2017学年河北省邢台市宁晋县七年级下学期数学期末试卷带答案
2017七级数学下期末试卷(带答案)
2017年七年级数学下期末试卷(带答案)【解答】解:∵a+b=7,ab=10,∴a2b+ab2=ab(a+b)=70.故答案为:70.【点评】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.16.如图,四边形ABCD中,∠A=100°,∠C=70°,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN.若MF∥AD,FN∥DC,则∠B的度数为95 °.【考点】JA:平行线的性质.【分析】首先利用平行线的性质得出∠BMF=80°,∠FNB=70°,再利用翻折变换的性质得出∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,进而求出∠B的度数以及得出∠D的度数.【解答】解:∵MF∥AD,FN∥DC,∠A=100°,∠C=70°,∴∠BMF=80°,∠FNB=70°,∵将△BMN沿MN翻折,得△FMN,∴∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,∴∠F=∠B=180°﹣50°﹣35°=95°,故答案为:95.【点评】此题主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键.三、解答题(共11小题,满分68分)17.计算:(1)(3.14﹣π)0+(﹣)﹣2﹣2×2﹣1(2)(2a2+ab﹣2b2)(﹣ab)【考点】4A:单项式乘多项式;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)根据0次幂和负整数指数幂,即可解答.(2)根据单项式乘以多项式,即可解答.【解答】解:(1)(3.14﹣π)0+(﹣)﹣2﹣2×2﹣1=1+4﹣2×=1+4﹣1=4.(2)(2a2+ab﹣2b2)(﹣ab)=.【点评】本题考查了单项式乘以多项式,解决本题的关键是熟记单项式乘以多项式的法则.18.先化简,再求值:2b2+(b﹣a)(﹣b﹣a)﹣(a﹣b)2,其中a=﹣3,b=.【考点】4J:整式的混合运算—化简求值.【分析】先算乘法,再合并同类项,最后代入求出即可.【解答】解:原式=2b2+a2﹣b2﹣a2+2ab﹣b2=2ab,当a=﹣3,b=时,原式=2×(﹣3)×=﹣3.【点评】本题考查了整式的混合运算和求值的应用,题目比较好,难度适中.19.分解因式:x4﹣2x2y2+y4.【考点】54:因式分解﹣运用公式法.【分析】首先利用完全平方公式分解因式进而利用平方差公式分解因式得出答案.【解答】解:x4﹣2x2y2+y4=(x2﹣y2)2=(x﹣y)2(x+y)2.【点评】此题主要考查了公式法分解因式,正确应用公式是解题关键.20.解方程组:.【考点】98:解二元一次方程组.【专题】11:计算题;521:一次方程(组)及应用.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×5+②得:14y=14,即y=1,把y=1代入①得:x=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(1)解不等式:2x﹣1≥3x+1,并把解集在数轴上表示出来.(2)解不等式组:,并写出所有的整数解.【考点】CC:一元一次不等式组的整数解;C4:在数轴上表示不等式的解集;C6:解一元一次不等式;CB:解一元一次不等式组.【分析】(1)先再移项、合并同类项,最后系数化为1即可;(2)先求出两个不等式的解集,再求其公共解,然后写出范围内的整数解即可.【解答】解:(1)2x﹣1≥3x+1,2x﹣3x≥1+1,﹣x≥2,x≤﹣2,把解集在数轴上表示出来为:(2),由①得,4x+4≤7x+10,﹣3x≤6,x≥﹣2,由②得,3x﹣3x 所以,不等式组的解集是﹣2≤x 所以,原不等式的所有的整数解为﹣2,﹣1.【点评】考查了解一元一次不等式,注意系数化为1时,不等号的方向是否改变.同时考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).22.把下面的证明过程补充完整.已知:如图:△ABC'中,AD⊥BC于点D,EF⊥BC于点F,EF 交AB于点G,交CA的延长线于点E,AD平分∠BAC.求证:∠1=∠2证明:∵AD⊥BC于点D,FF⊥BC于点F(己知)∴∠ADC=90°,∠EFC=90°(垂直定义)∴∠ADC=∠EFC(等量代换)∴AD∥EF( 同位角相等,两直线平行)∴∠1=∠BAD(两直线平行,同位角相等)∠2=∠CAD(两直线平行,同位角相等)∵AD平分∠BAC(己知)∴∠BAD=∠CAD(角平分线定义)∴∠1=∠2(等量代换)【考点】JB:平行线的判定与性质.【分析】求出∠ADC=∠EFC,根据平行线的判定得出AD∥EF,根据平行线的性质得出∠1=∠BAD,∠2=∠CAD,根据角平分线定义得出∠BAD=∠CAD,即可得出答案.【解答】证明::∵AD⊥BC于点D,FF⊥BC于点F(己知),∴∠ADC=90°,∠EFC=90°(垂直定义),∴∠ADC=∠EFC(等量代换),∴AD∥EF(同位角相等,两直线平行),∴∠1=∠BAD(两直线平行,同位角相等),∠2=∠CAD(两直线平行,同位角相等),∵AD平分∠BAC(己知),∴∠BAD=∠CAD(角平分线定义),∴∠1=∠2(等量代换),故答案为:同位角相等,两直线平行,两直线平行,同位角相等,∠CAD,角平分线定义,等量代换.【点评】本题考查了平行线的性质和判定,角平分线定义,垂直定义的应用,能灵活运用定理进行推理是解此题的关键.23.证明:三角形三个内角的和等于180°.已知:△ABC.求证:∠BAC+∠B+∠C=180°.【考点】K7:三角形内角和定理.【专题】14:证明题.【分析】画出画图,已知△ABC、求证:∠BAC+∠B+∠C=180°.过点A作EF∥BC,利用EF∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.【解答】解:已知:△ABC,求证:∠BAC+∠B+∠C=180°,证明:过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°.即知三角形内角和等于180°.故答案为:△ABC;∠BAC+∠B+∠C=180°.【点评】本题考查证明三角形内角和定理,解题的关键是做平行线,利用平行线的性质进行证明.24.如图,AD为△ABC的高,BE为△ABC的角平分线,若∠EBA=32°,∠AEB=70°.(I)求∠CAD的度数;(2)若点F为线段BC上任意一点,当△EFC为直角三角形时,则∠BEF的度数为58°或20°.【考点】K7:三角形内角和定理.【分析】(1)根据角平分线的定义、三角形内角和定理计算即可;(2)分∠EFC=90°和∠FEC=90°两种情况解答即可.【解答】解:(1)∵BE为△ABC的角平分线,∴∠CBE=∠EBA=32°,∵∠AEB=∠CBE+∠C,∴∠C=70°﹣32°=38°,∵AD为△ABC的高,∴∠ADC=90°,∴∠CAD=90°﹣∠C=52°;(2)当∠EFC=90°时,∠BEF=90°﹣∠CBE=58°,当∠FEC=90°时,∠BEF=180°70°﹣90°=20°,故答案为:58°或20°.【点评】本题考查的是三角形的内角和定理,掌握三角形内角和等于180°是解题的关键.25.某蔬菜经营户从蔬菜批发市场批发蔬菜进行零价,其中西红柿与西兰花的批发价格与零售价格如表.蔬菜品种西红柿西兰花批发价(元/kg)3.68零售价(元/kg)5.414(1)第一天该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元.这两种蔬菜当天全部售完后,一共能赚多少钱?(请列方程组求解)(2)第二天该经营户用1520元仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发多少千克的西红柿?【考点】9A:二元一次方程组的应用.【分析】(1)设批发西红柿xkg,西兰花ykg,根据批发西红柿和西兰花两种蔬菜共300kg,用去了1520元钱,列方程组求解;(2)设批发西红柿akg,根据当天全部售完后所赚钱数不少于1050元,列不等式求解.【解答】解:(1)设批发西红柿xkg,西兰花ykg,由题意得,解得:,故批发西红柿200kg,西兰花100kg,则这两种蔬菜当天全部售完一共能赚:200×1.8+100×6=960(元),答:这两种蔬菜当天全部售完一共能赚960元;(2)设批发西红柿akg,由题意得,(5.4﹣3.6)a+(14﹣8)×≥1050,解得:a≤100.答:该经营户最多能批发西红柿100kg.【点评】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的等量关系和不等关系,列方程和不等式求解.26.现有一种计算13×12的方法,具体算法如下:第一步:用被乘数13加上乘数12的个位数字2,即13+2=15.第二步:把第一步得到的结果乘以10,即15×10=150.第三步:用被乘数13的个位数字3乘以乘数12的个位数字2,即3×2=6.第四步:把第二步和第三步所得的结果相加,即150+6=156.于是得到13×12=156.(1)请模仿上述算法计算14×17并填空.第一步:用被乘数14加上乘数17的个位数字7,即14+7=21 .第二步:把第一步得到的结果乘以10,即21×10=210.第三步:用被乘数14的个位数字4乘以乘数17的个位数字7,即4×7=28.第四步:把第二步和第三步所得的结果相加,即210+28=238 .于是得到14×17=238.(2)一般地,对于两个十位上的数字都为1,个位上的数字分别为a,b(0≤a≤9,0≤b≤9,a、b为整数)的两位数相乘都可以按上述算法进行计算.请你通过计算说明上述算法的合理性.【考点】1C:有理数的乘法;19:有理数的加法.【分析】(1)仿照以上四步计算方法逐步计算即可;(2)对于(10+a)×(10+b),先按照上述方法逐步列式表示,再根据整式的乘法法则计算即可验证其正确性.【解答】解:(1)计算14×17,精心整理,仅供学习参考。
【新课标-精品卷】2017-2018学年最新河北省七年级下学期期末数学试卷(有答案)
2017-2018学年河北省七年级(下)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.4的平方根是()A.±2 B.2 C.﹣2 D.±2.点P(﹣2,3)所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列四对数值中是方程2x﹣y=1的解的是()A.B.C.D.4.下列调查中,调查方式选择合理的是()A.为了了解某一品牌家具的甲醛含量,选择全面调查B.为了了解某公园的游客流量,选择抽样调查C.为了了解神州飞船的设备零件的质量情况,选择抽样调查D.为了了解一批袋装食品是否有防腐剂,选择全面调查调查5.如果点P(a﹣4,a)在y轴上,则点P的坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)6.如图,直线EO⊥CD,垂足为点O,AB平分∠EOD,则∠BOD的度数为()A.120°B.130°C.135°D.140°7.如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.48.一个自然数的平方根为a,则它的相邻的下一个自然数的算术平方根是()A.B.a+1 C.a2+1 D.9.将一直角三角板与两边平行的纸条如图放置.已知∠2﹣∠1=30°,则∠2的度数为()A.30° B.45° C.50° D.60°10.把长宽分别为7和4的长方形经过割补变为一个正方形,这个正方形的边长在()A.5与6之间B.4与5之间C.3与4之间D.2与3之间11.在平面直角坐标系中,把点P首先向左平移7个单位,再向上平移5个单位得到点M,作点M关于Y轴的对称点N,已知N的坐标是(5,1),那么P点坐标是()A.(2,﹣4)B.(6,﹣4)C.(6,﹣1)D.(2,﹣1)12.某市区现行出租车的收费标准:起步价5元(即行驶距离不超过3千米都需付5元车费),超过3千米后,每增加1千米,加收1.5元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费11元,那么甲地到乙地路程的最大值是()A.5千米B.7千米C.8千米D.9千米二、填空题(共8小题,每小题3分,满分24分)13. +﹣=______.14.一次考试考生有2万人,从中抽取500名考生的成绩进行分析,这个问题的样本是______.15.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是______.16.当______时,式子的值不大于零.17.已知是二元一次方程组的解,则m+3n的立方根为______.18.有3人携带会议材料乘坐电梯,这三人的体重共210kg,每捆材料重20kg,电梯最大负荷为1 050kg,则该电梯在此3人乘坐的情况下最多还能搭载______捆材料.19.为处理甲、乙两种积压服装,商场决定打折销售,已知甲、乙两种服装的原单价共位880元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为684元,则甲、乙两种服装的原单价分别是______.20.将字母A、B、C、D按如图所示的规律无限排列下去,那么第17行从左到右第14个字母是______.三、解答题(共7小题,满分60分)21.解不等式组:,并把解集在数轴上表示出来.22.解方程组:(1)(2).23.如图,已知:∠1=∠2,∠D=50°,求∠B的度数.24.体育文化用品商店购进篮球和排球共20个,进价和售价如表,全部销售完后共获利润260元.(2)销售6个排球的利润与销售几个篮球的利润相等?25.在平面直角坐标系中,A、B、C三点的坐标分别为(﹣6,7)、(﹣3,0)、(0,3).(1)画出△ABC,并求△ABC的面积;(2)在△ABC中,点C经过平移后的对应点为C′(5,4),将△ABC作同样的平移得到△A′B′C′,画出平移后的△A′B′C′,并写出点A′,B′的坐标;(3)已知点P(﹣3,m)为△ABC内一点,将点P向右平移4个单位后,再向下平移6个单位得到点Q(n,﹣3),则m=______,n=______.26.某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是______;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.27.某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式;(3)小英家3月份用水24吨,她家应交水费多少元?参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.4的平方根是()A.±2 B.2 C.﹣2 D.±【考点】平方根.【分析】依据平方根的定义即可得出答案.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:A.2.点P(﹣2,3)所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】应先判断出所求的点的横纵坐标的符号,进而判断点P所在的象限.【解答】解:∵点P的横坐标为负,纵坐标为正,∴点P(﹣2,3)所在象限为第二象限.故选B.3.下列四对数值中是方程2x﹣y=1的解的是()A.B.C.D.【考点】二元一次方程的解.【分析】将各选项代入方程进行验证即可.【解答】解:A、当x=2,y=0时,左边=2×2﹣0=4≠1,左边≠右边,故A错误;B、当x=﹣1,y=﹣1时,左边=2×(﹣1)﹣(﹣1)=﹣1≠1,左边≠右边,故B错误;C、当x=0,y=﹣1时,左边=2×0﹣(﹣1)=1=1,左边=右边,故C正确;D、当x=﹣1,y=1时,左边=2×(﹣1)﹣1=﹣3≠1,左边≠右边,故D错误.故选:C.4.下列调查中,调查方式选择合理的是()A.为了了解某一品牌家具的甲醛含量,选择全面调查B.为了了解某公园的游客流量,选择抽样调查C.为了了解神州飞船的设备零件的质量情况,选择抽样调查D.为了了解一批袋装食品是否有防腐剂,选择全面调查调查【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、为了了解某一品牌家具的甲醛含量,因为普查工作量大,适合抽样调查,故本选项错误;B、为了了解某公园的游客流量,选择抽样调查,故本项正确;C、为了了解神州飞船的设备零件的质量情况的调查是精确度要求高的调查,适于全面调查,故本选项错误;D、为了了解一批袋装食品是否有防腐剂,选择抽样调查,故本项错误,故选:B.5.如果点P(a﹣4,a)在y轴上,则点P的坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)【考点】点的坐标.【分析】根据y轴上点横坐标等于零,可得答案.【解答】解:由点P(a﹣4,a)在y轴上,得a﹣4=0,解得a=4,P的坐标为(0,4),故选:B.6.如图,直线EO⊥CD,垂足为点O,AB平分∠EOD,则∠BOD的度数为()A.120°B.130°C.135°D.140°【考点】垂线.【分析】根据直线EO⊥CD,可知∠EOD=90°,根据AB平分∠EOD,可知∠AOD=45°,再根据邻补角的定义即可求出∠BOD的度数.【解答】解:∵EO⊥CD,∴∠EOD=90°,∵AB平分∠EOD,∴∠AOD=45°,∴∠BOD=180°﹣45°=135°,故选C.7.如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.4【考点】平行线的判定.【分析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:(1)利用同旁内角互补判定两直线平行,故(1)正确;(2)利用内错角相等判定两直线平行,∵∠1=∠2,∴AD∥BC,而不能判定AB∥CD,故(2)错误;(3)利用内错角相等判定两直线平行,故(3)正确;(4)利用同位角相等判定两直线平行,故(4)正确.∴正确的为(1)、(3)、(4),共3个;故选:C.8.一个自然数的平方根为a,则它的相邻的下一个自然数的算术平方根是()A.B.a+1 C.a2+1 D.【考点】算术平方根;平方根.【分析】设这个自然数为x,则x=a2,故与之相邻的下一个自然数为a2+1,再根据算术平方根的定义进行解答即可.【解答】解:设这个自然数为x,∵x平方根为a,∴x=a2,∴与之相邻的下一个自然数为a2+1,其算术平方根为:.故选D.9.将一直角三角板与两边平行的纸条如图放置.已知∠2﹣∠1=30°,则∠2的度数为()A.30° B.45° C.50° D.60°【考点】平行线的性质.【分析】根据平行线的性质得∠2=∠3,再根据互余得到∠2+∠1=90°,进而得出答案.【解答】解:如图所示:∵a∥b,∴∠2=∠3,∵∠1+∠3=90°,∴∠3=90°﹣∠1=∠2,∴∠2+∠1=90°,∵∠2﹣∠1=30°,∴∠2=60°.故选:D.10.把长宽分别为7和4的长方形经过割补变为一个正方形,这个正方形的边长在()A.5与6之间B.4与5之间C.3与4之间D.2与3之间【考点】估算无理数的大小.【分析】先求得正方形的面积,然后依据算术平方根的定义求得边长,然后再估算其大小即可.【解答】解:正方形的边长==.∵25<28<36,∴5<<6.故选:A.11.在平面直角坐标系中,把点P首先向左平移7个单位,再向上平移5个单位得到点M,作点M关于Y轴的对称点N,已知N的坐标是(5,1),那么P点坐标是()A.(2,﹣4)B.(6,﹣4)C.(6,﹣1)D.(2,﹣1)【考点】关于x轴、y轴对称的点的坐标;坐标与图形变化-平移.【分析】根据向左平移横坐标减,纵坐标不变,向上平移纵坐标加,横坐标不变,进行计算即可求解.【解答】解:∵点M关于Y轴的对称点N,已知N的坐标是(5,1),∴M(﹣5,1),∵点P首先向左平移7个单位,再向上平移5个单位得到点M,∴P(2,﹣4),故选A.12.某市区现行出租车的收费标准:起步价5元(即行驶距离不超过3千米都需付5元车费),超过3千米后,每增加1千米,加收1.5元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费11元,那么甲地到乙地路程的最大值是()A.5千米B.7千米C.8千米D.9千米【考点】一元一次不等式的应用.【分析】本题可先用11减去5得到6,则1.5(x﹣3)≤6,解出x的值,取最大整数即为本题的解.【解答】解:依题意得:1.5(x﹣3)≤11﹣5,x﹣3≤4,x≤7.因此甲地到乙地路程的最大值是7千米.故选:B.二、填空题(共8小题,每小题3分,满分24分)13. +﹣= 1.【考点】实数的运算.【分析】原式利用立方根及算术平方根定义计算即可得到结果.【解答】解:原式=2+0﹣=1,故答案为:114.一次考试考生有2万人,从中抽取500名考生的成绩进行分析,这个问题的样本是抽取500名学生的成绩.【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体.【解答】解:本题的研究对象是:2万名考生的成绩,因而样本是抽取的500名考生的成绩.故答案为:抽取500名学生的成绩.15.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是55°.【考点】平行线的性质;翻折变换(折叠问题).【分析】根据折叠性质得出∠2=∠EFG,求出∠BEF,根据平行线性质求出∠CFE,即可求出答案.【解答】解:∵根据折叠得出四边形MNFG≌四边形BCFG,∴∠EFG=∠2,∵∠1=70°,∴∠BEF=∠1=70°,∵AB∥DC,∴∠EFC=180°﹣∠BEF=110°,∴∠2=∠EFG=∠EFC=55°,故答案为:55°.16.当x≥时,式子的值不大于零.【考点】解一元一次不等式.【分析】根据题意列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子的值不大于零,∴≤0,解得x≥.故答案为:x≥.17.已知是二元一次方程组的解,则m+3n的立方根为 2 .【考点】二元一次方程组的解;立方根.【分析】将代入方程组,可得关于m、n的二元一次方程组,得出代数式即可得出m+3n 的值,再根据立方根的定义即可求解.【解答】解:把代入方程组,得:,则两式相加得:m+3n=8,所以==2.故答案为2.18.有3人携带会议材料乘坐电梯,这三人的体重共210kg,每捆材料重20kg,电梯最大负荷为1 050kg,则该电梯在此3人乘坐的情况下最多还能搭载42 捆材料.【考点】一元一次不等式的应用.【分析】先设还能搭载x捆材枓,根据电梯最大负荷为1050kg,列出不等式求解即可.【解答】解:设还能搭载x捆材枓,依题意得:20x+210≤1050,解得:x≤42.则该电梯在此3人乘坐的情况下最多能搭载42捆材枓.故答案为:42.19.为处理甲、乙两种积压服装,商场决定打折销售,已知甲、乙两种服装的原单价共位880元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为684元,则甲、乙两种服装的原单价分别是480元、400元.【考点】二元一次方程组的应用.【分析】设甲、乙两种服装的原单价分别是x元、y元,满足等量关系:①甲、乙两种服装的原单价共为880元;②打折后两种服装的单价共为684元,由此列出方程组求解.【解答】解:设甲、乙两种服装的原单价分别是x元、y元.根据题意,得:,解得:,即:甲、乙两种服装的原单价分别是480元、400元.故答案是:480元、400元.20.将字母A、B、C、D按如图所示的规律无限排列下去,那么第17行从左到右第14个字母是 B .【考点】规律型:图形的变化类.【分析】先找到数的排列规律,求出第n﹣1行结束的时候一共出现的字母的个数,再求第n行从左向右的第14个字母,即可求出第17行从左向右的第14个字母.【解答】解:由排列的规律可得,第n﹣1行结束的时候排了1+2+3+…+n﹣1=n(n﹣1)个字母.所以第n行从左向右的第13个字母共n(n﹣1)+13个.所以n=17时,×17×(17﹣1)+14=150,150÷4=37…2.故第17行从左向右的第14个字母为B.故答案为:B.三、解答题(共7小题,满分60分)21.解不等式组:,并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出不等式组中两不等式的解集,找出公共部分,表示在数轴上即可.【解答】解:,由①得:x>﹣2,由②得:x≤2,∴不等式组的解集为:﹣2<x≤2,22.解方程组:(1)(2).【考点】解二元一次方程组.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),把②代入①得:6y﹣7﹣y=13,即y=4,把y=4代入②得:x=17,则方程组的解为;(2)方程组整理得:,①×2+②得:11x=22,即x=2,把x=2代入①得:y=3,则方程组的解为.23.如图,已知:∠1=∠2,∠D=50°,求∠B的度数.【考点】平行线的判定与性质.【分析】此题首先要根据对顶角相等,结合已知条件,得到一组同位角相等,再根据平行线的判定得两条直线平行.然后根据平行线的性质得到同旁内角互补,从而进行求解.【解答】解:∵∠1=∠2,∠2=∠EHD,∴∠1=∠EHD,∴AB∥CD;∴∠B+∠D=180°,∵∠D=50°,∴∠B=180°﹣50°=130°.24.体育文化用品商店购进篮球和排球共20个,进价和售价如表,全部销售完后共获利润260元.(2)销售6个排球的利润与销售几个篮球的利润相等?【考点】二元一次方程组的应用.【分析】(1)设购进篮球x个,购进排球y个,根据等量关系:①篮球和排球共20个②全部销售完后共获利润260元可列方程组,解方程组即可;(2)设销售6个排球的利润与销售a个篮球的利润相等,根据题意可得等量关系:每个排球的利润×6=每个篮球的利润×a,列出方程,解可得答案.【解答】解:(1)设购进篮球x个,购进排球y个,由题意得:解得:,答:购进篮球12个,购进排球8个;(2)设销售6个排球的利润与销售a个篮球的利润相等,由题意得:6×(60﹣50)=(95﹣80)a,解得:a=4,答:销售6个排球的利润与销售4个篮球的利润相等.25.在平面直角坐标系中,A、B、C三点的坐标分别为(﹣6,7)、(﹣3,0)、(0,3).(1)画出△ABC,并求△ABC的面积;(2)在△ABC中,点C经过平移后的对应点为C′(5,4),将△ABC作同样的平移得到△A′B′C′,画出平移后的△A′B′C′,并写出点A′,B′的坐标;(3)已知点P(﹣3,m)为△ABC内一点,将点P向右平移4个单位后,再向下平移6个单位得到点Q(n,﹣3),则m= 3 ,n= 1 .【考点】作图-平移变换.【分析】(1)根据平面直角坐标系找出点A、B、C的位置,然后顺次连接即可,再利用△ABC所在的矩形的面积减去四周三个直角三角形的面积列式计算即可得解;(2)根据网格结构找出点A、B平移后的对应点A′、B′的位置,然后顺次连接即可,再根据平面直角坐标系写出A′、B′的坐标;(3)根据向右平移横坐标加,向下平移纵坐标减列出方程求解即可.【解答】解:(1)如图,△ABC如图所示;△ABC的面积=6×7﹣×3×7﹣×3×3﹣×4×6,=42﹣10.5﹣4.5﹣12,=42﹣27,=15;(2)△A′B′C′如图所示,A′(﹣1,8),B′(2,1);(3)由题意得,﹣3+4=n,m﹣6=﹣3,解得m=3,n=1.故答案为:3,1.26.某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是100 ;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,即可求出女生总人数,即可得出喜欢舞蹈的人数;(2)根据(1)的计算结果再利用条形图即可得出样本容量;(3)用全校学生数×喜欢剪纸的学生在样本中所占百分比即可求出.【解答】解:(1)∵根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,∴女生总人数为:10÷20%=50(人),∴女生中喜欢舞蹈的人数为:50﹣10﹣16=24(人),如图所示:(2)本次抽样调查的样本容量是:30+6+14+50=100;(3)∵样本中喜欢剪纸的人数为30人,样本容量为100,∴估计全校学生中喜欢剪纸的人数=1200×=360人.27.某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式;(3)小英家3月份用水24吨,她家应交水费多少元?【考点】一次函数的应用.【分析】(1)设每吨水的政府补贴优惠价为x元,市场调节价为y元,根据题意列出方程组,求解此方程组即可;(2)根据用水量分别求出在两个不同的范围内y与x之间的函数关系,注意自变量的取值范围;(3)根据小英家的用水量判断其再哪个范围内,代入相应的函数关系式求值即可.【解答】解:(1)设每吨水的政府补贴优惠价为a元,市场调节价为b元.解得:答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元.(2)∵当0≤x≤14时,y=x;当x>14时,y=14+(x﹣14)×2.5=2.5x﹣21,∴所求函数关系式为:y=(3)∵x=24>14,∴把x=24代入y=2.5x﹣21,得:y=2.5×24﹣21=39(元).答:小英家三月份应交水费39元.2016年9月21日。
2017七年级数学下册期末试卷及答案
2017七年级数学下册期末试卷及答案2017年七年级数学下册的期末考试就到了,要订一个详细的复习计划。
小编整理了关于2017年七年级数学下册的期末试卷及答案,希望对大家有帮助!2017七年级数学下册期末试卷一、选择题(每小题3分,共18分,每题有且只有一个答案正确.)1.下列运算正确的是( )A. 3﹣2=6B. m3•m5=m15C. (x﹣2)2=x2﹣4D. y3+y3=2y32.在﹣、、π、3.212212221…这四个数中,无理数的个数为( )A. 1B. 2C. 3D. 43.现有两根木棒,它们的长分别是20cm和30cm.若要订一个三角架,则下列四根木棒的长度应选( )A. 10cmB. 30cmC. 50cmD. 70cm4.下列语句中正确的是( )A. ﹣9的平方根是﹣3B. 9的平方根是3C. 9的算术平方根是±3D. 9的算术平方根是35.某商品进价10元,标价15元,为了促销,现决定打折销售,但每件利润不少于2元,则最多打几折销售( )A. 6折B. 7折C. 8折D. 9折6.如图,AB∥CD,∠CED=90°,EF⊥CD,F为垂足,则图中与∠EDF互余的角有( )A. 4个B. 3个C. 2个D. 1个二、填空题(每小题3分,共30分)7.﹣8的立方根是.8.x2•(x2)2=.9.若am=4,an=5,那么am﹣2n= .10.请将数字0.000 012用科学记数法表示为.11.如果a+b=5,a﹣b=3,那么a2﹣b2= .12.若关于x、y的方程2x﹣y+3k=0的解是,则k= .13.n边形的内角和比它的外角和至少大120°,n的最小值是.14.若a,b为相邻整数,且a<15.小亮将两张长方形纸片如图所示摆放,使小长方形纸片的一个顶点正好落在大长方形纸片的边上,测得∠1=35°,则∠2=°.16.若不等式组有解,则a的取值范围是.三、解答题(本大题共10小条,102分)17.计算:(1)x3÷(x2)3÷x5(x+1)(x﹣3)+x(3)(﹣ )0+( )﹣2+(0.2)2015×52015﹣|﹣1|18.因式分解:(1)x2﹣9b3﹣4b2+4b.19.解方程组:① ;② .20.解不等式组:,并在数轴上表示出不等式组的解集.21.(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.22.如图,△ABC的顶点都在每个边长为1个单位长度的方格纸的格点上,将△ABC向右平移3格,再向上平移2格.(1)请在图中画出平移后的′B′C′;△ABC的面积为;(3)若AB的长约为5.4,求出AB边上的高(结果保留整数)23.如图,若AE是△ABC边上的高,∠EAC的角平分线AD交BC 于D,∠ACB=40°,求∠ADE.24.若不等式组的解集是﹣1(1)求代数式(a+1)(b﹣1)的值;若a,b,c为某三角形的三边长,试求|c﹣a﹣b|+|c﹣3|的值.25.如图,直线AB和直线CD、直线BE和直线CF都被直线BC所截.在下面三个式子中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.①AB⊥BC、CD⊥BC,②BE∥CF,③∠1=∠2.题设(已知):.结论(求证):.证明:.26.某商场用18万元购进A、B两种商品,其进价和售价如下表:A B进价(元/件) 1200 1000售价(元/件) 1380 1200(1)若销售完后共获利3万元,该商场购进A、B两种商品各多少件;若购进B种商品的件数不少于A种商品的件数的6倍,且每种商品都必须购进.①问共有几种进货方案?②要保证利润最高,你选择哪种进货方案?2017七年级数学下册期末试卷参考答案一、选择题(每小题3分,共18分,每题有且只有一个答案正确.)1.下列运算正确的是( )A. 3﹣2=6B. m3•m5=m15C. (x﹣2)2=x2﹣4D. y3+y3=2y3考点:完全平方公式;合并同类项;同底数幂的乘法;负整数指数幂.分析:根据负整数指数幂,同底数幂的乘法,完全平分公式,合并同类项,即可解答.解答:解:A、,故错误;B、m3•m5=m8,故错误;C、(x﹣2)2=x2﹣4x+4,故错误;D、正确;故选:D.点评:本题考查了负整数指数幂,同底数幂的乘法,完全平分公式,合并同类项,解决本题的关键是熟记相关法则.2.在﹣、、π、3.212212221…这四个数中,无理数的个数为( )A. 1B. 2C. 3D. 4考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:﹣是分数,是有理数;和π,3.212212221…是无理数;故选C.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.现有两根木棒,它们的长分别是20cm和30cm.若要订一个三角架,则下列四根木棒的长度应选( )A. 10cmB. 30cmC. 50cmD. 70cm考点:三角形三边关系.分析:首先根据三角形的三边关系求得第三根木棒的取值范围,再进一步找到符合条件的答案.解答:解:根据三角形的三边关系,得第三根木棒的长度应大于10cm,而小于50cm.故选B点评:本题考查了三角形中三边的关系求解;关键是求得第三边的取值范围.4.下列语句中正确的是( )A. ﹣9的平方根是﹣3B. 9的平方根是3C. 9的算术平方根是±3D. 9的算术平方根是3考点:算术平方根;平方根.分析:A、B、C、D分别根据平方根和算术平方根的定义即可判定.解答:解:A、﹣9没有平方根,故A选项错误;B、9的平方根是±3,故B选项错误;C、9的算术平方根是3,故C选项错误.D、9的算术平方根是3,故D选项正确.故选:D.点评:本题主要考查了平方根、算术平方根概念的运用.如果x2=a(a≥0),则x是a的平方根.若a>0,则它有两个平方根并且互为相反数,我们把正的平方根叫a的算术平方根.若a=0,则它有一个平方根,即0的平方根是0,0的算术平方根也是0,负数没有平方根.5.某商品进价10元,标价15元,为了促销,现决定打折销售,但每件利润不少于2元,则最多打几折销售( )A. 6折B. 7折C. 8折D. 9折考点:一元一次不等式的应用.分析:利用每件利润不少于2元,相应的关系式为:利润﹣进价≥2,把相关数值代入即可求解.解答:解:设打x折销售,每件利润不少于2元,根据题意可得:15× ﹣10≥2,解得:x≥8,答:最多打8折销售.故选:C.点评:此题主要考查了一元一次不等式的应用,本题的关键是得到利润的关系式,注意“不少于”用数学符号表示为“≥”.6.如图,AB∥CD,∠CED=90°,EF⊥CD,F为垂足,则图中与∠EDF互余的角有( )A. 4个B. 3个C. 2个D. 1个考点:平行线的性质;余角和补角.分析:先根据∠CED=90°,EF⊥CD可得出∠EDF+∠DEF=90°,∠EDF+∠DCE=90°,再由平行线的性质可知∠DCE=∠AEC,故∠AEC+∠EDF=90°,由此可得出结论.解答:解:∵∠CED=90°,EF⊥CD,∴∠EDF+∠DEF=90°,∠EDF+∠DCE=90°.∵AB∥CD,∴∠DCE=∠AEC,∴∠AEC+∠EDF=90°.故选B.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.二、填空题(每小题3分,共30分)7.﹣8的立方根是﹣2 .考点:立方根.分析:利用立方根的定义即可求解.解答:解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.点评:本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.8.x2•(x2)2=x6 .考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据同底数幂的乘法的性质,幂的乘方的性质,即可解答.解答:解:x2•(x2)2=x2•x4=x6.故答案为:x6.点评:本题考查了同底数幂的乘法,幂的乘方,理清指数的变化是解题的关键.9.若am=4,an=5,那么am﹣2n= .考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据同底数幂的除法,底数不变指数相减;幂的乘方,底数不变指数相乘,即可解答.解答:解:am﹣2n= ,故答案为: .点评:本题考查同底数幂的除法,幂的乘方很容易混淆,一定要记准法则才能做题.10.请将数字0.000 012用科学记数法表示为 1.2×10﹣5 .考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 012=1.2×10﹣5.故答案为:1.2×10﹣5.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.如果a+b=5,a﹣b=3,那么a2﹣b2= 15 .考点:因式分解-运用公式法.分析:首先利用平方差公式进行分解即可,进而将已知代入求出即可.解答:解:∵a2﹣b2=(a+b)(a﹣b),∴当a+b=5,a﹣b=3时,原式=5×3=15.故答案为:15.点评:此题主要考查了运用公式法分解因式以及代数式求值,正确分解因式是解题关键.12.若关于x、y的方程2x﹣y+3k=0的解是,则k= ﹣1 .考点:二元一次方程的解.专题:计算题.分析:把已知x与y的值代入方程计算即可求出k的值.解答:解:把代入方程得:4﹣1+3k=0,解得:k=﹣1,故答案为:﹣1.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.13.n边形的内角和比它的外角和至少大120°,n的最小值是5 .考点:多边形内角与外角.分析: n边形的内角和是(n﹣2)•180°,n边形的外角和是360度,内角和比它的外角和至少大120°,就可以得到一个不等式:(n﹣2)•180﹣360>120,就可以求出n的范围,从而求出n的最小值.解答:解:(n﹣2)•180﹣360>120,解得:n>4 .因而n的最小值是5.点评:本题已知一个不等关系,就可以利用不等式来解决.14.若a,b为相邻整数,且a<考点:估算无理数的大小.分析:估算的范围,即可确定a,b的值,即可解答.解答:解:∵ ,且<∴a=2,b=3,∴b﹣a= ,故答案为: .点评:本题考查了估算无理数的方法:找到与这个数相邻的两个完全平方数,这样就能确定这个无理数的大小范围.15.小亮将两张长方形纸片如图所示摆放,使小长方形纸片的一个顶点正好落在大长方形纸片的边上,测得∠1=35°,则∠2=55 °.考点:平行线的性质.分析:过点E作EF∥AB,由AB∥CD可得AB∥CD∥EF,故可得出∠4的度数,进而得出∠3的度数,由此可得出结论.解答:解:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF.∵∠1=35°,∴∠4=∠1=35°,∴∠3=90°﹣35°=55°.∵AB∥EF,∴∠2=∠3=55°.故答案为:55.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.16.若不等式组有解,则a的取值范围是a>1 .考点:不等式的解集.分析:根据题意,利用不等式组取解集的方法即可得到a的范围.解答:解:∵不等式组有解,∴a>1,故答案为:a>1.点评:此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.三、解答题(本大题共10小条,102分)17.计算:(1)x3÷(x2)3÷x5(x+1)(x﹣3)+x(3)(﹣ )0+( )﹣2+(0.2)2015×52015﹣|﹣1|考点:整式的混合运算.分析: (1)先算幂的乘方,再算同底数幂的除法;先利用整式的乘法计算,再进一步合并即可;(3)先算0指数幂,负指数幂,积的乘方和绝对值,再算加减.