高考数学(全国甲卷通用理科)考前抢分必做 中档大题规范练1含答案
考前三个月高考数学(全国甲卷通用理科)考前抢分必做考前回扣回扣1含答案
考前回扣回扣1集合与常用逻辑用语1.集合(1)集合的运算性质:①A∪B=A⇔B⊆A;②A∩B=B⇔B⊆A;③A⊆B⇔∁U A⊇∁U B.(2)子集、真子集个数计算公式:对于含有n个元素的有限集合M,其子集、真子集、非空子集、非空真子集的个数依次为2n,2n-1,2n-1,2n-2.(3)数轴和Venn图是进行交、并、补运算的有力工具,在具体计算时不要忘记集合本身和空集这两种特殊情况.补集思想常运用于解决否定型或正面较复杂的有关问题.2.四种命题及其相互关系(1)(2)互为逆否命题的两命题同真同假.3.含有逻辑联结词的命题的真假(1)命题p∨q:若p、q中至少有一个为真,则命题为真命题,简记为:一真则真.(2)命题p∧q:若p、q中至少有一个为假,则命题为假命题,p、q同为真时,命题才为真命题,简记为:一假则假,同真则真.(3)命题綈p与命题p真假相反.4.全称命题、特称命题及其否定(1)全称命题p:∀x∈M,p(x),其否定为特称命题綈p:∃x0∈M,綈p(x0).(2)特称命题p:∃x0∈M,p(x0),其否定为全称命题綈p:∀x∈M,綈p(x).5.充分条件和必要条件(1)若p⇒q且q⇏p,则p是q的充分不必要条件;(2)若p⇏q且q⇒p,则称p是q的必要不充分条件;(3)若p⇔q,则称p是q的充要条件;(4)若p⇏q且q⇏p,则称p是q的既不充分也不必要条件.1.描述法表示集合时,一定要理解好集合的含义——抓住集合的代表元素.如:{x|y=lg x}——函数的定义域;{y|y=lg x}——函数的值域;{(x,y)|y=lg x}——函数图象上的点集.2.易混淆0,∅,{0}:0是一个实数;∅是一个集合,它含有0个元素;{0}是以0为元素的单元素集合,但是0∉∅,而∅⊆{0}.3.集合的元素具有确定性、无序性和互异性,在解决有关集合的问题时,尤其要注意元素的互异性.4.空集是任何集合的子集.由条件A⊆B,A∩B=A,A∪B=B求解集合A时,务必分析研究A =∅的情况.5.区分命题的否定与否命题,已知命题为“若p,则q”,则该命题的否定为“若p,则綈q”,其否命题为“若綈p,则綈q”.6.在对全称命题和特称命题进行否定时,不要忽视对量词的改变.7.对充分、必要条件问题,首先要弄清谁是条件,谁是结论.1.已知集合A={1,3,m},B={1,m},A∪B=A,则m等于()A.0或 3B.0或3C.1或 3D.1或3答案 B解析∵A∪B=A,∴B⊆A,∴m∈{1,3,m},∴m=1或m=3或m=m,由集合中元素的互异性易知m=0或m=3.2.设集合A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是()A.{a|a≥2}B.{a|a≤1}C.{a|a≥1}D.{a|a≤2}答案 A解析若A⊆B,则a≥2,故选A.3.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N等于()A.{x|-3<x<5}B.{x|-5<x<5}C.{x|x<-5或x>-3}D.{x|x<-3或x>5}答案 C解析在数轴上表示集合M、N,则M∪N={x|x<-5或x>-3},故选C.4.满足条件{a }⊆A ⊆{a ,b ,c }的所有集合A 的个数是( ) A.1 B.2 C.3 D.4 答案 D解析 满足题意的集合A 可以为{a },{a ,b },{a ,c },{a ,b ,c },共4个.5.已知集合U =R (R 是实数集),A ={x |-1≤x ≤1},B ={x |x 2-2x <0},则A ∪(∁U B )等于( ) A.[-1,0] B.[1,2] C.[0,1] D.(-∞,1]∪[2,+∞) 答案 D解析 B ={x |x 2-2x <0}=(0,2),A ∪(∁UB )=[-1,1]∪(-∞,0]∪[2,+∞)=(-∞,1]∪[2,+∞),故选D. 6.下列命题正确的是( )(1)命题“∀x ∈R ,2x >0”的否定是“∃x 0∈R ,2x ≤0”;(2)l 为直线,α,β为两个不同的平面,若l ⊥β,α⊥β,则l ∥α; (3)给定命题p ,q ,若“p ∧q 为真命题”,则綈p 是假命题; (4)“sin α=12”是“α=π6”的充分不必要条件.A.(1)(4)B.(2)(3)C.(1)(3)D.(3)(4) 答案 C解析 命题“∀x ∈R ,2x >0”的否定是“∃x 0∈R ,2x ≤0”;l 为直线,α,β为两个不同的平面,若l ⊥β,α⊥β,则l ∥α或l ⊂α;给定命题p ,q ,若“p ∧q 为真命题”;则p 且q 是真命题,綈p 且綈q 是假命题;“sin α=12”是“α=π6”的必要不充分条件,因此(1)(3)为真,选C.7.设命题p :∃x 0∈R ,使x 20+2x 0+a =0(a ∈R ),则使得p 为真命题的一个充分不必要条件是( )A.a >-2B.a <2C.a ≤1D.a <0 答案 D解析 设f (x )=x 2+2x +a ,则p 为真命题⇔f (x )在R 内有零点⇔Δ≥0⇔a ≤1.8.已知命题p :在△ABC 中,若AB <BC ,则sin C <sin A ;命题q :已知a ∈R ,则“a >1”是“1a <1”的必要不充分条件.在命题p ∧q ,p ∨ q ,(綈p )∨q ,(綈p )∧q 中,真命题的个数为( )A.1B.2C.3D.4 答案 A解析 由题意得,在△ABC 中,若AB <BC ,即c <a ,由正弦定理可得sin C <sin A ,所以p 真,又已知a ∈R ,则“a >1”是“1a <1”的充分不必要条件,所以q 假,只有p ∨q 为真命题,故选A.9.已知命题p :∀m ∈[0,1],x +1x ≥2m ,则綈p 为( )A.∀m ∈[0,1],x +1x <2mB.∃m 0∈[0,1],x +1x≥20mC.∃m 0∈(-∞,0)∪(1,+∞),x +1x ≥20mD.∃m 0∈[0,1],x +1x <20m答案 D解析 根据全称命题与特称命题的关系,可知命题p :∀m ∈[0,1],x +1x ≥2m ,则綈p 为“∃m 0∈[0,1],x +1x <20m”,故选D.10.下列结论正确的是________.(1)f (x )=a x -1+2(a >0,且a ≠1)的图象经过定点(1,3); (2)已知x =log 23,4y =83,则x +2y 的值为3;(3)若f (x )=x 3+ax -6,且f (-2)=6,则f (2)=18; (4)f (x )=x (11-2x -12)为偶函数;(5)已知集合A ={-1,1},B ={x |mx =1},且B ⊆A ,则m 的值为1或-1. 答案 (1)(2)(4)解析 (1)当x =1时,f (1)=a 0+2=1+2=3,则函数的图象经过定点(1,3),故(1)正确; (2)已知x =log 23,4y =83,则22y =83,2y =log 283,则x +2y =log 23+log 283=log 2(83×3)=log 28=3,故(2)正确;(3)若f (x )=x 3+ax -6,且f (-2)=6,则(-2)3-2a -6=6,即a =-10,则f (2)=23-2×10-6=-18,故(3)错误;(4)函数的定义域为{x |x ≠0},关于原点对称, f (x )=x (11-2x -12)=x ·1+2x 2(1-2x ),则f (-x )=-x ·1+2-x 2(1-2-x )=-x ·2x +12(2x -1)=x ·1+2x2(1-2x )=f (x ), 即有f (x )为偶函数,则f (x )=x (11-2x -12)为偶函数,故(4)正确;(5)已知集合A ={-1,1},B ={x |mx =1},且B ⊆A ,当m =0时,B =∅,也满足条件,故(5)错误,故正确的是(1)(2)(4).11.已知M 是不等式ax +10ax -25≤0的解集且5∉M ,则a 的取值范围是________________.答案 (-∞,-2)∪[5,+∞)解析 若5∈M ,则5a +105a -25≤0,∴(a +2)(a -5)≤0且a ≠5,∴-2≤a <5,∴5∉M 时,a <-2或a ≥5.12.若三个非零且互不相等的实数a ,b ,c 满足1a +1b =2c ,则称a ,b ,c 是调和的;若满足a +c=2b ,则称a ,b ,c 是等差的.若集合P 中元素a ,b ,c 既是调和的,又是等差的,则称集合P 为“好集”,若集合M ={x ||x |≤2 014,x ∈Z },集合P ={a ,b ,c }⊆M ,则(1)“好集”P 中的元素最大值为________;(2)“好集”P 的个数为________. 答案 2 012 1 006解析 因为a =-2b ,c =4b ,若集合P 中元素a 、b 、c 既是调和的,又是等差的,则1a +1b =2c 且a +c =2b ,故满足条件的“好集”为形如{-2b ,b ,4b }(b ≠0)的形式,则-2 014≤4b ≤2 014,解得-503≤b ≤503,且b ≠0,P 中元素的最大值为4b =4×503=2 012.符合条件的b 值可取1 006个,故“好集”P 的个数为1 006.13.设命题p :实数x 满足x 2-4ax +3a 2<0,其中a <0;命题q :实数x 满足x 2+2x -8>0,若q 是p 的必要不充分条件,则实数a 的取值范围是________. 答案 (-∞,-4]解析 由命题q :实数x 满足x 2+2x -8>0,得x <-4或x >2,由命题p :实数x 满足x 2-4ax +3a 2<0,其中a <0,得(x -3a )(x -a )<0,∵a <0,∴3a <x <a , ∵q 是p 的必要不充分条件, ∴a ≤-4,∴a ∈(-∞,-4].14.已知命题p :⎪⎪⎪⎪1-x +12≤1,命题q :x 2-2x +1-m 2<0(m >0),若p 是q 的充分不必要条件,则实数m 的取值范围是________. 答案 (2,+∞)解析 ∵⎪⎪⎪⎪1-x +12≤1⇔-1≤x +12-1≤1⇔0≤x +12≤2⇔-1≤x ≤3,∴p :-1≤x ≤3; ∵x 2-2x +1-m 2<0(m >0) ⇔[x -(1-m )][x -(1+m )]<0 ⇔1-m <x <1+m , ∴q :1-m <x <1+m . ∵p 是q 的充分不必要条件,∴[-1,3]是(1-m ,1+m )的真子集,则⎩⎪⎨⎪⎧1-m <-1,1+m >3, 解得m >2.合理分配高考数学答题时间找准目标,惜时高效——合理分配高考数学答题时间经过漫长的第一、第二轮复习,对于各知识点的演练同学们已经烂熟于心,我们把这称为战术上的纯熟。
2022年高考数学试卷(理)(全国甲卷)(解析卷)
绝密★启用前2022年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1若1z =-+,则1zzz =-( )A1-+B. 1-C. 13-+D. 13--【答案】C 【解析】【分析】由共轭复数的概念及复数的运算即可得解.【详解】1(1113 4.z zz =-=-+-=+=113z zz ==--故选 :C2. 某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:..则( )A. 讲座前问卷答题的正确率的中位数小于70%B. 讲座后问卷答题的正确率的平均数大于85%C. 讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D. 讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B 【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】讲座前中位数为70%75%70%2+>,所以A 错;讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B 对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C 错;讲座后问卷答题的正确率的极差为100%80%20%-=,讲座前问卷答题的正确率的极差为95%60%35%20%-=>,所以D 错.故选:B.3. 设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B x x x =-=-+=∣,则()U A B È=ð( )A. {1,3}B. {0,3}C. {2,1}- D. {2,0}-【答案】D【解析】【分析】解方程求出集合B ,再由集合的运算即可得解.【详解】由题意,{}{}2=4301,3B x x x -+==,所以{}1,1,2,3A B È=-,所以(){}U 2,0A B È=-ð.故选:D.4. 如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )A. 8B. 12C. 16D. 20【答案】B 【解析】【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.【详解】由三视图还原几何体,如图,则该直四棱柱的体积2422122V +=´´=.故选:B.5. 函数()33cos x xy x -=-在区间ππ,22éù-êúëû的图象大致为( )A. B.C. D.【答案】A 【解析】【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令()()33cos ,,22xxf x x x p p -éù=-Î-êúëû,则()()()()()33cos 33cos xx x x f x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x p æöÎç÷èø时,330,cos 0x xx -->>,所以()0f x >,排除C.故选:A.6 当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f ¢=( )A. 1- B. 12-C.12D. 1【答案】B 【解析】【分析】根据题意可知()12f =-,()10f ¢=即可解得,a b ,再根据()f x ¢即可解出.【详解】因为函数()f x 定义域为()0,¥+,所以依题可知,()12f =-,()10f ¢=,而.()2a bf x x x ¢=-,所以2,0b a b =--=,即2,2a b =-=-,所以()222f x x x¢=-+,因此函数()f x 在()0,1上递增,在()1,+¥上递减,1x =时取最大值,满足题意,即有()112122f ¢=-+=-.故选:B.7. 在长方体1111ABCD A B C D -中,已知1B D 与平面ABCD 和平面11AA B B 所成的角均为30°,则( )A. 2AB AD = B. AB 与平面11AB C D 所成的角为30°C. 1AC CB = D. 1B D 与平面11BB C C 所成的角为45°【答案】D 【解析】【分析】根据线面角的定义以及长方体的结构特征即可求出.【详解】如图所示:不妨设1,,AB a AD b AA c ===,依题以及长方体的结构特征可知,1B D 与平面ABCD 所成角为1B DB Ð,1B D 与平面11AA B B 所成角为1DB A Ð,所以11sin 30c b B D B D==o,即b c =,12B D c ==,解得a =.对于A ,AB a =,AD b =,AB =,A 错误;对于B ,过B 作1BE AB ^于E ,易知BE ^平面11AB C D ,所以AB 与平面11AB C D 所成角为BAE Ð,因为tan c BAE a Ð==30BAE йo ,B 错误;对于C,AC ==,1CB ==,1AC CB ¹,C 错误;对于D ,1B D 与平面11BB C C 所成角为1DB C Ð,11sin 2CD a DB C B D c Ð===1090DB C <Ð<o ,所以145DB C Ð=o .D 正确.故选:D .8. 沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图, AB 是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在 AB 上,CD AB ^.“会圆术”给出 AB 的弧长的近似值s 的计算公式:2CD s AB OA=+.当2,60OA AOB =Ð=°时,s =( )A.B.C.D.【答案】B 【解析】【分析】连接OC ,分别求出,,AB OC CD ,再根据题中公式即可得出答案.【详解】解:如图,连接OC ,因为C 是AB 的中点,所以OC AB ^,又CD AB ^,所以,,O C D 三点共线,即2OD OA OB ===,又60AOB Ð=°,所以2AB OA OB ===,则OC =2CD =所以22CD s AB OA=+==故选:B .9. 甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=VV 甲乙( )A.B.C.D.【答案】C 【解析】【分析】设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,根据圆锥的侧面积公式可得122r r =,再结合圆心角之和可将12,r r 分别用l 表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,则11222S rl rS r l r p p ===甲乙,所以122r r =,又12222r r l lp p p+=,则121r r l+=,所以1221,33r l r l ==,所以甲圆锥的高1h ==,乙圆锥的高2h ==,所以2112221313r h V V r h p p ===甲乙故选:C.10. 椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ的斜率之积为14,则C 的离心率为( )A.B.C.12D.13【答案】A 【解析】【分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b+=,将1y 用1x 表示,整理,再结合离心率公式即可得解.【详解】解法1:设而不求设()11,P x y ,则()11,Q x y -则由14AP AQk k ⋅=得:21112211114AP AQ y y y k k x a x a x a ⋅=⋅==+-+-+,由2211221x y a b +=,得()2221212b a x y a-=,所以()2221222114b a x a x a -=-+,即2214b a =,所以椭圆C的离心率c e a === A.解法2:第三定义设右端点为B ,连接PB ,由椭圆的对称性知:PB AQ k k =-故14AP AQ PA AQ k k k k ⋅=⋅-=-,由椭圆第三定义得:22PA AQb k k a⋅=-,故2214b a =所以椭圆C的离心率c e a === A.11. 设函数π()sin 3f x x w æö=+ç÷èø在区间(0,π)恰有三个极值点、两个零点,则w 的取值范围是( )A. 513,36öé÷êëø B. 519,36éö÷êëøC. 138,63æùçúèû D. 1319,66æùçúèû【答案】C 【解析】【分析】由x 的取值范围得到3x pw +的取值范围,再结合正弦函数的性质得到不等式组,解得即可.【详解】解:依题意可得0>w ,因为()0,x p Î,所以,333x ppp w wp æö+Î+ç÷èø,要使函数在区间()0,p 恰有三个极值点、两个零点,又sin y x =,,33x p p æöÎç÷èø的图象如下所示:则5323p p wp p <+£,解得13863w <£,即138,63w æùÎçúèû.故选:C .12. 已知3111,cos ,4sin 3244a b c ===,则( )A. c b a >> B. b a c>> C. a b c>> D. a c b>>【答案】A 【解析】【分析】由14tan 4c b =结合三角函数的性质可得c b >;构造函数()()21cos 1,0,2f x x x x ¥=+-Î+,利用导数可得b a >,即可得解.