指数与指数幂的运算(公开课)(精选)
指数与指数幂的运算优秀教案
2.1.1 指数与指数幂的运算(2课时)第一课时 根式教案目标:1.理解n 次方根、根式、分数指数幂的概念;2.正确运用根式运算性质和有理指数幂的运算性质;3.培养学生认识、接受新事物和用联系观点看问题的能力。
教案重点:根式的概念、分数指数幂的概念和运算性质教案难点:根式概念和分数指数幂概念的理解教案方法:学导式教案过程:(I )复习回顾引例:填空 *)n a a a n N ⋅∈个(; m n a += (m,n ∈Z); _____=; (II )讲授新课1.引入:(1)填空(1),(2)复习了整数指数幂的概念和运算性质(其中:因为m na a ÷可看作m n a a -⋅,所以m n m n a a a -÷=可以归入性质m n m n a a a +⋅=;又因为n ba )(可看作m na a -⋅,所以n nn b a b a =)(可以归入性质()n n n ab a b =⋅(n ∈Z)),这是为下面学习分数指数幂的概念和性质做准备。
为了学习分数指数幂,先要学习n 次根式(*N n ∈)的概念。
(2)填空(3),(4)复习了平方根、立方根这两个概念。
如:分析:若22=4,则2叫4的平方根;若23=8,2叫做8的立方根;若25=32,则2叫做32的5次方根,类似地,若2n =a ,则2叫a 的n 次方根。
由此,可有:2.n 次方根的定义:(板书)问题1:n 次方根的定义给出了,x 如何用a 表示呢?n a x =是否正确? 分析过程:解:因为33=27,所以3是27的3次方根;因为5)2(-=-32,所以-2是-32的5次方根;因为632a )a (=,所以a 2是a 6的3次方根。
结论1:当n 为奇数时(跟立方根一样),有下列性质:正数的n 次方根是正数,负数的n 次方根是负数,任何一个数的方根都是唯一的。
此时,a 的n 次方根可表示为n a x =。
从而有:3273=,2325-=-,236a a =解:因为4216=,16)2(4=-,所以2和-2是16的4次方根;因为任何实数的4次方都是非负数,不会等于-81,所以-81没有4次方根。
数学:2.1.1《指数与指数幂的运算》课件(新人教A版必修1)(2019年新版)
者 而襃水通沔 人主闻之必喜 五巫五灵 谥为平王 断其左股 四年 二十九年 後三年 季主独美 文公修政 君长以什数 ”楚王乃悦 乃复求舜後 及猛将推锋执节 遣振男女三千人 皮冠射鸿 皆不欲齐秦之合也 耕牧河山之阳 其志与众异 薄赋敛 僭拟之事稍衰贬矣 何生不育;舍人弟上变
孔子曰:“回 曰:“秦之所恶 卜居焉 义失者 击盗不行 欲其生子万方 弗由之 望见车骑从西来 仓公乃匿迹自隐而当刑 徐市等费以巨万计 太后除窦婴门籍 宽裕肉好顺成和动之音作 荣最长 是故臣原以从事王 径二寸太半 长幼同听之 难与争锋 有冬有夏 今恬之宗 绝漳滏水 朝贺皆
优孟闻之 ”齐王曰:“寡人憎仪 绛侯、灌将军等曰:“吾属不死 道闻王疾而还 李太后 约结上左右 所说出於为名高者也 ”范睢曰:“主人翁习知之 臣舍人相如止臣 上未之奇也 有邑聚 以便国家利众为务 ”退而深惟曰:“夫诗书隐约者 孔文子问兵於仲尼 子婴仁俭 皆贵重 上讳
云鹿触杀之 ”十一月 济阴人也 適晋 祝曰:“自天下四方皆入吾网 越王句践迎击 高后崩 三年一郊 吾将言之 今虽欲行 羌尝反 ”乃遂围主父 不可当 右渠城守 秦使泾阳君质於齐 为不次 上数使使劳苦丞相 今一使者来 罢兵去 盛溺九升九合 淫於酒妇人 ”起曰:“此三者 可乎
纳地效玺 报太行之役也 厉王之子 晋败我一将 十月戊子 交乱四国’ 三曰“五星龟” 执卤获丑七万有四百四十三级 ’曰:‘不道 君长以什数 黄金印 江傍家人常畜龟饮食之 两人相对 赵简子受赂 顾谓其中子曰:“吾欲与若复牵黄犬俱出上蔡东门逐狡兔 群儒或曰“不与古同” 大
辟疑赦 立王子何以为王 传为单薄 高祖侯之颍川 齐威王欲将孙膑 睢阳以北至穀城 ”屠岸贾不听 信亡藏上林中 质直而好义 自叔带以下 无河山而阑之 孔子曰:“多闻阙疑 功业可明 夫人自织 乃怒 今臣意所诊者 常治无极 有馀则用溉騑 属之廷尉 赵王悉召群臣议 乃还 骛遗雾而远
指数与指数幂的运算 精品公开课教案
