2020年中考数学模拟试题(四)

合集下载

2020年吉林省长春市名校调研中考数学四模试卷

2020年吉林省长春市名校调研中考数学四模试卷

中考数学四模试卷题号一二三四总分得分一、选择题(本大题共8小题,共24.0分)1.-2的绝对值等于()A. -B.C. -2D. 22.已知地球上海洋面积约为316 000 000km2,数据316 000 000用科学记数法可表示为()A. 3.16×109B. 3.16×107C. 3.16×108D. 3.16×1063.下图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是A. B. C. D.4.把不等式组的解集表示在数轴上如图,正确的是()A. B.C. D.5.如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1的度数是()A. 30°B. 25°C. 20°D. 15°6.如图,A、B两点被池塘隔开,在AB外选一点C,连结AC、BC.分别取AC、DC的中点写D、E,连结DE,若测得DE=40m,则A、B两点之间的距离是()A. 40mB. 60mC. 80mD. 100m7.如图,在平面直角坐标系中,边长为1的正方形ABCD的顶点A、C在函数y=x的图象上运动,下列各点可能落入正方形内部的是()A. (1,3)B. (2,3.2)8.如图,△ABC的顶点A,C落在坐标轴上,且顶点B的坐标为(-5,2),将△ABC沿x轴向右平移得到△A1B1C1,使得点B1恰好落在函数y=上,若线段AC扫过的面积为48,则点C1的坐标为()A. (3,2)B. (5,6)C. (8,6)D. (6,6)二、填空题(本大题共6小题,共18.0分)9.比较大小:______5(填“>”“<”或“=”)10.计算:(﹣m)3•m4=________.11.关于x的一元二次方程x2-3x+k=0有两个不相等的实数根,则k的取值范围是______.12.某水库堤坝的横断面如图所示,经测量知tan A=,堤坝高BC=50m,则AB=______m.13.如图,在平面直角坐标系中,点A是抛物线y=ax2+bx+c的顶点,点B(0,2)是抛物线与y轴的交点,直线BC平行于x轴,交抛物线于点C,D为x轴上任意一点,若S△ABC=3,S△BCD=2,则点A的坐标为______.14.如图,BD是菱形ABCD的对角线,E是边AD的中点,F是边AB上的一点,将△AEF沿EF所在的直线翻折得到△A′EF,连结A′C.若AB=5,BD=6,当点A′到∠A 的两边的距离相等时,A′C的长是______.三、计算题(本大题共2小题,共12.0分)15.先化简,再求值:(2a-3)(2a+3)-(a+1)(4a-2),其中a=.16.列方程组解应用题.某校七年级学生在三月份参加了“学雷锋,献爱心”活动.活动中,1班,2班和3班的同学为希望小学的学生购买了学习用品:书包和词典.已知1班、2班购买的情况如下表:书包(个)词典(本)累计花费(元)七年级1班32124七年级2班23116四、解答题(本大题共8小题,共66.0分)17.将牌面数字分别是4,5,6,8的四张扑克牌背面朝上(背面完全相同)洗匀后放在桌面上(1)从中随机抽出一张牌,牌面数字是偶数的概率是______;(2)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽出一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是8的整数倍的概率.18.如图,在△ABC中,AB=AC,点D是边BC的中点,过点A、D分别作BC与AB的平行线,相交于点E,连结EC、AD.求证:四边形ADCE是矩形.19.为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图.请结合图中所给信息解答下列问题:(1)本次调查的学生共有______人,在扇形统计图中,m的值是______.(2)分别求出参加调查的学生中选择绘画和书法的人数,并将条形统计图补充完整.(3)该校共有学生2000人,估计该校约有多少人选修乐器课程?20.如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD(1)求证:∠BDC=∠A;(2)若∠C=45°,⊙O的半径为1,求图中阴影部分的面积(结果保留根号和π)21.甲、乙两车分别从相距420km的A、B两地相向而行,乙车比甲车先出发1小时,两车分别以各自的速度匀速行驶,途经C地(A、B、C三地在同一条直线上).甲车到达C地后因有事立即按原路原速返回A地,乙车从B地直达A地,甲、乙两车距各自出发地的路程y(千米)与甲车行驶所用的时间x(小时)的关系如图所示,结合图象信息回答下列问题:(1)甲车的速度是______千米/时,乙车的速度是______千米/时;(2)求甲车距它出发地的路程y(千米)与它行驶所用的时间x(小时)之间的函数关系式;(3)甲车出发多长时间后两车相距90千米?请你直接写出答案.22.探究:如图①点E、F分别在正方形ABCD的边BC、CD上,连结AE、AF、EF,将△ABE、△ADF分别沿AE、AF折叠,折叠后的图形恰好能拼成与△AEF完全重合的三角形.若BE=2,DF=3,求AB的长;拓展:如图②点E、F分别在四边形BACD的边BC、CD上,且∠B=∠D=90°.连结AE、AF、EF将△ABE、△ADF分别沿AE、AF折叠,折叠后的图形恰好能拼成与△AEF 完全重合的三角形.若∠EAF=30°,AB=4,则△ECF的周长是______.23.如图,在矩形ABCD中,AB=3,BC=4.点P从点A出发,沿A-B-C运动,速度为每秒1个单位长度.点Q从点C出发,沿C-A-D运动,沿C-A运动时的速度为每秒1个单位长度,沿A-D运动时的速度为每秒3个单位长度.P、Q两点同时出发,当点Q到达点D时,P、Q两点同时停止运动.连结PQ、CP.设△APQ的面积为S,点P的运动时间为t(秒).(1)当t=6时,求AQ的长.(2)当点Q沿C-A运动时,用含t的代数式表示点Q到AB、BC的距离.(3)求S与t的函数关系式.(4)在点P运动的过程中,直接写出△APQ与△CPQ同时为钝角三角形时t的取值范围.24.在平面直角坐标系中,若x轴上的点A与y轴上的点B同时在某函数的图象上则称△AOB为该函数图象的“截距三角形”,如图①,△AOB为直线l的“截距三角形”.(1)某一次函数图象的“截距三角形”是等腰直角三角形,请写出一个符合条件的函数表达式(写出一个即可);(3)如图③,在(2)的条件下,在第一象限的抛物线上任取一点P,过点P作x 轴的平行线与抛物线在第一象限的“截距三角形”的直角边或直角边的延长线交于点D,与斜边或斜边的延长线交于点E,设点P的横坐标为m,线段DE的长度为d.求d与m之间的函数关系式;(4)如图④,在(3)的条件下,过点E作EF∥y轴交x轴于点F.求四边形ODEF 的周长不变时m的取值范围.答案和解析1.【答案】D【解析】解:根据绝对值的性质,|-2|=2.故选:D.根据绝对值的性质:一个负数的绝对值是它的相反数解答即可.本题考查了绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,难度适中.2.【答案】C【解析】解:316 000 000用科学记数法可表示为3.16×108,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C【解析】解:从上面看共有2行,上面一行有3个正方形,第二行中间有一个正方形,故选:C.从上面看到的平面图形即为该组合体的俯视图,据此求解.本题考查了简单组合体的三视图的知识,解题的关键是了解俯视图的定义,属于基础题,难度不大.4.【答案】B【解析】解:解不等式2x+3>1,得:x>-1,解不等式3x+4≥5x,得:x≤2,则不等式组的解集为-1<x≤2,故选:B.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键5.【答案】D【解析】解:∵AB∥CD,∴∠C=∠2=60°,∵∠A=45°,∴∠1=60°-45°=15°,故选:D.根据平行线的性质可得∠C=∠2=60°,再根据三角形内角与外角的性质可得∠1的度数.此题主要考查了平行线的性质,关键是掌握两直线平行,同位角相等.【解析】解:∵D、E分别是AC、DC的中点,∴AB=2DE=80(m),故选:C.根据三角形中位线定理解答.本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.7.【答案】C【解析】解:作正方形ABCD的内切圆,则内切圆半径为,∴点在正方形内部时,点一定在圆的内切圆内部,点(1,3)到直线y=x的距离为>,不可能;(2,3.2)到直线y=x的距离为>,不可能;(3,3-)到直线y=x的距离为<,可能;(4,3+)到直线y=x的距离为>,不可能;故选:C.作正方形ABCD的内切圆,则内切圆半径为,点在正方形内部时,点一定在圆的内切圆内部,只要判断点到y=x的距离和半径的关键即可求解;本题考查一次函数的性质,正方形的性质,点与圆的位置关系;能够将点与正方形问题转化为点与圆的问题是解题的关键.8.【答案】C【解析】解:B1的纵坐标是2,把y=2代入y=得x==3,则B1的坐标是(3,2),则平移的距离是3-(-5)=8(单位长度).则AA1=8.则C1的纵坐标是=6,则C1的坐标是(8,6).B和B1的纵坐标相同,据此把y=2代入反比例函数的解析式求得B1的坐标,则平移的距离即可求得,线段AC扫过的部分是平行四边形,利用平行四边形的面积公式求得C1的纵坐标,则坐标即可求得.本题考查了图形的平移以及反比例函数的性质,正确求得平移的距离是关键.9.【答案】<【解析】解:∵19<25∴<故答案为:<根据19<25即可作答.此题主要考查了实数大小比较的方法和估算无理数的大小,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.【解析】解:(-m)3•m4=-m7,故答案为:-m7根据同底数幂的乘法解答即可.此题考查同底数幂的乘法,关键是根据同底数幂的乘法的法则解答.11.【答案】k<【解析】解:根据题意得△=(-3)2-4k>0,解得k<.故答案为:k<.根据判别式的意义得到△=(-3)2-4k>0,然后解不等式即可.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.12.【答案】100【解析】解:在Rt△ABC中,∵tan A=,∴=,∴AC=50,∴由勾股定理可知:AB=100,故答案为:100根据锐角三角函数的定义即可求出答案.本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.13.【答案】(1,-1)【解析】解:∵点B(0,2)是抛物线与y轴的交点,直线BC平行于x轴,交抛物线于点C,∴B、C关于对称轴对称,∵S△BCD=BC•OB=2,B(2,0),∴BC=2,∴C(2,2),∴对称轴为直线x==1,∵S△ABC=BC(2-y A)=3,∴y=-1,∴A(1,-1),故答案为(1,-1).根据△BCD的面积求得BC,即可求得对称轴,根据△ABC的面积即可求得A的纵坐标,从而求得A的坐标.14.【答案】4【解析】解:如图,连接AC,∵四边形ABCD是菱形∴AB=BC=CD=AD=5,BD⊥AC,DO=BO=BD=3,AO=CO,AC平分∠DAB∴AO==4,∴AC=2AO=8∵点A′到∠DAB的两边的距离相等∴点A'在∠DAB的平分线上,即点A'在线段AC上,∵将△AEF沿EF所在的直线翻折得到△A′EF∴AH=A'H,EF⊥AC∴EF∥DB∴∴AO=2AH∴AH=2∴A'C=AC-AA'=8-4=4故答案为:4由菱形的性质可得AB=BC=CD=AD=5,BD⊥AC,DO=BO=BD=3,AO=CO,AC平分∠DAB,由勾股定理可求AO,AC的长,由角平分线的性质可得点A'在线段AC上,由平行线分线段成比例可求AH的长,即可求A'C的长.本题考查翻折变换,菱形的性质,角平分线的性质,确定点A'的位置是本题的关键.15.【答案】解:(2a-3)(2a+3)-(a+1)(4a-2)=4a2-9-4a2-2a+2=-2a-7,当a=时,原式=-2×-7=-7-7=-14.【解析】根据平方差公式和多项式乘多项式可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.本题考查整式的混合运算-化简求值,解答本题的关键是明确整式化简求值的计算方法.16.【答案】解:设书包每个x元,词典每本y元,根据题意得:,解得:,∴4x+6y=4×28+6×20=112+120=232.答:3班共花费了232元.【解析】设书包每个x元,词典每本y元,根据1班、2班购买情况统计表中数据,即可得出关于x、y的二元一次方程组,解之即可得出x、y的值,将其代入4x+6y中即可求出3班共花费的钱数.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.17.【答案】【解析】解:(1)从中随机抽出一张牌,牌面数字是偶数的概率是;故答案为:;(2)画树状图如图:共有16个等可能的结果,组成的两位数恰好是8的整数倍的结果有4个,∴组成的两位数恰好是8的整数倍的概率为=.(1)根据概率的意义直接计算即可解答.(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.18.【答案】证明:∵AE∥BD,DE∥AB∴四边形ABDE是平行四边形∴AB=DE,AE=BD∵AB=AC∴DE=AC∵点D是BC的中点∴BD=CD AD⊥BC所以AE=DC,AE∥DC∴四边形ADCE是平行四边形∵∠ADC=90°∴平行四边形ADCE是矩形【解析】首先证明四边形ABDE是平行四边形,再证明四边形ADCE是平行四边形,由∠ADC=90°,即可推出四边形ADCE是矩形.本题考查等腰三角形的性质、平行四边形的判定和性质、矩形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.【答案】(1)50 ,30% ;(2)绘画的人数50×20%=10(人),书法的人数50×10%=5(人),如图所示:(3)估计该校选修乐器课程的人数为2000×30%=600人.【解析】解:(1)本次调查的学生共有20÷40%=50(人),m=15÷50=30%;故答案为:50;30%;(2)见答案(3)见答案.【分析】(1)由舞蹈的人数除以占的百分比求出调查学生总数,确定出扇形统计图中m的值;(2)求出绘画与书法的学生数,补全条形统计图即可;(3)总人数乘以样本中选修乐器课程人数所占百分比可得.本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.【答案】(1)证明:连结OD.如图,∵CD与⊙O相切于点D,∴OD⊥CD,∴∠2+∠BDC=90°,∵AB是⊙O的直径,∴∠ADB=90°,即∠1+∠2=90°,∴∠1=∠BDC,∵OA=OD,∴∠1=∠A,∴∠BDC=∠A;(2)∵∠C=45°,∴∠DOC=∠C=45°,过D作DH⊥OB于H,∴DH=OH=,∴图中阴影部分的面积=S扇形BOD-S△BOD=-1=-.【解析】(1)连结OD.如图,利用切线的性质得∠2+∠BDC=90°,利用圆周角定理得到∠1+∠2=90°,则∠1=∠BDC,加上∠1=∠A,所以∠BDC=∠A;(2)过D作DH⊥OB于H,得到DH=OH=,于是得到结论.本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理,扇形面积的计算.21.【答案】105 60【解析】解:(1)由图可得,甲车的速度为:(210×2)÷4=420÷4=105千米/时,乙车的速度为:60千米/时,故答案为:105,60;(2)由图可知,点M的坐标为(2,210),当0≤x≤2时,设y=k1x,∵M(2,210)在该函数图象上,2k1=210,解得,k1=105,∴y=105x(0≤x≤2);当2<x≤4时,设y=k2x+b,∵M(2,210)和点N(4,0)在该函数图象上,∴,得,∴y=-105x+420(2<x≤4),综上所述:甲车距它出发地的路程y与它出发的时间x的函数关系式为:y=;(3)设甲车出发a小时时两车相距90千米,当甲从A地到C地时,105a+60(a+1)+90=420,解得,a=,当甲从C地返回A地时,(210-60×3)+(105-60)×(a-2)=90,解得,a=,当甲到达A地后,420-60(a+1)=90,解得,a=,答:甲车出发时,时或时,两车相距90千米.(1)根据题意和函数图象中的数据可以得到甲乙两车的速度;(2)根据题意和函数图象中的数据可以求得甲车距它出发地的路程y(千米)与它行驶所用的时间x(小时)之间的函数关系式;(3)根据题意可知甲乙两车相距90千米分两种情况,从而可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22.【答案】【解析】解:探究:设:正方形的边长为a,则EC=a-2,CF=a-3,则EF=BE+DF=5,则EF2=EC2+CF2,即:25=(a-2)2+(a-3)2,解得:a=6或-1(舍去-1),故AB=6;拓展:由题意得:AB=CD=4,连接AC,∵AB=CD,AC=AC,∴△ABC≌△ADC,∴BC=CD,∠BAC=∠DAC,∵点E、F分别在四边形BACD的边BC、CD上,故:∠BAE+∠DAF=∠EAF=30°,则∠BAD=60°,∴∠BAC=∠DAC=(∠BAD)=30°,CD=BC=AB tan∠BAC=4×=,△ECF的周长=EF+EC+FC=AE+FD+EC+FC=AC+CD=2CD=,故答案为:.探究:设:正方形的边长为a,则EC=a-2,CF=a-3,则由勾股定理得:EF2=EC2+CF2,即可求解;拓展:证明△ABC≌△ADC,∠BAE+∠DAF=∠EAF=30°,则∠BAD=60°,∠BAC=∠DAC=(∠BAD)=30°,CD=BC=AB tan∠BAC,即可求解.本题考查的是翻折变换(折叠问题),涉及到正方形的性质、三角形全等等,其中(2)证明△ABC≌△ADC,是本题解题的关键.23.【答案】解:(1)如图1中,在Rt△ACB中,AC===5,∴t=6时,点Q在AD时,AQ=3(t-5)=3×(6-5)=3.(2)如图2中,QM⊥AB于M,QN⊥BC于N.则四边形MBNQ是矩形,∴QM=BN,QN∥AB,∴==,∴==,∴QN=t,CN=t,∴QM=BM=4-t.∴点Q到AB的距离:.点Q到BC的距离:.(3)①如图3中,当0<t≤3时,S=•AP•QM=•t•(4-t)=-t2+2t.②如图4中,当3<t≤5时,S=S△ABC-S△ABP-S△QPC=×3×4-×(7-t)•t-•(t-3)×3=t2-t+.③如图5中,当5<t≤时,.(4)如图6中,当PQ∥BC时,∵AP:AB=AQ:AC,∴t:3=(5-t):5,解得t=.如图7中,当PQ∥AB时,CP:CB=CQ:CA,∴(7-t):4=t:5,解得t=,如图8中,当AQ=BP时,3(t-5)=t-3,解得t=6,∴当0<t<或<t<5或5<t<6时,△APQ与△CPQ同时为钝角三角形.【解析】(1)如图1中,画出图形求出AQ即可;(2)如图2中,QM⊥AB于M,QN⊥BC于N.则四边形MBNQ是矩形,可得QM=BN,QN∥AB,推出==,可得==,由此即可解决问题;(3)分三种情形求解①如图3中,当0<t≤3时,②如图4中,当3<t≤5时,③如图5中,当5<t≤时;(4)求出三个特殊位置的t的值即可解决问题;本题考查四边形综合题、矩形的性质、三角形的面积、平行线分线段成比例定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.24.【答案】解:(1)y=-x+2(答案不唯一);(2)y=-x+4,令x=4,则y=4,令y=0,则x=4,则点(4,0)、(0,4)是抛物线上的点,将这两个点的坐标代入抛物线表达式得:,解得:,故抛物线的表达式为:y=-x2+3x+4;(3)设点P(m,-m2+3m+4),则点E(m2-3m,-m2+3m+4),①当点P在点C之上时,即-m2+3m+4≥4(即:0≤m≤3),d=DE=-(m2-3m)=-m2+3m;②当点P在点C之下,同理d=DE=m2-3m,此时,m>3或m<0;综上,d=|m2-3m|;(4)由(2)知:①当点P在点C之上时,四边形ODEF的周长=2OD+2CE=2(-m2+3m-m2+3m+4)=-4m2+12m+16,不是常数;②当点P在点C之下时,四边形ODEF的周长=2OD+2CE=2(m2-3m-m2+3m+4)=8,是常数;即m>3或m<0,四边形ODEF的周长不变.【解析】(1)按照条件,写出表达式即可,答案不唯一;(2)点(4,0)、(0,4)是抛物线上的点,将这两个点的坐标代入抛物线表达式,即可求解;(3)设点P(m,-m2+3m+4),则点E(m2-3m,-m2+3m+4),d=DE=m2-3m,即可求解;(4)四边形ODEF的周长=2OD+2CE=2(m2-3m-m2+3m+4)=8,d=DE=m2-3m>0,即可求解.本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形性质、二次函数等知识,此类新概念性题目,通常按照题设顺序逐次求解.。

2020年中考数学模拟试卷04含解析

2020年中考数学模拟试卷04含解析

2020年中考数学模拟试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点M(1﹣m,2﹣m)在第三象限,则m的取值范围是()A.m>3 B.2<m<3 C.m<2 D.m>2【答案】D【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.根据题意知,解得m>2,故选:D.2.已知x=2是方程2x﹣3a+2=0的根,那么a的值是()A.﹣2 B.C.2 D.【答案】C【解析】根据一元一次方程的解定义,将x=2代入已知方程列出关于a的新方程,通过解新方程即可求得a的值.∵x=2是方程2x﹣3a+2=0的根,∴x=2满足方程2x﹣3a+2=0,∴2×2﹣3a+2=0,即6﹣3a=0,解得,a=2;故选:C.3.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A.B.C.D.【答案】B【解析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.已知给出的三角形的各边AB、CB、AC分别为、2、、只有选项B的各边为1、、与它的各边对应成比例.故选:B.4.某高速公路概算总投资为79.67亿元,请将79.67亿用科学记数法表示为()A.7.967×101B.7.967×1010C.7.967×109D.79.67×108【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于79.67亿有10位,所以可以确定n=10﹣1=9.79.67亿=7 967 000 000=7.967×109.故选:C.5.已知圆锥的底面半径为6cm,高为8cm,则圆锥的侧面积为()A.36πcm2B.48πcm2C.60πcm2D.80πcm2【答案】C【解析】根据圆锥的底面半径和高求出圆锥的母线长,再根据圆锥的底面周长等于圆锥的侧面展开扇形的弧长,最后利用扇形的面积计算方法求得侧面积.由勾股定理得:圆锥的母线长==10,∵圆锥的底面周长为2πr=2π×6=12π,∴圆锥的侧面展开扇形的弧长为12π,∴圆锥的侧面积为:×12π×10=60π.故选:C.6.已知,且﹣1<x﹣y<0,则k的取值范围为()A.﹣1<k<﹣B.0<k<C.0<k<1 D.<k<1【答案】D【解析】利用第二个方程减去第一个方程,得到一个不等式,根据﹣1<x﹣y<0得到一个不等式,组成不等式组解这个不等式即可.第二个方程减去第一个方程得到x﹣y=1﹣2k,根据﹣1<x﹣y<0得到:﹣1<1﹣2k<0即解得<k<1,k的取值范围为<k<1.故选:D.7.如图所示实数a,b在数轴上的位置,以下四个命题中是假命题的是()A.a3﹣ab2<0 B.C.D.a2<b2【答案】B【解析】由数轴可知a>0,b<0,且|a|<|b|,由此可判断a+b<0,a﹣b>0,再逐一检验.依题意,得a>0,b<0,且|a|<|b|,∴a+b<0,a﹣b>0,A、a3﹣ab2=a(a+b)(a﹣b)<0,正确;B、∵a+b<0,∴=﹣(a+b),错误;C、∵0<a<a﹣b,∴<,正确;D、∵(a+b)(a﹣b)<0,∴a2﹣b2<0,即a2<b2,正确.故选:B.8.如图,⊙P内含于⊙O,⊙O的弦AB切⊙P于点C,且AB∥OP,若阴影部分的面积为9π,则弦AB的长为()A.3 B.4 C.6 D.9【答案】C【解析】本题可先由题意OD=PC=r,再根据阴影部分的面积为9π,得出R2﹣r2=9,即AD==3,进而可知AB=2×3=6.设PC=r,AO=R,连接PC,⊙O的弦AB切⊙P于点C,故AB⊥PC,作OD⊥AB,则OD∥PC.又∵AB∥OP,∴OD=PC=r,∵阴影部分的面积为9π,∴πR2﹣πr2=9π,即R2﹣r2=9,于是AD==3.∵OD⊥AB,∴AB=3×2=6.故选:C.9.因为sin30°=,sin210°=,所以sin210°=sin(180°+30°)=﹣sin30°;因为sin45°=,sin225°=,所以sin225°=sin(180°+45°)=﹣sin45°,由此猜想,推理知:一般地当α为锐角时有sin(180°+α)=﹣sinα,由此可知:sin240°=()A.B.C.D.【答案】C【解析】阅读理解:240°=180°+60°,因而sin240°就可以转化为60°的角的三角函数值.根据特殊角的三角函数值,就可以求解.∵当α为锐角时有sin(180°+α)=﹣sinα,∴sin240°=sin(180°+60°)=﹣sin60°=﹣.故选:C.10.如图,两个反比例函数和(其中k1>k2>0)在第一象限内的图象依次是C1和C2,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,下列说法正确的是()①△ODB与△OCA的面积相等;②四边形PAOB的面积等于k2﹣k1;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.A.①②B.①②④C.①④D.①③④【答案】C【解析】根据反比例函数系数k所表示的意义,对①②③④分别进行判断.①A、B为上的两点,则S△ODB=S△OCA=k2,正确;②由于k1>k2>0,则四边形PAOB的面积应等于k1﹣k2,错误;③只有当P的横纵坐标相等时,PA=PB,错误;④当点A是PC的中点时,点B一定是PD的中点,正确.故选:C.第二部分非选择题(共110分)二.填空题(本大题共6小题,每小题4分,共24分.)11.分解因式:ax2﹣2ax+a=.【答案】a(x﹣1)2【解析】本题考查了用提公因式法和公式法进行因式分解,先提公因式a,再利用完全平方公式继续分解因式.ax2﹣2ax+a=a(x2﹣2x+1)=a(x﹣1)2.12.暑假中,小明,小华将从甲、乙、丙三个社区中随机选取一个参加综合实践活动,若两人不在同一社区,则小明选择到甲社区、小华选择到乙社区的可能性为.【答案】【解析】画树状图得:,∵共有9种等可能的结果,小明选择到甲社区、小华选择到乙社区的有1种情况,∴小明选择到甲社区、小华选择到乙社区的可能性为:.故答案为:.13.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E =度.【答案】80【解析】设∠EPC=2x,∠EBA=2y,∵∠EBA、∠EPC的角平分线交于点F∴∠CPF=∠EPF=x,∠EBF=∠FBA=y,∵∠1=∠F+∠ABF=40°+y,∠2=∠EBA+∠E=2y+∠E,∵AB∥CD,∴∠1=∠CPF=x,∠2=∠EPC=2x,∴∠2=2∠1,∴2y+∠E=2(40°+y),∴∠E=80°.故答案为:80.14.一个多边形的每一个外角为30°,那么这个多边形的边数为.【答案】12【解析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.15.如图,点A,B,是⊙O上三点,经过点C的切线与AB的延长线交于D,OB与AC交于E.若∠A =45°,∠D=75°,OB=,则CE的长为.【答案】2【解析】连接OC,如图,∵∠A=45°,∠D=75°,∴∠ACD=60°,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵∠BOC=2∠A=90°,∴OB∥CD,∴∠CEO=∠ACD=60°,在Rt△COE中,sin∠CEO=,∴CE===2.故答案为2.16.如图,点A是反比例函数y=图象上的任意一点,过点A做AB∥x轴,AC∥y轴,分别交反比例函数y=的图象于点B,C,连接BC,E是BC上一点,连接并延长AE交y轴于点D,连接CD,则S△DEC﹣S△BEA=.【答案】【解析】点A是反比例函数y=图象上的任意一点,可设A(a,),∵AB∥x轴,AC∥y轴,点B,C,在反比例函数y=的图象上,∴B(,),C(a,),∴AB=a,AC=,∴S△DEC﹣S△BEA=S△DAC﹣S△BCA=××(a﹣a)=××a=.故答案为:.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)计算:﹣12019+|﹣2|+2cos30°+(2﹣tan60°)0.【解析】直接利用零指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.解:原式=﹣1+2﹣++1=2.18.(本小题满分8分)先化简,,然后从﹣1≤x≤2的范围内选取一个合适的整数作为x的值代入求值.【解析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.解:原式=[﹣]÷=•=﹣,∵x≠±1且x≠0,∴在﹣1≤x≤2中符合条件的x的值为x=2,则原式=﹣=﹣2.19.(本小题满分8分)如图,已知点E、C在线段BF上,且BE=CF,CM∥DF,(1)作图:在BC上方作射线BN,使∠CBN=∠1,交CM的延长线于点A(用尺规作图法,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:AC=DF.【解析】(1)①以E为圆心,以EM为半径画弧,交EF于H,②以B为圆心,以EM为半径画弧,交EF于P,③以P为圆心,以HM为半径画弧,交前弧于G,④作射线BG,则∠CBN就是所求作的角.(2)证明△ABC≌△DEF可得结论.解:(1)如图所示,即为所求;(2)∵CM∥DF,∴∠MCE=∠F,∵BE=CF,∴BE+CE=CF+CE,即BC=EF,在△ABC和△DEF中,∵,∴△ABC≌△DEF,∴AC=DF.20.(本小题满分8分)在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中,m=,n=;(3)扇形统计图中,艺术类读物所在扇形的圆心角是度;(4)学校计划购买课外读物5000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?【解析】解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,故本次调查中,一共调查了:70÷35%=200人,故答案为:200;(2)根据科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,m=200﹣70﹣30﹣60=40人,故m=40,n=60;故答案为:40,60;(3)艺术类读物所在扇形的圆心角是:×360°=72°,故答案为:72;(4)由题意,得5000×=750(册).答:学校购买其他类读物750册比较合理.21.(本小题满分8分)某大型超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:(1)该大型超市购进A、B品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润?销售价(元/箱)类别/单价成本价(元/箱A品牌20 32B品牌35 50【解析】解:(1)设该超市进A品牌矿泉水x箱,B品牌矿泉水y箱,依题意,得:,解得:.答:该超市进A品牌矿泉水400箱,B品牌矿泉水200箱.(2)400×(32﹣20)+200×(50﹣35)=7800(元).答:该超市共获利润7800元.22.(本小题满分10分)如图,在Rt△ABC中,∠BAC=90°,AD平分∠BAC,过AC的中点E作FG ∥AD,交BA的延长线于点F,交BC于点G,(1)求证:AE=AF;(2)若BC=AB,AF=3,求BC的长.【解析】解:(1)∵∠BAC=90°,AD平分∠BAC,∴∠DAB=∠CAB=×90°=45°,∵FG∥AD,∴∠F=∠DAB=45°,∠AEF=45°,∴∠F=∠AEF,∴AE=AF;(2)∵AF=3,∴AE=3,∵点E是AC的中点,∴AC=2AE=6,在Rt△ABC中,AB2+AC2=BC2,AB2+32=()2,AB=,BC=.23.(本小题满分10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=(1)求该反比例函数和一次函数的解析式;(2)连接OB,求S△AOC﹣S△BOC的值;(3)点E是x轴上一点,且△AOE是等腰三角形请直接写出满足条件的E点的个数(写出个数即可,不必求出E点坐标).【解析】解:(1)∵AD⊥x轴,∴∠ADO=90°,在Rt△ADO中,AD=3,tan∠AOD==,∴OD=2,∴A(﹣2,3),∵点A在反比例函数y=的图象上,∴n=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣,∵点B(m,﹣1)在反比例函数y=﹣的图象上,∴﹣m=﹣6,∴m=6,∴B(6,﹣1),将点A(﹣2,3),B(6,﹣1)代入直线y=kx+b中,得,∴,∴一次函数的解析式为y=﹣x+2;(2)由(1)知,A(﹣2,3),直线AB的解析式为y=﹣x+2,令y=0,∴﹣x+2=0,∴x=4,∴C(4,0),∴S△AOC﹣S△BOC=OC•|y A|﹣OC•|y B|=×4(3﹣1)=4;(3)设E(m,0),由(1)知,A(﹣2,3),∴OA2=13,OE2=m2,AE2=(m+2)2+9,∵△AOE是等腰三角形,∴①当OA=OE时,∴13=m2,∴m=±,∴E(﹣,0)或(,0),②当OA=AE时,13=(m+2)2+9,∴m=0(舍)或m=4,∴E(4,0),③当OE=AE时,m2=(m+2)2+9,∴m=﹣,∴E(﹣,0),即:满足条件的点P有四个.24.(本小题满分12分)如图,在⊙O中,半径OD⊥直径AB,CD与⊙O相切于点D,连接AC交⊙O 于点E,交OD于点G,连接CB并延长交⊙于点F,连接AD,EF.(1)求证:∠ACD=∠F;(2)若tan∠F=①求证:四边形ABCD是平行四边形;②连接DE,当⊙O的半径为3时,求DE的长.【解析】(1)证明:∵CD与⊙O相切于点D,∴OD⊥CD,∵半径OD⊥直径AB,∴AB∥CD,∴∠ACD=∠CAB,∵∠EAB=∠F,∴∠ACD=∠F;(2)①证明:∵∠ACD=∠CAB=∠F,∴tan∠GCD=tan∠GAO=tan∠F=,设⊙O的半径为r,在Rt△AOG中,tan∠GAO==,∴OG=r,∴DG=r﹣r=r,在Rt△DGC中,tan∠DCG==,∴CD=3DG=2r,∴DC=AB,而DC∥AB,∴四边形ABCD是平行四边形;②作直径DH,连接HE,如图,OG=1,AG==,CD=6,DG=2,CG==2,∵DH为直径,∴∠HED=90°,∴∠H+∠HDE=90°,∵DH⊥DC,∴∠CDE+∠HDE=90°,∴∠H=∠CDE,∵∠H=∠DAE,∴∠CDE=∠DAC,而∠DCE=∠ACD,∴△CDE∽△CAD,∴=,即=,∴DE=.25.(本小题满分14分)如图,在平面直角坐标系xOy第一象限中有正方形OABC,A(4,0),点P(m,0)是x轴上一动点(0<m<4),将△ABP沿直线BP翻折后,点A落在点E处,在OC上有一点M(0,t),使得将△OMP沿直线MP翻折后,点O落在直线PE上的点F处,直线PE交OC 于点N,连接BN.(I)求证:BP⊥PM;(II)求t与m的函数关系式,并求出t的最大值;(III)当△ABP≌△CBN时,直接写出m的值.【解析】解:(Ⅰ)由折叠知,∠APB=∠NPB,∠OPM=∠NPM,∵∠APN+∠OPN=180°,∴2∠NPB+2∠NPM=180°,∴∠NPB+∠NPM=90°,∴∠BPM=90°,∴BP⊥PM;(Ⅱ)∵四边形OABC是正方形,∴∠OAB=90°,AB=OA,∵A(4,0),∴AB=OA=4,∵点P(m,0),∴OP=m,∵0<m<4,∴AP=OA﹣OP=4﹣m,∵M(0,t),∴OM=t,由(1)知,∠BPM=90°,∴∠APB+∠OPM=90°,∵∠OMP+∠OPM=90°,∴∠OMP=∠APB,∵∠MOP=∠PAB=90°,∴△MOP∽△PAB,∴,∴,∴t=﹣m(m﹣4)=﹣(m﹣2)2+1∵0<m<4,∴当m=2时,t的最大值为1;(Ⅲ)∵△ABP≌△CBN,∴∠CBN=∠ABP,BP=BN,由折叠知,∠ABP=∠EBP,∠BEP=∠BAP=90°,∴NE=PE,∠NBE=∠PBE,∴∠CBN=∠NBE=∠EBP=∠PBA,∴∠CBE=∠ABE=45°,连接OB,∵四边形OABC是正方形,∴∠OBC=∠OBA=45°,∴点E在OB上,∴OP=ON=m,∴PN=m,∵OM=t,∴MN=ON=OM=m﹣t,如图,过点N作OP的平行线交PM的延长线于G,∴∠OPM=∠G,由折叠知,∠OPM=∠NPM,∴∠NPM=∠G,∴NG=PN=m,∵GN∥OP,∴△OMP∽△NMG,∴,∴=①,由(2)知,t=﹣m(m﹣4)②,联立①②解得,m=0(舍)或m=8﹣.。