【详解】解法1:构造函数因为当π0,,tan 2x x x æöÎ<ç÷èø故14tan 14c b =>,故1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-Î+¥,()sin 0f x x x ¢=-+>,所以()f x 在(0,)+¥单调递增,故1(0)=04f f æö>ç÷èø,所以131cos 0432->,所以b a >,所以c b a >>,故选A 解法2:不等式放缩因为当π0,,sin 2x x x æöÎ<ç÷èø,取18x =得:2211131cos 12sin 1248832æö=->-=ç÷èø,故b a>1114sin cos 444ϕæö+=+ç÷èø,其中0,2p ϕæöÎç÷èø,且sin ϕϕ==当114sin cos 44+=142p ϕ+=,及124p ϕ=-此时1sin cos 4ϕ==,1cos sin 4ϕ==故1cos 4=11sin 4sin 44<=<,故b c <所以b a >,所以c b a >>,故选A解法3:泰勒展开设0.25x =,则2310.251322a ==-,2410.250.25cos 1424!b =»-+,241sin 10.250.2544sin1143!5!4c ==»-+,计算得c b a >>,故选A.解法4:构造函数因为14tan 4c b =,因为当π0,,sin tan 2x x x x æöÎ<<ç÷èø,所以11tan 44>,即1c b >,所以c b >;设21()cos 1,(0,)2f x x x x =+-Î+¥,()sin 0f x x x ¢=-+>,所以()f x 在(0,)+¥单调递增,则1(0)=04f f æö>ç÷èø,所以131cos 0432->,所以b a >,所以c b a >>,故选:A .解法5:【最优解】不等式放缩因为14tan 4c b =,因为当π0,,sin tan 2x x x x æöÎ<<ç÷èø,所以11tan 44>,即1c b >,所以c b >;因为当π0,,sin 2x x x æöÎ<ç÷èø,取18x =得2211131cos 12sin 1248832æö=->-=ç÷èø,故b a >,所以c b a >>.故选:A .【整体点评】法4:利用函数的单调性比较大小,是常见思路,难点在于构造合适的函数,属于通性通法;法5:利用二倍角公式以及不等式π0,,sin tan 2x x x x æöÎ<<ç÷èø放缩,即可得出大小关系,属于最优解.二、填空题:本题共4小题,每小题5分,共20分.13. 设向量a r ,b r 的夹角的余弦值为13,且1a =r ,3b =r ,则()2a b b +⋅=r r r _________.【答案】11【解析】【分析】设a r 与b r 的夹角为q ,依题意可得1cos 3q =,再根据数量积的定义求出a b ⋅r r ,最后根据数量积的运算律计算可得.【详解】解:设a r 与b r 的夹角为q ,因为a r 与b r 的夹角的余弦值为13,即1cos 3q =,又1a =r ,3b =r ,所以1cos 1313a b a b q ⋅=⋅=´´=r r r r ,所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=´+=r r r r r r r r .故答案为:11.14. 若双曲线2221(0)x y m m -=>的渐近线与圆22430x y y +-+=相切,则m =_________.【解析】【分析】首先求出双曲线的渐近线方程,再将圆的方程化为标准式,即可得到圆心坐标与半径,依题意圆心到直线的距离等于圆的半径,即可得到方程,解得即可.【详解】解:双曲线()22210x y m m -=>的渐近线为y x m =±,即0x my ±=,不妨取0x my +=,圆22430x y y +-+=,即()2221x y +-=,所以圆心为()0,2,半径1r =,依题意圆心()0,2到渐近线0x my +=的距离1d ==,解得m =或m =..15. 从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.【答案】635.【解析】【分析】根据古典概型的概率公式即可求出.【详解】从正方体的8个顶点中任取4个,有48C 70n ==个结果,这4个点在同一个平面的有6612m =+=个,故所求概率1267035m P n ===.故答案为:635.16. 已知ABC V 中,点D 在边BC 上,120,2,2ADB AD CD BD Ð=°==.当AC AB取得最小值时,BD =________.1-##-【解析】【分析】设220CD BD m ==>,利用余弦定理表示出22AC AB后,结合基本不等式即可得解.【详解】方法1:(余弦定理)设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅Ð=++,在ACD △中,22222cos 444AC CD AD CD AD ADC m m =+-⋅Ð=+-,所以()()()2222224421214441243424211m m m AC m m AB m m m m m m ++-++-===-+++++++44³=-,当且仅当311mm+=+即1m=-时,等号成立,所以当ACAB取最小值时,1m=.1.方法二2:(建系法)令BD=t,以D为原点,OC为x轴,建立平面直角坐标系.则C(2t,0),A(1),B(-t,0)()()()2222222134441244324131111tAC t tAB t tt ttt BD-+-+\===-³-++++++++==-当且仅当即时等号成立。
高考理科数学中档大题保分专练15套(经典珍藏解析版)
(Ⅱ)若选取的是 12 月 1 日与 12 月 5 日的两组数据,请根据 12 月 2 日至 12 月 4 日的数据,
求 y 关于 x 的线性回归方程 y bx a ;
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过 2 颗,则认为
得到的线性回归方程是可靠的,试问(Ⅱ)中所得的线性回归方程是否可靠?
i 1
xi2
112
132
122
434
2
, 3x
432 ,由公式求
得
第 2 页 共 57 页
中档大题保分专练 15 套
3
b
xi yi
i 1
977 972 5 ,a y bx 3
3
xi 2
2
3x
434 432
2
i 1
.
x 2 cos
4.
(广西名校第一次摸底)已知曲线
M
的参数方程为
12 月 2 日
12 月 3 日
12 月 4 日
12 月 5 日
温差 x (℃) 10
11
13
12
8
发芽数 y(颗) 23
25
30
26
16
该农科所确定的研究方案是:先从这 5 组数据中选取 2 组,用剩下的 3 组数据求线性回归方
程,再对被选取的 2 组数据进行检验.
(Ⅰ)求选取的 2 组数据恰好是不相邻的 2 天数据的概率;
,
∴曲线 N 的普通方程为 3x y 16 0 .……………………………………5 分
(Ⅱ)圆 M 的圆心 M 0 ,2 ,半径 r 2.
2 16
d
7
点 M 到直线 N 的距离为
高考数学理科总复习训练题:——中档大题规范练1 Word版含答案
中档大题规范练1.解三角形1.(·苏锡常镇调研)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边.已知a cos B =3,b cos A=1,且A -B =π6. (1)求c 的长;(2)求B 的大小.解 (1)方法一 在△ABC 中,a cos B =3,由余弦定理,得a ·a 2+c 2-b 22ac=3,得a 2+c 2-b 2=6c ,① b cos A =1,则b ·b 2+c 2-a 22bc=1,得b 2+c 2-a 2=2c ,② ①+②得2c 2=8c ,所以c =4.方法二 因为在△ABC 中,A +B +C =π,则sin A cos B +sin B cos A =sin(A +B )=sin(π-C )=sin C ,由asin A =b sin B =c sin C ,得sin A =a sin C c ,sin B =b sin C c ,代入上式得 c =a cos B +b cos A =3+1=4.(2)由正弦定理得a cos B b cos A =sin A cos B sin B cos A =tan A tan B=3. 又tan(A -B )=tan A -tan B 1+tan A tan B =2tan B 1+3tan 2B =33, 解得tan B =33.又B ∈(0,π),所以B =π6. 2.(·苏州暑假测试)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知b cos C +c cos B =2a cos A .(1)求角A 的大小;(2)若AB →·AC →=3,求△ABC 的面积.解 (1)方法一 在△ABC 中,由正弦定理及b cos C +c cos B =2a cos A ,得sin B cos C +sin C cos B =2sin A cos A ,即sin A =2sin A cos A .因为A ∈(0,π),则sin A ≠0,所以cos A =12, 所以A =π3. 方法二 在△ABC 中,由余弦定理及b cos C +c cos B =2a cos A ,得b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac=2a ·b 2+c 2-a 22bc,所以a 2=b 2+c 2-bc , 所以cos A =b 2+c 2-a 22bc =12. 因为A ∈(0,π),所以A =π3. (2)由AB →·AC →=bc cos A =3,得bc =23,所以△ABC 的面积S =12bc sin A =12×23sin π3=32. 3.(·南京、盐城一模)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且b sin2C =c sin B .(1)求角C 的大小;(2)若sin ⎝⎛⎭⎪⎫B -π3=35,求sin A 的值. 解 (1)由b sin2C =c sin B ,根据正弦定理得2sin B sin C cos C =sin C sin B .因为sin B >0,sin C >0,所以cos C =12. 又C ∈(0,π),所以C =π3. (2)因为C =π3,所以B ∈⎝⎛⎭⎪⎫0,2π3, 所以B -π3∈⎝ ⎛⎭⎪⎫-π3,π3, 又sin ⎝⎛⎭⎪⎫B -π3=35, 所以cos ⎝ ⎛⎭⎪⎫B -π3=1-sin 2⎝⎛⎭⎪⎫B -π3=45. 又A +B =2π3,即A =2π3-B , 所以sin A =sin ⎝ ⎛⎭⎪⎫2π3-B =sin ⎣⎢⎡⎦⎥⎤π3-⎝ ⎛⎭⎪⎫B -π3=sin π3cos ⎝ ⎛⎭⎪⎫B -π3-cos π3sin ⎝ ⎛⎭⎪⎫B -π3 =32×45-12×35=43-310. 4.(·徐州、连云港、宿迁三检)如图,在△ABC 中,已知点D 在边AB上,AD =3DB ,cos A =45,cos ∠ACB =513,BC =13. (1)求cos B 的值;(2)求CD 的长.解 (1)在△ABC 中,cos A =45,A ∈(0,π), 所以sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫452=35. 同理可得,sin ∠ACB =1213. 所以cos B =cos[π-(A +∠ACB )]=-cos(A +∠ACB )=sin A sin ∠ACB -cos A cos ∠ACB =35×1213-45×513=1665. (2)在△ABC 中,由正弦定理,得AB =BCsin A sin ∠ACB =1335×1213=20.又AD =3DB ,所以BD =14AB =5.在△BCD 中,由余弦定理,得CD =BD 2+BC 2-2BD ·BC cos B=52+132-2×5×13×1665=9 2.。
高考数学(全国甲卷通用理科)考前抢分必做 考前回扣 回扣4 Word版含答案
回扣数列.牢记概念与公式等差数列、等比数列等差数列等比数列 通项公式 =+(-)=- (≠) 前项和 ==+()≠,== ()=,=.活用定理与结论()等差、等比数列{}的常用性质等差数列等比数列 性质 ①若,,,∈*,且+=+,则+=+②=+(-)③,-,-,…仍成等差数列①若,,,∈*,且+=+,则·=· ②=- ③,-,-,…仍成等比数列(≠)()判断等差数列的常用方法①定义法:+-= (常数) (∈*)⇔{}是等差数列.②通项公式法:=+ (,为常数,∈*)⇔{}是等差数列.③中项公式法:+=++ (∈*)⇔{}是等差数列.④前项和公式法:=+(,为常数,∈*)⇔{}是等差数列.()判断等比数列的三种常用方法①定义法:= (是不为的常数,∈*)⇔{}是等比数列.②通项公式法:= (,均是不为的常数,∈*)⇔{}是等比数列.③中项公式法:=·+(·+·+≠,∈*)⇔{}是等比数列..数列求和的常用方法()等差数列或等比数列的求和,直接利用公式求和.()形如{·}(其中{}为等差数列,{}为等比数列)的数列,利用错位相减法求和.()通项公式形如=(其中,,,为常数)用裂项相消法求和.()通项公式形如=(-)·或=·(-)(其中为常数,∈*)等正负项交叉的数列求和一般用并项法.并项时应注意分为奇数、偶数两种情况讨论.()分组求和法:分组求和法是解决通项公式可以写成=+形式的数列求和问题的方法,其中{ }与{}是等差(比)数列或一些可以直接求和的数列.()并项求和法:先将某些项放在一起求和,然后再求..已知数列的前项和求,易忽视=的情形,直接用--表示.事实上,当=时,=;当≥时,=--..易混淆几何平均数与等比中项,正数,的等比中项是±..等差数列中不能熟练利用数列的性质转化已知条件,灵活整体代换进行基本运算.如等差数列{}与{}的前项和分别为和,已知=,求时,无法正确赋值求解..易忽视等比数列中公比≠,导致增解,易忽视等比数列的奇数项或偶数项符号相同造成增解..运用等比数列的前项和公式时,易忘记分类讨论.一定分=和≠两种情况进行讨论..利用错位相减法求和时,要注意寻找规律,不要漏掉第一项和最后一项.。
高考理科数学中档大题保分专练18套(经典珍藏解析版)
高考理科数学中档大题保分专练 18 套 目 录
目 录............................................................................................................................... 1 专练一(共 4 道大题)建议用时:40 分钟.................................................................. 2 专练二(共 4 道大题)建议用时:40 分钟.................................................................. 5 专练三(共 4 道大题)建议用时:40 分钟................................................................ 10 专练四(共 4 道大题)建议用时:40 分钟................................................................ 13 专练五(共 4 道大题)建议用时:40 分钟................................................................ 16 专练六(共 4 道大题)建议用时:40 分钟................................................................ 21 专练七(共 4 道大题)建议用时:40 分钟................................................................ 24 专练八(共 4 道大题)建议用时:40 分钟................................................................ 28 专练九(共 4 道大题)建议用时:40 分钟................................................................ 32 专练十(共 4 道大题)建议用时:40 分钟................................................................ 36 专练十一(共 4 道大题)建议用时:40 分钟............................................................ 40 专练十二(共 4 道大题)建议用时:40 分钟............................................................ 44 专练十三(共 4 道大题)建议用时:40 分钟............................................................ 49 专练十四(共 4 道大题)建议用时:40 分钟............................................................ 53 专练十五(共 4 道大题)建议用时:40 分钟..................... 56 专练十六(共 4 道大题)建议用时:40 分钟............................................................ 60 专练十七(共 4 道大题)建议用时:40 分钟............................................................ 63 专练十八(共 4 道大题)建议用时:40 分钟............................................................ 65 独家整理编辑
高考理科数学考前抢分必做--中档大题规范练及答案
