定 X i 的条件下,随机 2
1 2 设随机变量 X 与 Y 的概率分布相同, X 的概率分布为 P{ X 0} , P{ X 1} , 3 3 1 且 X 与 Y 的相关系数 XY 2 (1) 求(X,Y)的概率分布
2

2
1
cos d )
(17) 【答案】
E f ( e x cos y )e x cos y x
2E f ( e x cos y )e 2 x cos 2 y f ( e x cos y )e x cos y 2 x E f ( e x cos y )e x ( sin y ) y 2E f ( e x cos y )e 2 x sin 2 y f ( e x cos y )e x ( cos y ) 2 y
x 0 时, s( x ) 3 ,故和函数 s( x )
(19)【答案】
3 x , x ( 1, 1) ( 1 x )3
x x x
证明:1)因为 0 g( x ) 1,所以有定积分比较定理可知,
0dt
a
a
g( t )dt 1dt ,即
a
0 g( t )dt x a 。

高等数学考试题库(附答案)

高等数学考试题库(附答案)

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()2g x x =(C )()f x x = 和 ()()2g x x =(D )()||x f x x=和 ()g x =1 2.函数()()sin 420ln 10x x f x x a x ⎧+-≠⎪=+⎨⎪=⎩在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ).(A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ).(A )1f C x ⎛⎫-+ ⎪⎝⎭ (B )1fC x ⎛⎫--+ ⎪⎝⎭ (C )1f C x ⎛⎫+ ⎪⎝⎭ (D )1f C x ⎛⎫-+ ⎪⎝⎭8.x xdxe e -+⎰的结果是( ).(A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ (D )ln()x x e e C -++ 9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f - 二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条.4.()21ln dxx x =+⎰.5.()422sin cos x x x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分①()()13dxx x ++⎰②()220dx a x a >-⎰③x xe dx -⎰四.应用题(每题10分,共20分)1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积. 《高数》试卷1参考答案 一. 选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2- 2.33-3. 2 4.arctanln x c + 5.2 三.计算题1①2e ②162.11xy x y '=+- 3. ①11ln ||23x C x +++ ②22ln ||x a x C -++ ③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分)1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()2g x x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }.(A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ).(A) 12,ln 2⎛⎫ ⎪⎝⎭ (B)12,ln 2⎛⎫- ⎪⎝⎭(C) 1,ln 22⎛⎫ ⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2x y x e -=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的 6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点.(B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ). (A) ()121xx e - (B) 12xx e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦(D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分ba dx ⎰()ab <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x .3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x-+=+⎰___________. 三.计算题(每小题5分,共30分) 1.求下列极限:①()1lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1y y xe =-所确定的隐函数的导数x y '.3.求下列不定积分:①3tan sec x xdx ⎰ ②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分)1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc + ②()22ln x a x c +++ ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1. 函数219y x=-的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()x y f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx. 四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.七、(8分)求微分方程6130y y y '''++=的通解.八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x < 2.4a = 3.2x = 4.'()x x e f e 5.126.07.22x xe -8.二阶二.1.原式=0lim 1x x x→=2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+ 2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+ 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x xe d x e e ==-⎰ 五.sin 1,122dydy t t t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰ 七.特征方程:2312613032(cos 2sin 2)x r r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰由10,0y x C ==⇒=《高数》试卷4(上)一、 选择题(每小题3分)1、函数 2)1ln(++-=x x y 的定义域是( ). A []1,2- B [)1,2- C (]1,2- D ()1,2-2、极限x x e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx =B 、)2(sin 2cos x d xdx =C 、)5(x d dx --=D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ).A 、2sinx B 、 2sin x - C 、 C x +2sin D 、2sin 2x - 7、⎰=+dx xxln 2( ). A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21 C 、 C x ++ln 2ln D 、 C x x++-2ln 18、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ).A 、⎰14dx x π B 、⎰1ydy πC 、⎰-10)1(dy y π D 、⎰-14)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 x e y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=* 二、 填空题(每小题4分)1、设函数x xe y =,则 =''y ;2、如果322sin 3lim0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ; 三、计算题(每小题5分)1、求极限 x x x x --+→11lim; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=; 四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、x e x )2(+; 2、94; 3、0 ; 4、x e x C C y 221)(-+= ; 5、8,0 三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e- ; 6、C x y =-+2212 ;四、 1、38;2、图略《高数》试卷5(上)一、选择题(每小题3分)1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2YB 、 ()),0(0,1+∞-YC 、),0()0,1(+∞-ID 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、x x 2lim +∞→3、=+∞→xx xx )1(lim ( ).A 、eB 、2eC 、1D 、e14、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x lnC 、⎰+=C x xdx sin cosD 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ). A 、C e x +sin B 、C x e x +cos sin C 、C x e x +sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ).A 、⎰14dx x π B 、⎰1ydy πC 、⎰-10)1(dy y π D 、⎰-14)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2aB 、22a πC 、241a 0D 、241a π 10、方程( )是一阶线性微分方程.A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x 二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)(φx b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 x xe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x ;5、微分方程 023=+'-''y y y 的通解是 . 三、 计算题(每小题5分)1、求极限 )2311(lim 21-+--→x x x x ; 2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xx ln 21 ;5、求定积分⎰eedx x 1ln ;6、求方程y xy y x =+'2 满足初始条件4)21(=y 的特解.四、 应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、x e x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、x x e C e C 221+.三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ;4、C x ++ln 22 ;5、)12(2e- ; 6、x e x y 122-= ;四、1、29; 2、图略。