2020年江苏省无锡市中考数学全真模拟试卷4解析版

2020年江苏省无锡市中考数学全真模拟试卷4解析版

2020年江苏省无锡市中考数学全真模拟试卷4解析版一.选择题(共10小题,满分30分,每小题3分)1.下列各数中,其相反数等于本身的是()A.﹣1B.0C.1D.20182.下列运算正确的是()A.2a2﹣a2=1B.(a2)3=a6C.a2+a3=a5D.(ab)2=ab23.在下列四个银行标志中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个4.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.5.某中学篮球队12名队员的年龄情况如下表:关于这12名队员的年龄,下列说法中正确的是()A.众数为14B.极差为3C.中位数为13D.平均数为146.如图,点A、B、C、D、E都是⊙O上的点,弧AC=弧AE,∠B=118°,则∠D的度数为()A.122°B.124°C.126°D.128°7.布袋里有50个形状完全相同的小球,小红随机摸出一个球,记下颜色后放回摇匀,重复以上操作300次,发现摸到白色的球有61次,则布袋中白球的个数最有可能是()A.5个B.10个C.15个D.20个8.关于x的方程x2﹣2x﹣2=0的根的情况是()A.有两个不等实根B.有两个相等实根C.没有实数根D.无法判断根的情况9.如图,在y=(k>0)的图象上有三点P1,P2,P3,过三点分别作x轴垂线,垂足分别为A、B、C,连接OP1,OP2,OP3,试比较△OP1A,△OP2B,△OP3C的面积S1,S2,S3的大小,正确的是()A.S1>S2>S3B.S2>S3>S1C.S3>S2>S1D.S1=S2=S310.如图,AB为半圆O的直径,AB=2,点C为半圆上动点,以BC为边向形外作正方形BCDE,连接OD,则OD的最大值为()A.2B.C.D.二.填空题(共8小题,满分16分,每小题2分)11.若m,n为实数,且m=+8,则m+n的算术平方根为.12.分解因式:a3﹣25a=.13.北京时间6月5日21时07分,中国成功将风云二号H气象卫星送入预定的高度36000km的地球同步轨道,将36000km用科学记数法表示为.14.一个多边形的内角和等于它的外角和,这个多边形是边形.15.圆锥的侧面积为6πcm2,底面圆的半径为2cm,则这个圆锥的母线长为cm.16.如图,一天,我国一渔政船航行到A处时,发现正东方向的我领海区域B处有一可疑渔船,正在以12海里/时的速度向西北方向航行,我渔政船立即沿北偏东60°方向航行,1.5小时后,在我航海区域的C处截获可疑渔船,问我渔政船的航行路程是海里(结果保留根号).17.(1)已知正比例函数y=kx(k≠0)经过点(﹣2,3),那么这个正比例函数的解析式是.(2)如果点A(﹣1,2)在一个正比例函数y=f(x)的图象上,那么y随x的增大而(填”增大“或”减小“)18.若三角形三边长满足(a﹣b)2+|a﹣c|=0,则△ABC的形状是.三.解答题(共10小题,满分84分)19.(8分)(1)计算:4cos60°﹣(﹣2)2+(π﹣2019)0(2)化简:(a+1)2﹣(a+2)(a﹣2)20.(8分)(1)解方程:﹣=﹣3.(2)解不等式组:21.(6分)如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,连接CF.(1)求证:FD=FB;(2)求证:CF是⊙O的切线;(3)若FB=FE=3,求⊙O的半径.22.(8分)为了解九年级学生的体能状况,从我校九年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A,B,C,D四个等级,请根据两幅图中的信息回答下列问题:(1)求本次测试共调查了名学生,补全条形统计图;(2)B等级人数对应扇形统计图的圆心角的大小为;(3)我校九年级共有2100名学生,请你估计九年级学生中体能测试结果为C等级的学生有多少人?23.(8分)有两把不同的锁和三把不同的钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁,随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?24.(8分)已知直角△ABC中,∠C=90°,∠A=30°,AB=4,以AC为腰,在△ABC外作顶角为30°的等腰三角形ACD,连接BD.请画出图形,并直接写出△BCD的面积.25.(8分)某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系y=mx2+20x+n,其图象如图所示.(1)m=,n=.(2)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(3)该种商品每天的销售利润不低于16元时,直接写出x的取值范围.26.(10分)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD =80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,∠EAF=75°且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:≈1.41,≈1.73)27.(10分)直线y=2x+3与抛物线y=ax2交于A、B两点,已知点A的横坐标为3.(1)求A、B两点的坐标及抛物线的解析式;(2)O为坐标原点,求△AOB的面积.28.(10分)如图,在平面直角坐标系中,直线y=与x轴、y轴分别交于A、B两点,P、Q分别是线段OB、AB上的两个动点,点P从O出发一每秒2个单位长度的速度向终点B运动,同时Q从B出发,以每秒5个单位的速度向终点A运动,当其中一点到达终点时整个运动结束,设运动时间为t秒.(1)求出点Q的坐标(用t的代数式表示)(2)若C为OA的中点,连接PQ、CQ,以PQ、CQ为邻边作▱PQCD.①是否存在时间t,使得坐标轴刚好将▱PQCD的面积分为1:5的两个部分,若存在,求出t的值;若不存在,请说明理由.②PQCD对角线DQ的取值范围.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:相反数等于本身的数是0.故选:B.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.【分析】直接利用幂的乘方、积的乘方运算法则、合并同类项法则分别计算得出答案.【解答】解:A、2a2﹣a2=a2,故此选项错误;B、(a2)3=a6,故此选项正确;C、a2+a3,无法计算,故此选项错误;D、(ab)2=a2b2,故此选项错误.故选:B.【点评】此题主要考查了幂的乘方、积的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.3.【分析】根据轴对称和中心对称图形的概念求解.【解答】解:根据中心对称图形的概念,观察可知,第一个既是轴对称图形,也是中心对称图形;第二个是轴对称图形,不是中心对称图形;第三个不是轴对称图形,也不是中心对称图形;第四个是轴对称图形,也是中心对称图形.所以既是轴对称图形又是中心对称图形的有2个.故选:B.【点评】此题主要考查了中心对称与轴对称的概念.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.4.【分析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.【解答】解:由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.【分析】根据众数、中位数、平均数与极差的定义逐一计算即可判断.【解答】解:A、这12个数据的众数为14,正确;B、极差为16﹣12=4,错误;C、中位数为=14,错误;D、平均数为=,错误;故选:A.【点评】本题主要考查众数、极差、中位数和平均数,熟练掌握众数、极差、中位数和平均数的定义是解题的关键.6.【分析】连接AC、CE,根据圆内接四边形的性质求出∠AEC,根据三角形内角和定理求出∠CAE,根据圆内接四边形的性质计算即可.【解答】解:连接AC、CE,∵点A、B、C、E都是⊙O上的点,∴∠AEC=180°﹣∠B=62°,∵弧AC=弧AE,∴∠ACE=∠AEC=62°,∴∠CAE=180°﹣62°﹣62°=56°,∵点A、C、D、E都是⊙O上的点,∴∠D=180°﹣56°=124°,故选:B.【点评】本题考查的是圆内接四边形的性质,圆周角定理,三角形内角和定理,掌握圆内接四边形的对角互补是解题的关键.7.【分析】根据题意,一共摸了300次,其中61次摸出白球,可以估计出得到白球的概率,进而求出白球个数.【解答】解:∵小红共摸了300次,其中63次摸到白球,∴得到白球的概率为:≈0.2,∵布袋里装有红球和白球共50个,∴可以估计布袋中白球的个数是:0.2×50=10,故选:B.【点评】本题考查了模拟实验,利用实验得出摸出红球的概率是解题关键.8.【分析】先计算出△=(﹣2)2﹣4×1×(﹣2)=12>0,然后根据△的意义进行判断方程根的情况.【解答】解:∵△=(﹣2)2﹣4×1×(﹣2)=12>0,∴方程有两个不相等的实数根.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac,关键是记住当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9.【分析】直接根据反比例函数比例系数k的几何意义求解.【解答】解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S1=S2=S3=|k|.故选:D.【点评】本题考查了反比例函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.10.【分析】通过旋转观察如图可知当DO⊥AB时,DO最长,设DO与⊙O交于点M,连接CM,先证明△MED≌△MEB,得MD=BM.再利用勾股定理计算即可.【解答】解:通过旋转观察如图可当DO⊥AB时,DO最长,设DO与⊙O交于点M,连接CM,BD,OC.理由:∵△OBM,△BCD都是等腰直角三角形,∴∠OBM=∠CBD,∴∠OBC=∠MBD,∵==,∴△OBC∽△MBD,∴MD:OC=BD:BC=,∴MD=OC=,∴点D的运动轨迹是以M为圆心为半径的圆,∴当D,M,O共线,即DO⊥AB时,DO最长.∵∠MCB=∠MOB=×90°=45°,∴∠DCM=∠BCM=45°,∵四边形BCDE是正方形,∴C、M、E共线,∠DEM=∠BEM,在△EMD和△EMB中,,∴△MED≌△MEB(SAS),∴DM=BM===,∴OD的最大值=1+.故选:C.【点评】本题考查正方形的性质、全等三角形的判定与性质以及旋转的性质等知识,解题的关键是OD取得最大值时的位置,学会通过特殊位置探究得出结论,属于中考常考题型.二.填空题(共8小题,满分16分,每小题2分)11.【分析】根据二次根式的被开方数是非负数求得n=1,继而求得m=8,然后求m+n的算术平方根.【解答】解:依题意得:1﹣n≥0且n﹣1≥0,解得n=1,所以m=8,所以m+n的算术平方根为:==3.故答案是:3.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.12.【分析】首先提取公因式a,再利用平方差进行分解即可.【解答】解:原式=a(a2﹣25)=a(a+5)(a﹣5).故答案为:a(a+5)(a﹣5).【点评】此题主要考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:36000km=3.6×104km.故答案为:3.6×104km.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.14.【分析】利用多边形的外角和以及四边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和等于它的外角和,则内角和是360度,∴这个多边形是四边形.故答案为四.【点评】本题考查了多边形的外角和定理以及四边形的内角和定理,比较简单.15.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:设母线长为R,底面半径是2cm,则底面周长=4π,侧面积=2πR=6π,∴R=3.故答案为:3.【点评】本题利用了圆的周长公式和扇形面积公式求解.比较基础,重点是掌握公式.16.【分析】作CD⊥AB于点D,垂足为D,首先在Rt△BCD中求得CD的长,然后在Rt△ACD 中求得AC的长即可.【解答】解:作CD⊥AB于点D,垂足为D,在Rt△BCD中,∵BC=12×1.5=18(海里),∠CBD=45°,∴CD=BC•sin45°=18×=9(海里),则在Rt△ACD中,AC==9×2=18(海里).故我渔政船航行了18海里.故答案为:18.【点评】本题考查了解直角三角形的应用,解题的关键是从实际问题中构造出直角三角形并利用三角函数的知识求解.17.【分析】(1)直接利用待定系数法求出正比例函数解析式进而得出答案;(2)直接利用待定系数法求出正比例函数解析式进而得出答案.【解答】解:(1)∵正比例函数y=kx(k≠0)经过点(﹣2,3),则3=﹣2k,解得:k=﹣,∴这个正比例函数的解析式是:y=﹣x;故答案为:y=﹣x;(2)∵点A(﹣1,2)在一个正比例函数y=f(x)的图象上,∴2=﹣k,故y=﹣2x,则y随x的增大而减小.故答案为:减小.【点评】此题主要考查了待定系数法求一次函数解析式,正确求出解析式是解题关键.18.【分析】由非负数的性质可得到a=b=c,可判定其形状.【解答】解:∵(a﹣b)2+|a﹣c|=0,∴a﹣b=0,a﹣c=0,∴a=b=c,∴△ABC为等边三角形,故答案为:等边三角形.【点评】本题主要考查等边三角形的判定及非负数的性质,利用非负数的性质求得a=b=c是解题的关键.三.解答题(共10小题,满分84分)19.【分析】(1)先计算乘法,乘方,零指数幂,然后计算加减法.(2)利用完全平方公式和平方差公式解答.【解答】解:(1)原式=4×﹣4+1=﹣1;(2)原式=a2+2a+1﹣a2+4=2a+5.【点评】考查了平方差公式,实数的运算,零指数幂以及完全平方公式.运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.20.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:(1)去分母得:1﹣x+1=﹣3x+6,解得:x=2,经检验x=2是增根,分式方程无解;(2),由①得:x>﹣1,由②得:x≤2,则不等式组的解集为﹣1<x≤2.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.【分析】(1)连接OC,BC,证△AEC∽△AFD,△AHE∽△ABF,推出BF=DF,根据直角三角形斜边上中线性质得出CF=DF=BF;(2)只要证明∠FCB=∠CAB即可推出CG是⊙O切线;(2)由EF=FC,推出∠G=∠FAG,推出AF=FG,求出AB=BG,由切割线定理得出(3+FG)2=BG×AG=2BG2,在Rt△BFG中,由勾股定理得出BG2=FG2﹣BF2,推出FG2﹣6FG﹣27=0,求出FG即可,再在Rt△ABF中利用勾股定理即可解决问题;【解答】(1)证明:连接OC,BC,∵BD切⊙O于B,CH⊥AB,∴∠CHA=∠DBA=90°,∴CH∥BD,∴△AEC∽△AFD,△AHE∽△ABF,∴,∴,又∵CE=EH(E为CH中点),∴BF=DF,∵AB为⊙O的直径,∴∠ACB=∠DCB=90°,∵BF=DF,∴CF=DF=BF(直角三角形斜边上的中线等于斜边的一半),即CF=BF;(2)证明:∵BF切⊙O于B,∴∠DBA=90°,∴∠DBC+∠CBA=90°,∵AB为直径,∴∠ACB=90°,∴∠CBA=90°,∴∠FBC=∠CAB,∵OC=OA,CF=BF,∴∠FCB=∠FBC,∠OCA=∠OAC,∴∠FCB=∠CAB,∵∠ACB=90°,∴∠ACO+∠BCO=90°,∴∠FCB+∠BCO=90°,即OC⊥CG,∴CG是⊙O切线;(3)解:∵BF=CF=DF(已证),EF=BF=3,∴EF=FC=3,∴∠FCE=∠FEC,∵∠AHE=∠CHG=90°,∴∠FAH+∠AEH=90°,∠G+∠GCH=90°,∵∠AEH=∠CEF,∴∠G=∠FAG,∴AF=FG,∵FB⊥AG,∴AB=BG,∵GBA是⊙O割线,AB=BG,FB=FE=3,∴由切割线定理得:(3+FG)2=BG×AG=2BG2,在Rt△BFG中,由勾股定理得:BG2=FG2﹣BF2,∴FG2﹣6FG﹣27=0,解得:FG=9,FG=﹣3(舍去),∴AB==6.【点评】本题考查了切线的性质和判定,相似三角形的性质和判定,等腰三角形的性质和判定,直角三角形斜边上中线的性质,圆周角定理,勾股定理等知识点的综合运用,题目综合性比较强,有一定的难度.22.【分析】(1)根据A等级的学生数和所占的百分比可以求得本次调查的学生数,然后即可求得D等级的人数,进而将条形统计图补充完整;(2)根据(1)中的结果可以求得B等级人数对应扇形统计图的圆心角的大小;(3)根据统计图中的数据可以求得九年级学生中体能测试结果为C等级的学生有多少人.【解答】解:(1)本次测试共调查了:50÷25%=200(名),故答案为:200;D等级的学生有:200﹣50﹣80﹣30=40(名),补全的条形统计图如右图所示;(2)B等级人数对应扇形统计图的圆心角的大小为:360°×=144°,故答案为:144°;(3)2100×=315(人),答:九年级学生中体能测试结果为C等级的学生有315人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.【分析】根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率.【解答】解:列表得:由表可知,所有等可能的情况有6种,其中随机取出一把钥匙开任意一把锁,一次打开锁的2种,则P (一次打开锁)==.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比. 24.【分析】分四种情形分别求解即可解决问题;【解答】解:①当CD =CA ,∠DCA =30°时,作DH ⊥AC 于H .在Rt △ACB 中,∵∠CAB =30°,AB =4,∴BC =2,AC =2,∵∠ACD =∠CBA =30°,∴CD ∥AB ,∴S △BCD =S △ADC =•AC •DH =×2×=3.②当AC =AD ,∠CAD =30°时,作DH ⊥AC 于H .S △BCD =S △ABC +S △ADC ﹣S △ABD=×2×2+×2×﹣×4×3=2﹣3③当DA =DC ,∠ADC =30°时,作DH ⊥AC 于H ,连接BH .∵DA =DC ,DH ⊥AC ,∴AH =CH =,∵∠DHC =∠ACB =90°,∴DH ∥BC ,∴S △BCD =S △BCH =×2×=,【点评】本题考查作图﹣复杂作图、等腰三角形的性质、解直角三角形、平行线的判定和性质、等高模型等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型. 25.【分析】(1)利用待定系数法求二次函数解析式得出即可;(2)利用配方法求出二次函数最值即可;(3)根据函数值大于或等于16,可得不等式的解集,可得答案.【解答】解:(1)y =mx 2+20x +n 图象过点(5,0)、(7,16),∴,解得:; 故答案为:﹣1,﹣75;(2)∵y =﹣x 2+20x ﹣75=﹣(x ﹣10)2+25,∴当x =10时,y 最大=25.答:销售单价为10元时,该种商品每天的销售利润最大,最大利润为25元;(3)∵函数y=﹣x2+20x﹣75图象的对称轴为直线x=10,可知点(7,16)关于对称轴的对称点是(13,16),又∵函数y=﹣x2+20x﹣75图象开口向下,∴当7≤x≤13时,y≥16.答:销售单价不少于7元且不超过13元时,该种商品每天的销售利润不低于16元.【点评】本题考查了二次函数的应用,利用待定系数法求解析式,利用顶点坐标求最值,利用对称点求不等式的解集.26.【分析】【发现证明】根据旋转的性质可以得到△ADG≌△ABE,则GF=BE+DF,只要再证明△AFG≌△AFE即可.【类比引申】延长CB至M,使BM=DF,连接AM,证△ADF≌△ABM,证△FAE≌△MAE,即可得出答案;【探究应用】利用等边三角形的判定与性质得到△ABE是等边三角形,则BE=AB=80米.把△ABE绕点A逆时针旋转150°至△ADG,只要再证明∠GAF=∠FAE即可得出EF=BE+FD.【解答】解:【发现证明】如图(1),∵△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,∴∠GAF=∠FAE,在△GAF和△FAE中,AG=AE,∠GAF=∠FAE,AF=AF,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴BE+DF=EF.【类比引申】∠BAD=2∠EAF.理由如下:如图(2),延长CB至M,使BM=DF,连接AM,∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,∴∠D=∠ABM,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AF=AM,∠DAF=∠BAM,∵∠BAD=2∠EAF,∴∠DAF+∠BAE=∠EAF,∴∠EAB+∠BAM=∠EAM=∠EAF,在△FAE和△MAE中,,∴△FAE≌△MAE(SAS),∴EF=EM=BE+BM=BE+DF,即EF=BE+DF.故答案是:∠BAD=2∠EAF.【探究应用】如图3,把△ABE绕点A逆时针旋转150°至△ADG,连接AF.∵∠BAD=150°,∠DAE=90°,∴∠BAE=60°.又∵∠B=60°,∴△ABE是等边三角形,∴BE=AB=80米.根据旋转的性质得到:∠ADG=∠B=60°,又∵∠ADF=120°,∴∠GDF=180°,即点G在CD的延长线上.易得,△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAG=∠BAD=150°,∠FAE=75°∴∠GAF=∠FAE,在△GAF和△FAE中,AG=AE,∠GAF=∠FAE,AF=AF,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴EF=BE+DF=80+40(﹣1)≈109(米),即这条道路EF的长约为109米.【点评】此题主要考查了四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,旋转的性质,解本题的关键是作出辅助线,构造全等三角形.27.【分析】(1)利用待定系数法即可解决问题;(2)利用分割法求出△ABO的面积即可;【解答】解:(1)∵点A的横坐标为3,∴点A的坐标是(3,9)把A(3,9)代入y=ax2中,得:a=1,∴抛物线的解析式是:y=x2根据题意,得:解得:或∴点B的坐标是(﹣1,1),(2)设直线y=2x+3与y轴交于点C,则点C的坐标是(0,3)∴△AOB的面积=.【点评】本题考查二次函数的性质、一次函数的性质等知识,解题的关键是熟练掌握的待定系数法解决问题,学会用分割法求三角形的面积.28.【分析】(1)先利用勾股定理求出AB,再判断出△BEQ∽△BOA,得出比例式,代值求解即可得出结论;(2)①分两种情况,利用同高的两三角形的面积的比等于底的比,求解得出结论;②利用两点间距离公式,得出DQ2,再用函数的性质即可得出结论.【解答】解:(1)如图1,针对于直线y=,令x=0,则y=6,∴B(0,6),∴OB=6,令y=0,则=0,∴x=8,∴OA =8,根据勾股定理得,AB ==10,由运动知,BQ =5t ,过点Q 作QE ⊥y 轴于E ,∴QE ∥AO ,∴△BEQ ∽△BOA ,∴,∴, ∴BQ =3t ,EQ =4t ,∴OE =OB ﹣BE =6﹣3t ,∴Q (4t ,6﹣3t );(2)连接DQ ,CP ,由运动知,OP =2t ,∴P (0,2t ),∵点C 是OA 的中点,∴C (4,0),∵四边形CQPD 是平行四边形,∴DQ 与CP 互相平分,设D (m ,n ),由(1)知,Q (4t ,6﹣3t );∴4t +m =4,6﹣3t +n =2t ,∴m =4﹣4t ,n =5t ﹣6,∴D (4﹣4t ,5t ﹣6),①Ⅰ、当x 轴将将▱PQCD 的面积分为1:5的两个部分时,如图2,∵PC 是▱PQCD 的对角线,∴S △PCQ =S △PCD ,∵S △CDF :S 四边形CFPQ =1:5,∴S △CDF :S △CPF =1:2,∴DF:PF=1:2,∴PF:DF=2:1,过点D作DG⊥y轴于G,∴OG=6﹣5t,∴DG∥FO,∴,∴,∴t=1,【注:点D本身在y轴上,为了解决问题,没将点D放在y轴上】Ⅱ、当x轴将将▱PQCD的面积分为1:5的两个部分时,如图3,过点D作DN⊥x轴于N,同Ⅰ的方法得,t=1.5,即:坐标轴刚好将▱PQCD的面积分为1:5的两个部分时,t=1秒或1.5秒;②由(1)知,Q(4t,6﹣3t),∵D(4﹣4t,5t﹣6),∴DQ2=(4﹣4t﹣4t)2+(6﹣3t﹣5t+6)2=128(t﹣1)2+32,由运动知,0≤t≤2,=32,∴当t=1时,DQ2最小=4,∴DQ最小=160,当t=0或2时,DQ2最大=4,∴DQ最大∴4≤DQ≤4.【点评】此题是一次函数综合题,主要考查了勾股定理,相似三角形的判定和性质,两点间距离公式,平行四边形的性质,求出点D的坐标是解本题的关键.。

【2020年】贵州省中考数学模拟试卷(含解析)

【2020年】贵州省中考数学模拟试卷(含解析)

2020年贵州省中考数学模拟试卷含答案一.选择题(共10小题,每小题4分,共40分.)1.4的平方根是()A.2 B.﹣2 C.±2 D.162.2016年某省人口数超过105 000 000,将这个数用科学记数法表示为()A.0.105×109B.1.05×109C.1.05×108D.105×1063.下列运算正确的有()A.5ab﹣ab=4 B.3﹣=3 C.a6÷a3=a3D. +=4.下列图形中是轴对称图形,但不是中心对称图形的是()A.B.C. D.5.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3 C.4 D.56.如图所示的几何体是由七个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.7.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.58.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.9.如图,△ABC为⊙O的内接三角形,∠BOC=80°,则∠A等于()A.80 B.60 C.50 D.4010.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE 的面积是9,则k=()A.B.9 C.D.3二、填空题(本题共6小题,每小题4分,共24分)11.把多项式2x2﹣8分解因式得:.12.在函数y=中,自变量x的取值范围是.13.某种品牌的手机经过四、五月份连续两次降价,每部售价由1000元降到了810元.则平均每月降价的百分率为.14.如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是.15.不等式组的解集是.16.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.三、解答题(本题共8小题,共86分)17.计算:(﹣)﹣1﹣|﹣1|+2sin60°+(π﹣4)0.18.先化简﹣÷,再求代数式的值,其中a=﹣3.19.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.20.一测量爱好者,在海边测量位于正东方向的小岛高度AC,如图所示,他先在点B测得山顶点A的仰角为30°,然后向正东方向前行62米,到达D点,在测得山顶点A的仰角为60°(B、C、D三点在同一水平面上,且测量仪的高度忽略不计).求小岛高度AC(结果精确的1米,参考数值:)21.某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有2000名学生,请估计该校喜爱电视剧节目的人数.22.植树节期间,某单位欲购进A、B两种树苗,若购进A种树苗3棵,B种树苗5颗,需2100元,若购进A种树苗4颗,B种树苗10颗,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?23.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于D点,O是AB上一点,经过A、D两点的⊙O分别交AB、AC于点E、F.(1)用尺规补全图形(保留作图痕迹,不写作法);(2)求证:BC与⊙O相切;(3)当AD=2,∠CAD=30°时,求劣弧AD的长.24.已知在平面直角坐标系中,抛物线y=﹣+bx+c与x轴相交于点A,B,与y轴相交于点C,直线y=x+4经过A,C两点,(1)求抛物线的表达式;(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQ∥AO,PQ=2AO,求P,Q的坐标;(3)动点M在直线y=x+4上,且△ABC与△COM相似,求点M的坐标.参考答案与试题解析一.选择题(共10小题,每小题4分,共40分.)1.4的平方根是()A.2 B.﹣2 C.±2 D.16【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.2.2016年某省人口数超过105 000 000,将这个数用科学记数法表示为()A.0.105×109B.1.05×109C.1.05×108D.105×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将105000000用科学记数法表示为1.05×108.故选C3.下列运算正确的有()A.5ab﹣ab=4 B.3﹣=3 C.a6÷a3=a3D. +=【考点】二次根式的加减法;同底数幂的除法;分式的加减法.【分析】直接利用合并同类项法则以及二次根式加减运算法则和同底数幂的除法运算法则、分式加减运算法则分别化简求出答案.【解答】解:A、5ab﹣ab=4ab,故此选项错误,不合题意;B、3﹣=2,故此选项错误,不合题意;C、a6÷a3=a3,正确,符合题意;D、+=+=,故此选项错误,不合题意;故选:C.4.下列图形中是轴对称图形,但不是中心对称图形的是()A.B.C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是中心对称图形,不是轴对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,也是中心对称图形.故选:B.5.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3 C.4 D.5【考点】三角形中位线定理;平行四边形的性质.【分析】由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,∴EF=BC=×8=4.故选C.6.如图所示的几何体是由七个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图的定义即可判断.【解答】解:如图所示的几何体的俯视图是D.故选D.7.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.5【考点】菱形的性质;等边三角形的判定与性质.【分析】根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.【解答】解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选D.8.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.【考点】列表法与树状图法.【分析】列举出所有情况,看每个路口都是绿灯的情况数占总情况数的多少即可.【解答】解:共4种情况,有1种情况每个路口都是绿灯,所以概率为.故选:A.9.如图,△ABC为⊙O的内接三角形,∠BOC=80°,则∠A等于()A.80 B.60 C.50 D.40【考点】三角形的外接圆与外心.【分析】根据圆周角定理计算即可.【解答】解:由圆周角定理得,∠A=∠BOC=40°,故选:D.10.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE 的面积是9,则k=()A.B.9 C.D.3【考点】反比例函数系数k的几何意义.【分析】设点D的坐标为(m,n),则点B的坐标为(4m,n)、点E的坐标为(4m,),由此即可得出BD=3m、BE=n,再利用分割图形求面积法结合反比例函数系数k的几何意义即可得出S△ODE=k=9,解之即可得出k值.【解答】解:设点D的坐标为(m,n),则点B的坐标为(4m,n)、点E的坐标为(4m,),∴BD=AB﹣AD=3m,BE=BC﹣CE=n.∵点D在反比例函数y=的图象上,∴k=mn,∴S△ODE=S矩形OABC﹣S△OAD﹣S△OCE﹣S△BDE=4k﹣k﹣k﹣k=k=9,∴k=.故选C.二、填空题(本题共6小题,每小题4分,共24分)11.把多项式2x2﹣8分解因式得:2(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【分析】首先提公因式2,然后利用平方差公式分解.【解答】解:2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2).故答案是:2(x+2)(x﹣2).12.在函数y=中,自变量x的取值范围是x≠﹣2 .【考点】函数自变量的取值范围.【分析】根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2≠0,解得x≠﹣2.故答案为:x≠﹣2.13.某种品牌的手机经过四、五月份连续两次降价,每部售价由1000元降到了810元.则平均每月降价的百分率为10% .【考点】一元二次方程的应用.【分析】等量关系为:原售价×(1﹣降低率)2=降低后的售价,依此列出方程求解即可.【解答】解:设平均每月降价的百分率为x,依题意得:1000(1﹣x)2=810,化简得:(1﹣x)2=0.81,解得x1=0.1,x2=﹣1.9(舍).所以平均每月降价的百分率为10%.故答案为10%.14.如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是k<1 .【考点】根的判别式.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式的意义得到△>0,即(﹣2)2﹣4×1×k>0,然后解不等式即可.【解答】解:∵关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,∴△>0,即(﹣2)2﹣4×1×k>0,解得k<1,∴k的取值范围为k<1.故答案为:k<1.15.不等式组的解集是<x<2 .【考点】解一元一次不等式组.【分析】分别解两个不等式得到x>和x<2,然后根据大小小大中间找确定不等式组的解集.【解答】解:,解①得x>,解②得x<2,所以不等式组的解集为<x<2.故答案为<x<2.16.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.【考点】翻折变换(折叠问题).【分析】要求重叠部分△AEF的面积,选择AF作为底,高就等于AB的长;而由折叠可知∠AEF=∠CEF,由平行得∠CEF=∠AFE,代换后,可知AE=AF,问题转化为在Rt△ABE中求AE.【解答】解:设AE=x,由折叠可知,EC=x,BE=4﹣x,在Rt△ABE中,AB2+BE2=AE2,即32+(4﹣x)2=x2,解得:x=由折叠可知∠AEF=∠CEF,∵AD∥BC,∴∠CEF=∠AFE,∴∠AEF=∠AFE,即AE=AF=,∴S△AEF=×AF×AB=××3=.故答案为:.三、解答题(本题共8小题,共86分)17.计算:(﹣)﹣1﹣|﹣1|+2sin60°+(π﹣4)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=2﹣+1+2×+1=2﹣+1++1=4.18.先化简﹣÷,再求代数式的值,其中a=﹣3.【考点】分式的化简求值.【分析】根据分式的除法和减法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:﹣÷===,当a=﹣3时,原式=.19.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.【考点】作图﹣旋转变换;作图﹣轴对称变换.【分析】(1)根据网格特点,找出点A、B、C关于x轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)分别找出点A、B、C绕点O逆时针旋转90°的对应点A2、B2、C2的位置,然后顺次连接即可,观察可知点B所经过的路线是半径为,圆心角是90°的扇形,然后根据弧长公式进行计算即可求解.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.点B旋转到点B2所经过的路径长为: =π.故点B旋转到点B2所经过的路径长是π.20.一测量爱好者,在海边测量位于正东方向的小岛高度AC,如图所示,他先在点B测得山顶点A的仰角为30°,然后向正东方向前行62米,到达D点,在测得山顶点A的仰角为60°(B、C、D三点在同一水平面上,且测量仪的高度忽略不计).求小岛高度AC(结果精确的1米,参考数值:)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】首先利用三角形的外角的性质求得∠BAD的度数,得到AD的长度,然后在直角△ADC中,利用三角函数即可求解.【解答】解:∵∠ADC=∠B+∠BAD,∴∠BAD=∠ADC﹣∠B=60°﹣30°=30°,∴∠B=∠BAD,∴AD=BD=62(米).在直角△ACD中,AC=AD•sin∠ADC=62×=31≈31×1.7=52.7≈53(米).答:小岛的高度约为53米.21.某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有2000名学生,请估计该校喜爱电视剧节目的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据喜爱电视剧的人数是69人,占总人数的23%,即可求得总人数;(2)根据总人数和喜欢娱乐节目的百分数可求的其人数,补全即可;利用360°乘以对应的百分比即可求得圆心角的度数;(3)利用总人数乘以对应的百分比即可求解.【解答】解:(1)69÷23%=300(人)∴本次共调查300人;(2)∵喜欢娱乐节目的人数占总人数的20%,∴20%×300=60(人),补全如图;∵360°×12%=43.2°,∴新闻节目在扇形统计图中所占圆心角的度数为43.2°;(3)2000×23%=460(人),∴估计该校有460人喜爱电视剧节目.22.植树节期间,某单位欲购进A、B两种树苗,若购进A种树苗3棵,B种树苗5颗,需2100元,若购进A种树苗4颗,B种树苗10颗,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设B树苗的单价为x元,则A树苗的单价为y元.则由等量关系列出方程组解答即可;(2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,然后根据总费用和两种树的棵数关系列出不等式解答即可.【解答】解:设B树苗的单价为x元,则A树苗的单价为y元,可得:,解得:,答:B树苗的单价为300元,A树苗的单价为200元;(2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,可得:200a+300(30﹣a)≤8000,解得:a≥10,答:A种树苗至少需购进10棵.23.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于D点,O是AB上一点,经过A、D两点的⊙O分别交AB、AC于点E、F.(1)用尺规补全图形(保留作图痕迹,不写作法);(2)求证:BC与⊙O相切;(3)当AD=2,∠CAD=30°时,求劣弧AD的长.【考点】圆的综合题.【分析】(1)作AD的垂直平分线交AC于O,以AO为半径画圆O分别交AB、AC于点E、F,则⊙O即为所求;(2)连结OD,得到OD=OA,根据等腰三角形的性质得到∠OAD=∠ODA,等量代换得到∠ODA=∠CAD,根据平行线的判定定理得到OD∥AC,根据平行线的性质即可得到结论;(3)连接DE,根据圆周角定理得到∠ADE=90°,根据三角形的内角和得到∠AOD=120°,根据三角函数的定义得到AE==4,根据弧长个公式即可得到结论.【解答】(1)解:如图所示,(2)证明:连结OD,则OD=OA,∴∠OAD=∠ODA,∵∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,即BC⊥OD,∴BC与⊙O相切;(3)解:连接DE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠OAD=∠ODA=30°,∴∠AOD=120°,在Rt△ADE中,AE===4,∴⊙O的半径=2,∴劣弧AD的长==π.24.已知在平面直角坐标系中,抛物线y=﹣+bx+c与x轴相交于点A,B,与y轴相交于点C,直线y=x+4经过A,C两点,(1)求抛物线的表达式;(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQ∥AO,PQ=2AO,求P,Q的坐标;(3)动点M在直线y=x+4上,且△ABC与△COM相似,求点M的坐标.【考点】二次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、C点坐标,根据待定系数法,可得函数解析式;(2)根据平行于x轴的直线与抛物线的交点关于对称轴对称,可得P、Q关于直线x=﹣1对称,根据PQ的长,可得P点的横坐标,Q点的横坐标,根据自变量与函数值的对应关系,可得答案;(3)根据两组对边对应成比例且夹角相等的两个三角形相似,可得CM的长,根据等腰直角三角形的性质,可得MH的长,再根据自变量与函数值的对应关系,可得答案.【解答】解:(1)当x=0时,y=4,即C(0,4),当y=0时,x+4=0,解得x=﹣4,即A(﹣4,0),将A、C点坐标代入函数解析式,得,解得,抛物线的表达式为y=﹣x+4;(2)PQ=2AO=8,又PQ∥AO,即P、Q关于对称轴x=﹣1对称,PQ=8,﹣1﹣4=﹣5,当x=﹣5时,y=×(﹣5)2﹣(﹣5)+4=﹣,即P(﹣5,﹣);﹣1+4=3,即Q(3,﹣);P点坐标(﹣5,﹣),Q点坐标(3,﹣);(3)∠MCO=∠CAB=45°,①当△MCO∽△CAB时, =,即=,CM=.如图1,过M作MH⊥y轴于H,MH=CH=CM=,当x=﹣时,y=﹣+4=,∴M(﹣,);当△OCM∽△CAB时, =,即=,解得CM=3,如图2,过M作MH⊥y轴于H,MH=CH=CM=3,当x=﹣3时,y=﹣3+4=1,∴M(﹣3,1),综上所述:M点的坐标为(﹣,),(﹣3,1).。

押题卷04-赢在中考之2020中考数学押题卷(长沙卷)(解析版)

押题卷04-赢在中考之2020中考数学押题卷(长沙卷)(解析版)

押题卷04-赢在中考之2020中考数学押题卷(长沙)考试时间:120分钟满分:120分一、选择题(本大题共有12个小题,每小题3分,共36分)1.化简通的结果是()A. 2 .2B. 4、2C. 2D. 4【答案】A【解析】【分析】根据最简二次根式的定义进行化简即可.【详解】,8 ,4 2 2.2故选:A.【点评】本题考查二次根式的化简,熟练掌握最简二次根式的定义是关键^2.已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球…… 1 ..... ...... ..的概率是一,则袋中球的总个数是()4A. 2B. 4C. 6D. 8【答案】D…i ................. 1 人试题解析:袋中球的总个数是: 2 + _=8 (个).4故选D.3.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与^ ABCK似的是()A. B. C. D.【答案】A【解析】【分析】由图可得/ ACB= 135 , AG=①,BC= 2,然后分别求得A, B, C, D中各三角形的最大角,继而求得答案. 【详解】解:如图:/ ACB= 135° , AC= J2, BC= 2,A、最大角=135° ,对应两边分别为:1, J2,・,.2:1=2:、. 2 ,・•・此图与△ ABCt目似;B、二.最大角v 135° ,.』△ AB杯相似;C、二.最大角v 135° ,・•・与^ ABCPT相似;D ・••最大角v 135° ,,与^ ABCT相似.故选:A【点评】此题考查相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.4.下列四个腾讯软件图标中,属于轴对称图形的是()B. C.【分析】根据轴对称图形的概念求解.【详解】A选项:是轴对称图形,故本选项正确;B选项:不是轴对称图形,注意细微之处,故本选项错误;C选项:不是轴对称图形,注意五角星的“Z”字图案,故本选项错误;D选项:不是轴对称图形,故本选项错误;故选A.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.如图,在6X6的正方形网格中,△ ABC的顶点都在小正方形的顶点上,则tan/BAC的值是()【答案】C【解析】【分析】过点B 作BD! AC,交AC 延长线于点D,利用正切函数的定义求解可得.【详解】如图,过点 B 作BD± AC,交AC 延长线于点D,一 _ BD 3 则 tan / BAC= --- =—,AD 4故选C.【点评】本题主要考查三角函数的定义,解题的关键是掌握正切函数的定义:锐角 比叫做/ A 的正切.1…,一…, 、6 .在4ABC 中,AD 是BC 边上的图,/ C= 45 , sinB = - , AD= 1.则△ ABC 的面积为()DA.B. C.D.A 的对边a 与邻边b 的A. 1 2 2B. 1210C. 12 2D. 2 2 1【答案】C【解析】【分析】先由三角形的高的定义得出/ ADB= /ADC= 90° ,解RtAADE^得出AB= 3,根据勾股定理求出BD= 20解RtAADCC得出DC= 1,然后根据三角形的面积公式计算即可;【详解】在Rt^ABD中,....AD 1- sinB = --- =一,AB 3又「AD= 1,AB= 3,••• BE2=A--AE2,••BD 32 12 2 2在Rt^ADC中,•. / C= 45° ,CD= AD= 1 .BC= BD+DC= 2、2 +1,…S A ABC —?BC?AD= 1 X ( 2 72+1)X 1= 1__2^1 ,故选:C.【点评】本题考查了三角形的面积问题,掌握三角形的面积公式是解题的关键.7.下列几何体中,俯视图为三角形的是( )【答案】C【解析】【分析】依次观察四个选项,A中圆锥从正上看,是其在地面投影;B中,长方体从上面看,看到的是上表面;C中,三棱柱从正上看,看到的是上表面;D中四棱锥从正上看,是其在地面投影;据此得出俯视图并进行判断.【解答】A圆锥俯视图是带圆心的圆,故本选项错误;B、长方体的俯视图均为矩形,故本选项错误;C、三棱柱的俯视图是三角形,故本选项正确;D、四棱锥的俯视图是四边形,故本选项错误;故选C.【点评】本题应用了几何体三视图的知识,从上面向下看,想象出平面投影是解答重点;8.《九章算术》是我国古代数学名著,有题译文如下:今有门,不知其高宽;有竿,不知其长短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线长恰好相等.问门高、宽和对角线的长各是多少?设门对角线的长为x尺,下列方程符合题意的是( )A. (x+2) 2+ (x - 4) 2= x2B. (x - 2) 2+ (x - 4) 2= x2C. x2+ (x-2) 2= ( x-4) 2D. (x-2) 2+x2= (x+4) 2【答案】B【分析】由题意可得门高(X-2)尺、宽(x-4)尺,对角线长为x尺,根据勾股定理可得的方程.【详解】解:设门对角线的长为x尺,由题意得:(X - 2)2+(X - 4) 2 = x2,故选:B.【点评】此题考查由实际问题抽象出一元二次方程,解题关键是正确理解题意,找出题目中的等量关系.9.若点P(x,y)在第四象限,且x 2, y 3 ,则x+y等于:((A. -1B. 1C. 5D. -5【答案】A【解析】【分析】先根据P点的坐标判断出x (y的符号,然后再根据|x| (2 (|y|迸而求出x (y的值,即可求得答案.【详解】: |x|=2 (|y|=3..x= 2 (y= 3(••• P (x、y)在第四象限,x=2, y=-3.. ・x+y=2-3=-1 (故选A (【点评】本题主要考查了点在第四象限时点的坐标的符号及绝对值的性质,熟练掌握各个象限内点的坐标的符号特点是解答本题的关键.10.以原点O为位似中心,作^ ABC勺位似图形△ ABC, △ABCW △ A B C相似比为1:3,若点C的坐标为(4, 1),则点C'的坐标为(A. (12, 3)B. (— 12, 3)或(12, — 3)C. (-12, - 3)D. (12, 3)或(―12,【答案】D【解析】根据位似变换的性质计算即可.【详解】•・•△ ABC<^ABC相似比为3,若点C的坐标为(4, 1),・・•点C'的坐标为(4X3, 1X 3)或(4X (-3), 1X (-3)),・・•点C'的坐标为(12, 3)或(-12, - 3),故选D.【点评】本题考查是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为3) k,弦AB=8, CD=6,则图中阴影部分面积为(11.如图,已知。

人教版2020年中考数学模拟试题及答案(含详解) (4)

人教版2020年中考数学模拟试题及答案(含详解) (4)

中考数学模拟试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>03.(2.00分)方程组的解为()A.B.C.D.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m25.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.47.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC∠DAE.(填“>”,“=”或“<”)10.(2.00分)若在实数范围内有意义,则实数x的取值范围是.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=,b=,c=.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数30≤t≤3535<t≤4040<t≤4545<t≤50合计线路A59151166124500 B5050122278500 C4526516723500早高峰期间,乘坐(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为元.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=,CB=,∴PQ∥l()(填推理的依据).18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|19.(5.00分)解不等式组:20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB 上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.76 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为cm.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是(填“A“或“B“),理由是,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.26.(6.00分)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.27.(7.00分)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B 重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.28.(7.00分)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.【分析】根据立体图形的定义及其命名规则逐一判断即可.【解答】解:A、此几何体是圆柱体;B、此几何体是圆锥体;C、此几何体是正方体;D、此几何体是四棱锥;故选:A.【点评】本题主要考查立体图形,解题的关键是认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>0【分析】本题由图可知,a、b、c绝对值之间的大小关系,从而判断四个选项的对错.【解答】解:∵﹣4<a<﹣3∴|a|<4∴A不正确;又∵a<0 c>0∴ac<0∴C不正确;又∵a<﹣3 c<3∴a+c<0∴D不正确;又∵c>0 b<0∴c﹣b>0∴B正确;故选:B.【点评】本题主要考查了实数的绝对值及加减计算之间的关系,关键是判断正负.3.(2.00分)方程组的解为()A.B.C.D.【分析】方程组利用加减消元法求出解即可;【解答】解:,①×3﹣②得:5y=﹣5,即y=﹣1,将y=﹣1代入①得:x=2,则方程组的解为;故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m2【分析】先计算FAST的反射面总面积,再根据科学记数法表示出来,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.确定n的值是易错点,由于249900≈250000有6位,所以可以确定n=6﹣1=5.【解答】解:根据题意得:7140×35=249900≈2.5×105(m2)故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°【分析】根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.【点评】本题考查了多边形的内角与外角,熟练掌握多边形的外角和与内角和公式是解答本题的关键.6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.4【分析】先将括号内通分,再计算括号内的减法、同时将分子因式分解,最后计算乘法,继而代入计算可得.【解答】解:原式=(﹣)•=•=,当a﹣b=2时,原式==,故选:A.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.7.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m【分析】将点(0,54.0)、(40,46.2)、(20,57.9)分半代入函数解析式,求得系数的值;然后由抛物线的对称轴公式可以得到答案.【解答】解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则解得,所以x=﹣==15(m).故选:B.【点评】考查了二次函数的应用,此题也可以将所求得的抛物线解析式利用配方法求得顶点式方程,然后直接得到抛物线顶点坐标,由顶点坐标推知该运动员起跳后飞行到最高点时,水平距离.8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④【分析】由天安门和广安门的坐标确定出每格表示的长度,再进一步得出左安门的坐标即可判断.【解答】解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12),此结论正确;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(11,﹣11),此结论正确;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.故选:C.【点评】本题主要考查坐标确定位置,解题的关键是确定原点位置及各点的横纵坐标.二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC>∠DAE.(填“>”,“=”或“<”)【分析】作辅助线,构建三角形及高线NP,先利用面积法求高线PN=,再分别求∠BAC、∠DAE的正弦,根据正弦值随着角度的增大而增大,作判断.【解答】解:连接NH,BC,过N作NP⊥AD于P,S△ANH=2×2﹣﹣×1×1=AH•NP,=PN,PN=,Rt△ANP中,sin∠NAP====0.6,Rt△ABC中,sin∠BAC===>0.6,∵正弦值随着角度的增大而增大,∴∠BAC>∠DAE,故答案为:>.【点评】本题考查了锐角三角函数的增减性,构建直角三角形求角的三角函数值进行判断,熟练掌握锐角三角函数的增减性是关键.10.(2.00分)若在实数范围内有意义,则实数x的取值范围是x≥0.【分析】根据二次根式有意义的条件可求出x的取值范围.【解答】解:由题意可知:x≥0.故答案为:x≥0.【点评】本题考查二次根式有意义,解题的关键正确理解二次根式有意义的条件,本题属于基础题型.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=1,b=2,c=﹣1.【分析】根据题意选择a、b、c的值即可.【解答】解:当a=1,b=2,c=﹣2时,1<2,而1×(﹣1)>2×(﹣1),∴命题“若a<b,则ac<bc”是错误的,故答案为:1;2;﹣1.【点评】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=70°.【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC,进而得出答案.【解答】解:∵=,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.故答案为:70°.【点评】此题主要考查了圆周角定理以及三角形内角和定理,正确得出∠ABD度数是解题关键.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.【分析】根据矩形的性质可得出AB∥CD,进而可得出∠FAE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD,利用相似三角形的性质可得出==2,利用勾股定理可求出AC的长度,再结合CF=•AC,即可求出CF的长.【解答】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠FAE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.【点评】本题考查了相似三角形的判定与性质、矩形的性质以及勾股定理,利用相似三角形的性质找出CF=2AF是解题的关键.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路30≤t≤3535<t≤4040<t≤4545<t≤50合计A59151166124500B5050122278500C4526516723500早高峰期间,乘坐C(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.【分析】分别计算出用时不超过45分钟的可能性大小即可得.【解答】解:∵A线路公交车用时不超过45分钟的可能性为=0.752,B线路公交车用时不超过45分钟的可能性为=0.444,C线路公交车用时不超过45分钟的可能性为=0.954,∴C线路上公交车用时不超过45分钟的可能性最大,故答案为:C.【点评】本题主要考查可能性的大小,解题的关键是掌握频数估计概率思想的运用.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为380元.【分析】分四类情况,分别计算即可得出结论.【解答】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,当租1艘四人船,1艘6人船,1一艘8人船,100+130+150=380元∴租船费用为150×2+90=390元,而810>490>390>380,∴租3艘六人船或2艘八人船1艘两人船费用最低是380元,故答案为:380.【点评】此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第3.【分析】两个排名表相互结合即可得到答案.【解答】解:根据中国创新综合排名全球第22,在坐标系中找到对应的中国创新产出排名为第11,再根据中国创新产出排名为第11在另一排名中找到创新效率排名为第3故答案为:3【点评】本题考查平面直角坐标系中点的坐标确定问题,解答时注意根据具体题意确定点的位置和坐标.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理)(填推理的依据).【分析】(1)根据题目要求作出图形即可;(2)利用三角形中位线定理证明即可;【解答】(1)解:直线PQ如图所示;(2)证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理).故答案为:AP,CQ,三角形中位线定理;【点评】本题考查作图﹣复杂作图,平行线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|【分析】直接利用特殊角的三角函数值以及零指数幂的性质和二次根式的性质分别化简得出答案.【解答】解:原式=4×+1﹣3+1=﹣+2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.(5.00分)解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<3,∴不等式组的解集为﹣2<x<3.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;(2)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.【解答】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.【点评】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.【分析】(1)先判断出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出结论;(2)先求出∠COD=60°,得出△OCD是等边三角形,最后用锐角三角函数即可得出结论.【解答】解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.【点评】此题主要考查了等腰三角形的性质,切线的性质,全等三角形的判定和性质,锐角三角函数,正确作出辅助线是解本题的关键.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.【分析】(1)把A(4,1)代入y=中可得k的值;(2)直线OA的解析式为:y=x,可知直线l与OA平行,①将b=﹣1时代入可得:直线解析式为y=x﹣1,画图可得整点的个数;②分两种情况:直线l在OA的下方和上方,画图计算边界时点b的值,可得b的取值.【解答】解:(1)把A(4,1)代入y=得k=4×1=4;(2)①当b=﹣1时,直线解析式为y=x﹣1,解方程=x﹣1得x1=2﹣2(舍去),x2=2+2,则B(2+2,),而C(0,﹣1),如图1所示,区域W内的整点有(1,0),(2,0),(3,0),有3个;②如图2,直线l在OA的下方时,当直线l:y=+b过(1,﹣1)时,b=﹣,且经过(5,0),∴区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1.如图3,直线l在OA的上方时,∵点(2,2)在函数y=(x>0)的图象G,当直线l:y=+b过(1,2)时,b=,当直线l:y=+b过(1,3)时,b=,∴区域W内恰有4个整点,b的取值范围是<b≤.综上所述,区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1或<b≤.【点评】本题考查了新定义和反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,本题理解整点的定义是关键,并利用数形结合的思想.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x 的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.763 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为3或4.91或5.77cm.【分析】(1)利用圆的半径相等即可解决问题;(2)利用描点法画出图象即可.(3)图中寻找直线y=x与两个函数的交点的横坐标以及y1与y2的交点的横坐标即可;【解答】解:(1)当x=3时,PA=PB=PC=3,∴y1=3,故答案为3.(2)函数图象如图所示:(3)观察图象可知:当x=y,即当PA=PC或PA=AC时,x=3或4.91,当y1=y2时,即PC=AC时,x=5.77,综上所述,满足条件的x的值为3或4.91或5.77.故答案为3或4.91或5.77.【点评】本题考查动点问题函数图象、圆的有关知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是B(填“A“或“B“),理由是该学生的成绩小于A课程的中位数,而大于B课程的中位数,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.【分析】(1)先确定A课程的中位数落在第4小组,再由此分组具体数据得出第30、31个数据的平均数即可;(2)根据两个课程的中位数定义解答可得;(3)用总人数乘以样本中超过75.8分的人数所占比例可得.【解答】解:(1)∵A课程总人数为2+6+12+14+18+8=60,∴中位数为第30、31个数据的平均数,而第30、31个数据均在70≤x<80这一组,∴中位数在70≤x<80这一组,∵70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5,∴A课程的中位数为=78.75,即m=78.75;(2)∵该学生的成绩小于A课程的中位数,而大于B课程的中位数,∴这名学生成绩排名更靠前的课程是B,故答案为:B、该学生的成绩小于A课程的中位数,而大于B课程的中位数.。