解答:解:(1)原式=x3÷x6÷x5=x﹣4;原式=x2﹣2x﹣3+2x﹣x2=﹣3;(3)原式=1+4+1﹣1=5.点评:此题考查整式的混合运算,掌握运算顺序与计算方法是解决问题的关键.18.因式分解:(1)x2﹣9b3﹣4b2+4b.考点:提公因式法与公式法的综合运用.专题:计算题.分析: (1)原式利用平方差公式分解即可;原式提取b,再利用完全平方公式分解即可.解答:解:(1)原式=(x+3)(x﹣3);原式=b(b2﹣4b+4)=b(b﹣2)2.点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.解方程组:① ;② .考点:解二元一次方程组.分析:本题可以运用消元法,先消去一个未知量,变成一元一次方程,求出解,再将解代入原方程,解出另一个,即可得到方程组的解.解答:解:(1)①×2,得:6x﹣4y=12 ③,②×3,得:6x+9y=51 ④,则④﹣③得:13y=39,解得:y=3,将y=3代入①,得:3x﹣2×3=6,解得:x=4.故原方程组的解为: .方程②两边同时乘以12得:3(x﹣3)﹣4(y﹣3)=1,化简,得:3x﹣4y=﹣2 ③,①+③,得:4x=12,解得:x=3.将x=3代入①,得:3+4y=14,解得:y= .故原方程组的解为: .点评:本题考查了二元一次方程组的解法,利用消元进行求解.题目比较简单,但需要认真细心.20.解不等式组:,并在数轴上表示出不等式组的解集.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:分别解两个不等式得到x<4和x≥3,则可根据大小小大中间找确定不等式组的解集,然后利用数轴表示解集.解答:解:,解①得x<4,解②得x≥3,所以不等式组的解集为3≤x<4,用数轴表示为:点评:本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.考点:解一元一次不等式;一元一次方程的解;一元一次不等式的整数解.分析:(1)根据不等式的基本性质先去括号,然后通过移项、合并同类项即可求得原不等式的解集;根据(1)中的x的取值范围来确定x的最小整数解;然后将x的值代入已知方程列出关于系数a的一元一次方程2×(﹣2)﹣a×(﹣2)=3,通过解该方程即可求得a的值.解答:解:(1)5(x﹣2)+8<6(x﹣1)+75x﹣10+8<6x﹣6+75x﹣2<6x+1﹣x<3x>﹣3.由(1)得,最小整数解为x=﹣2,∴2×(﹣2)﹣a×(﹣2)=3∴a= .点评:本题考查了解一元一次不等式、一元一次方程的解以及一元一次不等式的整数解.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.22.如图,△ABC的顶点都在每个边长为1个单位长度的方格纸的格点上,将△ABC向右平移3格,再向上平移2格.(1)请在图中画出平移后的′B′C′;△ABC的面积为 3 ;(3)若AB的长约为5.4,求出AB边上的高(结果保留整数)考点:作图-平移变换.分析: (1)根据图形平移的性质画出平移后的△A′B′C′即可;根据三角形的面积公式即可得出结论;(3)设AB边上的高为h,根据三角形的面积公式即可得出结论.解答:解:(1)如图所示;S△ABC= ×3×2=3.故答案为:3;(3)设AB边上的高为h,则AB•h=3,即×5.4h=3,解得h≈1.点评:本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.23.如图,若AE是△ABC边上的高,∠EAC的角平分线AD交BC 于D,∠ACB=40°,求∠ADE.考点:三角形内角和定理;三角形的角平分线、中线和高.分析:根据直角三角形两锐角互余求出∠CAE,再根据角平分线的定义可得∠DAE= ∠CAE,进而得出∠ADE.解答:解:∵AE是△ABC边上的高,∠ACB=40°,∴∠CAE=90°﹣∠ACB=90°﹣40°=50°,∴∠DAE= ∠CAE= ×50°=25°,∴∠ADE=65°.点评:本题考查了三角形的内角和定理,角平分线的定义,是基础题,熟记定理与概念并准确识图是解题的关键.24.若不等式组的解集是﹣1(1)求代数式(a+1)(b﹣1)的值;若a,b,c为某三角形的三边长,试求|c﹣a﹣b|+|c﹣3|的值.考点:解一元一次不等式组;三角形三边关系.分析:先把a,b当作已知条件求出不等式组的解集,再与已知解集相比较求出a,b的值.(1)直接把ab的值代入即可得出代数式的值;根据三角形的三边关系判断出c﹣a﹣b的符号,再去绝对值符号.合并同类项即可.解答:解:,由①得,x< ,由②得,x>2b﹣3,∵不等式组的解集是﹣1∴ =3,2b﹣3=﹣1,∴a=5,b=2.(1)(a+1)(b﹣1)=(5+1)=6;∵a,b,c为某三角形的三边长,∴5﹣2∴c﹣a﹣b<0,c﹣3>0,∴原式=a+b﹣c+c﹣3=a+b﹣3=5+2﹣3=4.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.25.如图,直线AB和直线CD、直线BE和直线CF都被直线BC所截.在下面三个式子中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.①AB⊥BC、CD⊥BC,②BE∥CF,③∠1=∠2.题设(已知):①②.结论(求证):③.证明:省略.考点:命题与定理;平行线的判定与性质.专题:计算题.分析:可以有①②得到③:由于AB⊥BC、CD⊥BC得到AB∥CD,利用平行线的性质得到∠ABC=∠DCB,又BE∥CF,则∠EBC=∠FCB,可得到∠ABC﹣∠EBC=∠DCB﹣∠FCB,即有∠1=∠2.解答:已知:如图,AB⊥BC、CD⊥BC,BE∥CF.求证:∠1=∠2.证明:∵AB⊥BC、CD⊥BC,∴AB∥CD,∴∠ABC=∠DCB,又∵BE∥CF,∴∠EBC=∠FCB,∴∠ABC﹣∠EBC=∠DCB﹣∠FCB,∴∠1=∠2.故答案为①②;③;省略.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题叫真命题,错误的命题叫假命题;经过推理论证的真命题称为定理.也考查了平行线的性质.26.某商场用18万元购进A、B两种商品,其进价和售价如下表:A B进价(元/件) 1200 1000售价(元/件) 1380 1200(1)若销售完后共获利3万元,该商场购进A、B两种商品各多少件;若购进B种商品的件数不少于A种商品的件数的6倍,且每种商品都必须购进.①问共有几种进货方案?②要保证利润最高,你选择哪种进货方案?考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)由题意可知本题的等量关系,即“两种商品总成本为18万元”和“共获利3万元”,根据这两个等量关系,可列出方程组,再求解;根据题意列出不等式组,解答即可.解答:解:(1)设购进A种商品x件,B种商品y件.根据题意得化简得,解得,答:该商场购进A种商品100件,B种商品60件;设购进A种商品x件,B种商品y件.根据题意得:解得:,,,,,故共有5种进货方案A B方案一 25件 150件方案二 20件 156件方案三 15件 162件方案四 10件 168件方案五 5件 174件②因为B的利润大,所以若要保证利润最高,选择进A种商品5件,B种商品174件.点评:此题考查二元一次方程组和一元一次不等式的应用,解答本题的关键是将现实生活中的事件与数学思想联系起来,读懂题意,找出等量关系,列方程求解.。
七年级下册数学期末考试卷及答案2017
⼀、选择题(本⼤题共12⼩题,每⼩题3分,共36分) 1.﹣12的值是( )A.1B.﹣1C.2D.﹣2 【考点】有理数的乘⽅. 【分析】根据乘⽅运算,可得幂,根据有理数的乘法运算,可得答案. 【解答】解:原式=﹣1, 故选;B. 【点评】本题考查了有理数的乘⽅,注意底数是1. 2.已知3xa﹣2是关于x的⼆次单项式,那么a的值为( )A.4B.5C.6D.7 【考点】单项式. 【分析】单项式的次数就是所有的字母指数和,根据以上内容得出即可. 【解答】解:∵3xa﹣2是关于x的⼆次单项式, a﹣2=2, 解得:a=4, 故选A. 【点评】本题考查单项式的次数的概念,关键熟记这些概念然后求解. 3.在下列⽴体图形中,只要两个⾯就能围成的是( )A.长⽅体B.圆柱体C.圆锥体D.球 【考点】认识⽴体图形. 【分析】根据各⽴体图形的构成对各选项分析判断即可得解. 【解答】解:A、长⽅体是有六个⾯围成,故本选项错误; B、圆柱体是两个底⾯和⼀个侧⾯组成,故本选项错误; C、圆锥体是⼀个底⾯和⼀个侧⾯组成,故本选项正确; D、球是由⼀个曲⾯组成,故本选项错误. 故选C. 【点评】本题考查了认识⽴体图形,熟悉常见⼏何体的⾯的组成是解题的关键. 4.如图,是由四个相同的⼩正⽅体组成的⼏何体,该⼏何体从上⾯看得到的平⾯图形为( ) A. B. C. D. 【考点】简单组合体的三视图. 【分析】根据从上⾯看得到的图形是俯视图,可得答案. 【解答】解:从上⾯看第⼀层左边⼀个,第⼆层中间⼀个,右边⼀个,故B符合题意, 故选;B. 【点评】本题考查了简单⼏何体的三视图,从上⾯看的到的视图是俯视图. 5.全球每秒钟约有14.2万吨污⽔排⼊江河湖海,把14.2万⽤科学记数法表⽰为( )A.142103B.1.42104C.1.42105D.0.142106 【考点】科学记数法表⽰较⼤的数. 【分析】科学记数法的表⽰形式为a10n的形式,其中1|a|10,n为整数.确定n的值是易错点,由于14.2万有6位,所以可以确定n=6﹣1=5. 【解答】解:14.2万=142 000=1.42105. 故选C. 【点评】此题考查科学记数法表⽰较⼤的数的⽅法,准确确定a与n值是关键. 6.导⽕线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点⽕后能够跑到150m外的安全地带,导⽕线的长度⾄少是( )A.22cmB.23cmC.24cmD.25cm 【考点】⼀元⼀次不等式的应⽤. 【分析】设⾄少为xcm,根据题意可得跑开时间要⼩于爆炸的时间,由此可列出不等式,然后求解即可. 【解答】解:设导⽕线⾄少应有x厘⽶长,根据题意 , 解得:x24, 导⽕线⾄少应有24厘⽶. 故选:C. 【点评】此题主要考查了⼀元⼀次不等式的应⽤,关键是读懂题意,找到符合题意的不等关系式. 7.已知实数x,y满⾜,则x﹣y等于( )A.3B.﹣3C.1D.﹣1 【考点】⾮负数的性质:算术平⽅根;⾮负数的性质:偶次⽅. 【专题】常规题型. 【分析】根据⾮负数的性质列式求出x、y的值,然后代⼊代数式进⾏计算即可得解. 【解答】解:根据题意得,x﹣2=0,y+1=0, 解得x=2,y=﹣1, 所以,x﹣y=2﹣(﹣1)=2+1=3. 故选A. 【点评】本题考查了算术平⽅根⾮负数,平⽅数⾮负数的性质,根据⼏个⾮负数的和等于0,则每⼀个算式都等于0列式是解题的关键. 8.如图是丁丁画的⼀张脸的⽰意图,如果⽤(0,2)表⽰靠左边的眼睛,⽤(2,2)表⽰靠右边的眼睛,那么嘴的位置可以表⽰成( )A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1) 【考点】坐标确定位置. 【专题】数形结合. 【分析】根据左右的眼睛的坐标画出直⾓坐标系,然后写出嘴的位置对应的点的坐标. 【解答】解:如图, 嘴的位置可以表⽰为(1,0). 故选A. 【点评】本题考查了坐标确定位置:平⾯直⾓坐标系中点与有序实数对⼀⼀对应;记住平⾯内特殊位置的点的坐标特征. 9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是( ) A. B. C. D. 【考点】利⽤平移设计图案. 【分析】根据平移的性质,结合图形,对选项进⾏⼀⼀分析,排除错误答案. 【解答】解:A、属于旋转所得到,故错误; B、属于轴对称变换,故错误; C、形状和⼤⼩没有改变,符合平移的性质,故正确; D、属于旋转所得到,故错误. 故选C. 【点评】本题考查了图形的平移,图形的平移只改变图形的位置,⽽不改变图形的形状和⼤⼩,学⽣易混淆图形的平移与旋转或翻转,⽽误选. 10.如图,⼀扇窗户打开后,⽤窗钩AB可将其固定,这⾥所运⽤的⼏何原理是( )A.三⾓形的稳定性B.两点之间线段最短C.两点确定⼀条直线D.垂线段最短 【考点】三⾓形的稳定性. 【分析】根据加上窗钩,可以构成三⾓形的形状,故可⽤三⾓形的稳定性解释. 【解答】解:构成△AOB,这⾥所运⽤的⼏何原理是三⾓形的稳定性. 故选:A. 【点评】本题考查三⾓形的稳定性在实际⽣活中的应⽤问题.三⾓形的稳定性在实际⽣活中有着⼴泛的应⽤. 11.已知x=2,y=﹣3是⼆元⼀次⽅程5x+my+2=0的解,则m的值为( )A.4B.﹣4C.D.﹣ 【考点】⼆元⼀次⽅程的解. 【专题】计算题;⽅程思想. 【分析】知道了⽅程的解,可以把这对数值代⼊⽅程,得到⼀个含有未知数m的⼀元⼀次⽅程,从⽽可以求出m的值. 【解答】解:把x=2,y=﹣3代⼊⼆元⼀次⽅程5x+my+2=0,得 10﹣3m+2=0, 解得m=4. 故选A. 【点评】解题关键是把⽅程的解代⼊原⽅程,使原⽅程转化为以系数m为未知数的⽅程,再求解. ⼀组数是⽅程的解,那么它⼀定满⾜这个⽅程,利⽤⽅程的解的定义可以求⽅程中其他字母的值. 12.如图,下列条件中不能判定AB∥CD的是( )A.3=4B.1=5C.1+4=180D.3=5 【考点】平⾏线的判定. 【分析】由平⾏线的判定定理易知A、B都能判定AB∥CD; 选项C中可得出1=5,从⽽判定AB∥CD; 选项D中同旁内⾓相等,但不⼀定互补,所以不能判定AB∥CD. 【解答】解:3=5是同旁内⾓相等,但不⼀定互补,所以不能判定AB∥CD. 故选D. 【点评】正确识别三线⼋⾓中的同位⾓、内错⾓、同旁内⾓是正确答题的关键,只有同位⾓相等、内错⾓相等、同旁内⾓互补,才能推出两被截直线平⾏. ⼆、填空题(本⼤题共8⼩题,每⼩题3分,共24分) 13.若A=6620,则A的余⾓等于 2340 . 【考点】余⾓和补⾓. 【分析】根据互为余⾓的两个⾓的和等于90列式计算即可得解. 【解答】解:∵A=6620, A的余⾓=90﹣6620=2340, 故答案为:2340. 【点评】本题主要考查了余⾓的定义,是基础题,熟记互为余⾓的两个⾓的和等于90是解题的关键. 14.绝对值⼤于2且⼩于5的所有整数的和是 0 . 【考点】绝对值. 【分析】⾸先根据绝对值的⼏何意义,结合数轴找到所有满⾜条件的数,然后根据互为相反数的两个数的和为0进⾏计算. 【解答】解:根据绝对值性质,可知绝对值⼤于2且⼩于5的所有整数为3,4. 所以3﹣3+4﹣4=0. 【点评】此题考查了绝对值的⼏何意义,能够结合数轴找到所有满⾜条件的数. 15.如图,已知a∥b,⼩亮把三⾓板的直⾓顶点放在直线b上.若1=40,则2的度数为 50 . 【考点】平⾏线的性质;余⾓和补⾓. 【专题】探究型. 【分析】由直⾓三⾓板的性质可知3=180﹣1﹣90,再根据平⾏线的性质即可得出结论. 【解答】解:∵1=40, 3=180﹣1﹣90=180﹣40﹣90=50, ∵a∥b, 2=3=50. 故答案为:50. 【点评】本题考查的是平⾏线的性质,⽤到的知识点为:两直线平⾏,同位⾓相等. 16.如果点P(a,2)在第⼆象限,那么点Q(﹣3,a)在 第三象限 . 【考点】点的坐标. 【分析】由第⼆象限的坐标特点得到a0,则点Q的横、纵坐标都为负数,然后根据第三象限的坐标特点进⾏判断. 【解答】解:∵点P(a,2)在第⼆象限, a0, 点Q的横、纵坐标都为负数, 点Q在第三象限. 故答案为第三象限. 【点评】题考查了坐标:直⾓坐标系中点与有序实数对⼀⼀对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点. 17.将⽅程2x﹣3y=5变形为⽤x的代数式表⽰y的形式是 y= . 【考点】解⼆元⼀次⽅程. 【分析】要把⽅程2x﹣3y=5变形为⽤x的代数式表⽰y的形式,需要把含有y的项移到等号⼀边,其他的项移到另⼀边,然后合并同类项、系数化1就可⽤含x的式⼦表⽰y的形式:y= . 【解答】解:移项得:﹣3y=5﹣2x 系数化1得:y= . 【点评】本题考查的是⽅程的基本运算技能:移项、合并同类项、系数化为1等. 18.如图,将三⾓尺的直⾓顶点放在直尺的⼀边上,1=30,2=50,则3= 20 . 【考点】平⾏线的性质;三⾓形的外⾓性质. 【专题】计算题. 【分析】本题主要利⽤两直线平⾏,同位⾓相等和三⾓形的外⾓等于与它不相邻的两内⾓之和进⾏做题. 【解答】解:∵直尺的两边平⾏, 2=4=50, ⼜∵1=30, 3=4﹣1=20. 故答案为:20. 【点评】本题重点考查了平⾏线的性质及三⾓形外⾓的性质,是⼀道较为简单的题⽬. 19.在扇形统计图中,其中⼀个扇形的圆⼼⾓是216,则这年扇形所表⽰的部分占总体的百分数是 60% . 【考点】扇形统计图. 【专题】计算题. 【分析】⽤扇形的圆⼼⾓360即可. 【解答】解:扇形所表⽰的部分占总体的百分数是216360=60%. 故答案为60%. 【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分⽐等于该部分所对应的扇形圆⼼⾓的度数与360的⽐. 20.⼀个多边形的每⼀个外⾓都等于36,则该多边形的内⾓和等于 1440 度. 【考点】多边形内⾓与外⾓. 【专题】计算题. 【分析】任何多边形的外⾓和等于360,可求得这个多边形的边数.再根据多边形的内⾓和等于(n﹣2)180即可求得内⾓和. 【解答】解:∵任何多边形的外⾓和等于360, 多边形的边数为36036=10, 多边形的内⾓和为(10﹣2)180=1440. 故答案为:1440. 【点评】本题需仔细分析题意,利⽤多边形的外⾓和求出边数,从⽽解决问题. 三、计算题(本⼤题共4⼩题,每⼩题7分,共28分) 21.计算:(﹣1)2014+|﹣ |(﹣5)+8. 【考点】有理数的混合运算. 【分析】先算乘⽅和绝对值,再算乘法,最后算加法,由此顺序计算即可. 【解答】解:原式=1+ (﹣5)+8 =1﹣1+8 =8. 【点评】此题考查有理数的混合运算,注意运算的顺序与符号的判定. 22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2. 【考点】整式的加减化简求值. 【专题】计算题. 【分析】原式去括号合并得到最简结果,将a与b的值代⼊计算即可求出值. 【解答】解:原式=3a﹣(﹣2b+4a﹣3b)=3a+2b﹣4a+3b=﹣a+5b, 当a=﹣1,b=2时,原式=﹣(﹣1)+52=1+10=11. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 23.解⽅程组: . 【考点】解⼆元⼀次⽅程组. 【分析】观察原⽅程组,两个⽅程的y系数互为相反数,可⽤加减消元法求解. 【解答】解:, ①+②,得4x=12, 解得:x=3. 将x=3代⼊②,得9﹣2y=11, 解得y=﹣1. 所以⽅程组的解是 . 【点评】对⼆元⼀次⽅程组的考查主要突出基础性,题⽬⼀般不难,系数⽐较简单,主要考查⽅法的掌握. 24.解不等式组:并把解集在数轴上表⽰出来. 【考点】解⼀元⼀次不等式组;在数轴上表⽰不等式的解集. 【分析】⾸先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后在数轴上表⽰出来即可. 【解答】解:解x﹣20得:x2; 解不等式2(x+1)3x﹣1得:x3. 不等式组的解集是:2 【点评】本题考查了不等式组的解法,关键是正确解不等式,求不等式组的解集可以借助数轴. 四、解答题(本⼤题共3⼩题,25、26各10分,27题12分,共32分) 25.根据所给信息,分别求出每只⼩猫和⼩狗的价格. 买⼀共要70元, 买⼀共要50元. 【考点】⼆元⼀次⽅程组的应⽤. 【专题】图表型. 【分析】根据题意可知,本题中的相等关系是1猫+2狗=70元和2猫+1狗=50,列⽅程组求解即可. 【解答】解:设每只⼩猫为x元,每只⼩狗为y元,由题意得 . 解之得 . 答:每只⼩猫为10元,每只⼩狗为30元. 【点评】解题关键是要读懂题⽬的意思,根据题⽬给出的条件,找出合适的等量关系,列出⽅程组,再求解.利⽤⼆元⼀次⽅程组求解的应⽤题⼀般情况下题中要给出2个等量关系,准确地找到等量关系并⽤⽅程组表⽰出来是解题的关键. 26.丁丁参加了⼀次智⼒竞赛,共回答了30道题,题⽬的评分标准是这样的:答对⼀题加5分,⼀题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他⾄少要答对多少题? 【考点】⼀元⼀次不等式的应⽤. 【专题】应⽤题. 【分析】设他⾄少要答对x题,由于他共回答了30道题,其中答对⼀题加5分,⼀题答错或不答倒扣1分,他这次竞赛中的得分要超过100分,由此可以列出不等式5x﹣(30﹣x)100,解此不等式即可求解. 【解答】解:设他⾄少要答对x题,依题意得 5x﹣(30﹣x)100, x , ⽽x为整数, x21.6. 答:他⾄少要答对22题. 【点评】此题主要考查了⼀元⼀次不等式的应⽤,解题的关键⾸先正确理解题意,然后根据题⽬的数量关系列出不等式即可解决问题. 27.为了调查市场上某品牌⽅便⾯的⾊素含量是否符合国家标准,⼯作⼈员在超市⾥随机抽取了某品牌的⽅便⾯进⾏检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表⾊素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表⽰的是抽查的⽅便⾯中⾊素含量分布的袋数,图2的扇形图表⽰的是抽查的⽅便⾯中⾊素的各种含量占抽查总数的百分⽐.请解答以下问题: (1)本次调查⼀共抽查了多少袋⽅便⾯? (2)将图1中⾊素含量为B的部分补充完整; (3)图2中的⾊素含量为D的⽅便⾯所占的百分⽐是多少? (4)若⾊素含量超过0.15%即为不合格产品,某超市这种品牌的⽅便⾯共有10000袋,那么其中不合格的产品有多少袋? 【考点】条形统计图;扇形统计图. 【分析】(1)根据A8袋占总数的40%进⾏计算; (2)根据(1)中计算的总数和B占45%进⾏计算; (3)根据总百分⽐是100%进⾏计算; (4)根据样本估算总体,不合格产品即D的含量,结合(3)中的数据进⾏计算. 【解答】解:(1)840%=20(袋); (2)2045%=9(袋),即 (3)1﹣10%﹣40%﹣45%=5%; (4)100005%=500(袋), 即10000袋中不合格的产品有500袋. 【点评】此题考查了扇形统计图和条形统计图.扇形统计图能够清楚地反映各部分所占的百分⽐;条形统计图能够清楚地反映各部分的具体数⽬.注意:⽤样本估计总体的思想.。
河北省邢台市宁晋县2017_2018学年七年级数学下学期期末试题(扫描版)含答案
河北省邢台市宁晋县2017-2018学年七年级数学下学期期末试题2017-2018学年度第二学期七年级期末考试数学试题参考答案(人教版)1-5DCCDC6-10DCACD11-14DAAD15.1 816.∠BEF=100°或∠BEC=80°或∠AEC=100°(答案不唯一)17.-318.72 m19.解:(1)建立平面直角坐标系如图所示;……………………………………4分(2)中心广场(0,0),音乐台(0,400),望春亭(-200,-100),南门(100,-600),游乐园(200,-400).…………………………………………………9分20.解:(1)60,0.05.………………………………………………………………4分(2)频数分布直方图如图所示,………………………………………………6分(3)视力正常的人数占被调查人数的百分比是140200×100%=70%.……………9分21.解:∵一个正数x的两个平方根是2a-3与5-a,∴2a-3+5-a=0,……………………………………………………………………3分解得a=-2,…………………………………………………………………6分∴2a-3=2×(-2)-3=-7,∴x=(-7)2=49.…………………………………………………………9分22.解:(1)当a =3时,由①得:2x +8>3x +6,解得:x <2,…………………2分由②得x <3,……………………………………………………………………4分∴原不等式组的解集是x <2.…………………………………………………6分(2)由①得:x <2,由②得x <a ,……………………………………………8分而不等式组的解集是x <1,∴a =1.………………………………………………………………………………………………9分23.解:BD ∥CF ,……………………………………………………………………2分理由如下:∵∠1=∠2,∴AD ∥BF ,………………………………………………4分∴∠D =∠DBF ,………………………………………………………………………6分∵∠3=∠D ,∴∠3=∠DBF ,………………………………………………………8分∴BD ∥CF .…………………………………………………………………………10分24.解:方案1:如图,设AE=x,EB=y,则80:2802:1100x y x y ⨯=⎧⎨+=⎩()(),…………………………………………………………………3分解得:8020x y =⎧⎨=⎩,即将原长方形的常分为80m 和20m 两部分;…………………5分方案2:如图,设AE=a,EC=b,则80100:21002:1a b a b +=⎧⎨⨯=⎩()(),………………………………………………………………8分解得:6416a b =⎧⎨=⎩,即将原长方形的宽分为64m 和16m 两部分。
河北省邢台市2017-2018年七年级下期末数学试卷含答案解析模板
2017-2018学年河北省邢台市七年级(下)期末数学试卷一、选择题:(本大题共10个小题,每小题3分,共30分)1.81的算术平方根是;=.2.如果1<x<2,化简|x﹣1|+|x﹣2|=.3.已知a>b>0,那么下列不等式组中无解的是()A.B.C.D.4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A.先右转50°,后右转40°B.先右转50°,后左转40°C.先右转50°,后左转130°D.先右转50°,后左转50°5.如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.46.下列调查:(1)为了检测一批电视机的使用寿命;(2)为了调查全国平均几人拥有一部手机;(3)为了解本班学生的平均上网时间;(4)为了解中央电视台春节联欢晚会的收视率.其中适合用抽样调查的个数有()A.1个B.2个C.3个D.4个7.甲从一个鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊上买了两条鱼,平均每条b元,后来他又以每条元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是()A.a>b B.a<bC.a=b D.与a和b的大小无关8.如果不等式无解,则b的取值范围是()A.b>﹣2 B.b<﹣2 C.b≥﹣2 D.b≤﹣29.某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间和数据,结果如图,根据此条形图估计这一天该校学生平均课外阅读时间为()A.0.96小时 B.1.07小时 C.1.15小时 D.1.50小时10.为了改善住房条件,小亮的父母考察了某小区的A、B两套楼房,A套楼房在第3层楼,B套楼房在第5层楼,B套楼房的面积比A套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A套楼房的面积为x平方米,B套楼房的面积为y平方米,根据以上信息列出了下列方程组.其中正确的是()A. B.C. D.二、填空题11.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种四边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直.请把你认为是真命题的命题的序号填在横线上.12.不等式﹣3≤5﹣2x<3的正整数解是.13.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回★这个数,★=.14.数字解密:若第一个数是3=2+1,第二个数是5=3+2,第三个数是9=5+4,第四个数是17=9+8,…观察并猜想第六个数应是.15.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC=度.16.若一个二元一次方程的一个解为,则这个方程可能是.17.如图,正方形是由k个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k=.18.在平面直角坐标系中,点A是y轴上一点,若它的坐标为(a﹣1,a+1),另一点B的坐标为(a+3,a﹣5),则点B的坐标是.19.若|x2﹣25|+=0,则x+y=.20.已知关于x的不等式组的整数解共有5个,则a的取值范围是.三、解答题21.解方程组和解不等式组(并把解集表示在数轴上)(1);(2).22.如图,已知∠1=∠2,∠B=∠C,试证明AB∥CD.23.如图,已知AB∥CD,∠B=120°,∠C=25°,求∠E.24.小龙在学校组织的社会调查活动中负责了解他所居住的小区1000户居民的家庭收入情况.他从中随机调查了40户居民家庭收入情况(收入取整数,单位:元),并绘制了如下的频数分布表和频数分布直方图.根据以上提供的信息,解答下列问题:(1)补全频数分布表.(2)补全频数分布直方图.(3)绘制相应的频数分布折线图.(4)请你估计该居民小区家庭属于中等收入(不少于3000不足5000元)的大约有多少户?25.夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1℃后两种空调每天各节电多少度?26.某城市为开发旅游景点,需要对古运河重新设计,加以改造,现需要A、B两种花砖共50万块,全部由某砖瓦厂完成此项任务.该厂现有甲种原料180万千克,乙种原料145万千克,已知生产1万块A砖,用甲种原料4.5万千克,乙种原料1.5万千克,造价1.2万元;生产1万块B砖,用甲种原料2万千克,乙种原料5万千克,造价1.8万元.(1)利用现有原料,该厂能否按要求完成任务?若能,按A、B两种花砖的生产块数,有哪几种生产方案?请你设计出来(以万块为单位且取整数);(2)试分析你设计的哪种生产方案总造价最低,最低造价是多少?2017-2018学年河北省邢台市七年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共10个小题,每小题3分,共30分)1.81的算术平方根是9;=﹣4.【考点】立方根;算术平方根.【分析】直接根据算术平方根和立方根的定义进行解答即可.【解答】解:∵92=81,∴=9;∵(﹣4)3=﹣64,∴=﹣4.故答案为:9;﹣4.【点评】本题考查的是算术平方根和立方根的定义,即一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.2.如果1<x<2,化简|x﹣1|+|x﹣2|=1.【考点】非负数的性质:绝对值.【分析】先判断绝对值里的数为正数还是负数,再去绝对值符号进行化简.【解答】解:∵1<x<2,∴x﹣1>0,x﹣2<0,∴|x﹣1|+|x﹣2|=x﹣1+2﹣x=1.故答案为:1.【点评】化简有理数,注意去绝对值号,若绝对值里本身是正数,绝对值后等于本身,若绝对值里本身是负数的,绝对值之后等于本身的相反数.3.已知a>b>0,那么下列不等式组中无解的是()A.B.C.D.【考点】不等式的解集.【分析】利用求不等式解集的方法判定,【解答】解:A、x的解集为﹣b<x<a,故A有解;B、x的解集为x>﹣b,故B有解;C、无解,D、x的解集为﹣a<x<b.故D有解;故选:C.【点评】此题主要考查了解不等式组,关键是正确理解解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A.先右转50°,后右转40°B.先右转50°,后左转40°C.先右转50°,后左转130°D.先右转50°,后左转50°【考点】平行线的性质.【分析】利用平行的性质来选择.【解答】解:两次拐弯后,仍在原来的方向上平行行驶,即转弯前与转弯后的道路是平行的,因而右转的角与左转的角应相等,理由是两直线平行,同位角相等.故选:D.【点评】本题主要考查了平行线的性质,能够根据条件,找到解决问题的依据是解决本题的关键.5.如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.4【考点】平行线的判定.【专题】探究型.【分析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:(1)利用同旁内角互补判定两直线平行,故(1)正确;(2)利用内错角相等判定两直线平行,∵∠1=∠2,∴AD∥BC,而不能判定AB∥CD,故(2)错误;(3)利用内错角相等判定两直线平行,故(3)正确;(4)利用同位角相等判定两直线平行,故(4)正确.∴正确的为(1)、(3)、(4),共3个;故选:C.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两直线平行.6.下列调查:(1)为了检测一批电视机的使用寿命;(2)为了调查全国平均几人拥有一部手机;(3)为了解本班学生的平均上网时间;(4)为了解中央电视台春节联欢晚会的收视率.其中适合用抽样调查的个数有()A.1个B.2个C.3个D.4个【考点】全面调查与抽样调查.【分析】根据对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查可分析出答案.【解答】解:(1)为了检测一批电视机的使用寿命适用抽样调查;(2)为了调查全国平均几人拥有一部手机适用抽样调查;(3)为了解本班学生的平均上网时间适用全面调查;(4)为了解中央电视台春节联欢晚会的收视率适用抽样调查;故选:C.【点评】此题主要考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用.7.甲从一个鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊上买了两条鱼,平均每条b元,后来他又以每条元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是()A.a>b B.a<bC.a=b D.与a和b的大小无关【考点】一元一次不等式的应用.【分析】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.【解答】解:利润=总售价﹣总成本=×5﹣(3a+2b)=0.5b﹣0.5a,赔钱了说明利润<0∴0.5b﹣0.5a<0,∴a>b.故选A.【点评】解决本题的关键是读懂题意,找到符合题意的不等关系式.8.如果不等式无解,则b的取值范围是()A.b>﹣2 B.b<﹣2 C.b≥﹣2 D.b≤﹣2【考点】解一元一次不等式组.【分析】不等式组无解就是两个不等式的解集没有公共部分,可利用数轴进行求解.【解答】解:x>﹣2在数轴上表示点﹣2右边的部分,x<b表示点b左边的部分.当点b在﹣2这点或这点的左边时,两个不等式没有公共部分,即不等式组无解,则b≤﹣2.故选D.【点评】本题考查不等式组中不等式的未知字母的取值,利用数轴能直观的得到,易于理解.9.某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间和数据,结果如图,根据此条形图估计这一天该校学生平均课外阅读时间为()A.0.96小时 B.1.07小时 C.1.15小时 D.1.50小时【考点】加权平均数;条形统计图.【专题】图表型.【分析】先从直方图中读出数据,再根据平均数的公式计算即可.【解答】解:50名学生平均的阅读时间为=1.07,由此可估计该校学生平均课外阅读时间也是1.07小时.故选:B.【点评】本题考查的是通过样本去估计总体,即用样本平均数估计总体平均数.同时要会读统计图.10.为了改善住房条件,小亮的父母考察了某小区的A、B两套楼房,A套楼房在第3层楼,B套楼房在第5层楼,B套楼房的面积比A套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A套楼房的面积为x平方米,B套楼房的面积为y平方米,根据以上信息列出了下列方程组.其中正确的是()A. B.C. D.【考点】由实际问题抽象出二元一次方程组.【分析】题中没有平均价,可设平均价为1.关键描述语是:B套楼房的面积比A套楼房的面积大24平方米;两套楼房的房价相同,即为平均价1.等量关系为:B套楼房的面积﹣A套楼房的面积=24;0.9×1×B套楼房的面积=1.1×1×A套楼房的面积,根据等量关系可列方程组.【解答】解:设A套楼房的面积为x平方米,B套楼房的面积为y平方米,可列方程组为.故选D.【点评】题中的必须的量没有时,为了简便,可设其为1.要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.二、填空题11.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种四边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直.请把你认为是真命题的命题的序号填在横线上③.【考点】命题与定理;对顶角、邻补角;垂线;同位角、内错角、同旁内角;平面镶嵌(密铺).【分析】根据对顶角的性质,平行线的性质,镶嵌的知识,逐一判断.【解答】解:①对顶角有位置及大小关系,相等的角不一定是对顶角,假命题;②只有当两条平行直线被第三条直线所截,同位角相等,假命题;③同一种四边形内角和为360°,且对应边相等,一定能进行平面镶嵌,真命题;④在同一平面内,垂直于同一条直线的两条直线平行,假命题.故答案为:③.【点评】本题考查了命题与证明.对顶角,垂线,同位角,镶嵌的相关概念.关键是熟悉这些概念,正确判断.12.不等式﹣3≤5﹣2x<3的正整数解是2,3,4.【考点】一元一次不等式组的整数解.【分析】先将不等式化成不等式组,再求出不等式组的解集,进而求出其整数解.【解答】解:原式可化为:,解得,即x≤4,所以不等式的正整数解为2,3,4.【点评】此题要明确,不等式﹣3≤5﹣2x<3要转化成不等式组的形式解答,否则将无从下手.13.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回★这个数,★=﹣2.【考点】二元一次方程组的解.【专题】计算题.【分析】根据二元一次方程组的解的定义得到x=5满足方程2x﹣y=12,于是把x=5代入2x﹣y=12得到2×5﹣y=12,可解出y的值.【解答】解:把x=5代入2x﹣y=12得2×5﹣y=12,解得y=﹣2.∴★为﹣2.故答案为:﹣2.【点评】本题考查了二元一次方程组的解:使二元一次方程组的两个方程左右两边都相等的未知数的值叫二元一次方程组的解.14.数字解密:若第一个数是3=2+1,第二个数是5=3+2,第三个数是9=5+4,第四个数是17=9+8,…观察并猜想第六个数应是65=33+32.【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】观察前四个数可以发现后一个数=前一个数+(前一个数﹣1),所以第五个数为17+16=33,第六个数为33+32=65.【解答】解:第六个数为33+32=65.【点评】解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.本题的解题关键是一个数=前一个数+(前一个数﹣1).15.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC=180度.【考点】角的计算.【专题】计算题.【分析】先利用∠AOD+∠COD=90°,∠COD+∠BOC=90°,可得∠AOD+∠COD+∠COD+∠BOC=180°,而∠BOD=∠COD+∠BOC,∠AOD+∠BOD=∠AOB,于是有∠AOB+∠COD=180°.【解答】解:如右图所示,∵∠AOD+∠COD=90°,∠COD+∠BOC=90°,∠BOD=∠COD+∠BOC,∠AOD+∠BOD=∠AOB,∴∠AOD+∠COD+∠COD+∠BOC=180°,∴∠AOD+2∠COD+∠BOC=180°,∴∠AOB+∠COD=180°.故答案是180.【点评】本题考查了角的计算、三角板的度数,注意分清角之间的关系.16.若一个二元一次方程的一个解为,则这个方程可能是x+y=1.【考点】二元一次方程的解.【专题】开放型.【分析】方程的解是,把x=2,y=1代入方程,方程的左右两边一定相等,据此即可求解.【解答】解:这个方程可能是:x+y=1,答案不唯一.故答案是:x+y=1,答案不唯一.【点评】考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x,y的值代入原方程验证二元一次方程的解.17.如图,正方形是由k个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k=8.【考点】二元一次方程组的应用.【专题】几何图形问题;压轴题.【分析】通过理解题意及看图可知本题存在等量关系,即矩形长的2倍=矩形宽的2倍+矩形的长,矩形长的2倍=(中间竖的矩形﹣4)宽的和,根据这两个等量关系,可列出方程组,再求解.【解答】解:设矩形的长为x,矩形的宽为y,中间竖的矩形为(k﹣4)个,即(k﹣4)个矩形的宽正好等于2个矩形的长,∵由图形可知:x+2y=2x,2x=(k﹣4)y,则可列方程组,解得k=8.