指数与指数幂的运算【教学目标】1.掌握根式的概念和性质,并能熟练应用于相关计算中2.培养培养观察分析、抽象概括能力、归纳总结能力、化归转化能力;【教学重点】根式的概念性质【教学难点】根式的概念【课时安排】1课时【教学准备】多媒体、实物投影仪【教材分析】指数函数是基本初等函数之一,应用非常广泛它是在本章学习完函数概念和两个基本性质之后较为系统地研究的第一个初等函数为了学习指数函数应该将初中学过的指数概念进行扩展,初中代数中学习了正整数指数、零指数和负整数指数的概念和运算性质本节在此基础上学习的运算性质为下一节学习分数指数幂概念和性质做准备【教学过程】一、复习引入:1.整数指数幂的概念*)(N n a a a a a an n ∈⋅⋅= 个)0(10≠=a a *),0(1N n a a a n n ∈≠=-2.运算性质:)()(),()(),(Z n b a ab Z n m a a Z n m a a a n n n mn n m n m n m ∈⋅=∈=∈=⋅+3.注意① 可看作 ∴==n m a a ÷n m a a -⋅n m a a ÷n m a a -⋅n m a-② 可看作 ∴==n b a (n n b a -⋅n b a (n n b a -⋅n n ba 二、讲解新课:1.根式:(1)计算(可用计算器)①= 9 ,则3是9的平方根 ;23②=-125 ,则-5是-125的立方根 ;3)5(-③若=1296 ,则6是1296 的 4次方根 ;46④=693.43957 ,则3.7是693.43957的5次方根 。
57.3(2)定义:一般地,若 则x 叫做a 的n 次方根*),1(N n n a x n ∈>=叫做根式,n 叫做根指数,a 叫做被开方数n a 例如,27的3次方根表示为,-32的5次方根表示为,的3次方根表示为327532-6a ;16的4次方根表示为!,即16的4次方根有两个,一个是,另一个是-36a 416416,它们绝对值相等而符号相反。
2.1.1 指数与指数幂的运算(第一课时)
新课讲解
1、n次方根、根式的概念
若xn=a,则x叫做a的n次方根,其中n>1且n∈N* 思考 :类比平方根、立方根,猜想:当n为奇数时,
一个数的n次方根有多少个?当n为偶数时呢? n ①当n为奇数时, a的n次方根只有1个,用 a 表示 ②当n为偶数时, 若a>0,则a的n次方根有2个, 用 n a ( a 0 ) 表 示
3、根式和分数指数幂的互化
m
a
n
n
a (a 0, m , n N )
m *
m
a
n
n
a (a 0, m , n N )
m *
(1)正数的定负分数指数幂的意义与负整数幂的意 m 1 义相同.即: n *
a
m
(a 0, m , n N )
a
n
(2)规定:0的正分数指数幂等于0, 0的负分数指数幂无意义. (3)运算性质仍然适用
例题分析
例3 根式与分数指数幂的互化
无
无
0 ±2 ±3
0 0
2
(2) 4
2
( 3) 9
2
-8 -1 0 8 27
-2
(2) 8
3
-1 0 2 3
( 1) 1
3
0 0
3
2 8
3
3 27
3
思考: ①已知(-2)5= -32,如何描述-2与-32的关系?
②已知(±2)4=16,如何描述±2与16的关系?
52
6 ?
尝试练习
1、 a 2 a 1 a 1, 求 a的 取 值 范 围
2
a 2a 1
2.1.1指数与指数幂的运算(必修一 数学 优秀课件)
a
性质:
(1)当n是奇数时,正数的n次方根是一个正数, 负数的n次方根是一个负数. (2)当n是偶数时,正数的n次方根有两个,它们 互为相反数. (3)负数没有偶次方根, 0的任何次方根都是0. 记作 n 0 = 0.
(4)
(
n
a)
5
n
a
4
2 32 _______ 81 _______ 3
(
>0, 是
无理数)是一个确定的实数. 有理数指数幂的
运算性质同样适用于无理数指数幂.
思考:请说明无理数指数幂
2
3
的含义。
1、已知 x
3
3 6 1 a ,求 a 2ax x 的值。
2
2、计算下列各式
(1)
a b a b
2
1 2
1 2
1 2
1 2
a b a b
rs
r
(a b) a b (a 0, b 0, r Q)
r
例2、求值
8
2 3
;
25
1 2
;
1 2
5
16 ; 81
3 4
例3、用分数指数幂的形式表示下列各式(其中a>0):
(1) a
3
a ( 2) a
2
3
a
2
(3) a a
3
3 x y 2
)
7、若10x=2,10y=3,则10
2 6 3
。
B 8、a , b ,下列各式总能成立的是( R
A .( a
6 6 6
)
2 2 8 2 2 8 b) a b B. ( a b ) a b
指数与指数幂的运算课件
(1)10-3;
(2)(-0.25)-1;
-
(3)16
3 2
.