2019-2020年中考数学模拟试卷(四)(I)

2019-2020年中考数学模拟试卷(四)(I)

2019-2020年中考数学模拟试卷(四)(I)一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a63.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣14.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和35.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+157.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.310.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为.13.不等式组的整数解是.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是;中位数是;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为;②设直线y=9与该抛物线的交点为A、B,则|AB|=;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为;②k的取值范围是;当k为整数时,b=.23.如图,在平面直角坐标系中,Rt△ABO的斜边OA在x轴上,点B在第一象限内,AO=4,∠BOA=30°.点C(t,0)是x轴正半轴上一动点(t>0且t≠4):(1)点B的坐标为;过点O、B、A的抛物线解析式为;(2)作△OBC的外接圆⊙P,当圆心P在(1)中抛物线上时,求点C和圆心P的坐标;(3)设△OBC的外接圆⊙P与y轴的另一交点为D,请将OD用含t的代数式表示出来,并求CD的最小值.xx年浙江省杭州市桐庐县三校共同体中考数学模拟试卷(四)参考答案与试题解析一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【专题】计算题.【分析】A、原式合并得到结果,即可做出判断;B、原式不能合并,错误;C、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;D、原式利用同底数幂的除法法则计算得到结果,即可做出判断.【解答】解:A、原式=2a3,错误;B、原式不能合并,错误;C、原式=a5,错误;D、原式=a6,正确.故选D.【点评】此题考查了同底数幂的乘除法,以及合并同类项,熟练掌握运算法则是解本题的关键.3.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣1【考点】解一元二次方程-配方法.【分析】把常数项1移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:x2﹣4x+1=0,移项,得x2﹣4x=﹣1,配方,得x2﹣4x+4=﹣1+4,(x﹣2)2=3.故选:A.【点评】本题考查了用配方法解一元二次方程的应用,解此题的关键是能正确配方,即方程两边都加上一次项系数一半的平方(当二次项系数为1时).4.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和3【考点】方差;算术平均数.【专题】计算题.【分析】由于数据x1+1,x2+1,x3+1的每个数比原数据大1,则新数据的平均数比原数据的平均数大1;由于新数据的波动性没有变,所以新数据的方差与原数据的方差相同.【解答】解:∵数据x1,x2,x3的平均数为5,∴数据x1+1,x2+1,x3+1的平均数为6,∵数据x1,x2,x3的方差为2,∴数据x1+1,x2+1,x3+1的方差为2.故选B.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数.5.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=【考点】二次函数的性质.【分析】根据图象可以知道图象经过点(0,0),因而把这个点代入记得到一个关于a的方程,就可以求出a的值,从而根据对称轴方程求得对称轴即可.【解答】解:把原点(0,0)代入抛物线解析式,得a2﹣4=0,解得a=±2,∴二次函数y=2x2﹣2x或二次函数y=﹣2x2﹣2x,∴对称轴为:x=﹣=±,故选C.【点评】本题考查了二次函数图象上的点的坐标,根据对于函数图象的描述能够理解函数的解析式的特点,是解决本题的关键.6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+15【考点】解直角三角形的应用-仰角俯角问题.【分析】在Rt△ACD和Rt△CDB中分别求出AD,BD的长度,然后根据AB=AD+BD即可求出AB的值.【解答】解:由题意得,∠ECA=45°,∠FCB=60°,∵EF∥AB,∴∠CAD=∠ECA=45°,∠CBD=∠FCB=60°,∵∠ACD=∠CAD=45°,在Rt△CDB中,tan∠CBD=,∴BD==10米,∵AD=CD=30米,∴AB=AD+BD=30+10米,故选A.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据俯角构造直角三角形,并利用解直角三角形的知识解直角的三角形.7.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切【考点】圆与圆的位置关系.【分析】求得梯形的中位线为两圆的圆心距,AB和CD的一半为两圆的半径,利用半径之和和两圆的圆心距的大小关系求解.【解答】解:∵AD=3,BC=9,∴两圆的圆心距为=6,∵AB=6,CD=4,∴两圆的半径分别为3和2,∵2+3<6,∴两圆外离,故选C.【点评】本题考查了圆与圆的位置关系,解题的关键是分别求得两圆的圆心距和两圆的半径,难度不大.8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第二次取出小球标号大于第一次取出小球标号的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,第二次取出小球标号大于第一次取出小球标号的有9种情况,∴第二次取出小球标号大于第一次取出小球标号的概率为:.故选D.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验;注意概率=所求情况数与总情况数之比.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.3【考点】全等三角形的判定与性质;正方形的性质.【分析】由正方形的性质得出BC=DC,∠BCP=∠DCP,由SAS即可证明△PBC≌△PDC,得出①正确;由三角形全等得出∠PBC=∠PDE,PB=PD,再证出∠PBC=∠PED,得出∠PDE=∠PED,②正确;证出PD=PE,得出DF=EF,作PH⊥AD于H,PF⊥CD于F,由等腰直角三角形得出PA=EF,PC=CF,即可得出③正确.【解答】解:∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP,在△PBC和△PDC中,,∴△PBC≌△PDC(SAS)∴①正确;∴∠PBC=∠PDE,PB=PD,∵PB⊥PE,∠BCD=90°,∴∠PBC+∠PEC=360°﹣∠BPE﹣∠BCE=180°∵∠PEC+∠PED=180°,∴∠PBC=∠PED,∴∠PDE=∠PED,∴②正确;∴PD=PE,∵PF⊥CD,∴DF=EF;作PH⊥AD于点H,PF⊥CD于F,如图所示:则PA=PH=DF=EF,PC=CF,∴PC﹣PA=(CF﹣EF),即PC﹣PA=CE,∴③正确;正确的个数有3个;故选:D.【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角函数;本题有一定难度,特别是③中,需要作辅助线运用三角函数才能得出结果.10.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.【考点】两条直线相交或平行问题.【专题】规律型.【分析】根据题意列出方程组,解出x,y的值,可知无论k取何值,直线l1与l2的交点均为定点,再求出y=nx+n﹣1与x轴的交点和y=(n+1)x+n与x轴的交点坐标,再根据三角形面积公式求出S n,根据公式可求出S1、s2、s3、…,然后可求得w的表达式,从而可猜想出W最接近的常数的值.【解答】解:将y=nx+n﹣1和y=(n+1)x+n联立得:解得:∴无论k取何值,直线l n和直线l n+1均交于定点(﹣1,﹣1)k≠1时l1与l2的图象的示意图,png_iVBORw0KGgoAAAANSUhEUgAAAIgAAACOCAYAAADq40BPAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv 8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABBCSURBVHhe7Z1PiFxFHsdnBOPFfxglZhEF9SB6UONhsxAVREIw6 Rkjih5EPIiKMf7Zne54cGMWxU1Q0IPrdGcOccGDYMCLYDLtwYOHkLB4UbKZGSGsB0UvBg8KyUxtfavq169edf1ev+7M 9NSrVx9s0+91T09Pv0//6le/qldvQkTEysqKubd2qN8h/2tOTYiJiWmxKJbNIxl4F2v/TsZDXILgttqSLPe/Hn7HytJxMTHVHIuU 60lEgvR/k7OvsX5sNQWaPzwjmp3jvd8RqyZRCOI/OB5hVoVlJRmamPklsyv3u9bq964P9clBCh46evSo+PLLL81WMXiZFZl5 7ELzondZZHIU/LpKEZUgPPpbn8Ns/vHHH+Kqq64S1113nbhw4YLe6bBjxw7x8ccfmy0hFudnxXSzY7bipvKC2Ad+ZSU7wK 0GehkTOk+Q4Fs/JbezZkFz8OBBcdttt4mbbrpJtNttszfjt9/Oicsuu0z8+uuvZo8Qs62GmJ1fMFs2cTUvIJ4I4onpx2QiOdXKvulILC EISfXTTz+Ja6+9Vuzdu1c8++yz4vrrr8+JAD755BPx4IMPmi0t2s7JXaZ7q4VYFgtietIRsqi5qxDRNjE4PmgKJqb2mR1CdDqz+r 7hySefFK+99pp444031O25554Te/bsMY9q8Jz33nvPbOnXhHTdjpYNdDttcQbNGBOlbAaJE5pYcSWp5t8e38+rWgVA3aLdXd T35UE4eeo/MmL8STYhv/UE+eWXX1REOX36tHoecpKrr75anD37P7UNEIXsSJH9Up3ntPdNsYLg9csSiibRCNL7QM0d/KO KWRMN1Rw0m1oU4s9/2Srm5ubUfRIEvPPOOyopBV999ZW444471H0O+0AigjSb+ShFQLZbb71VfPPNN2aPQyhGOETbx CgWtSDtzr7ctxoHfsuWLWYrLwgOJJJWHMhXX31VvP7662p/Bp+IoqlZsBJlm48++kjcf//9ZstGyqvK9lrk0Ki+IJ5vXtaOL6ico NccWKB7S+zfv78nCKDH8I0/ceKEuq/JH0D7V1NlFVGk3Z43ezV4PSTA9mvZuQaV7ftZf2GiFITAwZrvWt1R5rmuIODbb79 VB7UM6PYiL6Fbu3vGPKJ5//33xcMPP2y2NLYg84f/JloeiUOg8oKs9H3LdJVTJagUtgskAnYTQ6A+8vzzz6v79OO9lxnwegrz HHSbN27cqITj2Jcr2xvK/I4xEFEOokXRian8JntDNpGXyifI1q1bxeeff262ymEfU4oQeN2nn35a3feBKKeE1huS9W9WbOJOUk viCoIC2uWXX57LU0aBCnFLS3xh5L/zH+aKeaGRBJG4OQi6v9PT02ZrdF555RXVEyoC+QvVZ0IkCSJxI8iuXbtUt/RiOHv2r BoERBSxsZPTC7J5afTK9prWdFhd3iSIxBYElVXfgR0W5B22dD5oVJjGiIhmo8HWU8ZNEkRiC/LZZ5+Je++9V923v+3DgB4 Lcg/0YIqSTrtsb/8mCJIiSEDYgjzzzDOqi3sxoOaB2gdHTzzGv5mpJEhQkCAos6M4RoN1o3Dy5EmxadOmEXtAWopmY0oJM moEW02SIBLqxaAUjnGYUcEBxXgLDQL64A66vbc1pQUJgSSIBHIcOHBAzQ2ZmZkxe4cHg4AYv1leHv3g9sr2hYW+8ZEE kVATg+jx9ddfm73Dc+edd6oZaDGRBJFAjpdeekn1PLiJy4NA7+euu+4yW/GQBJFAkO3bt/fGTNg8wdlP2zQZ6NixY2qb+/ki1 M8M/2NrThJEAkEwq/3TTz81e4aDnwxUAiWFzFkcOUJxJQkiwXTEDRs2qCrqINzogO7sDTfccFG5S8gkQSSPPPKIaiJGAQ Wx3bt3m634SIJIbr/9drFz506zpfHlEe4+lNJRWGMnIkdA7QVBgonmxa5/lE0ykbsUTQaKgdoKQhKg57F582Z1sIehzGSgGKh9 BMHZdA888MDQgmAy0Msvv1w62lSV2guCHggkGUaQH374gZ0MFJswtRbk1KlTqv4BOYYRBHlH/wlVcVILQbhvNaTAy doYqOMEcX8WOUc2GSh+ahNBfJJg7AQrC0EODPmXAZOBDh06ZLbip7ZNDPIInNqAbm7ZJgb1DtQ9fv/9d7MnfmoryAcff CAef/xxdb+sIBhv6XTqsfQUUVtBsMQD5m6g6SkjCCYD3XLLLSrixNZTKaJ2guDgYlDOXndskCD4mXvuuSe3kF1dqGUEcd cdgxxFSao7GShFkMjBumP2aQlFEQRNClYZgiR1pHaC4ICjCopTI4kiQS5qMlAERC8ImgO7SUDdw507ygmCyUCYJ4IE1Uc dmpraRRAMsrllck4QNEONRsNs1ZPaCYKxF4zB2PgEQU8n9slAZaiVINy6Yz5BsI1ktu7USpA333xTDe27QAa7m4v6CBb3j3 0yUBlqJQjWHaNzV2zcCIJVgXwi1ZHaCILJPdy6Y7YgeN5qLCATC7URBJf6ePTRR81WHlsQrA9yMSdwx0ZtBClad4wEcScD+eoc9r5UB4kEdFmvuOIK8fPPP5s9eUgQRJi33nrL7PVDUtRBDlALQTCOsm3bNrPVD+RAUlq3yUBlqIUgmGT87rvvmq1+ 0MVFSb1oXbG6Ep0gbug/f/68igxF645BoGuuuUYN5CXyRCWILy/AWfeD1h278cYb+67GkNBE38Rg3THcOJCfIMKUndVe N6IXpGjdMTQpGPrH5GUkqol+ohYEeQeiA7fq4JEjR9SqytTNTfQTrSDIR9Bz4ZZnQPSgyUC2IHWpb5Ql6giC2gc3lxRdWrq 6ZYogPNEKgmvUYnDOXXcMEQIDdmh6aDJQEoSncoKgAaBGoKgxwLgLxl98TQbK6fbAXRKEp8IRpHi5awiAEVyXc+fO 9U0GSoLwVC+ClMgh0YSgefHN6cBQPob0bZIgPJUQRF2ZelJfk5ZuRdd5w6wxzB5z4SYDJUF4whfERIyZ6UyKxe6/lCTd79 VmHxiZ9Q3bYz9Oe3BJgvAELwiSTFxb1r7438piVwnSdzFiA3oo7oWMi1YGSoLwBCHIoLQCF/9T15Y1T0STw11rltYdc8Ep DJwESZA86ktpkr11F2RZHXX9f45uR1/8j25c5AA4a85uRvCHot6BtVC5tdiTIDzBRhB7HyIGSUFXiuQkoXXHbFAPKZoMlA ThCT4HubB4TExMt8wWxFkU01IQXErUrYXQxYztiT90mTDf6Q5EXQRxi4buto8ABclfOwURo3n4C7MlH1o6riKIr5trrztGY OkGms3OfSApgvCEJ4hzDO3mBdFjSuUh/uvKYtUgWncMYKAOi7/4phLastRJkDJRwyYYQdy3jZ4LIsWkEoJul7BXg6R1x+ xEFPlImZWB6hxBcJ3fIoLPQQZB3wh33TEsOLdlyxazVUxdBHGjB2pCiLD43L777juzV0PPrbwgxBNPPKFyEGBPBgL+oGq KbvLGCdL3c/4XWlfoLfkLBf3NMKCDTz+BHh6S+xdeeEFNk7CJQhAIYa87BlHsaOIn+/BGiSDDtuXjI5/k2xS9Y4iBdevxOdI XDUzQh1Pl21NPPdW7KBAKZRjJxbiL+zzuhp7Offfd531s/4Hs3wP79RW63ees/+3vnn16zRO6r967vOG5B8zzfX8LosjNN9+s pkSgnhSFIBi5pQOMyIGZ7Pbj+oP6h7mvPxT6cPAvBMGNnk83kqNKNy2BuS//Nnt7v/kMim62IN1uN44mhtYdQ9KFAbnFR X4qgK9poA8ng/ITPlyHhO8tDnzbzhPsJsauOldeEHvdMTQvo1xkMC+IP7Ej3AQvBEZ+L+YHIcSVV16pBIkuScW8D+QbmA SEPxKX+RiW/giSsXD8w1wdBqPIweanQ2J3c93pEUTlBcEi+5hB9uKLL3onA4Glbjs/uGcdYNwlQXBfNSuG2VZDSpFVbVfE GVXJtacehEL+7Sz3BjX1mJUespicnOwb5HSXBHWptCCIGuixLCwsqNyDwqP6sMwnRuV5bvQXz/NFECVHY8b65LUkusLr L/WHAtVEVpa+UJVnNZ5lRAG9P6kElRPETjIxa/2xxx5TeQd6Kr1H1B19ANutphruX+o96h7Y5T5BqMzvSoVXyAQZ7oNeL zCW9ddO/8qOZal0BMGZcW+//bZKUtGeuuCb054/LnZN7JSNg0smiitI0Yw1HboblnDrTMHbWJaPzXdauegxLJUVBINyaF4e emiHdzIQpgVgmoCaHiDDLFf5RDimGgmgJombNW/LE2QEoTcl/8Xf0mw0WNnLUBlB3AN89OhRcffdd6sLI/smAzWbetQX ggz6gOwIsmzmm/hyFq7pCZV2a59URAp/ic6ZUPjqAYFKdMcqG0GQd+Aackf+3b+0JWXwdOvvdeTzEEQQVB11PPFHkBX xfdaDwXYgfV3fu6C/n/6G1rSeNjGK2JUUBINzqHnQRQZ74FuBpsVqc1HHoO3eh+l8qm4Oonow1rwTmsUWdNOi5O5H7buI N1xJQbBiECYHuZOBKN+w6c41RcuTpOnPTEcSVxCAXENNUJJi4HY8d5IWDobbG4qTSgqCbisGk2x0UUsfVAql+iBbzQy DT5CEpnKCYDmpSy+9VMzOzpo9NuW/1XbUTYLwVE4QjL1s2LDBOxF51LY2CcJTKUFoWYfdu3ebPdKJEr0J9xnYThGk HJUSBIvSYUVkOznNBCloXgY4lAThqYwgKKVDDkQQ7zm2tgQDhFDgOeZ5SRCeygiCA4hVC9GD8YFjTQUidS4NyusoN Tc7ji/9kSYJwlMJQWhloO3bt4u5uTmzNwP1D0iBriw1OVTc6hXJCnKVJAhPJQTBRKC9e/eq5gWy2AebSuO+OgdqI9ygm61 LEoQneEGwMtDGjRvVmXK+dcdo+P2MOG/2ZKCKWmb8IQnCE4wgXBOAQTkcPMw7PfTPg2avBtFjejJrRhTyZdQr+V/O SxKEJ+gIgom0mEqItU19645RnoFmpLQPnicmQXiCFgQX+cFkoBMnTqhzbV0yQfR8MffYD5aGH6xLaIIVBFIgaqB62lt3zDn ilKD6ptRBHm+CmiLIUAQriL0yEM7doDP1XXSSeklOBjXzCzPSS5IE4QlSEJw0jCYFA3K07hh3USBAUwH1DSc3HZZ7+5 +fDx7ZBJskCE9QglBPBisDYc4pQA6CNU7XkiQIT3ARBE0JBCFwWiBWD7IpqoqOQhKEJ8gmhs6QwwCdu+6YzWqJkgTh CUIQ7kAjctBlw1Y7atgkQXiCjCAE1jy1l0NaK5IgPMEKgh4MBudGWc5hWJIgPMEKgq6unazapCR1fAQliH3gsdrNuA5aEoRn3QWxpbDv07pj4yAJwhNkE4Pru+Ck7HGRBOEJJoLgX7pP646NiyQIT5ARhNYdGxdJEJ7gBPnxxx9V99Z75twakQThCUIQ OznFumP2ZdPHQRKEJ8gmZtwkQXiSIJIkCE8SRJIE4UmCSJIgPEkQSRKEJwkiSYLwJEEkSRCeJIgkCcKTBJEkQXiSIJIkCE 8SRJIE4UmCSDhB7DGiupIEkUAOvZh/wiUJIklNDE8SRJIE4UmCSJIgHEL8H6zbXb40OWClAAAAAElFTkSuQmCC6I+B5 LyY572R∴S n=S△ABC===,当n=1时,结论同样成立.∴w=s1+s2+s3+…+s n=+…+)=(1﹣+﹣+…+)=(1﹣)=当n越来越大时,越来越接近与1.∴越来越接近于∴w越来越接近于.【点评】此题考查了一次函数的综合题;解题的关键是一次函数的图象与两坐标轴的交点坐标特点,与x轴的交点的纵坐标为0,与y轴的交点的横坐标为0.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=4.【考点】实数的运算.【分析】利用二次根式的性质以及三次根式的性质化简求出即可.【解答】解:×+=﹣2=6﹣2=4.故答案为:4.【点评】此题主要考查了二次根式的性质和三次根式的性质等知识,正确化简各数是解题关键.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为2或3.【考点】几何体的展开图.【分析】分底面周长为4π和6π两种情况讨论,求得底面半径.【解答】解:①底面周长为4π时,圆柱底面圆的半径为4π÷π÷2=2;②底面周长为6π时,圆柱底面圆的半径为6π÷π÷2=1.故答案为:2或3.【点评】考查了圆柱的侧面展开图,注意分长为底面周长和宽为底面周长两种情况讨论求解.13.不等式组的整数解是﹣1、0、1.【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:,解①得:x>﹣,解②得:x<.则不等式组的解集是:﹣,则不等式组的整数解是:﹣1、0、1.故答案是:﹣1、0、1.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.【考点】相似三角形的判定与性质;等边三角形的性质.【专题】计算题.【分析】先根据等边三角形的性质得∠B=∠C=60°,AB=BC=AC=4,则CD=BC﹣BD=3,再根据有两组角对应相等的两三角形相似可判断△ABD∽△DCE,利用相似比计算出CE=,然后利用AE=AC﹣CE进行计算即可.【解答】解:∵△ABC为边长为4的等边三角形,∴∠B=∠C=60°,AB=BC=AC=4,∴CD=BC﹣BD=4﹣1=3,∵∠BAD=∠CDE,∠B=∠C,∴△ABD∽△DCE,∴=,即=,∴CE=,∴AE=AC﹣CE=4﹣=.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用三角形相似的性质时,通过相似比计算相应边的长.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.【考点】锐角三角函数的定义;勾股定理.【专题】分类讨论.【分析】根据题意,分两种情况:(1)当直角三角形的斜边等于一条直角边的长度的2倍时;(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时;然后根据一个角的正切值的求法,求出这个直角三角形中较小锐角的正切值为多少即可.【解答】解:(1)当直角三角形的斜边等于一条直角边的长度的2倍时,设直角三角形的斜边等于2,则一条直角边的长度等于1,∴另一条直角边的长度是:,∴这个直角三角形中较小锐角的正切值为:1÷.(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时,设一条直角边的长度等于1,则一条直角边的长度等于2,∴这个直角三角形中较小锐角的正切值为:1÷2=.故答案为:.【点评】(1)此题主要考查了锐角三角函数的定义,要熟练掌握,解答此题的关键是要明确:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(2)此题还考查了勾股定理的应用,以及分类讨论思想的应用,要熟练掌握.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是①②③④.【考点】反比例函数综合题.【分析】①设点P的坐标为(m,),然后再求得点C和点B的坐标,从而得出DC=CP,PB=BA;②按照①的方法先求得点C和点B的坐标,从而得出;③先求得△PDA的面积,然后再求得△PCB的面积,根据相似三角形的面积等于相似比的平方,求得△PDA与△PCB的相似比,从而可求得k值;④先求得AD的解析式,然后可求得EP的解析式,从而可求得点E的坐标,然后再求得AB、BE的长度,最后在直角三角形ABE中由勾股定理可求得k的值.【解答】解:①设点p的坐标为(m,),则PD=m,PA=,将x=m代入y=得:y=,∴AB=PA,将y=代入y=得:x=,∴DC=PD,∴当k=3时,BC是△PAD的中位线,故①正确;②设点p的坐标为(m,),PD=m,PA=,将x=m代入y=得:y=,∴PB=﹣=,将y=代入y=得:x=,∴PC=m﹣=,∴=,=,∴,∴△PDA∽△PCB,故②正确;③∵点P的坐标为(3,2),∴△PDA的面积=3,∵四边形ABCD的面积等于2,∴△PBC的面积=1,∴S△PBC:S△PDA=1:3,∴△PBC与△PDA的相似比为:3,∴,解得:k=6﹣2,∵6﹣3<3,∴k<3,故③正确;④如下图所示:∵点P的坐标为(3,2),∴D(0,2)、A(3,0),∴直线AD的解析式为y=+2,∵直线PE⊥AD,∴设直线PE的解析式为y=x+b,将P(3,2)代入得:b=﹣,∴直线PE的解析式为y=x﹣,令y=0得:x=,∴AE=.将x=3代入y=得:y=,∴AB=,PB=2﹣,由轴对称的性质可知:BE=PB=2﹣,在直角△ABE中,由勾股定理得:AE2+AB2=BE2即:,解得:k=,故④正确.故答案为:①②③④.【点评】本题主要考查的是反比例函数,一次函数、勾股定理以及轴对称图形的性质的综合应用,难度较大,熟练掌握相关知识是解题的关键.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.【考点】分式方程的解;公因式.【专题】计算题.【分析】(1)两多项式分解因式后,找出公因式即可;(2)分式方程去分母转化为整式方程,求出整式方程的解表示出解,根据解为正数求出m 的范围即可.【解答】解:(1)先分解因式:ax2﹣a=a(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴公因式是x﹣1;(2)去分母得:2x+m=3x﹣3,解得:x=m+3,根据题意得:m+3>0,∴m>﹣3,∵x=m+3=1是增根,∴m=﹣2时无解,∴m>﹣3且m≠﹣2.【点评】此题考查了分式方程的解,以及公因式,需注意在任何时候都要考虑分母不为0.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是60;中位数是55;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.【考点】众数;条形统计图;算术平均数;中位数;概率公式.【分析】(1)根据众数是一组数据中出现次数最多的数据叫做众数;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案;(2)从条形统计图中找出这11个城市当天的空气质量为优的城市个数,再除以城市总数即可;(3)根据平均数的计算方法进行计算即可.【解答】解:(1)将11个数据按从小到大的顺序排列为:37,42,43,49,52,55,60,60,63,75,80,60出现了两次,次数最多,所以众数是60,第6个数是55,所以中位数是55.故答案为60,55;(2)∵当0≤AQI≤50时,空气质量为优,由图可知,这11个城市中当天的空气质量为优的有4个,∴若在这11个城市中随机抽取一个,抽到的城市这一天空气质量为优的概率为;(3)杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数为:(75+63+60+80+52)÷5=66.【点评】此题主要考查了条形统计图,众数、中位数、平均数的定义以及概率公式,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.概率=所求情况数与总情况数之比.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.【考点】作图—复杂作图;等腰三角形的性质;垂径定理.【分析】(1)作AB的垂直平分线与圆相交于一点,分别与A、B连接即可得到以AB为底边的圆内接等腰三角形;(2)连结OA,先根据垂径定理得到AD的长,再根据勾股定理,以及线段的和差关系即可求解.【解答】解:(1)如图所示:△ABC即为所求.(2)连结OA,∵圆的半径R=5,AB=8,∴OA=OC=5,AD=4,在△AOD中,OD==3,∴CD=OC+OD=5+3=8.故所作等腰三角形底边上的高是8.【点评】本题考查了复杂作图,主要利用了线段垂直平分线的作法,等腰三角形的性质,以及垂径定理.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.【考点】菱形的判定;全等三角形的判定与性质.【分析】(1)证得△EAF≌△CDF后即可得到DC=AE,然后根据AE=BD得到BD=DC;(2)首先利用一组对边相等且平行的四边形为平行四边形证得平行四边形,然后根据中垂线的性质得到BD=AD,从而利用邻边相等的平行四边形是菱形进行判定即可.【解答】证明:(1)∵AE∥BC,∴∠EAF=∠CDF,又∵F是AD的中点,∴AF=DF,∴∴△EAF≌△CDF,∴DC=AE,∵AE=BD,∴BD=DC;(2)∵AE=BD且AE∥BD,∴四边形AEBD是平行四边形,又∵点D是AB的中垂线与BC的交点,则有BD=AD,∴平行四边形AEBD一组邻边相等,∴四边形AEBD是菱形.【点评】本题考查了菱形的判定及全等三角形的判定与性质,解题的关键是了解菱形的几种判定方法,难度不大.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.【考点】相似形综合题.【分析】(1)由DE⊥AB,得到∠BED=90°,于是得到∠BED=∠C=90°,由于∠B=∠B,即可证得△DBE∽△ABC;(2)解:在直角三角形ABC中,根据勾股定理求得AB==10,由△DBE∽△ABC,得到,解方程,即可得到结果;(3)如图,顶点G落在BC所在直线上,由四边形DFEG是平行四边形,得到GD∥EF,证得△ABC∽△AFE,得到,代入数值即可得到结果.【解答】(1)证明:∵DE⊥AB,∴∠BED=90°,∴∠BED=∠C=90°,∵∠B=∠B,∴△DBE∽△ABC;(2)解:在直角三角形ABC中,∵AC=6,BC=8,∴AB==10,由(1)知,△DBE∽△ABC,∴,即,∴DE=(3)如图,顶点G落在BC所在直线上,∵四边形DFEG是平行四边形,∴GD∥EF,∴△ABC∽△AFE,∴,∵CD=a=4,∴DE==,∵BC=8,∴BD=4,∴BE==,∴AE=10﹣=,∴AF==.【点评】本题考查了相似三角形的判定和性质,勾股定理,平行四边形的性质,熟练掌握定理是解题的关键.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为b2=c;②设直线y=9与该抛物线的交点为A、B,则|AB|=6;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为c=10b﹣25;②k的取值范围是7≤k<8;当k为整数时,b=6.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征.【分析】(1)①根据二次函数的图象与x轴只有一个交点,则(2b)2﹣4c=0,由此可得到b、c 应满足关系;②把y=9代入y=x2﹣2bx+bc,得到方程x2﹣2bx+bc﹣9=0,根据根与系数的关系和①的结论即可求得;③把A(m,n)、B(m+4,n)分别代入抛物线的解析式,再根据①的结论即可求出n的值;(2)①因为y=x2﹣2bx+c图象与x轴交于E(5,0),即可得到25﹣10b+c=0,所以c=10b ﹣25;②根据①的距离进而得到k=2b﹣5,再根据E、F之间的整数和为18,即可求出k的取值范围和b的值.【解答】解:(1)①∵二次函数y=x2﹣2bx+c的图象与x轴只有一个交点,∴(2b)2﹣4c=0,∴b2=c;故答案为b2=c;②把y=9代入y=x2﹣2bx+c得,9=x2﹣2bx+c,∴x2﹣2bx+c﹣9=0,∵x1+x2=2b,x1x2=c﹣9,。