中档大题规范练中档大题规范练1 三角函数1.(2016·浙江)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B . (1)证明:A =2B ;(2)若△ABC 的面积S =a 24,求角A 的大小.(1)证明 由正弦定理得sin B +sin C =2sin A cos B , 故2sin A cos B =sin B +sin(A +B ) =sin B +sin A cos B +cos A sin B , 于是sin B =sin(A -B ).又A ,B ∈(0,π),故0<A -B <π,所以B =π-(A -B )或B =A -B , 因此A =π(舍去)或A =2B ,所以A =2B . (2)解 由S =a 24得12ab sin C =a 24,故有sin B sin C =12sin A =12sin 2B =sin B cos B ,由sin B ≠0,得sin C =cos B . 又B ,C ∈(0,π),所以C =π2±B .当B +C =π2时,A =π2;当C -B =π2时,A =π4.综上,A =π2或A =π4.2.(2016·北京)已知函数f (x )=2sin ωx cos ωx +cos 2ωx (ω>0)的最小正周期为π. (1)求ω的值;(2)求f (x )的单调递增区间.解 (1)f (x )=2sin ωx cos ωx +cos 2ωx =sin 2ωx +cos 2ωx =2⎝⎛⎭⎫22sin 2ωx +22cos 2ωx =2sin ⎝⎛⎭⎫2ωx +π4, 由ω>0,f (x )的最小正周期为π,得2π2ω=π,解得ω=1.(2)由(1)得f (x )=2sin ⎝⎛⎭⎫2x +π4,令-π2+2k π≤2x +π4≤π2+2k π,k ∈Z ,解得-3π8+k π≤x ≤π8+k π,k ∈Z ,即f (x )的单调递增区间为⎣⎡⎦⎤-3π8+k π,π8+k π(k ∈Z ). 3.已知函数f (x )=2cos x (sin x -cos x )+1,x ∈R . (1)求函数f (x )的单调递增区间;(2)将函数y =f (x )的图象向左平移π4个单位后,再将图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )的最大值及取得最大值时x 的集合. 解 (1)f (x )=2cos x (sin x -cos x )+1 =sin 2x -cos 2x =2sin(2x -π4),令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),解得k π-π8≤x ≤k π+3π8(k ∈Z ),故函数f (x )的单调递增区间为[k π-π8,k π+3π8](k ∈Z ).(2)由已知,得g (x )=2sin(x +π4),∴当sin(x +π4)=1,即x +π4=2k π+π2(k ∈Z ),也即x =2k π+π4(k ∈Z )时,g (x )max = 2.∴当{x |x =2k π+π4(k ∈Z )}时,g (x )的最大值为 2.4.(2016·四川)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin Cc .(1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tan B .(1)证明 根据正弦定理,可设 a sin A =b sin B =c sin C=k (k >0), 则a =k sin A ,b =k sin B ,c =k sin C . 代入cos A a +cos B b =sin C c 中,有cos A k sin A +cos B k sin B =sin C k sin C,变形可得sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π-C )=sin C .所以sin A sin B =sin C . (2)解 由已知,b 2+c 2-a 2=65bc ,根据余弦定理,有cos A =b 2+c 2-a 22bc =35.所以sin A =1-cos 2A =45.由(1),sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B .故tan B =sin B cos B=4.5.已知向量m =(3sin x ,cos x ),n =(cos x ,cos x ),x ∈R ,设f (x )=m·n . (1)求函数f (x )的解析式及单调递增区间;(2)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且a =1,b +c =2,f (A )=1,求△ABC 的面积.解 (1)f (x )=m·n =3sin x cos x +cos 2x =32sin 2x +12cos 2x +12=sin(2x +π6)+12,由-π2+2k π≤2x +π6≤π2+2k π,k ∈Z ,可得,-π3+k π≤x ≤π6+k π,k ∈Z ,∴函数f (x )的单调递增区间为[-π3+k π,π6+k π],k ∈Z .(2)∵f (A )=1,∴sin(2A +π6)=12,∵0<A <π,∴π6<2A +π6<13π6,∴2A +π6=5π6,∴A =π3.由a 2=b 2+c 2-2bc cos A , 得1=b 2+c 2-2bc cos π3=4-3bc ,∴bc =1,∴S △ABC =12bc sin A =34.中档大题规范练2 立体几何与空间向量1.如图,在四棱锥P —ABCD 中,侧面P AD ⊥底面ABCD ,侧棱P A =PD =2,P A ⊥PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AB =BC =1,O 为AD 的中点.(1)求证:PO ⊥平面ABCD ; (2)求B 点到平面PCD 的距离;(3)线段PD 上是否存在一点Q ,使得二面角Q —AC —D 的余弦值为63?若存在,求出PQ QD的值;若不存在,请说明理由.(1)证明 因为P A =PD =2,O 为AD 的中点, 所以PO ⊥AD ,因为侧面P AD ⊥底面ABCD , 所以PO ⊥平面ABCD .(2)解 以O 为原点,OC ,OD ,OP 分别为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz ,则B (1,-1,0),C (1,0,0),D (0,1,0),P (0,0,1).PB →=(1,-1,-1),设平面PDC 的法向量为u =(x ,y ,z ),CP →=(-1,0,1),PD →=(0,1,-1).则⎩⎪⎨⎪⎧u ·CP ,→=-x +z =0,u ·PD ,→=y -z =0,取z =1,得u =(1,1,1),B 点到平面PDC 的距离 d =|BP ,→·u ||u |=33.(3)解 假设存在,则设PQ →=λPD →(0<λ<1), 因为PD →=(0,1,-1),所以Q (0,λ,1-λ),设平面CAQ 的法向量为m =(a ,b ,c ), 则⎩⎪⎨⎪⎧m ·AC ,→=0,m ·AQ ,→=0,即⎩⎪⎨⎪⎧a +b =0,(λ+1)b +(1-λ)c =0,所以取m =(1-λ,λ-1,λ+1), 平面CAD 的法向量n =(0,0,1), 因为二面角Q —AC —D 的余弦值为63, 所以|m·n||m||n |=63,所以3λ2-10λ+3=0,所以λ=13或λ=3(舍去),所以PQ QD =12.2.如图,在长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2AD =2,E 为AB 的中点,F 为D 1E 上的一点,D 1F =2FE .(1)证明:平面DFC ⊥平面D 1EC ; (2)求二面角A —DF —C 的大小.(1)证明 以D 为原点,分别以DA 、DC 、DD 1所在直线为x 轴、y 轴、z 轴建立如图所示空间直角坐标系,则A (1,0,0),B (1,2,0),C (0,2,0),D 1(0,0,2). ∵E 为AB 的中点, ∴E 点坐标为(1,1,0), ∵D 1F =2FE ,∴D 1F →=23D 1E →=23 (1,1,-2)=(23,23,-43),DF →=DD 1→+D 1F →=(0,0,2)+(23,23,-43)=(23,23,23).设n =(x ,y ,z )是平面DFC 的法向量,则⎩⎪⎨⎪⎧ n ·DF →=0,n ·DC →=0,∴⎩⎪⎨⎪⎧23x +23y +23z =0,2y =0,取x =1得平面FDC 的一个法向量n =(1,0,-1). 设p =(x ,y ,z )是平面ED 1C 的法向量, 则⎩⎪⎨⎪⎧ p ·D 1F →=0,p ·D 1C →=0,∴⎩⎪⎨⎪⎧23x +23y -43z =0,2y -2z =0,取y =1得平面D 1EC 的一个法向量p =(1,1,1). ∵n·p =(1,0,-1)·(1,1,1)=0, ∴平面DFC ⊥平面D 1EC .(2)解 设q =(x ,y ,z )是平面ADF 的法向量, 则q ·DF →=0,q ·DA →=0. ∴⎩⎪⎨⎪⎧23x +23y +23z =0,x =0,取y =1得平面ADF 的一个法向量q =(0,1,-1), 设二面角A —DF —C 的平面角为θ, 由题中条件可知θ∈(π2,π),则cos θ=-|n·q|n|·|q ||=-0+0+12×2=-12,∴二面角A —DF —C 的大小为120°.3.如图所示,在直三棱柱A 1B 1C 1—ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值; (2)求平面ADC 1与平面ABA 1所成二面角的正弦值.解 (1)以A 为坐标原点,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (0,2,0),D (1,1,0),A 1(0,0,4),C 1(0,2,4),所以A 1B →=(2,0,-4),C 1D →=(1,-1,-4).因为cos 〈A 1B →,C 1D →〉=A 1B ,→·C 1D →|A 1B →||C 1D →|=1820×18=31010,所以异面直线A 1B 与C 1D 所成角的余弦值为31010.(2)设平面ADC 1的法向量为n 1=(x ,y ,z ), 因为AD →=(1,1,0),AC 1→=(0,2,4), 所以n 1·AD →=0,n 1·AC 1→=0, 即x +y =0且y +2z =0, 取z =1,得x =2,y =-2,所以n 1=(2,-2,1)是平面ADC 1的一个法向量. 取平面AA 1B 的一个法向量为n 2=(0,1,0), 设平面ADC 1与平面ABA 1所成二面角的大小为θ. 由|cos θ|=⎪⎪⎪⎪n 1·n 2|n 1||n 2|=29×1=23, 得sin θ=53. 因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53. 4.如图,在四棱锥P —ABCD 中,平面P AD ⊥底面ABCD ,其中底面ABCD 为等腰梯形,AD ∥BC ,P A =AB =BC =CD =2,PD =23,P A ⊥PD ,Q 为PD 的中点.(1)证明:CQ ∥平面P AB ; (2)求二面角D —AQ —C 的余弦值.(1)证明 如图所示,取P A 的中点N ,连接QN ,BN .在△P AD 中,PN =NA ,PQ =QD , 所以QN ∥AD ,且QN =12AD .在△APD 中,P A =2,PD =23,P A ⊥PD , 所以AD =P A 2+PD 2=22+(23)2=4, 而BC =2,所以BC =12AD .又BC ∥AD ,所以QN ∥BC ,且QN =BC , 故四边形BCQN 为平行四边形,所以BN ∥CQ . 又CQ ⊄平面P AB ,BN ⊂平面P AB ,所以CQ ∥平面P AB .(2)解 如图,在平面P AD 内,过点P 作PO ⊥AD 于点O ,连接OB .因为平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,所以PO ⊥平面ABCD . 又PO ⊥AD ,AP ⊥PD ,所以PO =AP ×PD AD =2×234=3,故AO =AP 2-PO 2=22-(3)2=1.在等腰梯形ABCD 中,取AD 的中点M ,连接BM ,又BC =2,AD =4,AD ∥BC ,所以DM =BC =2,DM ∥BC ,故四边形BCDM 为平行四边形. 所以BM =CD =AB =2.在△ABM 中,AB =AM =BM =2,AO =OM =1,所以BO ⊥AD .又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD , 所以BO ⊥平面P AD .如图,以O 为坐标原点,分别以OB ,OD ,OP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则O (0,0,0),D (0,3,0),A (0,-1,0),B (3,0,0),P (0,0,3),C (3,2,0),则AC →=(3,3,0).因为Q 为DP 的中点,故Q ⎝⎛⎭⎫0,32,32,所以AQ →=⎝⎛⎭⎫0,52,32.设平面AQC 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ⊥AC →,m ⊥AQ →,可得⎩⎨⎧m ·AC →=3x +3y =0,m ·AQ →=52y +32z =0,令y =-3,则x =3,z =5.故平面AQC 的一个法向量为m =(3,-3,5). 因为BO ⊥平面P AD ,所以OB →=(3,0,0)是平面ADQ 的一个法向量.故cos 〈OB →,m 〉=OB →·m |OB →|·|m |=333·32+(-3)2+52=337=33737.从而可知二面角D —AQ —C 的余弦值为33737.5.在四棱锥P —ABCD 中,侧面PCD ⊥底面ABCD ,PD ⊥CD ,底面ABCD 是直角梯形,AB ∥CD ,∠ADC =90°,AB =AD =PD =1,CD =2.(1)求证:BC ⊥平面PBD ;(2)在线段PC 上是否存在一点Q ,使得二面角Q —BD —P 为45°?若存在,求PQPC的值;若不存在,请说明理由.(1)证明 平面PCD ⊥底面ABCD ,PD ⊥CD , 所以PD ⊥平面ABCD ,所以PD ⊥AD . 如图,以D 为原点建立空间直角坐标系Dxyz ,则A (1,0,0),B (1,1,0),C (0,2,0),P (0,0,1), DB →=(1,1,0),BC →=(-1,1,0), 所以BC →·DB →=0,BC ⊥DB ,又由PD ⊥平面ABCD ,可得PD ⊥BC , 因为PD ∩BD =D , 所以BC ⊥平面PBD .(2)解 平面PBD 的法向量为BC →=(-1,1,0), PC →=(0,2,-1),设PQ →=λPC →,λ∈(0,1), 所以Q (0,2λ,1-λ),设平面QBD 的法向量为n =(a ,b ,c ), DB →=(1,1,0),DQ →=(0,2λ,1-λ), 由n ·DB →=0,n ·DQ →=0,得⎩⎪⎨⎪⎧a +b =0,2λb +(1-λ)c =0, 令b =1,所以n =(-1,1,2λλ-1), 所以cos 45°=|n ·BC →||n ||BC →|=222+(2λλ-1)2=22, 注意到λ∈(0,1),得λ=2-1,所以在线段PC 上存在一点Q ,使得二面角Q —BD —P 为45°,此时PQPC =2-1.中档大题规范练3 数 列1.(2016·课标全国甲)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1. (1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.解 (1)设{a n }的公差为d ,据已知有7+21d =28, 解得d =1.所以{a n }的通项公式为a n =n . b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2. (2)因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893. 2.在数列{a n }中,a 1=1,a 4=7,a n +2-2a n +1+a n =0(n ∈N *). (1)求数列a n 的通项公式;(2)若b n =1n (3+a n )(n ∈N *),求数列{b n }的前n 项和S n .解 (1)∵a n +2-2a n +1+a n =0(n ∈N *), ∴a n +2-a n +1=a n +1-a n (n ∈N *), 即数列{a n }为等差数列, ∵a 1=1,a 4=7,∴公差d =a 4-a 13=7-13=2,∴a n =1+2(n -1)=2n -1. (2)∵a n =2n -1,∴b n =1n (3+a n )=1n (3+2n -1)=12·1n (n +1)=12·(1n -1n +1),∴S n =12·(1-12+12-13+…+1n -1n +1)=12·(1-1n +1).3.已知数列{a n }是递增的等比数列,满足a 1=4,且54a 3是a 2,a 4的等差中项,数列{b n }满足b n +1=b n +1,其前n 项和为S n ,且S 2+S 6=a 4. (1)求数列{a n },{b n }的通项公式;(2)数列{a n }的前n 项和为T n ,若不等式n log 2(T n +4)-λb n +7≥3n 对一切n ∈N *恒成立,求实数λ的取值范围.解 (1)设等比数列{a n }的公比为q , 则q >1,a n =4q n -1, ∵54a 3是a 2,a 4的等差中项, ∴2×54a 3=a 2+a 4,即2q 2-5q +2=0. ∵q >1,∴q =2, ∴a n =4·2n -1=2n +1.依题意,数列{b n }为等差数列,公差d =1, 又S 2+S 6=a 4=32,∴(2b 1+1)+6b 1+6×52=32,∴b 1=2,∴b n =n +1. (2)∵a n =2n +1,∴T n =4(2n -1)2-1=2n +2-4.不等式n log 2(T n +4)-λb n +7≥3n 化为 n 2-n +7≥λ(n +1), ∵n ∈N *,∴λ≤n 2-n +7n +1对一切n ∈N *恒成立.而n 2-n +7n +1=(n +1)2-3(n +1)+9n +1=(n +1)+9n +1-3≥2(n +1)9n +1-3=3,当且仅当n +1=9n +1,即n =2时等号成立, ∴λ≤3.4.在各项均为正数的等比数列{a n }中,a 1=2,且a 3,3a 2,a 4成等差数列. (1)求等比数列{a n }的通项公式;(2)若数列{b n }满足b n =(n +2)log 2a n ,求数列{1b n }的前n 项和T n .解 (1)由已知6a 2=a 3+a 4, 则6a 2=a 2q +a 2q 2, 即q 2+q -6=0,又q >0,所以q =2,a n =2n .(2)b n =(n +2)log 22n =n (n +2), 则1b n =12(1n -1n +2), T n =1b 1+1b 2+…+1b n=12(1-13)+12(12-14)+…+12(1n -1-1n +1)+12(1n -1n +2) =12(1+12-1n +1-1n +2) =34-2n +32(n 2+3n +2). 5.已知等差数列{a n }的前n 项和为S n ,且满足a 6+a 8=-10,S 10=-35. (1)求数列{a n }的通项公式; (2)求数列{a n2n -1}的前n 项和T n .解 (1)由题设可得⎩⎪⎨⎪⎧a 1+6d =-5,2a 1+9d =-7,解得⎩⎪⎨⎪⎧a 1=1,d =-1,所以a n =1-(n -1)=2-n . (2)因为a n 2n -1=12n -2-n ·12n -1,所以T n =2+1+12+…+12n -2-(1+2×12+3×122+…+n ·12n -1),令S n =2+1+12+…+12n -2,S n ′=1+2×12+3×122+…+n ·12n -1,则T n =S n -S n ′,因而S n =2+1+12+…+12n -2=2(1-12n )12=4(1-12n )=4-12n -2,因为S n ′=1+2×12+3×122+…+n ·12n -1,所以12S n ′=12+2×122+3×123+…+n ·12n ,以上两式两边相减可得12S n ′=1+12+122+123+…+12n -1-n ·12n =1-12n1-12-n ·12n =2-12n -1-n ·12n ,所以S n ′=4-12n -2-n ·12n -1,因此T n =S n -S n ′=n2n -1.中档大题规范练4 概率与统计1.(2016·北京)A ,B ,C 三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):(1)试估计C 班的学生人数;(2)从A 班和C 班抽出的学生中,各随机选取1人,A 班选出的人记为甲,C 班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率; (3)再从A ,B ,C 三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小(结论不要求证明). 解 (1)C 班学生人数约为100×85+7+8=100×820=40.(2)设事件A i 为“甲是现有样本中A 班的第i 个人”,i =1,2,...,5, 事件C j 为“乙是现有样本中C 班的第j 个人”,j =1,2, (8)由题意可知P (A i )=15,i =1,2,…,5;P (C j )=18,j =1,2, (8)P (A i C j )=P (A i )P (C j )=15×18=140,i =1,2,...,5,j =1,2, (8)设事件E 为“该周甲的锻炼时间比乙的锻炼时间长”,由题意知,E =A 1C 1∪A 1C 2∪A 2C 1∪A 2C 2∪A 2C 3∪A 3C 1∪A 3C 2∪A 3C 3∪A 4C 1∪A 4C 2∪A 4C 3∪A 5C 1∪A 5C 2 ∪A 5C 3∪A 5C 4.因此P (E )=P (A 1C 1)+P (A 1C 2)+P (A 2C 1)+P (A 2C 2)+P (A 2C 3)+P (A 3C 1)+P (A 3C 2)+P (A 3C 3)+P (A 4C 1)+P (A 4C 2)+P (A 4C 3)+P (A 5C 1)+P (A 5C 2)+P (A 5C 3)+P (A 5C 4)=15×140=38.(3)μ1<μ0.2.某学校为准备参加市运动会,对本校甲、乙两个田径队中30名跳高运动员进行了测试,并用茎叶图表示出本次测试30人的跳高成绩(单位:cm).跳高成绩在175 cm 以上(包括175 cm)定义为“合格”,成绩在175 cm 以下定义为“不合格”.鉴于乙队组队晚,跳高成绩相对较弱,为激励乙队队员,学校决定只有乙队中“合格”者才能参加市运动会开幕式旗林队.(1)求甲队队员跳高成绩的中位数;(2)如果将所有的运动员按“合格”与“不合格”分成两个层次,用分层抽样抽取“合格”与“不合格”的人数共5人,则各层应抽取多少人?(3)若从所有“合格”运动员中选取2名,用X 表示所选运动员中甲队能参加市运动会开幕式旗林队的人数,试写出X 的分布列,并求X 的均值.