2014-2015第一学期高等数学3期中试题

2014-2015第一学期高等数学3期中试题

临沂大学2014-2015学年度第一学期《高等数学3》期中试题(适用于商学院各专业学生 开卷考试 )一、解答题(本题共4小题,每小题5分,本题满分20分,答案直接写在横线上)1. 设00,0,a b ≠则当m,n 满足何值时有101101........lim .........m m mn n x n a x a x a b x b x b --→∞+++=∞+++ .2.计算21lim()xx x x→∞+.3. 设,0,2,0x e x a x x ⎧<⎨+≥⎩当为何值时,()f x 在(,)-∞+∞上连续.4.验证ξ取何值时4()f x x =在区间[1,2]上满足拉格朗日中值定理.注意:以下各大题都要写出必要的计算步骤或推导过程,直接写出答案者不得分.二、计算题(本题共5小题,每小题10分,本题满分50分) 1.计算极限213lim21-++--→x x xx x .2. 求曲线1)cos(2-=-+e xy e y x 在点(0,1)处的切线方程3. 已知0162=-++x xy e y ,则(0)y ''4.求曲线22)3()1(--=x x y 的拐点。

.5.计算32()395f x x x x =--+的极值.三、证明题(每题10分,共20分).1.设函数()f x 在[0,1]上连续,在(0,1)内可导,证明:至少存在一点(0,1)ξ∈,使()2[(1)(0)]f f f ξξ'=-.2. 设0>>a b ,证明不等式aba b a b b a a 1ln ln 222<--<+四、综合题(本题满分10分). 设函数)(x f 在x =0的某邻域具有一阶连续导数,且0)0()0(≠'f f ,当0→h 时,若)()0()2()(h o f h bf h af =-+,试求b a ,的值.。

2014年考研数学三真题与解析-高数

2014年考研数学三真题与解析-高数

2014年考研数学三真题与解析一、选择题 1—8小题.每小题4分,共32分.1.设0lim ≠=∞→a a n n ,则当n 充分大时,下列正确的有( )(A )2a a n >(B )2a a n <(C )n a a n 1-> (D)na a n 1+< 【详解】因为0≠=∞→a a n n lim ,所以0>∀ε,N ∃,当N n >时,有ε<-a a n ,即εε+<<-a a a n ,εε+≤<-a a a n ,取2a =ε,则知2a a n >,所以选择(A )2.下列曲线有渐近线的是(A )x x y sin += (B )x x y sin +=2(C )xx y 1sin+= (D )x x y 12sin +=【分析】只需要判断哪个曲线有斜渐近线就可以. 【详解】对于xx y 1sin +=,可知1=∞→x y x lim 且01==-∞→∞→x x y x x sin lim )(lim ,所以有斜渐近线x y =应该选(C )3.设32dx cx bx a x P +++=)(,则当0→x 时,若x x P tan )(-是比3x 高阶的无穷小,则下列选项中错误的是( )(A )0=a (B )1=b (C )0=c (D )61=d 【详解】只要熟练记忆当0→x 时)(tan 3331x o x x x ++=,显然31010====d c b a ,,,,应该选(D ) 4.设函数)(x f 具有二阶导数,x f x f x g )())(()(110+-=,则在],[10上( )(A )当0≥)('x f 时,)()(x g x f ≥ (B )当0≥)('x f 时,)()(x g x f ≤ (C )当0≥'')(x f 时,)()(x g x f ≥ (D )当0≥'')(x f 时,)()(x g x f ≤ 【分析】此题考查的曲线的凹凸性的定义及判断方法.【详解1】如果对曲线在区间],[b a 上凹凸的定义比较熟悉的话,可以直接做出判断.如果对区间上任意两点21x x ,及常数10≤≤λ,恒有())()()()(212111x f x f x x f λλλλ+-≥+-,则曲线是凸的. 显然此题中x x x ===λ,,1021,则=+-)()()(211x f x f λλ)()())((x g x f x f =+-110,而())()(x f x x f =+-211λλ,故当0≥'')(x f 时,曲线是凹的,即())()()()(212111x f x f x x f λλλλ+-≤+-,也就是)()(x g x f ≤,应该选(D )【详解2】如果对曲线在区间],[b a 上凹凸的定义不熟悉的话,可令x f x f x f x g x f x F )())(()()()()(110---=-=,则010==)()(F F ,且)(")("x f x F =,故当0≥'')(x f 时,曲线是凹的,从而010==≤)()()(F F x F ,即0≤-=)()()(x g x f x F ,也就是)()(x g x f ≤,应该选(D )5、设⎪⎩⎪⎨⎧+==⎰-du u y e x tt)1ln(20则 ==022t x d y d ( ) (A) e1-(B) e 1 (C) 0 (D) 1.6、设xdx u nn tan 2⎰=π,则 级数n n u ∑∞=1( )(A) 发散. (B) 条件收敛. (C) 绝对收敛. (D) 无法判断.二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) 7、设nx n +++++++= 21131211,则=∞→n n x lim25。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档