2020年山西省百校大联考中考数学模拟试卷(四) 解析版

2020年山西省百校大联考中考数学模拟试卷(四)  解析版

2020年山西省百校大联考中考数学模拟试卷(四)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)计算(﹣1)×(﹣2)的结果是()A.﹣2B.2C.1D.2.(3分)下列计算正确的是()A.(﹣3a3)2=9a9B.(4a4b2﹣6a3b+2ab)÷2ab=2a3b﹣3a2C.(2x3y2)2×(﹣3x)=﹣12x6y4D.(﹣3a3b2)3×(﹣b)=9a9b73.(3分)在《九章算术注》中首创的“割圆术”,利用圆的内接正多边形来确定圆周率,开创了中国数学发展史上圆周率研究的新纪元:首先确定圆内接正多边形的面积小于圆的面积,将正多边形的边数屡次加倍,边数越多则正多边形的面积越接近圆的面积.这位数学家是()A.杨辉B.秦九韶C.刘徽D.祖暅4.(3分)央行3月11日公布的2月金融数据和社融数据显示,当月新增人民币贷款9057亿元,社融增量为8554亿元.把数据9057亿元用科学记数法表示为()A.9.057×1011元B.90.57×1011元C.0.9057×1012元D.9.057×109元5.(3分)若一个多边形的每一个外角都是40°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形6.(3分)下列分式运算正确的是()A.=B.C.D.7.(3分)方程组的解是()A.B.C.D.8.(3分)小明用若干个相同的小正方体搭成的一个几何体的三视图如图所示,由此可知,搭成这个几何体的小正方体最多有()A.13个B.12个C.11个D.10个9.(3分)如图,把一个含45°角的直角三角板OAB的斜边OA放在x轴的正半轴上,点O与坐标原点重合,OA=6,把三角板OAB绕坐标原点O按顺时针方向旋转75°,使点B的对应点B'恰好落在反比例函数y=(k≠0)的图象上,由此可知,k的值为()A.﹣9B.﹣3C.﹣D.﹣10.(3分)如图,扇形OAB的半径为4,折叠扇形OAB使点O落在上的点O'处,展开后延长折痕交OB的延长线于点C,且BC=OB,过点C作扇形OAB的切线,切点为D,连接AO',则图中阴影部分的面积是()A.4B.4﹣πC.π+3D.6﹣π二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)计算:(2﹣3)(2+3)的结果是.12.(3分)在一个不透明的袋子里装有2个红球、1个白球和1个绿球,这些球除颜色外,其余完全相同,把球摇匀后,从中随机一次摸出两个球,则摸出的两球颜色不同的概率为.13.(3分)如图是两个一次函数y1=mx+n和y2=kx+b在同一平面直角坐标系中的图象,则关于x的不等式kx+b>mx+n的解集是.14.(3分)某眼镜公司积极响应国家号召,在技术顾问和市场监管局的帮助下,开始生产医用护目镜.第一周生产a个,工人在技术员的指导下,技术越来越熟练,第二周比第一周增长10%,第三周比前两周生产的总数少20%.用含a的代数式表示该公司这三周共生产医用护目镜个.15.(3分)如图,在△ABC中,∠BAC=90°,AB=8,AC=15,AD平分∠BAC,交BC 于点D.以点C为圆心,以任意长为半径作弧,分别与边CA和CB相交,然后再分别以这两个交点为圆心,大于交点间距离的一半为半径作弧,两弧交于点F,连接CF并延长交AD于点O,过点O作AC的平行线交BC于点E,则OE的长为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(10分)(1)计算:(﹣)﹣2+|3﹣|﹣4cos30°﹣(π﹣3.14)0;(2)解不等式组,并把解集在数轴上表示出来.17.(7分)如图,在线段AD上有两点E,F,且AE=DF,过点E,F分别作AD的垂线BE和CF,连接AB,CD,BF,CE,且AB∥CD.求证:四边形BECF是平行四边形.18.(9分)“同享一片蓝天,共建美好家园”,每年的3月12日是我国的义务植树节,受疫情的影响,今年不能去植树,某校政教处鼓励学生们“网上植树”(活动时间为3月12日~3月15日).学校调查发现,有90%的学生参与了此次活动.从参与活动的学生中随机调查30名,所植的棵数情况如下:(单位:棵)1 12 4 23 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6对以上数据进行整理、描述和分析,并绘制出如下条形统计图(不完整).(1)请补全条形统计图;(2)这30名学生网上植树数量的中位数是棵,众数是棵;(3)统计显示,这30名学生中有18名是在3月12日当天参与了“网上植树”,若该校有3000名学生,由此估计该校有多少名学生在3月12日当天参与了“网上植树”?活动期间全校学生“网上植树”共多少棵?19.(7分)请阅读下列材料,并完成相应的任务.小明想在平面直角坐标系中画一个边长为2的正六边形ABCDEF,他采用了如下的操作步骤:①点A与坐标原点重合,点B在x轴的正半轴上且坐标为(2,0);②分别以点A,B为圆心,AB长为半径作弧,两弧交于点M;③以点M为圆心,MA长为半径作圆;④以AB的长为半径,在⊙M上顺次截取====;⑤顺次连接BC,CD,DE,EF,F A,得到正六边形ABCDEF.任务一:(1)请依据上述作法证明六边形ABCDEF是正六边形;任务二:(2)请你把小明作出的正六边形ABCDEF沿x轴的正半轴无滑动地转动,当相邻的顶点落在x轴上时,记为转动1次,直接写出转动10次时,点B所在位置的坐标.20.(7分)迎宾桥是太原市第十座横跨汾河的大桥,这座大桥整体桥型以“龙腾云霄”为设计主题,诠释龙城太原几千年的历史文化,彰显太原近年来经济腾飞的时代特点.某数学兴趣小组的同学利用双休日测量迎宾桥桥塔高出桥面的高度.如图2,在桥面上选取两点A和B,已知点A,B及桥塔CD(垂直于桥面)在同一平面内,且AB=16.98m,在点A和点B处测得桥塔最高点C的仰角分别为45°和50°.根据测量小组提供的数据,求CD的高度.(结果精确到1m,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20)21.(10分)今年春节期间,我国人民万众一心,共同抗击疫情.某蔬菜基地要把一定量的蔬菜租车送往疫情严重的某地,这些蔬菜中1.4吨已经打包好,其余需要立即打包.工作人员第1小时打包15吨,技术熟练后平均每小时打包速度的增长率相同,第3小时打包21.6吨,恰好3小时完成打包任务.在运送蔬菜时,有两种车型选择,甲种车可装6吨蔬菜,乙种车可装5吨蔬菜.(1)求工作人员平均每小时打包速度的增长率和共运送的蔬菜是多少吨;(2)该基地所租车辆不超过10辆,则至少需要租甲种车多少辆?22.(13分)综合与探究问题情境在综合与实践课上,老师让同学们利用含30°角的直角三角板和一张正方形纸片进行探究活动.如图1,把正方形ABCD的顶点A放在Rt△EFG斜边EG的中点处,正方形的边AB经过直角顶点F,正方形的边AD与直角边FG交于点Q.探究发现(1)创新小组发现线段EF,GQ及FQ之间的数量关系为EF2+GQ2=FQ2.请加以证明;引申探究(2)如图2,勤奋小组把正方形ABCD绕点A逆时针旋转,边AB与边EF交于点P且不与点E,F重合,把直角三角形的两直角边分成四条线段EP,PF,FQ,GQ,发现这四条线段之间的数量关系是EP2+GQ2=FQ2+FP2,请加以证明;探究拓广(3)奇艺小组的同学受勤奋小组同学的启发继续把正方形ABCD绕着点A逆时针旋转,边BA和DA的延长线与两直角边仍交于点P,Q两点,按题意完善图3,并直接写出EP,PF,FQ,GQ之间的数量关系.23.(12分)综合与实践如图,抛物线y=与x轴交于点A,B(点A在点B的左侧),交y轴于点C.点D从点A出发以每秒1个单位长度的速度向点B运动,点E同时从点B出发以相同的速度向点C运动,设运动的时间为t秒.(1)求点A,B,C的坐标;(2)求t为何值时,△BDE是等腰三角形;(3)在点D和点E的运动过程中,是否存在直线DE将△BOC的面积分成1:4两份,若存在,直接写出t的值;若不存在,请说明理由.2020年山西省百校大联考中考数学模拟试卷(四)参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)计算(﹣1)×(﹣2)的结果是()A.﹣2B.2C.1D.【分析】根据有理数的乘法法则计算即可.【解答】解:(﹣1)×(﹣2)=1×2=2.故选:B.2.(3分)下列计算正确的是()A.(﹣3a3)2=9a9B.(4a4b2﹣6a3b+2ab)÷2ab=2a3b﹣3a2C.(2x3y2)2×(﹣3x)=﹣12x6y4D.(﹣3a3b2)3×(﹣b)=9a9b7【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=9a6,不符合题意;B、原式=2a3b﹣3a2+1,不符合题意;C、原式=(4x6y4)×(﹣3x)=﹣12x7y4,不符合题意;D、原式=(﹣27a9b6)×(﹣b)=9a9b7,符合题意.故选:D.3.(3分)在《九章算术注》中首创的“割圆术”,利用圆的内接正多边形来确定圆周率,开创了中国数学发展史上圆周率研究的新纪元:首先确定圆内接正多边形的面积小于圆的面积,将正多边形的边数屡次加倍,边数越多则正多边形的面积越接近圆的面积.这位数学家是()A.杨辉B.秦九韶C.刘徽D.祖暅【分析】根据公元263年左右,我国魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法,所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率近似值的方法.解答即可.【解答】解:公元263年左右,我国魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法,所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率近似值的方法.故选:C.4.(3分)央行3月11日公布的2月金融数据和社融数据显示,当月新增人民币贷款9057亿元,社融增量为8554亿元.把数据9057亿元用科学记数法表示为()A.9.057×1011元B.90.57×1011元C.0.9057×1012元D.9.057×109元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9057亿元=905700000000=9.057×1011元,故选:A.5.(3分)若一个多边形的每一个外角都是40°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:360÷40=9,即这个多边形的边数是9,故选:C.6.(3分)下列分式运算正确的是()A.=B.C.D.【分析】利用最简分式的定义对A、D进行判断;利用通分可对B进行判断;利用约分可对C进行判断.【解答】解:A、不能化简,所以A选项错误;B、原式==,所以B选项错误;C、原式==,所以C选项正确;D、不能化简,所以D选项错误.故选:C.7.(3分)方程组的解是()A.B.C.D.【分析】①×3+②×2,消去未知数y,求出未知数x,再把x的值代入①求出y的值即可.【解答】解:,①×3+②×2,得25x=50,解得x=2,把x=2代入①,得6+2y=8,解得y=1,所以方程组的解为.故选:B.8.(3分)小明用若干个相同的小正方体搭成的一个几何体的三视图如图所示,由此可知,搭成这个几何体的小正方体最多有()A.13个B.12个C.11个D.10个【分析】在俯视图对应的位置上,标出该位置上最多可摆放小正方体的个数,进而得出答案.【解答】解:在俯视图上标出的各个位置上最多可摆放的小正方体的个数,如图所示因此最多摆放的小正方体的个数为3+2+3+2+2+1=13个,故选:A.9.(3分)如图,把一个含45°角的直角三角板OAB的斜边OA放在x轴的正半轴上,点O与坐标原点重合,OA=6,把三角板OAB绕坐标原点O按顺时针方向旋转75°,使点B的对应点B'恰好落在反比例函数y=(k≠0)的图象上,由此可知,k的值为()A.﹣9B.﹣3C.﹣D.﹣【分析】在Rt△AOB中,斜边OA=6,可求出直角边OB,由旋转可得OB′的长,由旋转角为75°,可求出∠AOB′=30°,在Rt△B′OC中,通过解直角三角形可求出点B′的坐标,进而得出k的值.【解答】解:过点B′作B′C⊥OA,垂足为C,在Rt△AOB中,OA=6,∴OB=AB=OA=3=OB′,∵∠AOA′=75°,∠A′OB′=45°,∴∠B′OC=75°﹣45°=30°,在Rt△B′OC中,∴B′C=OB′=,OC=OB′=,∴点B′(,﹣),∴k=﹣×=﹣,故选:D.10.(3分)如图,扇形OAB的半径为4,折叠扇形OAB使点O落在上的点O'处,展开后延长折痕交OB的延长线于点C,且BC=OB,过点C作扇形OAB的切线,切点为D,连接AO',则图中阴影部分的面积是()A.4B.4﹣πC.π+3D.6﹣π【分析】连接OO′,OD,根据折叠的性质得到OA=AO,推出△AOO′是等边三角形,得到∠AOO′=60°,根据切线的性质得到∠ODC=90°,求得∠DOB=60°,根据扇形和三角形的面积公式即可得到结论.【解答】解:连接OO′,OD,∵折叠扇形OAB使点O落在上的点O'处,∴OA=AO,∵AO=OO′,∴△AOO′是等边三角形,∴∠AOO′=60°,∵CD是⊙O的切线,∴∠ODC=90°,∵BC=OB=OD,∴OD=OC,∴∠OCD=30°,∴∠DOB=60°,∵OD=OA=4,∴DC=4,∴图中阴影部分的面积=S扇形AOO′﹣S△AOO′+S△OCD﹣S扇形BOD=﹣+﹣=4,故选:A.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)计算:(2﹣3)(2+3)的结果是11.【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=20﹣9=11,故答案为:11.12.(3分)在一个不透明的袋子里装有2个红球、1个白球和1个绿球,这些球除颜色外,其余完全相同,把球摇匀后,从中随机一次摸出两个球,则摸出的两球颜色不同的概率为.【分析】画树状图展示所有12种等可能的结果,找出摸出的两球颜色不同的结果数,然后根据概率公式计算.【解答】解:画树状图为:共有12种等可能的结果,其中摸出的两球颜色不同的结果数为10,所以摸出的两球颜色不同的概率==.故答案为.13.(3分)如图是两个一次函数y1=mx+n和y2=kx+b在同一平面直角坐标系中的图象,则关于x的不等式kx+b>mx+n的解集是x<1.【分析】直接利用函数图象,结合kx+b≥mx+n,得出x的取值范围.【解答】解:如图所示:不等式kx+b>mx+n的解集为:x<1.故答案为:x<1.14.(3分)某眼镜公司积极响应国家号召,在技术顾问和市场监管局的帮助下,开始生产医用护目镜.第一周生产a个,工人在技术员的指导下,技术越来越熟练,第二周比第一周增长10%,第三周比前两周生产的总数少20%.用含a的代数式表示该公司这三周共生产医用护目镜 3.78a个.【分析】根据题意列代数式,并进行化简即可.【解答】解:根据题意可得列式为:a+(1+10%)a+(1﹣20%)[a+(1+10%)a]=a+1.1a+0.8a+0.8×1.1a=2.9a+0.88a=3.78a.故答案为:3.78a.15.(3分)如图,在△ABC中,∠BAC=90°,AB=8,AC=15,AD平分∠BAC,交BC 于点D.以点C为圆心,以任意长为半径作弧,分别与边CA和CB相交,然后再分别以这两个交点为圆心,大于交点间距离的一半为半径作弧,两弧交于点F,连接CF并延长交AD于点O,过点O作AC的平行线交BC于点E,则OE的长为.【分析】过点D作DJ⊥AB于J,DK⊥AC于K.解直角三角形求出BC,CD,再证明OE=EC,求出EC即可解决问题.【解答】解:过点D作DJ⊥AB于J,DK⊥AC于K.在Rt△ACB中,∵∠BAC=90°,AB=8,AC=15,∴BC===17,∵AD平分∠BAC,DJ⊥AB,DK⊥AC,∴DJ=DK,∴====,∴CD=×17=,∵OC平分∠ACD,∴===,∵OE∥AC,∴∠EOC=∠AOC=∠ECO,∴OE=EC,∵OD:OA=DE:EO=17:23,∴EC=×=.故答案为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(10分)(1)计算:(﹣)﹣2+|3﹣|﹣4cos30°﹣(π﹣3.14)0;(2)解不等式组,并把解集在数轴上表示出来.【分析】(1)根据负整数指数幂和零指数幂的规定、绝对值的性质及特殊锐角的三角函数值计算可得;(2)先求出不等式的解集,再求出不等式组的解集,【解答】解:(1)原式=9+(﹣3+2)﹣4×﹣1=9﹣3+2﹣1=5.(2),解不等式①得:x≤4,解不等式②得:x>﹣1,∴不等式组的解集为:﹣1<x≤4.将不等式的解集表示在数轴上如下:17.(7分)如图,在线段AD上有两点E,F,且AE=DF,过点E,F分别作AD的垂线BE和CF,连接AB,CD,BF,CE,且AB∥CD.求证:四边形BECF是平行四边形.【分析】先证明BE∥CF,证明△AEB≌△DFC,可得BE=CF,根据一组对边平行且相等的四边形是平行四边形可得结论.【解答】证明:∵BE⊥AD,CF⊥AD,∴∠AEB=∠BEF=∠CFE=∠CFD=90°,∴BE∥CF,∵AB∥CD,∴∠A=∠D,在△AEB和△DFC中,,∴△AEB≌△DFC(ASA),∴BE=CF,∵BE∥CF,∴四边形BECF是平行四边形.18.(9分)“同享一片蓝天,共建美好家园”,每年的3月12日是我国的义务植树节,受疫情的影响,今年不能去植树,某校政教处鼓励学生们“网上植树”(活动时间为3月12日~3月15日).学校调查发现,有90%的学生参与了此次活动.从参与活动的学生中随机调查30名,所植的棵数情况如下:(单位:棵)1 12 4 23 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6对以上数据进行整理、描述和分析,并绘制出如下条形统计图(不完整).(1)请补全条形统计图;(2)这30名学生网上植树数量的中位数是3棵,众数是3棵;(3)统计显示,这30名学生中有18名是在3月12日当天参与了“网上植树”,若该校有3000名学生,由此估计该校有多少名学生在3月12日当天参与了“网上植树”?活动期间全校学生“网上植树”共多少棵?【分析】(1)统计出植树三棵和植树四棵的人数,即可补全条形统计图;(2)根据中位数、众数的意义,即可求出答案;(3)样本估计总体,利用样本中“3月12日当天参与了网上植树”的比例估计总体的比例,通过计算可得出答案.【解答】解:(1)统计得出有11人植树三棵,有9人植树四棵,补全条形统计图如图所示:(2)将这30名学生的植树的棵数从小到大排列后,处在中间位置的两个数都是13棵,因此中位数是13,植树棵数出现次数最多的3棵,共用11人,因此植树的众数是3棵,故答案为诶;3,3;(3)3000×90%×=1620(名),3000×90%×=9270(棵),答:估计该校有1620名学生在3月12日当天参与了“网上植树”,活动期间全校学生“网上植树”共9270棵.19.(7分)请阅读下列材料,并完成相应的任务.小明想在平面直角坐标系中画一个边长为2的正六边形ABCDEF,他采用了如下的操作步骤:①点A与坐标原点重合,点B在x轴的正半轴上且坐标为(2,0);②分别以点A,B为圆心,AB长为半径作弧,两弧交于点M;③以点M为圆心,MA长为半径作圆;④以AB的长为半径,在⊙M上顺次截取====;⑤顺次连接BC,CD,DE,EF,F A,得到正六边形ABCDEF.任务一:(1)请依据上述作法证明六边形ABCDEF是正六边形;任务二:(2)请你把小明作出的正六边形ABCDEF沿x轴的正半轴无滑动地转动,当相邻的顶点落在x轴上时,记为转动1次,直接写出转动10次时,点B所在位置的坐标.【分析】(1)如图,连接AM,BM,CM,DM,EM,FM.证明AB=BC=CD=DEF=OF,∠ABC=∠BCD=∠CDE=∠DEF=∠EFO=∠FOB=120°即可.(2)转动10次时,点F在x轴上,点B在点F的正上方,由此即可解决问题.【解答】(1)证明:如图,连接AM,BM,CM,DM,EM,FM.∵====,∴BC=CD=DE=EF=AB,∵OM=BM=AB,∴△ABM是等边三角形,∴∠AMB=60°,∴∠BMC=∠CMD=∠∠EMF=∠AMB=60°,∴∠AMF=360°﹣5×60°=60°,∴=,∴BC=CD=DE=EF=AF=AB,∴MB=MC=CB,∴△MBC是等边三角形,∴∠ABM=∠MBC=60°,∴∠ABC=120°,同理可证∠BCD=∠CDE=∠DEF=∠EF A=∠F AB=120°,∴六边形ABCDEF是正六边形.(2)解:转动10次时,点F在x轴上,点B在点F的正上方,B(22,2).故答案为(22,2).20.(7分)迎宾桥是太原市第十座横跨汾河的大桥,这座大桥整体桥型以“龙腾云霄”为设计主题,诠释龙城太原几千年的历史文化,彰显太原近年来经济腾飞的时代特点.某数学兴趣小组的同学利用双休日测量迎宾桥桥塔高出桥面的高度.如图2,在桥面上选取两点A和B,已知点A,B及桥塔CD(垂直于桥面)在同一平面内,且AB=16.98m,在点A和点B处测得桥塔最高点C的仰角分别为45°和50°.根据测量小组提供的数据,求CD的高度.(结果精确到1m,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20)【分析】设CD=xm,根据等腰直角三角形的性质得到AD=CD=x,根据正切的定义用x表示出BD,根据题意列出方程,解方程得到答案.【解答】解:设CD=xm,在Rt△ADC中,∠CAD=45°,∴AD=CD=x,在Rt△CBD中,tan∠CBD=,∴BD=≈=x,∵AD﹣BD=AB,∴x﹣x=16.98,解得,x=101.88≈102(m),答:CD的高度约为102m.21.(10分)今年春节期间,我国人民万众一心,共同抗击疫情.某蔬菜基地要把一定量的蔬菜租车送往疫情严重的某地,这些蔬菜中1.4吨已经打包好,其余需要立即打包.工作人员第1小时打包15吨,技术熟练后平均每小时打包速度的增长率相同,第3小时打包21.6吨,恰好3小时完成打包任务.在运送蔬菜时,有两种车型选择,甲种车可装6吨蔬菜,乙种车可装5吨蔬菜.(1)求工作人员平均每小时打包速度的增长率和共运送的蔬菜是多少吨;(2)该基地所租车辆不超过10辆,则至少需要租甲种车多少辆?【分析】(1)设工作人员平均每小时打包速度的增长率是x,根据“工作人员第1小时打包15吨,技术熟练后平均每小时打包速度的增长率相同,第3小时打包21.6吨”列出方程并解答;求得第2小时打包18吨,然后求三个小时的总的打包数量;(2)设需要租甲种车y辆,根据“该基地所租车辆不超过10辆”列出不等式并解答.【解答】解:(1)设工作人员平均每小时打包速度的增长率是x,根据题意,得15(1+x)2=21.6.解这个方程,得x1=0.2=20%,x2=﹣2.2(舍去).第2小时打包的数量为:15(1+20)=18(吨).共运送的蔬菜为:1.4+15+18+21.6=56(吨).答:工作人员平均每小时打包速度的增长率是20%,共运送的蔬菜是56吨;(2)设需要租甲种车y辆,依题意得:y+≤10.解得y≥6.所以y的最小值是6.答:至少需要租甲种车6辆.22.(13分)综合与探究问题情境在综合与实践课上,老师让同学们利用含30°角的直角三角板和一张正方形纸片进行探究活动.如图1,把正方形ABCD的顶点A放在Rt△EFG斜边EG的中点处,正方形的边AB经过直角顶点F,正方形的边AD与直角边FG交于点Q.探究发现(1)创新小组发现线段EF,GQ及FQ之间的数量关系为EF2+GQ2=FQ2.请加以证明;引申探究(2)如图2,勤奋小组把正方形ABCD绕点A逆时针旋转,边AB与边EF交于点P且不与点E,F重合,把直角三角形的两直角边分成四条线段EP,PF,FQ,GQ,发现这四条线段之间的数量关系是EP2+GQ2=FQ2+FP2,请加以证明;探究拓广(3)奇艺小组的同学受勤奋小组同学的启发继续把正方形ABCD绕着点A逆时针旋转,边BA和DA的延长线与两直角边仍交于点P,Q两点,按题意完善图3,并直接写出EP,PF,FQ,GQ之间的数量关系.【分析】(1)证明△AFE为等边三角形,故EF=AF,同理可得QA=QG,在Rt△AQF 中,FQ2=AF2+AQ2=EF2+GQ2;(2)证明△GAQ≌△EAH(SAS),可得P A是QH的中垂线,故PH=PQ,进而求解;(3)完善后的图形如图2,同理可得:EP2+GQ2=FQ2+FP2.【解答】(1)如题干图1,∵AF是Rt△GFE的中线,故AF=AE,∵∠E=90°﹣∠G=60°,∴△AFE为等边三角形,故EF=AF,同理可得,△AGF为等腰三角形,故∠QF A=∠G=30°,在Rt△QAF中,∠AQF=90°﹣∠QF A=60°=∠G+∠GAQ,∴QA=QG,在Rt△AQF中,FQ2=AF2+AQ2=EF2+GQ2;(2)如图1,延长QA到H使AH=AQ,连接EH、PQ、PH,∵点A是GE的中点,故AG=AE,而AH=AQ,∠GAQ=∠EAH,∴△GAQ≌△EAH(SAS),∴GQ=HE,∠AEH=∠G,而∠G+∠GEF=90°,∴∠HEP=∠HEA+∠GEP=∠EGF+∠GEF=90°,∵∠DAB=90°,即AP⊥QH,而AQ=AH,∴P A是QH的中垂线,∴PH=PQ,在Rt△PHE中,PH2=PE2+HE2=PE2+GQ2,在Rt△PQF中,PQ2=FQ2+FP2,故PE2+GQ2=FQ2+FP2;(3)完善后的图形如图2,在AD上取点H,使AH=AQ,连接HE、PH、PQ,同理可得,∠HEP=90°,PH=PQ,则PH2=PE2+GQ2,PQ2=FQ2+FP2,故EP2+GQ2=FQ2+FP2.23.(12分)综合与实践如图,抛物线y=与x轴交于点A,B(点A在点B的左侧),交y轴于点C.点D从点A出发以每秒1个单位长度的速度向点B运动,点E同时从点B出发以相同的速度向点C运动,设运动的时间为t秒.(1)求点A,B,C的坐标;(2)求t为何值时,△BDE是等腰三角形;(3)在点D和点E的运动过程中,是否存在直线DE将△BOC的面积分成1:4两份,若存在,直接写出t的值;若不存在,请说明理由.【分析】(1)令x=0和y=0,可得方程,解得可求点A,B,C的坐标;(2)分三种情况讨论,利用等腰三角形的性质和锐角三角函数可求解;(3)分两种情况讨论,利用锐角三角函数和三角形面积公式可求解.【解答】解:(1)令y=0,可得0=x2﹣x﹣3,解得:x1=﹣1,x2=4,∴点A(﹣1,0),点B(4,0),令x=0,可得y=﹣3,∴点C(0,﹣3);(2)∵点A(﹣1,0),点B(4,0),点C(0,﹣3),∴AB=5,OB=4,OC=3,∴BC===5,当BD=BE时,则5﹣t=t,∴t=,当BE=DE时,如图1,过点E作EH⊥BD于H,∴DH=BH=BD=,∵cos∠DBC=,∴,∴t=,当BD=DE时,如图2,过点D作DF⊥BE于F,∴EF=BF=BE=t,∵cos∠DBC=,∴,∴t=,综上所述:t的值为,和;(3)∵S△BOC=BO×CO=6,∴S△BOC=,S△BOC=,如图1,过点E作EH⊥BD于H,∵sin∠DBC=,∴,∴HE=t,当S△BDE=S△BOC=时,则(5﹣t)×t=,∴t1=1,t2=4,当S△BDE=S△BOC=,时,则(5﹣t)×t=,∴t2﹣5t+16=0,∴方程无解,综上所述:t的值为1或4.。

2020年河北省石家庄市中考数学模拟试卷 (解析版)

2020年河北省石家庄市中考数学模拟试卷 (解析版)

2020年中考数学模拟试卷一、选择题1.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B..C..D..2.第十三届全运会将于2017年8月在天津举行,其中足球项目承办场地为团泊足球场,该足球场占地163000平方米,将163000用科学记数法表示应为()A.163×103B.16.3×104C.1.63×105D.0.163×106 3.如图,在同一直角坐标系中,函数y=kx与y=(k≠0)的图象大致是()A.①②B.①③C.②④D.③④4.用配方法解方程x2﹣6x﹣8=0时,配方结果正确的是()A.(x﹣3)2=17B.(x﹣3)2=14C.(x﹣6)2=44D.(x﹣3)2=1 5.下列图形中,是中心对称图形的是()A.B.C.D.6.计算2sin30°﹣2cos60°+tan45°的结果是()A.2B.C.D.17.计算的结果为()A.B.C.D.8.抛物线y=﹣(x+2)2﹣3向右平移了3个单位,那么平移后抛物线的顶点坐标是()A.(﹣5,﹣3)B.(1,﹣3)C.(﹣1,﹣3)D.(﹣2,0)9.已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm 10.如图,在正方形ABCD中,E位DC边上的点,连结BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连结EF,若∠BEC=60°,则∠EFD的度数为()A.15°B.10°C.20°D.25°11.如图,⊙O的直径CD经过弦EF的中点G,∠DCF=20°,则∠EOD等于()A.30°B.40°C.35°D.45°12.已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)二.填空题(本大题共6小题,每小题3分,共18分)13.计算:3x2•5x3的结果为.14.已知点P(a,﹣6)与点Q(﹣5,3b)关于原点对称,则a+b=.15.如图,坡角为30°的斜坡上两树间的水平距离AC为2m,则两树间的坡面距离AB为16.若关于x、y的方程组的解是,则mn的值为.17.如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=EH,那么EH的长为.18.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,且过点(3,0),则下列结论:①abc<0;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③2a+b=0;④4a2+2b+c<0.其中正确结论的序号是.三.解答题(本大题共5小题,共46分.解答应写出文字说明、演算步骤或推理过程)19.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C处测得教学横顶部D 处的仰角为18°,教学楼底部B处的俯角为20°,教学楼的高BD=21m,求实验楼与教学楼之间的距离AB(结果保留整数).(参考数据:tan18°≈0.32,tan20°≈0.36)21.如图1,在△ABC中,AC=BC,以BC为直径的⊙O交AB于点D.(1)求证:点D是AB的中点;(2)如图2,过点D作DE⊥AC于点E,求证:DE是⊙O的切线.22.每年十月的第二个周四是世界爱眼日,为预防近视,超市决定对某型号护眼台灯进行降价销售.降价前,进价为50元的护眼台灯以80元售出,平均每月能售出120盏,调查表明:这种护眼台灯每盏售价每降低1元,其月平均销售量将增加10盏.(1)写出月销售利润y(单位:元)与销售价x(单位:元/盏)之间的函数表达式:(2)当销售价定为多少元时,所得月利润最大?最大月利润为多少元?23.如图,已知抛物线y=﹣x2+bx+c(b,c是常数)经过A(0,2)、B(4,0)两点.(Ⅰ)求该抛物线的解析式和顶点坐标;(Ⅱ)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这条抛物线于N,求当t取何值时,MN有最大值?最大值是多少?(Ⅲ)在(Ⅱ)的情况下,以A、M、N、D为顶点作平行四边形,请直接写出第四个顶点D的所有坐标(直接写出结果,不必写解答过程).四.选做题(本题不计入总成绩)24.如图所示,在平面直角坐标系中A(0,2),点B(﹣3,0).△AOB绕点O逆时针旋转30°得到△A1OB1.(1)直接写出点B1的坐标;(2)点C(2,0),连接CA1交OA于点D,求点D的坐标.参考答案一、选择题1.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B..C..D..【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解:该立体图形主视图的第1列有1个正方形、第2列有1个正方形、第3列有2个正方形,故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.2.第十三届全运会将于2017年8月在天津举行,其中足球项目承办场地为团泊足球场,该足球场占地163000平方米,将163000用科学记数法表示应为()A.163×103B.16.3×104C.1.63×105D.0.163×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将163000用科学记数法表示为:1.63×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图,在同一直角坐标系中,函数y=kx与y=(k≠0)的图象大致是()A.①②B.①③C.②④D.③④【分析】利用反比例函数的图象及正比例函数的图象分别判断后即可确定正确的选项.解:当k>0时,反比例函数的图象位于一、三象限,正比例函数的图象位于一三象限,②正确;当k<0时,反比例函数的图象位于二、四象限,正比例函数的图象位于二四象限,④正确;故选:C.【点评】本题考查了反比例函数及正比例函数的图象,属于函数的基础知识,难度不较大.4.用配方法解方程x2﹣6x﹣8=0时,配方结果正确的是()A.(x﹣3)2=17B.(x﹣3)2=14C.(x﹣6)2=44D.(x﹣3)2=1【分析】方程利用完全平方公式变形即可得到结果.解:用配方法解方程x2﹣6x﹣8=0时,配方结果为(x﹣3)2=17,故选:A.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.5.下列图形中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念即可求解.解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意.故选:C.【点评】本题考查了中心对称的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合,难度一般.6.计算2sin30°﹣2cos60°+tan45°的结果是()A.2B.C.D.1【分析】直接利用特殊角的三角函数值分别代入求出答案.解:2sin30°﹣2cos60°+tan45°=2×﹣2×+1=1﹣1+1=1.故选:D.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.7.计算的结果为()A.B.C.D.【分析】根据分式的运算法则即可求出答案.【解答】原式==,故选:A.【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型8.抛物线y=﹣(x+2)2﹣3向右平移了3个单位,那么平移后抛物线的顶点坐标是()A.(﹣5,﹣3)B.(1,﹣3)C.(﹣1,﹣3)D.(﹣2,0)【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答.解:抛物线y=﹣(x+2)2﹣3的顶点坐标是(﹣2,﹣3),向右平移3个单位后,所得抛物线的顶点坐标是(﹣2+3,﹣3),即(1,﹣3).故选:B.【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.9.已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm 【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.解:由于C点的位置不确定,故要分两种情况讨论:(1)当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;(2)当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于5cm或11cm,故选C.【点评】本题考查了比较线段的长短,注意点的位置的确定,利用图形结合更易直观地得到结论.10.如图,在正方形ABCD中,E位DC边上的点,连结BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连结EF,若∠BEC=60°,则∠EFD的度数为()A.15°B.10°C.20°D.25°【分析】由旋转前后的对应角相等可知,∠DFC=∠BEC=60°;一个特殊三角形△ECF 为等腰直角三角形,可知∠EFC=45°,把这两个角作差即可.解:∵△BCE绕点C顺时针方向旋转90°得到△DCF,∴CE=CF,∠DFC=∠BEC=60°,∠EFC=45°,∴∠EFD=60°﹣45°=15°.【点评】本题考查旋转的性质和正方形的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.11.如图,⊙O的直径CD经过弦EF的中点G,∠DCF=20°,则∠EOD等于()A.30°B.40°C.35°D.45°【分析】先撸垂径定理的推论得到CD⊥EF,再根据垂径定理得到=,然后利用圆周角定理确定∠EOD的度数.解:∵直径CD经过弦EF的中点G,∴CD⊥EF,∴=,∴∠EOD=2∠DCF=2×20°=40°.故选:B.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.12.已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)【分析】先利用配方法求得点M的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可.解:y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4.∴点M(m,﹣m2﹣4).∴点M′(﹣m,m2+4).∴m2+2m2﹣4=m2+4.解得m=±2.∴m=2.∴M(2,﹣8).故选:C.【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.二.填空题(本大题共6小题,每小题3分,共18分)13.计算:3x2•5x3的结果为15x5.【分析】直接利用单项式乘以单项式运算法则求出即可.解:3x2•5x3=15x5.故答案是:15x5.【点评】此题主要考查了整式的乘法运算,熟练掌握相关运算法则是解题关键.14.已知点P(a,﹣6)与点Q(﹣5,3b)关于原点对称,则a+b=7.【分析】直接利用关于原点对称点的性质得出a,b的值,即可得出答案.解:∵点P(a,﹣6)与点Q(﹣5,3b)关于原点对称,∴a=5,3b=6,解得:b=2,故a+b=7.故答案为:7.【点评】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键.15.如图,坡角为30°的斜坡上两树间的水平距离AC为2m,则两树间的坡面距离AB为m【分析】根据余弦的定义计算,得到答案.解:在Rt△ABC中,cos A=,∴AB==,故答案为:m.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度坡角的概念、锐角三角函数的定义是解题的关键.16.若关于x、y的方程组的解是,则mn的值为﹣2.【分析】将代入方程组即可求出m与n的值.解:将代入,∴,∴,∴mn=﹣2,故答案为:﹣2.【点评】本题考查二元一次方程组,解题的关键是正确理解二元一次方程组的解的定义,本题属于基础题型.17.如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=EH,那么EH的长为.【分析】设EH=3x,表示出EF,由AD﹣EF表示出三角形AEH的边EH上的高,根据三角形AEH与三角形ABC相似,利用相似三角形对应边上的高之比等于相似比求出x的值,即为EH的长.解:如图所示:∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC,∵AM⊥EH,AD⊥BC,∴,设EH=3x,则有EF=2x,AM=AD﹣EF=2﹣2x,∴,解得:x=,则EH=.故答案为:.【点评】此题考查了相似三角形的判定与性质,以及矩形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.18.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,且过点(3,0),则下列结论:①abc<0;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③2a+b=0;④4a2+2b+c<0.其中正确结论的序号是①②③.【分析】由抛物线对称轴的位置确定ab的符号,由抛物线与y轴的交点在x轴上方得c >0,则可对A进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),则可对B选项进行判断;由对称轴公式可结C进行判断;由于x=2时,函数值大于0,则有4a+2b+c>0,于是可对D选项进行判断.解:①∵抛物线与y轴的交点在x轴上方,∴c>0,∵对称轴为直线x=1,∴ab<0,∴abc<0,所以此选项正确;②∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;所以此选项正确;③∵对称轴为直线x=1,∴﹣=1,b=﹣2a,∴2a+b=0,所以此选项正确;④∵当x=2时,y>0,∴4a+2b+c>0,所以此选项错误;其中正确结论的序号是①②③;故答案为:①②③.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c),熟练掌握二次函数的性质是关键.三.解答题(本大题共5小题,共46分.解答应写出文字说明、演算步骤或推理过程)19.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x≤2;(Ⅱ)解不等式②,得x>﹣1;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为﹣1<x≤2.【分析】先求出不等式组中的每一个不等式的解集,然后取其交集即为不等式组的解集;最后根据在数轴上表示不等式的解集的方法将其表示在数轴上.解:(Ⅰ)解不等式①,得x≤2;(Ⅱ)解不等式②,得x>﹣1;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为﹣1<x≤2.故答案为:x≤2;x>﹣1;﹣1<x≤2.【点评】本题考查了在数轴上表示不等式的解集、解一元一次不等式组.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.20.如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C处测得教学横顶部D 处的仰角为18°,教学楼底部B处的俯角为20°,教学楼的高BD=21m,求实验楼与教学楼之间的距离AB(结果保留整数).(参考数据:tan18°≈0.32,tan20°≈0.36)【分析】作CM⊥BD,在Rt△CDM中DM=CM tan∠DCM,在Rt△BCM中BM=CM tan ∠BCM,根据DM+BM=BD可得CM tan18°+CM tan20°=21,解之即可得.解:过点C作CM⊥BD于点M,在Rt△CDM中,∵tan∠DCM=,∴DM=CM tan∠DCM=CM tan18°;在Rt△BCM中,∵tan∠BCM=,∴BM=CM tan∠BCM=CM tan20°,∵DM+BM=BD,∴CM tan18°+CM tan20°=21,解得:CM=≈31(m),则AB=31m,答:AB的长约为31m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.21.如图1,在△ABC中,AC=BC,以BC为直径的⊙O交AB于点D.(1)求证:点D是AB的中点;(2)如图2,过点D作DE⊥AC于点E,求证:DE是⊙O的切线.【分析】(1)由于AC=AB,如果连接CD,那么只要证明出CD⊥AB,根据等腰三角形三线合一的特点,我们就可以得出AD=BD,由于BC是圆的直径,那么CD⊥AB,由此可证得.(2)连接OD,再证明OD⊥DE即可.【解答】证明:(1)如图1,连接CD,∵BC为⊙O的直径,∴CD⊥AB.∵AC=BC,∴AD=BD.(2)如图2,连接OD;∵AD=BD,OB=OC,∴OD是△BCA的中位线,∴OD∥AC.∵DE⊥AC,∴DF⊥OD.∵OD为半径,∴DE是⊙O的切线.【点评】本题主要考查了切线的判定,等腰三角形的性质等知识点.要注意的是要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.22.每年十月的第二个周四是世界爱眼日,为预防近视,超市决定对某型号护眼台灯进行降价销售.降价前,进价为50元的护眼台灯以80元售出,平均每月能售出120盏,调查表明:这种护眼台灯每盏售价每降低1元,其月平均销售量将增加10盏.(1)写出月销售利润y(单位:元)与销售价x(单位:元/盏)之间的函数表达式:(2)当销售价定为多少元时,所得月利润最大?最大月利润为多少元?【分析】(1)根据“总利润=单件利润×销售量”可得;(2)利用配方法求出二次函数最值即可得出答案.解:(1)设售价为x元/盏,月销售利润y元,根据题意得:y=(x﹣50)[120+10(80﹣x)]=﹣10x2+1420x﹣46000;(2)∵y=﹣10x2+1420x﹣46000=﹣10(x﹣71)2+96410,∴当销售价定为71元时,所得月利润最大,最大月利润为96410元.【点评】此题主要考查了二次函数的应用以及二次函数最值求法,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系.23.如图,已知抛物线y=﹣x2+bx+c(b,c是常数)经过A(0,2)、B(4,0)两点.(Ⅰ)求该抛物线的解析式和顶点坐标;(Ⅱ)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这条抛物线于N,求当t取何值时,MN有最大值?最大值是多少?(Ⅲ)在(Ⅱ)的情况下,以A、M、N、D为顶点作平行四边形,请直接写出第四个顶点D的所有坐标(直接写出结果,不必写解答过程).【分析】(Ⅰ)把A、B两点坐标代入抛物线y=﹣x2+bx+c得关于b、c方程组,则解方程组即可得到抛物线解析式;然后把一般式配成顶点式得到抛物线的顶点坐标;(Ⅱ)先利用待定系数法求出直线AB的解析式为y=﹣x+2,设N(t,﹣t2+t+2)(0<t<4),则N(t,﹣t+2),则MN=﹣t2+t+2﹣(﹣t+2),然后利用二次函数的性质解决问题;(Ⅲ)由(Ⅱ)得N(2,5),M(2,1),如图,利用平行四边形的性质进行讨论:当MN为平行四边形的边时,利用MN∥AD,MN=AD=4和确定定义D点坐标,当MN为平行四边形的对角线时,利用AN∥MN,AN=MD和点平移的坐标规律写出对应D点坐标.解:(Ⅰ)把A(0,2)、B(4,0)代入抛物线y=﹣x2+bx+c得,解得,∴抛物线解析式为y=﹣x2+x+2;∵y=﹣x2+x+2=﹣(x﹣)2+,∴抛物线的顶点坐标为(,);(Ⅱ)设直线AB的解析式为y=mx+n,把A(0,2)、B(4,0)代入得,解得,∴直线AB的解析式为y=﹣x+2,设N(t,﹣t2+t+2)(0<t<4),则N(t,﹣t+2),∴MN=﹣t2+t+2﹣(﹣t+2)=﹣t2+4t=﹣(t﹣2)2+4,当t=2时,MN有最大值,最大值为4;(Ⅲ)由(Ⅱ)得N(2,5),M(2,1),如图,当MN为平行四边形的边时,MN∥AD,MN=AD=4,则D1(0,6),D2(0,﹣2),当MN为平行四边形的对角线时,AN∥MN,AN=MD,由于点A向右平移2个单位,再向上平移3个单位得到N点,则点M向右平移2个单位,再向上平移3个单位得到D 点,则D3的坐标为(4,4),综上所述,D点坐标为(0,6)或(0,﹣2)或(4,4).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和平行四边形的性质;会利用待定系数法求函数解析式;会利用点平移的坐标规律求平行四边形第四个顶点的坐标;理解坐标与图形性质;会运用分类讨论的思想解决思想问题.四.选做题(本题不计入总成绩)24.如图所示,在平面直角坐标系中A(0,2),点B(﹣3,0).△AOB绕点O逆时针旋转30°得到△A1OB1.(1)直接写出点B1的坐标;(2)点C(2,0),连接CA1交OA于点D,求点D的坐标.【分析】(1)过点B1作B1E⊥y轴于点E,根据△AOB绕点O逆时针旋转30°得到△A1OB1,即可求出点B1坐标;(2)根据题意可得OA1=OC=2,由旋转可得∠AOA1=30°,进而得∠A1OC=120°,所以可得∠A1CO=30°.从而可求出OD的长,即可得点D的坐标.解:(1)如图,过点B1作B1E⊥y轴于点E,∵△AOB绕点O逆时针旋转30°得到△A1OB1,∴∠BOB1=30°,∴∠B1OE=60°,∵B(﹣3,0),∴OB=OB1=3,∴OE=,B1E=,∴点B1的坐标为:(﹣,﹣);(2)∵点C(2,0),∴OC=2,∵A(0,2),∴OA=OA1=2,∴OA1=OC=2,∵∠AOA1=30°,∠DOC=90°,∴∠A1OC=120°,∴∠A1CO=30°.∴OD=OC•tan30°=2×=.∴点D的坐标为:(0,).【点评】本题考查了坐标与图形变化﹣旋转,解决本题的关键是掌握旋转的性质.。

2020年天津市中考数学模拟试题(含答案) (4)

2020年天津市中考数学模拟试题(含答案)  (4)