解 (1)由茎叶图知,甲田径队12名队员的跳高成绩从小到大排列后中间的两个成绩为176、178,故中位数为12(176+178)=177.(2)由茎叶图可知,甲、乙两队合格人数为12,不合格人数为18,所以抽取五人,合格人数为530×12=2,不合格人数为530×18=3. (3)X =0,1,2,P (X =0)=C 24C 212=111,P (X =1)=C 18C 14C 212=1633,P (X =2)=C 28C 212=1433.故X 的分布列为E (X )=0×111+1×1633+2×1433=43.3.安排5个大学生到A ,B ,C 三所学校支教,设每个大学生去任何一所学校是等可能的. (1)求5个大学生中恰有2个人去A 校支教的概率; (2)设有大学生去支教的学校的个数为ξ,求ξ的分布列.解 (1)5个大学生到三所学校支教的所有可能为35=243(种),设“恰有2个人去A 校支教”为事件M ,则有C 25·23=80(种),∴P (M )=80243. 即5个大学生中恰有2个人去A 校支教的概率为80243.(2)由题意得:ξ=1,2,3, ξ=1⇒5人去同一所学校,有C 13=3(种),∴P (ξ=1)=3243=181,ξ=2⇒5人去两所学校,即分为4,1或3,2有C 23·(C 45+C 35)·A 22=90(种),∴P (ξ=2)=90243=3081=1027,ξ=3⇒5人去三所学校,即分为3,1,1或2,2,1有(C 35·C 12·12!+C 25·C 23·12!)·A 33=150(种),∴P (ξ=3)=150243=5081. ∴ξ 的分布列为4.甲、乙两人进行定点投篮比赛,在距篮筐3米线内设一点A ,在点A 处投中一球得2分,不中得0分;在距篮筐3米线外设一点B ,在点B 处投中一球得3分,不中得0分,已知甲、乙两人在A 点投中的概率都是12,在B 点投中的概率都是13,且在A ,B 两点处投中与否相互独立,设定甲、乙两人先在A 处各投篮一次,然后在B 处各投篮一次,总得分高者获胜. (1)求甲投篮总得分ξ的分布列和均值; (2)求甲获胜的概率.解 (1)设“甲在A 点投中”为事件A ,“甲在B 点投中”为事件B ,根据题意,ξ的可能取值为0,2,3,5,则P (ξ=0)=P (A B )=(1-12)×(1-13)=13,P (ξ=2)=P (A B )=12×(1-13)=13,P (ξ=3)=P (A B )=(1-12)×13=16,P (ξ=5)=P (AB )=12×13=16.所以ξ的分布列为E (ξ)=0×13+2×13+3×16+5×16=2.(2)同理,乙的总得分η的分布列为甲获胜包括:甲得2分、3分、5分三种情形,这三种情形之间彼此互斥.因此,所求事件的概率为P =P (ξ=2)×P (η=0)+P (ξ=3)×P (η<3)+P (ξ=5)×P (η<5)=13×13+16×(13+13)+16×(1-16)=1336. 5.某学校高一年级学生某次身体素质体能测试的原始成绩采用百分制, 已知所有这些学生的原始成绩均分布在[50,100]内,发布成绩使用等级制各等级划分标准见下表, 规定:A 、B 、C 三级为合格等级,D 为不合格等级.为了解该校高一年级学生身体素质情况, 从中抽取了n 名学生的原始成绩作为样本进行统计, 按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图如图1所示, 样本中分数在80分及以上的所有数据的茎叶图如图2所示.(1)求n 和频率分布直方图中x ,y 的值;(2)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高一学生中任选3人, 求至少有1人成绩是合格等级的概率;(3)在选取的样本中, 从A 、C 两个等级的学生中随机抽取了3名学生进行调研, 记ξ表示所抽取的3名学生中为C 等级的学生人数, 求随机变量ξ的分布列及均值. 解 (1)n =60.012×10=50,x =250×10=0.004,y =1-0.04-0.1-0.12-0.5610=0.018.(2)成绩是合格等级人数为(1-0.1)×50=45, 抽取的50人中成绩是合格等级的频率为910,故从该校学生中任选1人, 成绩是合格等级的概率为910,设在该校高一学生中任选3人, 至少有1人成绩是合格等级的事件为A , 则P (A )=1-C 03×(1-910)3=9991 000. (3) 由题意可知C 等级的学生人数为0.18×50=9,A 等级的学生人数为3, 故ξ的取值为0,1,2,3,则P (ξ=0)=C 33C 312=1220,P (ξ=1)=C 19C 23C 312=27220,P (ξ=2)=C 29C 13C 312=108220=2755,P (ξ=3)=C 39C 312=84220=2155,所以ξ的分布列为E (ξ)=0×1220+1×27220+2×2755+3×2155=94.。
高考数学(全国甲卷通用理科)考前抢分必做 考前回扣 回扣10 Word版含答案
回扣复数、算法、推理与证明
.复数的相关概念及运算法则
()复数=+(,∈)的分类
①是实数⇔=.
②是虚数⇔≠.
③是纯虚数⇔=且≠.
()共轭复数
复数=+的共轭复数=-.
()复数的模:
复数=+的模=.
()复数相等的充要条件
+=+⇔=且=(,,,∈).
特别地,+=⇔=且=(,∈).
()复数的运算法则
加减法:(+)±(+)=(±)+(±);
乘法:(+)(+)=(-)+(+);
除法:(+)÷(+)=+;
其中,,,∈.
.复数的几个常见结论
()(±)=±;
()=,=-;
()=,+=,+=-,+=-,++++++=(∈);
()ω=-±,且ω=,ω=,ω=,+ω+ω=.
.程序框图的三种基本逻辑结构
()顺序结构:如图()所示.
()条件结构:如图()和图()所示.
()循环结构:如图()和图()所示.
程序框图由程序框和流程线组成,一个或几个程序框的组合表示算法中的一个步骤;流程线带有方向箭头,按照算法进行的顺序将程序框连接起来.程序框图的基本逻辑结构包括顺序结构、条件结构和循环结构三种.
.推理
推理分为合情推理与演绎推理,合情推理包括归纳推理和类比推理;演绎推理的一般模式是三段论.
合情推理的思维过程
()归纳推理的思维过程:
―→→
()类比推理的思维过程:
―→→
.证明方法
()分析法的特点:从未知看需知,逐步靠拢已知.
推理模式:
框图表示:→→→…→。
高考数学(全国甲卷通用理科)考前抢分必做_考前回扣_回扣3_word版有答案
回扣3 三角函数、平面向量1.准确记忆六组诱导公式对于“k π2±α,k ∈Z ”的三角函数值,与α角的三角函数值的关系可按口诀记忆:奇变偶不变,符号看象限.2.同角三角函数的基本关系式 sin 2α+cos 2α=1,tan α=sin αcos α(cos α≠0).3.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin αcos β±cos αsin β. (2)cos(α±β)=cos αcos β∓sin αsin β. (3)tan(α±β)=tan α±tan β1∓tan αtan β.(4)a sin α+b cos α=a 2+b 2sin(α+φ)(其中tan φ=ba ).4.二倍角的正弦、余弦、正切公式 (1)sin2α=2sin αcos α.(2)cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. (3)tan2α=2tan α1-tan 2α.5.三种三角函数的性质函数y =sin xy =cos xy =tan x图象单调性在[-π2+2k π,π2+2k π] (k ∈Z )上单调递增;在[π2+2k π,3π2+2k π] (k ∈Z )上单调递减 在[-π+2k π,2k π] (k ∈Z )上单调递增;在[2k π,π+2k π](k ∈Z )上单调递减在(-π2+k π,π2+k π)(k ∈Z )上单调递增对称性对称中心:(k π,0)(k ∈Z );对称轴:x =π2+k π (k ∈Z )对称中心:(π2+k π,0)(k ∈Z );对称轴:x =k π(k ∈Z )对称中心:(k π2,0)(k ∈Z )6.函数y =A sin(ωx +φ)(ω>0,A >0)的图象 (1)“五点法”作图:设z =ωx +φ,令z =0,π2,π,3π2,2π,求出相应的x 的值与y 的值,描点、连线可得.(2)由三角函数的图象确定解析式时,一般利用五点中的零点或最值点作为解题突破口. (3)图象变换:y =sin x ――――――――――→向左(φ>0)或向右(φ<0)平移|φ|个单位y =sin(x +φ) ――――――――――――→横坐标变为原来的1ω(ω>0)倍纵坐标不变y =sin(ωx +φ) ――――――――――――→纵坐标变为原来的A (A >0)倍横坐标不变y =A sin(ωx +φ). 7.正弦定理及其变形a sin A =b sin B =csin C=2R (2R 为△ABC 外接圆的直径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C . sin A =a 2R ,sin B =b 2R ,sin C =c2R .a ∶b ∶c =sin A ∶sin B ∶sin C . 8.余弦定理及其推论、变形a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C . 推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C . 9.面积公式S △ABC =12bc sin A =12ac sin B =12ab sin C .10.解三角形(1)已知两角及一边,利用正弦定理求解.(2)已知两边及一边的对角,利用正弦定理或余弦定理求解,解的情况可能不唯一. (3)已知两边及其夹角,利用余弦定理求解. (4)已知三边,利用余弦定理求解. 11.平面向量的数量积(1)若a ,b 为非零向量,夹角为θ,则a·b =|a||b |cos θ. (2)设a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2. 12.两个非零向量平行、垂直的充要条件 若a =(x 1,y 1),b =(x 2,y 2),则 (1)a ∥b ⇔a =λb (b ≠0)⇔x 1y 2-x 2y 1=0. (2)a ⊥b ⇔a·b =0⇔x 1x 2+y 1y 2=0. 13.利用数量积求长度(1)若a =(x ,y ),则|a |=a·a =x 2+y 2.(2)若A (x 1,y 1),B (x 2,y 2),则 |AB →|=(x 2-x 1)2+(y 2-y 1)2. 14.利用数量积求夹角若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a·b|a||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22. 15.三角形“四心”向量形式的充要条件设O 为△ABC 所在平面上一点,角A ,B ,C 所对的边长分别为a ,b ,c ,则 (1)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a 2sin A .(2)O 为△ABC 的重心⇔OA →+OB →+OC →=0. (3)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →. (4)O 为△ABC 的内心⇔aOA →+bOB →+cOC →=0.1.利用同角三角函数的平方关系式求值时,不要忽视角的范围,要先判断函数值的符号.2.在求三角函数的值域(或最值)时,不要忽略x 的取值范围.3.求函数f (x )=A sin(ωx +φ)的单调区间时,要注意A 与ω的符号,当ω<0时,需把ω的符号化为正值后求解.4.三角函数图象变换中,注意由y =sin ωx 的图象变换得y =sin(ωx +φ)时,平移量为⎪⎪⎪⎪φω,而不是φ. 5.在已知两边和其中一边的对角时,要注意检验解是否满足“大边对大角”,避免增解.6.要特别注意零向量带来的问题:0的模是0,方向任意,并不是没有方向;0与任意非零向量平行.7.a·b >0是〈a ,b 〉为锐角的必要不充分条件; a·b <0是〈a ,b 〉为钝角的必要不充分条件.1.2sin45°cos15°-sin30°的值等于( ) A.12B.22C.32D.1 答案 C解析 2sin45°cos15°-sin30°=2sin45°cos15°-sin(45°-15°)=2sin45°cos15°-(sin45°cos15°-cos45°sin15°)=sin45°cos15°+cos45°sin15°=sin60°=32.故选C. 2.要得到函数y =sin2x 的图象,可由函数y =cos(2x -π3)( )A.向左平移π6个单位长度得到B.向右平移π6个单位长度得到C.向左平移π12个单位长度得到D.向右平移π12个单位长度得到答案 D解析 由于函数y =sin2x =cos(π2-2x )=cos(2x -π2)=cos[2(x -π12)-π3],所以可由函数y =cos(2x -π3)向右平移π12个单位长度得到函数y =sin2x 的图象, 故选D.3.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A.3B.932C.332D.3 3答案 C解析 c 2=(a -b )2+6,即c 2=a 2+b 2-2ab +6,① ∵C =π3,由余弦定理得c 2=a 2+b 2-ab ,②由①和②得ab =6,∴S △ABC =12ab sin C =12×6×32=332,故选C.4.(1+tan18°)(1+tan27°)的值是( ) A.3B.1+2C.2D.2(tan18°+tan27°) 答案 C解析 由题意得,tan(18°+27°)=tan18°+tan27°1-tan18°tan27°,即tan18°+tan27°1-tan18°tan27°=1,所以tan18°+tan27°=1-tan18°tan27°,所以(1+tan18°)(1+tan27°)=1+tan18°+tan27°+tan18°tan27°=2,故选C.5.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A.锐角三角形B.直角三角形C.钝角三角形D.不确定 答案 B解析 ∵b cos C +c cos B =a sin A , ∴sin B cos C +cos B sin C =sin 2A ,∴sin(B +C )=sin 2A ,∴sin A =1,∴A =π2,三角形为直角三角形.6.已知A ,B ,C 是锐角△ABC 的三个内角,向量p =(sin A ,1),q =(1,-cos B ),则p 与q 的夹角是( ) A.锐角B.钝角C.直角D.不确定 答案 A解析 ∵A 、B 、C 是锐角△ABC 的三个内角,∴A +B >π2,即A >π2-B >0,∴sin A >sin(π2-B )=cos B ,∴p·q =sin A -cos B >0.再根据p ,q 的坐标可得p ,q 不共线,故p 与q 的夹角为锐角. 7. f (x )=12sin(2x -π3)+32cos(2x -π3)是( )A.最小正周期为2π的偶函数B.最小正周期为2π的奇函数C.最小正周期为π的奇函数D.最小正周期为π的偶函数答案 C解析 f (x )=12sin(2x -π3)+32cos(2x -π3)=sin(2x -π3+π3)=sin2x ,是最小正周期为π的奇函数,故选C.8.已知a ,b 为同一平面内的两个向量,且a =(1,2),|b |=12|a |,若a +2b 与2a -b 垂直,则a 与b 的夹角为( ) A.0B.π4C.2π3D.π答案 D解析 |b |=12|a |=52,而(a +2b )·(2a -b )=0⇒2a 2-2b 2+3b·a =0⇒b·a =-52,从而cos 〈b ,a 〉=b·a|b|·|a |=-1,〈b ,a 〉=π,故选D.9.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c 有下列命题: ①若A >B >C ,则sin A >sin B >sin C ;②若cos A a =cos B b =cos Cc ,则△ABC 为等边三角形;③若sin2A =sin2B ,则△ABC 为等腰三角形; ④若(1+tan A )(1+tan B )=2,则△ABC 为钝角三角形; ⑤存在A ,B ,C 使得tan A tan B tan C <tan A +tan B +tan C 成立. 其中正确的命题为________.(写出所有正确命题的序号). 答案 ①②④解析 若A >B >C ,则a >b >c ⇒sin A >sin B >sin C ; 若cos A a =cos B b =cos C c ,则cos A sin A =cos B sin B⇒sin(A -B )=0⇒A =B ⇒a =b ,同理可得a =c ,所以△ABC 为等边三角形;若sin2A =sin2B ,则2A =2B 或2A +2B =π,因此△ABC 为等腰或直角三角形;若(1+tan A )(1+tan B )=2,则tan A +tan B =1-tan A tan B ,因此tan(A +B )=1⇒C =3π4,△ABC 为钝角三角形;在△ABC 中,tan A tan B tan C =tan A +tan B +tan C 恒成立, 因此正确的命题为①②④.10.若△ABC 的三边a ,b ,c 及面积S 满足S =a 2-(b -c )2,则sin A =________. 答案817解析 由余弦定理得S =a 2-(b -c )2=2bc -2bc cos A =12bc sin A ,所以sin A +4cos A =4,由sin 2A +cos 2A =1,解得sin 2A +(1-sin A 4)2=1,sin A =817(0舍去).11.若tan θ=3,则cos 2θ+sin θcos θ=________. 答案 25解析 ∵tan θ=3, ∴cos 2θ+sin θcos θ=cos 2θ+sin θcos θsin 2θ+cos 2θ=1+tan θtan 2θ+1=1+332+1=25.12.已知单位向量a ,b ,c ,且a ⊥b ,若c =t a +(1-t )b ,则实数t 的值为________. 答案 1或0解析 c =t a +(1-t )b ⇒c 2=t 2+(1-t )2=|c |2=1⇒t =0或t =1.13.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足b cos A =(2c +a )cos(A +C ). (1)求角B 的大小;(2)求函数f (x )=2sin2x +sin(2x -B )(x ∈R )的最大值. 解 (1)由已知,b cos A =(2c +a )cos(π-B ), 即sin B cos A =-(2sin C +sin A )cos B , 即sin(A +B )=-2sin C cos B , 则sin C =-2sin C cos B , ∴cos B =-12,即B =2π3.(2)f (x )=2sin2x +sin2x cos 2π3-cos2x sin 2π3=32sin2x -32cos2x =3sin(2x -π6), 即x =π3+k π,k ∈Z 时,f (x )取得最大值 3.14.已知函数f (x )=2cos x (sin x -cos x )+1. (1)求函数f (x )的最小正周期和单调增区间;(2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且锐角A 满足f (A )=1,b =2,c =3,求a 的值. 解 (1)f (x )=2sin x cos x -2cos 2x +1 =sin2x -cos2x =2sin(2x -π4),所以f (x )的最小正周期为π.由-π2+2k π≤2x -π4≤π2+2k π(k ∈Z ),得k π-π8≤x ≤k π+3π8(k ∈Z ),所以f (x )的单调增区间为[k π-π8,k π+3π8](k ∈Z ).(2)由题意知f (A )=2sin(2A -π4)=1,sin(2A -π4)=22,又∵A 是锐角, ∴2A -π4=π4,∴A =π4,由余弦定理得a 2=2+9-2×2×3×cos π4=5,∴a = 5.。
高考数学(全国甲卷通用理科)考前抢分必做 中档大题规范练2 Word版含答案
中档大题规范练立体几何与空间向量
.如图,在四棱锥—中,侧面⊥底面,侧棱==,⊥,底面为直角梯形,其中∥,⊥,==
,为的中点.
