人教版高中数学圆锥曲线与方程课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习要点点拨
1.对于椭圆定义的理解,要抓住椭圆上的点应满足的条 件,即椭圆上的点满足 |PF 1|+|PF 2|=2a,可以对比圆的定义来 理解,还要抓住常数 2a>|F1F2|,这样规定是为了避免出现两种 特殊情况,即:“当常数等于 |F 1F 2|时轨迹是一条线段;当常数 小于|F1F2|时无轨迹”.这样有利于集中精力进一步研究椭圆的 标准方程和几何性质.但学习椭圆的定义时注意不要忽略这两 种特殊情况,以保证对椭圆定义理解的准确性.
第二章
2.1 椭圆
Βιβλιοθήκη Baidu 第二章
第 1 课时 椭圆及其标准方程
学习要点点拨 课前自主预习 课堂典例讲练
课堂巩固练习 课后强化作业
课程目标解读
1.掌握椭圆的定义,会推导椭圆的标准方程. 2.会用待定系数法求椭圆的标准方程.
重点难点展示
本节重点: 椭圆的定义和椭圆标准方程的两种形式. 本节难点: 椭圆标准方程的建立和推导.
3.求轨迹方程是解析几何的基本题型,通过学习要加深 对“直译法”、“坐标代入法”、“定义法”、“交轨法”、 “参数法”、“点差法”等基本方法的理解和运用.有些轨迹 问题中,含有隐含条件,也就是曲线上的点的坐标的取值范围, 要认真审题,充分挖掘隐含条件,找出动点所满足的几何关系.
4.圆锥曲线中最值求法有两种: (1)几何法:若题目中条 件与结论能明显体现几何特征及意义,则考虑利用图形性质来 解决.(2)代数法:若题目的条件和结论能体现明确的函数关系, 则可建立目标函数,再求这个函数的最值.
●重点难点 本章重点: 椭圆、双曲线、抛物线的定义、方程和几何性 质,在生产和科学技术中有着广泛的应用,也是今后进一步学 习数学的基础.椭圆、双曲线、抛物线的定义、方程、几何性 质,以及坐标法是这一章的重点.
本章难点: 坐标法是借助坐标系,以代数中数与式的知识 为基础来研究几何问题的一种数学方法.因此,学习这一章时 需要一定的代数知识作为基础.特别是对数式变形和解方程组 的能力要求较高.例如,在求椭圆和双曲线的标准方程时,会 遇到比较复杂的根式化简问题,在解某些题目时,还会遇到由 两个二元二次方程组成的方程组的问题等等,这都是本章难 点.
(11)能够利用圆锥曲线的有关知识解决与圆锥曲线有关的 简单实际应用问题.
2.情感、态度、价值观目标 通过对椭圆、双曲线、抛物线概念的引入教学,培养学生 的观察能力和探索能力,通过画圆锥曲线的几何图形,让学生 感知几何图形曲线美、简洁美、对称美,培养学生学习数学的 兴趣,通过圆锥曲线的统一性的研究, 对学生进行运动、变化、 对立、统一的辩证唯物主义思想教育.
●学法探究 1.解析几何是数形结合的典范, 通过学习本章要在必修 2 的基础上进一步体会坐标法在解决几何问题和实际问题中的 作用,体会“数形结合”思想,养成自觉运用数形结合方法解 决问题的习惯. 2.圆锥曲线的定义是解决圆锥曲线问题的出发点,要明 确基本量 a、b、c、e 的相互关系、几何意义及一些概念的联系.
二是为何设椭圆的焦距为 2c. 在求方程时,设椭圆的焦距为 2c(c>0),椭圆上任意一点到 两个焦点的距离的和为 2a(a>0),这是为了使焦点及长轴两个 端点的坐标不出现分数形式,以便使推导出的椭圆的方程形式 简单.令 a2-c2=b2 是为了使方程的形式整齐而便于记忆. 三是在方程的推导过程中无理方程的化简,这类方程的化 简方法:(1)方程中只有一个根式时,需将它单独留在方程的一 侧,把其他项移到另一侧;(2)方程中有两个根式时,需将它们 放在方程的两侧,并使其中一侧只有一个根式,然后两边平方.
(4)了解双曲线的定义,并能根据双曲线定义恰当地选择坐 标系,建立及推导双曲线的标准方程.
(5)会用待定系数法求双曲线标准方程中的 a、b、c,能根 据条件确定双曲线的标准方程.
(6)使学生了解双曲线的几何性质,能够运用双曲线的标准 方程讨论它的几何性质,能够确定双曲线的形状特征.
(7)了解抛物线的定义、抛物线的标准方程及其推导过程, 能根据条件确定抛物线的标准方程.
(8)了解抛物线的几何性质,能运用抛物线的标准方程推导 出它的几何性质,同时掌握抛物线的简单画法.
(9)通过抛物线四种不同形式标准方程的对比, 培养学生分 析归纳能力.
(10) 通过根据圆锥曲线的标准方程研究其几何性质的讨 论,加深曲线与方程关系的理解,同时提高分析问题和解决问 题的能力,培养学生的数形结合、方程思想及等价转化思想.
2.推导椭圆的标准方程是本节学习的一个关键环节.应 重点理解下述方面:
一是如何建立坐标系才能使椭圆的方程比较简单. 求椭圆的方程,首先要建立直角坐标系,由于曲线上同一 个点在不同的坐标系中的坐标不同,曲线的方程也不同,为了 使方程简单,必须注意坐标系的选择.怎样选择坐标系,要根 据具体情况来确定.在一般情况下,应注意要使已知点的坐标 和直线 (或曲线 )的方程尽可能简单,在求椭圆的标准方程时, 选择 x 轴经过两个定点 F1、F2,并且使坐标原点为线段 F1F2 的中点,这样两个定点的坐标比较简单,便于推导方程.
5.直线与圆锥曲线的位置关系:①有关直线与圆锥曲线 的公共点的个数问题,应注意数形结合;②有关弦长问题,应 注意运用弦长公式及韦达定理;③有关垂直问题,要注意运用 斜率关系及韦达定理,简化运算.直线和圆锥曲线的位置关系, 可转化为直线和圆锥曲线的方程的公共解问题,体现了方程的 思想.
6.定点与定值问题的处理方法: (1)从特殊入手,求出定 点或定值,再证明这个点 (值)与变量无关.(2)直接推理、计算, 并在计算过程消去变量,从而得到定点 (定值).
第二章
圆锥曲线与方程
本章概述
●课程目标 1.知识、技能、过程、方法目标 (1)掌握椭圆的定义,椭圆标准方程的两种形式及其推导过 程. (2)能够根据条件确定椭圆的标准方程, 会运用待定系数法 求椭圆的标准方程. (3)掌握椭圆的几何性质,掌握标准方程中的 a、b、c、e 的几何意义,以及 a、b、c、e 之间的相互关系.
对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的 意识,“回归定义”是一种重要的解题策略.如①在求轨迹中, 若所求轨迹符合某种圆锥曲线的定义,则根据圆锥曲线的定 义,写出所求的轨迹方程;②涉及椭圆、双曲线上的点与两个 焦点构成的三角形 (即焦点三角形 )问题时,常用定义结合解三 角形的知识来解决;③在求有关抛物线的最值问题时,常利用 定义把到焦点的距离转化为到准线的距离,结合几何图形利用 几何意义去解决.
相关文档
最新文档