2020年天津市中考数学模拟试卷(典型考点整理)一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣2.(3分)把下列数字看成图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)已知P为线段AB的黄金分割点,且AP>PB,则()A.AP2+BP2=AB2B.BP2=AP•ABC.AP2=AB•BP D.AB2=AP•PB4.(3分)三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点5.(3分)现有一组数据:165、160、166、170、164、165,若去掉最后一个数165,下列说法正确的是()A.平均数不变,方差变大B.平均数不变,方差不变C.平均数不变,方差变小D.平均数变小,方差不变6.(3分)如图,在平面直角坐标系中,过y轴正半轴上一点C作直线l,分别与y=﹣(x <0)和y=(x>0)的图象相交于点A、B,且C是AB的中点,则△ABO的面积是()A.B.C.2D.5二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上.)7.(3分)计算:|﹣2|=.8.(3分)2018年中国与“一带一路”沿线国家进出口总额约13000 0000 0000美元,用科学记数法表示这个进出口总额为美元.9.(3分)已知k为整数,且满足<k<,则k的值是.10.(3分)抛掷一枚质地均匀的硬币两次,出现一正一反的概率.11.(3分)把一副三角板按如图所示方式放置,则图中钝角α是°.12.(3分)已知二元一次方程组,则2a+3b=.13.(3分)若正多边形的每一个内角为135°,则这个正多边形的边数是.14.(3分)已知不等式组无解,则a的取值范围是.15.(3分)已知:a﹣b=b﹣c=1,a2+b2+c2=2,则ab+bc+ac的值等于.16.(3分)如图,已知Rt△ABC中,∠ACB=90°,BC=3,AC=4,点D为斜边AB的中点,点E在AC上,以AE为直径作⊙O,当⊙O与CD相切时,则⊙O的半径为.三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:+(π﹣1)0﹣6tan30°+()﹣2(2)解方程:+1=18.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.19.(8分)我市中小学学生素养提升五项工程自启动以来,越来越受到教师、家长和学生的喜爱.为进一步了解学生对“规范书写”、“深度阅读”、“课堂演讲”、“阳光体艺”、“实验实践”的喜爱程度,某学生总数是1800人的九年一贯制学校,从每个年级随机抽取了部分学生进行了调查(每位学生只可选其中一项),并将结果整理、绘制成统计图如下:根据以上统计图,解答下列问题:(1)本次接受调查的学生共有人,补全条形统计图;(2)求扇形统计图中a的值;(3)估计该校全体学生中喜爱“实验实践”的人数.20.(8分)已知:如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC 的平分线交AD于点F.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,平行四边形ABCD的面积是36,求AD的长.21.(10分)已知关于x的一元二次方程x2﹣(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.22.(10分)如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.23.(10分)我市楚水商城销售一种进价为10元/件的饰品,经调查发现,该饰品每天的销售量y(件)与销售单价x(元)满足函数y=﹣2x+100,设销售这种饰品每天的利润为W(元).(1)求W与x之间的函数关系式;(2)在确保顾客得到优惠的前提下,该商城还要通过销售这种饰品每天获利750元,应将销售单价定为多少元?24.(10分)我市最近开通了“1号水路”观光游览专线,某中学数学活动小组带上高度为1.6m的测角仪,对其标志性建筑AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进20m至DE处,测得顶点A的仰角为75°.(1)求AE的长(结果保留根号);(2)求高度AO(精确到个位,参考数据:≈1.4,≈1.7)25.(12分)如图,已知正方形ABCD的边长为3,E是对角线BD上一点(BE>DE).(1)利用直尺和圆规,在图中过点E作AE的垂线,交BC边于点F(保留作图痕迹,不写作法);(2)在(1)中,求证:AE=EF;(3)若(1)中四边形ABFE的面积为4,求AE的长.26.(14分)已知,关于x的二次函数y=ax2﹣2ax(a>0)的顶点为C,与x轴交于点O、A,关于x的一次函数y=﹣ax(a>0).(1)试说明点C在一次函数的图象上;(2)若两个点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,是否存在整数k,满足=?如果存在,请求出k的值;如果不存在,请说明理由;(3)若点E是二次函数图象上一动点,E点的横坐标是n,且﹣1≤n≤1,过点E作y 轴的平行线,与一次函数图象交于点F,当0<a≤2时,求线段EF的最大值.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:﹣3的相反数是3.故选:A.【点评】本题考查了相反数的意义.只有符号不同的数为相反数,0的相反数是0.2.(3分)把下列数字看成图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)已知P为线段AB的黄金分割点,且AP>PB,则()A.AP2+BP2=AB2B.BP2=AP•ABC.AP2=AB•BP D.AB2=AP•PB【分析】如图所示,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即ABAC=ACBC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB≈0.618AB,并且线段AB的黄金分割点有两个.【解答】解:∵P为线段AB的黄金分割点,且AP<PB,∴PB2=AP•AB.故选:C.【点评】本题考查了黄金分割的概念,熟记定义是解题的关键.4.(3分)三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点【分析】根据三角形的重心是三条中线的交点解答.【解答】解:三角形的重心是三条中线的交点,故选:A.【点评】本题考查了三角形重心的定义.掌握三角形的重心是三条中线的交点是解题的关键.5.(3分)现有一组数据:165、160、166、170、164、165,若去掉最后一个数165,下列说法正确的是()A.平均数不变,方差变大B.平均数不变,方差不变C.平均数不变,方差变小D.平均数变小,方差不变【分析】根据方差和平均数的定义即可得到结论.【解答】解:原数据的平方数为=165;原数据的方差为[(165﹣165)2+(160﹣165)2+(166﹣165)2+(170﹣165)2+(164﹣165)2+(165﹣165)2=;去掉最后一个数165后的数据的平均数为=165,去掉最后一个数165后的数据的方差为×[(165﹣165)2+(160﹣165)2+(166﹣165)2+(170﹣165)2+(164﹣165)2]=,故平均数不变,方差变大,故选:A.【点评】本题考查了方差和平均数,数据定义是解题的关键.6.(3分)如图,在平面直角坐标系中,过y轴正半轴上一点C作直线l,分别与y=﹣(x <0)和y=(x>0)的图象相交于点A、B,且C是AB的中点,则△ABO的面积是()A.B.C.2D.5【分析】根据题意A、B的横坐标化为相反数,所以设A(﹣m,﹣)则B(m,),根据题意中位线等于上下底和的一半,求得表示出OC,然后根据S△ABO=S△AOC+S△BOC 即可求得.【解答】解:∵C是AB的中点,∴设A(﹣m,﹣)则B(m,),∴OC=(+)=,∴S△ABO=S△AOC+S△BOC=××2m=.故选:B.【点评】本题考查了反比例函数和一次函数的交点,根据题意表示出交点的坐标是解题的关键.二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上.)7.(3分)计算:|﹣2|=2.【分析】根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣2<0,∴|﹣2|=2.故答案为:2.【点评】解题关键是掌握绝对值的规律.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.8.(3分)2018年中国与“一带一路”沿线国家进出口总额约13000 0000 0000美元,用科学记数法表示这个进出口总额为 1.3×1012美元.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:13000 0000 0000=1.3×1012.故答案为:1.3×1012.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.9.(3分)已知k为整数,且满足<k<,则k的值是3.【分析】先估算出和的范围,再得出答案即可.【解答】解:∵2<<3,3<<4,∴整数k=3,故答案为:3.【点评】本题考查了估算无理数的大小和实数的大小比较,能估算出和的范围是解此题的关键10.(3分)抛掷一枚质地均匀的硬币两次,出现一正一反的概率.【分析】列举出所有情况,看所求的情况占总情况的多少即可得出答案.【解答】解:共(正,正)、(反,反)、(正,反)、(反、正)4种情况,则出现一正一反的概率是=;故答案为:.【点评】此题考查了列举法求概率,解题的关键是找到所有的情况,用到的知识点为:概率=所求情况数与总情况数之比.11.(3分)把一副三角板按如图所示方式放置,则图中钝角α是105°.【分析】利用三角形内角和定理计算即可.【解答】解:由三角形的内角和定理可知:α=180°﹣30°﹣45°=105°,故答案为:105.【点评】本题考查三角形内角和定理,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考基础题.12.(3分)已知二元一次方程组,则2a+3b=9.【分析】将两方程相减即可得.【解答】解:,①﹣②,得:2a+3b=9,故答案为:9.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.(3分)若正多边形的每一个内角为135°,则这个正多边形的边数是8.【分析】先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.【解答】解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.【点评】本题考查了多边形的内角与外角的关系,也是求解正多边形边数常用的方法之一.14.(3分)已知不等式组无解,则a的取值范围是a≤1.【分析】根据不等式组无解,则两个不等式的解集没有公共部分解答.【解答】解:∵不等式组无解,∴a的取值范围是a≤1.故答案为:a≤1.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15.(3分)已知:a﹣b=b﹣c=1,a2+b2+c2=2,则ab+bc+ac的值等于﹣1.【分析】由已知得出a﹣c=2,求出a2+b2+c2﹣ab﹣bc﹣ac=(2a2+2b2+2c2﹣2ab﹣2bc ﹣2ac)=[(a﹣b)2+(b﹣c)2+(c﹣a)2]=3,即可得出所求的值.【解答】解:∵a﹣b=b﹣c=1,∴a﹣c=2,∴a2+b2+c2﹣ab﹣bc﹣ac=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ac)=[(a﹣b)2+(b﹣c)2+(c﹣a)2]=3,∴ab+bc+ac=a2+b2+c2﹣3=2﹣3=﹣1;故答案为:﹣1.【点评】本题考查了完全平方式以及配方法;能够运用完全平方式熟练推导与记忆a2+b2+c2﹣ab﹣bc﹣ac=[(a﹣b)2+(b﹣c)2+(a﹣c)2]是解题的关键.16.(3分)如图,已知Rt△ABC中,∠ACB=90°,BC=3,AC=4,点D为斜边AB的中点,点E在AC上,以AE为直径作⊙O,当⊙O与CD相切时,则⊙O的半径为.【分析】设⊙O与CD相切于F,连接OF,得到∠OFE=90°,根据勾股定理得到AB =5,根据直角三角形的性质得到AD=CD,由相似三角形的性质即可得到结论.【解答】解:设⊙O与CD相切于F,连接OF,∴∠OFE=90°,∵∠ACB=90°,BC=3,AC=4,∴AB=5,∵点D为斜边AB的中点,∴AD=CD,∴∠A=∠ACD,∵∠OFC=∠ACB=90°,∴△COF∽△ABC,∴=,设⊙O的半径为r,∴OC=4﹣r,∴=,∴r=,故答案为:.【点评】本题考查了切线的性质,直角三角形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:+(π﹣1)0﹣6tan30°+()﹣2(2)解方程:+1=【分析】(1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=2+1﹣6×+9=10;(2)去分母得:3(5x﹣4)+3x﹣6=4x+10,解得:x=2,经检验:x=2是增根,原方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.18.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章的结果,再利用概率公式求解即可求得答案.【解答】解:如图:所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为=.【点评】本题主要考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.19.(8分)我市中小学学生素养提升五项工程自启动以来,越来越受到教师、家长和学生的喜爱.为进一步了解学生对“规范书写”、“深度阅读”、“课堂演讲”、“阳光体艺”、“实验实践”的喜爱程度,某学生总数是1800人的九年一贯制学校,从每个年级随机抽取了部分学生进行了调查(每位学生只可选其中一项),并将结果整理、绘制成统计图如下:根据以上统计图,解答下列问题:(1)本次接受调查的学生共有80人,补全条形统计图;(2)求扇形统计图中a的值;(3)估计该校全体学生中喜爱“实验实践”的人数.【分析】(1)32÷40%=80(人),课堂演讲人数:80﹣8﹣8﹣32﹣16=16(人),据此补图;(2),所以a=20;(3)根据题意得:1800×=360(人),所以该校全体学生中喜爱“实验实践”的人数约为360人.【解答】解:(1)32÷40%=80(人),故答案为80,课堂演讲人数:80﹣8﹣8﹣32﹣16=16(人)补图如下(2),所以a=20;(3)根据题意得:1800×=360(人),答:该校全体学生中喜爱“实验实践”的人数约为360人.【点评】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.20.(8分)已知:如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC 的平分线交AD于点F.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,平行四边形ABCD的面积是36,求AD的长.【分析】(1)由平行四边形的性质和角平分线的性质可证BA=BE=AF,即可证四边形ABEF是菱形;(2)由菱形的性质和勾股定理可求BE=5,由菱形的面积公式可求AH=,由平行四边形的面积公式可求AD的长.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BA=BE,同理:AB=AF∴AF=BE,又∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形(2)如图,过A作AH⊥BE,∵四边形ABEF是菱形,∴AO=EO=AE=3,BO=FO=BF=4,AE⊥BF,∴BE==5,∵S菱形ABEF=AE•BF=×6×8=24,∴BE•AH=24,∴AH=,∴S平行四边形ABCD=AD×AH=36,∴AD=.【点评】本题考查了菱形的性质和判定,平行四边形的性质,熟练运用菱形的性质是本题的关键.21.(10分)已知关于x的一元二次方程x2﹣(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.【分析】(1)根据一元二次方程根的判别式和非负数的性质即可得到结论;(2)根据勾股定理和一元二次方程根的判别式解方程即可得到结论.【解答】(1)证明:∵△=[﹣(m+2)]2﹣4×2m=(m﹣2)2≥0,∴不论m为何值,该方程总有两个实数根;(2)解:∵AB、AC的长是该方程的两个实数根,∴AB+AC=m+2,AB•AC=2m,∵△ABC是直角三角形,∴AB2+AC2=BC2,∴(AB+AC)2﹣2AB•AC=BC2,即(m+2)2﹣2×2m=32,解得:m=±,∴m的值是±.又∵AB•AC=2m,m为正数,∴m的值是.【点评】本题考查了一元二次方程根的判别式,勾股定理,熟练掌握勾股定理是解题的关键.22.(10分)如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.【分析】(1)如图,连接OB、OC,根据全等三角形的性质即可得到结论;(2)设半径OC=r,根据勾股定理即可得到结论..【解答】解:(1)AD⊥BC,理由:如图,连接OB、OC,在△BOE与△COE中,,∴△BOE≌△COE(SSS),∴∠BEO=∠CEO=90°,∴AD⊥BC;(2)设半径OC=r,∵BC=6,DE=2,∴CE=3,OE=r﹣2,∵CE2+OE2=OC2,∴32+(r﹣2)2=r2,解得r=,∴AD=,∵AE=AD﹣DE,∴AE=﹣2=.【点评】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.23.(10分)我市楚水商城销售一种进价为10元/件的饰品,经调查发现,该饰品每天的销售量y(件)与销售单价x(元)满足函数y=﹣2x+100,设销售这种饰品每天的利润为W(元).(1)求W与x之间的函数关系式;(2)在确保顾客得到优惠的前提下,该商城还要通过销售这种饰品每天获利750元,应将销售单价定为多少元?【分析】本题是通过构建函数模型解答销售利润的问题.(1)根据销售利润=销售量×(售价﹣进价),依据题意易得出W与x之间的函数关系式,(2)令W=750,求解即可,因为要确保顾客得到优惠,故最后x应取最小值【解答】解:(1)根据题意,得:W=(﹣2x+100)(x﹣10)整理得W=﹣2x2+120x﹣1000∴W与x之间的函数关系式为:W=﹣2x2+120x﹣1000(2)∵每天销售利润W为750元,∴W=﹣2x2+120x﹣1000=750解得x1=35,x2=25又∵要确保顾客得到优惠,∴x=25答:应将销售单价定位25元【点评】本题考查了二次函数的性质在实际生活中的应用.我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.再根据销售利润=销售量×(售价﹣进价),建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.24.(10分)我市最近开通了“1号水路”观光游览专线,某中学数学活动小组带上高度为1.6m的测角仪,对其标志性建筑AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进20m至DE处,测得顶点A的仰角为75°.(1)求AE的长(结果保留根号);(2)求高度AO(精确到个位,参考数据:≈1.4,≈1.7)【分析】(1)延长CE交AO于点G,过点E作EF⊥AC垂足为F.解直角三角形即可得到结论;(2)解直角三角形即可得到结论.【解答】解:(1)如图,延长CE交AO于点G,过点E作EF⊥AC垂足为F.由题意可知:∠ACG=30°,∠AEG=75°,CE=20,∴∠EAC=∠AEG﹣∠ACG=45°,∵EF=CE×Sin∠FCE=10,∴AE==10,∴AE的长度为10m;(2)∵CF=CE×cos∠FCE=10,AF=EF=10,∴AC=CF+AF=10+10,∴AG=AC×Sin∠ACG=5+5,∴AO=AG+GO=5+5+1.6=5+6.6≈15,∴高度AO约为15m.【点评】本题考查了解直角三角形的应用、勾股定理、三角函数;由勾股定理得出方程是解决问题的关键.25.(12分)如图,已知正方形ABCD的边长为3,E是对角线BD上一点(BE>DE).(1)利用直尺和圆规,在图中过点E作AE的垂线,交BC边于点F(保留作图痕迹,不写作法);(2)在(1)中,求证:AE=EF;(3)若(1)中四边形ABFE的面积为4,求AE的长.【分析】(1)过点E作AE的垂线即可;(2)如图,过点E作EM⊥AB、EN⊥BC,先证明矩形MBNE是正方形,则∠AEM=∠FEN,再证明△AEM≌△FEN,从而得到AE=EF;(3)利用△AEM≌△FEN得到S△AEM=S△FEN,则S四边形ABFE=S正方形MBNE,利用正方形面积公式得到BM=2,则AM=AB﹣BM=1,然后利用勾股定理计算AE的长.【解答】解:(1)如图,(2)如图,过点E作EM⊥AB、EN⊥BC,∴∠EMB=∠MBN=∠ENB=90°,∴四边形MBNE是矩形,又∵四边形ABCD为正方形,∴BD平分∠ABC,∴EM=EN,∴矩形MBNE是正方形,∵∠AEM+∠MEF=∠MEF+∠FEN=90°,∴∠AEM=∠FEN,又∵∠AME=∠FNE=90°,EM=EN,∴△AEM≌△FEN(ASA),∴AE=EF;(3)∵△AEM≌△FEN,∴S△AEM=S△FEN,∴S四边形ABFE=S正方形MBNE,∵四边形ABFE的面积为4,∴BM2=4,∴BM=2(取正舍负),∴AM=AB﹣BM=1,∴AE==.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了正方形的性质.26.(14分)已知,关于x的二次函数y=ax2﹣2ax(a>0)的顶点为C,与x轴交于点O、A,关于x的一次函数y=﹣ax(a>0).(1)试说明点C在一次函数的图象上;(2)若两个点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,是否存在整数k,满足=?如果存在,请求出k的值;如果不存在,请说明理由;(3)若点E是二次函数图象上一动点,E点的横坐标是n,且﹣1≤n≤1,过点E作y 轴的平行线,与一次函数图象交于点F,当0<a≤2时,求线段EF的最大值.【分析】(1)先求出二次函数y=ax2﹣2ax=a(x﹣1)2﹣a顶点C(1,﹣a),当x=1时,一次函数值y=﹣a所以点C在一次函数y=﹣ax的图象上;(2)存在.将点(k,y1)、(k+2,y2)(k≠0,±2)代入二次函数解析式,y1=ak2﹣2ak,y2=a(k+2)2﹣2a(k+2),因为满足=,,整理,得,,解得k=±4,经检验:k=±4是原方程的根,所以整数k的值为±4;(3)分两种情况讨论:①当﹣1≤n≤0时,EF=y E﹣y F=an2﹣2an﹣(﹣an)=a(n﹣)2﹣a,②当0<n≤1时,EF=y F﹣y E=﹣an﹣(an2﹣2an)=﹣a(n﹣)2+a.【解答】解:(1)∵二次函数y=ax2﹣2ax=a(x﹣1)2﹣a,∴顶点C(1,﹣a),∵当x=1时,一次函数值y=﹣a∴点C在一次函数y=﹣ax的图象上;(2)存在.∵点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,∴y1=ak2﹣2ak,y2=a(k+2)2﹣2a(k+2),∵满足=,∴,整理,得,∴,∴,解得k=±4,经检验:k=±4是原方程的根,∴整数k的值为±4.(3)∵点E是二次函数图象上一动点,∴E(n,an2﹣2an),∵EF∥y轴,F在一次函数图象上,∴F(n,﹣an).①当﹣1≤n≤0时,EF=y E﹣y F=an2﹣2an﹣(﹣an)=a(n﹣)2﹣a,∵a>0,∴当n=﹣1时,EF有最大值,且最大值是2a,又∵0<a≤2,∴0<2a≤4,即EF的最大值是4;②当0<n≤1时,EF=y F﹣y E=﹣an﹣(an2﹣2an)=﹣a(n﹣)2+a,此时EF的最大值是,又∵0<a≤2,∴0<≤,即EF的最大值是;综上所述,EF的最大值是4.【点评】本题考查了二次函数,熟练掌握二次函数的性质是解题的关键.。

安徽省安庆市2020年中考数学模拟试卷(4月份)(含解析)

安徽省安庆市2020年中考数学模拟试卷(4月份)(含解析)

安徽省安庆市2020年中考数学模拟试卷(4月份)一、选择题1、-0.2的相反数是()A 0.2B -0.2C 2D 52、计算(-a)10÷a5的结果是()A a2B a5C -a2D -a53、按照中央对新型冠状病毒肺炎工作领导小组部署,国家卫健委今年下达603.3亿元支持各地开展基本公共温升服务和基层疫情工作,将603.3亿用科学记数法表示为()A 603.3×108B 6.033×109C 6.033×1010D 6.033×10114、下图是某工厂要设计生产的零件的主视图,这个零件可能是()A B C D5、把多项式(a+b)(a+4b)-9ab分解因式正确的是()A (a-2b)2B (a+2b)2C a(a-3b)2D ab(a+3)(a-3)6、已知一次函数y=-2x-2与x轴交于A点,与反比例函数k的图像交于第二象限的Byx点,过B作y轴的垂线,垂足为C,若OC=2OA,则k的值为()A 2B -2C 4D -47、某中学随机抽取200名学生寒假期间平均每天体育锻炼时间进行问卷调查,并将调查结果分为A、B、C、D四个等级。

A:1小时以内; B:1小时~1.5小时; C 1.5小时~2小时;D 2小时以上;根据调查结果绘制了不完整的统计图(如图)。

若用扇形统计图来描述这200名学生寒假期间平均每天的体育锻炼情况,则C等级对应的扇形圆心角的度数为()A 36°B 60°C 72°D 108°第7题图第8题图第10题图8、如图,在△ABC中,AB=AC=6,D是AC中点,E是BC上一点,BE=52,∠AED=∠B,则CE 的长为()A 152B 223C 365D 6499、已知三个实数a、b、c满足a+b+c=0,a-b+c=0,则下列结论一定成立的是()A a+b≥0B a+c>0C b+c≥0D b2-4ac≥010、如图,正方形ABCD的边长为2,延长AB至E,使得AB=BE,连接CE,P为CE上一动点,分别连接PA、PB,则PA+PB的最小值为()A 4B 5C 22D 25二、填空题(本大题共4小题,每小题5分,满分20分)11.在△ABC中,若角A,B满足|cos A﹣|+(1﹣tan B)2=0,则∠C的大小是.12.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=cm.13.如图,⊙O的半径为6,点P在⊙O上,点A在⊙O内,且AP=3,过点A作AP的垂线交⊙O于点B、C.设PB=x,PC=y,则y与x的函数表达式为.14.已知在△ABC中,∠ABC=90°,AB=9,BC=12.点Q是线段AC上的一个动点,过点Q 作AC的垂线交射线AB于点P.当△PQB为等腰三角形时,则AP的长为.三、(本大题共2小题,每小题8分,满分16分)15.计算:(﹣2)0+()﹣2+4sin60°﹣|3﹣|.16.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C (3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2.四、(本大题共2小题,每小题8分,满分16分)17.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为多少?18.已知不等臂跷跷板AB长4m.如图①,当AB的一端A碰到地面上时,AB与地面的夹角为α;如图②,当AB的另一端B碰到地面时,AB与地面的夹角为β.求跷跷板AB的支撑点O到地面的高度OH.(用含α,β的式子表示)五、(本大题共2小题,每小题10分,满分20分)19.如图,一次函数y=﹣x+5的图象与反比例函数y=kx﹣1(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式与点B坐标;(2)求△AOB的面积.20.如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.(1)如图①,当=时,求的值;(2)如图②当DE平分∠CDB时,求证:AF=OA;(3)如图③,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=BG.六、(本题满分12分)21.如图,某大楼的顶部竖有一块广告牌CD,小明在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)七、(本题满分12分)22.如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,BC与AD、OD分别交于点E、F.(1)求证:DO∥AC;(2)求证:DE•DA=DC2;(3)若tan∠CAD=,求sin∠CDA的值.八、(本题满分14分)23.已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.参考答案一、选择题:每小题给出的四个选项中,其中只有一个是正确的.请把正确选项的代号写在答题表内,(本大题共10小题,每题4分,共40分)1-5: ABCBA; 6-10: DCCDD二、填空题(本大题共4小题,每小题5分,满分20分)11.在△ABC中,若角A,B满足|cos A﹣|+(1﹣tan B)2=0,则∠C的大小是105°.【分析】直接利用特殊角的三角函数值结合非负数的性质得出∠A=30°,∠B=45°,进而利用三角形内角和定理求出答案.解:∵|cos A﹣|+(1﹣tan B)2=0,∴cos A﹣=0,1﹣tan B=0,∴∠A=30°,∠B=45°,∴∠C=180°﹣30°﹣45°=105°.故答案为:105°.12.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=8 cm.【分析】根据垂径定理推出EC=ED=4,再利用勾股定理求出OE即可解决问题.解:∵AB⊥CD,AB是直径,∴CE=ED=4cm,在Rt△OEC中,OE===3(cm),∴AE=OA+OE=5+3=8(cm),故答案为8.13.如图,⊙O的半径为6,点P在⊙O上,点A在⊙O内,且AP=3,过点A作AP的垂线交⊙O于点B、C.设PB=x,PC=y,则y与x的函数表达式为y=.【分析】连接PO并延长交⊙O于H,连接BH,证明△PAC∽△PBH,根据相似三角形的性质列出比例式,代入计算得到答案.解:连接PO并延长交⊙O于H,连接BH,由圆周角定理得,∠C=∠H,∠PBH=90°,∵PA⊥BC,∴∠PAC=90°,∴∠PAC=∠PBH,∴△PAC∽△PBH,∴=,即=,∴y=,故答案为:y=.14.已知在△ABC中,∠ABC=90°,AB=9,BC=12.点Q是线段AC上的一个动点,过点Q 作AC的垂线交射线AB于点P.当△PQB为等腰三角形时,则AP的长为5或18 .【分析】当△PQB为等腰三角形时,有两种情况,需要分类讨论.(I)当点P在线段AB上时,如题图1所示.由三角形相似(△AQP∽△ABC)关系计算AP的长;(II)当点P在线段AB的延长线上时,如题图2所示.利用角之间的关系,证明点B为线段AP的中点,从而可以求出AP.解:在Rt△ABC中,AB=9,BC=12,由勾股定理得:AC=15.∵∠QBP为钝角,∴当△PQB为等腰三角形时,(I)当点P在线段AB上时,如题图1所示.∵∠QPB为钝角,∴当△PQB为等腰三角形时,只可能是PB=PQ,∵PQ⊥AQ,∴∠AQP=90°=∠ABC,在△APQ与△ABC中,∵∠AQP=90°=∠ABC,∠A=∠A,∴△AQP∽△ABC,∴,即,解得:PB=4,∴AP=AB﹣PB=9﹣4=5;(II)当点P在线段AB的延长线上时,如题图2所示.∵∠QBP为钝角,∴当△PQB为等腰三角形时,只可能是PB=BQ.∵BP=BQ,∴∠BQP=∠P,∵∠BQP+∠AQB=90°,∠A+∠P=90°,∴∠AQB=∠A,∴BQ=AB,∴AB=BP,点B为线段AP中点,∴AP=2AB=2×9=18.综上所述,当△PQB为等腰三角形时,AP的长为5或18,故答案为:5或18三、(本大题共2小题,每小题8分,满分16分)15.计算:(﹣2)0+()﹣2+4sin60°﹣|3﹣|.【分析】首先根据零指数幂:a0=1(a≠0)、负整数指数幂:a﹣p=(a≠0,p为正整数)、特殊角的三角函数值和绝对值的性质计算,然后再算加减即可.解:原式=1+9+4×﹣(3﹣),=1+9+2﹣3+,=7+3.16.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C (3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2.【分析】(1)根据轴对称性质即可画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)根据旋转的性质即可将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2.解:如图,(1)△A1B1C1即为所求;(2)△A2B2C2即为所求.四、(本大题共2小题,每小题8分,满分16分)17.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为多少?【分析】设垂直于墙的材料长为x米,则平行于墙的材料长为27+3﹣3x=30﹣3x,表示出总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75即可求得面积的最值.解:设垂直于墙的材料长为x米,则平行于墙的材料长为27+3﹣3x=30﹣3x,则总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75,故饲养室的最大面积为75平方米,18.已知不等臂跷跷板AB长4m.如图①,当AB的一端A碰到地面上时,AB与地面的夹角为α;如图②,当AB的另一端B碰到地面时,AB与地面的夹角为β.求跷跷板AB的支撑点O到地面的高度OH.(用含α,β的式子表示)【分析】根据三角函数的知识分别用OH表示出AO,BO的长,再根据不等臂跷跷板AB长4m,即可列出方程求解即可.解:依题意有:AO=OH÷sinα,BO=OH÷sinβ,AO+BO=OH÷sinα+OH÷sinβ,即OH÷sinα+OH÷sinβ=4m,则OH=m.故跷跷板AB的支撑点O到地面的高度OH是(m).五、(本大题共2小题,每小题10分,满分20分)19.如图,一次函数y=﹣x+5的图象与反比例函数y=kx﹣1(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式与点B坐标;(2)求△AOB的面积.【分析】(1)利用待定系数法求出点A坐标即可解决问题.(2)构建方程组求出交点B坐标,直线y=﹣x+5交y轴于E(0,5),根据S△AOB=S△OBE ﹣S△AOE计算即可.解:(1)∵A(1,n)在直线y=﹣x+5上,∴n=﹣1+5=4,∴A(1,4),把A(1,4)代入y=kx﹣1得到k=4,∴反比例函数的解析式为y=.(2)由,解得或,∴B(4,1),直线y=﹣x+5交y轴于E(0,5),∴S△AOB=S△OBE﹣S△AOE=×5×4﹣×5×1=7.5.20.如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.(1)如图①,当=时,求的值;(2)如图②当DE平分∠CDB时,求证:AF=OA;(3)如图③,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=BG.【分析】(1)根据题意得到=,根据正方形的性质得到AD∥BC,AD=BC,得到==,根据三角形的面积公式计算即可;(2)根据正方形的性质、角平分线的定义得到∠ADF=∠AFD,得到AF=AD,证明结论;(3)设BC=4x,CG=y,证明△EGF∽△ECD,根据相似三角形的性质得到=,求出y=x,计算即可证明结论.【解答】(1)解:∵=,∴=,∵四边形ABCD是正方形,∴AD∥BC,AD=BC,∴==,∴=;(2)证明:∵四边形ABCD是正方形,∴∠ADB=∠ACD=45°,AD=OA,∵DE平分∠CDB,∴∠BDE=∠CDE,∵∠ADF=∠ADB+∠BDE,∠AFD=∠ACD+∠CDE,∴∠ADF=∠AFD,∴AF=AD,∴AF=OA;(3)设BC=4x,CG=y,则CE=2x,FG=y,∵FG∥CD,∴△EGF∽△ECD,∴=,即=,整理得,y=x,则EG=2x﹣y=x,∴BG=2x+x=x,∴CG=BG.六、(本题满分12分)21.如图,某大楼的顶部竖有一块广告牌CD,小明在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)【分析】(1)在Rt△ABH中,通过解直角三角形求出BH;(2)过B作DE的垂线,设垂足为G.在△ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长然后根据CD=CG+GE﹣DE即可求出宣传牌的高度.解:(1)Rt△ABF中,i=tan∠BAH==,∴∠BAH=30°,∴BH=AB=5;(2)过B作BG⊥DE于G,由(1)得:BH=5,AH=5,∴BG=AH+AE=5+15,Rt△BGC中,∠CBG=45°,∴CG=BG=5+15.Rt△ADE中,∠DAE=60°,AE=15,∴DE=AE=15.∴CD=CG+GE﹣DE=5+15+5﹣15=20﹣10≈2.7m.答:宣传牌CD高约2.7米.七、(本题满分12分)22.如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,BC与AD、OD分别交于点E、F.(1)求证:DO∥AC;(2)求证:DE•DA=DC2;(3)若tan∠CAD=,求sin∠CDA的值.【分析】(1)点D是中点,OD是圆的半径,又OD⊥BC,而AB是圆的直径,则∠ACB =90°,故:AC∥OD;(2)证明△DCE∽△DCA,即可求解;(3)=3,即△AEC和△DEF的相似比为3,设:EF=k,则CE=3k,BC=8k,tan∠CAD=,则AC=6k,AB=10k,即可求解.解:(1)因为点D是弧BC的中点,所以∠CAD=∠BAD,即∠CAB=2∠BAD,而∠BOD=2∠BAD,所以∠CAB=∠BOD,所以DO∥AC;(2)∵,∴∠CAD=∠DCB,∴△DCE∽△DAC,∴CD2=DE•DA;(3)∵tan∠CAD=,连接BD,则BD=CD,∠DBC=∠CAD,在Rt△BDE中,tan∠DBE===,设:DE=a,则CD=2a,而CD2=DE•DA,则AD=4a,∴AE=3a,∴=3,而△AEC∽△DEF,即△AEC和△DEF的相似比为3,设:EF=k,则CE=3k,BC=8k,tan∠CAD=,∴AC=6k,AB=10k,∴sin∠CDA=.八、(本题满分14分)23.已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.【分析】(Ⅰ)把b=2,c=﹣3代入函数解析式,求二次函数的最小值;(Ⅱ)根据当c=5时,若在函数值y=l的情况下,只有一个自变量x的值与其对应,得到x2+bx+5=1有两个相等是实数根,求此时二次函数的解析式;(Ⅲ)当c=b2时,写出解析式,分三种情况进行讨论即可.解:(Ⅰ)当b=2,c=﹣3时,二次函数的解析式为y=x2+2x﹣3=(x+1)2﹣4,∴当x=﹣1时,二次函数取得最小值﹣4;(Ⅱ)当c=5时,二次函数的解析式为y=x2+bx+5,由题意得,x2+bx+5=1有两个相等是实数根,∴△=b2﹣16=0,解得,b1=4,b2=﹣4,∴二次函数的解析式y=x2+4x+5,y=x2﹣4x+5;(Ⅲ)当c=b2时,二次函数解析式为y═x2+bx+b2,图象开口向上,对称轴为直线x=﹣,①当﹣<b,即b>0时,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而增大,∴当x=b时,y=b2+b•b+b2=3b2为最小值,∴3b2=21,解得,b1=﹣(舍去),b2=;②当b≤﹣≤b+3时,即﹣2≤b≤0,∴x=﹣,y=b2为最小值,∴b2=21,解得,b1=﹣2(舍去),b2=2(舍去);③当﹣>b+3,即b<﹣2,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而减小,故当x=b+3时,y=(b+3)2+b(b+3)+b2=3b2+9b+9为最小值,∴3b2+9b+9=21.解得,b1=1(舍去),b2=﹣4;∴b=时,解析式为:y=x2+x+7b=﹣4时,解析式为:y=x2﹣4x+16.综上可得,此时二次函数的解析式为y=x2+x+7或y=x2﹣4x+16.。

(完整word版)2020年河南省中考数学模拟试卷解析版

(完整word版)2020年河南省中考数学模拟试卷解析版

2020年河南省中考数学模拟试卷解析版一.选择题(共10小题,满分30分,每小题3分)1.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|2.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为( )A.1。

3×106B.130×104C.13×105D.1。

3×1053.将一个正方体沿图1所示切开,形成如图2的图形,则图2的左视图为()A.B.C.D.4.如图,直线a∥b,点C,D分别在直线b,a上,AC⊥BC,CD平分∠ACB,若∠1=65°,则∠2的度数为()A.65°B.70°C.75°D.80°5.为迎接体育中考,九年级(1)班八名同学课间练习垫排球,记录成绩(个数)如下:40,38,42,35,45,40,42,42,则这组数据的众数与中位数分别是( )A.40,41 B.42,41 C.41,42 D.41,406.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.如图,菱形ABCD中,对角线AC、BD交于点O,点E为AB的中点,连接OE,若OE=3,∠ADC=60°,则BD 的长度为()A.6B.6 C.3D.38.两个不透明的袋子中分别装有标号1、2、3、4和标号2、3、4的7个小球,7个小球除标号外其余均相同,随机从两个袋子中抽取一个小球,则其标号数字和大于6的概率为()A.B.C.D.9.如图,在平面直角坐标系中,等边△OBC的边OC在x轴正半轴上,点O为原点,点C坐标为(12,0),D 是OB上的动点,过D作DE⊥x轴于点E,过E作EF⊥BC于点F,过F作FG⊥OB于点G.当G与D重合时,点D的坐标为()A.(1,)B.(2,2)C.(4,4)D.(8,8)10.如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE 的长为x,y关于x的函数图象如图2,则△EFG的最小面积为( )A.B.C.2 D.二.填空题(共5小题,满分15分,每小题3分)11.计算:(﹣π)0﹣=.12.如图,在⊙O中,直径EF⊥CD,垂足为M,EM•MF=12,则CD的长度为.13.如果函数y=﹣2x与函数y=ax2+1有两个不同的交点,则实数a的取值范围是.14.如图,等腰三角形ABC中,AB=AC=2,∠B=75°,以C为旋转中心将△ABC顺时针旋转,当点B落在AB 上点D处时,点A的对应点为E,则阴影部分面积为.15.如图,将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处.若BC=10,BE=2,则AB2﹣AC2的值为.三.解答题(共8小题,满分75分)16.(8分)先化简,再求值:(x﹣2﹣)÷,其中x=2﹣4.17.(9分)某超市对今年“元旦"期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?18.(9分)如图,⊙O中,AB为直径,点P为⊙O外一点,且PA=AB,PA、PB交⊙O于D、E两点,∠PAB 为锐角,连接DE、OD、OE.(1)求证:∠EDO=∠EBO;(2)填空:若AB=8,①△AOD的最大面积为;②当DE=时,四边形OBED为菱形.19.(9分)济南大明湖畔的“超然楼"被称作“江北第一楼”.某校数学社团的同学对超然楼的高度进行了测量.如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为60°,若学生的身高忽略不计,则该楼的高度CD多少米?(结果保留根号)20.(9分)如图,已知一次函数y=mx﹣4(m≠0)的图象分别交x轴,y轴于A(﹣4,0),B两点,与反比例函数y=(k≠0)的图象在第二象限的交点为C(﹣5,n)(1)分别求一次函数和反比例函数的表达式;(2)点P在该反比例函数的图象上,点Q在x轴上,且P,Q两点在直线AB的同侧,若以B,C,P,Q为顶点的四边形是平行四边形,求满足条件的点P和点Q的坐标.21.(10分)开学前夕,某文具店准备购进A、B两种品牌的文具袋进行销售,若购进A品牌文具袋和B品牌文具袋各5个共花费125元,购进A品牌文具袋3个和B品牌文具袋各4个共花费90元.(1)求购进A品牌文具袋和B品牌文具袋的单价;(2)若该文具店购进了A,B两种品牌的文具袋共100个,其中A品牌文具袋售价为12元,B品牌文具袋售价为23元,设购进A品牌文具袋x个,获得总利润为y元.①求y关于x的函数关系式;②要使销售文具袋的利润最大,且所获利润不超过进货价格的40%,请你帮该文具店设计一个进货方案,并求出其所获利润的最大值.22.(10分)已知:AD是△ABC的高,且BD=CD.(1)如图1,求证:∠BAD=∠CAD;(2)如图2,点E在AD上,连接BE,将△ABE沿BE折叠得到△A′BE,A′B与AC相交于点F,若BE=BC,求∠BFC的大小;(3)如图3,在(2)的条件下,连接EF,过点C作CG⊥EF,交EF的延长线于点G,若BF=10,EG=6,求线段CF的长.23.(11分)如图1,抛物线y=x2+(m﹣2)x﹣2m(m>0)与x轴交于A、B两点(A在B左边),与y轴交于点C.连接AC、BC,D为抛物线上一动点(D在B、C两点之间),OD交BC于E点.(1)若△ABC的面积为8,求m的值;(2)在(1)的条件下,求的最大值;(3)如图2,直线y=kx+b与抛物线交于M、N两点(M不与A重合,M在N左边),连MA,作NH⊥x轴于H,过点H作HP∥MA交y轴于点P,PH交MN于点Q,求点Q的横坐标.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据绝对值的定义进行分析即可得出正确结论.【解答】解:选项A、B、C中,a与b的关系还有可能互为相反数.故选D.【点评】绝对值相等的两个数的关系是相等或互为相反数.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将130万用科学记数法表示为1。

广东省2020年中考数学全真模拟试卷(附加答题卡和解析)

广东省2020年中考数学全真模拟试卷(附加答题卡和解析)