故答案为:8.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.为了解题方便本题虽然设了三个未知数,但只需求一个即可.18.在平面直角坐标系中,点A是y轴上一点,若它的坐标为(a﹣1,a+1),另一点B的坐标为(a+3,a﹣5),则点B的坐标是(4,﹣4).【考点】点的坐标.【分析】点在y轴上,则其横坐标是0.【解答】解:∵点A(a﹣1,a+1)是y轴上一点,∴a﹣1=0,解得a=1,∴a+3=1+3=4,a﹣5=1﹣5=﹣4,∴点B的坐标是(4,﹣4).故答案填:(4,﹣4).【点评】本题考查了坐标轴上的点的坐标的特征:点在y轴上时,其横坐标是0.19.若|x2﹣25|+=0,则x+y=﹣2或8.【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质和平方根的概念求出x、y的值,代入代数式计算即可.【解答】解:由题意得,x2﹣25=0,y﹣3=0,解得,x=±5,y=3,当x=5,y=3时,x+y=8,当x=﹣5,y=3时,x+y=﹣2,故答案为:﹣2或8.【点评】本题考查的非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.20.已知关于x的不等式组的整数解共有5个,则a的取值范围是﹣12<a≤﹣9.【考点】一元一次不等式组的整数解.【分析】首先解不等式组确定不等式组的解集,然后根据不等式的整数解有5个,即可得到一个关于a的不等式组,解不等式组即可求解.【解答】解:,解①得:x≥,解②得:x<2,则不等式组的解集是:≤x<2,不等式组有5个整数解,则﹣4<≤﹣3,则﹣12<a≤﹣9.故答案是:﹣12<a≤﹣9.【点评】此题考查的是一元一次不等式的解法,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.三、解答题21.解方程组和解不等式组(并把解集表示在数轴上)(1);(2).【考点】解二元一次方程组;解一元一次不等式组.【专题】计算题.【分析】(1)方程组整理后利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)方程组整理得:,①+②得:2x=1,即x=,将x=代入①得:﹣y=﹣1,即y=,则方程组的解为;(2)不等式组整理得:,由①得:x>1;由②得:x<4,∴不等式组的解集为1<x<4,【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.如图,已知∠1=∠2,∠B=∠C,试证明AB∥CD.【考点】平行线的判定与性质.【分析】首先证明CE∥BF,得到∠C=∠3,从而证得∠3=∠B,根据内错角相等,两直线平行即可证得.【解答】解:∵∠1=∠2(已知),且∠1=∠4(对顶角相等),∴∠2=∠4 (等量代换),∴CE∥BF (同位角相等,两直线平行),∴∠C=∠3(两直线平行,同位角相等);又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD (内错角相等,两直线平行).【点评】解答此题的关键是注意平行线的性质和判定定理的综合运用.23.如图,已知AB∥CD,∠B=120°,∠C=25°,求∠E.【考点】平行线的性质.【分析】过点E作EF∥AB,由EF∥AB可得∠B与∠BEF互补,由此得出∠BEF的度数,由EF∥CD 可得∠CEF=∠C,再结合∠E=∠BEF+∠CEF即可得出结论.【解答】解:过点E作EF∥AB,如图所示.∵EF∥AB,∴∠B+∠BEF=180°,又∵∠B=120°,∴∠BEF=60°.∵EF∥AB∥CD,∴∠CEF=∠C=25°,∴∠E=∠BEF+∠CEF=85°.【点评】本题考查了平行线的性质以及角的计算,解题的关键是得出∠BEF和∠CEF的度数.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质得出相等(或互补)的角,再根据角与角之间的关键即可得出结论.24.小龙在学校组织的社会调查活动中负责了解他所居住的小区1000户居民的家庭收入情况.他从中随机调查了40户居民家庭收入情况(收入取整数,单位:元),并绘制了如下的频数分布表和频数分布直方图.根据以上提供的信息,解答下列问题:(1)补全频数分布表.(2)补全频数分布直方图.(3)绘制相应的频数分布折线图.(4)请你估计该居民小区家庭属于中等收入(不少于3000不足5000元)的大约有多少户?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;频数(率)分布折线图.【分析】(1)根据利用百分比的定义求得3000≤x<4000一组的频数和6000≤x<7000一组所占的百分比;利用总数减去其它各组的频数即可求得5000≤x<6000一组的频数,进而求得百分比;(2)根据(1)的结果即可补全频数分布直方图;(3)在(2)的基础上把每个长方形的上边的中点顺次连接即可;(4)利用总数1000,乘以抽查的户数中中等收入所占的百分比即可.【解答】解:(1)3000≤x<4000一组的频数是:40×45%=18;5000≤x<6000一组的频数是:40﹣2﹣6﹣18﹣9﹣2=3,则百分比是:×100%=7.5%;6000≤x<7000一组所占的百分比是:×100%=5%;(2);(3)(4)1000×=675(户).【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.25.夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1℃后两种空调每天各节电多少度?【考点】二元一次方程组的应用.【分析】本题有多种解法.设甲种空调每天节电x度,乙种空调每天节电y度列出方程组求解即可.解法二是设乙种空调每天节电x度,则甲种空调每天节电(x+27)度.只设一个未知数.列出一元一次方程亦可求解.【解答】解:解法一:设只将温度调高1℃后,甲种空调每天节电x度,乙种空调每天节电y度依题意得:解得:答:只将温度调高1℃后,甲种空调每天节电207度,乙种空调每天节电180度.解法二:设只将温度调高1℃后,乙种空调每天节电x度则甲种空调每天节电(x+27)度依题意得:1.1x+x+27=405解得:x=180∴x+27=207答:只将温度调高1℃后,甲种空调每天节电207度,乙种空调每天节电180度.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.26.某城市为开发旅游景点,需要对古运河重新设计,加以改造,现需要A、B两种花砖共50万块,全部由某砖瓦厂完成此项任务.该厂现有甲种原料180万千克,乙种原料145万千克,已知生产1万块A砖,用甲种原料4.5万千克,乙种原料1.5万千克,造价1.2万元;生产1万块B砖,用甲种原料2万千克,乙种原料5万千克,造价1.8万元.(1)利用现有原料,该厂能否按要求完成任务?若能,按A、B两种花砖的生产块数,有哪几种生产方案?请你设计出来(以万块为单位且取整数);(2)试分析你设计的哪种生产方案总造价最低,最低造价是多少?【考点】一元一次不等式组的应用.【专题】方案型.【分析】(1)根据生产A,B砖所需的甲种原料应小于180万千克,生产A,B砖所需的原料应小于145万千克,列出不等式,可求出可行的方案数.(2)可对可行方案进行分类求解,然后进行比较,求出总造价最低的方案;也可根据生产1万块A 砖的造价得出,生产A种砖的块数越多,所需的方案总造价最低.【解答】解:(1)设生产A种花砖数x万块,则生产B种花砖数50﹣x万块,由题意:,解得:30≤x≤32.∵x为正整数∴x可取30,31,32.∴该厂能按要求完成任务,有三种生产方案:甲:生产A种花砖30万块,则生产B种花砖20万块;乙:生产A种花砖31万块,则生产B种花砖19万块;丙:生产A种花砖32万块,则生产B种花砖18万块;(2)方法一:甲种方案总造价:1.2×30+1.8×20=72,同理,生产乙种方案总造价为71.4万元,生产丙种方案总造价70.8万元,故第三种方案总造价最低为70.8万元.方法二:由于生产1万块A砖的造价较B砖的低,故在生产总量一定的情况下,生产A砖的数量越多总造价越低,故丙方案总造价最低为1.2×32+1.8×18=70.8万元.答:丙方案总造价最低为70.8万元.【点评】将现实生活中的事件与数学思想联系起来,通过解不等式组可使实际问题变的较为简单,在第二个问题求解的时候,既可分类讨论,也可通过观察直接进行判断.。
河北省邢台市七年级(下)期末数学试卷
河北省邢台市七年级(下)期末数学试卷一、选择题(共12个小题,1-6每小题2分,7-12每小题2分,共30分,每小题四个选项中只有一项是符合要求的)1.(2分)如图点P是直线a外一点,PB⊥a,A、B、C、D都在直线a上,下列线段中最短的是()A.P A B.P B C.P C D.P D考点:垂线段最短.专题:常规题型.分析:根据垂线段最短进行解答.解答:解:如图,PB是点P到a的垂线段,∴下列线段中最短的是PB.故选B.点评:本题主要考查了垂线段最短的性质,需要熟记.2.(2分)(广州)下列命题中,正确的是()A.对顶角相等B.同位角相等C.内错角相等D.同旁内角互补考点:命题与定理.分析:根据平行线的性质进行逐一判断即可.解答:解:对顶角相等,正确;在两平行线被第三条直线所截的条件下,B、C、D才正确.故选A.点评:主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.(2分)计算x6÷x3的结果是()A.x3B.x2C.2x D.3x考点:同底数幂的除法.专题:计算题.分析:根据a m÷a n=a m﹣n即可得到答案.解答:解:x6÷x3=x6﹣3=x3.故选A.点评:本题考查了幂的运算:a m÷a n=a m﹣n(a≠0,m、n为正整数).4.(2分)(宿迁)若关于x的不等式x﹣m≥﹣1的解集如图所示,则m等于()考点:在数轴上表示不等式的解集.专题:图表型.分析:首先解得关于x的不等式x﹣m≥﹣1的解集即x≥m﹣1,然后观察数轴上表示的解集,求得m的值.解答:解:关于x的不等式x﹣m≥﹣1,得x≥m﹣1,由题目中的数轴表示可知:不等式的解集是:x≥2,因而可得到,m﹣1=2,解得,m=3.故选D.点评:本题解决的关键是正确解出关于x的不等式,把不等式问题转化为方程问题.5.(2分)2012年10月11日,中国作家莫言被授予诺贝尔文学奖.莫言由此成为诺贝尔文学奖100多年历史上,首位获奖的中国作家,中国人为此欢欣鼓舞.某网站随即推出莫言作品在线阅读,在一周的时间里,点击量就达到156000人次,数字156000用科学记数法可以表示为()A.156×103B.0.156×106C.1.56×105D.15.6×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:156000=1.56×105,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(2分)以下是四位同学在钝角三角形ABC中画BC边上的高,其中画法正确的是()A.B.C.D.考点:三角形的角平分线、中线和高.分析:找到经过顶点A且与BC垂直的AD所在的图形即可.解答:解:A、没有经过顶点A,不符合题意;B、高AD交BC的延长线于点D处,符合题意;C、垂足没有在BC上,不符合题意;D、AD不垂直于BC,不符合题意.故选B.点评:过三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫做高.7.(3分)若(y+3)(y﹣2)=y2+my+n,则m、n的值分别为()A.5,6 B.1,﹣6 C.1,6 D.5,﹣6考点:多项式乘多项式.分析:根据多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加进行计算即可.解答:解:(y+3)(y﹣2)=y2﹣2y+3y﹣6=y2+y﹣6,则:m=1,n=﹣6,故选:B.点评:此题主要考查了多项式与多项式相乘的法则,关键是熟练掌握计算法则.8.(3分)如图,△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=30°,则∠A=()A.40°B.50°C.60°D.70°考点:平行线的性质.分析:由DE过点C且平行于AB,∠BCE=30°,根据两直线平行,内错角相等,∠B的度数,又由△ABC中,∠ACB=90°,即可求得答案.解答:解:∵DE∥AB,∴∠B=∠BCE=30°,∵△ABC中,∠ACB=90°,∴∠A=90°﹣∠B=60°.故选C.点评:此题考查了平行线的性质与直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.9.(3分)小刚带了面值为2元和5元的人民币若干,去超市买学习用品,共花了29元,如果正好给收银员29元,则小刚的付款方式有()A.4种B.3种C.2种D.1种考点:二元一次方程的应用.专题:应用题.分析:设用了2元x张,5元y张,根据给收银员29元,可得出方程,求出正整数解即可.解答:解:设用了2元x张,5元y张,由题意得,2x+5y=29,则正整数解为:,,,共3组.故选B.点评:本题考查了二元一次方程的应用,解答本题的关键是列出方程,讨论得解,难度一般.10.(3分)如图,直角△ADB中,∠D=90°,C为AD上一点,且∠ACB的度数为(5x﹣10)°,则x的值可能是()A.10 B.20 C.30 D.40考点:一元一次不等式的应用;三角形内角和定理;三角形的外角性质.分析:三角形的任一外角等于和它不相邻的两个内角之和,就可以得到x与∠CBD的关系,根据∠CBD是锐角,就可以得到一个关于x的不等式组,就可以求出x的范围.解答:解:∠ACB=∠90°+∠CBD∴(5x﹣10)°=∠90°+∠CBD化简得:x=20+∵0°<∠DBC<90°∴20°<x<38°,故选C点评:此题主要考查了三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.11.(3分)已知是方程组的解,则a+b=()A.2B.﹣2 C.4D.﹣4考点:二元一次方程组的解.分析:将代入方程组中的两个方程,得到两个关于未知系数的一元一次方程,解答即可.解答:解:把代入ax+y=﹣1,得a+2=﹣1,解,得a=﹣3.把代入2x﹣by=0,得2﹣2b=0,b=1.∴a+b=﹣3+1=﹣2.故选B.点评:解答此题,需要对以下问题有一个深刻的认识:①使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解;②二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.12.(3分)如图,点O在MN上,把∠AOB沿着MN的方向平移一定距离后得∠CPD.已知∠AOM=25°,∠DPN=50°,则∠AOB的大小是()A.75°B.105°C.130°D.155°考点:平移的性质.专题:计算题.分析:根据平移的性质得到BO∥DP,再根据平行的性质得∠BON=∠DPN=50°,然后利用平角的定义计算∠AOB的度数.解答:解:∵∠AOB沿着MN的方向平移一定距离后得∠CPD,∴BO∥DP,∴∠BON=∠DPN=50°,∵∠AOM+∠AOB+∠BON=180°,∴∠AOB=180°﹣25°﹣50°=105°.故选B.点评:本题考查了平移的性质:平移前后两图形的形状、大小完全一样,即对应线段相等且平行(或共线),对应角相等.二、填空题(每小题3分,共六个小题,满分18分,请把答案直接写在题目中的横线上)13.(3分)计算:=﹣x3.考点:幂的乘方与积的乘方.分析:先根据负数的偶次幂得正,确定符号,再根据积的乘方法则计算即可.解答:解:原式=﹣x3,故答案是=﹣x3.点评:本题考查了积的乘方和幂的乘方,解题的关键是注意符号的确定.14.(3分)分解因式:a﹣a2=a(1﹣a).考点:因式分解-提公因式法.分析:观察原式,找到公因式a,提出即可得出答案.解答:解:a﹣a2=a(1﹣a).故答案为:a(1﹣a).点评:考查了提公因式法的直接应用,此题属于基础性质的题.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.15.(3分)已知2x+5y=3,用含x的代数式表示y,则y=﹣x.考点:解二元一次方程.分析:本题是将二元一次方程变形,用含一个未知数的代数式表示另一个未知数,可先移项,再系数化为1即可.解答:解:移项,得5y=3﹣2x,系数化为1,得y=﹣x.故答案为﹣x.点评:本题考查的是等式的性质及方程的基本运算技能:移项、系数化为1,比较简单.16.(3分)三角形的一边是8,另一边是1,第三边如果是整数,则第三边是8.考点:三角形三边关系.分析:已知两边,则第三边的长度应是大于两边的差,而小于两边的和,这样就可求出第三边长的范围;再根据x为偶数,可知x的值.解答:解:依题意,得8﹣1<x<8+1,则7<x<9.∵x为偶数,∴x=8.故答案为8.点评:本题考查三角形三边关系定理,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.本题还要注意偶数这一条件.17.(3分)在△ABC中,已知AD是角平分线,∠B=50°,∠C=70°,∠BAD=30°.考点:三角形的角平分线、中线和高.分析:要求∠BAD的度数,只要求得∠BAC的度数即可,可根据三角形的内角和,利用180°减去另外两个角的度数可得答案.解答:解:△ABC中,∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C,=180°﹣50°﹣70°,=60°,∵AD是角平分线,∴∠BAD=∠BAC=×60°=30°.故填30.点评:本题考查了三角形的角平分线、中线和高的相关知识;利用三角形的内角和求得∠BAC的度数是正确解答本题的关键.18.(3分)在长为10m,宽为8m的长方形空地中,沿平行于长方形各边的方向分割出三个全等的小长方形花圃,其示意图如图所示.则小长方形花圃的长和宽分别是小矩形花圃的长和宽分别为4m,2m.考点:二元一次方程组的应用.专题:几何图形问题.分析:由图形可看出:小矩形的2个长+一个宽=10m,小矩形的2个宽+一个长=8m,设出长和宽,列出方程组即可得答案.解答:解:设小矩形的长为xm,宽为ym,由题意得:,解得:,即小矩形的长为4m,宽为2m.故答案为:小矩形花圃的长和宽分别为4m,2m.点评:此题主要考查了二元一次方程组的应用,做题的关键是:弄懂题意,找出等量关系,列出方程组.三、解答题(共八个小题,满分72分,解答题应写出必要的文字说明,解题步骤或证明过程)19.(8分)如图,AB⊥BD,CD⊥BD,∠A+∠AEF=180°.以下是某同学说明CD∥EF的推理过程或理由,请你在横线上补充完整其推理过程或理由.解:因为AB⊥BD,CD⊥BD(已知)所以∠ABD=∠CDB=90°(垂直定义)所以∠ABD+∠CDB=180°所以AB∥(CD)(同旁内角互补,两直线平行)因为∠A+∠AEF=180°(已知)所以AB∥EF(同旁内角互补,两直线平行)所以CD∥EF(平行于同一条直线的两直线平行)考点:平行线的判定与性质.专题:推理填空题.分析:由AB与CD都与BD垂直,利用垂直的定义得到一对角为直角,进而确定出一对同旁内角互补,利用同旁内角互补两直线平行得到AB与CD平行,再由一对角互补得到AB与EF平行,利用平行于同一条直线的两直线平行即可得证.解答:解:因为AB⊥BD,CD⊥BD(已知)所以∠ABD=∠CDB=90°(垂直定义)所以∠ABD+∠CDB=180°所以AB∥CD(同旁内角互补,两直线平行)因为∠A+∠AEF=180°(已知)所以AB∥EF(同旁内角互补,两直线平行)所以CD∥EF(平行于同一条直线的两直线平行)故答案为:CD;同旁内角互补,两直线平行;同旁内角互补,两直线平行;平行于同一条直线的两直线平行点评:此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.20.(8分)解下列方程4x2+x﹣(2x+3)(2x﹣3)=1.考点:整式的混合运算;解一元一次方程.分析:首先利用平方差公式计算多项式的乘法,然后合并同类项,即可对原方程进行化简,即可求解.解答:解:化简,得:4x2+x﹣(4x2﹣9)=1,即x+9=1,移项、合并同类项得:x=﹣8.点评:本题主要考查平方差公式的运用,熟记公式是解题的关键.21.(8分)(苏州)解不等式组.考点:解一元一次不等式组.分析:首先分别解出两个不等式,再根据求不等式组的解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到,确定解集即可.解答:解:,由不等式①得,x<2,由不等式②得,x≥﹣2,∴不等式组的解集为﹣2≤x<2.点评:此题主要考查了解一元一次不等式组,关键是正确求出两个不等式的解集.22.(8分)如图,请用两种不同的方式表示图中的大正方形的面积.方法一:方法二:你根据上述结果可以得到公式(a+b)2=a2+2ab+b2利用这个公式计算:1012=10201.考点:完全平方公式的几何背景.分析:根据图形可以得到:两个图形的面积有两种计算方法,一种是根据正方形的面积等于边长的平方计算;另一种方法是图形中两个矩形面积与两个正方形的面积的和,即可得到公式.解答:解:得到公式(a+b)2=a2+2ab+b2,利用这个公式计算:1012=1002+2×100+1=10201.点评:根据图形的面积的两种计算方法,利用图形表示公式比较形象,容易理解.23.(9分)已知方程组的解x、y满足x+y>0,求m的取值范围.考点:解二元一次方程组;解一元一次不等式.专题:计算题.分析:先把两方程相加即可用m表示出x+y,再根据x+y>0即可得到关于m的不等式,求出m的取值范围即可.解答:解:,①+②得,3x+3y=3﹣m,即x+y=,∵x+y>0,∴>0,解得m<3.故答案为:m<3.点评:本题考查的是解二元一次方程及解一元一次不等式,根据题意得出关于m的不等式是解答此题的关键.24.(9分)如图,已知∠B=∠ADB,∠1=15°,∠2=20°,求∠3的度数.考点:三角形的外角性质.分析:求∠3的度数,应先根据∠B=∠ADB,∠ADB=∠1+∠2求∠ADB的度数,再求出∠B 的度数,根据三角形一个外角等于和它不相邻的两个内角和即可解答.解答:解:∵∠1=15°,∠2=20°(已知),又∵∠ADB=∠1+∠2=15°+20°=35°(三角形一个外角等于和它不相邻的两个内角和),又∵∠B=∠ADB(已知),∴∠B=35°(等量代换),∴∠3=∠B+∠2=35°+20°=55°(三角形的一个外角等于和它不相邻的两个内角的和).点评:本题主要运用三角形一个外角等于和它不相邻的两个内角和进行解题.25.(10分)对于二次三项式x2+2ax+a2可以直接用公式法分解为(x+a)2的形式,但对于二次三项式x2+2ax﹣3a2,就不能直接用公式法了,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使其成为完全平方式,再减去a2这项,使整个式子的值不变.于是有x2+2ax ﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣4a2.=(x+a)2﹣(2a)2=(x+3a)(x﹣a)像上面这样把二次三项式分解因式的方法叫做添(拆)项法.(1)请用上述方法把x2﹣4x+3分解因式.(2)多项式x2+2x+2有最小值吗?如果有,那么当它有最小值时x的值是多少?考点:因式分解的应用.分析:(1)要运用配方法,只要二次项系数为1,只需加上一次项系数一半的平方即可配成完全平方公式;(2)把多项式x2+2x+2凑成完全平方式加常数项的形式,即可求出多项式x2+2x+2有最小值时x的值.解答:解:(1)x2﹣4x+3=x2﹣2×2x+22﹣22+3=(x﹣2)2﹣12=(x﹣1)(x﹣3);(2)x2+2x+2=x2+2x+12﹣12+2=(x+1)2+1,故当它有最小值时x的值是﹣1.点评:此题主要考查了因式分解的应用,完全平方式的非负性,即完全平方式的值是大于等于0的,它的最小值为0.所以在求一个多项式的最小值时常常用凑完全平方式的方法进行求值.26.(12分)(建邺区一模)某手机专营店代理销售A、B两种型号手机.手机的进价、售价如下表:型号 A B进价1200元/部1000元/部售价1380元/部1200元/部(1)第一季度:用36000元购进A、B两种型号的手机,全部售完后获利6300元,求第一季度购进A、B两种型号手机的数量;(2)第二季度:计划购进A、B两种型号手机共34部,且不超出第一季度的购机总费用,则A型号手机最多能购多少部?考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设该专营店第一季度购进A、B两种型号手机的数量分别为x部和y部,根据用36000元购进A、B两种型号的手机,全部售完后获利6300元,可列出方程和不等式.(2)设第二季度购进A型号手机a部,根据购进A、B两种型号手机共34部,且不超出第一季度的购机总费用,可列出不等式求解.解答:(1)解:设该专营店第一季度购进A、B两种型号手机的数量分别为x部和y部.(1分)由题意可知:(3分)解得:答:该专营店本次购进A、B两种型号手机的数分别为15部和18部.(4分)(2)解:设第二季度购进A型号手机a部.(5分)由题意可知:1200a+1000(34﹣a)≤36000,(6分)解得:a≤10(7分)不等式的最大整数解为10,答:第二季度最多能购A型号手机10部.(8分)点评:本题考查理解题意的能力,关键是根据题目所给的等量关系和不等量关系列出方程和不等式求解.。
冀教版 河北省邢台市2017-2018学年七年级(下)期末数学试卷(含解析)
2017-2018学年河北省邢台市七年级(下)期末数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共36分)1. 3-1=( )A. −13B. 13C. −3D. 32. 两个三角板按如图方式叠放,∠1=( )A. 30∘B. 45∘C. 60∘D. 75∘3. 下列运算正确的是( )A. a 6÷a 3=a 2B. 3a 0=0C. (a 2)3=a 5D. (−a)2⋅a 3=a 54. 下列图形中由AB ∥CD 能得到∠1=∠2的是( ) A. B.C. D.5. 如图,数轴上表示的是某不等式组的解集,则这个不等式组可以是( )A. {x <2x≥−1B. {x <2x≤−1C. {x ≤2x>−1D. {x >2x≥−16. 下面是芳芳同学计算(a •a 2)3的过程:解:(a •a 2)3=a 3•(a 2)3…①=a 3•a 6…②=a 9…③则步骤①②③依据的运算性质分别是( )A. 积的乘方,幂的乘方,同底数幂的乘法B. 幂的乘方,积的乘方,同底数幂的乘法 C. 同底数幂的乘法,幂的乘方,积的乘方D. 幂的乘方,同底数幂的乘法,积的乘方7. 如图1是一个边长分别为2x ,2y 的长方形纸片(x >y ),沿长方形纸片的两条对称轴剪开,得到四块形状和大小都相同的小长方形,拼成如图2所示的一个正方形,则中间空白部分的面积是( )A. x ⋅yB. (x +y)2C. (x −y)2D. x 2−y 2 8. 下列各数为不等式组{3x −5<1−2x<4的整数解的是( )A. −2B. 0C. 2D. 39. 平面上五条直线l 1,l 2,l 3,l 4和l 5相交的情形如图所示,根据图中标出的角度,下列叙述正确的是( )A. l 1和l 3不平行,l 2和l 3平行B. l 1和l 3不平行,l 2和l 3不平行C. l 1和l 3平行,l 2和l 3平行D. l 1和l 3平行,l 2和l 3不平行10. 某山区有一种土特产品,若加工后出售,单价可提高20%,但重量会减少10%.现有该种土特产品300千克,全部加工后可以比不加工多卖240元,设加工前单价是x 元/kg ,加工后的单价是y 元/kg ,由题意,可列出关于x ,y 的方程组是( )A. {300(1−10%)y −300x =240y=(1−20%)xB. {300(1+10%)y −300x =240y=(1−20%)xC. {300(1+10%)y −300x =240y=(1+20%)xD. {300(1−10%)y −300x =240y=(1+20%)x11. 观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x +a )(x +b )=x 2-7x +12,则a ,b 的值可能分别是( )A. −3,−4B. −3,4C. 3,−4D. 3,412. 如图,AB ⊥AC ,CD 、BE 分别是△ABC 的角平分线,AG ∥BC ,AG ⊥BG ,下列结论:①∠BAG =2∠ABF ;②BA 平分∠CBG ;③∠ABG =∠ACB ;④∠CFB =135°.其中正确的结论是( )A. ①③B. ②④C. ①③④D. ①②③④二、填空题(本大题共6小题,共18分)13. 某种钢管随着温度每变化1℃,每米钢管的长度就会变化0.0000118m ,把0.0000118用科学记数法表示为______.14. 如图,已知∠l =70°,将直线m 平行移动到直线n 的位置,则∠2-∠3=______°15. 计算:(-0.125)2017×82018=______. 16. 若{y =b x=a是二元一次方程2x -y =3的一个解,则代数式4a -2b -17的值是______.17. 如图,在△ABC 中,点D ,E ,F 分别是BC ,AD ,EC 的中点,若△ABC 的面积等于36,则△BEF 的面积为______.18. 我国南宋数学家杨辉用三角形系数表解释二项和的乘方规律,称之为“杨辉三角”.下面给出了(a +b )n (n =1,2,3,4…)的展开式的系数规律(按a 的次数由大到小的顺序):请根据上述规律,写出(x +2x )2018的展开式中含x 2016项的系数是______.三、计算题(本大题共1小题,共8分)19. (1)计算:12ab •(2ab 2)2(2)因式分解:4x 2y 2-y 2四、解答题(本大题共7小题,共58分) 20. (1)解方程组{3x −7y =132x+3y=1(2)解不等式组{2(x +1)≥3x −1x+1>021. 请把以下证明过程补充完整:已知:如图,∠A =∠F ,∠C =∠D .点B ,E 分别在线段AC ,DF 上,对∠1=∠2进行说理.理由:∵∠A =∠F (已知)∴______∥FD (______)∴∠D =______(两直线平行,内错角相等)∵∠C =∠D (已知)∴______=∠C (等量代换)∴______∥______(同位角相等,两直线平行)∴∠1=∠3(______)∵∠2=∠3(______)∴∠1=∠2(等量代换).22. 在我市“精准扶贫”工作中,甲、乙两个工程队先后接力为扶贫村庄修建一条210米长的公路,甲队每天修建15米,乙队每天修建25米,一共用10天完成. 根据题意,小红和小芳同学分别列出了下面尚不完整的方程组:小红:{15x +25y =()x+y=()小芳:{x +y =()x 15+y 25=() (1)请你分别写出小红和小芳所列方程组中未知数x ,y 表示的意义:小红:x 表示______,y 表示______;小芳:x 表示______,y 表示______;(2)在题中“( )”内把小红和小芳所列方程组补充完整;(3)甲工程队一共修建了______天,乙工程队一共修建了______米.23.如图,在△ABC中,AD是高,AE是角平分线.(1)若∠B=30°,∠C=70°,则∠CAE=______°,∠DAE=______°.(2>若∠B=40°,∠C=80°.则∠DAE=______°.(3)通过探究,小明发现将(2)中的条件“∠B=40°,∠C=80°”改为“∠C-∠B=40°”,也求出了∠DAE的度数,请你写出小明的求解过程.24.王老师在黑板上写下了四个算式:①32-12=(3+1)(3-1)=8=8×1,②52-32=(5+3)(5-3)=16=8×2,③72-52=(7+5)(7-5)=24=8×3,④92-72=(9+7)(9-7)=32=8×4.…认真观察这些算式,并结合你发现的规律,解答下列问题:(1)请再写出另外两个符合规律的算式:算式①______;算式②______.(2)小华发现上述算式的规律可以用文字语言概括为:“两个连续奇数的平方差能被8整除”,如果设两个连续奇数分别为2n+1和2n-1(n为正整数),请你用含有n的算式验证小华发现的规律.25.某企业用规格是170×40的标准板材作为原材料,按照如图1所示的裁法一或裁法二,裁剪出甲型与乙型两种板材(单位:cm)(1)求图中a,b的值;(2)若将50张标准板材按裁法一裁剪,10张标准板材按裁法二裁剪,裁剪后将得到的甲型与乙型板材做侧面或底面,做成如图2的竖式与横式两种无盖的装饰盒若干(接缝处的长度忽略不计).①一共可裁剪出甲型板材______张,乙型板材______张;②设可以做出竖式和横式两种无盖装饰盒一共x个,则x的最大值是______.26.将一个直角三角形纸板ABC放置在锐角△PMN上,使该直角三角形纸板的两条直角边AB,AC分别经过点M,N.【发现】(1)如图1,若点A在△PMN内,当∠P=30°时,则∠PMN+∠PNM=______°,∠AMN+∠ANM=______°,∠PMA+∠PNA=______°.(2)如图2,若点A在△PMN内,当∠P=50°时,∠PMA+∠PNA=______°.【探究】(3)若点A在△PMN内,请你判断∠PMA,∠PNA和∠P之间满足怎样的数量关系,并写出理由.【应用】(4)如图3,点A在△PMN内,过点P作直线EF∥AB,若∠PNA=16°,则∠NPE=______.答案和解析1.【答案】B【解析】解:原式=,故选:B.根据负整数指数幂的意义即可求出答案.本题考查负整数指数幂的意义,解题的关键是正确理解负整数指数幂的意义,本题属于基础题型.2.【答案】D【解析】解:如图,∵∠ABD+∠CDB=90°,∴∠ABD+∠CDB=180°,∴AB∥CD,∴∠ABE=∠C=30°,则∠1=∠A+∠ABC=75°,故选:D.由∠ABD+∠CDB=90°可知AB∥CD,据此得∠ABE=∠C=30°,根据∠1=∠A+∠ABC可得答案.本题考查了三角形外角性质、平行线的判定和性质,解题的关键是先证明AB∥CD.3.【答案】D【解析】解:A、a6÷a3=a3,故此选项错误;B、3a0=1,(a≠0),故此选项错误;C、(a2)3=a6,故此选项错误;D、(-a)2•a3=a5,正确.故选:D.直接利用同底数幂的乘除运算法则以及零指数幂的性质和幂的乘方运算法则分别计算得出答案.此题主要考查了同底数幂的乘除运算以及零指数幂的性质和幂的乘方运算,正确掌握相关运算法则是解题关键.4.【答案】B【解析】解:A、∵AB∥CD,∴∠1+∠2=180°,故本选项错误;B、∵AB∥CD,∴∠1=∠3,又∵∠2=∠3,∴∠1=∠2,故本选项正确;C、根据AB∥CD可得∠BAD=∠CDA,不能推出∠1=∠2,故本选项错误;D、根据AB∥CD不能推出∠1=∠2,故本选项错误;故选:B.根据平行线的性质、结合图形找到同位角、内错角、同旁内角,逐个判断即可.本题考查了平行线的性质的应用,能灵活运用定理进行推理是解此题的关键,必须弄清两条直线被那一条线所截.5.【答案】A【解析】解;由数轴上表示的不等式组的解集,x<2,x≥-1,故选:A.根据数轴上表示的不等式组的解集,可得答案.本题考查了在数轴上表示不等式的解集,注意不等式组的解集不包括2点,包括-1点.6.【答案】A【解析】解:(a•a2)3=a3•(a2)3…①=a3•a6…②=a9…③则步骤①②③依据的运算性质分别是积的乘方,幂的乘方,同底数幂的乘法.故选:A.直接利用幂的乘方运算法则以及同底数幂的乘法运算法则分别计算得出答案.此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确掌握相关运算法则是解题关键.7.【答案】C【解析】解:∵分成的四块小长方形形状和大小都一样,∴每一个小长方形的长为x,宽为y,∴中间空的部分正方形的边长为(x-y),∴中间空的部分的面积=(x-y)2.故选:C.先求出一个小长方形的长和宽,再求出拼成的正方形的边长,然后根据空白部分的边长,再根据正方形的面积公式列式即可.本题考查了完全平方公式的几何背景,观察图形表示出空白部分正方形的边长是解题的关键.8.【答案】B【解析】解:不等式组解得:-2<x<2,则整数解为-1,0,1,故选:B.求出不等式组中两不等式的解集,找出解集的公共部分确定出解集,即可求出整数解.此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.9.【答案】A【解析】解:由题意可得:∠1=88°,利用同位角相等,两直线平行可得l2和l3平行,∵92°+92°≠180°,∴l1和l3不平行.故选:A.直接利用平行线的判定方法分别判断得出答案.此题主要考查了平行线的判定,正确掌握判定方法是解题关键.10.【答案】D【解析】解:由题意可得,,故选:D.根据题意可以列出相应的方程组,从而可以解答本题.本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.11.【答案】A【解析】解:根据题意,知:a+b=-7,ab=12,∴a,b的值可能分别是-3,-4,故选:A.根据题意,即可得出a+b=-7,ab=12,进而得到a,b的值可能分别是-3,-4.本题主要考查完了多项式乘多项式的法则的运用,多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.12.【答案】C【解析】解:∵AB⊥AC.∴∠BAC=90°,∵∠BAC+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=90°∵CD、BE分别是△ABC的角平分线,∴2∠FBC+2∠FCB=90°∴∠FBC+∠FCB=45°∴∠BFC=135°故④正确.∵AG∥BC,∴∠BAG=∠ABC∵∠ABC=2∠ABF∴∠BAG=2∠ABF 故①正确.∵AB⊥AC,∴∠ABC+∠ACB=90°,∵AG⊥BG,∴∠ABG+∠GAB=90°∵∠BAG=∠ABC,∴∠ABG=∠ACB 故③正确.故选:C.由已知条件可知∠ABC+∠ACB=90°,又因为CD、BE分别是△ABC的角平分线,所以得到∠FBC+∠FCB=45°,所以求出∠CFB=135°;有平行线的性质可得到:∠ABG=∠ACB,∠BAG=2∠ABF.所以可知选项①③④正确.本题考查了三角形的内角和定理以及平行线的性质,角平分线的性质,具有一定的综合性.13.【答案】1.18×10-5【解析】解:把0.0000118用科学记数法表示为1.18×10-5.故答案为:1.18×10-5.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.【答案】110【解析】解:如图,延长AB,交直线n于点C.∵m∥n,∴∠4=180°-∠1=180°-70°=110°,∵∠2-∠5=∠4,∠5=∠3,∴∠2-∠3=∠4=110°.故答案为110.延长AB,交直线n于点C.根据平行线的性质得出∠4=180°-∠1=110°,再利用三角形外角的性质以及对顶角相等的性质即可求出∠2-∠3=∠4=110°.本题考查了平移的性质,平行线的性质,三角形外角的性质以及对顶角相等的性质,准确作出辅助线并且熟记性质是解题的关键.15.【答案】-8【解析】解:原式=(-0.125)2017×82017×8=(-0.125×8)2017×8=-1×8=-8,故答案为:-8.首先把82018化为82017×8,然后再计算(-0.125)2017×82017,进而可得答案.此题主要考查了积的乘方和同底数幂的乘法,关键是掌握(ab)n=a n b n(n是正整数).16.【答案】-11【解析】解:根据题意,得:2a-b=3,则原式=2(2a-b)-17=2×3-17=6-17=-11,故答案为:-11.将代入方程2x-y=3得2a-b=3,将其代入原式=2(2a-b)-17可得.本题考查了二元一次方程的解,把方程的解代入方程得出二元一次方程是解题关键.17.【答案】9【解析】解:∵点D,E,F分别是BC,AD,EC的中点,∴AE=DE=AD,EF=CF=CE,BD=DC=BC,∵△ABC的面积等于36,∴S△ABD=S△ACD==18,S△ABE=S△BED==9,S△AEC=S△CDE=S△ACD=9,∴S△BEC=S△BDE+S△CDE=9+9=18,∴S△BEF=S△BCF=S△BEC==9,故答案为:9.根据线段的中点得出BD=CD、AE=DE、CF=EF,依次求出△ABD、△ACD、△BDE 、△CD 的面积,求出△BEC 的面积,即可求出答案.本题考查了三角形的面积,能求出各个三角形的面积是解此题的关键. 18.【答案】4036【解析】解:(x+)2018展开式中含x 2016项的系数,由(x+)2018=x 2018+2018•x 2018•()+…可知,展开式中第二项为2018•x 2017•()=4036x 2016,∴(x+)2018展开式中含x 2016项的系数是4036,故答案为:4036.首先确定x 2016是展开式中第几项,根据杨辉三角即可解决问题.本题考查整式的混合运算、杨辉三角等知识,解题的关键是灵活运用杨辉三角解决问题,属于中考常考题型.19.