()求证:⊥平面;
()求点到平面的距离;
()线段上是否存在一点,使得二面角——的余弦值为?若存在,求出的值;若不存在,请说
明理由.
()证明因为==,为的中点,
所以⊥,因为侧面⊥底面,
所以⊥平面.
()解以为原点,,,分别为轴,轴,轴,建立空间直角坐标系,则(,-,),(,,),(,,),(,,).
=(,-,-),设平面的法向量为=(,,),=(-,,),=(,,-).
则取=,得=(,,),
点到平面的距离
==.
()解假设存在,则设=λ (<λ<),
因为=(,,-),所以(,λ,-λ),
设平面的法向量为=(,,),
则即
所以取=(-λ,λ-,λ+),
平面的法向量=(,,),
因为二面角——的余弦值为,
所以=,
所以λ-λ+=,
所以λ=或λ=(舍去),所以=.
.如图,在长方体—中,===,为的中点,为上的一点,=.
()证明:平面⊥平面;
()求二面角——的大小.
()证明以为原点,分别以、、所在直线为轴、轴、轴建立如图所示空间直角坐标系,
则(,,),(,,),(,,),(,,).
∵为的中点,
∴点坐标为(,,),
∵=,。
高考数学(全国甲卷通用理科)考前抢分必做 中档大题规范练3 Word版含答案
中档大题规范练数列
.(·课标全国甲)为等差数列{}的前项和,且=,=.记=[ ],其中[]表示不超过的最大整数,如[]=,[ ]=. ()求,,;
()求数列{}的前项和.
解()设{}的公差为,据已知有+=,
解得=.所以{}的通项公式为=.
=[ ]=,=[ ]=,=[ ]=.
()因为=
所以数列{}的前项和为×+×+×=.
.在数列{}中,=,=,+-++=(∈*).
()求数列的通项公式;
()若=(∈*),求数列{}的前项和.
解()∵+-++=(∈*),
∴+-+=+-(∈*),
即数列{}为等差数列,
∵=,=,
∴公差===,
∴=+(-)=-.
()∵=-,
∴===·=·(-),
∴=·(-+-+…+-)=·(-).
.已知数列{}是递增的等比数列,满足=,且是,的等差中项,数列{}满足+=+,其前项和
为,且+=.
()求数列{},{}的通项公式;
()数列{}的前项和为,若不等式(+)-λ+≥对一切∈*恒成立,求实数λ的取值范围. 解()设等比数列{}的公比为,
则>,=-,
∵是,的等差中项,
∴×=+,
即-+=.
∵>,∴=,
∴=·-=+.
依题意,数列{}为等差数列,公差=,
又+==,
∴(+)++=,
∴=,∴=+.
()∵=+,
∴==+-.
不等式(+)-λ+≥化为
-+≥λ(+),
∵∈*,
∴λ≤对一切∈*恒成立.
而=
=(+)+-≥-=,
当且仅当+=,。
高考数学(全国甲卷通用理科)考前抢分必做 考前回扣 回扣6 Word版含答案
回扣立体几何.概念理解()四棱柱、直四棱柱、正四棱柱、正方体、平行六面体、直平行六面体、长方体之间的关系.()三视图①三视图的正(主)视图、侧(左)视图、俯视图分别是从几何的正前方、正左方、正上方观察几何体画出的轮廓线.画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高.②三视图排列规则:俯视图放在正(主)视图的下面,长度与正(主)视图一样;侧(左)视图放在正(主)视图的右面,高度和正(主)视图一样,宽度与俯视图一样..柱、锥、台、球体的表面积和体积侧面展开图表面积体积直棱柱长方形=底+侧=底·圆柱长方形=π+π=π·棱锥由若干三角形构成=底+侧=底·圆锥扇形=π+π=π·棱台由若干个梯形构成=上底+下底+侧=(++′)·圆台扇环=π′+π(+′)+π=π(+′+′)·球=π=π.平行、垂直关系的转化示意图()()线线垂直线面垂直面面垂直()两个结论①⇒∥②⇒⊥α.用向量求空间角()直线,夹角θ有θ=〈,〉(其中,分别是直线,的方向向量).()直线与平面α的夹角θ有θ=〈,〉(其中是直线的方向向量,是平面α的法向量).()平面α,β夹角θ有θ=〈,〉,则α——β二面角的平面角为θ或π-θ(其中,分别是平面α,β的法向量)..混淆“点在直线上”与“直线在平面α内”的数学符号关系,应表示为∈,⊂α..在由三视图还原为空间几何体的实际形状时,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线为虚线.在还原空间几何体实际形状时一般是以正(主)视图和俯视图为主..易混淆几何体的表面积与侧面积的区别,几何体的表面积是几何体的侧面积与所有底面面积之和,不能漏掉几何体的底面积;求锥体体积时,易漏掉体积公式中的系数..不清楚空间线面平行与垂直关系中的判定定理和性质定理,忽视判定定理和性质定理中的条件,导致判断出错.如由α⊥β,α∩β=,⊥,易误得出⊥β的结论,就是因为忽视面面垂直的性质定理中⊂α的限制条件..注意图形的翻折与展开前后变与不变的量以及位置关系.对照前后图形,弄清楚变与不变的元素后,再立足于不变的元素的位置关系与数量关系去探求变化后的元素在空间中的位置与数量关系..几种角的范围。
2024 年高考全国甲卷数学(理科)真题卷含答案
2024年高考全国甲卷数学(理)一、单选题1.设5i z =+,则()i z z +=( )2.集合{}1,2,3,4,5,9,A BA ==,则∁AA (AA ∩BB )=( )A .{}1,4,9B .{}3,4,9C .{}1,2,3D .{}2,3,53.若实数,x y 满足约束条件43302202690x y x y x y −−≥−−≤ +−≤ ,则5z x y =−的最小值为( )A .5B .12C .2−D .72−4.等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =( ) A .2− B .73C .1D .25.已知双曲线2222:1(0,0)y x C a b a b−=>>的上、下焦点分别为()()120,4,0,4F F −,点()6,4P −在该双曲线上,则该双曲线的离心率为( )6.设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为( ) A .16B .13C .12D .237.函数()()2e e sin x x f x x x −=−+−在区间[2.8,2.8]−的大致图像为( )A .B .C .D .8.已知cos cos sin ααα=−πtan 4α+=( )A .1B .1−CD .19.已知向量()()1,,,2a x x b x =+=,则( )A .“3x =−”是“a b ⊥”的必要条件B .“3x =−”是“//a b”的必要条件C .“0x =”是“a b ⊥”的充分条件 D .“1x =−”是“//a b”的充分条件是两个平面,是两条直线,且①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n ⊥ 其中所有真命题的编号是( )A .①③B .②④C .①②③D .①③④【答案】A【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③. 【解析】①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α, 当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,①正确; ②,若m n ⊥,则n 与,αβ不一定垂直,②错误; ③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ= ,则//s m ,又因为//n s ,则//m n ,③正确;④,若,m n αβ∩=与α和β所成的角相等,如果//,//αβn n ,则//m n ,④错误; ①③正确, 故选A.11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A .32BC D12.已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++−=交于,A B 两点,则AB 的最小值为( ) A .2B .3C .4D .【答案】C【分析】结合等差数列性质将c 代换,求出直线恒过的定点,采用数形结合法即可求解.【详解】因为,,a b c 成等差数列,所以2b a c =+,2c b a =−,代入直线方程0ax by c ++=得 20ax by b a ++−=,即()()120a x b y −++=,令1020x y −= += 得12x y = =− ,故直线恒过()1,2−,设()1,2P −,圆化为标准方程得:()22:25C x y ++=,故选C二、填空题13.1013x +的展开式中,各项系数的最大值是 .14.已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r −和()213r r −,则两个圆台的体积之比=V V 甲乙.15.已知1a >,8115log log 42a a −=−,则=a . 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是 .三、解答题17.某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间26 24 0 50乙车间70 28 2 100总计96 52 2 150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+则认为该工厂产品的优级品率提高了,根据抽取的150件产品的数据,能否认为生产线智能12.247≈)附:22()()()()()n ad bcKa b c d a c b d−=++++()2P K k≥0.050 0.010 0.001 k 3.841 6.635 10.82818.记n S 为数列{}n a 的前n 项和,且434n n S a =+. (1)求{}n a 的通项公式;(2)设1(1)n n n b na −−,求数列{}n b 的前n 项和为n T .4,2AD AB BC EF ====,ED FB =M 为AD 的中点.(1)证明://BM 平面CDE ;20.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M 在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.21.已知函数()()()1ln 1f x ax x x =−+−.(1)当2a =−时,求()f x 的极值; 0f x ≥恒成立,求a 的取值范围.中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为cos 1ρρθ+.(1)写出C 的直角坐标方程;(2)设直线l :x t y t a = =+(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.满足.(1)证明:2222a b a b +>+;(2)证明:22226a b b a −+−≥.【答案】(1)见解析(2)见解析【分析】(1)直接利用22222()a b a b +≥+即可证明.(2)根据绝对值不等式并结合(1)中结论即可证明.。
2024年高考全国甲卷理科数学真题试卷及答案
2024年普通高等学校招生全国统一考试全国甲卷理科数学使用范围:陕西、宁夏、青海、内蒙古、四川一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. l.设5z i =+,则()i z z +=( ) A.10iB.2iC.10D.2-2.集合1,2,3,4,9{}5,A =,{|}B x A =,则()A C A B =( ) A.{1,4,9}B.{3,4,9}C.{1,2,3}D.{2,3,5}3.若实数,x y 满足约束条件4330,220,2690.x y x y x y --⎧⎪--⎨⎪+-≤⎩,则5z x y =-的最小值为( )A.12B.0C.52-D.72-4.等差数列{}n a 的前n 项和为n S ,若5105,1S S a ==,则1a =( ) A.2-B.73C.1D.25.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为21(0,4),(0,4)F F -,点(6,4)-在该双曲线上,则该双曲线的离心率为( )A.135B.137C.2D.36.设函数22sin ()1x e xf x x+=+则曲线()y f x =在点(0,1)处的切线与两坐标轴所围成的三角形的面积为( ) A.16B.13C.12D.237.函数2(sin )x x y x e e x -=-+-在区间 2.8,[]2.8-的图像大致为( )A. B.C. D.8. 已知cos cos sin ααα=-则πtan 4α⎛⎫+= ⎪⎝⎭( )A. 1B. 1C.2D. 19.设向量(1,),(,2)a x x b x =+=,则( ) A.3x =-是a b ⊥的必要条件 B.3x =-是//a b 的必要条件 C.0x =是a b ⊥的充分条件D.1x =-+是//a b 的充分条件 10.设,αβ为两个平面,,m n 为两条直线,且.m αβ=下述四个命题:①若//m n ,则//n α或//n β ②若m n ⊥,则n α⊥或n β⊥ ③若//n α且//n β,则//m n④若n 与,αβ所成的角相等,则m n ⊥. 其中所有真命题的编号是( ) A.①③B.②④C.①②③D.①③④11.记ABC ∆的内角,,A B C 的对边分别为,,,a b c 已知2960,4B b ac ︒==,则sin sin A C +=( ) A.32B.12.已知b 是a ,c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为( ) A.1B.2C.4D.二、填空题:本题共4小题,每小题5分,共20分.13.1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______. 14.已知圆台甲、乙的上底面半径均为1r ,下底面半径均为2r ,圆台的母线长分别为21212(),3()r r r r --,则圆台甲与乙的体积之比=V V 甲乙____________. 15.已知1a >且8115log log 42a a -=-,则a =_______. 16.有6个相同的球,分别标有数字1,2,3,4,5,6,从中无放回地随机取3次,每次取1个球.设m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 之差的绝对值不大于12的概率为_______. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题.考生根据要求作答. (一)必考题:共60分. 17.(12分)某工厂进行生产线智能化升级改造.升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下(1)填写如下列联表能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲、乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+,则认为该工厂产品的优级品率提高了.根据抽取的150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?12.247≈)附:22()()()()()n ad bcKa b c d a c b d-=++++18.(12分)记n S 为数列{}n a 的前n 项和,已知434n n S a =+ (1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和n T 19.(12分)如图,在以,,,,,A B C D E F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//,4,2,EF AD BC AD AD AB BC EF ED =====FB =M 为AD 的中点.(1)证明://BM 平面CDE ; (2)求二面角F BM E --的正弦值.20.(12分)设椭圆2222:1(0)x y C a b a b +=>>的右焦点为F ,点3(1,)2M 在C 上,且MF x ⊥轴. (1)求C 的方程.(2)过点(4,0)P 的直线交C 于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴. 21.(12分)已知函数()(1)ln(1)f x ax x x =-+- (1)若2a =-,求()f x 的极值.(2)当0x 时,()0f x ,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1.ρρθ=+ (1)写出C 的直角坐标方程.(2)设直线,:(x t l t y t a =⎧⎨=+⎩为参数),若C 与l 相交于,A B 两点,且||2AB =,求a 的值. 23.[选修4—5:不等式选讲](10分) 已知实数,a b 满足 3.a b + (1)证明:2222a b a b +>+(2)证明:2222 6.a b b a -+-∣∣∣∣2024年全国甲卷理科数学参考答案 使用范围:陕西、宁夏、青海、内蒙古、四川一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. l.设5z i =+,则()i z z +=( ) A.10i B.2iC.10D.2-【答案】A【解析】因为5z i =+,所以()(55)10i z z i i i i +=-++=,故选A. 2.集合1,2,3,4,9{}5,A =,{|}B x A =,则()A C A B =( ) A.{1,4,9} B.{3,4,9}C.{1,2,3}D.{2,3,5}【答案】D【解析】因为1,2,3,4,9{}5,A =,{|}{1,4,9,16,25,81}B x A ==所以{}()2,3,5A C A B =,故选D.3.若实数,x y 满足约束条件4330,220,2690.x y x y x y --⎧⎪--⎨⎪+-≤⎩,则5z x y =-的最小值为( )A.12B.0C.52-D.72-【答案】D【解析】实数,x y 满足43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图由5z x y =-可得1155y x z =- 即z 的几何意义为1155y x z =-的截距的15-则该直线截距取最大值时,z 有最小值 此时直线1155y x z =-过点A 联立43302690x y x y --=⎧⎨+-=⎩,解得321x y ⎧=⎪⎨⎪=⎩,即3,12A ⎛⎫⎪⎝⎭ 则min 375122z =-⨯=-. 故选D.4.等差数列{}n a 的前n 项和为n S ,若5105,1S S a ==,则1a =( ) A.2- B.73C.1D.2【答案】B【解析】因为510S S =,所以788,0S S a ==,又因为51a =,所以公差1817,733d a a d =-=-=,故选B.5.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为21(0,4),(0,4)F F -,点(6,4)-在该双曲线上,则该双曲线的离心率为( )A.135B.137C.2D.3【答案】C【解析】1221||82||||106F F c e a PF PF ====--,故选C. 6.设函数22sin ()1x e xf x x+=+则曲线()y f x =在点(0,1)处的切线与两坐标轴所围成的三角形的面积为( )A.16B.13C.12D.23【答案】A 【解析】()()()()()222e 2cos 1e 2sin 21xx x x x xf x x ++-+⋅'=+则()()()()()02e 2cos 010e 2sin 000310f ++-+⨯'==+即该切线方程为13y x -=,即31y x令0x =,则1y =,令0y =,则13x故该切线与两坐标轴所围成的三角形面积1111236S =⨯⨯-=.故选:A.7.函数2(sin )x x y x e e x -=-+-在区间 2.8,[]2.8-的图像大致为( )A. B.C. D.【答案】B 【解析】()()()()()22e e sin e e sin x x x x f x x x x x f x ---=-+--=-+-=又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭ 故可排除D. 故选:B.8. 已知cos cos sin ααα=-则πtan 4α⎛⎫+= ⎪⎝⎭( )A. 1B. 1C.D. 1【答案】B【解析】因为cos cos sin ααα=-所以11tan =-α,tan 1⇒α=所以tan 1tan 11tan 4α+π⎛⎫==α+ ⎪-α⎝⎭故选:B.9.设向量(1,),(,2)a x x b x =+=,则( ) A.3x =-是a b ⊥的必要条件 B.3x =-是//a b 的必要条件 C.0x =是a b ⊥的充分条件D.1x =-+是//a b 的充分条件 【答案】C【解析】对A,当a b ⊥时,则0a b ⋅=所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误; 对C,当0x =时,()()1,0,0,2a b ==,故0a b ⋅= 所以a b ⊥,即充分性成立,故C 正确;对B,当//a b 时,则22(1)x x +=,解得1x =±即必要性不成立,故B 错误;对D,当1x =-,不满足22(1)x x +=,所以//a b 不成立,即充分性不立,故D 错误. 故选:C.10.设,αβ为两个平面,,m n 为两条直线,且.m αβ=下述四个命题:①若//m n ,则//n α或//n β ②若m n ⊥,则n α⊥或n β⊥ ③若//n α且//n β,则//m n④若n 与,αβ所成的角相等,则m n ⊥. 其中所有真命题的编号是( ) A.①③ B.②④C.①②③D.