2020年中考数学全真模拟试卷(广东)(四)(考试时间:90分钟;总分:120分)班级:___________姓名:___________座号:___________分数:___________ 一、单选题(每小题3分,共30分)1.12-的值是()A.12-B.12C.2-D.22.某区公益项目“在线伴读”平台开通以来,累计为学生在线答疑15000次.用科学记数法表示15000是()A.0.15×106B.1.5×105C.1.5×104D.15×1053.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.如图,几何体的左视图是( )A.B.C.D.5.某班体育课上老师记录了7位女生1分钟仰卧起坐的成绩(单位:个)分别为:28,38,38,35,35,38,48,这组数据的中位数和众数分别是()A .35,38B .38,38C .38,35D .35,356 ( )A .5B C .±5D .7.正八边形的每一个外角的度数是() A .30°B .45︒C .60︒D .135︒8.关于x 的一元二次方程210ax x +-=有实数根,则a 的取值范围是() A .14a >-B .14a ≥-C .14a ≥-且0a ≠ D .14a >-且0a ≠ 9.一元一次不等式组的解集在数轴上表示为()A .B .C .D .10.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边BC 上一动点,PE ⊥AB 于E,PF ⊥AC 于F,则EF 的最小值为( )A .2B .2.2C .2.4D .2.5二、填空题(每小题4分,共28分)11.分解因式:24xy x -=_________________.12x 应满足的条件是______. 13.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是13,则黄球的个数为______个. 14.已知点(1 )A a ,,(2 )B b ,在反比例函数2y x=-的图象上,则a ,b 的大小关系是__________. 15.如图,把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,D 、C 分别在M 、N 的位置上,若∠EFG =50°,则∠2=_________.16.如图,已知△ABC 中,AB =AC =12厘米,BC =8厘米,点D 为AB 的中点,如果点M 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点N 在线段CA 上由C 点向A 点运动,若使△BDM 与△CMN 全等,则点N 的运动速度应为_____厘米/秒.17.如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…都是等腰直角三角形,其直角顶点P 1(3,3),P 2,P 3,…均在直线143y x =-+上.设△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…的面积分别为S 1,S 2,S 3,…,依据图形所反映的规律,S n =_____.三、解答题一(每小题6分,共18分)18.计算:201()2sin30(20172-︒-.19.先化简,再求值:,其中满足20.如图,在△ABC 中,∠ABC =80°,∠BAC =40°,AB 的垂直平分线分别与AC 、AB 交于点D 、E . (1)在图中作出AB 的垂直平分线DE ,并连接BD . (2)证明:△ABC ∽△BDC .四、解答题二(每小题8分,共24分)21.西昌市数科科如局从2013年起每年对全市所有中学生进行“我最喜欢的阳光大课间活动”抽样调查(被调查学生每人只能选一项),并将抽样调查的数据绘制成图1、图2两幅统计图,根据统计图提供的信息解答下列问题:(1)年抽取的调查人数最少;年抽取的调查人数中男生、女生人数相等;(2)求图2中“短跑”在扇形图中所占的圆心角α的度数;(3)2017年抽取的学生中,喜欢羽毛球和短跑的学生共有多少人?(4)如果2017年全市共有3.4万名中学生,请你估计我市2017年喜欢乒乓球和羽毛球两项运动的大约有多少人?22.某校计划组织师生共310人参加一次野外研学活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多15个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了20人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.23.如图1,在Rt△ABC中,∠ACB=90°,点D是边AB的中点,点E在边BC上,AE=BE,点M是AE的中点,联结CM,点G在线段CM上,作∠GDN=∠AEB交边BC于N.(1)如图2,当点G和点M重合时,求证:四边形DMEN是菱形;(2)如图1,当点G和点M、C不重合时,求证:DG=DN.五、解答题三(每小题10分,共20分)24.平行四边形ABCD的对角线相交于点M,△ABM的外接圆交AD于点E且圆心O恰好落在AD边上,连接ME,若∠BCD=45°(1)求证:BC为⊙O切线;(2)求∠ADB的度数;(3)若ME=1,求AC的长.25.如图,在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3a(a>0)与x轴交于A、B两点(点A在点B左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并用含a的式子表示直线l的函数表达式(其中k、b用含a的式子表示).(2)点E为直线l下方抛物线上一点,当△ADE的面积的最大值为254时,求抛物线的函数表达式;(3)设点P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否为矩形?若能,求出点P的坐标;若不能,请说明理由.2020年中考数学全真模拟试卷(广东)(四)答题卡姓名:______________班级:______________选择题(请用2B 铅笔填涂)非选择题(请在各试题的答题区内作答)20题、23题、24题、2020年中考数学全真模拟试卷(广东)(四)(考试时间:90分钟;总分:120分)班级:___________姓名:___________座号:___________分数:___________ 一、单选题(每小题3分,共30分)1.12-的值是()A.12-B.12C.2-D.2【答案】B【解析】根据绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0即可求解【详解】根据负数的绝对值是它的相反数,得11 22 -=.故选B.【点睛】本题考查了绝对值的性质,熟练掌握绝对值的定义和性质是解题的关键.2.某区公益项目“在线伴读”平台开通以来,累计为学生在线答疑15000次.用科学记数法表示15000是()A.0.15×106B.1.5×105C.1.5×104D.15×105【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:用科学记数法表示15000是:1.5×104.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】D【解析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、不是轴对称图形,不是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、既是轴对称图形又是中心对称图形,故本选项符合题意.故选:D.【点睛】此题主要考查对轴对称图形和中心对称图形的识别,熟练掌握,即可解题.4.如图,几何体的左视图是( )A.B.C.D.【答案】A【解析】根据从左边看得到的图形是左视图,可得答案.【详解】解:如图所示,其左视图为:.故选A.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看不到而且是存在的线是虚线.5.某班体育课上老师记录了7位女生1分钟仰卧起坐的成绩(单位:个)分别为:28,38,38,35,35,38,48,这组数据的中位数和众数分别是()A.35,38B.38,38C.38,35D.35,35【答案】B【解析】出现次数最多的那个数,称为这组数据的众数;中位数一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.【详解】把这些数从小到大排列为:28,35,35,38,38,38,48,最中间的数是38,则中位数是38;∵38出现了3次,出现的次数最多,∴这组数据的众数是38;故选B.【点睛】此题考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数;众数是一组数据中出现次数最多的数.6( )A.5 B C.±5 D.【答案】A【解析】根据算术平方根的定义即可求解.【详解】故答案选A..【点睛】本题考查的知识点是算术平方根,解题的关键是熟练的掌握算术平方根.7.正八边形的每一个外角的度数是()A.30°B.45︒C.60︒D.135︒【答案】B【解析】根据多边形的外角和为360度,再用360度除以边数即可得到每一个外角的度数.【详解】∵多边形的外角和为360度,∴每个外角度数为:360°÷8=45°,故选:B.【点睛】考查了多边形的外角和定理.任何一个多边形的外角和都是360°,用外角和求正多边形的边数直接让360度除以外角.8.关于x的一元二次方程210ax x+-=有实数根,则a的取值范围是()A.14a>-B.14a≥-C.14a≥-且0a≠D.14a>-且0a≠【答案】C【解析】从两方面考虑①方程要是一元二次方程,则二次项系数不能为0;②利用根的判别式△≥0列出不等式求解.【详解】解:要使方程210ax x+-=为一元二次方程则a≠0此时∵关于x的方程210ax x+-=有实数根,∴214(1)140a a=-⨯⨯-=+V…解得:14 a-…,故答案为14a≥-且0a≠,选C.【点睛】本题考查根的判别式,解题的关键是明确当一元二次方程有实数根时,△≥0.在本题中切记二次项系数不能为0.9.一元一次不等式组的解集在数轴上表示为()A.B.C.D.【答案】A【解析】试题分析:解不等式①得:x>﹣1,解不等式②得:x≤2,∴不等式组的解集是﹣1<x≤2,表示在数轴上,如图所示:.故选A.考点:解一元一次不等式组;在数轴上表示不等式的解集.10.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为( )A.2 B.2.2 C.2.4 D.2.5【答案】C【解析】根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.【详解】连接AP,∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°,又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP,∵AP的最小值即为直角三角形ABC斜边上的高,即2.4,∴EF的最小值为2.4,故选:C.【点睛】本题考查了矩形的性质和判定,勾股定理的逆定理,直角三角形的性质的应用,要能够把要求的线段的最小值转化为便于求的最小值得线段是解此题的关键.二、填空题(每小题4分,共28分)11.分解因式:24xy x -=_________________.【答案】x (y+2)(y-2)【解析】首先提公因式x ,然后利用平方差公式分解即可;【详解】解:224)4(2)((2)x y x y y y x x --+-==故答案为:x (y+2)(y-2)【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 12有意义时,x 应满足的条件是______. 【答案】8x >.【解析】直接利用二次根式的定义和分数有意义求出x 的取值范围.【详解】有意义,可得:80x ->,所以8x >, 故答案为:8x >.【点睛】本题考查了二次根式有意义的条件,熟练掌握是解题的关键.13.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是13,则黄球的个数为______个.【答案】24【解析】分析:首先设黄球的个数为x 个,根据题意得:1212x +=13,解此分式方程即可求得答案. 详解:设黄球的个数为x 个, 根据题意得:1212x +=13, 解得:x =24,经检验:x =24是原分式方程的解;∴黄球的个数为24.故答案为24点睛:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.已知点(1 )A a ,,(2 )B b ,在反比例函数2y x=-的图象上,则a ,b 的大小关系是__________. 【答案】a b <【解析】由反比例函数y =-2x可知函数的图象在第二、第四象限内,可以知道在每个象限内,y 随x 的增大而增大,根据这个判定则可.【详解】∵反比例函数中y =-2x中20k =-<, ∴此函数的图象在二、四象限内,在每个象限内,y 随x 的增大而增大,∵0<1<2,∴A 、B 两点均在第四象限,∴a <b.故答案为:a<b.【点睛】本题考查了反比例函数图象上点的坐标特征,熟练掌握该特征是本题解题的关键.15.如图,把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=50°,则∠2=_________.【答案】100°【解析】试题解析:如图,∵长方形纸片ABCD的边AD∥BC,∴∠3=∠EFG=50°,根据翻折的性质,∠1=180°-2∠3=180°-2×50°=80°,又∵AD∥BC,∴∠2=180°-∠1=180°-80°=100°.16.如图,已知△ABC中,AB=AC=12厘米,BC=8厘米,点D为AB的中点,如果点M在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点N在线段CA上由C点向A点运动,若使△BDM与△CMN全等,则点N的运动速度应为_____厘米/秒.【答案】2或3【解析】分两种情形讨论①当BD=CM=6,BM=CN时,△DBM≌△MCN,②当BD=CN,BM=CM时,△DBM≌△NCM,再根据路程、时间、速度之间的关系求出点N的速度.【详解】解:∵AB=AC,∴∠B=∠C,①当BD=CM=6厘米,BM=CN时,△DBM≌△MCN,∴BM=CN=2厘米,t=2=1,2∴点N运动的速度为2厘米/秒.②当BD=CN,BM=CM时,△DBM≌△NCM,∴BM=CM=4厘米,t=4=2,CN=BD=6厘米,2∴点N的速度为:6=3厘米/秒.2故点N的速度为2或3厘米/秒.故答案为2或3.【点睛】本题考查等腰三角形的性质、全等三角形的判定和性质,用分类讨论是正确解题的关键.17.如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…都是等腰直角三角形,其直角顶点P 1(3,3),P 2,P 3,…均在直线143y x =-+上.设△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…的面积分别为S 1,S 2,S 3,…,依据图形所反映的规律,S n =_____.【答案】194n -(或2292n -) 【解析】分别过点P 1、P 2、P 3作x 轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【详解】如图,分别过点P 1、P 2、P 3作x 轴的垂线段,垂足分别为点C 、D 、E ,∵P 1(3,3),且△P 1OA 1是等腰直角三角形,∴OC=CA 1=P 1C=3,设A 1D=a ,则P 2D=a ,∴OD=6+a ,∴点P 2坐标为(6+a ,a ),将点P 2坐标代入y=-13x+4,得:-13(6+a )+4=a , 解得:a=32, ∴A 1A 2=2a=3,P 2D=32, 同理求得P 3E=34、A 2A 3=32, ∵12311391339639,3,222422416S S S =⨯⨯==⨯⨯==⨯⨯=、…… ∴S n =194n -(或2292n -). 故答案为194n -(或2292n -). 【点睛】本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题.三、解答题一(每小题6分,共18分)18.计算:201()2sin30(20172-︒--. 【答案】2【解析】分析:根据负整指数幂的的性质,二次根式的性质,特殊角的三角函数值,零次幂的性质求解即可. 详解:原式=142212-+⨯-=2. 点睛:此题主要考查了实数的混合运算,关键是熟记并灵活运用负整指数幂的的性质,二次根式的性质,特殊角的三角函数值,零次幂的性质计算即可.19.先化简,再求值:,其中满足【答案】原式=x 2−1−x2+2xx(x+1)×(x+1)2x(2x−1)=x+1x2∵∴x2=x+1原式=x+1x+1=1【解析】试题分析:先对小括号部分通分,同时把除化为乘,再根据分式的基本性质约分,最后整体代入求值. 原式=·原式=1.考点:分式的化简求值点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.20.如图,在△ABC中,∠ABC=80°,∠BAC=40°,AB的垂直平分线分别与AC、AB交于点D、E.(1)在图中作出AB的垂直平分线DE,并连接BD.(2)证明:△ABC∽△BDC.【答案】(1)见解析(2)证明见解析【解析】(1)分别以A、B为圆心,大于12AB的长为半径画弧,两弧交于两点,过两点作直线,即为AB的垂直平分线;(2)由线段垂直平分线的性质,得DA=DB,则∠ABD=∠BAC=40°,从而求得∠CBD=40°,即可证出△ABC∽△BDC.【详解】(1)如图,DE即为所求;(2)∵DE是AB的垂直平分线,∴BD=AD,∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=80°﹣40°=40°,∴∠DBC=∠BAC,∵∠C=∠C,∴△ABC∽△BDC.【点睛】本题考查了作图——基本作图,相似三角形的判定,线段垂直平分线的性质,熟练掌握相关的性质与判定定理是解题的关键.四、解答题二(每小题8分,共24分)21.西昌市数科科如局从2013年起每年对全市所有中学生进行“我最喜欢的阳光大课间活动”抽样调查(被调查学生每人只能选一项),并将抽样调查的数据绘制成图1、图2两幅统计图,根据统计图提供的信息解答下列问题:(1)年抽取的调查人数最少;年抽取的调查人数中男生、女生人数相等;(2)求图2中“短跑”在扇形图中所占的圆心角α的度数;(3)2017年抽取的学生中,喜欢羽毛球和短跑的学生共有多少人?(4)如果2017年全市共有3.4万名中学生,请你估计我市2017年喜欢乒乓球和羽毛球两项运动的大约有多少人?【答案】(1)2013;2016;(2)54°;(3)460人;(4)20400人【解析】(1)由图中的数据进行判断即可;(2)先求得“短跑”在扇形图中所占的百分比为15%,进而得到α=360°×15%=54°;(3)依据2017年抽取的学生总数,即可得到喜欢羽毛球和短跑的学生数量;(4)依据喜欢乒乓球和羽毛球两项运动的百分比,即可估计我市2017年喜欢乒乓球和羽毛球两项运动的人数.【详解】解:(1)由图可得,2013年抽取的调查人数最少;2016年抽取的调查人数中男生、女生人数相等;故答案为:2013,2016;(2)1﹣35%﹣10%﹣15%﹣25%=15%,∴α=360°×15%=54°;(3)2017年抽取的学生中,喜欢羽毛球和短跑的学生共有(600+550)×(25%+15%)=460(人);(4)我市2017年喜欢乒乓球和羽毛球两项运动的大约有34000×(25%+35%)=20400(人).【点睛】本题考查的是折线统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.折线统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.某校计划组织师生共310人参加一次野外研学活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多15个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了20人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.【答案】(1)每辆小客车的乘客座位数是20个,大客车的乘客座位数是35个(2)3【解析】(1)根据“每辆大客车的乘客座位数-小客车乘客座位数=15;6辆大客车乘客+5辆小客车乘客=310”列出二元一次方程组解之即可.(2)根据题意,设租用a辆小客车才能将所有参加活动的师生装载完成,利用“大客车乘客+小客车乘客≥310+20”解之即可.【详解】(1)设每辆小客车的乘客座位数是x个,大客车的乘客座位数是y个,根据题意,得15 56310 y xx y-=⎧⎨+=⎩解得2035 xy=⎧⎨=⎩答:每辆小客车的乘客座位数是20个,大客车的乘客座位数是35个. (2)设租用a辆小客车才能将所有参加活动的师生装载完成,则20a+35(11-a)≥310+20,解得a≤32 3 ,符合条件的a的最大整数为3.答:租用小客车数量的最大值为3.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解决本题的关键是找到题目中蕴含的数量关系. 23.如图1,在Rt△ABC中,∠ACB=90°,点D是边AB的中点,点E在边BC上,AE=BE,点M是AE的中点,联结CM,点G在线段CM上,作∠GDN=∠AEB交边BC于N.(1)如图2,当点G和点M重合时,求证:四边形DMEN是菱形;(2)如图1,当点G和点M、C不重合时,求证:DG=DN.【答案】(1)见解析;(2)见解析【解析】本题主要考查菱形及全等三角形的应用(1)先由MD为BE的中位线,可证MD∥EN且MD=12BE,又∠GDN+∠DNE=180°,可证四边形MDNE为平行四边形,从而可证平行四边形DMEN为菱形(2)取BE中点F,连接DM,DF,利用(1)的结论可证△DMG≌△DFN,即可得出答案【详解】证明:(1)如图2中,∵AM =ME .AD =DB ,∴DM ∥BE ,∴∠GDN+∠DNE =180°,∵∠GDN =∠AEB ,∴∠AEB+∠DNE =180°,∴AE ∥DN ,∴四边形DMEN 是平行四边形, ∵11,,22DM BE EM AE AE BE ===,∴DM =EM ,∴四边形DMEN 是菱形.(2)如图1中,取BE 的中点F ,连接DM 、DF .由(1)可知四边形EMDF 是菱形,∴∠AEB =∠MDF ,DM =DF ,∴∠GDN =∠AEB ,∴∠MDF=∠GDN,∴∠MDG=∠FDN,∵∠DFN=∠AEB=∠MCE+∠CME,∠GMD=∠EMD+∠CME,、在Rt△ACE中,∵AM=ME,∴CM=ME,∴∠MCE=∠CEM=∠EMD,∴∠DMG=∠DFN,∴△DMG≌△DFN,∴DG=DN.【点睛】本题的关键是掌握菱形的性质及判断以及全等三角形的判定五、解答题三(每小题10分,共20分)24.平行四边形ABCD的对角线相交于点M,△ABM的外接圆交AD于点E且圆心O恰好落在AD边上,连接ME,若∠BCD=45°(1)求证:BC为⊙O切线;(2)求∠ADB的度数;(3)若ME=1,求AC的长.【答案】(1)详见解析;(2)∠ADB=30°;(3)AC=2AM=【解析】(1)连接OB,根据平行四边形的性质得到∠BAD=∠BCD=45°,根据圆周角定理得到∠BOD=2∠BAD =90°,根据平行线的性质得到OB⊥BC,即可得到结论;(2)连接OM,根据平行四边形的性质得到BM=DM,根据直角三角形的性质得到OM=BM,求得∠OBM =60°,于是得到∠ADB=30°;(3)连接EM,过M作MF⊥AE于F,根据等腰三角形的性质得到∠MOF=∠MDF=30°,设OM=OE=r,解直角三角形即可得到结论.【详解】(1)证明:连接OB,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=45°,∴∠BOD=2∠BAD=90°,∵AD∥BC,∴∠DOB+∠OBC=180°,∴∠OBC=90°,∴OB⊥BC,∴BC为⊙O切线;(2)解:连接OM,∵四边形ABCD是平行四边形,∴BM=DM,∵∠BOD=90°,∴OM =BM ,∵OB =OM ,∴OB =OM =BM ,∴∠OBM =60°,∴∠ADB =30°;(3)解:连接EM ,过M 作MF ⊥AE 于F ,∵OM =DM ,∴∠MOF =∠MDF =30°,设OM =OE =r ,1,2FM r OF ∴==EF r ∴= 222EF FM EM +=Q221122r r r ⎛⎫⎛⎫∴-+= ⎪ ⎪ ⎪⎝⎭⎝⎭解得:r∴AE =2r =∵AE 是⊙O 的直径,∴∠AME =90°,∴AM=,∴AC =2AM =【点睛】本题考查了切线的判定,圆周角定理,平行四边形的性质,等腰直径三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.25.如图,在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3a(a>0)与x轴交于A、B两点(点A在点B左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并用含a的式子表示直线l的函数表达式(其中k、b用含a的式子表示).(2)点E为直线l下方抛物线上一点,当△ADE的面积的最大值为254时,求抛物线的函数表达式;(3)设点P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否为矩形?若能,求出点P的坐标;若不能,请说明理由.【答案】(1)A(﹣1,0),y=ax+a;(2)y=25x2﹣45x﹣65;(3)以点A、D、P、Q为顶点的四边形能成为矩形,点P的坐标为(1)或(1,4).【解析】(1)由抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于两点A、B,求得A点的坐标,作DF⊥x轴于F,根据平行线分线段成比例定理求得D 的坐标,然后利用待定系数法即可求得直线l 的函数表达式.(2)设点E (m ,ax 2﹣2ax ﹣3a ),知HE =(ax +a )﹣(ax 2﹣2ax ﹣3a )=﹣ax 2+3ax +4a ,根据直线和抛物线解析式求得点D 的横坐标,由S △ADE =S △AEH +S △DEH 列出函数解析式,根据最值确定a 的值即可; (3)分以AD 为矩形的对角线和以AD 为矩形的边两种情况利用矩形的性质确定点P 的坐标即可.【详解】解:(1)令y =0,则ax 2﹣2ax ﹣3a =0,解得x 1=﹣1,x 2=3∵点A 在点B 的左侧,∴A (﹣1,0),如图1,作DF ⊥x 轴于F ,∴DF ∥OC , ∴OF CD OA AC=, ∵CD =4AC , ∴4,OF CD OA AC== ∵OA =1,∴OF =4,∴D 点的横坐标为4,代入y =ax 2﹣2ax ﹣3a 得,y =5a ,∴D (4,5a ),把A 、D 坐标代入y =kx +b 得045,k b k b a -+=⎧⎨+=⎩解得,k a b a =⎧⎨=⎩∴直线l 的函数表达式为y =ax +a .(2)如图2,过点E 作EH ∥y 轴,交直线l 于点H ,设E (x ,ax 2﹣2ax ﹣3a ),则H (x ,ax +a ).∴HE =(ax +a )﹣(ax 2﹣2ax ﹣3a )=﹣ax 2+3ax +4a ,由223y ax a y ax ax a =+⎧⎨=--⎩得x =﹣1或x =4, 即点D 的横坐标为4,∴S △ADE =S △AEH +S △DEH =52(﹣ax 2+3ax +4a )253125228a x a ⎛⎫=--+ ⎪⎝⎭.∴△ADE的面积的最大值为1258a,∴12525,84a=解得:25 a=,∴抛物线的函数表达式为y=25x2﹣45x﹣65(3)已知A(﹣1,0),D(4,5a).∵y=ax2﹣2ax﹣3a,∴抛物线的对称轴为x=1,设P(1,m),①若AD为矩形的边,且点Q在对称轴左侧时,则AD∥PQ,且AD=PQ,则Q(﹣4,21a),m=21a+5a=26a,则P(1,26a),∵四边形ADPQ为矩形,∴∠ADP=90°,∴AD2+PD2=AP2,∴52+(5a)2+(1﹣4)2+(26a﹣5a)2=(﹣1﹣1)2+(26a)2,即a2=17,∵a>0,∴a∴P1(1),②若AD为矩形的边,且点Q在对称轴右侧时,则AD∥PQ,且AD=PQ,则Q(4,5a),此时点Q与点D重合,不符合题意,舍去;③若AD是矩形的一条对角线,则AD与PQ互相平分且相等.∴x D+x A=x P+x Q,y D+y A=y P+y Q,∴x Q=2,∴Q(2,﹣3a).∴y P=8a∴P(1,8a).∵四边形APDQ为矩形,∴∠APD=90°∴AP2+PD2=AD2∴(﹣1﹣1)2+(8a)2+(1﹣4)2+(8a﹣5a)2=52+(5a)2即a2=14,∵a>0,∴a=12∴P2(1,4)综上所述,以点A、D、P、Q为顶点的四边形能成为矩形,点P的坐标为(1)或(1,4).【点睛】本题是二次函数的综合题,考查了待定系数法求一次函数的解析式,二次函数图象上点的坐标特征,以及矩形的判定,根据平行线分线段成比例定理求得D的坐标是本题的关键.。

2020年中考数学全真模拟卷4(南京专版)(解析版)

2020年中考数学全真模拟卷4(南京专版)(解析版)

全真模拟卷四(南京专版)一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1.32020-的相反数是()A .20203-B .20203C .32020D .32020-【解答】32020-的相反数是:32020.故选:C .2.下列计算正确的是()A .325()a a =B .326(2)4m m -=C .623a a a ÷=D .222()a b a b +=+【解答】A .326()a a =,故本选项不合题意;B .326(2)4m m -=,正确;C .624a a a ÷=,故本选项不合题意;D .222()2a b a ab b +=++,故本选项不合题意.故选:B .3.2764-的立方根是()A .34-B .38C .49-D .916【解答】34- 的立方等于2764-,2764∴-的立方根等于34-.故选:A .4.已知a b >,则下列变形正确的是()A .22a b +<+B .22a b -<-C .22a b <D .a b-<-【解答】A .由a b >,得22a b +>+,不等号的方向不改变.故A 选项错误;B .由a b >,得22a b ->-,不等号的方向不改变,故B 选项错误;C .由a b >,得22a b >,不等号的方向不改变;故C 选项错误;D .由a b >,得a b -<-,不等式两边同时乘以1-,不等号方向改变,故D 选项正确.故选:D .52-的整数部分是a ,小数部分是b b -的值是()A .5B .5-C .3D .3-【解答】34<< ,∴3,∴2-的整数部分是1a =2-的小数部分是3b =-,∴3)3b -==.故选:C .6.如图,现有三角形纸片ABC ∆,8BC =,28ABC S ∆=,点D ,E 分别是AB ,AC 的中点,点M 是DE 上一定点,点N 是BC 上一动点,将纸片依次沿DE ,MN 剪开,得到Ⅰ,Ⅱ和Ⅲ三部分,将Ⅱ绕点D 顺时针旋转,使DB 与DA 重合,将Ⅲ绕点E 逆时针旋转,使EC 与EA 重合,拼成了一个新的图形,则这个新图形周长的最小值是()A .15B .20C .23【解答】如图,作AJ BC ⊥交DE 于O ,由题意旋转后的新图形是平行四边形GHPQ ,周长22DE BC MN =++,AD DB = ,AE EC =,//DE BC ∴,142DE BC ==,1282ABC S BC AJ ∆== ,7AJ ∴=,AD DB = ,//DE BC ,72AO OJ ∴==,∴四边形GHPQ 的周长162MN =+,∴当MN 最小时,周长的值最小,根据垂线段最短可知MN 的最小值为72,∴四边形GHPQ 的周长的最小值为16723+=,故选:C .二.填空题(本大题共10小题,每小题2分,共20分。

2020年湖南省长沙市教科院中考数学模拟试卷(四) (解析版)

2020年湖南省长沙市教科院中考数学模拟试卷(四) (解析版)

2020年长沙市教科院中考数学模拟试卷(四)一、选择题1.下列实数中,最小的是()A.3B.C.D.02.据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8000000000000美元基建投资.将8000000000000用科学记数法表示应为()A.0.8×1013B.8×1012C.8×1013D.80×10113.下列各式运算正确的是()A.3y3•5y4=15y12B.(a3)2=(a2)3C.(ab5)2=ab10D.(﹣x)4•(﹣x)6=﹣x104.在一个不透明的袋子中装有3个白球和4个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是()A.B.C.D.5.如图,AB∥CD,AF交CD于点E,∠A=45°,则∠CEF等于()A.135°B.120°C.45°D.35°6.如图是一个几何体的主视图和俯视图,则这个几何体是()A.正方体B.三棱柱C.三棱锥D.长方体7.某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5B.5、5、6C.6、5、6D.5、6、68.《九章算术》是中国古代数学名著,其对扇形面积给出“以径乘周四而一”的算法与现代数学的算法一致,如某一问题:有一扇形田地,下周长(弧长)为30米,径长(两段半径的和)为16米,则该扇形田地的面积为()A.120平方米B.240平方米C.360 平方米D.480平方米9.如图,在Rt△ABC中∠C=90°,AB>BC,分别以顶点A、B为圆心,大于AB长为半径作圆弧,两条圆弧交于点M、N,作直线MN交边CB于点D.若AD=5,CD=3,则BC长是()A.7B.8C.12D.1310.“五一”期间,小华和妈妈到某景区游玩,小明想利用所学的数学知识,估测景区里的观景塔DE的高度.他从点D处的观景塔出来走到点A处.沿着斜坡AB从A点走了8米到达B点,此时回望观景塔,更显气势宏伟.在B点观察到观景塔顶端的仰角为45°且AB⊥BE,再往前走到C处,观察到观景塔顶端的仰角30°,测得BC之间的水平距离BC=10米,则观景塔的高度DE约为()米.(=1.41,=1.73)A.14B.15C.19D.2011.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤1612.如图,在平面直角坐标系中,已知A(﹣3,﹣2),B(0,﹣2),C(﹣3,0),M 是线段AB上的一个动点,连接CM,过点M作MN⊥MC交y轴于点N,若点M、N 在直线y=kx+b上,则b的最大值是()A.﹣B.﹣C.﹣1D.0二、填空题(本大捱共6个小®,每小S3分,共|K分)13.在函数y=中,自变量x的取值范围是.14.分解因式:x2y+2xy+y=.15.不等式组的解集是.16.两组数据m,6,n与1,m,2n,7的平均数都是8,若将这两组数据合并成一组数据,则这组新数据的极差为.17.如图,▱ABCD的对角线AC、BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD 的周长为.18.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①abc<0;②5a﹣b+c<0;③方程ax2+bx+c=0的两根分别为x1=﹣5,x2=1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23,24题毎小题9分,第25、26题每小題10分,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.计算:﹣|2﹣|+()﹣2﹣2sin60°20.先化简(﹣1)÷,然后从﹣2≤a<2中选出一个合适的整数作为a的值代入求值.21.某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:70 72 74 75 76 76 77 77 77 78 79c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有人;(2)表中m的值为;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.22.如图,在四边形ABCD中,∠BAC=90°,点E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=3,BC=5,求EF的长.23.上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?(利润率=)24.类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD中,添加一个条件,使得四边形ABCD是“等邻边四边形”,请写出你添加的一个条件;(2)概念延伸:下列说法正确的是(填入相应的序号)①对角线互相平分的“等邻边四边形”是菱形;②一组对边平行,另一组对边相等的“等邻边四边形”是菱形;③有两个内角为直角的“等邻边四边形”是正方形;④一组对边平行,另一组对边相等且有一个内角是直角的“等邻边四边形”是正方形;(3)问题探究:如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=4,BC=3,并将Rt△ABC 沿∠B的平分线BB'方向平移得到△A'B'C′,连结AA′,BC′,小红要使平移后的四边形ABC′A′是“等邻边四边形”应平移多少距离(即线段BB'的长)?25.已知关于x的方程kx2+(2k+1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根;(2)当抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围;(3)将(2)中的抛物线向右平移m(3≤m≤6)个单位,与x轴的两个交点分别为A (x1,0),B(x2,0),若=+,求M的取值范围.26.如图,已知抛物线y=mx2﹣8mx﹣9m与x轴交于A,B两点,且与y轴交于点C(0,﹣3),过A,B,C三点作⊙O′,连接AC,BC.(1)求⊙O′的圆心O′的坐标;(2)点E是AC延长线上的一点,∠BEC的平分线CD交⊙O′于点D,求点D的坐标,并直接写出直线BC和直线BD的解析式;(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD,若存在,请求出点P的坐标,若不存在,请说明理由.参考答案一、选择题(在下列各題的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共12个小题,每小题3分,共36分)1.下列实数中,最小的是()A.3B.C.D.0【分析】先比较各个数的大小,再得出选项即可.解:∵3>,∴最小的数是0,故选:D.2.据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8000000000000美元基建投资.将8000000000000用科学记数法表示应为()A.0.8×1013B.8×1012C.8×1013D.80×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:8000000000000=8×1012,故选:B.3.下列各式运算正确的是()A.3y3•5y4=15y12B.(a3)2=(a2)3C.(ab5)2=ab10D.(﹣x)4•(﹣x)6=﹣x10【分析】直接利用幂的乘方运算法则以及积的乘方运算法则、单项式乘以单项式运算法则分别判断得出答案.解:A、3y3•5y4=15y7,故此选项不合题意;B、(a3)2=(a2)3,正确;C、(ab5)2=a2b10,故此选项不合题意;D、(﹣x)4•(﹣x)6=x10,故此选项不合题意;故选:B.4.在一个不透明的袋子中装有3个白球和4个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是()A.B.C.D.【分析】直接利用概率公式计算可得.解:∵袋子中球的总个数为3+4=7(个),其中黑球有4个,∴摸出黑球的概率是,故选:C.5.如图,AB∥CD,AF交CD于点E,∠A=45°,则∠CEF等于()A.135°B.120°C.45°D.35°【分析】根据平行线的性质可得∠AED,结合对顶角可求得∠CEF,可得出答案.解:∵AB∥CD,∴∠AED=180°﹣∠A=135°,又∵∠CEF和∠AED为对顶角,∴∠CEF=135°.故选:A.6.如图是一个几何体的主视图和俯视图,则这个几何体是()A.正方体B.三棱柱C.三棱锥D.长方体【分析】根据三视图得出几何体为三棱柱即可.解:由主视图和俯视图可得几何体为三棱柱,故选:B.7.某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5B.5、5、6C.6、5、6D.5、6、6【分析】根据众数、平均数和中位数的定义分别进行解答即可.解:5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数第10、11个数的平均数,则中位数是=6;平均数是:=6;故选:D.8.《九章算术》是中国古代数学名著,其对扇形面积给出“以径乘周四而一”的算法与现代数学的算法一致,如某一问题:有一扇形田地,下周长(弧长)为30米,径长(两段半径的和)为16米,则该扇形田地的面积为()A.120平方米B.240平方米C.360 平方米D.480平方米【分析】首先求得半径的长,然后利用扇形面积公式S=lr求解即可.解:∵径长(两段半径的和)为16米,∴半径长为8米,∵下周长(弧长)为30米,∴S═lr=×30×8=120平方米,故选:A.9.如图,在Rt△ABC中∠C=90°,AB>BC,分别以顶点A、B为圆心,大于AB长为半径作圆弧,两条圆弧交于点M、N,作直线MN交边CB于点D.若AD=5,CD=3,则BC长是()A.7B.8C.12D.13【分析】由尺规作图可知,MN是线段AB的垂直平分线,即可得出DA=DB=5,依据CD的长即可得到BC=CD+BD=8.解:由尺规作图可知,MN是线段AB的垂直平分线,∴DA=DB=5,又∵CD=3,∴BC=CD+BD=3+5=8,故选:B.10.“五一”期间,小华和妈妈到某景区游玩,小明想利用所学的数学知识,估测景区里的观景塔DE的高度.他从点D处的观景塔出来走到点A处.沿着斜坡AB从A点走了8米到达B点,此时回望观景塔,更显气势宏伟.在B点观察到观景塔顶端的仰角为45°且AB⊥BE,再往前走到C处,观察到观景塔顶端的仰角30°,测得BC之间的水平距离BC=10米,则观景塔的高度DE约为()米.(=1.41,=1.73)A.14B.15C.19D.20【分析】作BF⊥DE于F,AH⊥BF于H,根据等腰直角三角形的性质求出AH,根据正切的定义用EF表示出CF、BF,根据题意列式求出EF,结合图形计算,得到答案.解:作BF⊥DE于F,AH⊥BF于H,∵∠EBF=45°,∴∠ABH=45°,∴AH=BH=8×=4,在Rt△ECF中,tan∠ECF=,则CF=EF,在Rt△EBF中,∠EBF=45°,∴BF=EF,由题意得,EF﹣EF=10,解得,EF=5+5,则DE=EF+DF=5+5+4≈19,故选:C.11.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤16【分析】由于△ABC是直角三角形,所以当反比例函数y=经过点A时k最小,经过点C时k最大,据此可得出结论.解:∵△ABC是直角三角形,∴当反比例函数y=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故选:C.12.如图,在平面直角坐标系中,已知A(﹣3,﹣2),B(0,﹣2),C(﹣3,0),M 是线段AB上的一个动点,连接CM,过点M作MN⊥MC交y轴于点N,若点M、N 在直线y=kx+b上,则b的最大值是()A.﹣B.﹣C.﹣1D.0【分析】当点M在AB上运动时,MN⊥MC交y轴于点N,此时点N在y轴的负半轴移动,定有△AMC∽△NBM;只要求出ON的最小值,也就是BN最大值时,就能确定点N的坐标,而直线y=kx+b与y轴交于点N(0,b),此时b的值最大,因此根据相似三角形的对应边成比例,设未知数构造二次函数,通过求二次函数的最值得以解决.解:连接AC,则四边形ABOC是矩形,∴∠A=∠ABO=90°,又∵MN⊥MC,∴∠CMN=90°,∴∠AMC=∠MNB,∴△AMC∽△NBM,∴,设BN=y,AM=x.则MB=3﹣x,ON=2﹣y,∴,即:y=x2+x∴当x=﹣=﹣时,y最大=×()2+=,∵直线y=kx+b与y轴交于N(0,b)当BN最大,此时ON最小,点N(0,b)越往上,b的值最大,∴ON=OB﹣BN=2﹣=,此时,N(0,)b的最大值为.故选:A.二、填空题(本大捱共6个小&#174;,每小S3分,共|K分)13.在函数y=中,自变量x的取值范围是x≥﹣2且x≠0.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.解:由题意得,x+2≥0且x≠0,解得x≥﹣2且x≠0.故答案为:x≥﹣2且x≠0.14.分解因式:x2y+2xy+y=y(x+1)2.【分析】首先提取公因式y,再利用完全平方进行二次分解即可.解:原式=y(x2+2x+1)=y(x+1)2,故答案为:y(x+1)2.15.不等式组的解集是x≤﹣2.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式≤﹣1,得:x≤﹣2,解不等式﹣x+7>4,得:x<3,则不等式组的解集为x≤﹣2,故答案为:x≤﹣2.16.两组数据m,6,n与1,m,2n,7的平均数都是8,若将这两组数据合并成一组数据,则这组新数据的极差为11.【分析】根据平均数的计算公式先求出m、n的值,再根据极差的定义即可得出答案.解:∵两组数据m,6,n与1,m,2n,7的平均数都是8,∴,解得:,故将这两组数据合并成一组数据为:12,6,6,1,12,12,7,则极差为:12﹣1=11.故答案为:11.17.如图,▱ABCD的对角线AC、BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD 的周长为16.【分析】首先证明OE=BC,再由AE+EO=4,推出AB+BC=8即可解决问题.解:∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故答案为:16.18.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①abc<0;②5a﹣b+c<0;③方程ax2+bx+c=0的两根分别为x1=﹣5,x2=1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有①②③.【分析】①由抛物线的开口方向确定a的正负号,再由对称轴的位置,确定b的正负号,由抛物线与y轴的交点位置,确定c的正负号;②根据抛物线的顶点坐标公式用a表示b和c,再代入5a﹣b+c中,便可得由a的取值范围确定代数5a﹣b+c的正负;③把y=ax2+bx+c=0中,b、c换成a,再解方程便可得判断正误;④分别求出方程ax2+bx+c=1和ax2+bx+c=﹣1的两根和,便可求得原方程四根之和.解:∵抛物线的开口向上,则a>0,对称轴在y轴的左侧,则b>0,交y轴的负半轴,则c<0,∴abc<0,所以①结论正确;∵抛物线的顶点坐标(﹣2,﹣9a),∴﹣=﹣2,=﹣9a,∴b=4a,c=﹣5a,∴5a﹣b+c=5a﹣4a﹣5a=﹣4a<0,故②结论正确;∵抛物线y=ax2+bx+c=ax2+4ax﹣5a,当y=0时,ax2+4ax﹣5a=0,即a(x+5)(x﹣1)=0,∴x=﹣5或1,∴方程ax2+bx+c=0的两个根x1=﹣5,x2=1,故结论③正确;若方程|ax2+bx+c|=1有四个根,设方程ax2+bx+c=1的两根分别为x1,x2,则=﹣2,可得x1+x2=﹣4,设方程ax2+bx+c=﹣1的两根分别为x3,x4,则=﹣2,可得x3+x4=﹣4,所以这四个根的和为﹣8,故结论④错误,故答案为①②③.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23,24题毎小题9分,第25、26题每小題10分,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.计算:﹣|2﹣|+()﹣2﹣2sin60°【分析】首先计算乘方,然后计算加减,即可.解:原式=3﹣(2﹣)+4﹣2×=3﹣2++4﹣=5.20.先化简(﹣1)÷,然后从﹣2≤a<2中选出一个合适的整数作为a的值代入求值.【分析】直接利用分式的加减运算法则将括号里面通分运算,进而利用分式的混合运算法则计算得出答案.解:原式=,=,=∵从﹣2≤a<2的范围内选取一个合适的整数,∴当a=﹣2时,原式=.21.某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:70 72 74 75 76 76 77 77 77 78 79c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有23人;(2)表中m的值为77.5;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.【分析】(1)根据条形图及成绩在70≤x<80这一组的数据可得;(2)根据中位数的定义求解可得;(3)将各自成绩与该年级的中位数比较可得答案;(4)用总人数乘以样本中七年级成绩超过平均数76.9分的人数所占比例可得.解:(1)在这次测试中,七年级在80分以上(含80分)的有15+8=23人,故答案为:23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为78、79,∴m==77.5,故答案为:77.5;(3)甲学生在该年级的排名更靠前,∵七年级学生甲的成绩大于中位数78分,其名次在该年级抽查的学生数的25名之前,八年级学生乙的成绩小于中位数79.5分,其名次在该年级抽查的学生数的25名之后,∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为400×=224(人).22.如图,在四边形ABCD中,∠BAC=90°,点E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=3,BC=5,求EF的长.【分析】(1)根据平行四边形和菱形的判定证明即可;(2)根据菱形的性质和三角形的面积公式解答即可.【解答】(1)证明:∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=CE=BC,∴四边形AECD是菱形;(2)解:过A作AH⊥BC于点H,如图所示:∵∠BAC=90°,AB=3,BC=5,∴AC===4,∵S△ABC=BC•AH=AB•AC,∴AH===,∵点E是BC的中点,BC=5,四边形AECD是菱形,∴CD=CE=,∵S▱AECD=CE•AH=CD•EF,∴EF=AH=.23.上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?(利润率=)【分析】(1)设第一批购进水果x千克,则第二批购进水果2.5x千克,依据题意列式计算而得到结果,并检验是原方程的解,而求得.(2)设售价为每千克a元,求得关系式,又由630a ≥7500×1.26,而解得.解:(1)设第一批购进水果x千克,则第二批购进水果2.5x千克,依据题意得:,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700,答:这两批水果共购进700千克;(2)设售价为每千克a元,则:,630a≥7500×1.26,∴,∴a≥15,答:售价至少为每千克15元.24.类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD中,添加一个条件,使得四边形ABCD是“等邻边四边形”,请写出你添加的一个条件;(2)概念延伸:下列说法正确的是①②④(填入相应的序号)①对角线互相平分的“等邻边四边形”是菱形;②一组对边平行,另一组对边相等的“等邻边四边形”是菱形;③有两个内角为直角的“等邻边四边形”是正方形;④一组对边平行,另一组对边相等且有一个内角是直角的“等邻边四边形”是正方形;(3)问题探究:如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=4,BC=3,并将Rt△ABC 沿∠B的平分线BB'方向平移得到△A'B'C′,连结AA′,BC′,小红要使平移后的四边形ABC′A′是“等邻边四边形”应平移多少距离(即线段BB'的长)?【分析】(1)根据定义添加一组邻边相等即可;(2)先利用平行四边形的判定定理得平行四边形,再利用“等邻边四边形”定义得邻边相等,得出结论;(3)由平移的性质易得BB′=AA′,A′B′∥AB,A′B′=AB=4,B′C′=BC =3,A′C′=AC=5,再利用“等邻边四边形”定义分类讨论,由勾股定理得出结论.解:(1)AB=BC或BC=CD或AD=CD或AB=AD.答案:AB=AD.(2)①正确,理由为:∵四边形的对角线互相平分,∴这个四边形是平行四边形,∵四边形是“等邻边四边形”,∴这个四边形有一组邻边相等,∴这个“等邻边四边形”是菱形;②正确,理由为:一组对边平行,另一组对边相等可得到:两组对边相等,则该四边形是平行四边形,所以根据“邻边相等的平行四边形为菱形”推知:一组对边平行,另一组对边相等的“等邻边四边形”是菱形;③不正确,理由为:有两个内角为直角的“等邻边四边形”不是平行边形时,该结论不成立;④正确,理由为:一组对边平行,另一组对边相等可得到:两组对边相等,则该四边形是平行四边形,所以根据“邻边相等的平行四边形为菱形”推知:一组对边平行,另一组对边相等的“等邻边四边形”是菱形;再由由一内角是直角的菱形为正方形推知,④的说法正确.故答案是:①②④;(3)∵∠ABC=90°,AB=4,BC=3,∴AC=5,∵将Rt△ABC平移得到△A′B′C′,∴BB′=AA′,A′B′∥AB,A′B′=AB=4,B′C′=BC=3,A′C′=AC=5,(I)如图1,当AA′=AB时,BB′=AA′=AB=4;(II)如图2,当AA′=A′C′时,BB′=AA′=A′C′=5;(III)当A′C′=BC′=5时,如图3,延长C′B′交AB于点D,则C′B′⊥AB,∵BB′平分∠ABC,∴∠ABB′=∠ABC=45°,∴∠BB′D=′∠ABB′=45°∴B′D=BD,设B′D=BD=x,则C′D=x+1,BB′=x,∵在Rt△BC′D中,BD2+C′D2=BC′2∴x2+(x+1)2=52,解得:x1=3,x2=﹣4(不合题意,舍去),∴BB′=x=3(Ⅳ)当BC′=AB=4时,如图4,与(Ⅲ)方法一同理可得:BD2+C′D2=BC′2,设B′D=BD=x,则x2+(x+1)2=32,解得:x1=,x2=(不合题意,舍去),∴BB′=x=;综上所述,要使平移后的四边形ABC′A′是“等邻边四边形”应平移3或.25.已知关于x的方程kx2+(2k+1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根;(2)当抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围;(3)将(2)中的抛物线向右平移m(3≤m≤6)个单位,与x轴的两个交点分别为A (x1,0),B(x2,0),若=+,求M的取值范围.【分析】(1)分类讨论:该方程是一元一次方程和一元二次方程两种情况.当该方程为一元二次方程时,根的判别式△≥0,方程总有实数根;(2)通过解kx2+(2k+1)x+2=0得到k=1,由此得到该抛物线解析式为y=x2+3x+2,结合图象回答问题.(3)抛物线向右平移m(3≤m≤6)个单位后的解析式为y=(x+﹣m)2﹣,令y =0,解方程求得x1=m﹣1,x2=m﹣2,代入=+,求得M==,根据3≤m≤6即可求得M的取值.【解答】(1)证明:①当k=0时,方程为x+2=0,所以x=﹣2,方程有实数根,②当k≠0时,∵△=(2k+1)2﹣4k×2=(2k﹣1)2≥0,即△≥0,∴无论k取任何实数时,方程总有实数根;(2)解:令y=0,则kx2+(2k+1)x+2=0,解关于x的一元二次方程,得x1=﹣2,x2=﹣,∵二次函数的图象与x轴两个交点的横坐标均为整数,且k为正整数,∴k=1.∴该抛物线解析式为y=x2+3x+2,由图象得到:当y1>y2时,a>1或a<﹣4.(3)解:∵抛物线解析式为y=x2+3x+2=(x+)2﹣∴抛物线向右平移m(3≤m≤6)个单位后的解析式为y=(x+﹣m)2﹣,令y=0,则(x+﹣m)2﹣=0,解得x1=m﹣1,x2=m﹣2,∵=+,∴M==,∵3≤m≤6,∴≤M≤.26.如图,已知抛物线y=mx2﹣8mx﹣9m与x轴交于A,B两点,且与y轴交于点C(0,﹣3),过A,B,C三点作⊙O′,连接AC,BC.(1)求⊙O′的圆心O′的坐标;(2)点E是AC延长线上的一点,∠BEC的平分线CD交⊙O′于点D,求点D的坐标,并直接写出直线BC和直线BD的解析式;(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD,若存在,请求出点P的坐标,若不存在,请说明理由.【分析】(1)求出点A、B的坐标,利用O′为AB的中点,即可求解;(2)证明∠O′DB=90°,即O′D⊥AB,即可求解;(3)分点P在直线BD下方、P在BD的上方两种情况,分别求解即可.解:(1)y=mx2﹣8mx﹣9m,令y=0,解得:x=﹣1或9,故点A、B的坐标分别为:(﹣1,0)、(9,0),∵过A,B,C三点作⊙O′,故O′为AB的中点,∴点O′的坐标为(4,0);(2)∵AB是圆的直径,∴∠ACB=90°,∴∠BCE=90°,∵∠BEC的平分线为CD,∴∠BCD=45°,∴∠O′DB=90°,即O′D⊥AB,圆的半径为AB=5,故点D的坐标为(4,﹣5),设直线BC的表达式为:y=kx+b,则,解得:,故直线BC的表达式为:y=x﹣3,同理可得直线BD的表达式为:y=x﹣9;(3)由点A、B、C的坐标得,抛物线的表达式为:y=x2﹣x﹣3①,①当点P(P′)在直线BD下方时,∵∠PDB=∠CBD,∴DP′∥BC,则设直线DP′的表达式为:y=x+t,将点D的坐标代入上式并解得:t=﹣,故直线DP′的表达式为:y=x﹣②,联立①②并解得:x=(舍去负值),故点P的坐标为(,);②当点P在BD的上方时,由BD的表达式知,直线BD的倾斜角为45°,以BD为对角线作正方形DMBN,边MB交直线DP′于点H′,直线DP交NB边于点H,对于直线DP′:y=x﹣,当x=9时,y=﹣,即BH′=,根据点的对称性知:BH=BH′=,故点H(,0),由点D、H的坐标得,直线DH的表达式为:y=3x﹣17③,联立①③并解得:x=3或14(舍去3),故点P的坐标为(14,25);故点P的坐标为:(,)或(14,25).。