【答案】解:(1)12ab •(2ab 2)2=12ab •4a 2b 4=2a 3b 5;(2)4x 2y 2-y 2=y 2(4x 2-1)=y 2(2x +1)(2x -1).【解析】(1)根据积的乘方法则、单项式乘单项式的运算法则计算;(2)先提公因式,再利用平方差公式进行因式分解.本题考查的是单项式乘多项式、提公因式,掌握单项式乘单项式的运算法则、提公因式法和平方差公式因式分解的一般步骤是解题的关键.20.【答案】解:(1){2x +3y =1①3x −7y =13②, ①×3-②×2得:23y =-23, 解得:y =-1,把y =-1代入①解得:x =2,原方程组的解集为:{y =−1x=2,(2){x +1>0①2(x +1)≥3x −1②, 解不等式①得:x >-1,解不等式②得:x ≤3,即原不等式组的解集为:-1<x ≤3.【解析】(1)利用加减消元法解之即可,(2)分别解两个不等式,得到不等式的两个解集,找到其公共部分,就是不等式组的解集.本题考查解一元一次不等式组和解二元一次方程组,解题的关键是正确掌握解一元一次不等式组和解二元一次方程组的方法.21.【答案】AC 内错角相等,两直线平行 ∠DBA ∠DBA CE BD 两直线平行,同位角相等 对顶角相等【解析】证明:∵∠A=∠F (已知)∴AC ∥FD ( 内错角相等,两直线平行)∴∠D=∠DBA (两直线平行,内错角相等)∵∠C=∠D (已知)∴∠DBA=∠C (等量代换)∴CE ∥BD (同位角相等,两直线平行)∴∠1=∠3( 两直线平行,同位角相等)∵∠2=∠3( 对顶角相等)∴∠1=∠2(等量代换).故答案是:AC ;内错角相等,两直线平行;∠DBA ;∠DBA ;CE ;BD ;两直线平行,同位角相等; 对顶角相等.欲证明∠1=∠2,只需推知∠1=∠3=∠2.本题主要考查了平行线的性质与判定的综合应用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.22.【答案】甲队修建的天数乙队修建的天数甲队修建的长度乙队修建的长度 4 150【解析】解:(1)由题意可得,小红:x表示甲队修建的天数,y表示乙队修建的天数;小芳:x表示甲队修建的长度,y表示乙队修建的长度;故答案是:甲队修建的天数;乙队修建的天数;甲队修建的长度;乙队修建的长度.(2)依题意得:小红:,小芳:.(3)解方程组,得则25y=25×6=150(米)即:甲工程队一共修建了4天,乙工程队一共修建了150米.故答案是:4;150.(1)根据题意和小红和小芳列出的方程组可以解答本题;(2)、(3)利用小刚列出的方程组可以解答本题本题考查二元一次方程组的应用,解答本题的关键是明确题意,列出相应的方程组,利用方程的思想解答.23.【答案】40 20 20【解析】解:(1)∵∠B=30°,∠C=70°,∴∠BAC=180°-(∠B+∠C)=80°,∵AE是角平分线,∴∠CAE=BAC=40°,∵AD是高,∴∠ADC=90°,∵∠C=70°,∴∠DAC=180°-∠ADC-∠C=20°,∴∠DAE=∠CAE-∠CAD=40°-20°=20°,故答案为:40,20;(2)∵∠B=40°,∠C=80°,∴∠BAC=180°-(∠B+∠C)=60°,∵AE是角平分线,∴∠CAE=BAC=30°,∵AD是高,∴∠ADC=90°,∵∠C=80°,∴∠DAC=180°-∠ADC-∠C=10°,∴∠DAE=∠CAE-∠CAD=30°-10°=20°,故答案为:20;(3)∵∠A+∠B+∠C=180°,∴∠BAC=180°-(∠B+∠C),∵AE是角平分线,∴∠CAE=BAC=[180°-(∠B+∠C)]=90°-∠B-C,∵AD是高,∴∠ADC=90°,∴∠DAC=180°-∠ADC-∠C=90°-∠C,∴∠DAE=∠CAE-∠CAD=90°-B-∠C-(90°-∠C)=C- B=(∠C-∠B)=40°=20°.(1)根据三角形的高求出∠ADC=90°,再根据三角形内角和定理求出求出∠BAC和∠DAC,根据角平分线定义求出∠CAE,即可求出答案;(2)根据三角形的高求出∠ADC=90°,再根据三角形内角和定理求出求出∠BAC和∠DAC,根据角平分线定义求出∠CAE,即可求出答案;(3)根据三角形的高求出∠ADC=90°,再根据三角形内角和定理求出求出∠BAC和∠DAC,根据角平分线定义求出∠CAE,最后代入求出即可.本题考查了三角形内角和定理和三角形的角平分线、三角形的高等知识点,能求出∠CAE和∠CAD的度数是解此题的关键,求解过程类似.24.【答案】92-72=(9+7)(9-7)=8×4 112-92=(11+9)(11-9)=8×5【解析】解:(1)92-72=(9+7)(9-7)=8×4,112-92=(11+9)(11-9)=8×5;故答案为:92-72=(9+7)(9-7)=8×4,112-92=(11+9)(11-9)=8×5(2)(2n+1)2-(2n-1)2=(2n+1-2n+1)(2n+1+2n-1)=2×4n=8n∵n为正整数,∴两个连续奇数的平方差是8的倍数.(1)根据已知算式写出符合题意的答案;(2)利用平方差公式计算得出答案;此题主要考查了平方差公式的应用,正确发现数字变化规律是解题关键.25.【答案】110 70 38【解析】解:(1)依题意,得:,解得:.答:a,b的值分别为60,40.(2)①50×2+10=110(张),50+10×2=70(张).故答案为:110;70.②设可做成m个竖式无盖装饰盒,n个横式无盖装饰盒,依题意,得:,解得:,∴m+n=38.故答案为:38.(1)根据裁法一及裁法二裁出甲、乙的张数及剩余,可得出关于a,b的二元一次方程组,解之即可得出结论;(2)①由裁法一可裁出2张甲和一张乙、裁法二可裁出1张甲和两张乙,结合按裁法一及裁法二裁剪的标准板材数,即可求出可裁出的甲型板材及乙型板材的数量;②设可做成m个竖式无盖装饰盒,n个横式无盖装饰盒,根据制作两种无盖装饰盒共用110张甲型板材和70张乙型板材,即可得出关于m,n的二元一次方程组,解之即可得出m,n的值,解之将m,n的值相加即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.26.【答案】150 90 60 40 106°【解析】解:(1)∵△ABC是直角三角形,∴∠BAC=90°,∴∠AMN+∠ANM=90°,在△PMN中,∠P=30°,∴∠PMN+∠PNM=180°-∠P=150°,∴∠PMA+∠AMN+∠ANM+∠PNA=150°,∴∠PMA+∠PNA+(∠AMN+∠ANM)=150°-90°=60°,故答案为:150,90,60;(2)∵△ABC是直角三角形,∴∠BAC=90°,∴∠AMN+∠ANM=90°,在△PMN中,∠P=50°,∴∠PMN+∠PNM=180°-∠P=130°,∴∠PMA+∠AMN+∠ANM+∠PNA=130°,∴∠PMA+∠PNA+(∠AMN+∠ANM)=130°-90°=40°,故答案为40;(3)∵△ABC是直角三角形,∴∠BAC=90°,∴∠AMN+∠ANM=90°,在△PMN中,∴∠PMN+∠PNM=180°-∠P,∴∠PMA+∠AMN+∠ANM+∠PNA=180°-∠P,∴∠PMA+∠PNA+(∠AMN+∠ANM)=180°-∠P-90°=90°-∠P,即:∠PMA+PNA+∠P=90°,(4)由(3)知,∠PMA+PNA+∠MPN=90°,∵∠PNA=16°,∴∠PMA+∠MPN=90°-∠PNA=74°,∵EF∥AB,∴∠PMA=∠FPM,∴∠FPM+∠MPN=74°,即:∠FPN=74°,∴∠NPE=180°-∠FPN=106°,故答案为:106°.(1)先判断出∠AMN+∠ANM=90°,进而得出∠PMN+∠PNM=180°-∠P=150°,即可得出结论;(2)同(1)的方法即可得出结论;(3)同(1)的方法即可得出结论;(4)由(3)知,∠PMA+PNA+∠MPN=90°,进而求出∠PMA+∠MPN=74°,即可求出∠FPM+∠MPN=74°,最后用平角的定义即可得出结论.此题是三角形综合题,主要考查了直角三角形的性质,三角形的内角和定理,平行线的性质,平角的定义,正确识图是解本题的关键.第21页,共21页。
2017年河北省邢台市宁晋县七年级下学期数学期末试卷及解析答案
2016-2017学年河北省邢台市宁晋县七年级(下)期末数学试卷一、选择题(本大题共16小题,每小题3分,共48分)1.(3分)9的平方根为()A.3 B.﹣3 C.±3 D.2.(3分)如图,直线a∥b,直线c与直线a,b相交,若∠1=40°.则∠2等于()A.140°B.40°C.50°D.60°3.(3分)下列不等式变形正确的是()A.由a>b,得ac>bc B.由a>b,得﹣2a<﹣2bC.由a>b,得﹣a>﹣b D.由a>b,得a﹣2<b﹣24.(3分)若点P(a,b)在第二象限,则点P1(﹣a,﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)如图,直线a、b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判断a∥b的条件是()A.①③B.②④C.①③④D.①②③④6.(3分)点A(﹣3,5)向上平移3个单位,再向左平移4个单位到点B,则点B的坐标为()A.(0,1) B.(﹣7,8)C.(1,2) D.(﹣6,9)7.(3分)若x2=(﹣2)2,y3=(﹣3)3,则x+y的值为()A.﹣5或﹣1 B.5 C.﹣1 D.5或18.(3分)若将﹣,,表示在数轴上,则其中能被如图所示的椭圆覆盖的数是()A.B.﹣C. D.都不可能9.(3分)不等式组的整数解的个数为()A.1个 B.3个 C.4个 D.无数个10.(3分)已知a,b满足方程组,则3a﹣2b的值为()A.8 B.4 C.﹣4 D.﹣811.(3分)有下列四个命题:①两条直线被第三条直线所截,同位角相等;②从直线外一点到这条直线的垂线段,叫做这点到直线的距离;③如果b∥a,c∥a,那么b∥c;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补.其中真命题的有()A.4个 B.3个 C.2个 D.1个12.(3分)2016年某市有2.3万名初中毕业生参加升学考试,为了了解这2.3万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是()A.2.3万名考生B.2000名考生C.2.3万名考生的数学成绩 D.2000名考生的数学成绩13.(3分)某粮食加工厂收购玉米150吨,准备加工后销售,该公司的加工能力是:每天可以精加工8吨和粗加工16吨,现计划用15天完成加工任务,该公司应安排几天精加工,几天粗加工?设安排x天精加工,y天粗加工.所列方程组正确的是()A. B.C.D.14.(3分)如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(﹣1,0)B.(1,﹣2)C.(1,1) D.(﹣1,﹣1)15.(3分)如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20 B.x20=2 C.x±20=20 D.x3=±2016.(3分)点M,N,P和原点O在数轴上的位置如图所示,点M,N,P对应的有理数为a,b,c(对应顺序暂不确定).如果ab<0,a+b>0,ac>bc,那么表示数b的点为()A.点M B.点N C.点P D.点O二、填空题(本大题共3小题,每小题3分,共9分)17.(3分)已知样本:8,10,8,14,9,7,12,11,10,8,13,10,8,11,10,9,12,9,12,11,那么样本数据落在8.5~11.5范围内的频数是.18.(3分)把一张长方形纸条按图中那样折叠后,若∠AOB′=60°,则∠OGC=.19.(3分)在平面直角坐标系xOy中,点P(x,y)经过变换τ得到点P′(x′,y′),该变换记为τ(x,y)=(x′,y′),其中(a,b为常数).例如,当a=1,且b=1时,τ(﹣2,3)=(1,﹣5).若τ(1,2)=(0,﹣2),当a=,b=.三、解答题(本大题共6小题,共63分)20.(8分)解下列方程组(1)(2).21.(10分)解下列不等式组,并把解集在数轴上表示出来.(1)(2)22.(12分)为了了解市民“获取社会新闻的最主要途径”,某市有关部门进行了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)这次接受调查的市民总人数是;(2)扇形统计图中,“电视”所对应的圆心角的度数是;(3)请补全条形统计图;(4)若该市约有70万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.23.(12分)如图,平面直角坐标系中,已知点A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b﹣2 ).(1)直接写出点A1,B1,C1的坐标.(2)在图中画出△A1B1C1.(3)连接A A1,求△AOA1的面积.24.(9分)已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGB=∠ACB=90°(垂直定义)∴DG∥AC()∴∠2=()∵∠1=∠2(已知)∴∠1=∠(等量代换)∴EF∥CD()∴∠AEF=∠()∵EF⊥AB(已知)∴∠AEF=90°()∴∠ADC=90°()∴CD⊥AB()25.(12分)先阅读下列一段文字,然后解答问题.某快递公司收费标准如下:①当物品的重量不超过16千克时,需付基础费30元和保险费a元;②当物品重量超过16千克时,除了付以上基础费和保险费外,超过部分每千克还需付b元超重费.设某件物品的重量为x(千克).(1)当x≤16时,支付费用为元(用含a的代数式表示);当x>16时,支付费用为元(用含x和a、b的代数式表示);(2)甲、乙两人各托运一件物品,物品重量和支付费用如表所示物品重量(kg)支付费用(元)18402561试根据以上提供的信息确定a,b的值.(3)根据这个规定,若丙要托运一件超过16千克的物品,但支付的费用不想超过70元,那么丙托运的物品最多是多少千克?2016-2017学年河北省邢台市宁晋县七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共16小题,每小题3分,共48分)1.(3分)9的平方根为()A.3 B.﹣3 C.±3 D.【解答】解:9的平方根有:=±3.故选:C.2.(3分)如图,直线a∥b,直线c与直线a,b相交,若∠1=40°.则∠2等于()A.140°B.40°C.50°D.60°【解答】解:∵a∥b,∠1=40°,∴∠3=∠1=40°,∵∠2=∠3,∴∠2=40°.故选:B.3.(3分)下列不等式变形正确的是()A.由a>b,得ac>bc B.由a>b,得﹣2a<﹣2bC.由a>b,得﹣a>﹣b D.由a>b,得a﹣2<b﹣2【解答】解:A.由a>b,得ac>bc,当c<0,不等号的方向改变.故A选项错误;B.由a>b,得﹣2a<﹣2b,不等式两边乘以同一个负数,不等号的方向改变,故B选项正确;C.由a>b,得﹣a>﹣b,不等式两边乘(或除以)同一个负数,不等号的方向改变;故C选项错误;D.由a>b,得a﹣2<b﹣2,不等式两边同时减去一个数,不等号方向不改变,故D选项错误.故选:B.4.(3分)若点P(a,b)在第二象限,则点P1(﹣a,﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵点P(a,b)在第二象限,∴a<0,b>0,∴﹣a>0,﹣b<0,∴点P 1(﹣a,﹣b)在第四象限,故选:D.5.(3分)如图,直线a、b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判断a∥b的条件是()A.①③B.②④C.①③④D.①②③④【解答】解:∵∠1=∠2,∴a∥b,故①正确.∵∠3=∠6,∠3=∠5,∴∠5=∠6,∴a∥b,故②正确,∵∠4+∠7=180°,∠4=∠6,∴∠6+∠7=180°,∴a∥b,故③正确,∵∠5+∠8=180°,∠5=∠3,∠8=∠2,∴∠2+∠3=180°,∴a∥b,故④正确,故选:D.6.(3分)点A(﹣3,5)向上平移3个单位,再向左平移4个单位到点B,则点B的坐标为()A.(0,1) B.(﹣7,8)C.(1,2) D.(﹣6,9)【解答】解:点A(﹣3,5)向上平移3个单位,再向左平移4个单位得到点B,坐标变化为(﹣3﹣4,5+3);则点B的坐标为(﹣7,8).故选:B.7.(3分)若x2=(﹣2)2,y3=(﹣3)3,则x+y的值为()A.﹣5或﹣1 B.5 C.﹣1 D.5或1【解答】解:∵x2=(﹣2)2=4,y3=(﹣3)3=﹣27,∴x=±2,y=﹣3,x+y=﹣5或﹣1,故选:A.8.(3分)若将﹣,,表示在数轴上,则其中能被如图所示的椭圆覆盖的数是()A.B.﹣C. D.都不可能【解答】解:由<<<,得1<<4,故选:A.9.(3分)不等式组的整数解的个数为()A.1个 B.3个 C.4个 D.无数个【解答】解:解①得:x≤1,解②x>﹣3,则不等式组的解集为:﹣3<x≤1,整数解为:﹣2,﹣1,0,1,共4个.故选:C.10.(3分)已知a,b满足方程组,则3a﹣2b的值为()A.8 B.4 C.﹣4 D.﹣8【解答】解:,①+②得:3a﹣2b=8,故选:A.11.(3分)有下列四个命题:①两条直线被第三条直线所截,同位角相等;②从直线外一点到这条直线的垂线段,叫做这点到直线的距离;③如果b∥a,c∥a,那么b∥c;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补.其中真命题的有()A.4个 B.3个 C.2个 D.1个【解答】解:两条直线被第三条直线所截,同位角不一定相等,①是假命题;从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,②是假命题;如果b∥a,c∥a,那么b∥c,③是真命题;如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,④是真命题,故选:C.12.(3分)2016年某市有2.3万名初中毕业生参加升学考试,为了了解这2.3万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是()A.2.3万名考生B.2000名考生C.2.3万名考生的数学成绩 D.2000名考生的数学成绩【解答】解:抽取2000名考生的数学成绩是样本,故选:D.13.(3分)某粮食加工厂收购玉米150吨,准备加工后销售,该公司的加工能力是:每天可以精加工8吨和粗加工16吨,现计划用15天完成加工任务,该公司应安排几天精加工,几天粗加工?设安排x天精加工,y天粗加工.所列方程组正确的是()A. B.C.D.【解答】解:由题意可得,,故选:D.14.(3分)如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(﹣1,0)B.(1,﹣2)C.(1,1) D.(﹣1,﹣1)【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=CD=2,AD=BC=3,且四边形ABCD为矩形,∴矩形ABCD的周长C=2(AB+BC)=10.矩形ABCD∵2017=201×10+7,AB+BC+CD=7,∴细线的另一端落在点D上,即(1,﹣2).故选:B.15.(3分)如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20 B.x20=2 C.x±20=20 D.x3=±20【解答】解:根据题意,可知x20=2,能得出.故选:B.16.(3分)点M,N,P和原点O在数轴上的位置如图所示,点M,N,P对应的有理数为a,b,c(对应顺序暂不确定).如果ab<0,a+b>0,ac>bc,那么表示数b的点为()A.点M B.点N C.点P D.点O【解答】解:∵ab<0,a+b>0,∴数a表示点M,数b表示点P或数b表示点M,数a表示点P,则数c表示点N,∴由数轴可得,c>0,又∵ac>bc,∴a>b,∴数b表示点M,数a表示点P,即表示数b的点为M.故选:A.二、填空题(本大题共3小题,每小题3分,共9分)17.(3分)已知样本:8,10,8,14,9,7,12,11,10,8,13,10,8,11,10,9,12,9,12,11,那么样本数据落在8.5~11.5范围内的频数是10.【解答】解:样本中在范围8.5~11.5中的数据有:10、9、11、10、10、11、10、9、9、11,共10个,即样本数据落在8.5~11.5范围内的频数是10.故答案为:10.18.(3分)把一张长方形纸条按图中那样折叠后,若∠AOB′=60°,则∠OGC= 120°.【解答】解:∵四边形OB′C′G由四边形OBCG折叠而成,∠AOB′=60°,∴∠BOG===60°,∵AB∥CD,∴∠OGC=180°﹣60°=120°.故答案为:120°.19.(3分)在平面直角坐标系xOy中,点P(x,y)经过变换τ得到点P′(x′,y′),该变换记为τ(x,y)=(x′,y′),其中(a,b为常数).例如,当a=1,且b=1时,τ(﹣2,3)=(1,﹣5).若τ(1,2)=(0,﹣2),当a=﹣1,b=.【解答】解:∵τ(1,2)=(0,﹣2),∴,①+②得,2a=﹣2,解得a=﹣1,①﹣②得,4b=2,解得b=,所以,方程组的解是.故答案为:﹣1;.三、解答题(本大题共6小题,共63分)20.(8分)解下列方程组(1)(2).【解答】解:(1),②×3﹣①得:11y=22,解得:y=2,把y=2代入②得:x=1,则方程组的解为;(2)方程组整理得:,把②代入①得:12y﹣y=11,解得:y=1,把y=1代入②得:x=5,则方程组的解为.21.(10分)解下列不等式组,并把解集在数轴上表示出来.(1)(2)【解答】解:(1),解①得:x≤4,解②得:x≥2,则不等式组的解集是:x≤﹣1.;(2),解①得:x≥2,解②得:x<4,则不等式组的解集是:2≤x<4..22.(12分)为了了解市民“获取社会新闻的最主要途径”,某市有关部门进行了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)这次接受调查的市民总人数是1000;(2)扇形统计图中,“电视”所对应的圆心角的度数是54°;(3)请补全条形统计图;(4)若该市约有70万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.【解答】解:(1)由题意可得,这次接受调查的市民总人数是:260÷26%=1000,故答案为:1000;(2)扇形统计图中,“电视”所对应的圆心角的度数是:360°×=54°,故答案为:54°;(3)通过报纸获取社会新闻的有:1000﹣260﹣400﹣150﹣90=100(人),补全的条形统计图如右图所示;(4)由题意可得,将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数有:70×=46.2(万),答:将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数有46.2万人.23.(12分)如图,平面直角坐标系中,已知点A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A 1B1C1,点P的对应点为P1(a+6,b﹣2 ).(1)直接写出点A1,B1,C1的坐标.(2)在图中画出△A1B1C1.(3)连接A A1,求△AOA1的面积.【解答】解:(1)∵点P(a,b)的对应点为P1(a+6,b﹣2),∴平移规律为向右6个单位,向下2个单位,∴A(﹣3,3),B(﹣5,1),C(﹣2,0)的对应点的坐标为A1(3,1),B1(1,﹣1),C1(4,﹣2);(2)△A1B1C1如图所示;(3)△AOA1的面积=6×3﹣×3×3﹣×3×1﹣×6×2,=18﹣﹣﹣6,=18﹣12,=6.24.(9分)已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGB=∠ACB=90°(垂直定义)∴DG∥AC(同位角相等,两直线平行)∴∠2=∠ACD(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠ACD(等量代换)∴EF∥CD(同位角相等,两直线平行)∴∠AEF=∠ADC(两直线平行,同位角相等)∵EF⊥AB(已知)∴∠AEF=90°(垂直定义)∴∠ADC=90°(等量代换)∴CD⊥AB(垂直定义)【解答】解:证明过程如下:证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGB=∠ACB=90°(垂直定义)∴DG∥AC(同位角相等,两直线平行)∴∠2=∠ACD(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠ACD(等量代换)∴EF∥CD(同位角相等,两直线平行)∴∠AEF=∠ADC(两直线平行,同位角相等)∵EF⊥AB(已知)∵∠AEF=90°(垂直定义)∴∠ADC=90°(等量代换)∴CD⊥AB(垂直定义).25.(12分)先阅读下列一段文字,然后解答问题.某快递公司收费标准如下:①当物品的重量不超过16千克时,需付基础费30元和保险费a元;②当物品重量超过16千克时,除了付以上基础费和保险费外,超过部分每千克还需付b元超重费.设某件物品的重量为x(千克).(1)当x≤16时,支付费用为30+a元(用含a的代数式表示);当x>16时,支付费用为30+a+(x﹣16)b元(用含x和a、b的代数式表示);(2)甲、乙两人各托运一件物品,物品重量和支付费用如表所示物品重量(kg)支付费用(元)18402561试根据以上提供的信息确定a,b的值.(3)根据这个规定,若丙要托运一件超过16千克的物品,但支付的费用不想超过70元,那么丙托运的物品最多是多少千克?【解答】解:(1)当x≤16时,支付费用为30+a元;当x>16时,支付费用为30+a+(x﹣16)b元.故答案为:30+a;30+a+(x﹣16)b.(2)根据题意得:,解得:.(3)设丙托运的物品重量为m千克,根据题意得:30+4+3(m﹣16)≤70,解得:m≤28.答:丙托运的物品最多是28千克.赠送初中数学几何模型【模型二】半角型:图形特征:45°4321DA1FDAB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +bx -b-ab 45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa+b-aa45°A BE 挖掘图形特征:a+bx-aa 45°DBa+b-a45°A运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.DE2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.DABFEDCF。
《试卷3份集锦》邢台市2017-2018年七年级下学期数学期末复习检测试题
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.在实数,,0,-中,最小的实数是()A.B.C.0 D.-【答案】D【解析】根据实数的大小比较方法比较即可.【详解】∵,∴>-,∴>0> >-,故选D.【点睛】本题考查了实数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.2.如图,在5×5方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是()A.先向下平移3格,再向右平移2格B.先向下平移3格,再向右平移1格C.先向下平移2格,再向右平移1格D.先向下平移2格,再向右平移2格【答案】A【解析】解:根据图形平移的方法,观察图形可知:平移是先向下平移3格,再向右平移2格.故选A3.小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是()A.从一个装有2个白球和1个红球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到红球的概率B.掷一枚质地均匀的硬币,正面朝上的概率C.从一副去掉大小王的扑克牌,任意抽取一张,抽到黑桃的概率D.任意买一张电影票,座位号是2的倍数的概率【答案】A【解析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】A、从一个装有2个白球和1个红球的不透明袋子中任意摸出一球,摸到红球的概率为13≈0.33,故此选项正确;B、掷一枚硬币,出现正面朝上的概率为12,故此选项错误;C、从一副去掉大小王的扑克牌,任意抽取一张,抽到黑桃的概率14;故此选项错误;D、任意买一张电影票,座位号是2的倍数的概率不确定,但不一定是0.33,故此选项错误.故选:A.【点睛】考查了利用频率估计概率的知识,解题的关键是能够分别求得每个选项的概率,然后求解,难度不大.4.小明用100元钱去购买笔记本和钢笔共30件,已知每本笔记本3元,每支钢笔5元,求小明最多能买几支钢笔.设小明买了x支钢笔,依题意可列不等式为()A.3x+5(30﹣x)≤100B.3(30﹣x)+5≤100C.5(30﹣x)≤100+3x D.5x≤100﹣3(30+x)【答案】D【解析】设小明买了x支钢笔,则买了(30﹣x)本笔记本,根据总价=单价×购买数量结合总价不超过100元,即可得出关于x的一元一次不等式.【详解】设小明买了x支钢笔,则买了(30﹣x)本笔记本,根据题意得:5x+3(30﹣x)≤100或5x≤100﹣3(30+x).故选D.【点睛】本题考查了由实际问题抽象出一元一次不等式,根据各数量间的关系,正确列出一元一次不等式是解题的关键.5.小鸡孵化场孵化出只小鸡,在只上做记号,再放入鸡群中让其充分跑散,再任意抓出只,其中左右记号的大约是()A.只B.只C.只D.只【答案】A【解析】先计算出做记号的小鸡概率为=,再任意抓出50只,则其中做有记号的大约是×50=3只.【详解】解:小鸡孵化场孵化出1000只小鸡,在60只上做记号,则做记号的小鸡概率为=,再任意抓出50只,其中做有记号的大约是×50=3只.故选:A.【点睛】此题考查概率的应用.任意抓出50只中有记号的只数=50×做记号的小鸡概率.6.下列命题是真命题的是()A.相等的角是对顶角B.和为180°的两个角是邻补角C.两条直线被第三条直线所截,同位角相等D.过直线外一点,有且只有一条直线与已知直线平行【答案】D【解析】分别利用对顶角以及邻补角、平行线的性质分别分析得出答案.【详解】A. 相等的角不一定是对顶角,故此选项错误;B. 和为180°的两个角不一定是邻补角,故此选项错误;C. 两条平行直线被第三条直线所截,同位角相等,故此选项错误;D. 过直线外一点,有且只有一条直线与已知直线平行,正确.故选:D.【点睛】此题考查命题与定理,掌握定理是解题关键7.如图,一副直角三角板按如图所示放置,若AB∥DF,则∠AGD的度数为()A.45B.75C.60D.65【答案】B【解析】分析:根据平行线的性质得出∠DCG=∠A=30°,根据三角形外角的性质得出答案.详解:∵AB∥DF,∴∠DCG=∠A=30°,根据三角形外角的性质可得:∠AGD=∠DCG+∠D=30°+45°=75°,故选B.点睛:本题主要考查的是平行线的性质以及三角形外角的性质,属于基础题型.明确平行线的性质是解决这个问题的关键.8.22018-22019的值是()A.12B.-12C.-22018D.-2【答案】C【解析】直接利用提取公因式法分解因式得出答案.【详解】1-22019=1×(1-2)=-1.故选C.【点睛】此题主要考查了提取公因式法分解音质,正确找出公因式是解题关键.9.下列实数中,最大的数是()A.﹣|﹣4| B.0 C.1 D.﹣(﹣3)【答案】D【解析】根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小可得答案.【详解】解:﹣|﹣4|=﹣4,﹣(﹣3)=3,3>1>0>﹣4,故选:D.【点睛】此题主要考查了实数的比较大小,关键是掌握比较大小的法则.10.下列事件是必然事件的是()A.长度分别是3,5,6cm cm cm的三根木条能组成一个三角形B.某彩票中奖率是1%,买100张一定会中奖C.2019年女足世界杯,德国队一定能夺得冠军D.打开电视机,正在播放动画片【答案】A【解析】必然事件是一定会发生的事件,据此求解即可.【详解】A、长度分别是3cm,5cm,6cm的三根木条能组成一个三角形,是必然事件;B、某彩票中奖率是1%,买100张一定会中奖是随机事件;C、2019年女足世界杯,德国队一定能夺得冠军,是随机事件;D、打开电视机,正在播放动画片,是随机事件,故选:A.【点睛】此题考查了概率的意义及随机事件的知识,必然事件是一定会发生的事件.二、填空题题11.甲、乙两人轮流做下面的游戏:掷一枚均匀的骰子(每个面分别标有1,2,3,4,5,6这六个数字),如果朝上的数字大于3,则甲获胜,如果朝上的数字小于3,则乙获胜,你认为获胜的可能性比较大的是_____.【答案】甲【解析】∵1,2,3,4,5,6这六个数字中大于3的数字有3个:4,5,6,∴P(甲获胜)=31 62 =,∵1,2,3,4,5,6这六个数字中小于3的数字有2个:1,2,∴P(乙获胜)=2163=,∵1123>,∴获胜的可能性比较大的是甲,故答案为:甲.12.在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x名,二等奖的学生有y名,根据题意可列方程组为__________________.【答案】30 {? 2016528x yx y+=+=【解析】设获得一等奖的学生有x名,二等奖的学生有y名,由题意得30 2016528 x yx y+=⎧⎨+=⎩.故答案为30 2016528 x yx y+=⎧⎨+=⎩.13.已知3x2m﹣2y n=1是关于x、y的二元一次方程,则mn=_____.【答案】0.1【解析】根据二元一次方程的定义得出2m=1,n=1,求出m,再代入求出mn即可.【详解】解:∵3x2m﹣2y n=1是关于x、y的二元一次方程,∴2m=1,n=1,∴m=0.1,∴mn=0.1×1=0.1,故答案为0.1.【点睛】本题考查了二元一次方程的定义,能熟记二元一次方程的定义的内容是解此题的关键.14.等腰三角形的底边长为6cm,一腰上的中线把三角形分成的两部分周长之差为4cm,则这个等腰三角形周长为_____cm.【答案】1【解析】首先设腰长为xcm,等腰三角形底边长为6cm,一腰上的中线将其周长分成两部分的差为4cm,可得x﹣6=4或6﹣x=4,继而可求得答案.【详解】解:设腰长为xcm,根据题意得:x﹣6=4或6﹣x=4,解得:x=10或x=2(舍去),∴这个等腰三角形的周长为10+10+6=1cm.故答案为:1.【点睛】考核知识点:等腰三角形.理解三角形中线的意义是关键.15.若a、b均为整数,且a b a+b的最小值是_________ .【答案】7>>,推出a>3,b>2,由此即可解决问题.【解析】由a,b均为正整数,且a b>>【详解】∵a b∴a>3,b>2,∵a,b均为正整数,且最小正整数为:a=4,b=3∴a+b的最小值为7,故答案为:7【点睛】本题考查无理数,根式等知识,解题的关键是学会估计无理数的大小.16.分解因式:4x3﹣xy2=______.【答案】x(2x+y)(2x﹣y).【解析】原式提取x,再利用平方差公式分解即可.【详解】解:原式=x(4x2﹣y2)=x(2x+y)(2x﹣y),故答案为:x(2x+y)(2x﹣y).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.17.用一个值a 说明命题“若ax >a ,则x >1”是错误的,则a 的值可以是______.【答案】-2(答案不唯一)【解析】根据不等式的性质举出反例即可.【详解】解:当a 是负数时,命题“若ax>a ,则x>1”是错误的,理由如下:若ax>a ,a 是负数,当不等式两边同时除以负数a ,不等号的方向改变,即x<1,故答案为:-2(答案不唯一,只要是负数就行).【点睛】本题考查了命题与定理的知识,解题的关键是了解不等式的性质、和反例的特征(反例使得题设成立、而结论不成立).三、解答题18.已知多项式()()()22123M x x x =++-+-.(1)化简多项式M ;(2)若()2215x x +-=,求M 的值.【答案】(1)33M x =+;(2)9M =【解析】(1)利用完全平方公式,以及多项式乘法,合并同类项即可求得;(2)求解一元二次方程,可得x ,代入(1)中所求,即可求得.【详解】(1)()()()22123M x x x =++-+- 2244223x x x x x =++++---33x =+.(2)因为()2215x x +-=,整理可得24x =,解得2x =;代入(1)中所求可得339M x =+=.即9M =.【点睛】本题考查多项式混合运算,以及一元一次方程的求解,属基础题.19.如图,已知AD ∥FE ,∠1=∠1.(1)试说明DG ∥AC ;(1)若∠BAC=70°,求∠AGD 的度数.【答案】(1)详见解析;(1)110°【解析】(1)只要证明∠1=∠DAC即可.(1)利用平行线的性质解决问题即可.【详解】解:(1)∵AD∥EF,∴∠1=∠DAC,∵∠1=∠1,∴∠1=∠DAC,∴DG∥AC.(1)∵DG∥AC,∴∠AGD+∠BAC=180°,∵∠BAC=70°,∴∠AGD=110°【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握熟练掌握基本知识.20.如图,点、、分别在、、上,且,,下面写出了说明“”的过程,请填空:∵,∴_______,________.(________________________)∵∴___________,(________________________)∵∴___________,(________________________)∴.(等量代换)∵(平角定义)∴(等量代换)【答案】见解析;【解析】通过DE∥AC,EF∥AB,得到∠1=∠C,∠3=∠B,∠2=∠4,∠4=∠A,得到∠2=∠A,则有∠1+∠2+∠3=180°来解答.【详解】∵∴,.(两直线平行,同位角相等)∵∴ 4 ,(两直线平行,内错角相等)∵∴,(两直线平行,同位角相等)∴.(等量代换)∵(平角定义)∴(等量代换)【点睛】本题考查了平行线的性质,熟练掌握平行线的性质的运用是解题的关键.21.解不等式组()31(3)8211132x xx x⎧-+--⎪⎨+--≤⎪⎩<并把解集在数轴上表示出来.【答案】-2<x≤1,在数轴上表示见解析.【解析】先求出每一个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【详解】()()3138211132x xx x⎧-+--⎪⎨+--≤⎪⎩<①②,解不等式①得:x>-2,解不等式②得:x≤1,∴不等式组的解集为-2<x≤1,在数轴上表示为:.【点睛】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,能根据不等式的解集找出不等式组的解集是解此题的关键.22.已知在△ABC中,∠BAC=α,∠ABC=β,∠BCA=γ,△ABC的三条角平分线AD,BE,CF交于点O,过O向△ABC三边作垂线,垂足分别为P,Q,H,如下图所示.(1)若α=78°,β=56°,γ=46°,求∠EOH的大小;(2)用α,β,γ表示∠EOH的表达式为∠EOH= ;(要求表达式最简)(3)若α≥β≥γ,∠EOH+∠DOP+∠FOQ=β,判断△ABC的形状并说明理由.【答案】(1)16°;(2)∠EOH=α+12β-90°;(3)△ABC是直角三角形,理由见解析.【解析】(1)由角平分线的性质求出∠EBA,再根据三角形内角和定理可知∠BEA,在Rt△OHE中可求得∠EOH 的大小;根据(1)中过程可表示;由(2)同理可用α,β,γ表示∠DOP和∠FOQ,将∠EOH+∠DOP+∠FOQ=β中的∠EOH,∠DOP和∠FOQ 进行等量代换,可得出α,β,γ间的关系,由此可判断△ABC的形状.【详解】解(1)∵BE平分∠ABC(已知) ∠ABC=β(已知)∴∠EBA=12∠ABC=12β(角平分线性质)∵∠BAC=α(已知)∴∠BEA=180°-∠BAC-∠EBA=180°-α-12β(三角形内角和180°)∵OH⊥AC(已知)∴∠OHE=90°(垂直的定义)∴在Rt△OHE中,∠EOH=90°-∠OEH=90-∠BEA=90-(180°-α-12β)=16°(2)由(1)知∠EOH=α+12β-90°(3)由(2)同理得∠DOP=γ+12α- 90°,∠FOQ=α+12γ-90°∠EOH+∠DOP+∠FOQ=α+12β -90°+γ+12α- 90°+α+12γ-90°=β 解得52α+12(β+γ)=270° ∵β+γ=180°-α(三角形内角和180°)51(180)27022αα︒︒∴+-= 解得α=90°∴ △ABC 是直角三角形【点睛】本题考查了三角形角平分线的性质,熟练应用角平分线的性质求角的度数是解题的关键.23.一个不透明袋中装有红、黄、绿三种颜色的球共36个,它们除颜色外都相同,其中黄球个数是绿球个数的2倍,已知从袋中摸出一个球是红球的概率为13. (1)分别求红球和绿球的个数.(2)求从袋中随机摸出一球是绿球的概率.【答案】(1)红球有16个,绿球有8个;(2)29 【解析】(1)根据红、黄、白三种颜色球共有的个数乘以红球的概率即可求得红球的个数,设绿球有x 个,则黄球有2x 个,根据球的总个数列出方程求出x 的值即可得;(2)用绿球的个数除以总的球数即可.【详解】(1)红球个数:3613⨯=12(个),设绿球有x 个,则黄球有2x 个,根据题意,得:x+2x+12=36,解得:x=8,所以红球有16个,绿球有8个.(2)从袋中随机摸出一球,共有36种等可能的结果,其中摸出绿球的结果有8种,所以从袋中随机摸出一球是绿球的概率为82369=. 【点睛】本题考查了概率公式:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )m n=. 24.已知△ABC 在平面直角坐标系中的位置如图所示.将△ABC 向右平移6个单位长度,再向下平移6个单位长度得到△A 1B 1C 1.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的△A1B1C1;(2)直接写出△A1B1C1各顶点的坐标(3)求出△A1B1C1的面积【答案】(1)详见解析;(2)A1(4,−2), B1(1,−4), C1(2,−1);(3)7 2【解析】(1)直接利用平移的性质得出A,B,C平移后对应点位置;(2)利用(1)中图形得出各对应点坐标;(3)利用△A1B1C1所在矩形面积减去周围三角形面积即可得出答案.【详解】(1)如图所示:△A1B1C1,即为所求;(2)如图所示:A1(4,−2), B1(1,−4), C1(2,−1);(3) △A1B1C1的面积为:3×3−12×1×3−12×1×2−12×2×3=3.5【点睛】此题考查作图-平移变换,解题关键在于掌握作图法则25.某市中学生举行足球联赛,共赛了17轮(即每队均需参赛17场),记分办法是胜-场得3分。