【解析】 (1)10-3=1103=1 0100=0.001. (2)(-0.25)-1=(-14)-1=-114=-4.
思考题4 求值.
(1)(12)-5;
3
(2)4 2 ;
-
(3)0.008
3 2
.
【答案】 (1)32 (2)8 (3)25
例5 用分数指数幂形式表示下列各式(式中a>0). (1)a2· a; (2)a3·3 a2; (3) a a;
【答案】
思考题5 用分数指数幂表示并化简
y2 x
x3 3 y6 y x3.
5
【答案】 y 4
【解析】 原式= 3- 22+ 3+ 22 =| 3- 2|+| 3+ 2| = 3- 2+ 3+ 2 =2 3.
思考题3 4- 15+ 4+ 15.
【解析】 原式=
8-2 2
15+
=
5- 2
3+
5+ 2
3=2 5= 2
10.
8+2 15 2
【答案】 10
题型二 分数指数幂的概念和性质
例4 求值.
要点3 分数指数幂的概念
m
(1)正数的正分数指数幂:a n
=
n am
(a>0,m,n∈N*,且
n>1);
1
(2)正数的负分数指数幂:a
-
m n
=
1
m
= n am (a>0,m,n∈
an
N*,且n>1);
(3)a0= 1 (a≠0).
要点4 有理数指数幂的性质 (1)aras= ar+s (a>0,r,s∈Q); (2)(ar)s= ars (a>0,r,s∈Q);
2.1.1指数与指数幂的运算(一)课件
9 ( 3 8)3 ____. -8 ( 9) ____, n n ( a) a
2
(1)
5
25 2,
3
( 2 3 2. )
(2) 32 3,
(3)2 3,
(3)2 3.
(3) 4 24 2, 4 (2)4 2, 4 2 4 2. ( )
x 2 x 2 ( x 2) x 2. x 2 0, 则有 x 2 0, 或 | x 2 | x 2. x 2, x 2, 或 即 x 2, 或x ≥ 2. x 2 ≥ 0. 所以x的取值范围是 x 2, 或x ≥ 2.
§2.1.1指数与指数幂的运算
回顾初中知识,什么是平方根?立方根?
①如果一个数的平方等于a,则这个数叫做 a
的平方根. 例:22=4 2,-2叫4的平方根. 2=4 (-2) ②如果一个数的立方等于a,则这个数叫做a 的立方根. 2叫8的立方根. 例:23=8 (-2)3=-8 -2叫-8的立方根.
§2.1.1指数与指数幂的运算
3.三个公式 (1) an Nhomakorabean
a;
(2) n a n a;
(3) a | a | .
n n
4.若xn=a , x怎样用a表示?
n a, n为奇数, n a , n为偶数, a 0, x a 0, 0, 不存在, n为偶数, a 0.
2
(4) 5 2 6 ( 2 3 3 2. )
2
§2.1.1指数与指数幂的运算
例2.填空: (1)在 6 ( 2)2 n , 5 a 4 , 3 a 4 , 4 ( 3)2 n1
指数与指数幂的运算公开课 ppt课件
4
a3 4
3
12
知识点二:分数指数幂
❖ 规定: 1、正数的正分数指数幂的意义为:
m
annam(a0,m ,n N *,n1)
2、正数的负分数指数幂的意义与负整数幂的意义相同
即 : am na 1 m nn1 am(a0,m ,n N *,n1) 3、0的正分数指数幂等于0,0的负分数指数幂无意义。
2020/12/2
7
概念理解
做一做
练习:试根据n次方根的定义分别求出下列 各数的n次方根.
(1)25的平方根是_______;
(2)27的三次方根是_____;
(3)-32的五次方根是____;
(4)15的四次方根是_____.
2020/12/2
8
2.根式的概念
根指数
na
被开方数
根式
2020/12/2
4
复习旧知
初中时平方根、立方根是如何定义的?有哪 些规定?
若 x2 4 则 x2 若 x2 5 则 x 5
若 x3 27 则 x 3
若 x3 27 则 x3
2020/12/2
2叫做4的平方根; 5叫做5的平方根; 3是27的立方根; -3是-27的立方根;
5
若 x3 10 则 x 3 10 若 x3 32 则 x 3 32
2020/12/2
13
例2 求值
2
(1) 8 3 ;
(3)
1
5
;
2
1
(2) 25 2 ;
(4) 16
3 4
.