2020年数学中考模拟试题(及答案)

2020年数学中考模拟试题(及答案)

2020年数学中考模拟试题(及答案)一、选择题1.已知一个正多边形的内角是140°,则这个正多边形的边数是()A .9B .8C .7D .6 2.下列计算正确的是( ) A . 2a +3b = 5ab B . (a —b )2=a 2—b 2 C . (2x 2)3=6x 6D . x 8;x 3=x 5 3.若一个凸多边形的内角和为720°,则这个多边形的边数为() A .4 B .5 C .6 D .74.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89 分,则该同学这6次成绩的中位数是( )A . 94B . 95 分C . 95.5 分D . 96 分5.下列图形是轴对称图形的有( )6 .函数y =。

2 % -1中的自变量%的取值范围是()A . % 丰—B . % 之1C . % >—D . % 之一 ^2 ^2 ^27 .如图,矩形纸片ABCD 中,AB = 4 , BC = 6,将VABC 沿AC 折叠,使点B 落在点 E 处,CE 交AD 于点F ,则DF 的长等于()9.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价 10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更 合算( )A .甲B .乙C .丙D . 一样 10.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种 蔬菜放在一起同时保鲜,适宜的温度是() B . C . D .A .40°B .50°C .60°D .70°A . 2个B . 3个C . 4个D . 5个A . 8.将一个矩形纸片按如图所示折叠,若21=40°,则N2的度数是()A.1℃~3℃B.3℃~5℃C.5℃~8℃D.1℃~8℃413.如图,在四边形 ABCD 中,NB=ND = 90°, AB = 3, BC=2, tanA= 3,则 CD =14.如图:已知八3=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边4AEP和等边△PFB,连结EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是.15.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是cm2.16.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次2。

苏教版2020年中考数学模拟卷(含答案解析)

苏教版2020年中考数学模拟卷(含答案解析)

2020年中考数学模拟试卷一.选择题(共8小题)1.下列各数中最小的数为()A.﹣3 B.﹣1 C.0 D.12.下列运算正确的是()A.3x2•4x2=12x2B.x3+x5=x8C.x4÷x=x3D.(x5)2=x73.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示为()A.0.3×105B.3×105C.0.3×106D.3×1064.下图几何体的主视图是()A.B.C.D.5.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时) 3 3.5 4 4.5人数 1 1 3 2A.中位数是4,众数是4 B.中位数是3.5,众数是4C.平均数是3.5,众数是4 D.平均数是4,众数是3.56.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A.300(1+x)=450 B.300(1+2x)=450C.300(1+x)2=450 D.450(1﹣x)2=3007.某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图象如图所示,则超过500元的部分可以享受的优惠是()A.打六折B.打七折C.打八折D.打九折8.如图,▱ABCO的顶点B、C在第二象限,点A(﹣3,0),反比例函数y=(k<0)图象经过点C和AB边的中点D,若∠B=α,则k的值为()A.﹣4tanαB.﹣2sinαC.﹣4cosαD.﹣2tanα二.填空题(共8小题)9.=.10.分解因式:x3﹣x=.11.已知一个多边形的内角和为540°,则这个多边形是边形.12.从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是.13.小亮测得一圆锥模型的底面直径为10cm,母线长为7cm,那么它的侧面展开图的面积是cm2.14.如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为.15.抛物线y=﹣x2+2x+8与x轴交于B、C两点,点D平分BC,且点A为抛物线上的点,且∠BAC为锐角,则AD的值范围为.16.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=3,CD=2.则△ABC的面积为.三.解答题(共10小题)17.计算或化简:(1)(2)18.解方程:+=1.19.图书馆是一个很好的学习平台,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有万人次到图书馆阅读,其中商人占百分比为%.(2)将条形统计图补充完整.(3)5月份到图书馆的读者共有24000人次,根据以上调查结果,估计24000人次中是职工的人次.20.如图,E是AC上一点,AB=CE,AB∥CD,AC=CD.求证:BC=ED.21.有四张仅一面分别标有1,2,3,4的不透明纸片,除所标数字不同外,其余都完全相同.(1)将四张纸片分成两组,标有1、3的为第一组,标有2、4的为第二组,背面向上,放在桌上,从两组中各随机抽取一张,求两次抽取数字和为5的概率;(2)将四张纸片洗匀后背面向上,放在桌上,一次性从中随机抽取两张,用树形图法或列表法,求所抽取数字和为5的概率.22.如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC、AB分别相交于点D、F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sin A=时,求AF的长.23.如图(1)是一种简易台灯,在其结构图(2)中灯座为△ABC(BC伸出部分不计),A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.(1)求DE与水平桌面(AB所在直线)所成的角;(2)求台灯的高(点E到桌面的距离,结果精确到0.1cm).(参考数据:sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)24.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.25.如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.26.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.参考答案与试题解析一.选择题(共8小题)1.下列各数中最小的数为()A.﹣3 B.﹣1 C.0 D.1【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣3<﹣1<0<1,∴各数中最小的数是﹣3.故选:A.2.下列运算正确的是()A.3x2•4x2=12x2B.x3+x5=x8C.x4÷x=x3D.(x5)2=x7【分析】A、利用单项式乘单项式法则计算得到结果,即可做出判断;B、原式不能合并,本选项错误;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用幂的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、3x2•4x2=12x4,本选项错误;B、原式不能合并,错误;C、x4÷x=x3,本选项正确;D、(x5)2=x10,本选项错误,故选:C.3.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示为()A.0.3×105B.3×105C.0.3×106D.3×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将300 000用科学记数法表示为:3×105.故选:B.4.下图几何体的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可.【解答】解:从正面可看到的几何体的左边有3个正方形,中间只有2个正方形,右边有1个正方形.故选:C.5.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时) 3 3.5 4 4.5人数 1 1 3 2A.中位数是4,众数是4 B.中位数是3.5,众数是4C.平均数是3.5,众数是4 D.平均数是4,众数是3.5【分析】根据众数和中位数的概念求解.【解答】解:这组数据中4出现的次数最多,众数为4,∵共有7个人,∴第4个人的劳动时间为中位数,所以中位数为4,故选:A.6.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A.300(1+x)=450 B.300(1+2x)=450C.300(1+x)2=450 D.450(1﹣x)2=300【分析】设快递量平均每年增长率为x,根据我国2016年及2018年的快递业务量,即可得出关于x的一元二次方程,此题得解.【解答】解:设快递量平均每年增长率为x,依题意,得:300(1+x)2=450.故选:C.7.某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图象如图所示,则超过500元的部分可以享受的优惠是()A.打六折B.打七折C.打八折D.打九折【分析】根据题意和函数图象中的数据可以列出相应的方程,从而可以求得超过500元的部分可以享受的优惠,本题得以解决.【解答】解:设超过500元的部分可以享受的优惠是x折,(1000﹣500)×+500=900,解得,x=8,故选:C.8.如图,▱ABCO的顶点B、C在第二象限,点A(﹣3,0),反比例函数y=(k<0)图象经过点C和AB边的中点D,若∠B=α,则k的值为()A.﹣4tanαB.﹣2sinαC.﹣4cosαD.﹣2tanα【分析】过点C作CE⊥OA于E,过点D作DF⊥x轴于F,根据平行四边形的对边相等可得OC=AB,然后求出OC=2AD,再求出OE=2AF,设AF=a,表示出点C、D的坐标,然后根据CE、DF的关系列方程求出a的值,再求出OE、CE,然后利用∠COA的正切值列式整理即可得解.【解答】解:如图,过点C作CE⊥OA于E,过点D作DF⊥x轴于F,在▱OABC中,OC=AB,∵D为边AB的中点,∴OC=AB=2AD,CE=2DF,∴OE=2AF,设AF=a,∵点C、D都在反比例函数上,∴点C(﹣2a,﹣),∵A(3,0),∴D(﹣a﹣3,),∴=2×,解得a=1,∴OE=2,CE=﹣,∵∠COA=∠α,∴tan∠COA=tan∠α=,即tanα=﹣,k=﹣4tanα.故选:A.二.填空题(共8小题)9.= 2 .【分析】如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.【解答】解:∵22=4,∴=2.故答案为:210.分解因式:x3﹣x=x(x+1)(x﹣1).【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).11.已知一个多边形的内角和为540°,则这个多边形是五边形.【分析】利用n边形的内角和可以表示成(n﹣2)•180°,结合方程即可求出答案.【解答】解:根据多边形的内角和可得:(n﹣2)180°=540°,解得:n=5.则这个多边形是五边形.故答案为:五.12.从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是.【分析】先写出3种等可能的结果数,然后根据三角形三边的关系确定三条线段能构成三角形的结果数,再根据概率公式求解.【解答】解:共有3种等可能的结果数,它们是:2、3、3,2、3、4,2、3、5,其中三条线段能构成三角形的结果数为2种,所以能构成三角形的概率=.故答案为:.13.小亮测得一圆锥模型的底面直径为10cm,母线长为7cm,那么它的侧面展开图的面积是35πcm2.【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=lr即可求解.【解答】解:底面周长是:10π,则侧面展开图的面积是:×10π×7=35πcm2.故答案是:35π.14.如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为.【分析】分别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,先根据全等三角形的判定定理得出△BCE≌△ACF,故可得出CF及CE的长,在Rt△ACF中根据勾股定理求出AC的长,再由相似三角形的判定得出△CDG∽△CAF,故可得出CD的长,在Rt△BCD中根据勾股定理即可求出BD的长.【解答】解:别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,∵△ABC是等腰直角三角形,∴AC=BC,∵∠EBC+∠BCE=90°,∠BCE+∠ACF=90°,∠ACF+∠CAF=90°,∴∠EBC=∠ACF,∠BCE=∠CAF,在△BCE与△ACF中,∴△BCE≌△ACF(ASA)∴CF=BE,CE=AF,∵l1与l2的距离为1,l2与l3的距离为3,∴CF=BE=3,CE=AF=3+1=4,在Rt△ACF中,∵AF=4,CF=3,∴AC=5,∵AF⊥l3,DG⊥l3,∴△CDG∽△CAF,∴,∴∴在Rt△BCD中,∵CD=,BC=5,所以BD==.故答案为:.15.抛物线y=﹣x2+2x+8与x轴交于B、C两点,点D平分BC,且点A为抛物线上的点,且∠BAC为锐角,则AD的值范围为3<x≤9 .【分析】由“∠BAC为锐角”可知点A在以定线段BC为直径的圆外,又点A在x轴上侧,从而可确定动点A的范围.【解答】解:如图,∵抛物线y=﹣x2+2x+8,∴抛物线的顶点为A0(1,9),对称轴为x=1,与x轴交于两点B(﹣2,0)、C(4,0),分别以BC、DA为直径作⊙D、⊙E,则两圆与抛物线均交于两点P(1﹣2,1)、Q(1+2,1).可知,点A在不含端点的抛物线内时,∠BAC<90°,且有3=DP=DQ<AD≤DA0=9,即AD的取值范围是3<AD≤9.则A的横坐标取值范围是3<x≤9.故答案为:3<x≤9.16.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=3,CD=2.则△ABC的面积为15 .【分析】将△ABD绕着点A逆时针旋转90°,得△AFQ,延长FQ,BC,交于点E,连接CQ,判定△BAC≌△QAC(SAS),得到BC=CQ=BD+CD=5,再设AD=x,在Rt△CQE中,运用勾股定理列出关于x的方程,求得x的值,最后根据△ABC的面积=×BC×AD,进行计算即可【解答】解:如图,将△ABD绕着点A逆时针旋转90°,得△AFQ,延长FQ,BC,交于点E,连接CQ,由旋转可得,△ABD≌△AQF,∴AB=AQ,∠BAD=∠FAQ,BD=QF=3,∠F=∠ADC=∠DAF=90°=∠E,∵∠BAC=45°,∴∠BAD+∠DAC=45°,∴∠DAC+∠FAQ=45°,又∵∠DAF=90°,∴∠CAQ=45°,∴∠BAC=∠CAQ.且AB=AQ,AC=AC∴△BAC≌△QAC(SAS),∴BC=CQ=BD+CD=5,设AD=x,则QE=x﹣3,CE=x﹣2.在Rt△CQE中,CE2+QE2=CQ2∴(x﹣2)2+(x﹣3)2=52解得:x1=6,x2=﹣1(舍去),∴AD=6,∴△ABC的面积为=×BC×AD=15故答案为:15三.解答题(共10小题)17.计算或化简:(1)(2)【分析】(1)直接利用特殊角的三角函数值以及零指数幂的性质、二次根式的性质分别化简得出答案;(2)首先利用分式的混合运算法则进而化简得出答案.【解答】解:(1)原式=﹣2+2×+1=﹣2++1=1;(2)原式=1﹣×=1﹣=﹣.18.解方程:+=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:(x+1)(x+1)﹣4=x2﹣1,解得:x=1,经检验x=1是分式方程的增根,∴原分式方程无解.19.图书馆是一个很好的学习平台,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有16 万人次到图书馆阅读,其中商人占百分比为12.5 %.(2)将条形统计图补充完整.(3)5月份到图书馆的读者共有24000人次,根据以上调查结果,估计24000人次中是职工的人次.【分析】(1)利用到图书馆阅读的人数=学生的人数÷学生的百分比求解,商人占百分比=商人数÷总人数求解即可,(2)求出职工到图书馆阅读的人数,作图即可,(3)利用总人数乘读者是职工的人数所占的百分比求解即可.【解答】解:(1)在统计的这段时间内,到图书馆阅读的人数为4÷25%=16(万人),其中商人占百分比为×100%=12.5%;故答案为:16;12.5;(2)职工:16﹣4﹣2﹣4=6(万人),如图所示:(3)估计24000人次中是职工的人次为24000×=9000(人次).20.如图,E是AC上一点,AB=CE,AB∥CD,AC=CD.求证:BC=ED.【分析】要证明BC=ED,只要证明△ABC≌△CED即可,根据题意目中的条件和平行线的性质可以得到证明两个三角形全等的条件,本题得以解决.【解答】证明:∵AB∥CD,∴∠A=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(SAS),∴BC=ED.21.有四张仅一面分别标有1,2,3,4的不透明纸片,除所标数字不同外,其余都完全相同.(1)将四张纸片分成两组,标有1、3的为第一组,标有2、4的为第二组,背面向上,放在桌上,从两组中各随机抽取一张,求两次抽取数字和为5的概率;(2)将四张纸片洗匀后背面向上,放在桌上,一次性从中随机抽取两张,用树形图法或列表法,求所抽取数字和为5的概率.【分析】(1)应用列表法,求出两次抽取数字和为5的概率是多少即可.(2)应用列表法,求出所抽取数字和为5的概率是多少即可.【解答】解:(1)1 32 (1,2)(3,2)4 (1,4)(3,4)∵共有4种可能性,且每种可能性都相同,数字和为5有两种可能性,∴两次抽取数字和为5的概率为:=.(2)1 2 3 41 ﹣﹣(2,1)(3,1)(4,1)2 (1,2)﹣﹣(3,2)(4,2)3 (1,3)(2,3)﹣﹣(4,3)4 (1,4)(2,4)(3,4)﹣﹣∵共有12种可能性,且每种可能性都相同,数字和为5的有4种可能性,∴抽取数字和为5概率为:=.22.如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC、AB分别相交于点D、F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sin A=时,求AF的长.【分析】(1)连接OE,BE,因为DE=EF,所以=,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sin A===,从而可求出r的值.【解答】解:(1)连接OE,BE,∵DE=EF,∴=,∴∠OBE=∠DBE,∵OE=OB,∴∠OEB=∠OBE,∴∠OEB=∠DBE,∴OE∥BC,∵⊙O与边AC相切于点E,∴OE⊥AC,∴BC⊥AC,∴∠C=90°;(2)在△ABC,∠C=90°,BC=3,sin A=,∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sin A===,∴r=,∴AF=5﹣2×=.23.如图(1)是一种简易台灯,在其结构图(2)中灯座为△ABC(BC伸出部分不计),A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.(1)求DE与水平桌面(AB所在直线)所成的角;(2)求台灯的高(点E到桌面的距离,结果精确到0.1cm).(参考数据:sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)【分析】(1)直接作出平行线和垂线进而得出∠EDF的值;(2)利用锐角三角函数关系得出DN以及EF的值,进而得出答案.【解答】解:(1)如图所示:过点D作DF∥AB,过点D作DN⊥AB于点N,EF⊥AB于点M,由题意可得,四边形DNMF是矩形,则∠NDF=90°,∵∠A=60°,∠AND=90°,∴∠ADN=30°,∴∠EDF=135°﹣90°﹣30°=15°,即DE与水平桌面(AB所在直线)所成的角为15°;(2)如图所示:∵∠ACB=90°,∠A=60°,AB=16cm,∴∠ABC=30°,则AC=AB=8cm,∵灯杆CD长为40cm,∴AD=48cm,∴DN=AD•cos30°≈41.76cm,则FM=41.76cm,∵灯管DE长为15cm,∴sin15°===0.26,解得:EF=3.9,故台灯的高为:3.9+41.76≈45.7(cm).24.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.【分析】(1)设今年年初猪肉价格为每千克x元;根据题意列出一元一次不等式,解不等式即可;(2)设5月20日两种猪肉总销量为1;根据题意列出方程,解方程即可.【解答】解:(1)设今年年初猪肉价格为每千克x元;根据题意得:2.5×(1+60%)x≥100,解得:x≥25.答:今年年初猪肉的最低价格为每千克25元;(2)设5月20日两种猪肉总销量为1;根据题意得:40(1﹣a%)×(1+a%)+40×(1+a%)=40(1+a%),令a%=y,原方程化为:40(1﹣y)×(1+y)+40×(1+y)=40(1+y),整理得:5y2﹣y=0,解得:y=0.2,或y=0(舍去),则a%=0.2,∴a=20;答:a的值为20.25.如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.【分析】(1)利用tan∠ABC=3,得出C点坐标,再利用待定系数法求出二次函数解析式;(2)①当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,则P的运动路程为△ABC的中位线HK,再利用勾股定理得出答案;②首先利用等腰三角形的性质得出∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,进而求出∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即可得出答案;(3)首先得出C△PEF=AD+EF,进而得出EG=PE,EF=PE=AD,利用C△PEF=AD+EF =(1+)AD=AD,得出最小值即可.【解答】解:(1)∵函数y=ax2+bx+c与x轴交于A、B两点,且一元二次方程ax2+bx+c =0两根为:﹣8,2,∴A(﹣8,0)、B(2,0),即OB=2,又∵tan∠ABC=3,∴OC=6,即C(0,﹣6),将A(﹣8,0)、B(2,0)代入y=ax2+bx﹣6中,得:,解得:,∴二次函数的解析式为:y=x2+x﹣6;(2)①如图1,当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,∴P的运动路程为△ABC的中位线HK,∴HK=BC,在Rt△BOC中,OB=2,OC=6,∴BC=2,∴HK=,即P的运动路程为:;②∠EPF的大小不会改变,理由如下:如图2,∵DE⊥AB,∴在Rt△AED中,P为斜边AD的中点,∴PE=AD=PA,∴∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,∴∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即∠EPF=2∠EAF,又∵∠EAF大小不变,∴∠EPF的大小不会改变;(3)设△PEF的周长为C,则C△PEF=PE+PF+EF,∵PE=AD,PF=AD,∴C△PEF=AD+EF,在等腰三角形PEF中,如图2,过点P作PG⊥EF于点G,∴∠EPG=∠EPF=∠BAC,∵tan∠BAC==,∴tan∠EPG==,∴EG=PE,EF=PE=AD,∴C△PEF=AD+EF=(1+)AD=AD,又当AD⊥BC时,AD最小,此时C△PEF最小,又S△ABC=30,∴BC×AD=30,∴AD=3,∴C△PEF最小值为:AD=.26.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为 1 ;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC ∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.。

山东省菏泽市郓城县2020年中考数学模拟试卷四(含解析)

山东省菏泽市郓城县2020年中考数学模拟试卷四(含解析)

2020年中考数学模拟试卷(四)一、选择题(共8小题).1.若一个数的相反数是3,则这个数是()A.﹣B.C.﹣3D.32.如图,l∥m,等边△ABC的顶点A在直线m上,则∠α=()A.10°B.20°C.30°D.40°3.把多项式x2+ax+b分解因式,得(x+1)(x﹣3),则a,b的值分别是()A.a=2,b=3B.a=﹣2,b=﹣3C.a=﹣2,b=3D.a=2,b=﹣3 4.为了响应学校“书香校园”建设,阳光班的同学们积极捐书,其中宏志学习小组的同学捐书册数分别是:5,7,x,3,4,6.已知他们平均每人捐5本,则这组数据的众数、中位数和方差分别是()A.5,5,B.5,5,10C.6,5.5,D.5,5,5.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.6.如图,M,N两点在数轴上表示的数分别是m,n,则下列式子中成立的是()A.m+n<0B.﹣m<﹣n C.|m|﹣|n|>0D.2+m<2+n7.如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t 的函数图象大致为()A.B.C.D.8.如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC绕C点按逆时针方向旋转90°,那么点B的对应点B′的坐标是()A.(0,1)B.(0,﹣1)C.(1,0)D.(﹣1,0)二、填空题(共6小题,每小题3分,满分18分)9.当kb<0时,一次函数y=kx+b的图象一定经过第象限.10.一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是.11.如图,已知一次函数y=kx﹣4的图象与x轴、y轴分别交于A、B两点,与反比例函数y=在第一象限内的图象交于点C,且A为BC的中点,则k=.12.若mn=m+3,则2mn+3m﹣5mn+10=.13.不等式组的解集是.14.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x≤3;⑤当x<0时,y随x增大而增大;其中结论正确有.三、解答题(本题共78分,把解答和证明过程写在答题卡的相应区域内)15.计算:.16.解方程:﹣=1.17.如图,D是△ABC的边AC上的一点,连接BD,已知∠ABD=∠C,AB=6,AD=4,求线段CD的长.18.学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?19.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.20.如图,一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求点C的坐标,并结合图象写出不等式组0<x+m≤的解集.21.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE⊥AD,交AB于点E,AE为⊙O的直径(1)判断BC与⊙O的位置关系,并证明你的结论;(2)求证:△ABD∽△DBE;(3)若cos B=,AE=4,求CD.22.我州实施新课程改革后,学生的自主学习、合作交流能力有很大提高.某学校为了了解学生自主学习、合作交流的具体情况,对部分学生进行了为期半个月的跟踪调査,并将调査结果分类,A:特别好;B:好;C:一般;D:较差.现将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,一共调査了名同学,其中C类女生有名;(2)将下面的条形统计图补充完整;(3)为了共同进步,学校想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男生、一位女生的概率.23.如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.(1)如图a,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F.①求证:FA=DE;②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;(2)如图b,当∠ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.24.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y 轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.参考答案一、选择题(共8小题,每小题3分,满分24分)1.若一个数的相反数是3,则这个数是()A.﹣B.C.﹣3D.3【分析】两数互为相反数,它们的和为0.解:设3的相反数为x.则x+3=0,x=﹣3.故选:C.2.如图,l∥m,等边△ABC的顶点A在直线m上,则∠α=()A.10°B.20°C.30°D.40°【分析】先根据对顶角相等求出∠CEF的度数,再由三角形内角和定理求出∠CFE的度数,根据平行线的性质即可得出结论.解:∵∠GEB=40°,∴∠CEF=∠GEB=40°.∵△ABC是等边三角形,∴∠C=∠BAC=60°,∴∠CFE=180°﹣60°﹣40°=80°.∵l∥m,∴∠CFE=∠BAC+∠α,即80°=60°+∠α,解得∠α=20°.故选:B.3.把多项式x2+ax+b分解因式,得(x+1)(x﹣3),则a,b的值分别是()A.a=2,b=3B.a=﹣2,b=﹣3C.a=﹣2,b=3D.a=2,b=﹣3【分析】根据x2+ax+b分解因式的结果为(x+1)(x﹣3),可得a=﹣3+1,常数项的积是b.解:∵x2+ax+b=(x+1)(x﹣3),∴a=1﹣3=﹣2,b=﹣3×1=﹣3,故选:B.4.为了响应学校“书香校园”建设,阳光班的同学们积极捐书,其中宏志学习小组的同学捐书册数分别是:5,7,x,3,4,6.已知他们平均每人捐5本,则这组数据的众数、中位数和方差分别是()A.5,5,B.5,5,10C.6,5.5,D.5,5,【分析】根据平均数,可得x的值,根据众数的定义、中位数的定义、方差的定义,可得答案.解:由5,7,x,3,4,6.已知他们平均每人捐5本,得x=5.众数是5,中位数是5,方差=,故选:D.5.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选:C.6.如图,M,N两点在数轴上表示的数分别是m,n,则下列式子中成立的是()A.m+n<0B.﹣m<﹣n C.|m|﹣|n|>0D.2+m<2+n【分析】根据M、N两点在数轴上的位置判断出其取值范围,再对各选项进行逐一分析即可.解:M、N两点在数轴上的位置可知:﹣1<m<0,n>2,∵m+n>O,故A错误,∵﹣m>﹣n,故B错误,∵|m|﹣|n|<0,故C错误.∵2+m<2+n正确,故D正确.故选:D.7.如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t 的函数图象大致为()A.B.C.D.【分析】分析动点P的运动过程,采用定量分析手段,求出S与t的函数关系式,根据关系式可以得出结论.解:不妨设线段AB长度为1个单位,点P的运动速度为1个单位/秒,则:(1)当点P在A→B段运动时,PB=1﹣t,S=π(1﹣t)2(0≤t<1);(2)当点P在B→A段运动时,PB=t﹣1,S=π(t﹣1)2(1≤t≤2).综上,整个运动过程中,S与t的函数关系式为:S=π(t﹣1)2(0≤t≤2),这是一个二次函数,其图象为开口向上的一段抛物线.结合题中各选项,只有B符合要求.故选:B.8.如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC绕C点按逆时针方向旋转90°,那么点B的对应点B′的坐标是()A.(0,1)B.(0,﹣1)C.(1,0)D.(﹣1,0)【分析】利用旋转变换的性质画出图形即可解决问题解:如图,观察图形可知B′(1,0),故选:C.二、填空题(共6小题,每小题3分,满分18分)9.当kb<0时,一次函数y=kx+b的图象一定经过第一、四象限.【分析】由于kb<0,先根据有理数相乘,同号得正,异号得负,分情况讨论;再结合以下性质分析即可:一次函数y=kx+b中,k>0时,图象上升,k<0时,图象下降,b是图象与y轴的交点,b>0,图象交y轴于正半轴,b<0,图象交y轴于负半轴.解:∵kb<0,∴k、b异号.当k>0,b<0时,y=kx+b图象经过第一、三、四象限;当k<0,b>0时,y=kx+b图象经过第一、二、四象限;综上,一次函数y=kx+b的图象一定经过第一、四象限.故答案为:一、四.10.一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是.【分析】先画树状图展示所有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.解:如图,随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,所有两次摸出的小球标号的和等于4的概率=.故答案为:.11.如图,已知一次函数y=kx﹣4的图象与x轴、y轴分别交于A、B两点,与反比例函数y=在第一象限内的图象交于点C,且A为BC的中点,则k=4.【分析】先确定B点坐标,根据A为BC的中点,则点C和点B关于点A中心对称,所以C点的纵坐标为4,再利用反比例函数图象上点的坐标特征可确定C点坐标,然后把C点坐标代入y=kx﹣4即可得到k的值.解:把x=0代入y=kx﹣4得y=﹣4,则B点坐标为(0,﹣4),∵A为BC的中点,∴C点的纵坐标为4,把y=4代入y=得x=2,∴C点坐标为(2,4),把C(2,4)代入y=kx﹣4得2k﹣4=4,解得k=4.故答案为:4.12.若mn=m+3,则2mn+3m﹣5mn+10=1.【分析】原式合并后,将已知等式代入计算即可求出值.解:原式=﹣3mn+3m+10,把mn=m+3代入得:原式=﹣3m﹣9+3m+10=1,故答案为:113.不等式组的解集是<x≤4.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.解:,由①得:x≤4,由②得:x>,则不等式组的解集为<x≤4.故答案为:<x≤4.14.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x≤3;⑤当x<0时,y随x增大而增大;其中结论正确有①②⑤.【分析】利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对②进行判断;由对称轴方程得到b=﹣2a,然后根据x=﹣1时函数值为0可得到3a+c=0,则可对③进行判断;根据抛物线在x轴上方所对应的自变量的范围可对④进行判断;根据二次函数的性质对⑤进行判断.解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,∴4ac<b2,故①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,故②正确;∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,即3a+c=0,故③错误;∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当y>0时,x的取值范围是﹣1<x<3,故④错误;∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,∴当x<0时,y随x增大而增大,故⑤正确;所以其中结论正确有①②⑤,故答案为:①②⑤.三、解答题(本题共78分,把解答和证明过程写在答题卡的相应区域内)15.计算:.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,二次根式性质,以及绝对值的代数意义计算即可求出值.解:原式=2017+1﹣2×﹣2+(3﹣1)=2017+1﹣﹣2+3﹣1=2017.16.解方程:﹣=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:去分母得:x(x+2)﹣2=x2﹣4,去括号得:x2+2x﹣2=x2﹣4,解得:x=﹣1,经检验x=﹣1是分式方程的解.17.如图,D是△ABC的边AC上的一点,连接BD,已知∠ABD=∠C,AB=6,AD=4,求线段CD的长.【分析】由已知角相等,加上公共角,得到三角形ABD与三角形ACB相似,由相似得比例,将AB与AD长代入即可求出CD的长.解:在△ABD和△ACB中,∠ABD=∠C,∠A=∠A,∴△ABD∽△ACB,∴=,∵AB=6,AD=4,∴AC===9,∴CD=AC﹣AD=9﹣4=5.18.学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?【分析】(1)设他当天采摘黄瓜x千克,茄子y千克,根据采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,列出方程,求出x的值,即可求出答案;(2)根据黄瓜和茄子的斤数,再求出每斤黄瓜和茄子赚的钱数,即可求出总的赚的钱数.解:(1)设采摘黄瓜x千克,茄子y千克.根据题意,得,解得.答:采摘的黄瓜和茄子各30千克、10千克;(2)30×(1.5﹣1)+10×(2﹣1.2)=23(元).答:这些采摘的黄瓜和茄子可赚23元.19.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.【分析】(1)设该县投入教育经费的年平均增长率为x,根据2014年该县投入教育经费6000万元和2016年投入教育经费8640万元列出方程,再求解即可;(2)根据2016年该县投入教育经费和每年的增长率,直接得出2017年该县投入教育经费为8640×(1+0.2),再进行计算即可.解:(1)设该县投入教育经费的年平均增长率为x,根据题意得:6000(1+x)2=8640解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去),答:该县投入教育经费的年平均增长率为20%;(2)因为2016年该县投入教育经费为8640万元,且增长率为20%,所以2017年该县投入教育经费为:y=8640×(1+0.2)=10368(万元),答:预算2017年该县投入教育经费10368万元.20.如图,一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求点C的坐标,并结合图象写出不等式组0<x+m≤的解集.【分析】(1)把点A坐标代入一次函数y=x+m与反比例函数y=,分别求得m及k 的值;(2)令直线解析式的函数值为0,即可得出x的值,从而得出点C坐标,根据图象即可得出不等式组0<x+m≤的解集.解:(1)由题意可得:点A(2,1)在函数y=x+m的图象上,∴2+m=1即m=﹣1,∵A(2,1)在反比例函数的图象上,∴,∴k=2;(2)∵一次函数解析式为y=x﹣1,令y=0,得x=1,∴点C的坐标是(1,0),由图象可知不等式组0<x+m≤的解集为1<x≤2.21.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE⊥AD,交AB于点E,AE为⊙O的直径(1)判断BC与⊙O的位置关系,并证明你的结论;(2)求证:△ABD∽△DBE;(3)若cos B=,AE=4,求CD.【分析】(1)结论:BC与⊙O相切,连接OD只要证明OD∥AC即可.(2)欲证明△ABD∽△DBE,只要证明∠BDE=∠DAB即可.(3)在Rt△ODB中,由cos B==,设BD=2k,OB=3k,利用勾股定理列出方程求出k,再利用DO∥AC,得=列出方程即可解决问题.【解答】(1)结论:BC与⊙O相切.证明:如图连接OD.∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠CAD=∠DAB,∴∠CAD=∠ADO,∴AC∥OD,∵AC⊥BC,∴OD⊥BC.∴BC是⊙O的切线.(2)∵BC是⊙O切线,∴∠ODB=90°,∴∠BDE+∠ODE=90°,∵AE是直径,∴∠ADE=90°,∴∠DAE+∠AED=90°,∵OD=OE,∴∠ODE=∠OED,∴∠BDE=∠DAB,∵∠B=∠B,∴△ABD∽△DBE.(3)在Rt△ODB中,∵cos B==,设BD=2k,OB=3k,∵OD2+BD2=OB2,∴4+8k2=9k2,∴k=2,∴BO=6,BD=4,∵DO∥AC,∴=,∴=,∴CD=.22.我州实施新课程改革后,学生的自主学习、合作交流能力有很大提高.某学校为了了解学生自主学习、合作交流的具体情况,对部分学生进行了为期半个月的跟踪调査,并将调査结果分类,A:特别好;B:好;C:一般;D:较差.现将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,一共调査了50名同学,其中C类女生有8名;(2)将下面的条形统计图补充完整;(3)为了共同进步,学校想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男生、一位女生的概率.【分析】(1)由扇形图可知,B类总人数为10+15=25人,由条形图可知B类占50%,则样本容量为:25÷50%=50人;由条形图可知,C类占40%,则C类有50×40%=20人,结合条形图可知C类女生有20﹣12=8人;(2)根据(1)中所求数据补全条件统计图;(3)根据被调査的A类和D类学生男女生人数列表即可得出答案.解:(1)样本容量:25÷50%=50,C类总人数:50×40%=20人,C类女生人数:20﹣12=8人.故答案为:50,8;(2)补全条形统计图如下:(3)将A类与D类学生分为以下几种情况:男A女A1 女A2 男D男A男D女A1男D女A2男D女D女D男A女A1女D女A2女D ∴共有6种结果,每种结果出现可能性相等,∴两位同学恰好是一位男同学和一位女同学的概率为:P(一男一女)==.23.如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.(1)如图a,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F.①求证:FA=DE;②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;(2)如图b,当∠ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.【分析】(1)①根据ASA证明△AFC≌△EDC,可得结论;②结论是:DE+AD=2CH,根据CH是等腰直角△FCD斜边上的中线得:FD=2CH,再进行等量代换可得结论;(2)如图b,根据(1)作辅助线,构建全等三角形,证明△FAC≌△DEC得AF=DE,FC=CD,得等腰△FDC,由三线合一的性质得CH,是底边中线和顶角平分线,得直角△CHD,利用三角函数得出HD与CH的关系,从而得出结论.【解答】证明:(1)①∵CF⊥CD,∴∠FCD=90°,∵∠ACB=90°,∴∠FCA+∠ACD=∠ACD+∠DCE,∴∠FCA=∠DCE,∵∠ACB+∠ADE=180°,∴∠ADE=90°,∴∠BDE=90°,∵∠FAC=∠ACB+∠B=90°+∠B,∠CED=∠EDB+∠B=90°+∠B,∴∠FAC=∠CED,∵AC=CE,∴△AFC≌△EDC(ASA),∴FA=DE,②DE+AD=2CH,理由是:∵△AFC≌△EDC,∴CF=CD,∵CH⊥AB,∴FH=HD,在Rt△FCD中,CH是斜边FD的中线,∴FD=2DH,∴AF+AD=2CH,∴DE+AD=2CH;(2)AD+DE=2CH,理由是:如图b,作∠FCD=∠ACB,交BA延长线于F,∵∠FCA+∠ACD=∠ACD+∠DCB,∴∠FCA=∠DCB,∵∠EDA=60°,∴∠EDB=120°,∵∠FAC=120°+∠B,∠CED=120°+∠B,∴∠FAC=∠CED,∵AC=CE,∴△FAC≌△DEC,∴AF=DE,FC=CD,∵CH⊥FD,∴FH=HD,∠FCH=∠HCD=60°,在Rt△CHD中,tan60°=,∴DH=CH,∵AD+DE=AD+AF=FD=2DH=2CH,即:AD+DE=2CH.24.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y 轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.【分析】(1)根据点A,C的坐标,利用待定系数法即可求出抛物线及直线AC的函数关系式;(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),进而可得出PF的值,由点C的坐标可得出点Q的坐标,进而可得出AQ的值,利用三角形的面积公式可得出S△APC=﹣x2﹣x+3,再利用二次函数的性质,即可解决最值问题;(3)利用二次函数图象上点的坐标特征可得出点N的坐标,利用配方法可找出抛物线的对称轴,由点C,N的坐标可得出点C,N关于抛物线的对称轴对称,令直线AC与抛物线的对称轴的交点为点M,则此时△ANM周长取最小值,再利用一次函数图象上点的坐标特征求出点M的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM 周长的最小值即可得出结论.解:(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的函数关系式为y=﹣x2﹣2x+3;设直线AC的函数关系式为y=mx+n(m≠0),将A(1,0),C(﹣2,3)代入y=mx+n,得:,解得:,∴直线AC的函数关系式为y=﹣x+1.(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,如图1所示.设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),∴PE=﹣x2﹣2x+3,EF=﹣x+1,PF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2.∵点C的坐标为(﹣2,3),∴点Q的坐标为(﹣2,0),∴AQ=1﹣(﹣2)=3,∴S△APC=AQ•PF=﹣x2﹣x+3=﹣(x+)2+.∵﹣<0,∴当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,).(3)当x=0时,y=﹣x2﹣2x+3=3,∴点N的坐标为(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的对称轴为直线x=﹣1.∵点C的坐标为(﹣2,3),∴点C,N关于抛物线的对称轴对称.令直线AC与抛物线的对称轴的交点为点M,如图2所示.∵点C,N关于抛物线的对称轴对称,∴MN=CM,∴AM+MN=AM+MC=AC,∴此时△ANM周长取最小值.当x=﹣1时,y=﹣x+1=2,∴此时点M的坐标为(﹣1,2).∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3),∴AC==3,AN==,∴C△ANM=AM+MN+AN=AC+AN=3+.∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3+.。