①③④【答案】A对①,当n ⊂α,因为//m n ,m β⊂,则//n β 当n β⊂,因为//m n ,m α⊂,则//n α当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确; 对①,若m n ⊥,则n 与,αβ不一定垂直,故①错误;对①,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β 因为s ⊂平面α,m αβ=,则//s m ,又因为//n s ,则//m n ,故①正确;对①,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故①错误; 综上只有①①正确 故选:A.11.记ABC ∆的内角,,A B C 的对边分别为,,,a b c 已知2960,4B b ac ︒==,则sin sin A C +=( )A.32B.【答案】C 【解析】 因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +== 所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin 2A C +=. 故选:C.12.已知b 是a ,c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为( )A.1B.2C.4D.【答案】C因为,,a b c 成等差数列,所以2b a c =+,2c b a =-,代入直线方程0ax by c 得20ax by b a ++-=,即()()120a x b y -++=,令1020x y -=⎧⎨+=⎩得12x y =⎧⎨=-⎩ 故直线恒过()1,2-,设()1,2P -,圆化为标准方程得:()22:25C x y ++=设圆心为C ,画出直线与圆的图形,由图可知,当PC AB ⊥时,AB 最小1,PC AC r ===,此时24AB AP ====.故选:C二、填空题:本题共4小题,每小题5分,共20分.13.1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______. 【答案】5由题展开式通项公式为101101C 3rr r r T x -+⎛⎫= ⎪⎝⎭,010r ≤≤且r ∈Z设展开式中第1r +项系数最大,则1091101010111101011C C 3311C C 33rrr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩294334r r ⎧≥⎪⎪⇒⎨⎪≤⎪⎩,即293344r ≤≤,又r ∈Z ,故8r = 所以展开式中系数最大的项是第9项,且该项系数为28101C 53⎛⎫= ⎪⎝⎭. 故答案为:5.14.已知圆台甲、乙的上底面半径均为1r ,下底面半径均为2r ,圆台的母线长分别为21212(),3()r r r r --,则圆台甲与乙的体积之比=V V 甲乙____________.【解析】由题可得两个圆台的高分别为)12h r r ==-甲)12h r r ==-乙所以((21211313S S h r r V h V h S S h +-====++甲甲甲乙乙乙.故答案为15.已知1a >且8115log log 42a a -=-,则a =_______. 【答案】64【解析】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=2log 1a ⇒=-或2log 6a =,又1a >所以622log 6log 2a ==,故6264a == 故答案为:64.16.有6个相同的球,分别标有数字1,2,3,4,5,6,从中无放回地随机取3次,每次取1个球.设m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 之差的绝对值不大于12的概率为_______. 【答案】715【解析】从6个不同的球中不放回地抽取3次,共有36A 120=种设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b +++-≤ 故2()3c a b -+≤,故32()3c a b -≤-+≤ 故323a b c a b +-≤≤++若1c =,则5a b +≤,则(),a b 为:()()2,3,3,2,故有2种若2c =,则17a b ≤+≤,则(),a b 为:()()()()()1,3,1,4,1,5,1,6,3,4()()()()()3,1,4,1,5,1,6,1,4,3,故有10种当3c =,则39a b ≤+≤,则(),a b 为()()()()()()()()1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5 ()()()()()()()()2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4故有16种当4c =,则511a b ≤+≤,同理有16种 当5c =,则713a b ≤+≤,同理有10种 当6c =,则915a b ≤+≤,同理有2种 共m 与n 的差的绝对值不超过12时不同的抽取方法总数为()22101656++= 故所求概率为56712015=. 故答案为:715三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题.考生根据要求作答. (一)必考题:共60分. 17.(12分)某工厂进行生产线智能化升级改造.升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下(1)填写如下列联表:能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲、乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+,则认为该工厂产品的优级品率提高了.根据抽取的150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?12.247≈)附:22()()()()()n ad bcKa b c d a c b d-=++++【小问1详解】根据题意可得列联表:可得()2215026302470754.687550100965416K⨯-⨯===⨯⨯⨯因为3.841 4.6875 6.635<<所以有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲,乙两车间产品的优级品率存在差异.【小问2详解】由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为960.64150= 用频率估计概率可得0.64p =又因为升级改造前该工厂产品的优级品率0.5p = 则0.50.50.5 1.650.56812.247p +=+≈+⨯≈可知p p >+所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了. 18.(12分)记n S 为数列{}n a 的前n 项和,已知434n n S a =+ (1)求{}n a 的通项公式; 【小问1详解】当1n =时,1114434S a a ==+,解得14a =.当2n ≥时,11434n n S a --=+,所以1144433n n n n n S S a a a ---==-即13n n a a -=- 而140a =≠,故0n a ≠,故13nn a a -=- ①数列{}n a 是以4为首项,3-为公比的等比数列 所以()143n n a -=⋅-.【小问2详解】111(1)4(3)43n n n n b n n ---=-⋅⋅⋅-=⋅所以123n n T b b b b =++++0211438312343n n -=⋅+⋅+⋅++⋅故1233438312343n n T n =⋅+⋅+⋅++⋅ 所以1212443434343n n n T n --=+⋅+⋅++⋅-⋅()1313444313n nn --=+⋅-⋅-()14233143n n n -=+⋅⋅--⋅(24)32n n =-⋅-(21)31n n T n ∴=-⋅+.(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和n T 19.(12分)如图,在以,,,,,A B C D E F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//,4,2,EF AD BC AD AD AB BC EF ED =====FB =M 为AD 的中点.(1)证明://BM 平面CDE (2)求二面角F BM E --的正弦值.【答案】(1)证明见详解 (2【小问1详解】因为//,2,4,BC AD EF AD M ==为AD 的中点,所以//,BC MD BC MD = 四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDECD ⊂平面CDE ,所以//BM 平面CDE 【小问2详解】如图所示,作BO AD ⊥交AD 于O ,连接OF因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD = 结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM = 所以ABM 为等边三角形,O 为AM 中点,所以OB =又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD = 四边形EFMD 为平行四边形,FM ED AF ==所以AFM △为等腰三角形,ABM 与AFM △底边上中点O 重合,OF AM ⊥,3OF ==因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直以OB 方向为x 轴,OD 方向为y 轴,OF 方向为z 轴,建立O xyz -空间直角坐标系()0,0,3F,)()(),0,1,0,0,2,3BM E ,()()3,1,0,3,0,3BM BF =-=-()2,3BE =-,设平面BFM 的法向量为()111,,m x y z =平面EMB 的法向量为()222,,n x y z =则00m BM m BF ⎧⋅=⎪⎨⋅=⎪⎩,即1111030y z ⎧+=⎪⎨+=⎪⎩,令1x =得113,1y z ==,即()3,3,1m =则00n BM n BE ⎧⋅=⎪⎨⋅=⎪⎩,即222220230y y z ⎧+=⎪⎨++=⎪⎩,令2x =,得223,1y z ==- 即()3,3,1n =-,1111cos ,1313m n m n m n ⋅===⋅⋅,则43sin ,13m n = 故二面角F BM E --.20.(12分) 设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点3(1,)2M 在C 上,且MF x ⊥轴. (1)求C 的方程(2)过点(4,0)P 的直线交C 于,A B 两点,N 为线段FP 的中点,直线NB 交直线 MF 于点Q ,证明:AQ y ⊥轴.【答案】(1)22143x y += (2)证明见解析【小问1详解】设(),0F c ,由题设有1c =且232b a =,故2132a a -=,故2a =,故b =故椭圆方程为22143x y +=. 【小问2详解】直线AB 的斜率必定存在,设:(4)AB y k x =-,()11,A x y ,()22,B x y由223412(4)x y y k x ⎧+=⎨=-⎩可得()2222343264120k x k x k +-+-= 故()()422Δ102443464120k k k =-+->,故1122k -<< 又22121222326412,3434k k x x x x k k-+==++ 而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=- ⎪⎝⎭-,故22223325252Q y y y x x --==-- 所以()1222112225332525Q y x y y y y y x x ⨯-+-=+=-- ()()()12224253425k x x k x x -⨯-+-=-()222212122264123225825834342525k k x x x x k k k k x x -⨯-⨯+-++++==-- 2222212824160243234025k k k k k x --+++==-故1Q y y =,即AQ y ⊥轴.21.(12分)已知函数()(1)ln(1)f x ax x x =-+-(1)若2a =-,求()f x 的极值(2)当0x 时,()0f x ,求a 的取值范围.【答案】(1)极小值为0,无极大值.(2)12a ≤- 【小问1详解】当2a =-时,()(12)ln(1)f x x x x =++- 故121()2ln(1)12ln(1)111x f x x x x x+'=++-=+-+++ 因为12ln(1),11y x y x =+=-++在()1,∞-+上为增函数 故()f x '在()1,∞-+上为增函数,而(0)0f '=故当10x -<<时,()0f x '<,当0x >时,()0f x '>故()f x 在0x =处取极小值且极小值为()00f =,无极大值.【小问2详解】()()()()11ln 11ln 1,011a x ax f x a x a x x x x+-=-+'+-=-+->++ 设()()()1ln 1,01a x s x a x x x +=-+->+ 则()()()()()()222111211111a a x a a ax a s x x x x x ++++-++=-=-=-+++'+ 当12a ≤-时,()0s x '>,故()s x 在()0,∞+上为增函数 故()()00s x s >=,即()0f x '>所以()f x 在[)0,∞+上为增函数,故()()00f x f ≥=. 当102a -<<时,当210a x a+<<-时,()0s x '<故()s x 在210,a a +⎛⎫- ⎪⎝⎭上为减函数,故在210,a a +⎛⎫- ⎪⎝⎭上()()0s x s < 即在210,a a +⎛⎫- ⎪⎝⎭上()0f x '<即()f x 为减函数 故在210,a a +⎛⎫- ⎪⎝⎭上()()00f x f <=,不合题意,舍. 当0a ≥,此时()0s x '<在()0,∞+上恒成立同理可得在()0,∞+上()()00f x f <=恒成立,不合题意,舍综上,12a ≤-. (二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1.ρρθ=+(1)写出C 的直角坐标方程(2)设直线,:(x t l t y t a=⎧⎨=+⎩为参数),若C 与l 相交于,A B 两点,且||2AB =,求a 的值. 【答案】(1)221y x =+(2)34a = 【小问1详解】由cos 1ρρθ=+,将cos xρρθ⎧⎪=⎨=⎪⎩cos 1ρρθ=+1x =+,两边平方后可得曲线的直角坐标方程为221y x =+.【小问2详解】对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+. 法1:直线l 的斜率为1,故倾斜角为π4故直线的参数方程可设为22x s y a s ⎧=⎪⎪⎨⎪=+⎪⎩,s ∈R . 将其代入221y x =+中得()221)210s a s a +-+-=设,A B 两点对应的参数分别为12,s s ,则)()212121,21s s a s s a +=--=-且()()22Δ818116160a a a =---=->,故<1a12AB s s ∴=-=2==,解得34a =. 法2:联立221y x a y x =+⎧⎨=+⎩,得22(22)10x a x a +-+-= ()22Δ(22)41880a a a =---=-+>,解得1a <设()()1122,,,A x y B x y ,2121222,1x x a x x a ∴+=-=-则AB ==2= 解得34a = 23.[选修4—5:不等式选讲](10分)已知实数,a b 满足 3.a b +(1)证明:2222a b a b +>+(2)证明:2222 6.a b b a -+-∣∣∣∣【小问1详解】因为()()2222222022a b a ab b a b b a -+=--++=≥ 当a b =时等号成立,则22222()a b a b +≥+因为3a b +≥,所以22222()a b a b a b +≥+>+【小问2详解】222222222222()a b b a a b b a a b a b -+-≥-+-=+-+22222()()()()(1)326a b a b a b a b a b a b =+-+≥+-+=++-≥⨯=。
2024年全国高考甲卷理科数学试题及答案
绝密★启用前2024年普通高等学校招生全国统一考试全国甲卷理科数学使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设5i z =+,则()i z z +=()A .10iB.2iC.10D.2-2.集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð()A.{}1,4,9 B.{}3,4,9 C.{}1,2,3 D.{}2,3,53.若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为()A.5B.12C.2- D.72-4.等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =()A.2- B.73C.1D.25.已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.6.设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为()A.16B.13C.12D.237.函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A.B.C. D.8.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A.1+ B.1- C.2D.19.已知向量()()1,,,2a x x b x =+=,则()A.“3x =-”是“a b ⊥”的必要条件 B.“3x =-”是“//a b”的必要条件C.“0x =”是“a b ⊥ ”的充分条件D.“1x =-+”是“//a b”的充分条件10.设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A.①③B.②④C.①②③D.①③④11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A.32B.C.72D.3212.已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为()A.2B.3C.4D.二、填空题:本题共4小题,每小题5分,共20分.13.1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______.14.已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙______.15.已知1a >,8115log log 42a a -=-,则=a ______.16.有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+150件产品的数据,能否认为12.247≈)附:22()()()()()n ad bcKa b c d a c b d-=++++()2P K k≥0.0500.0100.001k 3.841 6.63510.82818.记n S为数列{}n a的前n项和,且434n nS a=+.(1)求{}n a的通项公式;(2)设1(1)nn nb na-=-,求数列{}n b的前n项和为n T.19.如图,在以A,B,C,D,E,F为顶点的五面体中,四边形ABCD与四边形ADEF均为等腰梯形,//,//BC AD EF AD,4,2AD AB BC EF====,ED FB==M为AD的中点.(1)证明://BM平面CDE;(2)求二面角F BM E--的正弦值.20.设椭圆2222:1(0)x yC a ba b+=>>的右焦点为F,点31,2M⎛⎫⎪⎝⎭在C上,且MF x⊥轴.(1)求C的方程;(2)过点()4,0P的直线与C交于,A B两点,N为线段FP的中点,直线NB交直线MF于点Q,证明:AQ y⊥轴.21.已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围.(二)选考题:共10分,请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a=⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.[选修4-5:不等式选讲]23.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.绝密★启用前2024年普通高等学校招生全国统一考试全国甲卷理科数学使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设5i z =+,则()i z z +=()A.10iB.2iC.10D.2-【答案】A 【解析】【分析】结合共轭复数与复数的基本运算直接求解.【详解】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=.故选:A2.集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð()A.{}1,4,9 B.{}3,4,9 C.{}1,2,3 D.{}2,3,5【答案】D 【解析】【分析】由集合B 的定义求出B ,结合交集与补集运算即可求解.