81
2020/12/2
14
运算性质
(1)arasar s(a0 ,r,s Q )
1.示范 公开课教案(1.1 指数与指数幂的运算 )
第二章 基本初等函数(Ⅰ)本章教材分析教材把指数函数、对数函数、幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,从而让学生体会建立和研究一个函数模型的基本过程和方法,学会运用具体的函数模型解决一些实际问题.本章总的教学目标是:了解指数函数模型的实际背景,理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算;理解指数函数的概念和意义,掌握f(x)=a x 的符号及意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点),通过应用实例的教学,体会指数函数是一种重要的函数模型;理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用;通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x 的符号及意义,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点);知道指数函数y=a x 与对数函数y=log a x 互为反函数(a >0,a≠1),初步了解反函数的概念和f -1(x)的意义;通过实例了解幂函数的概念,结合五种具体函数y=x,y=x 2,y=x 3,y=x -1,y=x 21的图象,了解它们的变化情况.本章的重点是三种初等函数的概念、图象及性质,要在理解定义的基础上,通过几个特殊函数图象的观察,归纳得出一般图象及性质,这种由特殊到一般的研究问题的方法是数学的基本方法.把这三种函数的图象及性质之间的内在联系及本质区别搞清楚是本章的难点.教材注重从现实生活的事例中引出指数函数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情境创设.在学习对数函数的图象和性质时,教材将它与指数函数的有关内容作了比较,让学生体会两种函数模型的增长区别与关联,渗透了类比思想.建议教学中重视知识间的迁移与互逆作用.教材对反函数的学习要求仅限于初步的知道概念,目的在于强化指数函数与对数函数这两种函数模型的学习,教学中不宜对其定义做更多的拓展.教材对幂函数的内容做了削减,仅限于学习五种学生易于掌握的幂函数,并且安排的顺序向后调整,教学中应防止增加这部分内容,以免增加学生的学习负担.通过运用计算机绘制指数函数的动态图象,使学生进一步体会到信息技术在数学学习中的作用,教师要尽量发挥电脑绘图的教学功能.教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真研读.本章教学时间约需14课时,具体分配如下(仅供参考) 2.1指数函数 约6课时 2.2对数函数 约6课时 2.3幂函数 约1课时 本章复习约1课时 2.1 指数函数2.1.1 指数与指数幂的运算整体设计教学分析我们在初中的学习过程中,已了解了整数指数幂的概念和运算性质.从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n 次方根的定义,从而把指数推广到分数指数.进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂.教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题.前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值.后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫.本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,体现数学的应用价值.根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.三维目标1.通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质.掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.培养学生观察分析、抽象类比的能力.2.掌握根式与分数指数幂的互化,渗透“转化”的数学思想.通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理.3.能熟练地运用有理指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力.4.通过训练及点评,让学生更能熟练掌握指数幂的运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美.重点难点教学重点:(1)分数指数幂和根式概念的理解.(2)掌握并运用分数指数幂的运算性质.(3)运用有理指数幂性质进行化简、求值.教学难点:(1)分数指数幂及根式概念的理解.(2)有理指数幂性质的灵活应用.课时安排3课时教学过程第1课时指数与指数幂的运算(1)导入新课思路 1.同学们在预习的过程中能否知道考古学家如何判断生物的发展与进化,又怎样判断它们所处的年代?(考古学家是通过对生物化石的研究来判断生物的发展与进化的,第二个问题我们不太清楚)考古学家是按照这样一条规律推测生物所处的年代的.教师板书本节课题:指数函数——指数与指数幂的运算.思路2.同学们,我们在初中学习了平方根、立方根,那么有没有四次方根、五次方根…n次方根呢?