邢台七年级下册数学期末试卷达标检测卷(Word版 含解析)
邢台七年级下册数学期末试卷达标检测卷(Word 版 含解析)一、解答题 1.已知AB //CD .(1)如图1,E 为AB ,CD 之间一点,连接BE ,DE ,得到∠BED .求证:∠BED =∠B +∠D ;(2)如图,连接AD ,BC ,BF 平分∠ABC ,DF 平分∠ADC ,且BF ,DF 所在的直线交于点F .①如图2,当点B 在点A 的左侧时,若∠ABC =50°,∠ADC =60°,求∠BFD 的度数. ②如图3,当点B 在点A 的右侧时,设∠ABC =α,∠ADC =β,请你求出∠BFD 的度数.(用含有α,β的式子表示)2.综合与实践课上,同学们以“一个直角三角形和两条平行线”为背景开展数学活动,如图,已知两直线,a b ,且,a b ABC //是直角三角形,90BCA ∠=︒,操作发现:(1)如图1.若148∠=︒,求2∠的度数;(2)如图2,若30,1A ∠=︒∠的度数不确定,同学们把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由.(3)如图3,若∠A =30°,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.3.已知:如图(1)直线AB 、CD 被直线MN 所截,∠1=∠2.(1)求证:AB //CD ;(2)如图(2),点E 在AB ,CD 之间的直线MN 上,P 、Q 分别在直线AB 、CD 上,连接PE 、EQ ,PF 平分∠BPE ,QF 平分∠EQD ,则∠PEQ 和∠PFQ 之间有什么数量关系,请直接写出你的结论;(3)如图(3),在(2)的条件下,过P 点作PH //EQ 交CD 于点H ,连接PQ ,若PQ 平分∠EPH ,∠QPF :∠EQF =1:5,求∠PHQ 的度数.4.如图,//MN PQ ,直线AD 与MN 、PQ 分别交于点A 、D ,点B 在直线PQ 上,过点B 作BG AD ⊥,垂足为点G .(1)如图1,求证:90MAG PBG ∠+∠=︒;(2)若点C 在线段AD 上(不与A 、D 、G 重合),连接BC ,MAG ∠和PBC ∠的平分线交于点H 请在图2中补全图形,猜想并证明CBG ∠与AHB ∠的数量关系;5.如图1,把一块含30°的直角三角板ABC 的BC 边放置于长方形直尺DEFG 的EF 边上. (1)根据图1填空:∠1= °,∠2= °; (2)现把三角板绕B 点逆时针旋转n °.①如图2,当n =25°,且点C 恰好落在DG 边上时,求∠1、∠2的度数;②当0°<n <180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n 的值和对应的那两条垂线;如果不存在,请说明理由.二、解答题6.如图1,由线段,,,AB AM CM CD 组成的图形像英文字母M ,称为“M 形BAMCD ”.(1)如图1,M 形BAMCD 中,若//,50AB CD A C ∠+∠=︒,则M ∠=______; (2)如图2,连接M 形BAMCD 中,B D 两点,若150,B D AMC α∠+∠=︒∠=,试探求A ∠与C ∠的数量关系,并说明理由;(3)如图3,在(2)的条件下,且AC 的延长线与BD 的延长线有交点,当点M 在线段BD 的延长线上从左向右移动的过程中,直接写出A ∠与C ∠所有可能的数量关系.7.(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a 从空气中射入水中,再从水中射入空气中,形成光线b ,根据光学知识有12,34∠=∠∠=∠,请判断光线a 与光线b 是否平行,并说明理由.(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线α与水平线OC 的夹角为40︒,问如何放置平面镜MN ,可使反射光线b 正好垂直照射到井底?(即求MN 与水平线的夹角) (3)如图3,直线EF 上有两点A 、C ,分别引两条射线AB 、CD .105BAF ∠=︒,65DCF ∠=︒,射线AB 、CD 分别绕A 点,C 点以1度/秒和3度/秒的速度同时顺时针转动,设时间为t ,在射线CD 转动一周的时间内,是否存在某时刻,使得CD 与AB 平行?若存在,求出所有满足条件的时间t .8.问题情境:如图1,AB ∥CD ,∠PAB =130°,∠PCD =120°,求∠APC 的度数. 小明的思路是:如图2,过P 作PE ∥AB ,通过平行线性质来求∠APC . (1)按小明的思路,易求得∠APC 的度数为 度;(2)如图3,AD ∥BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,∠ADP =∠α,∠BCP =∠β.试判断∠CPD 、∠α、∠β之间有何数量关系?请说明理由; (3)在(2)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出∠CPD 、∠α、∠β间的数量关系.9.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况,如图,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视,若灯A 转动的速度是a °/秒,灯B 转动的速度是b °/秒,且a 、b 满足()2450a b a b -++-=.假定这一带长江两岸河堤是平行的,即//PQ MN ,且60BAN ∠=︒(1)求a 、b 的值;(2)若灯B 射线先转动45秒,灯A 射线才开始转动,当灯B 射线第一次到达BQ 时运动停止,问A 灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作CD AC ⊥交PQ 于点D ,则在转动过程中,BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.10.已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E 、F 点,90ACB ∠=.(1)将直角ABC 如图1位置摆放,如果46AOG ∠=,则CEF ∠=______; (2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ︒∠+∠=,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由.(3)将直角ABC 如图3位置摆放,若140GOC ∠=,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究POQ ∠,OPQ ∠与PQF ∠的数量关系,请直接写出结论.三、解答题11.如图,在ABC 中,AD 是高,AE 是角平分线,20B ∠=︒,60C ∠=°.(1)求CAD ∠、AEC ∠和EAD ∠的度数.(2)若图形发生了变化,已知的两个角度数改为:当30B ∠=︒,60C ∠=°,则EAD ∠=__________︒.当50B ∠=︒,C 60∠=︒时,则EAD ∠=__________︒. 当60B ∠=︒,60C ∠=°时,则EAD ∠=__________︒. 当70B ∠=︒,60C ∠=°时,则EAD ∠=__________︒.(3)若B 和C ∠的度数改为用字母α和β来表示,你能找到EAD ∠与α和β之间的关系吗?请直接写出你发现的结论. 12.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在ABC ∆中,BD 、CD 分别平分ABC ∠和ACB ∠,请直接写出A ∠和D ∠的关系 ;②如图4,A B C D E F ∠+∠+∠+∠+∠+∠= .(4)如图5,BAC ∠与BDC ∠的角平分线相交于点F ,GDC ∠与CAF ∠的角平分线相交于点E ,已知26B ∠=︒,54C ∠=︒,求F ∠和E ∠的度数.13.如图所示,已知射线//,//,100CB OA AB OC C OAB ︒∠=∠=.点E 、F 在射线CB 上,且满足FOB AOB ∠=∠,OE 平分COF ∠ (1)求EOB ∠的度数;(2)若平行移动AB ,那么:OBC OFC ∠∠的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值;(3)在平行移动AB 的过程中,是否存在某种情况,使OEC OBA ∠=∠?若存在,求出其度数.若不存在,请说明理由.14.如图1,CE 平分ACD ∠,AE 平分BAC ∠,90EAC ACE ∠+∠=()1请判断AB 与CD 的位置关系并说明理由;()2如图2,当90E ∠=且AB 与CD 的位置关系保持不变,移动直角顶点E ,使MCE ECD ∠=∠,当直角顶点E 点移动时,问BAE ∠与MCD ∠否存在确定的数量关系?并说明理由.()3如图3,P 为线段AC 上一定点,点Q 为直线CD 上一动点且AB 与CD 的位置关系保持不变,①当点Q 在射线CD 上运动时(点C 除外),CPQ CQP ∠+∠与BAC ∠有何数量关系?猜想结论并说明理由.②当点Q 在射线CD 的反向延长线上运动时(点C 除外),CPQ CQP ∠+∠与BAC ∠有何数量关系?直接写出猜想结论,不需说明理由.15.在ABC 中,100BAC ∠=︒,A ABC CB =∠∠,点D 在直线BC 上运动(不与点B 、C 重合),点E 在射线AC 上运动,且ADE AED ∠=∠,设DAC n ∠=︒.(1)如图①,当点D 在边BC 上,且40n =︒时,则BAD ∠=__________︒,CDE ∠=__________︒;(2)如图②,当点D 运动到点B 的左侧时,其他条件不变,请猜想BAD ∠和CDE ∠的数量关系,并说明理由;(3)当点D 运动到点C 的右侧时,其他条件不变,BAD ∠和CDE ∠还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑)【参考答案】一、解答题1.(1)见解析;(2)55°;(3)【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数; ②如图解析:(1)见解析;(2)55°;(3)1118022αβ︒-+【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点F 作//FE AB ,当点B 在点A 的左侧时,根据50ABC ∠=︒,60ADC ∠=︒,根据平行线的性质及角平分线的定义即可求BFD ∠的度数;②如图3,过点F 作//EF AB ,当点B 在点A 的右侧时,ABC α∠=,ADC β∠=,根据平行线的性质及角平分线的定义即可求出BFD ∠的度数. 【详解】解:(1)如图1,过点E 作//EF AB ,则有BEF B ∠=∠,//AB CD ,//EF CD ∴,FED D ∴∠=∠,BED BEF FED B D ∴∠=∠+∠=∠+∠;(2)①如图2,过点F 作//FE AB ,有BFE FBA ∠=∠.//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.BFE EFD FBA FDC ∴∠+∠=∠+∠.即BFD FBA FDC ∠=∠+∠, BF 平分ABC ∠,DF 平分ADC ∠,1252FBA ABC ∴∠=∠=︒,1302FDC ADC ∠=∠=︒,55BFD FBA FDC ∴∠=∠+∠=︒.答:BFD ∠的度数为55︒; ②如图3,过点F 作//FE AB ,有180BFE FBA ∠+∠=︒.180BFE FBA ∴∠=︒-∠,//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.180BFE EFD FBA FDC ∴∠+∠=︒-∠+∠.即180BFD FBA FDC ∠=︒-∠+∠, BF 平分ABC ∠,DF 平分ADC ∠,1122FBA ABC α∴∠=∠=,1122FDC ADC β∠=∠=,1118018022BFD FBA FDC αβ∴∠=︒-∠+∠=︒-+.答:BFD ∠的度数为1118022αβ︒-+.【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.2.(1)42°;(2)见解析;(3)∠1=∠2,理由见解析 【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案; (2)过点B 作BD ∥a .由平行线的性质得∠2+∠ABD=180°解析:(1)42°;(2)见解析;(3)∠1=∠2,理由见解析 【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B 作BD ∥a .由平行线的性质得∠2+∠ABD =180°,∠1=∠DBC ,则∠ABD =∠ABC -∠DBC =60°-∠1,进而得出结论;(3)过点C 作CP ∥a ,由角平分线定义得∠CAM =∠BAC =30°,∠BAM =2∠BAC =60°,由平行线的性质得∠1=∠BAM =60°,∠PCA =∠CAM =30°,∠2=∠BCP =60°,即可得出结论. 【详解】解:(1)∵∠1=48°,∠BCA =90°, ∴∠3=180°-∠BCA -∠1=180°-90°-48°=42°,∵a∥b,∴∠2=∠3=42°;(2)理由如下:过点B作BD∥a.如图2所示:则∠2+∠ABD=180°,∵a∥b,∴b∥BD,∴∠1=∠DBC,∴∠ABD=∠ABC-∠DBC=60°-∠1,∴∠2+60°-∠1=180°,∴∠2-∠1=120°;(3)∠1=∠2,理由如下:过点C作CP∥a,如图3所示:∵AC平分∠BAM∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,又∵a∥b,∴CP∥b,∠1=∠BAM=60°,∴∠PCA=∠CAM=30°,∴∠BCP=∠BCA-∠PCA=90°-30°=60°,又∵CP∥a,∴∠2=∠BCP=60°,∴∠1=∠2.【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.3.(1)见解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先证明∠1=∠3,易证得AB//CD;(2)如图2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行线解析:(1)见解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先证明∠1=∠3,易证得AB//CD;(2)如图2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行线的性质即可证明;(3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y,想办法构建方程即可解决问题;【详解】(1)如图1中,∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴AB//CD.(2)结论:如图2中,∠PEQ+2∠PFQ=360°.理由:作EH//AB.∵AB//CD,EH//AB,∴EH//CD,∴∠1=∠2,∠3=∠4,∴∠2+∠3=∠1+∠4,∴∠PEQ=∠1+∠4,同法可证:∠PFQ=∠BPF+∠FQD,∵∠BPE=2∠BPF,∠EQD=2∠FQD,∠1+∠BPE=180°,∠4+∠EQD=180°,∴∠1+∠4+∠EQD +∠BPE =2×180°,即∠PEQ +2(∠FQD +∠BPF )=360°,∴∠PEQ +2∠PFQ =360°.(3)如图3中,设∠QPF =y ,∠PHQ =x .∠EPQ =z ,则∠EQF =∠FQH =5y ,∵EQ //PH ,∴∠EQC =∠PHQ =x ,∴x +10y =180°,∵AB //CD ,∴∠BPH =∠PHQ =x ,∵PF 平分∠BPE ,∴∠EPQ +∠FPQ =∠FPH +∠BPH ,∴∠FPH =y +z ﹣x ,∵PQ 平分∠EPH ,∴Z =y +y +z ﹣x ,∴x =2y ,∴12y =180°,∴y =15°,∴x =30°,∴∠PHQ =30°.【点睛】本题考查了平行线的判定与性质,角平分线的定义等知识.(2)中能正确作出辅助线是解题的关键;(3)中能熟练掌握相关性质,找到角度之间的关系是解题的关键. 4.(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,.【分析】(1)过点作,根据平行线的性质即可求解;(2)分两种情况:当点在上,当点在上,再过点作即可求解.【详解】(1)证明:解析:(1)证明见解析;(2)补图见解析;当点C 在AG 上时,290AHB CBG ∠-∠=︒;当点C 在DG 上时,290AHB CBG ∠+∠=︒.【分析】(1)过点G 作//GE MN ,根据平行线的性质即可求解;(2)分两种情况:当点C 在AG 上,当点C 在DG 上,再过点H 作//HF MN 即可求解.【详解】(1)证明:如图,过点G 作//GE MN ,∴MAG AGE ∠=∠,∵//MN PQ ,∴//GE PQ .∴PBG BGE ∠=∠.∵BG AD ⊥,∴90AGB ∠=︒,∴90MAG PBG AGE BGE AGB ∠+∠=∠+∠=∠=︒.(2)补全图形如图2、图3,猜想:290AHB CBG ∠-∠=︒或290AHB CBG ∠+∠=︒.证明:过点H 作//HF MN .∴1AHF ∠=∠.∵//MN PQ ,∴//HF PQ∴2BHF ∠=∠,∴12AHB AHF BHF ∠=∠+∠=∠+∠.∵AH 平分MAG ∠,∴21MAG ∠=∠.如图3,当点C 在AG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠+∠=∠,∵//MN PQ ,∴MAG GDB ∠=∠,2212290AHB MAG PBG CBGGDB PBG CBG CBG∴∠=∠+∠=∠+∠+∠=∠+∠+∠=︒+∠即290AHB CBG ∠-∠=︒.如图2,当点C 在DG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠-∠=∠.∴2212290AHB MAG PBG CBG CBG ∠=∠+∠=∠+∠-∠=︒-∠.即290AHB CBG ∠+∠=︒.【点睛】本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系.5.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE ,再根据两直线平行,同位角相 解析:(1)120,90;(2)①∠1=120°-n °,∠2=90°+n °;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE ,再根据两直线平行,同位角相等可得∠1=∠ABE ,根据两直线平行,同旁内角互补求出∠BCG ,然后根据周角等于360°计算即可得到∠2; ②结合图形,分A B 、B C 、AC 三条边与直尺垂直讨论求解.【详解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案为:120,90;(2)①如图2,∵∠ABC =60°,∴∠ABE =180°-60°-n °=120°-n °,∵DG ∥EF ,∴∠1=∠ABE =120°-n °,∠BCG =180°-∠CBF =180°-n °,∵∠ACB +∠BCG +∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②当n=30°时,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);当n=90°时,∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);当n=120°时,∴AB⊥DE(GF).【点睛】本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.二、解答题6.(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)过M作MN∥AB,由平行线的性质即可求得∠M的值.(2)延长BA,DC交于E,解析:(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)过M作MN∥AB,由平行线的性质即可求得∠M的值.(2)延长BA,DC交于E,应用四边形的内角和定理与平角的定义即可解决问题.(3)分两种情形分别求解即可;【详解】解:(1)过M作MN∥AB,∵AB∥CD,∴AB∥MN∥CD,∴∠1=∠A,∠2=∠C,∴∠AMC=∠1+∠2=∠A+∠C=50°;故答案为:50°;(2)∠A+∠C=30°+α,延长BA,DC交于E,∵∠B+∠D=150°,∴∠E=30°,∵∠BAM+∠DCM=360°-(∠EAM+∠ECM)=360°-(360°-∠E-∠M)=30°+α;即∠A+∠C=30°+α;(3)①如下图所示:延长BA、DC使之相交于点E,延长MC与BA的延长线相交于点F,∵∠B+∠D=150°,∠AMC=α,∴∠E=30°由三角形的内外角之间的关系得:∠1=30°+∠2∠2=∠3+α∴∠1=30°+∠3+α∴∠1-∠3=30°+α即:∠A-∠C=30°+α.②如图所示,210-∠A=(180°-∠D CM)+α,即∠A-∠DCM=30°-α.综上所述,∠A-∠DCM=30°+α或30°-α.【点睛】本题考查了平行线的性质.解答该题时,通过作辅助线准确作出辅助线l∥AB,利用平行线的性质(两直线平行内错角相等)将所求的角∠M与已知角∠A、∠C的数量关系联系起来,从而求得∠M的度数.7.(1)平行,理由见解析;(2)65°;(3)5秒或95秒【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反解析:(1)平行,理由见解析;(2)65°;(3)5秒或95秒【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得∠1=∠2,然后根据平角等于180°求出∠1的度数,再加上40°即可得解;(3)分①AB与CD在EF的两侧,分别表示出∠ACD与∠BAC,然后根据两直线平行,内错角相等列式计算即可得解;②CD旋转到与AB都在EF的右侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解;③CD旋转到与AB都在EF 的左侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解.【详解】解:(1)平行.理由如下:如图1,∵∠3=∠4,∴∠5=∠6,∵∠1=∠2,∴∠1+∠5=∠2+∠6,∴a∥b(内错角相等,两直线平行);(2)如图2:∵入射光线与镜面的夹角与反射光线与镜面的夹角相等,∴∠1=∠2,∵入射光线a与水平线OC的夹角为40°,b垂直照射到井底,∴∠1+∠2=180°-40°-90°=50°,∴∠1=1×50°=25°,2∴MN与水平线的夹角为:25°+40°=65°,即MN与水平线的夹角为65°,可使反射光线b正好垂直照射到井底;(3)存在.如图①,AB与CD在EF的两侧时,∵∠BAF=105°,∠DCF=65°,∴∠ACD=180°-65°-3t°=115°-3t°,∠BAC=105°-t°,要使AB∥CD,则∠ACD=∠BAC,即115-3t=105-t,解得t=5;如图②,CD旋转到与AB都在EF的右侧时,∵∠BAF=105°,∠DCF=65°,∴∠DCF=360°-3t°-65°=295°-3t°,∠BAC=105°-t°,要使AB∥CD,则∠DCF=∠BAC,即295-3t=105-t,解得t=95;如图③,CD旋转到与AB都在EF的左侧时,∵∠BAF=105°,∠DCF=65°,∴∠DCF=3t°-(180°-65°+180°)=3t°-295°,∠BAC=t°-105°,要使AB∥CD,则∠DCF=∠BAC,即3t-295=t-105,解得t=95,此时t>105,∴此情况不存在.综上所述,t为5秒或95秒时,CD与AB平行.【点睛】本题考查了平行线的判定与性质,光学原理,读懂题意并熟练掌握平行线的判定方法与性质是解题的关键,(3)要注意分情况讨论.8.(1)110°;(2)∠CPD=∠α+∠β,见解析;(3)当P在BA延长线时,∠CPD=∠β-∠α;当P在AB延长线上时,∠CPD=∠α-∠β【分析】(1)过P作PE∥AB,通过平行线性质求∠A解析:(1)110°;(2)∠CPD=∠α+∠β,见解析;(3)当P在BA延长线时,∠CPD=∠β-∠α;当P在AB延长线上时,∠CPD=∠α-∠β【分析】(1)过P作PE∥AB,通过平行线性质求∠APC即可;(2)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(3)画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【详解】解:(1)过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=110°.故答案为110°;(2)∠CPD=∠α+∠β,理由是:如图3,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(3)当P在BA延长线时,∠CPD=∠β-∠α,理由是:如图4,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE =∠β-∠α;当P在AB延长线时,∠CPD=∠α-∠β,理由是:如图5,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠DPE -∠CPE =∠α-∠β.【点睛】本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,分类讨论是解题的关键.9.(1),;(2)15秒或63秒;(3)不发生变化,【分析】(1)利用非负数的性质解决问题即可.(2)分三种情形,利用平行线的性质构建方程即可解决问题.(3)由参数表示,即可判断.【详解】解析:(1)4a =,1b =;(2)15秒或63秒;(3)不发生变化,34BAC BCD ∠=∠【分析】(1)利用非负数的性质解决问题即可.(2)分三种情形,利用平行线的性质构建方程即可解决问题.(3)由参数t 表示BAC ∠,BCD ∠即可判断.【详解】解:(1)∵()2450a b a b -++-=, ∴4050a b a b -=⎧⎨+-=⎩, 4a ∴=,1b =;(2)设A 灯转动t 秒,两灯的光束互相平行,①当045t <<时,4(45)1t t =+⨯,解得15t =;②当4590t <<时,()418018045t t -=-+,解得63t =;③当90135t <<时,436045t t -=+,解得135t =,(不合题意)综上所述,当t =15秒或63秒时,两灯的光束互相平行;(3)设A 灯转动时间为t 秒,1804CAN t ∠=︒-,60(1804)4120BAC t t ∴∠=︒-︒-=-︒,又//PQ MN ,18041803BCA CBD CAN t t t ∴∠=∠+∠=+︒-=︒-,而90ACD ∠=︒,9090(1803)390BCD BCA t t ∴∠=︒-∠=︒-︒-=-︒,:4:3BAC BCD ∴∠∠=,即34BAC BCD ∠=∠.【点睛】本题考查平行线的性质和判定,非负数的性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.10.(1)136°;(2)∠AOG+∠NEF =90°,理由见解析;(3)当点P 在GF 上时,∠OPQ =140°﹣∠POQ+∠PQF ;当点P 在线段GF 的延长线上时,140°﹣∠POQ =∠OPQ+∠PQF .解析:(1)136°;(2)∠AOG +∠NEF =90°,理由见解析;(3)当点P 在GF 上时,∠OPQ =140°﹣∠POQ +∠PQF ;当点P 在线段GF 的延长线上时,140°﹣∠POQ =∠OPQ +∠PQF .【分析】(1)如图1,作CP ∥a ,则CP ∥a ∥b ,根据平行线的性质可得∠AOG =∠ACP ,∠BCP +∠CEF =180°,然后利用∠ACP +∠BCP =90°即可求得答案;(2)如图2,作CP ∥a ,则CP ∥a ∥b ,根据平行线的性质可得∠AOG =∠ACP ,∠BCP +∠CEF =180°,然后结合已知条件可得∠BCP =∠NEF ,然后利用∠ACP +∠BCP =90°即可得到结论;(3)分两种情况,如图3,当点P 在GF 上时,过点P 作PN ∥OG ,则NP ∥OG ∥EF ,根据平行线的性质可推出∠OPQ =∠GOP +∠PQF ,进一步可得结论;如图4,当点P 在线段GF 的延长线上时,同上面方法利用平行线的性质解答即可.【详解】解:(1)如图1,作CP ∥a ,∵//a b ,∴CP ∥a ∥b ,∴∠AOG =∠ACP ,∠BCP +∠CEF =180°,∴∠BCP =180°﹣∠CEF ,∵∠ACP +∠BCP =90°,∴∠AOG +180°﹣∠CEF =90°,∵∠AOG =46°,∴∠CEF=136°,故答案为136°;(2)∠AOG+∠NEF=90°.理由如下:如图2,作CP∥a,则CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,而∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°;(3)如图3,当点P在GF上时,过点P作PN∥OG,∴NP∥OG∥EF,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠GOP+∠PQF,∴∠OPQ=140°﹣∠POQ+∠PQF;如图4,当点P在线段GF的延长线上时,过点P作PN∥OG,∴NP ∥OG ∥EF ,∴∠GOP =∠OPN ,∠PQF =∠NPQ ,∵∠OPN =∠OPQ +∠QPN ,∴∠GOP =∠OPQ +∠PQF ,∴140°﹣∠POQ =∠OPQ +∠PQF .【点睛】本题考查了平行线的性质以及平行公理的推论等知识,属于常考题型,正确添加辅助线、灵活应用平行线的判定和性质是解题的关键.三、解答题11.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,.【分析】(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当αβ<时,1()2EAD βα∠=-;当αβ>时,1()2EAD αβ∠=-. 【分析】(1)先利用三角形内角和定理求出BAC ∠的度数,再根据角平分线和高的性质分别得出EAC ∠和DAC ∠的度数,进而可求AEC ∠和EAD ∠的度数;(2)先利用三角形内角和定理求出BAC ∠的度数,再根据角平分线和高的性质分别得出EAC ∠和DAC ∠的度数,则前三问利用EAD EAC DAC ∠=∠-∠即可得出答案,第4问利用EAD DAC EAC ∠=∠-∠即可得出答案;(3)按照(2)的方法,将相应的数换成字母即可得出答案.【详解】(1)∵20B ∠=︒,60C ∠=°,∴180100BAC B C ∠=-∠-∠=︒︒ .∵AE 平分BAC ∠, ∴1502EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ADE ∴∠=∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,20EAD EAC CAD ∴∠=∠-∠=︒ ,9070AEC EAD ∴∠=︒-∠=︒ .(2)当30B ∠=︒,60C ∠=°时,∵30B ∠=︒,60C ∠=°,∴18090BAC B C ∠=︒-∠-∠=︒.∵AE 平分BAC ∠, ∴1452EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,15EAD EAC CAD ∴∠=∠-∠=︒ ;当50B ∠=︒,60C ∠=°时,∵50B ∠=︒,60C ∠=°,∴18070BAC B C ∠=-∠-∠=︒︒ .∵AE 平分BAC ∠, ∴1352EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,5EAD EAC CAD ∴∠=∠-∠=︒ ;当60B ∠=︒,60C ∠=°时,∵60B ∠=︒,60C ∠=°,∴18060BAC B C ∠=︒-∠-∠=︒.∵AE 平分BAC ∠, ∴1302EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,0EAD EAC CAD ∴∠=∠-∠=︒ ;当70B ∠=︒,60C ∠=°时,∵70B ∠=︒,60C ∠=°,∴18050BAC B C ∠=︒-∠-∠=︒.∵AE 平分BAC ∠, ∴1252EAC BAC ∠=∠=︒.∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,5EAD DAC EAC ∴∠=∠-∠=︒ .(3)当B C ∠<∠ 时,即αβ<时,∵B α∠=,C β∠=,∴180180BAC B C αβ∠=︒-∠-∠=︒-- .∵AE 平分BAC ∠, ∴1111(180)902222EAC BAC αβαβ∠=∠=︒--=--. ∵AD 是高,90ADC ∴∠=︒ ,9090CAD C β∴∠=︒-∠=︒- ,1()2EAD EAC CAD βα∴∠=∠-∠=- ; 当B C ∠>∠ 时,即αβ>时,∵B α∠=,C β∠=,∴180180BAC B C αβ∠=︒-∠-∠=︒-- .∵AE 平分BAC ∠, ∴1111(180)902222EAC BAC αβαβ∠=∠=︒--=--. ∵AD 是高,90ADC ∴∠=︒ ,9090CAD C β∴∠=︒-∠=︒- ,1()2EAD DAC EAC αβ∴∠=∠-∠=- ; 综上所述,当αβ<时,1()2EAD βα∠=-;当αβ>时,1()2EAD αβ∠=-. 【点睛】本题主要考查三角形内角和定理和三角形的角平分线,高,掌握三角形内角和定理和直角三角形两锐角互余是解题的关键.12.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1)D A B C ∠=∠+∠+∠,理由详见解析;(2)A D B C ∠+∠=∠+∠,理由详见解析:(3)①1902D A ∠=︒+∠;②360°;(4)124E ∠=︒; =14F ∠︒.【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)①根据角平分线的定义及三角形内角和定理即可得出结论;②连结BE ,由(2)的结论及四边形内角和为360°即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.【详解】(1)D A B C ∠=∠+∠+∠.理由如下:如图1,BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,BDC B BAD C CAD B BAC C ∴∠=∠+∠+∠+∠=∠+∠+∠,D A B C ∴∠=∠+∠+∠;(2)A D B C ∠+∠=∠+∠.理由如下:在ADE ∆中,180AED A D ∠=︒-∠-∠,在BCE ∆中,180BEC B C ∠=︒-∠-∠,AED BEC ∠=∠,A D B C ∴∠+∠=∠+∠;(3)①180A ABC ACB ∠=︒-∠-∠,180D DBC DCB ∠=︒-∠-∠,BD 、CD 分别平分ABC∠和ACB ∠,∴1122ABC ACB DBC DCB ∠+∠=∠+∠,1111180()180(180)902222D ABC ACB A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠. 故答案为:1902D A ∠=︒+∠.②连结BE .∵C D CBE DEB ∠+∠=∠+∠,360A B C D E F A ABE F BEF ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒. 故答案为:360︒;(4)由(1)知,BDC B C BAC ∠=∠+∠+∠,26B ∠=︒,54C ∠=︒,80BDC BAC ∴∠=︒+∠,402CDF CAE ∴∠=︒+∠,4BAC CAE ∠=∠,2BDC CDF ∠=∠,1902GDE CDF ∴∠=︒-∠,26180AGD B GDB CDF ∠=∠+∠=︒+︒-∠,3GAE CAE ∠=∠,3336064(2)644012422E GAE AGD GDE CAE CDF ∴∠=︒-∠-∠-∠=︒-∠-∠=︒+⨯︒=︒; 180180(206)2262264014F AGF GAF CDF CAE CDF CAE ∠=︒-∠-∠=︒-︒-∠-∠=-︒+∠-∠=-︒+︒=︒.【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.13.(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°.【分析】(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=∠COA ,从而得出答案;(2解析:(1)40°;(2):OBC OFC ∠∠的值不变,比值为12;(3)∠OEC=∠OBA=60°.【分析】(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=12∠COA ,从而得出答案;(2)根据平行线的性质,即可得出∠OBC=∠BOA ,∠OFC=∠FOA ,再根据∠FOA=∠FOB+∠AOB=2∠AOB ,即可得出∠OBC :∠OFC 的值为1:2.(3)设∠AOB=x ,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x ,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠OEC ,然后利用三角形的内角和等于180°列式表示出∠OBA ,然后列出方程求解即可.【详解】(1)∵CB ∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB ,OE 平分∠COF∴∠FOB+∠EOF=12(∠AOF+∠COF )=12∠COA=40°;∴∠EOB=40°;(2)∠OBC :∠OFC 的值不发生变化∵CB ∥OA∴∠OBC=∠BOA ,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC :∠OFC=1:2(3)当平行移动AB 至∠OBA=60°时,∠OEC=∠OBA .设∠AOB=x ,∵CB ∥AO ,∴∠CBO=∠AOB=x ,∵CB ∥OA ,AB ∥OC ,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x ,∴x+40°=80°-x ,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【点睛】本题主要考查了平行线、角平分线的性质以及三角形内角和定理,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.14.(1)详见解析;(2)∠BAE+∠MCD=90°,理由详见解析;(3)详见解析. 【详解】试题分析:(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再解析:(1)详见解析;(2)∠BAE+12∠MCD=90°,理由详见解析;(3)详见解析.【详解】试题分析:(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出结论;(2)过E作EF∥AB,根据平行线的性质可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出结论;(3)根据AB∥CD可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故∠BAC=∠PQC+∠QPC.试题解析:证明:(1)∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE.∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180,∴AB∥CD;(2)∠BAE+12∠MCD=90°.证明如下:过E作EF∥AB.∵AB∥CD,∴EF∥∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE.∵∠E=90°,∴∠BAE+∠ECD=90°.∵∠MCE=∠ECD,∴∠BAE+12∠MCD=90°;(3)①∠BAC=∠PQC+∠QPC.理由如下:如图3:∵AB∥CD,∴∠BAC+∠ACD=180°.∵∠QPC+∠PQC+∠PCQ=180°,∴∠BAC=∠PQC+∠QPC;②∠PQC+∠QPC+∠BAC=180°.理由如下:如图4:∵AB∥CD,∴∠BAC=∠ACQ.∵∠PQC+∠PCQ+∠ACQ=180°,∴∠PQC+∠QPC+∠BAC=180°.点睛:本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.15.(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC 中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;(2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACB-∠AED=1002n-︒,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,从而得出结论∠BAD=2∠CDE;(3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACD-∠AED=1002n︒+,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE.【详解】解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+60°=100°.∵∠DAC=40°,∠ADE=∠AED,∴∠ADE=∠AED=70°,∴∠CDE=∠ADC-∠ADE=100°-70°=30°.故答案为60,30.(2)∠BAD=2∠CDE,理由如下:如图②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-1802n︒-=1002n-︒,∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,∴∠BAD=2∠CDE.(3)成立,∠BAD=2∠CDE,理由如下:如图③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD-∠AED=140°-1802n︒-=1002n︒+,∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.【点睛】本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.。