【详解】因为{}{}1,2,3,4,5,9,A B A ==,所以{}1,4,9,16,25,81B =,则{}1,4,9A B = ,(){}2,3,5A A B = ð故选:D3.若实数,x y满足约束条件43302202690x yx yx y--≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y=-的最小值为()A.5B.12C.2-D.7 2-【答案】D【解析】【分析】画出可行域后,利用z的几何意义计算即可得.【详解】实数,x y满足43302202690x yx yx y--≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图:由5z x y=-可得1155y x z=-,即z的几何意义为1155y x z=-的截距的15-,则该直线截距取最大值时,z有最小值,此时直线1155y x z=-过点A,联立43302690x yx y--=⎧⎨+-=⎩,解得321xy⎧=⎪⎨⎪=⎩,即3,12A⎛⎫⎪⎝⎭,则min375122z=-⨯=-.故选:D.4.等差数列{}n a的前n项和为n S,若510S S=,51a=,则1a=()A.2-B.73 C.1 D.2【答案】B【解析】【分析】由510S S=结合等差中项的性质可得8a=,即可计算出公差,即可得1a的值.【详解】由105678910850S S a a a a a a-=++++==,则8a=,则等差数列{}n a 的公差85133a a d -==-,故151741433a a d ⎛⎫=-=-⨯-= ⎪⎝⎭.故选:B.5.已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.【答案】C 【解析】【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率.【详解】设()10,4F -、()20,4F 、()6,4-P ,则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =-=-=,则28224c e a ===.故选:C.6.设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为()A.16B.13C.12D.23【答案】A 【解析】【分析】借助导数的几何意义计算可得其在点()0,1处的切线方程,即可得其与坐标轴交点坐标,即可得其面积.【详解】()()()()()222e 2cos 1e 2sin 21xx x x x xf x x ++-+⋅'=+,则()()()()()2e 2cos 010e 2sin 000310f ++-+⨯'==+,即该切线方程为13y x -=,即31y x =+,令0x =,则1y =,令0y =,则13x =-,故该切线与两坐标轴所围成的三角形面积1111236S =⨯⨯-=.故选:A.7.函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A.B.C. D.【答案】B 【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D.【详解】()()()()()22ee sin e e sin xx x x f x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭,故可排除D.故选:B.8.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A.1+B.1- C.2D.1【答案】B 【解析】【分析】先将cos cos sin αα-α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos cos sin ααα=-,所以11tan =-α,3tan 13⇒α=-,所以tan 1tan 11tan 4α+π⎛⎫==α+ ⎪-α⎝⎭,故选:B .9.已知向量()()1,,,2a x x b x =+=,则()A.“3x =-”是“a b ⊥”的必要条件 B.“3x =-”是“//a b”的必要条件C.“0x =”是“a b ⊥”的充分条件D.“1x =-+”是“//a b”的充分条件【答案】C 【解析】【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【详解】对A ,当a b ⊥ 时,则0a b ⋅=,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b == ,故0a b ⋅=,所以a b ⊥,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x +=,解得1x =±,即必要性不成立,故B 错误;对D ,当1x =-+时,不满足22(1)x x +=,所以//a b不成立,即充分性不立,故D 错误.故选:C.10.设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A.①③B.②④C.①②③D.①③④【答案】A 【解析】【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③.【详解】对①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确;对②,若m n ⊥,则n 与,αβ不一定垂直,故②错误;对③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ= ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故④错误;综上只有①③正确,故选:A.11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A.32B.C.72D.32【答案】C 【解析】【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin 2A C +=.故选:C.12.已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为()A.2B.3C.4D.【答案】C 【解析】【分析】结合等差数列性质将c 代换,求出直线恒过的定点,采用数形结合法即可求解.【详解】因为,,a b c 成等差数列,所以2b a c =+,2c b a =-,代入直线方程0ax by c ++=得20ax by b a ++-=,即()()120a x b y -++=,令1020x y -=⎧⎨+=⎩得12x y =⎧⎨=-⎩,故直线恒过()1,2-,设()1,2P -,圆化为标准方程得:()22:25C x y ++=,设圆心为C ,画出直线与圆的图形,由图可知,当PC AB ⊥时,AB 最小,1,PC AC r ===24AB AP ====.故选:C二、填空题:本题共4小题,每小题5分,共20分.13.1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______.【答案】5【解析】【分析】先设展开式中第1r +项系数最大,则根据通项公式有1091101010111101011C C 3311C C 33r rr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,进而求出r 即可求解.【详解】由题展开式通项公式为101101C 3rr r r T x -+⎛⎫= ⎪⎝⎭,010r ≤≤且r ∈Z ,设展开式中第1r +项系数最大,则1091101010111101011C C 3311C C 33rrr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,294334r r ⎧≥⎪⎪⇒⎨⎪≤⎪⎩,即293344r ≤≤,又r ∈Z ,故8r =,所以展开式中系数最大的项是第9项,且该项系数为28101C 53⎛⎫= ⎪⎝⎭.故答案为:5.14.已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r-,则两个圆台的体积之比=V V 甲乙______.【答案】4【解析】【分析】先根据已知条件和圆台结构特征分别求出两圆台的高,再根据圆台的体积公式直接代入计算即可得解.【详解】由题可得两个圆台的高分别为)12h r r ==-甲,)12h r r ==-乙,所以((2121163143S S h V h V h S S h ++-===++甲甲甲乙乙乙.故答案为:64.15.已知1a >,8115log log 42a a -=-,则=a ______.【答案】64【解析】【分析】将8log ,log 4a a 利用换底公式转化成2log a 来表示即可求解.【详解】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=,2log 1a ⇒=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案为:64.16.有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是______.【答案】715【解析】【分析】根据排列可求基本事件的总数,设前两个球的号码为,a b ,第三个球的号码为c ,则323a b c a b +-≤≤++,就c 的不同取值分类讨论后可求随机事件的概率.【详解】从6个不同的球中不放回地抽取3次,共有36A 120=种,设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b +++-≤,故2()3c a b -+≤,故32()3c a b -≤-+≤,故323a b c a b +-≤≤++,若1c =,则5a b +≤,则(),a b 为:()()2,3,3,2,故有2种,若2c =,则17a b ≤+≤,则(),a b 为:()()()()()1,3,1,4,1,5,1,6,3,4,()()()()()3,1,4,1,5,1,6,1,4,3,故有10种,当3c =,则39a b ≤+≤,则(),a b 为:()()()()()()()()1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5,()()()()()()()()2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4,故有16种,当4c =,则511a b ≤+≤,同理有16种,当5c =,则713a b ≤+≤,同理有10种,当6c =,则915a b ≤+≤,同理有2种,共m 与n 的差的绝对值不超过12时不同的抽取方法总数为()22101656++=,故所求概率为56712015=.故答案为:715三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+150件产品的数据,能否认为12.247≈)附:22()()()()()n ad bcKa b c d a c b d-=++++()2P K k≥0.0500.0100.001k 3.841 6.63510.828【答案】(1)答案见详解(2)答案见详解【解析】【分析】(1)根据题中数据完善列联表,计算2K,并与临界值对比分析;(2)用频率估计概率可得0.64p=,根据题意计算p+,结合题意分析判断.【小问1详解】根据题意可得列联表:优级品非优级品甲车间2624乙车间7030可得()2215026302470754.687550100965416K⨯-⨯===⨯⨯⨯,因为3.841 4.6875 6.635<<,所以有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲,乙两车间产品的优级品率存在差异.【小问2详解】由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为960.64150=,用频率估计概率可得0.64p =,又因为升级改造前该工厂产品的优级品率0.5p =,则0.50.50.5 1.650.56812.247p +=+≈+⨯≈,可知p p >+,所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了.18.记n S 为数列{}n a 的前n 项和,且434n n S a =+.(1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和为n T .【答案】(1)14(3)n n a -=⋅-(2)(21)31nn T n =-⋅+【解析】【分析】(1)利用退位法可求{}n a 的通项公式.(2)利用错位相减法可求n T .【小问1详解】当1n =时,1114434S a a ==+,解得14a =.当2n ≥时,11434n n S a --=+,所以1144433n n n n n S S a a a ---==-即13n n a a -=-,而140a =≠,故0n a ≠,故13nn a a -=-,∴数列{}n a 是以4为首项,3-为公比的等比数列,所以()143n n a -=⋅-.【小问2详解】111(1)4(3)43n n n n b n n ---=-⋅⋅⋅-=⋅,所以123n n T b b b b =++++ 0211438312343n n -=⋅+⋅+⋅++⋅ 故1233438312343nn T n =⋅+⋅+⋅++⋅ 所以1212443434343n nn T n --=+⋅+⋅++⋅-⋅ ()1313444313n nn --=+⋅-⋅-()14233143n nn -=+⋅⋅--⋅(24)32n n =-⋅-,(21)31n n T n ∴=-⋅+.19.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E --的正弦值.【答案】(1)证明见详解;(2)4313【解析】【分析】(1)结合已知易证四边形BCDM 为平行四边形,可证//BM CD ,进而得证;(2)作BO AD ⊥交AD 于O ,连接OF ,易证,,OB OD OF 三垂直,采用建系法结合二面角夹角余弦公式即可求解.【小问1详解】因为//,2,4,BC AD EF AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ;【小问2详解】如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =,结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =,所以ABM 为等边三角形,O 为AM中点,所以OB =,又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =,四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM 与AFM △底边上中点O 重合,OF AM ⊥,3OF =,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,以OB 方向为x 轴,OD 方向为y 轴,OF 方向为z 轴,建立O xyz -空间直角坐标系,()0,0,3F,)()(),0,1,0,0,2,3BM E,()(),BM BF ==,()2,3BE = ,设平面BFM 的法向量为()111,,m x y z =,平面EMB 的法向量为()222,,n x y z =,则00m BM m BF ⎧⋅=⎪⎨⋅=⎪⎩,即1111030y z ⎧+=⎪⎨+=⎪⎩,令1x =113,1y z ==,即)m =,则00n BM n BE ⎧⋅=⎪⎨⋅=⎪⎩,即222220230y y z ⎧+=⎪⎨++=⎪⎩,令2x =,得223,1y z ==-,即)1n =-,11cos ,13m n m n m n ⋅===⋅,则sin ,13m n =,故二面角F BM E --的正弦值为4313.20.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.【答案】(1)22143x y +=(2)证明见解析【解析】【分析】(1)设(),0F c ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程.(2)设:(4)AB y k x =-,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y -,结合韦达定理化简前者可得10Q y y -=,故可证AQ y ⊥轴.【小问1详解】设(),0F c ,由题设有1c =且232b a =,故2132a a -=,故2a =,故b =,故椭圆方程为22143x y +=.【小问2详解】直线AB 的斜率必定存在,设:(4)AB y k x =-,()11,A x y ,()22,B x y,由223412(4)x y y k x ⎧+=⎨=-⎩可得()2222343264120k x k x k +-+-=,故()()422Δ102443464120k kk =-+->,故1122k -<<,又22121222326412,3434k k x x x x k k -+==++,而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=-⎪⎝⎭-,故22223325252Qy y y x x --==--,所以()1222112225332525Q y x y y y y y x x ⨯-+-=+=--()()()12224253425k x x k x x -⨯-+-=-()222212122264123225825834342525k k x x x x k k k k x x -⨯-⨯+-++++==--2222212824160243234025k k k k k x --+++==-,故1Q y y =,即AQ y ⊥轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.21.已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围.【答案】(1)极小值为0,无极大值.(2)12a ≤-【解析】【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就12a ≤-、102a -<<、0a ≥分类讨论后可得参数的取值范围.【小问1详解】当2a =-时,()(12)ln(1)f x x x x =++-,故121()2ln(1)12ln(1)111x f x x x x x+'=++-=+-+++,因为12ln(1),11y x y x=+=-++在()1,∞-+上为增函数,故()f x '在()1,∞-+上为增函数,而(0)0f '=,故当10x -<<时,()0f x '<,当0x >时,()0f x '>,故()f x 在0x =处取极小值且极小值为()00f =,无极大值.【小问2详解】()()()()11ln 11ln 1,011a x ax f x a x a x x x x+-=-+'+-=-+->++,设()()()1ln 101a xs x a x x x +=-+->+,则()()()()()()222111211111a a x a a ax a s x x x x x ++++-++=-=-=-+++'+,当12a ≤-时,()0s x '>,故()s x 在()0,∞+上为增函数,故()()00s x s >=,即()0f x '>,所以()f x 在[)0,∞+上为增函数,故()()00f x f ≥=.当102a -<<时,当210a x a+<<-时,()0s x '<,故()s x 在210,a a +⎛⎫- ⎪⎝⎭上为减函数,故在210,a a +⎛⎫- ⎪⎝⎭上()()0s x s <,即在210,a a +⎛⎫- ⎪⎝⎭上()0f x '<即()f x 为减函数,故在210,a a +⎛⎫-⎪⎝⎭上()()00f x f <=,不合题意,舍.当0a ≥,此时()0s x '<在()0,∞+上恒成立,同理可得在()0,∞+上()()00f x f <=恒成立,不合题意,舍;综上,12a ≤-.【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.(二)选考题:共10分,请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x t y t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.【答案】(1)221y x =+(2)34a =【解析】【分析】(1)根据ρρθ⎧⎪=⎨=⎪⎩可得C 的直角方程.(2)将直线的新的参数方程代入C 的直角方程,法1:结合参数s 的几何意义可得关于a 的方程,从而可求参数a 的值;法2:将直线的直角方程与曲线的直角方程联立,结合弦长公式可求a 的值.【小问1详解】由cos 1ρρθ=+,将xρρθ⎧⎪=⎨=⎪⎩cos 1ρρθ=+,1x =+,两边平方后可得曲线的直角坐标方程为221y x =+.【小问2详解】对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+.法1:直线l 的斜率为1,故倾斜角为π4,故直线的参数方程可设为22x s y a s ⎧=⎪⎪⎨⎪=+⎪⎩,s ∈R .将其代入221y x =+中得()221)210s a s a +-+-=设,A B 两点对应的参数分别为12,s s,则)()212121,21s s a s s a +=--=-,且()()22Δ818116160a a a =---=->,故1a <,12AB s s ∴=-=2==,解得34a =.法2:联立221y x a y x =+⎧⎨=+⎩,得22(22)10x a x a +-+-=,()22Δ(22)41880a a a =---=-+>,解得1a <,设()()1122,,,A x y B x y ,2121222,1x x a x x a ∴+=-=-,则AB ==2=,解得34a =[选修4-5:不等式选讲]23.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)直接利用22222()a b a b +≥+即可证明.(2)根据绝对值不等式并结合(1)中结论即可证明.【小问1详解】因为()()2222222022a b a ab b a b b a -+=--++=≥,当a b =时等号成立,则22222()a b a b +≥+,因为3a b +≥,所以22222()a b a b a b +≥+>+;【小问2详解】222222222222()a b b a a b b a a b a b -+-≥-+-=+-+22222()()()()(1)326a b a b a b a b a b a b =+-+≥+-+=++-≥⨯=。