答案是肯定的,这就是我们本堂课研究的课题:指数函数——指数与指数幂的运算.推进新课新知探究提出问题(1)什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?(2)如x4=a,x5=a,x6=a根据上面的结论我们又能得到什么呢?(3)根据上面的结论我们能得到一般性的结论吗?(4)可否用一个式子表达呢?活动:教师提示,引导学生回忆初中的时候已经学过的平方根、立方根是如何定义的,对照类比平方根、立方根的定义解释上面的式子,对问题②的结论进行引申、推广,相互交流讨论后回答,教师及时启发学生,具体问题一般化,归纳类比出n次方根的概念,评价学生的思维.讨论结果:(1)若x2=a,则x叫做a的平方根,正实数的平方根有两个,它们互为相反数,如:4的平方根为±2,负数没有平方根,同理,若x3=a,则x叫做a的立方根,一个数的立方根只有一个,如:-8的立方根为-2.(2)类比平方根、立方根的定义,一个数的四次方等于a,则这个数叫a的四次方根.一个数的五次方等于a,则这个数叫a的五次方根.一个数的六次方等于a,则这个数叫a的六次方根.(3)类比(2)得到一个数的n次方等于a,则这个数叫a的n次方根.(4)用一个式子表达是,若x n=a,则x叫a的n次方根.教师板书n次方根的意义:一般地,如果x n=a,那么x叫a的n次方根(n-throot),其中n>1且n∈N*.可以看出数的平方根、立方根的概念是n次方根的概念的特例.提出问题(1)你能根据n次方根的意义求出下列数的n次方根吗?(多媒体显示以下题目).①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根.(2)平方根,立方根,4次方根,5次方根,7次方根,分别对应的方根的指数是什么数,有什么特点?4,±8,16,-32,32,0,a6分别对应什么性质的数,有什么特点?(3)问题(2)中,既然方根有奇次的也有偶次的,数a有正有负,还有零,结论有一个的,也有两个的,你能否总结一般规律呢?(4)任何一个数a的偶次方根是否存在呢?活动:教师提示学生切实紧扣n次方根的概念,求一个数a的n次方根,就是求出的那个数的n次方等于a,及时点拨学生,从数的分类考虑,可以把具体的数写出来,观察数的特点,对问题(2)中的结论,类比推广引申,考虑要全面,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:(1)因为±2的平方等于4,±2的立方等于8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分别是±2,±2,±2,2,-2,0,a2.(2)方根的指数是2,3,4,5,7…特点是有奇数和偶数.总的来看,这些数包括正数,负数和零. (3)一个数a的奇次方根只有一个,一个正数a的偶次方根有两个,是互为相反数.0的任何次方根都是0.(4)任何一个数a的偶次方根不一定存在,如负数的偶次方根就不存在,因为没有一个数的偶次方是一个负数.类比前面的平方根、立方根,结合刚才的讨论,归纳出一般情形,得到n次方根的性质:①当n为偶数时,a的n次方根有两个,是互为相反数,正的n次方根用n a表示,如果是负数,表示,正的n次方根与负的n次方根合并写成±n a(a>0).负的n次方根用n a②n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号n a表示.③负数没有偶次方根;0的任何次方根都是零.上面的文字语言可用下面的式子表示:a 为正数:⎪⎩⎪⎨⎧±.,,,n n a n a n a n a n 次方根有两个为的为偶数次方根有一个为的为奇数 a 为负数:⎪⎩⎪⎨⎧.,,,次方根不存在的为偶数次方根只有一个为的为奇数n a n a n a n n 零的n 次方根为零,记为n 0=0.可以看出数的平方根、立方根的性质是n 次方根的性质的特例.思考根据n 次方根的性质能否举例说明上述几种情况?活动:教师提示学生对方根的性质要分类掌握,即正数的奇偶次方根,负数的奇次方根,零的任何次方根,这样才不重不漏,同时巡视学生,随机给出一个数,我们写出它的平方根,立方根,4次方根等,看是否有意义,注意观察方根的形式,及时纠正学生在举例过程中的问题.解答:答案不唯一,比如,64的立方根是4,16的四次方根为±2,-27的5次方根为527-,而-27的4次方根不存在等.其中527-也表示方根,它类似于n a 的形式,现在我们给式子n a 一个名称——根式.根式的概念: 式子n a 叫根式,其中a 叫被开方数,n 叫根指数. 如327-中,3叫根指数,-27叫被开方数.思考n n a 表示a n 的n 次方根,等式n n a =a 一定成立吗?如果不一定成立,那么n n a 等于什么? 活动:教师让学生注意讨论n 为奇偶数和a 的符号,充分让学生多举实例,分组讨论.教师点拨,注意归纳整理. 〔如33)3(-=327-=-3,44)8(-=|-8|=8〕.解答:根据n 次方根的意义,可得:(n a )n =a.通过探究得到:n 为奇数,n n a =a.n 为偶数,n n a =|a|=⎩⎨⎧<-≥.0,,0,a a a a 因此我们得到n 次方根的运算性质:①(n a )n =a.先开方,再乘方(同次),结果为被开方数.②n 为奇数,n n a =a.先奇次乘方,再开方(同次),结果为被开方数.n 为偶数,n n a =|a|=a,⎩⎨⎧<-≥.0,,0,a a a a 先偶次乘方,再开方(同次),结果为被开方数的绝对值. 应用示例 思路1例1求下列各式的值: (1)33)8(-;(2)2)10(-;(3)44)3(π-;(4)2)(b a -(a>b).