河北省邢台市宁晋县2017-2018学年七年级(下)期末数学试卷(解析版)
河北省邢台市宁晋县2017-2018学年七年级(下)期末数学试卷一、选择题(本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的1.以下描述中,能确定具体位置的是()A.万达电影院2排B.距薛城高铁站2千米C.北偏东30°D.东经106°,北纬31°2.实数是()A.正分数B.负分数C.无理数D.有理数3.如图,直线AB、CD相交于点O,下列条件中,不能说明AB⊥CD的是()A.∠AOD=90°B.∠AOC=∠BOCC.∠BOC+∠BOD=180°D.∠AOC+∠BOD=180°4.已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3B.﹣3C.﹣4D.45.若﹣a≥b,则a≤﹣2b,其根据是()A.不等式的两边都加上(或减去)同一个整式,不等号的方向不变B.不等式的两边都乘(或除以)同一个正数,不等号的方向不变C.不等式的两边都乘(或除以)同一个负数,不等号的方向改变D.不等式的两边都乘(或除以)同一个负数,不等号的方向不变6.在平面直角坐标系中,点P(3,﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限7.用代入法解方程组时,将方程①代入②中,所得的方程正确的是()A.3x+4y﹣6=8B.3x﹣4x+6=8C.3x+2y﹣3=8D.3x﹣2y﹣6=88.为了调查班级中对新班主任老师的印象,下列更具有代表性的样本是()A.调查前十名的学生B.调查后十名的学生C.调查单号学生D.调查全体男同学9.若实数m满足1<m<2,则实数m可以是()A.B.C.D.﹣10.已知x,y满足,如果①×a+②×b可整体得到x+11y的值,那么a,b的值可以是()A.a=2,b=﹣1B.a=﹣4,b=3C.a=1,b=﹣7D.a=﹣7,b=511.假期的某一天,学生小华的作息时间统计如图,统计图提供了4条信息,其中不正确的信息是()A.表示小华学习时间的扇形的圆心角是15°B.小华在一天中三分之一时间安排活动C.小华的学习时间再增加1小时就与做家务的时间相等D.小华的睡觉时间已超过9小时12.不等式组的解集是x>2,则m的取值范围是()A.m≤2B.m≥2C.m≤1D.m>113.已知如图,直线a⊥c,b⊥c,∠1=140°,那么∠2的度数是()A.40°B.50°C.60°D.140°14.已知三角形的三个顶点坐标分别是(﹣2,1),(2,3),(﹣3,﹣1),把△ABC运动到一个确定位置,在下列各点坐标中,()是平移得到的.A.(0,3),(0,1),(﹣1,﹣1)B.(﹣3,2),(3,2),(﹣4,0)C.(1,﹣2),(3,2),(﹣1,﹣3)D.(﹣1,3),(3,5),(﹣2,1)二、填空题(本小题共4个小题,每小题3分,共12分)15.一个数的立方根为,则这个数为.16.如图所示,已知∠C=100°,若增加一个条件,使得AB∥CD,试写出符合要求的一个条件.17.如图,小雨把不等式3x+1>2(x﹣1)的解集表示在数轴上,则阴影部分盖住的数字是.18.若关于x,y的二元一次方程组的解满足x+y,求满足条件的m的取值范围为.三、解答题(本大题共7个小题,满分66分,解答题应写出必要的解题步骤或文字说明)19.(9分)春天到了,七(2)班组织同学到公园春游,张明、李华对着景区示意图,如下描述牡丹园位置(图中小正方形边长代表100m)张明:“牡丹园坐标(300,300)”李华:“牡丹园在中心广场东北方向约420m处”若他们二人所说的位置都正确.(1)在图中建立适当的平面直角坐标系;(2)用坐标描述其它景点位置.20.(9分)某校为了解八年级学生的视力情况,对八年级的学生进行了一次视力调查,并将调查数据进行统计整理,绘制出如下频数分布表和频数分布直方图的一部分.(1)在频数分布表中,a=,b=;(2)将频数分布直方图补充完整;(3)若视力在4.6以上(含4.6)均属正常,求视力正常的人数占被调查人数的百分比是多少?21.(9分)一个正数x的两个平方根是2a﹣3与5﹣a,求x的值.22.(9分)关于x的不等式组(1)当a=3时,解这个不等式组;(2)若不等式组的解集x<1,求a的值.23.(10分)如图,A、B、C.三点在同一直线上,∠1=∠2,∠3=∠D,试判断BD与CF的位置关系,并说明理由.24.(10分)据统计资料,甲、乙两种作物的单位面积产量的比是1:2,现要把一块长100m、宽80m的长方形土地分为两块小长方形土地,分别种植这两种作物,怎样划分这块土地,使甲、乙两种作物的总产量的比是2:1?请你设计两种不同的种植方案.25.(10分)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.若顾客购物应付x元,请根据x的取值,讨论顾客到哪家商场购物花费少?参考答案与试题解析一、选择题(本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的1.【分析】在数轴上,用一个数据就能确定一个点的位置;在平面直角坐标系中,要用两个数据才能表示一个点的位置;在空间内要用三个数据才能表示一个点的位置.【解答】解:A、万达电影院2排,不能确定位置;B、距薛城高铁站2千米,不能确定位置;C、北偏东30°,不能确定位置;D、东经106°,北纬31°,能确定位置.故选:D.【点评】本题考查了坐标确定位置,是数学在生活中应用,平面位置对应平面直角坐标系,空间位置对应空间直角坐标系.可以做到在生活中理解数学的意义.2.【分析】依据无理数的常见类型进行判断即可.【解答】解:∵是一个开方开不尽的数,即是一个无理数∴是一个无理数.故选:C.【点评】本题主要考查的是实数的分类,熟练掌握无理数的常见类型是解题的关键.3.【分析】根据垂直定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直进行判定即可.【解答】解:A、∠AOD=90°可以判定两直线垂直,故此选项错误;B、∠AOC和∠BOC是邻补角,邻补角相等和又是180°,所以可以得到∠COB=90°,能判定垂直,故此选项错误;C、∠BOC和∠BOD是邻补角,邻补角相等和是180°,不能判定垂直,故此选项正确;D、∠AOC和∠BOD是对顶角,对顶角相等,和又是180°,所以可得到∠AOC=90°,故此选项错误.故选:C.【点评】此题主要考查了垂直定义,关键是通过条件计算出其中一个角为90°.4.【分析】直接利用x轴上点的纵坐标为0,进而得出答案.【解答】解:∵点P(x+3,x﹣4)在x轴上,∴x﹣4=0,解得:x=4,故选:D.【点评】此题主要考查了点的坐标,正确把握x轴上点的坐标性质是解题关键.5.【分析】根据不等式的性质,可得答案.【解答】解:﹣a≥b,不等式的两边都乘﹣2,不等号的方向改变,则a≤﹣2b,故选:C.【点评】本题考查了不等式的性质,利用不等式的性质是解题关键.6.【分析】由平面直角坐标系中点的坐标的符号特点进行判断,因为3>0,﹣2<0,所以点P(3,﹣2)在第四象限.【解答】解:∵3>0,﹣2<0,∴点P(3,﹣2)在第四象限.故选:D.【点评】此题主要考查平面直角坐标系中已知点的坐标确定点的位置,比较简单.牢记四个象限的符号特点:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).7.【分析】直接把①代入②即可得出结论.【解答】解:把①代入②得,3x﹣2(2x﹣3)=8,整理得,3x﹣4x+6=8.故选:B.【点评】本题考查的是解二元一次方程组,熟知解二元一次方程组的代入消元法是解答此题的关键.8.【分析】抽样调查时,抽取的样本要具有代表性,即应该是随机抽样.【解答】解:选项A、B、D都不具有随机性,不能很好的反映总体.而对学生的排号,单号或双号是随机的,只抽取单号,具有普遍性.故选C.【点评】样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.9.【分析】直接利用估算无理数的大小方法得出答案.【解答】解:∵1<m<2,∴实数m可以是.故选:C.【点评】此题主要考查了估算无理数的大小,正确估算无理数的大小是解题关键.10.【分析】利用加减消元法判断即可确定出a与b的值.【解答】解:已知x,y满足,如果①×a+②×b可整体得到x+11y的值,那么a,b的值可以是a=﹣7,b=5,故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.11.【分析】利用扇形统计图可分别求出表示小华学习时间的扇形的圆心角是15°,小华在一天中安排活动的时间是总时间的,小华的学习时间是1小时,做家务的时间是2小时,小华的睡觉时间是9小时,所以D错误.【解答】解:A、因为表示小华学习时间的扇形的圆心角是360°﹣30°﹣60°﹣120°﹣135°=15°,故A正确;B、因为小华在一天中安排活动的时间是总时间的120°÷360°=,故B正确;C、因为小华的学习时间是24×15°÷360°=1小时,做家务的时间是24×30°÷360°=2小时,所以C正确;D、小华的睡觉时间是24×135°÷360°=9小时;综上,故选D.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.12.【分析】根据解不等式,可得每个不等式的解集,再根据每个不等式的解集,可得不等式组的解集,根据不等式的解集,可得答案.【解答】解:∵不等式组的解集是x>2,解不等式①得x>2,解不等式②得x>m+1,不等式组的解集是x>2,∴不等式,①解集是不等式组的解集,∴m+1≤2,m≤1,故选:C.【点评】本题考查了不等式组的解集,不等式组中的两个不等式的解集都是大于,不等式组的解集大于大的,不等式②的解集是不等式组的解集.13.【分析】因为c⊥a,c⊥b,所以可求a∥b,则∠1=∠3,又因为∠2+∠3=180°,故∠2=180°﹣∠1.【解答】解:∵c⊥a,c⊥b,∴∠α=∠β,∴a∥b,∴∠1=∠3,∵∠2+∠3=180°,∴∠2=180°﹣∠1=40°.故选:A.【点评】此题把平行线的判定和性质结合求解.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.14.【分析】看选项中各点横纵坐标的变化是否一样即可.【解答】解:A、横坐标变化为:0﹣(﹣2)=2,0﹣2=﹣2,﹣1﹣(﹣3)=2,变化不同,不符合题意;B、横坐标变化为:﹣3﹣(﹣2)=﹣1,3﹣2=1,﹣4﹣(﹣3)=﹣1,变化不同,不符合题意;C、横坐标变化为:1﹣(﹣2)=3,3﹣2=1,﹣1=(﹣3)=2,变化不同,不符合题意;D、横坐标变化为:﹣1﹣(﹣2)=1,3﹣2=1,(﹣2)﹣(﹣3)=1,变化相同;纵坐标变化为:3﹣1=2,5﹣3=2,1﹣(﹣1)=2,变化相同,符合题意.故选:D.【点评】用到的知识点为:平移图形后,对应点遵循相同的平移规律.二、填空题(本小题共4个小题,每小题3分,共12分)15.【分析】依据立方根的定义求解即可.【解答】解:∵一个数的立方根为,∴这个数=()3=.故答案为:.【点评】本题主要考查的是立方根的定义,熟练掌握立方根的定义是解题的关键.16.【分析】欲证AB∥CD,在图中发现AB、CD被一直线所截,且已知一同旁内角∠C=100°,故可按同旁内角互补两直线平行补充条件.【解答】解:∵∠C=100°,要使AB∥CD,则要∠BEC=180°﹣100°=80°(同旁内角互补两直线平行).【点评】解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养“执果索图”的思维方式与能力.17.【分析】根据去括号、移项、合并同类项,可得不等式的解集,根据不等式解集的表示方法,可得答案.【解答】解:去括号,得3x+1>2x﹣2,移项、合并同类项,得x>﹣3,故答案为:﹣3.【点评】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来>或≥,向右画;<或≤,向左画,注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.18.【分析】方程组两方程相加表示出x+y,代入已知不等式求出解集即可确定出m的范围.【解答】解:,①+②得:3(x+y)=﹣3m+6,即x+y=﹣m+2,代入不等式得:﹣m+2>﹣,解得:m<,故答案为:m<【点评】此题考查了二元一次方程组的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.三、解答题(本大题共7个小题,满分66分,解答题应写出必要的解题步骤或文字说明)19.【分析】(1)以牡丹亭向左3个单位,向下3个单位为坐标原点建立平面直角坐标系即可;(2)根据平面直角坐标系中点的坐标的写法写出即可.【解答】解:(1)建立平面直角坐标系如图所示;(2)中心广场(0,0),音乐台(0,400),望春亭(﹣200,﹣100),南门(100,﹣600),游乐园(200,﹣400).【点评】本题考查了坐标确定位置,根据牡丹亭的位置确定出坐标原点的位置是解题的关键.20.【分析】(1)根据百分比=,频率之和为1即可解决问题;(2)根据a=60,画出条形图即可解决问题;(3)根据百分比=,求出力正常的人数即可解决问题;【解答】解:(1)总人数=20÷0.1=200.∴a=200×0.3=60,b=1﹣0.1﹣0.2﹣0.35﹣0.3=0.05,故答案为60,0.05.(2)频数分布直方图如图所示,(3)视力正常的人数占被调查人数的百分比是×100%=70%.【点评】本题考查频数分布表、频数分布直方图等知识,解题的关键是熟练掌握基本概念,属于基础题,中考常考题型.21.【分析】根据正数的两个平方根互为相反数列方程求出a的值,再求出一个平方根,然后平方即可.【解答】解:∵一个正数x的两个平方根是2a﹣3与5﹣a,∴2a﹣3+5﹣a=0,解得a=﹣2,∴2a﹣3=2×(﹣2)﹣3=﹣7,∴x=(﹣7)2=49.【点评】本题考查了平方根,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.22.【分析】(1)解每个不等式求出其解集,a=3时,利用口诀即可得出答案;(2)根据已知不等式组有解比较,可求出a的值.【解答】解:(1)解不等式>+1,得:x<2,解不等式x﹣a<0,得:x<a,若a=3,则不等式组的解集为x<2;(2)若不等式组的解集为x<1,则a=1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.【分析】根据平行线的判定•和性质解答即可.【解答】解:BD∥CF,理由如下:∵∠1=∠2,∴AD∥BF,∴∠D=∠DBF,∵∠3=∠D,∴∠3=∠DBF,∴BD∥CF.【点评】本题主要考查了平行线的判定,解题的关键是利用内错角相等证明两直线平行.24.【分析】先设计出两种方案图,然后根据甲、乙两种作物的总产量的比是2:1列出方程组,求出方程的解即可.【解答】解:方案1:如图①,将长方形ABCD分割为两个长方形ABEF和长方形EFDC,设AF=x米,DF=y米,由题意得,,解得.所以,过长方形土地长边上离一端80米处画一条垂线,把这块土地分为两块长方形土地,较大的一块种甲种作物,较小的一块种乙种作物.方案2:如图②,将长方形ABCD分割为两个长方形AMND和长方形MBCN,设AM=a米,BM=b米,由题意得,,解得.所以,过长方形土地短边上离一端64米处画一条垂线,把这块土地分为两块长方形土地,较大的一块种甲种作物,较小的一块种乙种作物.【点评】本题考查了二元一次方程组的应用,解题的关键是先设计出两种方案图,再根据题意,找出之间的数量关系列出二元一次方程组,此题难度一般.25.【分析】设累计购物x,分x≤50、50<x≤100和x>100三种情况分别求解可得.【解答】解:(1)当x≤50时,在甲、乙两个商场购物都不享受优惠,因此到两个商场购物花费一样;(2)当50<x≤100时,在乙商场购物享受优惠,在甲商场购物不享受优惠,因此在乙商场购物花费少;(3)当累计购物超过100元时,即x>100元,甲商场消费为:100+(x﹣100)×0.9元,在乙商场消费为:50+(x﹣50)×0.95元.当100+(x﹣100)×0.9>50+(x﹣50)×0.95,解得:x<150,当100+(x﹣100)×0.9<50+(x﹣50)×0.95,解得:x>150,当100+(x﹣100)×0.9=50+(x﹣50)×0.95,解得:x=150.综上所述,当累计消费大于50元少于150元时,在乙商店花费少;当累计消费大于150元时,在甲商店花费少;当累计消费等于150元或不超过50元时,在甲乙商场花费一样.【点评】此题考查了一元一次不等式的应用,关键是读懂题意,列出不等式,再根据实际情况分段进行讨论.。
河北省邢台市七年级下学期数学期末考试试卷
河北省邢台市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·历下模拟) 4的平方根是()A . ±2B . ﹣2C . 2D .2. (2分)点P(-1,3)在()象限。
A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分) (2019七下·海口月考) 下列各对数值是二元一次方程x-y=5的解是()A .B .C .D .4. (2分)(2018·泸州) 某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄1314151617人数12231则这些学生年龄的众数和中位数分别是()A . 16,15B . 16,14C . 15,15D . 14,155. (2分)横坐标是正数,纵坐标是负数的点在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限6. (2分)如图,已知AB∥CD,∠D=50°,BC平分∠ABD,则∠ABC等于()A . 65°B . 55°C . 50°D . 45°7. (2分)(2017·泰安模拟) 不等式组的整数解是()A . ﹣1,0B . ﹣1,1C . 0,1D . ﹣1,0,18. (2分)某校七年级共320名学生参加数学测试,随机抽取50名学生的成绩进行统计,其中15名学生成绩达到优秀,估计该校七年级学生在这次数学测试中达到优秀的人数大约有()A . 50人B . 64人C . 90人D . 96人9. (2分)如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠AED′=40°,则∠EFB等于()A . 70°B . 65°C . 80°D . 35°10. (2分)(2017·长春模拟) 小华拿24元钱购买火腿肠和方便面,已知一盒方便面3元,一根火腿肠2元,他买了4盒方便面,x根火腿肠,则关于x的不等式表示正确的是()A . 3×4+2x<24B . 3×4+2x≤24C . 3x+2×4≤24D . 3x+2×4≥24二、填空题 (共5题;共5分)11. (1分) (2019八上·北京期中) 下面的框图表示解方程3x + 20 = 4x-25 的流程:请写出移项的依据:________.12. (1分) (2017八上·乐清期中) 把点A(a,-2)向左平移3个单位,所得的点与点A关于y轴对称,则a等于________.13. (1分)(2019·盐城) 如图,直线a∥b,∠1=50°,那么∠2=________.14. (1分)若x>y,且(a﹣3)x<(a﹣3)y,则a的取值范围为________.15. (1分) (2019七下·邢台期中) 如图,已知∠B=40°,要使AB∥CD,需要添加一个条件,这个条件可以是________.三、解答题 (共8题;共82分)16. (10分) (2016七上·宁海期中) 如图1,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长.(3)把正方形ABCD放到数轴上,如图2,使得A与﹣1重合,那么D在数轴上表示的数为________.17. (5分) (2017七下·石城期末) 解方程组:.18. (10分)△ABC与△A'B'C'在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A'________; B'________;C________;(2)说明△A'B'C'由△ABC经过怎样的平移得到?________.(3)若点P(a,b)是△ABC内部一点,则平移后△A'B'C'内的对应点P'的坐标为________;(4)求△ABC的面积.19. (5分)已知向本埠邮寄一封平信需0.60元,向外埠寄一封平信需0.80元,北方大学某班辅导员在假期里向本班同学发一个通知,共发平信52封,用去邮资38元,问该班在本埠和外埠居住的各多少人.20. (7分)(2017·江阴模拟) 某校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.组别正确字数x人数A0≤x<810B8≤x<1615C16≤x<2425D24≤x<32mE32≤x<40n根据以上信息解决下列问题:(1)在统计表中,m=________,n=________,并补全条形统计图________.(2)扇形统计图中“C组”所对应的圆心角的度数是________.(3)若该校共有1120名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.21. (10分) (2019八下·西湖期末)(1)如图1,将一矩形纸片ABCD沿着EF折叠,CE交AF于点G,过点G作GH∥EF,交线段BE于点H.①判断EG与EH是否相等,并说明理由.②判断GH是否平分∠AGE,并说明理由.(2)如图2,如果将(1)中的已知条件改为折叠三角形纸片ABC,其它条件不变.①判断EG与EH是否相等,并说明理由.②判断GH是否平分∠AGE,如果平分,请说明理由;如果不平分,请用等式表示∠EGH,∠AGH与∠C的数量关系,并说明理由.(3)如图1,将一矩形纸片ABCD沿着EF折叠,CE交AF于点G,过点G作GH∥EF,交线段BE于点H.①判断EG与EH是否相等,并说明理由.②判断GH是否平分∠AGE,并说明理由.(4)如图2,如果将(1)中的已知条件改为折叠三角形纸片ABC,其它条件不变.①判断EG与EH是否相等,并说明理由.②判断GH是否平分∠AGE,如果平分,请说明理由;如果不平分,请用等式表示∠EGH,∠AGH与∠C的数量关系,并说明理由.22. (15分) (2017七下·高阳期末) 某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.23. (20分)(2017·游仙模拟) 如图,在平面直角坐标中,点O为坐标原点,直线y=﹣x+4与x轴交于点A,过点A的抛物线y=ax2+bx与直线y=﹣x+4交于另一点B,且点B的横坐标为1.(1)求a,b的值;(2)点P是线段AB上一动点(点P不与点A、B重合),过点P作PM//OB交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,过点P作PF⊥MC于点F,设PF的长为t,MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,当S△ACN=S△PMN时,连接ON,点Q在线段BP上,过点Q作QR//MN交ON于点R,连接MQ、BR,当∠MQR﹣∠BRN=45°时,求点R的坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共82分)16-1、16-2、16-3、17-1、18-1、18-2、18-3、18-4、19-1、20-1、20-2、20-3、21-1、21-2、21-3、21-4、22-1、22-2、22-3、23-1、。
河北省邢台市七年级下学期数学期末考试试卷
河北省邢台市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共7题;共13分)1. (2分) (2020七下·温州期末) 世界上最小、最轻的昆虫是膜翅目缨小蜂科的一种卵蜂,其质量只有0.000005克.其中数据0.000005用科学记数法表示为()A .B .C .D .2. (2分) (2020八上·渝北月考) 下列长度的三条线段,能构成三角形的是()A . 1,2,6B . 1,2,3C . 2,3,4D . 3,3,63. (2分)(2016·河南) 下列计算正确的是()A . ﹣ =B . (﹣3)2=6C . 3a4﹣2a2=a2D . (﹣a3)2=a54. (2分)直线a、b、c、d的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于()A . 58°B . 70°C . 110°D . 116°5. (2分) (2019七上·双流月考) 下列计算正确的是()A . (-14)-(+5)=-9B . 0-(-3)=0+(-3)C . (-3)×(-3)=-6D . |3-5|= 5-36. (2分)(2019·长沙模拟) 不等式组的解集为()A .B .C .D .7. (1分) (2020七下·青岛期中) 比较大小: ________ .(填“>”“=”或“<”)二、填空题 (共9题;共9分)8. (1分)(2020·皇姑模拟) 因式分解: =________.9. (1分)(2017·泰州) 将一副三角板如图叠放,则图中∠α的度数为________.10. (1分) (2019八上·丹江口期末) 已知整式x2+kx+9是完全平方式,则k=________.11. (1分) (2015七下·孝南期中) 把命题“同角的余角相等”改写成“如果…那么…”的形式________.12. (1分)(2016·陕西) 请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的一个外角为45°,则这个正多边形的边数是________.B.运用科学计算器计算:3 sin73°52′≈________.(结果精确到0.1)13. (1分) (2020七下·杭州期末) 若m,n均为正整数,且3m﹣1•9n=243,则m+n的值是________.14. (1分)计算:(x+4)(x﹣4)=________15. (1分) (2019九上·揭西期末) 如图,将边长为6cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为 FH,点C落在Q处,EQ 与BC 交于点G,则△EBG的周长是 ________cm.16. (1分) (2020八上·重庆开学考) 如图,在四边形中,,与互为补角,点在上,将沿翻折,得到,若,平分,则的度数为________ ;三、解答题 (共10题;共80分)17. (10分)化简求值:(x+y)(x﹣y)﹣(x﹣y)2﹣6xy÷2y+(2xy)2÷(﹣4xy),其中x=﹣2,y= .18. (10分) (2020八下·天府新期末)(1)分解因式: ;(2)解不等式组: ,并写出所有非负整数解.19. (10分)解不等式组:.20. (5分) (2015八上·武汉期中) 已知:如图,在△ABC中,点D是BC的中点,过点D作直线交AB,CA 的延长线于点E,F.当BE=CF时,求证:AE=AF.21. (5分) (2017七下·路北期末) 某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?22. (5分) (2019八上·江汉期中) 如图,BD是△ABC的角平分线,AE丄BD交BD的'延长线于点E, ∠ABC = 72°,∠C:∠ADB =2:3,求∠BAC 和∠DAE 的度数.23. (10分)自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:>0,<0等.那么如何求出它们的解集呢?根据有理数除法法则可知:两数相除,同号得正,异号得负.据此可知不等式>0,可变成或,再解这两个不等式组,得x>2或x<﹣1.(1)不等式<0,可变成不等式组或;(2)解分式不等式<0.24. (5分) (2016九上·海淀期中) 如图,在等边△ABC中,点D是 AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.25. (10分) (2019八上·全椒期中) 某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:车型运费运往甲地/(元/辆)运往乙地/(元/辆)大货车720800小货车500650(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w 关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.26. (10分)Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点 P 在线段 AB 上,如图(1)所示,且∠α=50°,则∠1+∠2=________°;(2)若点 P 在边 AB 上运动,如图(2)所示,则∠α、∠1、∠2 之间的关系为:________;(3)若点P运动到边 AB 的延长线上,如图(3)所示,则∠α、∠1、∠2 之间有何关系?猜想并说明理由.(4)若点P运动到△ABC 形外,如图(4)所示,则∠α、∠1、∠2 之间的关系为:________.参考答案一、选择题 (共7题;共13分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:二、填空题 (共9题;共9分)答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共10题;共80分)答案:17-1、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:答案:26-1、答案:26-2、答案:26-3、答案:26-4、考点:解析:。
七年级数学(下)期末数学试卷含答案 (7)
七年级(下)期末数学试卷一、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的).1.(3分)下列说法中,错误的是()A.4的算术平方根是2 B.的平方根是±3C.8的立方根是±2 D.立方根等于﹣1的实数是﹣12.(3分)点到直线的距离是指()A.从直线外一点到这条直线的垂线B.从直线外一点到这条直线的垂线段C.从直线外一点到这条直线的垂线的长D.从直线外一点到这条直线的垂线段的长3.(3分)实数﹣2,0.3,,,﹣π中,无理数的个数有()A.1个 B.2个 C.3个 D.4个4.(3分)如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等5.(3分)如果a>b,则下列各式中不成立的是()A.a+4>b+4 B.2+3a>2+3b C.a﹣6>b﹣6 D.﹣3a>﹣3b6.(3分)下列调查中,适合用全面调查的是()A.了解某班同学立定跳远的情况B.了解一批炮弹的杀伤半径C.了解某种品牌奶粉中含三聚氰胺的百分比D.了解全国青少年喜欢的电视节目7.(3分)估计的值()A.在3到4之间B.在4到5之间C.在5到6之间D.在6到7之间8.(3分)若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A.(﹣4,3)B.(4,﹣3)C.(﹣3,4)D.(3,﹣4)9.(3分)吉安县澧田中学每年都会举行乒乓球比赛,比赛规定采取积分制:赢一局得3分,负一局扣1分.在7局比赛中,积分超过10分的就可以晋级下一轮比赛,李胜进入了下一轮比赛,问李胜输掉的比赛最多是()A.2局 B.3局 C.4局 D.5局10.(3分)如图,数轴上表示1、的对应点分别为点A、点B.若点A是BC 的中点,则点C所表示的数为()A.B.1﹣C.D.2﹣二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分).11.(3分)算术平方根等于它本身的数是.12.(3分)计算:=.13.(3分)如果用(7,1)表示七年级一班,那么八年级五班可表示成.14.(3分)不等式﹣x+3>0的最大整数解是.15.(3分)点(p,q)到y轴距离是.16.(3分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=°.17.(3分)如图,已知AB,CD,EF互相平行,且∠ABE=70°,∠ECD=150°,则∠BEC=°.18.(3分)有一种感冒止咳药品的说明书上写着:“青少年每日用量80~120mg,分3~4次服用.”一次服用这种药品剂量的范围为.19.(3分)某种商品的进价为15元,出售时标价是22.5元.由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价元出售该商品.20.(3分)把m个练习本分给n个学生,如果每人分3本,那么余80本;如果每人分5本,那么最后一个同学有练习本但不足5本,n的值为.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分).21.(12分)解方程组(1)(2).22.(8分)解不等式组并把解集在数轴上表示出来.23.(8分)如图,DE⊥AC于点E,BF⊥AC于点F,∠1+∠2=180°,试判断∠AGF 与∠ABC的大小关系,并说明理由.24.(10分)△ABC与△A'B'C'在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A';B';C';(2)说明△A'B'C'由△ABC经过怎样的平移得到?.(3)若点P(a,b)是△ABC内部一点,则平移后△A'B'C'内的对应点P'的坐标为;(4)求△ABC的面积.25.(10分)学生会准备调查全校七年级学生每天(除课间操外)的课外锻炼时间.(1)确定调查方式时,甲同学说:“我到1班去调查全体同学”;乙同学说:“我到体育场上去询问参加锻炼的同学”;丙同学说:“我到全校七年级每个班去随机调查一定数量的同学”.你认为调查方式最为合理的是(填“甲”或“乙”或“丙”);(2)他们采用了最为合理的调查方法收集数据,并绘制出如图1所示的条形统计图和如图2所示的扇形统计图,请根据图1和图2所提供的信息,将图1中的条形统计图补充完整;(注:图2中相邻两虚线形成的圆心角为30°)(3)若该校七年级共有1200名同学,请你估计其中每天(除课间操外)课外锻炼时间不大于20分钟的人数,并根据调查情况向学生会提出一条建议.26.(12分)某校师生积极为汶川地震灾区捐款,在得知灾区急需账篷后,立即到当地的一家账篷厂采购,帐篷有两种规格:可供3人居住的小账篷,价格每顶160元;可供10人居住的大账篷,价格每顶400元.学校花去捐款96000元采购这两种帐篷,正好可供2300人临时居住.(1)求该校采购了多少顶3人小帐篷,多少顶10人大帐篷;(2)学校现计划租用甲、乙两种型号的卡车共20辆将这批帐篷紧急运往灾区,已知甲型卡车每辆可同时装运4顶小帐篷和11顶大账篷,乙型卡车每辆可同时装运12顶小帐篷和7顶大帐篷.如何安排甲、乙两种卡车可一次性将这批帐篷运往灾区有哪几种方案?2016-2017学年河北省秦皇岛市卢龙县七年级(下)期末数学试卷参考答案与试题解析一、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的).1.(3分)(2017春•卢龙县期末)下列说法中,错误的是()A.4的算术平方根是2 B.的平方根是±3C.8的立方根是±2 D.立方根等于﹣1的实数是﹣1【分析】原式利用平方根,立方根的定义判断即可得到结果.【解答】解:A、4的算术平方根为2,正确;B、=9,9的平方根为±3,正确;C、8的立方根为2,错误;D、立方根等于﹣1的实数是﹣1,正确,故选C【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.2.(3分)(2017春•卢龙县期末)点到直线的距离是指()A.从直线外一点到这条直线的垂线B.从直线外一点到这条直线的垂线段C.从直线外一点到这条直线的垂线的长D.从直线外一点到这条直线的垂线段的长【分析】根据点到直线的距离的定义解答本题.【解答】解:A、垂线是直线,没有长度,不能表示距离,故A错误;B、垂线段是一个图形,距离是指垂线段的长度,故B错误;C、垂线是直线,没有长度,不能表示距离,故C错误;D、符合点到直线的距离的定义,故D正确.故选:D.【点评】此题主要考查了从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离的定义.3.(3分)(2017春•卢龙县期末)实数﹣2,0.3,,,﹣π中,无理数的个数有()A.1个 B.2个 C.3个 D.4个【分析】有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.【解答】解:因为﹣2是整数,0.3是有限小数,所以﹣2、0.3都是有理数;因为,0.是循环小数,所以是有理数;因为,π=3.14159265…,1.414…,3.14159265…都是无限不循环小数,所以,﹣π都是无理数,所以无理数的个数是2个:,﹣π.