2020年陕西省西安市碑林区西北工大附中中考数学四模试卷 解析版

2020年陕西省西安市碑林区西北工大附中中考数学四模试卷  解析版

2020年陕西省西安市碑林区西北工大附中中考数学四模试卷一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.(3分)的倒数是()A.B.C.D.2.(3分)如图是一个正五棱柱,它的俯视图是()A.B.C.D.3.(3分)如图,直线AB∥CD,将一个含45°角的三角板如图摆放,∠EFG=90°,∠FGD =15°,则∠EHK的度数为()A.75°B.65°C.60°D.55°4.(3分)若一个正比例函数的图象经过点A(2,﹣6),B(﹣3,n),则n的值为()A.4B.9C.1D.﹣95.(3分)下列运算正确的是()A.3x2•2x3=6x6B.(﹣2x2y)3=﹣6x6y3C.(﹣x﹣2)2=x2+4x+4D.(x﹣3)(x﹣2)=x2﹣5x﹣66.(3分)如图,在△ABC中,∠B=45°,∠C=75°,AD平分∠BAC,交BC于点D,DE⊥AC,垂足为E,若DE=2,则AB的长为()A.6B.+4C.+2D.2+27.(3分)若直线l1与l2关于x轴对称,将l1向上平移3个单位长度,平移后的直线经过点A(2,0)和点B(4,﹣1),则直线l1与l2的交点坐标为()A.(8,0)B.(0,﹣2)C.(﹣4,0)D.(﹣2,0)8.(3分)如图,在矩形ABCD中,AB=1,点E在BC上,将矩形沿DE折叠,点C恰好落在线段AE上的点F处,若AF=3EF,则AD的长为()A.B.C.D.49.(3分)如图所示,四边形ABCD是圆O的内接四边形,∠A=45°,BC=4,CD=2,则弦BD的长为()A.2B.3C.D.210.(3分)将抛物线y=x2﹣2x﹣1先向左平移4个单位长度,再向下平移5个单位长度,平移后的抛物线与x轴交于A、B两点,顶点是C点,连接AC、BC,则sin∠CAB的值为()A.2B.C.D.二、填空题(共4小题,每小题3分,计12分)11.(3分)在实数,﹣2,,,0中,最大的一个数是.12.(3分)如图,正六边形ABCDEF的边长为2,则△ACE的周长为.13.(3分)如图,点A在反比例函数y=图象上,点B在反比例函数y=(k≠0)图象上,∠AOB=90°,且OA=2OB,则k的值为.14.(3分)如图,在四边形ABCD中,AB=4,∠BCD=135°,AC=CD,且AC⊥CD,则对角线BD的最大值为.三、解答题(共11小题,计78分.解答应写出必要的过程)15.(5分)计算:(﹣)﹣2﹣|2﹣|++(3﹣π)0.16.(5分)解分式方程:﹣1=17.(5分)如图,在△ABC中,请用尺规作图法,在AB边上找一点D,使△ACD∽△ABC.(保留作图痕迹,不写作法)18.(5分)如图,点E是正方形ABCD内部一点,∠ABE=∠DAE,CF⊥BE于点F.求证:BE=CF.19.(7分)语文教研组为了解我校学生每天课外阅读所用的时间情况,从我校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如图不完整的频数分布直方图.每天课外阅读时间/h频数频率0<t≤0.5240.5<t≤1360.31<t≤1.50.41.5<t≤212b合计a1根据以上信息,回答下列问题:(1)表中a=,b=;(2)请补全频数分布直方图;(3)我校有学生4800人,请估计我校学生每天课外阅读时间超过1小时的人数.20.(7分)在一次课外活动中,小林和小明去测量广场上火箭雕塑的高度,他们分别在M、N两点用侧倾器测得点C的仰角分别为30°、45°,已知侧倾器的高度AM=BN=1.5米,MN=20米,A、B、C、D、M、N在同一平面内,求雕塑的高度CD.(结果保留根号)21.(7分)5月1日早晨8点,小林一家从西安自驾前往宝鸡的大水川风景区旅游,游览结束后,当天按原路返回.如图,是他们离风景区的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求线段AB所表示的函数关系式;(2)已知当天下午5点时,小林一家距风景区160千米,求他们何时回到西安?22.(7分)中华老字号“德憨恭”糕点是陕西美食之一,皮酥馅软,深受大家喜爱.小珊的妈妈买了两盒“德憨恭“糕点,每个盒子里均装有4块糕点,其中白色纸盒里有2块豆沙馅,1块花生馅和1块蛋黄肉松馅;黄色纸盒里有1块豆沙馅,1块花生馅和2块蛋黄肉松馅.这些糕点外观完全相同.根据以上情况,请你回答下列问题:(1)求小珊从白色盒子里随机取一块糕点,请直接写出小珊取到豆沙馅糕点的概率;(2)若小珊先从白色盒子里随机取一块糕点,再从黄色盒子里取一块糕点,请用列表或画树状图的方法,求小珊取到的两块糕点中一个是花生馅,一个是蛋黄肉松馅的概率.(用A、B、C分别代表豆沙馅、花生馅、蛋黄肉松馅糕点)23.(8分)如图,AB为圆O的直径,C是圆O上一点,D是圆外一点,OD交圆O于点E,交AC于点F,F是AC的中点,BE交AC于点G,连接CE,且∠CAD=2∠C.(1)求证:AD为圆O的切线;(2)若EG=6,tan C=,求直径AB的长.24.(10分)如图所示,在平面直角坐标系中,抛物线C1:y=ax2+bx﹣6经过点A(﹣3,0)和点(﹣1,0),顶点为D.(1)求抛物线C1的函数表达式及点D的坐标;(2)将抛物线C1绕坐标轴上一点P旋转180°得到抛物线C2,点A、D的对应点分别为A'、D',是否存在以AD为边,且以A、D、A'、D'为顶点的四边形是矩形?若存在,请求出抛物线C2的函数表达式,若不存在,请说明理由.25.(12分)问题提出:(1)如图①,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=2,将△ABC绕点C 顺时针旋转,得到△A′B′C,当点B落在AB边上时,连接AA′,AA'的长为;问题探究:(2)如图②,在四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=75°,BC=2,CD=4,求四边形ABCD的面积;问题解决:(3)如图③,四边形ABCD是某农业观光园的部分平面示意图,其中∠A=∠B=90°,∠ADC=135°,AD=3千米,BC=(6+6)米,AB边上的点E为休息区,AE=3千米,BE=6千米,两条观光小路EH和EF(小路宽度不计,F在BC边上,H在CD边上)拟将这个园区分成三个区域,用来种植不同的蔬菜,根据实际需要,∠HEF =75°,并且要求四边形EFCH的面积尽可能大,那么是否存在满足条件的四边形EFCH?若存在,请求出四边形EFCH的面积的最大值;若不存在,请说明理由.2020年陕西省西安市碑林区西北工大附中中考数学四模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.(3分)的倒数是()A.B.C.D.【分析】直接利用倒数的定义分析得出答案.【解答】解:∵﹣×(﹣)=1,∴﹣的倒数是:﹣.故选:B.2.(3分)如图是一个正五棱柱,它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意看见的棱用实线表示.【解答】解:从上面看可得到一个矩形,矩形的中间有一条纵向的实线,实线的两旁分别有一条纵向的虚线.故选:B.3.(3分)如图,直线AB∥CD,将一个含45°角的三角板如图摆放,∠EFG=90°,∠FGD =15°,则∠EHK的度数为()A.75°B.65°C.60°D.55°【分析】根据等腰直角三角形的性质和平行线的性质即可得到结论.【解答】解:∵∠EGF=45°,∠FGD=15°,∴∠EGD=45°+15°=60°,∵AB∥CD,∴∠EKH=∠EGD=60°,∵∠E=45°,∴∠EHK=180°﹣60°﹣45°=75°,故选:A.4.(3分)若一个正比例函数的图象经过点A(2,﹣6),B(﹣3,n),则n的值为()A.4B.9C.1D.﹣9【分析】由点A的坐标,利用待定系数法可求出正比例函数的解析式,再利用一次函数图象上点的坐标特征可求出n值.【解答】解:设正比例函数的解析式为y=kx,将点A(2,﹣6)代入y=kx,得:﹣6=2k,解得:k=﹣3,∴正比例函数的解析式为y=﹣3x.∵点B(﹣3,n)在正比例函数y=﹣3x的图象上,∴n=﹣3×(﹣3)=9.故选:B.5.(3分)下列运算正确的是()A.3x2•2x3=6x6B.(﹣2x2y)3=﹣6x6y3C.(﹣x﹣2)2=x2+4x+4D.(x﹣3)(x﹣2)=x2﹣5x﹣6【分析】直接利用积的乘方运算法则以及多项式乘多项式、完全平方公式分别化简得出答案.【解答】解:A、3x2•2x3=6x5,故此选项错误;B、(﹣2x2y)3=﹣8x6y3,故此选项错误;C、(﹣x﹣2)2=x2+4x+4,正确;D、(x﹣3)(x﹣2)=x2﹣5x+6,故此选项错误;故选:C.6.(3分)如图,在△ABC中,∠B=45°,∠C=75°,AD平分∠BAC,交BC于点D,DE⊥AC,垂足为E,若DE=2,则AB的长为()A.6B.+4C.+2D.2+2【分析】过D作DF⊥AB于F,根据角平分线的性质得出DF=DE=2,根据含30°角的直角三角形的性质求出AD,求出BF=DF=2,求出AF即可.【解答】解:∵在△ABC中,∠B=45°,∠C=75°,∴∠BAC=180°﹣∠B﹣∠C=60°,过D作DF⊥AB于F,∵AD平分∠BAC,DE⊥DF,DE=2,∴DF=DE=2,∠AFD=∠BFD=90°,∠BAD=∠CAD=BAC=30°,∴AD=2DF=4,∵∠B=45°,∴∠FDB=∠B=45°,∴BF=DF=2,在Rt△AFD中,由勾股定理得:AF===2,∴AB=AF+BF=2+2,故选:D.7.(3分)若直线l1与l2关于x轴对称,将l1向上平移3个单位长度,平移后的直线经过点A(2,0)和点B(4,﹣1),则直线l1与l2的交点坐标为()A.(8,0)B.(0,﹣2)C.(﹣4,0)D.(﹣2,0)【分析】设直线l1的解析式y=kx+b,将l1向上平移3个单位长度得到y=kx+b+3,再根据待定系数法确定函数关系式,求出一次函数与x轴的交点即可.【解答】解:设直线l1的解析式y=kx+b,将l1向上平移3个单位长度得到y=kx+b+3,∵平移后的直线经过点A(2,0)和点B(4,﹣1),∴,解得:,故直线l1的解析式为:y=﹣x﹣2,∵l1与l2关于x轴对称,∴两直线相交于x轴上,∴l1与l2的交点坐标为l1与l2与x轴的交点,解得:x=﹣4,即l1与l2的交点坐标为(﹣4,0).故选:C.8.(3分)如图,在矩形ABCD中,AB=1,点E在BC上,将矩形沿DE折叠,点C恰好落在线段AE上的点F处,若AF=3EF,则AD的长为()A.B.C.D.4【分析】根据四边形ABCD是矩形,可得AD∥BC,所以∠DAF=∠BEA,即tan∠DAF =tan∠BEA,设EF=a,AD=x,由翻折的性质列出等式先求出x=4a,再利用勾股定理即可求出a的值,进而可得AD的长.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAF=∠BEA,设EF=a,AD=x,由翻折可知:EF=EC=a,DF=DC=AB=1,∴BE=BC﹣EC=x﹣a,又AF=3EF=3a,∵tan∠DAF=tan∠BEA,∴=,即=,解得x=4a,在Rt△ABE中,AB=1,BE=x﹣a=3a,AE=AF+EF=4a,∴(4a)2﹣(3a)2=1,解得a=(负值舍去),∴x=4a=.则AD的长为.故选:B.9.(3分)如图所示,四边形ABCD是圆O的内接四边形,∠A=45°,BC=4,CD=2,则弦BD的长为()A.2B.3C.D.2【分析】如图,过点D作DE⊥BC交BC的延长线于E.解直角三角形求出CE,ED,再利用勾股定理求出BD即可.【解答】解:如图,过点D作DE⊥BC交BC的延长线于E.∵∠A+∠BCD=180°,∠A=45°,∴∠BCD=135°,∴∠DCE=45°,∵∠E=90°,CD=2,∴CE=ED=2,BE=CE+BC=6,在Rt△BED中,∵∠E=90°,BE=6,DE=2,∴BD===2,故选:D.10.(3分)将抛物线y=x2﹣2x﹣1先向左平移4个单位长度,再向下平移5个单位长度,平移后的抛物线与x轴交于A、B两点,顶点是C点,连接AC、BC,则sin∠CAB的值为()A.2B.C.D.【分析】先将抛物线化为顶点式,再根据抛物线平移规律左加下减写出平移后的抛物线,求出A、B、C三个点的坐标,再根据锐角三角函数即可得sin∠CAB的值.【解答】解:∵抛物线y=x2﹣2x﹣1=(x﹣2)2﹣3,∴将抛物线先向左平移4个单位长度,再向下平移5个单位长度,平移后的抛物线为:y=(x+2)2﹣8,∵当y=0时,x1=2,x2=﹣6,当x=0时,y=﹣6,∴A、B两点坐标为:(2,0)、(﹣8,0),顶点C(﹣2,﹣8),与y轴交点设为D,D(0,﹣6),如图所示:∵直线CE是对称轴,x=﹣2,∴CA=CB,AE=BE=4,CE=8,在Rt△BCE中,根据勾股定理,得BC==4,∴sin∠CAB=sin∠CBA===.故选:C.二、填空题(共4小题,每小题3分,计12分)11.(3分)在实数,﹣2,,,0中,最大的一个数是.【分析】先根据实数的大小比较法则比较数的大小,再得出答案即可.【解答】解:∵=2,∴﹣2<0<<<,∴最大的一个数是,故答案为:.12.(3分)如图,正六边形ABCDEF的边长为2,则△ACE的周长为6.【分析】作BG⊥AC,垂足为G.由垂径定理得出AC=2AG,在直角三角形ABG中,求出AG的长,即可得出结果.【解答】解:作BG⊥AC,垂足为G.如图所示:则AC=2AG,∵AB=BC,∴AG=CG,∵六边形ABCDEF是正六边形,∴∠ABC=120°,AB=BC=2,∴∠BAC=30°,∴AG=AB•cos30°=2×=,∴AC=2×=2,∴△ACE的周长为3×2=6.故答案为6.13.(3分)如图,点A在反比例函数y=图象上,点B在反比例函数y=(k≠0)图象上,∠AOB=90°,且OA=2OB,则k的值为﹣2.【分析】首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A在反比例函数y=图象上,点B在反比例函数y=(k≠0)图象上,即可得S△OBD=|k|,S△AOC=4,然后根据相似三角形面积的比等于相似比的平方,即可得关于k的方程,进而求出k的值.【解答】解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,∴∠ACO=∠ODB=90°,∴∠OBD+∠BOD=90°,∵∠AOB=90°,∴∠BOD+∠AOC=90°,∴∠OBD=∠AOC,∴△OBD∽△AOC,∴=()2,∵OA=2OB,∴=∵点A在反比例函数y=图象上,点B在反比例函数y=(k≠0)图象上,∴S△OBD=|k|,S△AOC=4,∴=∴|k|=2,∵在第二象限,∴k=﹣2.故答案为﹣2.14.(3分)如图,在四边形ABCD中,AB=4,∠BCD=135°,AC=CD,且AC⊥CD,则对角线BD的最大值为4+4.【分析】作△ABC的外接圆⊙O,连接AO,BO,CO,过点O作OE⊥AB于E,过点A 作AF⊥BC于F,过点D作DH⊥BC,交BC的延长线于H,由三角形的面积公式可求BC×AF的最大值为8+16,由勾股定理可求BD2=16+2BC•AC,即可求解.【解答】解:如图,作△ABC的外接圆⊙O,连接AO,BO,CO,过点O作OE⊥AB于E,过点A作AF⊥BC于F,过点D作DH⊥BC,交BC的延长线于H,∵∠BCD=135°,∠ACD=90°,∴∠ACB=45°,∴∠AOB=2∠ACB=90°,又∵AB=4,AO=BO,OE⊥AB,∴AO=BO=2=OC,OE=2,∵AF⊥BC,∠ACF=45°,∴∠ACF=∠CAF=45°,∴AF=CF,∴AF=CF=AC=CD,当点C,点O,点E三点共线时,△ABC的面积最大,∴△ABC的最大面积=BC×AF=×BC×AC=×4×(2+2),∴BC×AF的最大值为8+16,∵∠DCH=180°﹣90°﹣45°=45°,DH⊥CH,∴∠DCH=∠CDH=45°,∴DH=CH=CD,∵BD2=DH2+BH2=CD2+(BC+CD)2,AB2=BF2+AF2=CA2+(BC﹣CA)2=16,∴BD2=16+2BC•AC,∴BD2的最大值为=32+48,∴BD的最大值为4+4,故答案为:4+4.三、解答题(共11小题,计78分.解答应写出必要的过程)15.(5分)计算:(﹣)﹣2﹣|2﹣|++(3﹣π)0.【分析】直接利用立方根的性质结合零指数幂的性质、负整数指数幂的性质分别化简得出答案.【解答】解:原式=4﹣(﹣2)+4+1=4﹣+2+4+1=11﹣.16.(5分)解分式方程:﹣1=【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:最简公分母为(x﹣2)2,去分母得:x(x﹣2)﹣(x﹣2)2=4,整理得:x2﹣2x﹣x2+4x﹣4=4,解得:x=4,检验:把x=4代入得:(x﹣2)2=4≠0,∴分式方程的解为x=4.17.(5分)如图,在△ABC中,请用尺规作图法,在AB边上找一点D,使△ACD∽△ABC.(保留作图痕迹,不写作法)【分析】以CA为角的一边,在三角形的内部作∠ACD=∠B,射线CD交AB于点D,△ACD即为所求.【解答】解:如图,△ACD即为所求.18.(5分)如图,点E是正方形ABCD内部一点,∠ABE=∠DAE,CF⊥BE于点F.求证:BE=CF.【分析】先根据正方形的性质和相等角的条件,证明∠ABE+∠BAE=90°,进而得∠AEB =90°,再根据全等三角形的判定得△ABE≌△BCF,得BE=CF.【解答】解:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BAD=90°,∴∠BAE+∠EAD=90°,∵∠ABE=∠DAE,∴∠ABE+∠BAE=90°,∴∠AEB=90°,∵∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∵CF⊥BE于点F,∴∠BFC=90°=∠AEB,∴△ABE≌△BCF(AAS),∴BE=CF.19.(7分)语文教研组为了解我校学生每天课外阅读所用的时间情况,从我校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如图不完整的频数分布直方图.每天课外阅读时间/h频数频率0<t≤0.5240.5<t≤1360.31<t≤1.50.41.5<t≤212b合计a1根据以上信息,回答下列问题:(1)表中a=120,b=0.1;(2)请补全频数分布直方图;(3)我校有学生4800人,请估计我校学生每天课外阅读时间超过1小时的人数.【分析】(1)根据0.5<t≤1的频数和频率,可以求得本次调查的人数,然后即可计算出a和b的值;(2)根据(1)中的结果和频数分布表中的数据,可以计算出1<t≤1.5的频数,然后即可将频数分布直方图补充完整;(3)根据频数分布表中的数据,可以计算出我校学生每天课外阅读时间超过1小时的人数.【解答】解:(1)a=36÷0.3=120,b=12÷120=0.1,故答案为:120,0.1;(2)1<t≤1.5的频数为:120×0.4=48,补全的频数分布直方图如右图所示;(3)4800×(0.4+0.1)=2400(人),即我校学生每天课外阅读时间超过1小时的有2400人.20.(7分)在一次课外活动中,小林和小明去测量广场上火箭雕塑的高度,他们分别在M、N两点用侧倾器测得点C的仰角分别为30°、45°,已知侧倾器的高度AM=BN=1.5米,MN=20米,A、B、C、D、M、N在同一平面内,求雕塑的高度CD.(结果保留根号)【分析】连接AB交AD于E,则AB=MN=20米,ED=AM=1.5米,由直角三角形的性质得出AE=CE,BE=CE,得出CE+CE=20米,求出CE的长,即可得出答案.【解答】解:连接AB交AD于E,如图:则AB=MN=20米,ED=AM=1.5米,由题意得:∠CAE=30°,∠CBE=45°,∵CD⊥AB,∴∠AEC=∠BEC=90°,∴AE=CE,BE=CE,∵AB=AE+BE,∴CE+CE=20米,解得:CE=10﹣10(米),∴CD=CE+ED=10﹣10+1.5=10﹣(米);答:雕塑的高度CD为(10﹣)米.21.(7分)5月1日早晨8点,小林一家从西安自驾前往宝鸡的大水川风景区旅游,游览结束后,当天按原路返回.如图,是他们离风景区的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求线段AB所表示的函数关系式;(2)已知当天下午5点时,小林一家距风景区160千米,求他们何时回到西安?【分析】(1)根据点A、B的坐标,利用待定系数法即可求出线段AB所表示的函数关系式;(3)根据图象可知返回时的速度,即可得出结论.【解答】解:(1)设线段AB所表示的函数关系式为y=kx+b(k≠0),将A(0,240)、B(2.5,0)代入y=kx+b,,解得,∴线段AB所表示的函数关系式为y=﹣96x+240;(2)返回时的速度为:160÷(7﹣5)=80(千米/时),返回所用时间为:240÷80=3(小时),8时+7小时+3小时=18时,答:他们下午6点回到西安.22.(7分)中华老字号“德憨恭”糕点是陕西美食之一,皮酥馅软,深受大家喜爱.小珊的妈妈买了两盒“德憨恭“糕点,每个盒子里均装有4块糕点,其中白色纸盒里有2块豆沙馅,1块花生馅和1块蛋黄肉松馅;黄色纸盒里有1块豆沙馅,1块花生馅和2块蛋黄肉松馅.这些糕点外观完全相同.根据以上情况,请你回答下列问题:(1)求小珊从白色盒子里随机取一块糕点,请直接写出小珊取到豆沙馅糕点的概率;(2)若小珊先从白色盒子里随机取一块糕点,再从黄色盒子里取一块糕点,请用列表或画树状图的方法,求小珊取到的两块糕点中一个是花生馅,一个是蛋黄肉松馅的概率.(用A、B、C分别代表豆沙馅、花生馅、蛋黄肉松馅糕点)【分析】(1)小珊从白色盒子里随机取一块糕点,有4种等可能结果,其中小珊取到豆沙馅糕点的有2种可能,利用概率公式求解即可得出答案;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式计算可得.【解答】解:(1)小珊从白色盒子里随机取一块糕点,有4种等可能结果,其中小珊取到豆沙馅糕点的有2种可能,所以小珊取到豆沙馅糕点的概率为=;(2)列表如下:A AB CA(A,A)(A,A)(B,A)(C,A)B(A,B)(A,B)(B,B)(C,B)C(A,C)(A,C)(B,C)(C,C)C(A,C)(A,C)(B,C)(C,C)由表可知,共有16种等可能结果,其中小珊取到的两块糕点中一个是花生馅,一个是蛋黄肉松馅的有3种结果,∴小珊取到的两块糕点中一个是花生馅,一个是蛋黄肉松馅的概率为.23.(8分)如图,AB为圆O的直径,C是圆O上一点,D是圆外一点,OD交圆O于点E,交AC于点F,F是AC的中点,BE交AC于点G,连接CE,且∠CAD=2∠C.(1)求证:AD为圆O的切线;(2)若EG=6,tan C=,求直径AB的长.【分析】(1)利用垂径定理得到OF⊥AC,=,根据圆周角定理得到∠C=∠B,再证明∠CAD=∠AOE,从而得到∠CAD+∠OAF=90°,则OA⊥AD,则根据切线的判定得到结论;(2)连接AE,如图,利用圆周角得到∠C=∠CAE=∠B,∠AEB=90°,先在Rt△AEG 中利用正切的定义求出EG=12,再在Rt△ABE中求出BE,然后利用勾股定理计算AB 的长.【解答】(1)证明:∵F是AC的中点,∴OF⊥AC,∴=,∴∠C=∠B,∵OB=OE,∴∠B=∠OEB,∴∠AOE=∠OEB+∠B=2∠B,∵∠CAD=2∠C.∴∠CAD=∠AOE,∵∠OAF+∠AOF=90°,∴∠CAD+∠OAF=90°,即∠OAD=90°,∴OA⊥AD,∴AD为圆O的切线;(2)解:连接AE,如图,∵=,∴∠C=∠CAE=∠B,∵AB为直径,∴∠AEB=90°,在Rt△AEG中,tan∠GAE==tan C=,∴EG=2EG=2×6=12,在Rt△ABE中,tan∠B==,∴BE=2AE=24,∴AB==12,24.(10分)如图所示,在平面直角坐标系中,抛物线C1:y=ax2+bx﹣6经过点A(﹣3,0)和点(﹣1,0),顶点为D.(1)求抛物线C1的函数表达式及点D的坐标;(2)将抛物线C1绕坐标轴上一点P旋转180°得到抛物线C2,点A、D的对应点分别为A'、D',是否存在以AD为边,且以A、D、A'、D'为顶点的四边形是矩形?若存在,请求出抛物线C2的函数表达式,若不存在,请说明理由.【分析】(1)利用待定系数法解决问题即可.(2)分两种情形:如图1中,当点P在x轴上时,设P(m,0).如图2中,当点P在y轴上时,设P(0,n).分别构建方程求出等P的坐标解决问题即可.【解答】解:(1)∵y=ax2+bx﹣6经过点A(﹣3,0)和点(﹣1,0),∴,解得,∴抛物线C1的解析式为y=﹣2x2﹣8x﹣6,顶点D(﹣2,2).(2)如图1中,当点P在x轴上时,设P(m,0).当AP=PB时,四边形AD′A′D是矩形,∵A(﹣3,0),D(﹣2,2),∴m+3=,解得m=﹣,∴P(﹣,0),∵OD=OD′,∴D′(1,﹣2),∴旋转后抛物线C2的解析式为y=2(x﹣1)2﹣2,即y=2x2﹣4x.如图2中,当点P在y轴上时,设P(0,n).当P A=PD时,四边形AD′A′D是矩形,则有=,解得n=﹣,∴P(0,﹣),∵PD=PD′,∴D′(2,﹣),∴旋转的抛物线C2的解析式为y=2((x﹣2)2﹣,即y=2x2﹣8x+,综上所述,满足条件的抛物线的解析式为:y=2x2﹣4x或y=2x2﹣8x+.25.(12分)问题提出:(1)如图①,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=2,将△ABC绕点C 顺时针旋转,得到△A′B′C,当点B落在AB边上时,连接AA′,AA'的长为2;问题探究:(2)如图②,在四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=75°,BC=2,CD=4,求四边形ABCD的面积;问题解决:(3)如图③,四边形ABCD是某农业观光园的部分平面示意图,其中∠A=∠B=90°,∠ADC=135°,AD=3千米,BC=(6+6)米,AB边上的点E为休息区,AE=3千米,BE=6千米,两条观光小路EH和EF(小路宽度不计,F在BC边上,H在CD边上)拟将这个园区分成三个区域,用来种植不同的蔬菜,根据实际需要,∠HEF =75°,并且要求四边形EFCH的面积尽可能大,那么是否存在满足条件的四边形EFCH?若存在,请求出四边形EFCH的面积的最大值;若不存在,请说明理由.【分析】(1)如图①中,证明A′B′垂直平分线段AC即可解决问题.(2)如图②中,过点B作BH⊥CD于H,在BH上取一点T,使得BT=CT,连接CT.设CH=x.解直角三角形求出BH,BD即可解决问题.(3)如图③中,连接DE,证明∠EDC=90°,DE=EB=6千米,将△EDH绕点E顺时针旋转135°得到△EBM,此时C,B,M共线,因为S四边形EDCB=S四边形EHCM=•(AD+BC)•AB﹣•AD•AE=•(3+6+6)×(+6)﹣××3=(30+18)(平方千米),推出当△EMF的面积最小时,四边形EFCH的面积最大,设点O是△EMF的外心,连接OE,OM,OF,过点O作ON⊥MF于N.想办法求出OE的最小值即可解决问题.【解答】解:(1)如图①中,在Rt△ABC中,∵∠BAC=30°,∠ACB=90°,BC=2,∴∠B=60°,AB=2BC=4,AC=BC=2,∵CB=CB′,∴△BCB′是等边三角形,∴CB′=BC=BB′,∵AB=2BC,∴AB′=CB′,∵∠BCB′=∠CB′A′=60°,∴A′B′∥BC,∵AC⊥BC,∴A′B′⊥AC,∴B′A′垂直平分线段AC,∴AA′=A′C=AC=2.故答案为2.(2)如图②中,过点B作BH⊥CD于H,在BH上取一点T,使得BT=CT,连接CT.设CH=x.∵∠BHC=∠BHD=90°,∠BCH=75°,∴∠CBH=15°,∵TB=TC,∴∠TBC=∠TCB=15°,∴∠CTB=∠TBC+∠TCB=30°,∴TC=TB=2x,TH=x,∵BC=2,在Rt△HCH中,ZY则有(2)2=x2+(2x+x)2,解得x=﹣1(负根已经舍弃),∴BH=+1,DH=CD﹣CH=4﹣(﹣1)=5﹣,∴BD===2,∵AD=AB,∠A=60°,∴△ADB是等边三角形,∴S四边形ABCD=•BD2+•CD•BH=×(32﹣8)+×4×(+1)=6﹣4.(3)如图③中,连接DE.∵AD=AE=3千米,∴∠ADE=∠AED=45°,DE=AD=6(千米),∵∠ADC=135°,∴∠EDC=90°,∵DE=EB=6千米,∴将△EDH绕点E顺时针旋转135°得到△EBM,此时C,B,M共线,∵S四边形EDCB=S四边形EHCM=•(AD+BC)•AB﹣•AD•AE=•(3+6+6)×(+6)﹣××3=(30+18)(平方千米),∴当△EMF的面积最小时,四边形EFCH的面积最大,设点O是△EMF的外心,连接OE,OM,OF,过点O作ON⊥MF于N.∵∠HEN=135°,∠HEF=75°,∴∠MEF=135°﹣75°=60°,∵∠MOF=2∠MEF=120°,∵OE=OM=OF,ON⊥MF,∴∠OMF=30°,∴ON=OM,∵OE+ON≥EB,∴OE≥6,∴OE≥4,∴OE的最小值为4千米,∴OM的最小值为4千米,此时MF的最小值为4千米,∴△EMF的面积的最小值为××6=12(平方千米),∴四边形EHCF的面积的最大值为(30+18﹣12)(平方千米).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年中考模拟试题(四)广东刘伟一、选择题(本大题10小题,每小题3分,共30分)1. -3的绝对值是()A. 3B. -3C. 13D. -132. 小红连续6次掷骰子得到的点数分别是5,4,4,2,1,6,则这组数据的众数是()A. 5B. 4C. 2D. 63. 下列计算结果为a6的是()A. a2•a3B. a12÷a2C. (a2) 3D. (-a2) 34. 如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A B C D 第4题图5. 关于x的一元二次方程x2-2ax-1=0(其中a为常数)的根的情况是()A.有两个不等的实数根 B.无实数根C.有两个相等的实数根 D.无法确定6.从印有下列图案的卡片中任取一张,取出的卡片图案既是轴对称图形又是中心对称图形的概率是()A.15B.25C.35D.45第6题图第7题图7. 如图,一把直尺沿直线断开并错位,点E,D,B,F在同一条直线上,若∠ADB=62º,则∠CBF的度数是()A. 128ºB. 118ºC. 108ºD. 62º8. 已知点P(3-m,m-1)在第二象限,则m的取值范围在数轴上表示正确的是()A B C D9. 已知A是直线y=2x与双曲线y=1mx(m为常数)一支的交点,过点A作x轴的垂线,垂足为B,且OB=2,则m的值为()A. -7B. -8C. 8D. 710. 如图,在□ABCD中,∠B=70º,BC=6,以AD为直径的⊙O交CD于点E,则的长是()A.3πB.23πC.76π D.43π二、填空题(本大题7小题,每小题4分,共28分)11.分解因式:x2-3x=___________.12.蜂巢是由许多蜂房组成,蜂房的横截面是美丽的正六边形,则正六边形的内角和为___________.13. 分式方程3512x x=++的解是__________.14.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P是BD的中点,若AD=10,则CP 的长为__________.第14题图第16题图第17题图15.若mn=m+3,则2mn+3m-5nm+10=__________.16. 如图,为测量旗杆AB的高度,在教学楼一楼点C处测得旗杆顶部的仰角为60°,在四楼点D处测得旗杆顶部的仰角为30°,点C与点B在同一水平线上.已知CD=9.6 m,则旗杆AB的高度为___________m.17.如图,已知菱形OABC的两个顶点O(0,0),B(2,2),若将菱形绕点O以每秒45º的速度逆时针旋转,则第65秒时,菱形两条对角线的交点D的坐标为__________.三、解答题(一)(本大题3小题,每小题6分,共18分)18. 解方程组:2353212.x yx y⎧-=-⎨+=⎩,①②19. 先化简,再求值:2121122x xx x-+⎛⎫+÷⎪--⎝⎭,其中x=3+1.20. 如图,在△ABC中,∠C=90°,PD=PA.(1)尺规作图:作BD的垂直平分线交BC于点E,交BD于点F(不写作法,保留作图痕迹);(2)在(1)所作的图中,连接DE,求证:DE⊥DP.第20题图第21题图第22题图四、解答题(二)(本大题3小题,每小题8分,共24分)21. 随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种最喜欢的支付方式,现将调查结果进行统计并绘制成如图所示的两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次抽样调查的样本容量是____________;(2)补全条形统计图;(3)若某商场一天内有3000人次支付记录,估计选择微信支付的人数.22. 如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交AC,BC于点D,E.(1)求证:BE=CE;(2)若∠BAC=50°,求∠ADE的度数;(3)过点E作⊙O的切线,交AB的延长线于点F,当AO=EF=22时,求图中阴影部分的面积.23. 如图,一次函数y=-x+4的图象与反比例函数y=kx(k为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.(1)求反比例函数的解析式;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.第23题图第24题图五、解答题(三)(本大题2小题,每小题10分,共20分)24. 如图①,若四边形ABCD,GFED都是正方形,显然图中有AG=CE,AG⊥CE.(1)当正方形GFED绕点D旋转到图②所示的位置时,AG=CE是否成立?若成立,请给出证明,若不成立,请说明理由;(2)当正方形GFED绕点D旋转到B,D,G在一条直线上时(如图③),连接CE,设CE分别交AG,AD于点P,H.①求证:AG⊥CE;②如果AD=2510CE的长.25. 如图,以D为顶点的抛物线y=-x2+bx+c交x轴于A,B两点,交y轴于点C,直线BC的解析式为y=-x+3.(1)求抛物线的解析式;(2)请你判断△BCD的形状,并说明理由;(3)在x轴上是否存在一点Q,使得以A,C,Q为顶点的三角形与△BCD相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.第25题图2020年中考模拟试题(四)一、1. A 2. B 3. C 4. C 5. A 6. C 7. B 8. A 9.D 10. B 二、11.x (x-3) 12.720° 13. x=1214. 5 15.1 16.14.4 17.(0,2) 三、18. 解:将①×3-②×2,得-13y=-39,解得y=3.将y=3代入①,得2x-9=-5,解得x=2. 所以方程组的解为23.x y ==⎧⎨⎩,19. 解:原式=()212221x x x x +--⋅--=()21221x x x x --⋅--=11x -.当x=3+1时,原式=33=. 20.(1)解:如图所示,EF 即为所作. (2)证明:因为PA=PD ,所以∠A=∠PDA. 因为EF 垂直平分BD ,所以EB=ED.所以∠B=∠EDB. 因为∠C=90°,所以∠A+∠B=90°.所以∠PDA+∠EDB=90°. 所以∠PDE=180°-∠PDA-∠EDB=90°.所以DE ⊥PD. 四、21. 解:(1)200(2)现金支付的人数为200×30%=60(人),其他支付方式的人数为200-60-50-60=30(人),补全条形统计图略.(3)3000×60200=900(人). 答:选择微信支付的人数有900人. 22. 证明:(1)连接AE.因为AB 是⊙O 的直径,所以∠AEB=90°.因为AB=AC ,所以BE=CE. (2)因为AB=AC ,∠BAC=50°,所以∠ABE=12(180°-50°)=65°. 因为四边形ABED 是⊙O 的内接四边形,所以∠ADE+∠ABE=180°.所以∠ADE=115°. (3)连接OE.因为EF 是⊙O 的切线,所以OE ⊥EF. 因为AO=OE=OB=EF=22,所以∠EOF=45°.所以S阴影=S△EFO-S扇形OEB=12×22×22-()245π22360︒⨯⨯︒=4-π.23. 解:(1)将点A(1,a)代入y=-x+4,得-1+4=a,解得a=3.所以A(1,3).将点A(1,3)代入y=kx,解得k=3,则反比例函数的解析式为y=3x.(2)将B(3,b)代入y=-x+4,解得b=1.所以B(3,1).作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小. 由题意,知D(3,-1).设直线AD的解析式为y=mx+n.将A(1,3),D(3,-1)代入,得33-1m nm n,,+=⎧⎨+=⎩解得-25.mn,=⎧⎨=⎩所以直线AD的解析式为y=-2x+5.令 y=0,得x=52,所以点P的坐标是52⎛⎫⎪⎝⎭,.五、24. (1)解:成立.证明:因为四边形ABCD,四边形DEFG是正方形,所以DA=DC,DG=DE,∠GDE=∠ADC=90°. 所以∠GDA=90°-∠ADE=∠EDC.所以△AGD≌△CED.所以AG=CE.(2)①证明:由(1)同理可证△AGD≌△CED,所以∠1=∠2.因为∠3=∠4,∠4+∠2=90°,所以∠3+∠1=90°.所以∠APH=90°.所以AG⊥CE.②解:过点G作GM⊥AD于点M.因为BD是正方形ABCD的对角线,所以∠ADB=∠GDM=45°.所以∠DGM=45°.因为DG=10,所以MD=MG=DG·sin45º=5.因为AD=25,所以AM=AD+DM=35.在Rt△AMG中,由勾股定理,得CE=AG=52.25. 解:(1)将x=0代入y=-x+3,得y=3,即C(0,3).将y=0代入y=-x+3,得x=3,即B(3,0).将点C(0,3),B(3,0)代入y=-x2+bx+c,得9303b cc-++=⎧⎨=⎩,,解得23.bc=⎧⎨=⎩,所以抛物线的解析式为y=-x2+2x+3.(2)△BCD是直角三角形.理由:因为y=-x2+2x+3=-(x-1)2+4,所以顶点D的坐标是(1,4).因为CD2=(4-3)2+12=2,BC2=32+32=18,BD2=(3-1)2+42=20,所以CD2+BC2=BD2.所以△BCD是直角三角形,且∠BCD=90°.(3)如图所示,连接AC.把y=0代入y=-x2+2x+3,解得x1=-1,x2=3.所以A(-1,0),即OA=1.所以13 OAOC=.因为21332CDBC==,所以OA CDOC BC=.所以OA OCCD BC=.又∠AOC=∠DCB=90°,所以△AOC∽△DCB.所以当点Q的坐标为(0,0)时,△AQC∽△DCB;过点C作CQ⊥AC,交x轴于点Q.因为△ACQ为直角三角形,CO⊥AQ,所以∠ACQ=∠AOC=90°. 又∠CAQ=∠OAC,所以△ACQ∽△AOC.又△AOC∽△DCB,所以△ACQ∽△DCB.所以ACDC=AQDB,即102=25,解得AQ=10.所以Q(9,0).综上所述,当点Q的坐标为(0,0)或(9,0)时,以A,C,Q为顶点的三角形与△BCD相似.第25题图。

相关文档
最新文档