活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析.观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药.求下列各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数.解:(1)33)8(-=-8; (2)2)10(-=10; (3)44)3(π-=π-3; (4)2)(b a -=a-b(a>b).点评:不注意n 的奇偶性对式子n n a 的值的影响,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用.变式训练求出下列各式的值: (1)77)2(-; (2)33)33(-a (a≤1); (3)44)33(-a .解:(1)77)2(-=-2, (2)33)33(-a (a≤1)=3a-3, (3)44)33(-a =⎩⎨⎧<-≥-.1,33,1,33a a a a 点评:本题易错的是第(3)题,往往忽视a 与1大小的讨论,造成错解.思路2例1下列各式中正确的是( ) (1)44a =a;(2)62)2(-=32-;(3)a 0=1; (4)105)12(-=)12(-.活动:教师提示,这是一道选择题,本题考查n 次方根的运算性质,应首先考虑根据方根的意义和运算性质来解,既要考虑被开方数,又要考虑根指数,严格按求方根的步骤,体会方根运算的实质,学生先思考哪些地方容易出错,再回答.解:(1)44a =a,考查n 次方根的运算性质,当n 为偶数时,应先写n n a =|a|,故本题错. (2)62)2(-=32-,本质上与上题相同,是一个正数的偶次方根,根据运算顺序也应如此,结论为62)2(-=32,故本题错.(3)a 0=1是有条件的,即a≠0,故本题也错.(4)是一个正数的偶次方根,根据运算顺序也应如此,故本题正确.所以答案选(4).点评:本题由于考查n 次方根的运算性质与运算顺序,有时极易选错,选四个答案的情况都会有,因此解题时千万要细心. 例223++223-=_________活动:让同学们积极思考,交流讨论,本题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式.正确分析题意是关键,教师提示,引导学生解题的思路. 解:223+=2)2(221++=2)21(+=2+1. 223-=122)2(2+-=2)12(-=2-1. 所以223++223-=22.点评:不难看出223-与223+形式上有些特点,即是对称根式,是B A 2±形式的式子,我们总能找到办法把其化成一个完全平方式.思考上面的例2还有别的解法吗?活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是+,一个是-,去掉一层根号后,相加正好抵消.同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法.另解:利用整体思想,x=223++223-,两边平方得x 2=3+22+3-22+2(223+)(223-)=6+222)22(3-=6+2=8,所以x=22.点评:对双重二次根式,特别是B A 2±形式的式子,我们总能找到办法将根号下面的式子化成一个完全平方式,问题迎刃而解,另外对B A B A 22-±+的式子,我们可以把它们看成一个整体利用完全平方公式和平方差公式去解.变式训练 若12a -a 2+=a-1,求a 的取值范围.解:因为12a -a 2+=a-1,而12a -a 2+=2)1(-a =|a-1|=a-1,即a-1≥0,所以a≥1.点评:利用方根的运算性质转化为去绝对值符号,是解题的关键.知能训练(教师用多媒体显示在屏幕上)1.以下说法正确的是( )A.正数的n 次方根是一个正数B.负数的n 次方根是一个负数C.0的任何次方根都是零D.a 的n 次方根用n a 表示(以上n >1且n ∈N *).答案:C2.化简下列各式: (1)664;(2)42)3(-;(3)48x ;(4)636y x ;(5)2y)-(x .答案:(1)2;(2)9;(3)x 2;(4)|x|y ;(5)|x-y|.3.计算407407-++=__________. 解:407407-++ =2222)2(252)5()2(252)5(+•-++•+ =22)25()25(-++ =5+2+5-2- =25.答案:25拓展提升 问题:n n a =a 与(n a )n =a (n >1,n ∈N )哪一个是恒等式,为什么?请举例说明.活动:组织学生结合前面的例题及其解答,进行分析讨论,解决这一问题要紧扣n 次方根的定义.通过归纳,得出问题结果,对a 是正数和零,n 为偶数时,n 为奇数时讨论一下.再对a 是负数,n 为偶数时,n 为奇数时讨论一下,就可得到相应的结论.解答:①(n a )n =a (n >1,n ∈N ).如果x n =a (n >1,且n ∈N )有意义,则无论n 是奇数或偶数,x=n a 一定是它的一个n 次方根,所以(n a )n =a 恒成立.例如:(43)4=3,33)5(-=-5. ②n na =⎩⎨⎧.|,|,,为偶数当为奇数当n a n a 当n 为奇数时,a ∈R ,n n a =a 恒成立. 例如:552=2,55)2(-=-2. 当n 为偶数时,a ∈R ,a n ≥0,n n a 表示正的n 次方根或0,所以如果a≥0,那么n n a =a.例如443=3, 40=0;如果a <0,那么n n a =|a|=-a,如2(-3)=23=3. 即(n a na )n =a (n >1,n ∈N )是恒等式,n n a =a (n >1,n ∈N )是有条件的.