故选:B.【点评】此题主要考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.4.(3分)(2013•荆州区校级模拟)如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等【分析】判定两条直线是平行线的方法有:可以由内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补两直线平行等,应结合题意,具体情况,具体分析.【解答】解:图中所示过直线外一点作已知直线的平行线,则利用了同位角相等,两直线平行的判定方法.故选A.【点评】本题主要考查了平行线的判定方法.这是以后做题的基础.要求学生熟练掌握.5.(3分)(2017春•卢龙县期末)如果a>b,则下列各式中不成立的是()A.a+4>b+4 B.2+3a>2+3b C.a﹣6>b﹣6 D.﹣3a>﹣3b【分析】根据不等式的基本性质3可知:不等式两边乘(或除以)同一个负数,不等号的方向改变.【解答】解:根据不等式的基本性质3可知:不等式两边乘(或除以)同一个负数,不等号的方向改变;即﹣3a<3b,故D错误;故选D.【点评】主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.(3分)(2017春•卢龙县期末)下列调查中,适合用全面调查的是()A.了解某班同学立定跳远的情况B.了解一批炮弹的杀伤半径C.了解某种品牌奶粉中含三聚氰胺的百分比D.了解全国青少年喜欢的电视节目【分析】分别根据普查和抽样调查适宜的条件对各选项进行逐一分析解答即可.【解答】解:A、了解某班同学立定跳远的情况难度较小、工作量不大,故适合用全面调查;B、了解一批炮弹的杀伤半径具有一定的破坏性,适合用抽样调查;C、了解某种品牌奶粉中含三聚氰胺的百分比具有一定的破坏性,适合用抽样调查;D、了解全国青少年喜欢的电视节目普查的难度较大,适合用抽样调查.故选A.【点评】本题比较简单,考查的是普查与抽样调查的联系与区别.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析.7.(3分)(2014•营口)估计的值()A.在3到4之间B.在4到5之间C.在5到6之间D.在6到7之间【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围.【解答】解:∵5<<6,∴在5到6之间.故选:C.【点评】此题主要考查了估算无理数的那就,“夹逼法”是估算的一般方法,也是常用方法.8.(3分)(2017春•卢龙县期末)若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A.(﹣4,3)B.(4,﹣3)C.(﹣3,4)D.(3,﹣4)【分析】首先根据题意得到P点的横坐标为负,纵坐标为正,再根据到x轴的距离与到y轴的距离确定横纵坐标即可.【解答】解:∵点P在第二象限,∴P点的横坐标为负,纵坐标为正,∵到x轴的距离是4,∴纵坐标为:4,∵到y轴的距离是3,∴横坐标为:﹣3,∴P(﹣3,4),故选:C.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握其特点是解题关键.9.(3分)(2017春•卢龙县期末)吉安县澧田中学每年都会举行乒乓球比赛,比赛规定采取积分制:赢一局得3分,负一局扣1分.在7局比赛中,积分超过10分的就可以晋级下一轮比赛,李胜进入了下一轮比赛,问李胜输掉的比赛最多是()A.2局 B.3局 C.4局 D.5局【分析】设李胜输掉的比赛最多是x局,那么赢了(7﹣x)局,而赢一局得3分,负一局扣1分,由此可以用x表示李胜的积分为[3(7﹣x)﹣x],又积分超过10分的就可以晋级,由此可以列出不等式解决问题.【解答】解:设李胜输掉的比赛最多是x局,依题意得3(7﹣x)﹣x>10,∴x<,而x为正整数,∴x≤2.答:李胜输掉的比赛最多是2场.故选A.【点评】此题是一个和实际生活结合比较紧密的题目,比较贴近学生生活.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的不等量关系,列出不等式组,再求解.10.(3分)(2017春•卢龙县期末)如图,数轴上表示1、的对应点分别为点A、点B.若点A是BC的中点,则点C所表示的数为()A.B.1﹣C.D.2﹣【分析】设点C表示的数是x,再根据中点坐标公式即可得出x的值.【解答】解:设点C表示的数是x,∵数轴上表示1、的对应点分别为点A、点B,点A是BC的中点,∴=1,解得x=2﹣.故选D.【点评】本题考查的是实数与数轴,熟知数轴上的点与实数是一一对应关系是解答此题的关键.二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分).11.(3分)(2017春•卢龙县期末)算术平方根等于它本身的数是0和1.【分析】由于一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,算术平方根等于它本身的数是只能是0和1.由此即可求解.【解答】解:算术平方根等于它本身的数是0和1.【点评】此题主要考查了算术平方根的定义,解题需熟练掌握平方根和算术平方根的概念且区分清楚,才不容易出错.要熟悉特殊数字0,1,﹣1的特殊性质.12.(3分)(2017春•卢龙县期末)计算:=.【分析】直接进行同类二次根式的合并,即可得出答案.【解答】解:原式=.故答案为:.【点评】本题考查了实数的运算,掌握合并同类二次根式的法则是解答本题的关键.13.(3分)(2017春•柳州期末)如果用(7,1)表示七年级一班,那么八年级五班可表示成(8,5).【分析】根据有序数对的第一个数表示年级,第二个数表示班级解答.【解答】解:∵(7,1)表示七年级一班,∴八年级五班可表示成(8,5).故答案为:(8,5).【点评】本题考查了坐标确定位置,理解有序数对的两个数的实际意义是解题的关键.14.(3分)(2017春•卢龙县期末)不等式﹣x+3>0的最大整数解是2.【分析】首先解不等式,再从不等式的解集中找出适合条件的整数即可.【解答】解:不等式﹣x+3>0的解集是x<3,所以不等式的最大整数解是2.【点评】正确解不等式,求出解集是解诀本题的关键.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.15.(3分)(2017春•卢龙县期末)点(p,q)到y轴距离是|p| .【分析】点到y轴的距离等于横坐标的绝对值.【解答】解:点(p,q)到y轴距离=|p|故答案为|P|.【点评】本题考查点的坐标,记住点到坐标轴的距离与坐标的关系是解题的关键.16.(3分)(2008•菏泽)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=120°.【分析】本题主要利用邻补角互补,平行线性质及角平分线的性质进行做题.【解答】解:∵∠CDE=150°,∴∠CDB=180﹣∠CDE=30°,又∵AB∥CD,∴∠ABD=∠CDB=30°;∵BE平分∠ABC,∴∠ABC=60°,∴∠C=180°﹣60°=120°.故答案为:120.【点评】本题主要考查了平行线的性质,两直线平行,内错角相等,同旁内角互补.17.(3分)(2017春•卢龙县期末)如图,已知AB,CD,EF互相平行,且∠ABE=70°,∠ECD=150°,则∠BEC=40°.【分析】根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差即可.【解答】解:∵AB∥EF,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°﹣∠ECD=180°﹣150°=30°,∴∠BEC=∠BEF﹣∠CEF=40°;故答案为:40.【点评】本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.18.(3分)(2017春•卢龙县期末)有一种感冒止咳药品的说明书上写着:“青少年每日用量80~120mg,分3~4次服用.”一次服用这种药品剂量的范围为20~30.【分析】让80÷3,80÷4得到每天服用80mg时3次或4次每次的剂量;让120÷3,120÷4即可得到每天服用120mg时3次或4次每次的剂量,找到最少的剂量和最多的剂量即可.【解答】解:80÷3=26mg;80÷4=20mg;120÷3=40mg;120÷4=30mg;∴一次服用这种药品剂量的范围为20≤x≤30,即为20~30.【点评】本题需注意应找到每天服用80mg时3次或4次每次的剂量;每天服用120mg时3次或4次每次的剂量,然后找到最大值与最小值.19.(3分)(2017春•卢龙县期末)某种商品的进价为15元,出售时标价是22.5元.由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价6元出售该商品.【分析】先设最多降价x元出售该商品,则降价出售获得的利润是22.5﹣x﹣15元,再根据利润率不低于10%,列出不等式即可.【解答】解:设降价x元出售该商品,则22.5﹣x﹣15≥15×10%,解得x≤6.故该店最多降价6元出售该商品.故答案为:6.【点评】本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.20.(3分)(2017春•卢龙县期末)把m个练习本分给n个学生,如果每人分3本,那么余80本;如果每人分5本,那么最后一个同学有练习本但不足5本,n 的值为41或42.【分析】不足5本说明最后一个人分的本数应在0和5之间,但不包括5.【解答】解:根据题意得:,解得:40<n<42.5,∵n为整数,∴n的值为41或42.故答案为:41或42.【点评】解决本题的关键是读懂题意,找到符合题意的不等关系式组.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分). 21.(12分)(2017春•卢龙县期末)解方程组(1)(2).【分析】根据二元一次方程组的解法即可求出答案【解答】解:(1)①+②得:x=﹣1把x=﹣1代入①得:y=2∴原方程组的解为(2)原方程组化为:②×2+①得:x=2将x=2代入②得y=3所以该方程组的解为:【点评】本题考查二元一次方程组,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.22.(8分)(2017春•卢龙县期末)解不等式组并把解集在数轴上表示出来.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,由①得x<3,由②得x<﹣2,在数轴上表示如下:所以,该不等式组的解集为:x<﹣2.【点评】本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.23.(8分)(2017春•卢龙县期末)如图,DE⊥AC于点E,BF⊥AC于点F,∠1+∠2=180°,试判断∠AGF与∠ABC的大小关系,并说明理由.【分析】由于DE⊥AC,BF⊥AC得到∠AFB=∠AED=90°,由BF∥DE,根据平行线的性质得∠2+∠3=180°,则∠1=∠3,可判断GF∥BC,所以∠AGF=∠ABC.【解答】解:∠AGF=∠ABC.理由如下:∵DE⊥AC,BF⊥AC,∴∠AFB=∠AED=90°,∴BF∥DE,∴∠2+∠3=180°,又∵∠1+∠2=180°∴∠1=∠3,∴GF∥BC,∴∠AGF=∠ABC.【点评】本题考查了平行线的判定与性质:内错角相等,两直线平行;两直线平行,同位角相等,同旁内角互补.24.(10分)(2017春•卢龙县期末)△ABC与△A'B'C'在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A'(﹣3,1);B'(﹣2,﹣2);C'(﹣1,﹣1);(2)说明△A'B'C'由△ABC经过怎样的平移得到?先向左平移4个单位,再向下平移2个单位.(3)若点P(a,b)是△ABC内部一点,则平移后△A'B'C'内的对应点P'的坐标为(a﹣4,b﹣2);(4)求△ABC的面积.【分析】(1)直接利用已知图形得出各点坐标即可;(2)利用对应点位置得出平移规律;(3)利用(2)中平移规律进而得出答案;(4)利用△ABC所在矩形面积减去周围三角形进而得出答案.【解答】解:(1)如图所示:A'(﹣3,1),B′(﹣2,﹣2),C′(﹣1,﹣1);故答案为:(﹣3,1),(﹣2,﹣2),(﹣1,﹣1);(2)△ABC先向左平移4个单位,再向下平移2个单位得到△A'B'C';故答案为:先向左平移4个单位,再向下平移2个单位;(3)若点P(a,b)是△ABC内部一点,则平移后△A'B'C'内的对应点P'的坐标为:(a﹣4,b﹣2).故答案为:(a﹣4,b﹣2);=6﹣×2×2﹣×1×3﹣×1×1=2.(4)△ABC的面积为:S△ABC【点评】此题主要考查了平移变换的性质以及三角形面积求法,正确得出平移规律是解题关键.25.(10分)(2017春•卢龙县期末)学生会准备调查全校七年级学生每天(除课间操外)的课外锻炼时间.(1)确定调查方式时,甲同学说:“我到1班去调查全体同学”;乙同学说:“我到体育场上去询问参加锻炼的同学”;丙同学说:“我到全校七年级每个班去随机调查一定数量的同学”.你认为调查方式最为合理的是丙(填“甲”或“乙”或“丙”);(2)他们采用了最为合理的调查方法收集数据,并绘制出如图1所示的条形统计图和如图2所示的扇形统计图,请根据图1和图2所提供的信息,将图1中的条形统计图补充完整;(注:图2中相邻两虚线形成的圆心角为30°)(3)若该校七年级共有1200名同学,请你估计其中每天(除课间操外)课外锻炼时间不大于20分钟的人数,并根据调查情况向学生会提出一条建议.【分析】(1)丙采用抽样调查方式最合理;(2)约40分钟的有5人,在扇形统计图中占,则可求出调查的总人数,故“约10分钟”人数可求解;(3)用总数×不大于20分钟的人数所占百分比即可.【解答】解:(1)丙的调查方式所获取的数据最具有代表性,即丙最合理,故答案为:丙;(2)调查的总人数为5÷=60(人),则“约10分钟”的人数为60﹣(10+9+5)=36(人),补全条形图如下:(3)1200×=1100,∴估计其中每天(除课间操外)课外锻炼时间不大于20分钟的有1100人,建议:该小中学生参加体育锻炼时间普遍较少,应多参加体育锻炼.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.(12分)(2008•扬州)某校师生积极为汶川地震灾区捐款,在得知灾区急需账篷后,立即到当地的一家账篷厂采购,帐篷有两种规格:可供3人居住的小账篷,价格每顶160元;可供10人居住的大账篷,价格每顶400元.学校花去捐款96000元采购这两种帐篷,正好可供2300人临时居住.(1)求该校采购了多少顶3人小帐篷,多少顶10人大帐篷;(2)学校现计划租用甲、乙两种型号的卡车共20辆将这批帐篷紧急运往灾区,已知甲型卡车每辆可同时装运4顶小帐篷和11顶大账篷,乙型卡车每辆可同时装运12顶小帐篷和7顶大帐篷.如何安排甲、乙两种卡车可一次性将这批帐篷运往灾区有哪几种方案?【分析】(1)首先设采购了x顶3人小帐篷,y顶10人大帐篷,列出二元一次方程组.(2)设甲型卡车安排了a辆,则乙型卡车安排了(20﹣a)辆,列出不等式组解答即可.【解答】解:(1)设采购了x顶3人小帐篷,y顶10人大帐篷.由题材意得.解得.答:采购了100顶3人小帐篷,200顶10人大帐篷.(2)设甲型卡车安排了a辆,则乙型卡车安排了(20﹣a)辆,则.解得15≤a≤17.5∵a为整数,∴a=15、16、17则乙型卡车:20﹣a=5、4、3答:有3种方案:①甲型卡车15辆,乙型卡车5辆.②甲型卡车16辆,乙型卡车4辆.③甲型卡车17辆,乙型卡车3辆.【点评】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.。
河北省邢台市七年级下学期数学期末试卷
河北省邢台市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2019·海州模拟) 下列运算正确的是()A .B .C .D .2. (2分)(2019·防城模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分)已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示是()A . 0.21×10-4B . 2.1×10-4C . 2.1×10-5D . 21×10-64. (2分)(2017·济宁模拟) 下列事件中是必然事件的是()A . 明天太阳从西边升起B . 篮球队员在罚球线上投篮一次,未投中C . 抛出一枚硬币,落地后正面朝上D . 实心铁球投入水中会沉入水底5. (2分) (2019七下·鄱阳期中) 如图所示,下列推理正确是()A . 因为∠1=∠4,所以BC∥ADB . 因为∠2=∠3,所以AB∥CDC . 因为AD∥BC,所以∠BCD+∠ADC=180°D . 因为∠1+∠2+∠C=180°,所以BC∥AD6. (2分)下列各组长度的三条线段能组成三角形的是()A . 1cm,2cm,3cm;B . 1cm,1cm,2cm;C . 1cm,2cm,2cm;D . 1cm,3cm,5cm;7. (2分)洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y(升)与浆洗一遍的时间x(分)之间函数关系的图象大致为()A .B .C .D .8. (2分)等腰三角形的一个外角是130°,则它的底角等于()A . 50°B . 65°C . 100°D . 50°或65°二、填空题 (共8题;共9分)9. (1分)(2017·烟台) 30×()﹣2+|﹣2|=________.10. (1分)(2012·辽阳) 如图的游戏镖盘中,每个小方格的边长都是1,则飞镖投中阴影部分的概率(不考虑落在线上的情形)是________.11. (2分) (2017七下·东城期中) 如图,把一块含45°的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2的度数是________.12. (1分)若(2x﹣3y)•N=9y2﹣4x2 ,那么代数式N应该是________ .13. (1分) (2016八上·罗田期中) 如图,在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,若△ABC的周长为22,BC=6,则△BCD的周长为________.14. (1分)(2018·绍兴) 实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为xcm。
河北省邢台市七年级下学期数学期末试卷
河北省邢台市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分) (2020七下·枣阳期末) 二元一次方程有无数多个解,下列四组值中不是该方程的解的是()A .B .C .D .2. (2分)(2011·绵阳) 下列运算正确的是()A . a+a2=a3B . 2a+3b=5abC . (a3)2=a9D . a3÷a2=a3. (2分) (2020七下·和平期中) 下列各组数中,是方程组的解是()A .B .C .D .4. (2分) (2020九上·杭州开学考) 下列图形中,既是中心对称图形又是轴对称图形的是()A . 角B . 等边角形C . 平行四边形D . 矩形5. (2分) (2017·潮南模拟) 下列计算正确的是()A . a2+a2=a4B . a6÷a2=a4C . (a2)3=a5D . (a﹣b)2=a2﹣b26. (2分) (2017八上·滕州期末) 以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是()A . 如图1,展开后测得∠1=∠2B . 如图2,展开后测得∠1=∠2且∠3=∠4C . 如图3,测得∠1=∠2D . 如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD7. (2分) (2020八下·潜江期末) 下列不能反映一组数据集中趋势的是()A . 众数B . 中位数C . 方差D . 平均数8. (2分)(x﹣a)(x2+ax+a2)的计算结果是()A . x3+2ax+a3B . x3﹣a3 . x3﹣a3C . x3+2a2x+a3D . x2+2ax2+a3C . x3+2a2x+a3D . x2+2ax2+a39. (2分)(2020·朝阳模拟) 如图,直线,它们之间的距离是()A . 线段的长度B . 线段的长度C . 线段的长度D . 线段的长度二、填空题 (共9题;共13分)10. (1分)(2019·槐荫模拟) 计算: ________.11. (1分)(2019·赤峰) 因式分解: ________.12. (1分)已知2x+4与3x﹣2互为相反数,则x=________.13. (1分)(2016·镇江模拟) 小明同学参加射击训练,共设计了八发子弹,环数分别是:7,10,9,8,7,9,9,8,则这组数据的中位数是________.14. (1分) (2017七下·江苏期中) 已知方程,用的代数式表示为________.15. (2分)已知矩形ABCD的长AB=4,宽AD=3,按如图放置在直线AP上,然后不滑动地转动,当它转动一周时(A→A′),顶点A所经过的路线长等于________.16. (2分)如图,AB∥CD,AC⊥BC,∠ABC=35°,则∠1的度数为________17. (2分)(2020八下·合肥月考) 已知:、、是的三边,且满足:,面积等于________.18. (2分)(2017·江西模拟) 如图,矩形AOCB边OC在x轴上点B的坐标为(3,1),将此矩形折叠,使点C与点A重合,点B折至点B'处,折痕为EF,则点B'的坐标为________.三、解答题 (共9题;共41分)19. (5分)已知x,y满足方程组,求代数式(x﹣y)2﹣(x+2y)(x﹣2y)的值.20. (5分) (2020七下·玄武期中) 先化简,再求值:(2a﹣b)2﹣(a+1﹣b)(a+1+b)+(a+1)2 ,其中a=,b=﹣2.21. (5分)在如图所示的方格纸中,画出图形中的△ABC向右平移2格后的△A′B′C′,然后再画出将△A′B′C′向上平移2格后的△A″B″C″.22. (2分) (2018七上·定安期末) 已知:如图,∠1=∠2,∠A=∠F,试说明∠C=∠D.解:∵ (已知)________(________)∴ ________(等量代换)∴ ________(________)∴ ________(两直线平行,同位角相等)∵(已知)∴ ________(________)∴ ________(两直线平行,内错角相等)∴ (________)23. (2分) (2018七上·延边期末) 如图所示,池塘边有块长为20m,宽为10m的长方形土地,现在将其余三面留出宽都是xm的小路,中间余下的长方形部分做菜地,用含x的式子表示:(1)菜地的长a=________m,菜地的宽b=________m;菜地的周长C=________m;(2)求当x=1m时,菜地的周长C.24. (10分)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看次的人数没有标出).根据上述信息,解答下列各题:×(1)该班级女生人数是________,女生收看“两会”新闻次数的中位数是________;(2)对于某个群体,我们把一周内收看某热点新闻次数不低于次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).统计量平均数(次)中位数(次)众数(次)方差该班级男生根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.25. (2分) (2019七下·青山月考) 点D在∠ABC内,点E为边BC上一点,连接DE、CD.(1)如图1,连接AE,若∠AED=∠A+∠D,求证:AB//CD.(2)在(1)的结论下,过点A的直线MA//ED.①如图2,当点E在线段BC上时,猜想并验证∠MAB与∠CDE的数量关系;②如图3,当点E在线段BC的延长线上时,猜想并验证∠MAB与∠CDE的数量关系.26. (8分)(2020·泉州模拟) 如图,抛物线y=ax2+bx+c的顶点为C(0,),与x轴交于A、B两点,且A(﹣1,0).(1)求抛物线的解析式;(2)点P从点B出发,以每秒1个单位的速度向点A运动,同时点Q从点C出发,以每秒v个单位的速度向y轴负方向匀速运动,运动时间为t秒,连接PQ交射线BC于点D ,当点P到达点A时,点Q停止运动,以点P 为圆心,PB为半径的圆与射线BC交于点E .①求BE的长;当t=1时,求DE的长;②若在点P , Q运动的过程中,线段DE的长始终是一个定值,求v的值及DE长.27. (2分)如图,已知平行四边形ABCD,∠ABC=120°,点E为线段BC上的动点,连接AE,将线段AE绕点A逆时针旋转60°得到线段AF,点E的对应点是点F,连接EF.(1)当点E与点B重合时,在图1中将图补充完整,并求出∠CEF的度数;(2)如图2,求证:点F在∠ABC的平分线上.参考答案一、单选题 (共9题;共18分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、二、填空题 (共9题;共13分)10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共9题;共41分)19-1、20-1、21-1、22-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、27-1、27-2、。
河北省邢台市七年级下学期数学期末试卷
河北省邢台市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共40分)1. (4分) (2018八上·秀洲月考) 在平面直角坐标系中,下列各点中在第四象限的是()A . (1,3)B . (0,-3)C . (-3,3)D . (2,-2)2. (4分)(2019·平顶山模拟) 如图,BC∥DE,若∠A=35°,∠C=24°,则∠E等于()A . 59°B . 35°C . 24°D . 11°3. (4分)下列调查的样本具有代表性的是()A . 在我市中学生中调查市民观看电视的时间B . 到农村调查我国普通居民的生活水平C . 在医院里调查我国老年人的健康状况D . 调查一个班级里学号为奇数的学生对班主任工作态度的评价4. (4分) (2020七上·东台期末) 下列图形中,线段的长表示点A到直线距离的是()A .B .C .D .5. (4分)下面各组数中,第二个数能被第一个数整除的是()A . 57和3B . 18和5.1C . 3和57D . 0.7和246. (4分) (2019七上·富阳期中) 若,,且,则的值为A .B .C . 5D .7. (4分) (2017八上·南海期末) 下列实数中,不属于无理数的是()A .B .C . 100πD .8. (4分)若∠A的两边与∠B的两边分别平行,且∠A的度数比∠B的度数的3倍少40°,则∠B的度数为()A . 20°B . 55°C . 20°或55°D . 75°9. (4分) (2019八上·南浔期中) 已知a<b,下列四个不等式中,正确的是()A . ﹣a<﹣bB . ﹣2a<﹣2bC . a﹣2>b﹣2D . 2﹣a>2﹣b10. (4分)记sn=a1+a2+…+an ,令Tn= ,则称Tn为a1 , a2 ,…,an这列数的“凯森和”.已知a1 , a2 ,…,a500的“凯森和”为2004,那么13,a1 , a2 ,…,a500的“凯森和”为()A . 2013B . 2015C . 2017D . 2019二、填空题 (共6题;共32分)11. (12分)(2019·拱墅模拟) 计算: =________.12. (4分) (2015八上·江苏开学考) 不等式的解是________.13. (4分) (2020八上·苏州期末) 如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE 是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为________.14. (4分)在一组数据中,最小值是12,最大值为92,若取组距为9,则可将这些数据分成________组.15. (4分)要把1张50元的人民币兑换成面额为5元和10元的人民币,面值5元x张,面值10元y张,那么x与y间的关系为________ .16. (4分)(2019·合肥模拟) 已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是________.三、解答题 (共9题;共78分)17. (8分)解二元一次方程组:18. (8分)(2017·泰兴模拟) 解不等式组,并写出它的非负整数解.19. (8分) (2016七下·蒙阴期中) 已知:如图,AD∥BE,∠1=∠2,求证:∠A=∠E.20. (8.0分)(2017·冠县模拟) 为了方便居民低碳出行,2015年12月30日,湘潭市公共自行车租赁系统(一期)试运行以来,越来越多的居民选择公共自行车作为出行的交通工具,市区某中学课外兴趣小组为了了解某小区居民出行方式的变化情况,随机抽取了该小区部分居民进行调查,并绘制了如图的条形统计图和扇形统计图(部分信息未给出).请根据上面的统计图,解答下列问题:(1)被调查的总人数是________人;(2)公共自行车租赁系统运行后,被调查居民选择自行车作为出行方式的百分比提高了多少?(3)如果该小区共有居民2000人,公共自行车租赁系统运行后估计选择自行车作为出行方式的有多少人?21. (8分) (2016九上·武胜期中) 如图,△ABC中,A(﹣2,3),B(﹣3,1),C(﹣1,2).(1)①将△ABC向右平移4个单位长度,画出平移后的△A1B1C1;②画出△ABC关于x轴对称的△A2B2C2;③将△ABC绕原点O旋转180°,画出旋转后的△A3B3C3;(2)在△A1B1C1,△A2B2C2,△A3B3C3中,△________与△________成轴对称,对称轴是________;△________与△________成中心对称,对称中心的坐标是________.22. (8分)某住宅小区在住宅建设时留下一块1798平方米的空地,准备建一个矩形的露天游泳池,设计如图所示,游泳池的长是宽的2倍,在游泳池的前侧留一块5米宽的空地,其它三侧各保留2米宽的道路及1米宽的绿化带(1)请你计算出游泳池的长和宽;(2)若游泳池深3米,现要把池底和池壁(共5个面)都贴上瓷砖,请你计算要贴瓷砖的总面积.23. (9.0分)(2019·蒙自模拟) 为了美化环境,建设宜居城市,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)试求出y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉的种植面积的2倍.①试求种植总费用W元与种植面积x(m2)之间的函数关系式;②应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用W最少?最少总费用为多少元?24. (10分)定义:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边形.如图1,四边形ABCD为凹四边形.(1)性质探究:请完成凹四边形一个性质的证明.已知:如图2,四边形ABCD是凹四边形求证:∠BCD=∠B+∠A+∠D(2)性质应用:①如图3,在凹四边形ABCD中,∠BAD与∠BCD两角的角平分线交于点E,若∠ADC=140°,∠AEC=100°,求∠B的度数.②如图4,已知∠BOC=58°,x=∠A+∠B,y=∠C+∠D+∠E+∠F,求(x+y)的度数.25. (11.0分) (2017七下·临沧期末) 如图所示,在平面直角坐标系中,已知A、B、C三点的坐标分别为A (﹣1,5),B(﹣3,0),C(﹣4,3).(1)画出把△ABC向右平移6个单位,再向上平移1个单位长度的三角形A′B′C′;(2)写出平移后三角形A′B′C′的各顶点的坐标;(3)求三角形A′B′C′的面积.参考答案一、选择题 (共10题;共40分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共32分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共78分)17-1、18-1、19-1、20-1、20-2、20-3、21-1、21-2、22-1、23-1、23-2、24-1、24-2、25-1、25-2、25-3、。
河北省邢台市七年级下学期数学期末试卷
河北省邢台市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018七上·青浦期末) 下列图形中,是轴对称图形但不是旋转对称图形的是()A .B .C .D .2. (2分) (2020七下·泗辖期中) 下列计算正确的是()A . a2+a3=a5B . a2·a3=a6C . (a2)3=a6D . a6÷a2=a33. (2分) (2018九上·下城期末) 下列是任意抛掷一枚质地均匀的正六面体骰子所得结果,其中发生的可能性很大的是()A . 朝上的点数为2B . 朝上的点数为7C . 朝上的点数不小于2D . 朝上的点数为3的倍数4. (2分) (2020七下·天府新期中) 下列乘法中,不能运用平方差公式进行运算的是().A .B .C .D .5. (2分) (2020七下·汕头期中) 下列命题中是假命题的是()A . 垂线段最短B . 两条直线被第三条直线所截,同位角相等C . 在同一平面内,垂直于同一直线的两条直线平行D . 不等式两边加同一个数,不等号的方向不变6. (2分) (2019八上·金平期末) 下列三条线段中,能构成三角形的是()A . 3,4,8B . 5、6,7C . 5,5,10D . 5,6,117. (2分) (2019八上·萧山期中) 如图所示,在4×4的方格纸中有一个格点△ABC(每个小正方形的边长为1),下列关于它的描述中,正确的是()A . 三边长都是有理数B . 是等腰三角形C . 是直角三角形D . 面积为6.58. (2分)如图所示,在△ABD和△ACE中,AB=AC,AD=AE,要证△ABD≌△ACE,需补充的条件是()A . ∠B=∠CB . ∠D=∠EC . ∠DAE=∠BACD . ∠CAD=∠DAC9. (2分) (2019八下·潍城期末) 在一条笔直的航道上依次有甲、乙、丙三个港口,一艘船从甲出发,沿直线匀速行驶经过乙港驶向丙港,最终达到丙港,设行驶x (h)后,船与乙港的距离为y (km),y与x的关系如图所示,则下列说法正确的是()A . 甲港与丙港的距离是90kmB . 船在中途休息了0.5小时C . 船的行驶速度是45km/hD . 从乙港到达丙港共花了1.5小时10. (2分)等腰三角形的一个外角是80°,则其底角是().A . 100°B . 100°或40°C . 40°D . 80°二、填空题 (共9题;共9分)11. (1分) (2020七下·鼎城期中) 若,,则 =________.12. (1分) (2019八上·李沧期中) 一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车同时出发,设普通列车行驶的时间为(小时),两车之间的距离为(千米),图中的折线表示与之间的函数关系。
七年级下册邢台数学期末试卷达标检测卷(Word版 含解析) (2)
七年级下册邢台数学期末试卷达标检测卷(Word 版 含解析)一、选择题1.16的算术平方根是()A .4B .4-C .2D .2-2.在下列图形中,不能..通过其中一个三角形平移得到的是( ) A . B . C .D .3.点(﹣4,2)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题中假命题的是( )A .同旁内角互补,两直线平行B .如果两条直线都与第三条直线平行,那么这两条直线也互相平行C .在同一平面内,过一点有且只有一条直线与已知直线垂直D .在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直 5.如图,直线////AB CD EF ,点O 在直线AB 上,下列结论正确的是( )A .12390∠+∠-∠=︒B .12390∠+∠+∠=︒C .321180∠+∠-∠=︒D .132180∠+∠-∠=︒ 6.下列说法不正确的是( )A .327=3--B .81=9C .0.04的平方根是0.2±D .9的立方根是37.如图,将一张长方形纸片ABCD 沿EF 折叠.使顶点C ,D 分别落在点C ',D 处,C E '交AF 于点G ,若70CEF ∠=︒,则GFD '∠=( )A .30B .40︒C .45︒D .60︒8.如图,在平面直角坐标系中,一动点从原点O 出发,向右平移3个单位长度到达点1A ,再向上平移6个单位长度到达点2A ,再向左平移9个单位长度到达点3A ,再向下平移12个单位长度到达点4A ,再向右平移15个单位长度到达点5A ……按此规律进行下去,该动点到达的点2021A 的坐标是( )A .(3030,3030)--B .(3030,3033)-C .(3033,3030)-D .(3030,3033)二、填空题9.9的算术平方根是 .10.若点()3,P m 与(),6Q n -关于x 轴对称,则2m n -=____________________________. 11.如图,在ABC 中,40B ︒∠=.三角形的外角DAC ∠和ACF ∠的角平分线交于点E ,则AEC ∠=_____度.12.将直角三角板与两边平行的纸条如图放置,若154∠=︒,则2∠=__________︒.13.如图,在△ABC 中,将∠B 、∠C 按如图所示的方式折叠,点B 、C 均落于边BC 上的点Q 处,MN 、EF 为折痕,若∠A=82°,则∠MQE= _________14.已知221m <,若0,m >且2m +是整数,则m =______ .15.点31,25()P m m +-到两坐标轴的距离相等,则m =________.16.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0)……,根据这个规律探索可得第2021个点的坐标是___.三、解答题17.计算:(1) 333|3|--(2) 1333⎛⎫+ ⎪⎝⎭18.求下列各式中的x 值.(1)2164x -=(2)3(1)64x -=19.补全下列推理过程:如图,已知EF //AD ,∠1=∠2,∠BAC =70°,求∠AGD .解:∵EF //AD∴∠2= ( )又∵∠1=∠2( )∴∠1=∠3( )∴AB // ( )∴∠BAC + =180°( )∵∠BAC =70°∴∠AGD = .20.如图,在平面直角坐标系中,三角形ABC 经过平移得到三角形A 1B 1C 1,结合图形,完成下列问题:(1)三角形ABC先向左平移个单位,再向平移个单位得到三角形A1B1C1.(2)三角形ABC内有一点P(x,y),则在三角形A1B1C1内部的对应点P1的坐标是.(3)三角形ABC的面积是.21.阅读下面的文字,解答问题:大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,而12-来表示2的小数<<2,于是可用21部分.请解答下列问题:(1)29的整数部分是_______,小数部分是_________;(2)如果10的小数部分为15a,的整数部分为b,求10+-的值.a b二十二、解答题22.(1)如图,分别把两个边长为1cm的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为_______cm;π,设圆的周长为C圆,正方形的周长(2)若一个圆的面积与一个正方形的面积都是22cm为C正,则C圆_____C正(填“=”或“<”或“>”号);(3)如图,若正方形的面积为2400cm,李明同学想沿这块正方形边的方向裁出一块面积为2300cm的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?二十三、解答题23.如图,直线AB∥直线CD,线段EF∥CD,连接BF、CF.(1)求证:∠ABF +∠DCF =∠BFC ;(2)连接BE 、CE 、BC ,若BE 平分∠ABC ,BE ⊥CE ,求证:CE 平分∠BCD ;(3)在(2)的条件下,G 为EF 上一点,连接BG ,若∠BFC =∠BCF ,∠FBG =2∠ECF ,∠CBG =70°,求∠FBE 的度数.24.如图1,由线段,,,AB AM CM CD 组成的图形像英文字母M ,称为“M 形BAMCD ”.(1)如图1,M 形BAMCD 中,若//,50AB CD A C ∠+∠=︒,则M ∠=______; (2)如图2,连接M 形BAMCD 中,B D 两点,若150,B D AMC α∠+∠=︒∠=,试探求A ∠与C ∠的数量关系,并说明理由;(3)如图3,在(2)的条件下,且AC 的延长线与BD 的延长线有交点,当点M 在线段BD 的延长线上从左向右移动的过程中,直接写出A ∠与C ∠所有可能的数量关系. 25.在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交BC 于点F .(1)如图①,当AE ⊥BC 时,写出图中所有与∠B 相等的角: ;所有与∠C 相等的角: .(2)若∠C -∠B =50°,∠BAD =x °(0<x ≤45) .① 求∠B 的度数;②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,并求x 的值;若不存在,请说明理由.26.如图,△ABC 和△ADE 有公共顶点A ,∠ACB =∠AED =90°,∠BAC =45°,∠DAE =30°. (1)若DE //AB ,则∠EAC = ;(2)如图1,过AC上一点O作OG⊥AC,分别交A B、A D、AE于点G、H、F.①若AO=2,S△AGH=4,S△AHF=1,求线段OF的长;②如图2,∠AFO的平分线和∠AOF的平分线交于点M,∠FHD的平分线和∠OGB的平分线交于点N,∠N+∠M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.【参考答案】一、选择题1.A解析:A【分析】根据算术平方根的意义求解即可.【详解】解:16的算术平方根为4,故选:A.【点睛】本题考查了算术平方根,理解算术平方根的意义是解决问题的关键.2.D【分析】根据平移的性质即可得出结论.【详解】解:A、能通过其中一个三角形平移得到,不合题意;B、能通过其中一个三角形平移得到,不合题意;C、能通过其中一个三角形平移得到,不合题意;D解析:D【分析】根据平移的性质即可得出结论.【详解】解:A、能通过其中一个三角形平移得到,不合题意;B、能通过其中一个三角形平移得到,不合题意;C、能通过其中一个三角形平移得到,不合题意;D、不能通过其中一个三角形平移得到,上面的三角形需要由下面的三角形旋转才能得到,符合题意.故选:D.【点睛】本题考查的是利用平移设计图案,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解答此题的关键.3.B【分析】根据第二象限的点的横坐标是负数,纵坐标是正数解答.【详解】解:点(-4,2)所在的象限是第二象限.故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.D【分析】根据平行线的判定定理逐项分析即可判断.【详解】A. 同旁内角互补,两直线平行,是真命题,不符合题意;B. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行,是真命题,不符合题意;C. 在同一平面内,过一点有且只有一条直线与已知直线垂直,是真命题,不符合题意;D. 在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故D选项是假命题,符合题意;故选D【点睛】本题考查了真假命题的判断,掌握相关定理与性质是解题的关键.5.D【分析】根据两直线平行,同旁内角互补可得∠1+∠AOF=180°,再根据两直线平行,内错角相等可得∠3=∠AOC,而通过∠AOF=∠AOC-∠2,整理可得∠1+∠3-∠2=180°.【详解】解:∵AB∥EF,∴∠1+∠AOF=180°,∵CD∥AB,∴∠3=∠AOC,又∵∠AOF=∠AOC−∠2=∠3-∠2,∴∠1+∠3-∠2=180°.故选:D .【点睛】本题主要考查平行线的性质,从复杂图形中找出内错角,同旁内角是解题的关键. 6.D【分析】利用平方根、算术平方根及立方根的定义分别判断后即可确定正确的选项.【详解】解:A 、,正确,不符合题意;B ,正确,不符合题意;C 、0.04的平方根是±0.2,正确,不符合题意;D 、9,故错误,符合题意;故选:D .【点睛】本题考查了平方根、算术平方根及立方根的定义,属于基础性定义,比较简单. 7.B【分析】根据两直线平行,内错角相等求出EFG ,再根据平角的定义求出EFD ∠,然后根据折叠的性质可得EFD EFD '∠=∠,进而即可得解.【详解】解:∵在矩形纸片ABCD 中,//AD BC ,70CEF ∠=︒,70EFG CEF ∴∠=∠=︒,180110EFD EFG ∴∠=︒-∠=︒,∵折叠,∴110EFD EFD ∠'=∠=︒,GFD EFD EFG ∴∠'=∠'-∠11070=︒-︒40=︒.故选:B .【点睛】本题考查了平行线的性质以及折叠的性质,根据两直线平行,内错角相等求出EFG 是解题的关键,另外,根据折叠前后的两个角相等也很重要.8.C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0解析:C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,可以看出,9=1532+,15=2732+,21=3932+,得到规律:点A2n+1的横坐标为()32136622n n+++=,其中0n≥的偶数,点A2n+1的纵坐标等于横坐标的相反数+3,2021210101=⨯+,即1010n=,故A2021的横坐标为61010630332⨯+=,A2021的纵坐标为303333030-+=-,∴A2021(3033,-3030),故选:C.【点睛】本题考查了坐标与图形变化-平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.二、填空题9.【分析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】∵,∴9算术平方根为3.故答案为3.【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.解析:【分析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】∵239=,∴9算术平方根为3.故答案为3.【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.10.0【分析】根据平面直角坐标系中关于轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可.【详解】∵点与关于轴对称∴∴,故答案为:0.【点睛】本题主要考查了平面直角坐标系内点解析:0【分析】根据平面直角坐标系中关于x 轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可.【详解】∵点(3,)P m 与(,6)Q n -关于x 轴对称∴36n m =-=-,∴262(3)0m n -=--⨯-=,故答案为:0.【点睛】本题主要考查了平面直角坐标系内点的轴对称,熟练掌握相关点的轴对称特征是解决本题的关键.11.【分析】如图,先根据三角形的内角和定理求出∠1+∠2的度数,再求出∠DAC+∠ACF 的度数,然后根据角平分线的定义可求出∠3+∠4的度数,进而可得答案.【详解】解:如图,∵∠B=40°,∴∠解析:【分析】如图,先根据三角形的内角和定理求出∠1+∠2的度数,再求出∠DAC +∠ACF 的度数,然后根据角平分线的定义可求出∠3+∠4的度数,进而可得答案.【详解】解:如图,∵∠B =40°,∴∠1+∠2=180°-∠B =140°,∴∠DAC +∠ACF =360°-∠1-∠2=220°,∵AE 和CE 分别是DAC ∠和ACF ∠的角平分线, ∴113,422DAC ACF ∠=∠∠=∠, ∴()113422011022DAC ACF ∠+∠=∠+∠=⨯=,∴()1803418011070E ∠=-∠+∠=-=.故答案为:70.【点睛】本题考查了三角形的内角和定理和角平分线的定义,属于基础题型,熟练掌握三角形的内角和定理和整体的数学思想是解题的关键.12.36【分析】先根据平角的定义求出的度数,再根据平行线的性质即可得求解.【详解】∵,∴,∵,故答案为:.【点睛】本题考查了平角的定义、平行线的性质,掌握平行线的性质是解题关键. 解析:36【分析】先根据平角的定义求出3∠的度数,再根据平行线的性质即可得求解.【详解】∵154∠=︒,∴3180190180549036∠=︒-∠-︒=︒-︒-︒=︒,∵12//l l ,2336∴∠=∠=︒故答案为:36.【点睛】本题考查了平角的定义、平行线的性质,掌握平行线的性质是解题关键.13.【分析】根据折叠的性质得到,,再根据的度数即可求出的度数,再根据求解即可.【详解】解:∵折叠,∴,,∵,∴,∴.故答案是:.【点睛】本题考查折叠问题,解题的关键是掌握折叠的性质解析:82︒【分析】根据折叠的性质得到B MQN ∠=∠,C EQF ∠=∠,再根据A ∠的度数即可求出MQN EQF ∠+∠的度数,再根据()180MQE MQN EQF ∠=︒-∠+∠求解即可.【详解】解:∵折叠,∴B MQN ∠=∠,C EQF ∠=∠,∵82A ∠=︒,∴1808298MQN EQF B C ∠+∠=∠+∠=︒-︒=︒,∴()1801809882MQE MQN EQF ∠=︒-∠+∠=︒-︒=︒.故答案是:82︒.【点睛】本题考查折叠问题,解题的关键是掌握折叠的性质.14.2【分析】根据题意可知m 是整数,然后求出m 的范围即可得出m 的具体数值,然后根据是整数即可求出答案.【详解】解:∵是整数,∴m 是整数,∵,∴m2≤4,∴−2≤m≤2,∴m =−2,−1解析:2【分析】根据题意可知m 是整数,然后求出m 的范围即可得出m 整数即可求出答案.【详解】解:∵∴m 是整数, ∵2m <∴m 2≤4,∴−2≤m ≤2,∴m =−2,−1,0,1,2当m =±2或−1∵0,m >∴m =2故答案为:2.【点睛】本题考查算术平方根和无理数大小的估算,解题的关键是根据条件求出m 的范围,本题属于中等题型.15.或.【分析】根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可.【详解】解:∵点到两坐标轴的距离相等,∴,或,解得,或,故答案为:或.【点睛】本题考查了点到坐标轴的距解析:6-或45. 【分析】根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可.【详解】解:∵点31,25()P m m +-到两坐标轴的距离相等, ∴31=25m m +-,31=25m m +-或31=(25)m m +--,解得,=6m -或4=5m , 故答案为:6-或45. 【点睛】本题考查了点到坐标轴的距离,解题关键是明确到坐标轴的距离是坐标的绝对值. 16.(64,4)【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,2…横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0解析:(64,4)【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,2…横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.【详解】解:把第一个点(1,0)作为第一列,(2,1)和(2,0)作为第二列,依此类推,则第一列有一个数,第二列有2个数,第n 列有n 个数.则n 列共有()12n n +个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上.因为1+2+3+…+63=2016,则第2021个数一定在第64列,由下到上是第5个数. 因而第2021个点的坐标是(64,4).故答案为:(64,4).【点睛】本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错的题目. 三、解答题17.(1)0;(2)4【分析】(1)根据绝对值的性质去绝对值然后合并即可;(2)根据乘法分配律计算即可.【详解】(1)解原式==0;(2)解原式==3+1解析:(1)0;(2)4【分析】(1)根据绝对值的性质去绝对值然后合并即可;(2)根据乘法分配律计算即可.【详解】(1)解原式=0;(2)解原式=3+1=4.故答案为(1)0;(2)4.【点睛】本题考查实数的运算、绝对值,掌握绝对值的性质以及运算法则是解题的关键.18.(1);(2)x=5.【详解】分析:(1)先移项,然后再求平方根即可;(2)先求x-1立方根,再求x即可.详解:(1),∴;(2),∴x-1=4,∴x=5.点睛:本题考查了立方解析:(1)52x=±;(2)x=5.【详解】分析:(1)先移项,然后再求平方根即可;(2)先求x-1立方根,再求x即可.详解:(1)225 4x=,∴52x=±;(2)()1x-∴x-1=4,∴x=5.点睛:本题考查了立方根和平方根的定义和性质,解题时牢记定义是关键,此题比较简单,易于掌握.19.∠3;两直线平行,同位角相等;已知;等量代换;DG;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;110°【分析】根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得解析:∠3;两直线平行,同位角相等;已知;等量代换;DG;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;110°【分析】根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得出AB //DG ,根据平行线的性质推出∠BAC +∠AGD =180°,代入求出即可求得∠AGD .【详解】解:∵EF //AD ,∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB //DG ,(内错角相等,两直线平行)∴∠BAC +∠AGD =180°,(两直线平行,同旁内角互补)∵∠BAC =70°,∴∠AGD =110°故答案为:∠3,两直线平行,同位角相等,已知,等量代换,DG ,内错角相等,两直线平行,∠AGD ,两直线平行,同旁内角互补;110°.【点睛】本题考查了平行线的性质和判定的应用,能正确根据平行线的性质和判定定理进行推理是解此题的关键.20.(1)5,下,4;(2)(,);(3)7.【分析】(1)根据题图直接判断即可;(2)由平移的性质:上加下减,左减右加解答即可;(3)利用分割法求出三角形的面积即可.【详解】解:(1)根据题图解析:(1)5,下,4;(2)(5x -,4y -);(3)7.【分析】(1)根据题图直接判断即可;(2)由平移的性质:上加下减,左减右加解答即可;(3)利用分割法求出三角形的面积即可.【详解】解:(1)根据题图可知,三角形ABC 先向左平移5个单位,再向下平移4个单位得到三角形A 1B 1C 1;故答案是:5,下,4;(2)由平移的性质:上加下减,左减右加可知,三角形ABC 内有一点P (x ,y ),则在三角形A 1B 1C 1内部的对应点P 1的坐标是(5x -,4y -),故答案是:(5x -,4y -);(3)11144142423162437222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=---=, 故答案是:7.【点睛】本题考查作图:平移变换,三角形的面积等知识,熟练掌握基本知识,学会用分割法求三角形的面积是解题的关键.21.(1)5;-5(2)0【分析】(1)先估算出的范围,即可得出答案;(2)先估算出、的范围,求出a、b的值,再代入求出即可.【详解】(1)∵5<<6,∴的整数部分是5,小数部分是-5,故解析:(1)5(2)0【分析】(1(2a、b的值,再代入求出即可.【详解】(1)∵56,∴5,故答案为:5;(2)∵34,∴a,∵34,∴b=3,∴a b+.【点睛】二十二、解答题22.(1);(2);(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形解析:(12)<;(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm ,∴小正方形的面积为1cm 2,∴两个小正方形的面积之和为2cm 2,即所拼成的大正方形的面积为2 cm 2,∴,(2)∵22r ππ=, ∴r = ∴2=2C r π=圆设正方形的边长为a∵22a π=, ∴a∴=4C a =正∴1C C =<圆正故答案为:<;(3)解:不能裁剪出,理由如下:∵长方形纸片的长和宽之比为3:2,∴设长方形纸片的长为3x ,宽为2x ,则32300x x ⋅=,整理得:250x =,∴22(3)9950450x x ==⨯=,∵450>400,∴22(3)20x >,∴320x >,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.二十三、解答题23.(1)证明见解析;(2)证明见解析;(3)∠FBE =35°.【分析】(1)根据平行线的性质得出∠ABF =∠BFE ,∠DCF =∠EFC ,进而解答即可; (2)由(1)的结论和垂直的定义解答即可;解析:(1)证明见解析;(2)证明见解析;(3)∠FBE =35°.【分析】(1)根据平行线的性质得出∠ABF =∠BFE ,∠DCF =∠EFC ,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;(3)由(1)的结论和三角形的角的关系解答即可.【详解】证明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)设∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【点睛】本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答.24.(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)过M作MN∥AB,由平行线的性质即可求得∠M的值.(2)延长BA,DC交于E,解析:(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)过M作MN∥AB,由平行线的性质即可求得∠M的值.(2)延长BA,DC交于E,应用四边形的内角和定理与平角的定义即可解决问题.(3)分两种情形分别求解即可;【详解】解:(1)过M作MN∥AB,∵AB∥CD,∴AB∥MN∥CD,∴∠1=∠A,∠2=∠C,∴∠AMC=∠1+∠2=∠A+∠C=50°;故答案为:50°;(2)∠A+∠C=30°+α,延长BA,DC交于E,∵∠B+∠D=150°,∴∠E=30°,∵∠BAM+∠DCM=360°-(∠EAM+∠ECM)=360°-(360°-∠E-∠M)=30°+α;即∠A+∠C=30°+α;(3)①如下图所示:延长BA、DC使之相交于点E,延长MC与BA的延长线相交于点F,∵∠B+∠D=150°,∠AMC=α,∴∠E=30°由三角形的内外角之间的关系得:∠1=30°+∠2∠2=∠3+α∴∠1=30°+∠3+α∴∠1-∠3=30°+α即:∠A-∠C=30°+α.②如图所示,210-∠A=(180°-∠D CM)+α,即∠A-∠DCM=30°-α.综上所述,∠A-∠DCM=30°+α或30°-α.【点睛】本题考查了平行线的性质.解答该题时,通过作辅助线准确作出辅助线l∥AB,利用平行线的性质(两直线平行内错角相等)将所求的角∠M与已知角∠A、∠C的数量关系联系起来,从而求得∠M的度数.25.(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;(2)①由三角形内角和定理可得,解析:(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B 相等的角;由等角代换即可得与∠C 相等的角;(2)①由三角形内角和定理可得90B C ∠+∠=︒,再由50C B ∠∠︒-=根据角的和差计算即可得∠C 的度数,进而得∠B 的度数.②根据翻折的性质和三角形外角及三角形内角和定理,用含x 的代数式表示出∠FDE 、∠DFE 的度数,分三种情况讨论求出符合题意的x 值即可.【详解】(1)由翻折的性质可得:∠E =∠B ,∵∠BAC =90°,AE ⊥BC ,∴∠DFE =90°,∴180°-∠BAC =180°-∠DFE =90°,即:∠B +∠C =∠E +∠FDE =90°,∴∠C =∠FDE ,∴AC ∥DE ,∴∠CAF =∠E ,∴∠CAF =∠E =∠B故与∠B 相等的角有∠CAF 和∠E ;∵∠BAC =90°,AE ⊥BC ,∴∠BAF +∠CAF =90°, ∠CFA =180°-(∠CAF +∠C )=90°∴∠BAF +∠CAF =∠CAF +∠C =90°∴∠BAF =∠C又AC ∥DE ,∴∠C =∠CDE ,∴故与∠C 相等的角有∠CDE 、∠BAF ;(2)①∵90BAC ∠=︒∴90B C ∠+∠=︒又∵50C B ∠∠︒-=,∴∠C =70°,∠B =20°;②∵∠BAD =x °, ∠B =20°则160ADB x ∠︒︒=-,20ADF x ∠︒︒=+,由翻折可知:∵160ADE ADB x ∠∠︒︒==-, 20E B ∠∠︒==,∴1402FDE x ∠︒︒=-, 202DFE x ∠︒︒=+,当∠FDE =∠DFE 时,1402202x x ︒︒︒︒-=+, 解得:30x ︒︒=;当∠FDE =∠E 时,140220x ︒︒︒-=,解得:60x ︒︒=(因为0<x ≤45,故舍去); 当∠DFE =∠E 时,20220x ︒︒︒+=,解得:0x ︒=(因为0<x ≤45,故舍去);综上所述,存在这样的x 的值,使得△DEF 中有两个角相等.且30x =.【点睛】本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.26.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定义求出∠M,∠N(用∠FAO表示),可得结论.【详解】解:(1)如图,∵AB∥ED∴∠E=∠EAB=90°(两直线平行,内错角相等),∵∠BAC=45°,∴∠CAE=90°-45°=45°.故答案为:45°.(2)①如图1中,∵OG⊥AC,∴∠AOG=90°,∵∠OAG=45°,∴∠OAG=∠OGA=45°,∴AO=OG=2,∵S△AHG=12•GH•AO=4,S△AHF=12•FH•AO=1,∴GH=4,FH=1,∴OF=GH-HF-OG=4-1-2=1.②结论:∠N+∠M=142.5°,度数不变.理由:如图2中,∵MF,MO分别平分∠AFO,∠AOF,∴∠M=180°-12(∠AFO+∠AOF)=180°-12(180°-∠FAO)=90°+12∠FAO,∵NH,NG分别平分∠DHG,∠BGH,∴∠N=180°-12(∠DHG+∠BGH)=180°-12(∠HAG+∠AGH+∠HAG+∠AHG)=180°-12(180°+∠HAG)=90°-12∠HAG=90°-12(30°+∠FAO+45°)=52.5°-12∠FAO,∴∠M+∠N=142.5°.【点睛】本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用∠FAO表示出∠M,∠N.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年河北省邢台市宁晋县七年级(下)期末数学试卷一、选择题(本大题共16小题,每小题3分,共48分)1.(3分)9的平方根为()A.3 B.﹣3 C.±3 D.2.(3分)如图,直线a∥b,直线c与直线a,b相交,若∠1=40°.则∠2等于()A.140°B.40°C.50°D.60°3.(3分)下列不等式变形正确的是()A.由a>b,得ac>bc B.由a>b,得﹣2a<﹣2bC.由a>b,得﹣a>﹣b D.由a>b,得a﹣2<b﹣24.(3分)若点P(a,b)在第二象限,则点P1(﹣a,﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)如图,直线a、b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判断a∥b的条件是()A.①③B.②④C.①③④D.①②③④6.(3分)点A(﹣3,5)向上平移3个单位,再向左平移4个单位到点B,则点B的坐标为()A.(0,1) B.(﹣7,8)C.(1,2) D.(﹣6,9)7.(3分)若x2=(﹣2)2,y3=(﹣3)3,则x+y的值为()A.﹣5或﹣1 B.5 C.﹣1 D.5或18.(3分)若将﹣,,表示在数轴上,则其中能被如图所示的椭圆覆盖的数是()A.B.﹣C. D.都不可能9.(3分)不等式组的整数解的个数为()A.1个 B.3个 C.4个 D.无数个10.(3分)已知a,b满足方程组,则3a﹣2b的值为()A.8 B.4 C.﹣4 D.﹣811.(3分)有下列四个命题:①两条直线被第三条直线所截,同位角相等;②从直线外一点到这条直线的垂线段,叫做这点到直线的距离;③如果b∥a,c∥a,那么b∥c;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补.其中真命题的有()A.4个 B.3个 C.2个 D.1个12.(3分)2016年某市有2.3万名初中毕业生参加升学考试,为了了解这2.3万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是()A.2.3万名考生B.2000名考生C.2.3万名考生的数学成绩 D.2000名考生的数学成绩13.(3分)某粮食加工厂收购玉米150吨,准备加工后销售,该公司的加工能力是:每天可以精加工8吨和粗加工16吨,现计划用15天完成加工任务,该公司应安排几天精加工,几天粗加工?设安排x天精加工,y天粗加工.所列方程组正确的是()A. B.C.D.14.(3分)如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(﹣1,0)B.(1,﹣2)C.(1,1) D.(﹣1,﹣1)15.(3分)如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20 B.x20=2 C.x±20=20 D.x3=±2016.(3分)点M,N,P和原点O在数轴上的位置如图所示,点M,N,P对应的有理数为a,b,c(对应顺序暂不确定).如果ab<0,a+b>0,ac>bc,那么表示数b的点为()A.点M B.点N C.点P D.点O二、填空题(本大题共3小题,每小题3分,共9分)17.(3分)已知样本:8,10,8,14,9,7,12,11,10,8,13,10,8,11,10,9,12,9,12,11,那么样本数据落在8.5~11.5范围内的频数是.18.(3分)把一张长方形纸条按图中那样折叠后,若∠AOB′=60°,则∠OGC=.19.(3分)在平面直角坐标系xOy中,点P(x,y)经过变换τ得到点P′(x′,y′),该变换记为τ(x,y)=(x′,y′),其中(a,b为常数).例如,当a=1,且b=1时,τ(﹣2,3)=(1,﹣5).若τ(1,2)=(0,﹣2),当a=,b=.三、解答题(本大题共6小题,共63分)20.(8分)解下列方程组(1)(2).21.(10分)解下列不等式组,并把解集在数轴上表示出来.(1)(2)22.(12分)为了了解市民“获取社会新闻的最主要途径”,某市有关部门进行了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)这次接受调查的市民总人数是;(2)扇形统计图中,“电视”所对应的圆心角的度数是;(3)请补全条形统计图;(4)若该市约有70万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.23.(12分)如图,平面直角坐标系中,已知点A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b﹣2 ).(1)直接写出点A1,B1,C1的坐标.(2)在图中画出△A1B1C1.(3)连接A A1,求△AOA1的面积.24.(9分)已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGB=∠ACB=90°(垂直定义)∴DG∥AC()∴∠2=()∵∠1=∠2(已知)∴∠1=∠(等量代换)∴EF∥CD()∴∠AEF=∠()∵EF⊥AB(已知)∴∠AEF=90°()∴∠ADC=90°()∴CD⊥AB()25.(12分)先阅读下列一段文字,然后解答问题.某快递公司收费标准如下:①当物品的重量不超过16千克时,需付基础费30元和保险费a元;②当物品重量超过16千克时,除了付以上基础费和保险费外,超过部分每千克还需付b元超重费.设某件物品的重量为x(千克).(1)当x≤16时,支付费用为元(用含a的代数式表示);当x>16时,支付费用为元(用含x和a、b的代数式表示);(2)甲、乙两人各托运一件物品,物品重量和支付费用如表所示物品重量(kg)支付费用(元)18402561试根据以上提供的信息确定a,b的值.(3)根据这个规定,若丙要托运一件超过16千克的物品,但支付的费用不想超过70元,那么丙托运的物品最多是多少千克?2016-2017学年河北省邢台市宁晋县七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共16小题,每小题3分,共48分)1.(3分)9的平方根为()A.3 B.﹣3 C.±3 D.【解答】解:9的平方根有:=±3.故选:C.2.(3分)如图,直线a∥b,直线c与直线a,b相交,若∠1=40°.则∠2等于()A.140°B.40°C.50°D.60°【解答】解:∵a∥b,∠1=40°,∴∠3=∠1=40°,∵∠2=∠3,∴∠2=40°.故选:B.3.(3分)下列不等式变形正确的是()A.由a>b,得ac>bc B.由a>b,得﹣2a<﹣2bC.由a>b,得﹣a>﹣b D.由a>b,得a﹣2<b﹣2【解答】解:A.由a>b,得ac>bc,当c<0,不等号的方向改变.故A选项错误;B.由a>b,得﹣2a<﹣2b,不等式两边乘以同一个负数,不等号的方向改变,故B选项正确;C.由a>b,得﹣a>﹣b,不等式两边乘(或除以)同一个负数,不等号的方向改变;故C选项错误;D.由a>b,得a﹣2<b﹣2,不等式两边同时减去一个数,不等号方向不改变,故D选项错误.故选:B.4.(3分)若点P(a,b)在第二象限,则点P1(﹣a,﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵点P(a,b)在第二象限,∴a<0,b>0,∴﹣a>0,﹣b<0,∴点P1(﹣a,﹣b)在第四象限,故选:D.5.(3分)如图,直线a、b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判断a∥b的条件是()A.①③B.②④C.①③④D.①②③④【解答】解:∵∠1=∠2,∴a∥b,故①正确.∵∠3=∠6,∠3=∠5,∴∠5=∠6,∴a∥b,故②正确,∵∠4+∠7=180°,∠4=∠6,∴∠6+∠7=180°,∴a∥b,故③正确,∵∠5+∠8=180°,∠5=∠3,∠8=∠2,∴∠2+∠3=180°,∴a∥b,故④正确,故选:D.6.(3分)点A(﹣3,5)向上平移3个单位,再向左平移4个单位到点B,则点B的坐标为()A.(0,1) B.(﹣7,8)C.(1,2) D.(﹣6,9)【解答】解:点A(﹣3,5)向上平移3个单位,再向左平移4个单位得到点B,坐标变化为(﹣3﹣4,5+3);则点B的坐标为(﹣7,8).故选:B.7.(3分)若x2=(﹣2)2,y3=(﹣3)3,则x+y的值为()A.﹣5或﹣1 B.5 C.﹣1 D.5或1【解答】解:∵x2=(﹣2)2=4,y3=(﹣3)3=﹣27,∴x=±2,y=﹣3,x+y=﹣5或﹣1,故选:A.8.(3分)若将﹣,,表示在数轴上,则其中能被如图所示的椭圆覆盖的数是()A.B.﹣C. D.都不可能【解答】解:由<<<,得1<<4,故选:A.9.(3分)不等式组的整数解的个数为()A.1个 B.3个 C.4个 D.无数个【解答】解:解①得:x≤1,解②x>﹣3,则不等式组的解集为:﹣3<x≤1,整数解为:﹣2,﹣1,0,1,共4个.故选:C.10.(3分)已知a,b满足方程组,则3a﹣2b的值为()A.8 B.4 C.﹣4 D.﹣8【解答】解:,①+②得:3a﹣2b=8,故选:A.11.(3分)有下列四个命题:①两条直线被第三条直线所截,同位角相等;②从直线外一点到这条直线的垂线段,叫做这点到直线的距离;③如果b∥a,c∥a,那么b∥c;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补.其中真命题的有()A.4个 B.3个 C.2个 D.1个【解答】解:两条直线被第三条直线所截,同位角不一定相等,①是假命题;从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,②是假命题;如果b∥a,c∥a,那么b∥c,③是真命题;如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,④是真命题,故选:C.12.(3分)2016年某市有2.3万名初中毕业生参加升学考试,为了了解这2.3万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是()A.2.3万名考生B.2000名考生C.2.3万名考生的数学成绩 D.2000名考生的数学成绩【解答】解:抽取2000名考生的数学成绩是样本,故选:D.13.(3分)某粮食加工厂收购玉米150吨,准备加工后销售,该公司的加工能力是:每天可以精加工8吨和粗加工16吨,现计划用15天完成加工任务,该公司应安排几天精加工,几天粗加工?设安排x天精加工,y天粗加工.所列方程组正确的是()A. B.C.D.【解答】解:由题意可得,,故选:D.14.(3分)如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(﹣1,0)B.(1,﹣2)C.(1,1) D.(﹣1,﹣1)【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=CD=2,AD=BC=3,且四边形ABCD为矩形,∴矩形ABCD的周长C=2(AB+BC)=10.矩形ABCD∵2017=201×10+7,AB+BC+CD=7,∴细线的另一端落在点D上,即(1,﹣2).故选:B.15.(3分)如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20 B.x20=2 C.x±20=20 D.x3=±20【解答】解:根据题意,可知x20=2,能得出.故选:B.16.(3分)点M,N,P和原点O在数轴上的位置如图所示,点M,N,P对应的有理数为a,b,c(对应顺序暂不确定).如果ab<0,a+b>0,ac>bc,那么表示数b的点为()A.点M B.点N C.点P D.点O【解答】解:∵ab<0,a+b>0,∴数a表示点M,数b表示点P或数b表示点M,数a表示点P,则数c表示点N,∴由数轴可得,c>0,又∵ac>bc,∴a>b,∴数b表示点M,数a表示点P,即表示数b的点为M.故选:A.二、填空题(本大题共3小题,每小题3分,共9分)17.(3分)已知样本:8,10,8,14,9,7,12,11,10,8,13,10,8,11,10,9,12,9,12,11,那么样本数据落在8.5~11.5范围内的频数是10.【解答】解:样本中在范围8.5~11.5中的数据有:10、9、11、10、10、11、10、9、9、11,共10个,即样本数据落在8.5~11.5范围内的频数是10.故答案为:10.18.(3分)把一张长方形纸条按图中那样折叠后,若∠AOB′=60°,则∠OGC= 120°.【解答】解:∵四边形OB′C′G由四边形OBCG折叠而成,∠AOB′=60°,∴∠BOG===60°,∵AB∥CD,∴∠OGC=180°﹣60°=120°.故答案为:120°.19.(3分)在平面直角坐标系xOy中,点P(x,y)经过变换τ得到点P′(x′,y′),该变换记为τ(x,y)=(x′,y′),其中(a,b为常数).例如,当a=1,且b=1时,τ(﹣2,3)=(1,﹣5).若τ(1,2)=(0,﹣2),当a=﹣1,b=.【解答】解:∵τ(1,2)=(0,﹣2),∴,①+②得,2a=﹣2,解得a=﹣1,①﹣②得,4b=2,解得b=,所以,方程组的解是.故答案为:﹣1;.三、解答题(本大题共6小题,共63分)20.(8分)解下列方程组(1)(2).【解答】解:(1),②×3﹣①得:11y=22,解得:y=2,把y=2代入②得:x=1,则方程组的解为;(2)方程组整理得:,把②代入①得:12y﹣y=11,解得:y=1,把y=1代入②得:x=5,则方程组的解为.21.(10分)解下列不等式组,并把解集在数轴上表示出来.(1)(2)【解答】解:(1),解①得:x≤4,解②得:x≥2,则不等式组的解集是:x≤﹣1.;(2),解①得:x≥2,解②得:x<4,则不等式组的解集是:2≤x<4..22.(12分)为了了解市民“获取社会新闻的最主要途径”,某市有关部门进行了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)这次接受调查的市民总人数是1000;(2)扇形统计图中,“电视”所对应的圆心角的度数是54°;(3)请补全条形统计图;(4)若该市约有70万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.【解答】解:(1)由题意可得,这次接受调查的市民总人数是:260÷26%=1000,故答案为:1000;(2)扇形统计图中,“电视”所对应的圆心角的度数是:360°×=54°,故答案为:54°;(3)通过报纸获取社会新闻的有:1000﹣260﹣400﹣150﹣90=100(人),补全的条形统计图如右图所示;(4)由题意可得,将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数有:70×=46.2(万),答:将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数有46.2万人.23.(12分)如图,平面直角坐标系中,已知点A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b﹣2 ).(1)直接写出点A1,B1,C1的坐标.(2)在图中画出△A1B1C1.(3)连接A A1,求△AOA1的面积.【解答】解:(1)∵点P(a,b)的对应点为P1(a+6,b﹣2),∴平移规律为向右6个单位,向下2个单位,∴A(﹣3,3),B(﹣5,1),C(﹣2,0)的对应点的坐标为A1(3,1),B1(1,﹣1),C1(4,﹣2);(2)△A1B1C1如图所示;(3)△AOA1的面积=6×3﹣×3×3﹣×3×1﹣×6×2,=18﹣﹣﹣6,=18﹣12,=6.24.(9分)已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGB=∠ACB=90°(垂直定义)∴DG∥AC(同位角相等,两直线平行)∴∠2=∠ACD(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠ACD(等量代换)∴EF∥CD(同位角相等,两直线平行)∴∠AEF=∠ADC(两直线平行,同位角相等)∵EF⊥AB(已知)∴∠AEF=90°(垂直定义)∴∠ADC=90°(等量代换)∴CD⊥AB(垂直定义)【解答】解:证明过程如下:证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGB=∠ACB=90°(垂直定义)∴DG∥AC(同位角相等,两直线平行)∴∠2=∠ACD(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠ACD(等量代换)∴EF∥CD(同位角相等,两直线平行)∴∠AEF=∠ADC(两直线平行,同位角相等)∵EF⊥AB(已知)∵∠AEF=90°(垂直定义)∴∠ADC=90°(等量代换)∴CD⊥AB(垂直定义).25.(12分)先阅读下列一段文字,然后解答问题.某快递公司收费标准如下:①当物品的重量不超过16千克时,需付基础费30元和保险费a元;②当物品重量超过16千克时,除了付以上基础费和保险费外,超过部分每千克还需付b元超重费.设某件物品的重量为x(千克).(1)当x≤16时,支付费用为30+a元(用含a的代数式表示);当x>16时,支付费用为30+a+(x﹣16)b元(用含x和a、b的代数式表示);(2)甲、乙两人各托运一件物品,物品重量和支付费用如表所示物品重量(kg)支付费用(元)18402561试根据以上提供的信息确定a,b的值.(3)根据这个规定,若丙要托运一件超过16千克的物品,但支付的费用不想超过70元,那么丙托运的物品最多是多少千克?【解答】解:(1)当x≤16时,支付费用为30+a元;当x>16时,支付费用为30+a+(x﹣16)b元.故答案为:30+a;30+a+(x﹣16)b.(2)根据题意得:,解得:.(3)设丙托运的物品重量为m千克,根据题意得:30+4+3(m﹣16)≤70,解得:m≤28.答:丙托运的物品最多是28千克.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。