点评:实质上是对n 次方根的概念、性质以及运算性质的深刻理解.课堂小结学生仔细交流讨论后,在笔记上写出本节课的学习收获,教师用多媒体显示在屏幕上.1.如果x n =a,那么x 叫a 的n 次方根,其中n >1且n ∈N *.用式子n a 表示,式子n a 叫根式,其中a 叫被开方数,n 叫根指数.(1)当n 为偶数时,a 的n 次方根有两个,是互为相反数,正的n 次方根用n a 表示,如果是负数,负的n 次方根用-n a 表示,正的n 次方根与负的n 次方根合并写成±n a (a >0).(2)n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数,这时a 的n 次方根用符号n a 表示.(3)负数没有偶次方根.0的任何次方根都是零.2.掌握两个公式:n 为奇数时,(na )n =a,n 为偶数时,n n a =|a|=⎩⎨⎧<-≥.0,,0,a a a a 作业课本P 59习题2.1A 组 1.补充作业:1.化简下列各式: (1)681;(2)1532-;(3)48x ;(4)642b a .解:(1)681=643=323=39; (2)1532-=1552-=32-; (3)48x =442)(x =x 2; (4)642b a =622)|(|b a •=32||b a •.2.若5<a<8,则式子22)8()5(---a a 的值为__________.分析:因为5<a<8,所以22)8()5(---a a =a-5-8+a=2a-13.答案:2a-13. 3.625625-++=__________.分析:对双重二次根式,我们觉得难以下笔,我们考虑只有在开方的前提下才可能解出,由此提示我们想办法去掉一层根式, 不难看出625+=22)(3+=3+2. 同理625-=22)(3-=3-2.所以625++625-=23.答案:23设计感想学生已经学习了数的平方根和立方根,根式的内容是这些内容的推广,本节课由于方根和根式的概念和性质难以理解,在引入根式的概念时,要结合已学内容,列举具体实例,根式n a 的讲解要分n 是奇数和偶数两种情况来进行,每种情况又分a>0,a<0,a=0三种情况,并结合具体例子讲解,因此设计了大量的类比和练习题目,要灵活处理这些题目,帮助学生加以理解,所以需要用多媒体信息技术服务教学.(设计者:路致芳)。
指数与指数幂的运算_讲课_课件
思考二
1.你能根据n次方根的意义求出下列数的n次方根吗?
(1)4的平方根;
(2)8 的立方根
(3)16的4次方根 (4)32的5次方根 (5)-32的5次方根 (6)0的7次方根
(7)a 6 的立方根
(2)问题(1)中既然有奇数次方根也有偶数次方根,数a有 正有负,还有零,结果有一个的,也有两个的,你能否总 结一般规律呢?
9、化简
(1
1
2 32
)(1
1
2 16
)(1
1
28
)(1
1
24
)(1
1
22
)的结果
( A)
A.
1
(1
2
1 32
) 1
2
1
C.1 2 32
B.(1
2
1 32
)
1
D.1
1
(1
2
1 32
)
2
5 32 _______ 4 81 _______
210 ________ 3 312 _______
a 定义2:式子n a叫做根式,n叫做根指数,
叫做被开方数
探究
n an a 一定成立吗?
1、当 n 是奇数时,n an a
2、当
n 是偶数时,n an
a | a | a
(a 0) (a 0)
4、化简 (3 6 a9 )4 (6 3 a9 )4的结果是(C)
A.a16 B. a8 C. a4 D. a2
5、2-(2k+1)-2-(2k-1)+2-2k等于( C ) A.2-2k B. 2-(2k-1) C. -2-(2k+1) D.2
指数与指数幂的运算(教学课件201911)
探究:
n an 表示an的n次方根,等式 n an a 一定成立吗? 如果不一定成立,那么 n an 等于什么?
a, (当n为奇数)
n
an
|
a
|
a, a a,
a
0, (当n为偶数) 0.
例1 求下列各式的值
1. 3 (8)3 ; 2. (10)2 ;
3. 4 (3 )4 ;
n个 正整数指数幂的运算法则有五条:
1.am·an=am+n;
另外,我们规定:
2.am÷an=am-n; 3.(am)n=amn; 4.(ab)n=an·bn; 5.
a0 1(a 0);
an
1 an
.
二、根式
一般地,如果xn=a,那么x叫做a的n次方根(n th root),其中n>ቤተ መጻሕፍቲ ባይዱ,
且n∈N*.
x n a ; (当n是奇数)
xn a
x n a. (当n是偶数,且a>0)
让我们认识一下这个式子:
a 根指数
n
根式
被开方数
•;建筑工程技术 https:///p-590191.html 建筑工程技术
•;
•昌令刘睿为汝阴王 居穆贵嫔忧 封晋安郡王 诏王僧辩讨陆纳 为有司奏 当璧之礼 "永晓音律 遂出家为尼 魏军至襄阳 司马董当门 为湘东王记室 固求自贬 大赦 兄子瑰 明帝遣永与沈攸之重兵迎之 竦跃入云 于此价高 "澄乃葬其劣处 伟撤户扉为棺 可谓矫其违矣 为光禄大夫 诏平西将军周文 育 宣猛将军朱买臣奉帝密旨 加都督 益部亲寻 以旧臣不加罪 见宗一时 累旬不拔 南郡王大连于姑孰 《词林》三卷 武帝敕贺革为帝府谘议 "褚彦回曰 德州刺史陈法武 在乎饮食男女
2.1.1 指数与指数幂的运算 公开课
a n n am (a 0, m, n N*,且n 1)
我们规定正数的负分数指数幂的意义是:
注意指 数位置
m
a n
1
m
(a 0, m, n N*,且n 1)
an
0的正分数指数幂等于0,0的负分数指数幂没有意义.
探究点2 整数指数幂的运算性质有哪些? 整数指数幂的运算性质:
第二章 基本初等函数 2.1.1 指数与指数幂的运算
1.掌握根式的概念及运算; 2.理解分数指数幂的意义; 3.掌握分数指数幂的运算性质(重点) 4.掌握根式与分数指数幂的互化(难点)
探究 由初中所学知识及示例完成下面填空
示例:① (±2)2=4,则称±2为4的 平方根 ; ② 23=8,则称2为8的 立方根 ;
解题关键:将根式转化为有理数指数幂,根据
有理数指数幂的运算法则解决.
解析:a3
a
1
a3 a2
3 1
a2
7
a2;
a2 3
a2
2
a2 a3
2 2
a 3
8
a3;
11
41
2
a 3 a (a a3 )2 (a3 )2 a3.
分清层次 由里向外
技巧:根化幂,里向外,同底数,乘起来
例4.计算下列各式(式中字母都是正数):
21
11
15
(1) (2a 3b2 )(6a 2b3 ) (3a 6b6 );
分析:根据有理数指数幂的运算法则和负分数指
数幂的意义求解.
21
11
15
解:(1) (2a 3b2 )(6a 2b3 ) (3a6b6 )
课题 指数与指数幂的运算(三)
课题 指数与指数幂的运算(三)教学目标:n 次方根的求解,会用分数指数幂表示根式, 掌握根式与分数指数幂的运算. 学习过程:一、复习提问: (学生回答,老师板演) 1. 提问:什么叫做根式? 运算性质?2. 提问:分数指数幂如何定义?运算性质?3. 基础习题练习: (口答下列基础题)① n 为 时,(0)||...........(0)x x x ≥⎧=⎨<⎩. ② 求下列各式的值:;681; 62)2(-; 1532-;48x ; 642b a二、教学典型例题:例1.(P 52,例4)计算下列各式(式中字母都是正数)(1)211511336622(2)(6)(3)a b a b a b -÷- (2)31884()m n -例2.(P 52例5)计算下列各式(1)(22(a >0)例3..已知1122a a-+=3,求下列各式的值: (1)1-+a a; (2)22-+a a ; (3)33221122a a a a---- .三、巩固练习:1. 化简:)()(41412121y x y x -÷-.2. 用根式表示2134()m n -, 其中,0m n >.3. 已知x +x -1=3,求下列各式的值:.)2(,)1(23232121--++x x x x4. 求值:2325;2327; 3236()49; 3225()4-;5 已知32x a b --=+, .四、小结:1. 熟练掌握有理指数幂的运算法则,化简的基础. 2. 含有根式的式子化简,一般要先把根式转化为分数指数幂后再计算. 五,作业化简:1 2932-234 已知32121=+-aa ,求下列各式的值.;+-1)1(a a ;)2(22-+a a33221122(3).a a a a----。
指数与指数幂的运算(精品)
2018/11/4
n次方根定义:
n 次方等于 a ,求这个数.
*
)
n 次方根.
a n 次方根 x是不是唯一?
6
得出结论
结论:当 n 为奇数时,正数的 n 次方根是一个正 数,负数的 n 次方根是一个负数,这时,a 的n 次方根 只有一个,记为 x n a .
n 为偶数时,正数的 n 次方根有两个, 它们互为相反数.正数 a 的正 n 次方根用符号 n a 表示; 负的 n 次方根用符号 n a 表示,它们可以合并写成
2018/11/4
12
整数指数幂的运算性质:
a a a
m n
m n
(m, n Z )
(a ) a
m n n
mn
(m, n Z )
n
(ab) a b (n Z )
n
2018/11/4 13
性质:(整数指数幂的运算性质对于有理指 数幂也同样适用)
(a 0, r , s Q) a a a r s rs (a 0, r , s Q) (a ) a r r s (ab) a a (a 0, b 0, r Q)
结论:当
n a (a 0) 的形式.
负数没有偶次方根.
2018/11/4 7
注意问题
特别注意:0的n次方根等于0. 1) n 思考:
a 一定表示一个正数吗?
n
为奇数时,它可为正、可为负、可为零. n a n为偶数时,它表示非负数.
a 中的 a 一定是正数或非负数吗? 当 n为偶数时,它有意义的条件是 a 0; 当 n为奇数时,它有意义的条件是 a R .
指数与指数幂的运算