高考数学(全国甲卷通用理科)考前抢分必做 中档大题规范练3含答案
中档大题规范练3 数 列1.(2016·课标全国甲)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.(1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.解 (1)设{a n }的公差为d ,据已知有7+21d =28,解得d =1.所以{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.(2)因为b n =Error!所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.2.在数列{a n }中,a 1=1,a 4=7,a n +2-2a n +1+a n =0(n ∈N *).(1)求数列a n 的通项公式;(2)若b n =(n ∈N *),求数列{b n }的前n 项和S n .1n (3+an )解 (1)∵a n +2-2a n +1+a n =0(n ∈N *),∴a n +2-a n +1=a n +1-a n (n ∈N *),即数列{a n }为等差数列,∵a 1=1,a 4=7,∴公差d ===2,a 4-a 137-13∴a n =1+2(n -1)=2n -1.(2)∵a n =2n -1,∴b n ===·=·(-),1n (3+an )1n (3+2n -1)121n (n +1)121n 1n +1∴S n =·(1-+-+…+-)=·(1-).121212131n 1n +1121n +13.已知数列{a n }是递增的等比数列,满足a 1=4,且a 3是a 2,a 4的等差中项,数列{b n }满足54b n +1=b n +1,其前n 项和为S n ,且S 2+S 6=a 4.(1)求数列{a n },{b n }的通项公式;(2)数列{a n }的前n 项和为T n ,若不等式n log 2(T n +4)-λb n +7≥3n 对一切n ∈N *恒成立,求实数λ的取值范围.解 (1)设等比数列{a n }的公比为q ,则q >1,a n =4q n -1,∵a 3是a 2,a 4的等差中项,54∴2×a 3=a 2+a 4,54即2q 2-5q +2=0.∵q >1,∴q =2,∴a n =4·2n -1=2n +1.依题意,数列{b n }为等差数列,公差d =1,又S 2+S 6=a 4=32,∴(2b 1+1)+6b 1+=32,6×52∴b 1=2,∴b n =n +1.(2)∵a n =2n +1,∴T n ==2n +2-4.4(2n -1)2-1不等式n log 2(T n +4)-λb n +7≥3n 化为n 2-n +7≥λ(n +1),∵n ∈N *,∴λ≤对一切n ∈N *恒成立.n 2-n +7n +1而=n 2-n +7n +1(n +1)2-3(n +1)+9n +1=(n +1)+-3≥2-3=3,9n +1(n +1)9n +1当且仅当n +1=,9n +1即n =2时等号成立,∴λ≤3.4.在各项均为正数的等比数列{a n }中,a 1=2,且a 3,3a 2,a 4成等差数列.(1)求等比数列{a n }的通项公式;(2)若数列{b n }满足b n =(n +2)log 2a n ,求数列{}的前n 项和T n .1bn 解 (1)由已知6a 2=a 3+a 4,则6a 2=a 2q +a 2q 2,即q 2+q -6=0,又q >0,所以q =2,a n =2n .(2)b n =(n +2)log 22n =n (n +2),则=(-),1bn 121n 1n +2T n =++…+1b 11b 21bn =(1-)+(-)+…+(-)+(-)1213121214121n -11n +1121n 1n +2=(1+--) 12121n +11n +2=-.342n +32(n 2+3n +2)5.已知等差数列{a n }的前n 项和为S n ,且满足a 6+a 8=-10,S 10=-35.(1)求数列{a n }的通项公式;(2)求数列{}的前n 项和T n .an 2n -1解 (1)由题设可得Error!解得Error!所以a n =1-(n -1)=2-n .(2)因为=-n ·,an2n -112n -212n -1所以T n =2+1++…+-(1+2×+3×+…+n ·),1212n -21212212n -1令S n =2+1++…+,1212n -2S n ′=1+2×+3×+…+n ·,1212212n -1则T n =S n -S n ′,因而S n =2+1++…+1212n -2==4(1-)=4-,2(1-12n )1212n 12n -2因为S n ′=1+2×+3×+…+n ·,1212212n -1所以S n ′=+2×+3×+…+n ·,121212212312n以上两式两边相减可得S n ′=1++++…+-n ·121212212312n -112n =-n ·=2--n ·,1-12n1-1212n 12n -112n 所以S n ′=4--n ·,12n -212n -1因此T n =S n -S n ′=.n2n -1。
考前三个月高考数学(全国甲卷通用理科)考前抢分必做 考前回扣 回扣2 Word版含答案
回扣2 函数与导数1.函数的定义域和值域(1)求函数定义域的类型和相应方法①若已知函数的解析式,则函数的定义域是使解析式有意义的自变量的取值范围;②若已知f (x )的定义域为[a ,b ],则f [g (x )]的定义域为不等式a ≤g (x )≤b 的解集;反之,已知f [g (x )]的定义域为[a ,b ],则f (x )的定义域为函数y =g (x )(x ∈[a ,b ])的值域; ③在实际问题中应使实际问题有意义. (2)常见函数的值域①一次函数y =kx +b (k ≠0)的值域为R ;②二次函数y =ax 2+bx +c (a ≠0):a >0时,值域为⎣⎡⎭⎫4ac -b24a ,+∞,a <0时,值域为⎝⎛⎦⎤-∞,4ac -b 24a ;③反比例函数y =kx (k ≠0)的值域为{y ∈R |y ≠0}.2.函数的奇偶性、周期性(1)奇偶性是函数在其定义域上的整体性质,对于定义域内的任意x (定义域关于原点对称),都有f (-x )=-f (x )成立,则f (x )为奇函数(都有f (-x )=f (x )成立,则f (x )为偶函数).(2)周期性是函数在其定义域上的整体性质,一般地,对于函数f (x ),如果对于定义域内的任意一个x 的值:若f (x +T )=f (x )(T ≠0),则f (x )是周期函数,T 是它的一个周期. 3.关于函数周期性、对称性的结论 (1)函数的周期性①若函数f (x )满足f (x +a )=f (x -a ),则f (x )为周期函数,2a 是它的一个周期.②设f (x )是R 上的偶函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,2a 是它的一个周期.③设f (x )是R 上的奇函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,4a 是它的一个周期.(2)函数图象的对称性①若函数y =f (x )满足f (a +x )=f (a -x ), 即f (x )=f (2a -x ),则f (x )的图象关于直线x =a 对称. ②若函数y =f (x )满足f (a +x )=-f (a -x ),即f (x )=-f (2a -x ),则f (x )的图象关于点(a ,0)对称. ③若函数y =f (x )满足f (a +x )=f (b -x ), 则函数f (x )的图象关于直线x =a +b2对称.4.函数的单调性函数的单调性是函数在定义域上的局部性质. ①单调性的定义的等价形式:设x 1,x 2∈[a ,b ], 那么(x 1-x 2)[f (x 1)-f (x 2)]>0⇔f x 1-f x 2x 1-x 2>0⇔f (x )在[a ,b ]上是增函数;(x 1-x 2)[f (x 1)-f (x 2)]<0⇔f x 1-f x 2x 1-x 2<0⇔f (x )在[a ,b ]上是减函数.②若函数f (x )和g (x )都是减函数,则在公共定义域内,f (x )+g (x )是减函数;若函数f (x )和g (x )都是增函数,则在公共定义域内,f (x )+g (x )是增函数;根据同增异减判断复合函数y =f [g (x )]的单调性.5.函数图象的基本变换 (1)平移变换:y =f (x )――――→h >0,右移h <0,左移y =f (x -h ), y =f (x )――――→k >0,上移k <0,下移y =f (x )+k . (2)伸缩变换:y =f (x )――――→0<ω<1,伸ω>1,缩y =f (ωx ), y =f (x )――――→0<A <1,缩A >1,伸y =Af (x ). (3)对称变换: y =f (x )――→x 轴y =-f (x ), y =f (x )――→y 轴y =f (-x ), y =f (x )――→原点y =-f (-x ).6.准确记忆指数函数与对数函数的基本性质 (1)定点:y =a x (a >0,且a ≠1)恒过(0,1)点; y =log a x (a >0,且a ≠1)恒过(1,0)点.(2)单调性:当a >1时,y =a x 在R 上单调递增;y =log a x 在(0,+∞)上单调递增; 当0<a <1时,y =a x 在R 上单调递减;y =log a x 在(0,+∞)上单调递减. 7.函数与方程(1)零点定义:x 0为函数f (x )的零点⇔f (x 0)=0⇔(x 0,0)为f (x )的图象与x 轴的交点.(2)确定函数零点的三种常用方法 ①解方程判定法:即解方程f (x )=0.②零点定理法:根据连续函数y =f (x )满足f (a )f (b )<0,判断函数在区间(a ,b )内存在零点. ③数形结合法:尤其是方程两端对应的函数类型不同时多用此法求解. 8.导数的几何意义(1)f ′(x 0)的几何意义:曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,该切线的方程为y -f (x 0)=f ′(x 0)(x -x 0).(2)切点的两大特征:①在曲线y =f (x )上;②在切线上. 9.利用导数研究函数的单调性(1)求可导函数单调区间的一般步骤:①求函数f (x )的定义域;②求导函数f ′(x );③由f ′(x )>0的解集确定函数f (x )的单调增区间,由f ′(x )<0的解集确定函数f (x )的单调减区间.(2)由函数的单调性求参数的取值范围:①若可导函数f (x )在区间M 上单调递增,则f ′(x )≥0(x ∈M )恒成立;若可导函数f (x )在区间M 上单调递减,则f ′(x )≤0 (x ∈M )恒成立;②若可导函数在某区间上存在单调递增(减)区间,f ′(x )>0(或f ′(x )<0)在该区间上存在解集;③若已知f (x )在区间I 上的单调性,区间I 中含有参数时,可先求出f (x )的单调区间,则I 是其单调区间的子集.10.利用导数研究函数的极值与最值(1)求函数的极值的一般步骤:①确定函数的定义域;②解方程f ′(x )=0;③判断f ′(x )在方程f ′(x )=0的根x 0两侧的符号变化: 若左正右负,则x 0为极大值点; 若左负右正,则x 0为极小值点; 若不变号,则x 0不是极值点.(2)求函数f (x )在区间[a ,b ]上的最值的一般步骤: ①求函数y =f (x )在(a ,b )内的极值;②比较函数y =f (x )的各极值与端点处的函数值f (a )、f (b )的大小,最大的一个是最大值,最小的一个是最小值.11.定积分的三个公式与一个定理 (1)定积分的性质: ①⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x ;②⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x .③⎠⎛ab f (x )d x =⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ).(2)微积分基本定理:一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ).1.解决函数问题时要注意函数的定义域,要树立定义域优先原则.2.解决分段函数问题时,要注意与解析式对应的自变量的取值范围.3.求函数单调区间时,多个单调区间之间不能用符号“∪”和“或”连接,可用“及”连接或用“,”隔开.单调区间必须是“区间”,而不能用集合或不等式代替.4.判断函数的奇偶性,要注意定义域必须关于原点对称,有时还要对函数式化简整理,但必须注意使定义域不受影响.5.准确理解基本初等函数的定义和性质.如函数y =a x (a >0,a ≠1)的单调性忽视字母a 的取值讨论,忽视a x >0;对数函数y =log a x (a >0,a ≠1)忽视真数与底数的限制条件.6.易混淆函数的零点和函数图象与x 轴的交点,不能把函数零点、方程的解、不等式解集的端点值进行准确互化.7.已知可导函数f (x )在(a ,b )上单调递增(减),则f ′(x )≥0(≤0)对∀x ∈(a ,b )恒成立,不能漏掉“=”号,且需验证“=”不能恒成立;而已知可导函数f (x )的单调递增(减)区间为(a ,b ),则f ′(x )>0(<0)的解集为(a ,b ).8.f ′(x )=0的解不一定是函数f (x )的极值点.一定要检验在x =x 0的两侧f ′(x )的符号是否发生变化,若变化,则为极值点;若不变化,则不是极值点.1.若函数f (x )=⎩⎪⎨⎪⎧2x +2,x ≤0,2x -4,x >0,则f (f (1))等于( )A.-10B.10C.-2D.2 答案 C解析 由f (f (1))=f (21-4)=f (-2)=2×(-2)+2=-2,故选C.2.若函数f (x )=x 2-12ln x +1在其定义域内的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是( )A.[1,+∞)B.[1,32)C.[1,2)D.[32,2)答案 B解析 因为f (x )的定义域为(0,+∞),y ′=2x -12x ,由f ′(x )=0,得x =12.利用图象可得,⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32,故选B.3.若函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7单调递增,则实数a 的取值范围是( )A.(94,3)B.[94,3) C.(1,3) D.(2,3) 答案 D解析 因为函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7单调递增,所以1<a <3且由f (7)<f (8)得,7(3-a )-3<a 2,解得a <-9或a >2,所以实数a 的取值范围是(2,3),故选D.4.设函数F (x )=f (x )+f (-x ),x ∈R ,且⎣⎡⎦⎤-π,-π2是函数F (x )的一个单调递增区间.将函数F (x )的图象向右平移π个单位,得到一个新的函数G (x )的图象,则G (x )的一个单调递减区间是( ) A.⎣⎡⎦⎤-π,-π2 B.⎣⎡⎦⎤-π2,0 C.⎣⎡⎦⎤π2,π D.⎣⎡⎦⎤3π2,2π 答案 D解析 ∵F (x )=f (x )+f (-x ),x ∈R ,∴F (-x )=f (-x )+f (x )=F (x ),∴F (x )为偶函数,∴⎣⎡⎦⎤π2,π为函数F (x )的一个单调递减区间.将F (x )的图象向右平移π个单位,得到一个新的函数G (x )的图象,则G (x )的一个单调递减区间是⎣⎡⎦⎤3π2,2π. 5.已知函数f (x )为偶函数,将f (x )的图象向右平移一个单位后得到一个奇函数,若f (2)=-1,则f (1)+f (2)+…+f (2 016)等于( ) A.1 B.0 C.-1 003 D.1 003 答案 B解析 由条件知f (x -1)是奇函数,所以f (-x -1)=-f (x -1),又f (x )为偶函数,所以f (x +1)=-f (x -1),即f (x +2)=-f (x ),从而f (x +4)=f (x ),即函数f (x )是周期为4的函数,在f (x +2)=-f (x )中令x =-1,可得f (1)=0,再令x =1可得f (3)=-f (1)=0,令x =2可得f (4)=-f (2)=1,因此f (1)+f (2)+…+f (2 016)=504[f (1)+f (2)+f (3)+f (4)]=0,故选B.6.已知定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),且f (-1)=2,则f (2 017)的值是( ) A.2 B.0 C.-1 D.-2 答案 D解析 由题意得f (x +4)=-f (x +2)=f (x ),所以函数是以T =4的周期函数,所以f (2 017)=f (1)=-f (-1)=-2,故选D.7.a 、b 、c 依次表示函数f (x )=2x +x -2,g (x )=3x +x -2,h (x )=ln x +x -2的零点,则a 、b 、c 的大小顺序为( )A.c <b <aB.a <b <cC.a <c <bD.b <a <c 答案 D解析 a 、b 、c 为直线y =2-x 分别与曲线y =2x ,y =3x ,y =ln x 的交点横坐标,从图象可知b <a <c ,故选D.8.设a =log 32,b =log 52,c =log 23,则( ) A.a >c >b B.b >c >a C.c >b >a D.c >a >b 答案 D解析 易知log 23>1,log 32,log 52∈(0,1).在同一平面直角坐标系中画出函数y =log 3x 与y =log 5x 的图象,观察可知log 32>log 52.所以c >a >b .比较a ,b 的其他解法:log 32>log 33=12,log 52<log 55=12,得a >b ;0<log 23<log 25,所以1log 23>1log 25,结合换底公式得log 32>log 52,即a >b .9.若函数f (x )定义域为[-2,2],则函数y =f (2x )·ln(x +1)的定义域为________. 答案 (-1,1]解析 由题意可得⎩⎪⎨⎪⎧-2≤2x ≤2,x +1>0,∴-1<x ≤1,即函数y =f (2x )·ln(x +1)的定义域为(-1,1].10.设函数f (x )=x 3-2e x 2+mx -ln x ,记g (x )=f (x )x ,若函数g (x )至少存在一个零点,则实数m的取值范围是__________. 答案 (-∞,e 2+1e]解析 令g (x )=x 2-2e x +m -ln xx =0,∴m =-x 2+2e x +ln xx(x >0),设h (x )=-x 2+2e x +ln xx ,令f 1(x )=-x 2+2e x ,f 2(x )=ln xx ,∴f 2′(x )=1-ln x x 2,发现函数f 1(x ),f 2(x )在x ∈(0,e)上都是单调递增,在x ∈(e ,+∞)上都是单调递减,∴函数h (x )=-x 2+2e x +ln xx 在x ∈(0,e)上单调递增,在x ∈(e ,+∞)上单调递减,∴当x =e 时,h (x )max=e 2+1e ,∴函数有零点需满足m ≤h (x )max ,即m ≤e 2+1e.11.设奇函数y =f (x )(x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈[0,12]时f (x )=-x 2,则f (3)+f (-32)的值等于________.答案 -14解析 由于y =f (x )为奇函数,根据对任意t ∈R 都有f (t )=f (1-t ), 可得f (-t )=f (1+t ),所以函数y =f (x )的一个周期为2, 故f (3)=f (1)=f (0+1)=-f (0)=0, f (-32)=f (12)=-14,∴f (3)+f (-32)=-14.12.函数f (x )=x 3+ax 2+bx +a 2在x =1处有极小值10,则a +b 的值为________. 答案 -7解析 ∵f ′(x )=3x 2+2ax +b ,由已知可得⎩⎪⎨⎪⎧f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10, 解得a =4,b =-11或a =-3,b =3, 经验证,a =4,b =-11符合题意, 故a +b =-7.13.已知函数f (x )=x +1e x (e 为自然对数的底数).(1)求函数f (x )的单调区间;(2)设函数φ(x )=xf (x )+tf ′(x )+1e x ,存在实数x 1,x 2∈[0,1],使得2φ(x 1)<φ(x 2)成立,求实数t的取值范围.解 (1)∵函数的定义域为R ,f ′(x )=-xe x ,∴当x <0时,f ′(x )>0,当x >0时,f ′(x )<0, ∴f (x )在(-∞,0)上单调递增, 在(0,+∞)上单调递减.(2)存在x 1,x 2∈[0,1],使得2φ(x 1)<φ(x 2)成立, 则2[φ(x )]min <[φ(x )]max .∵φ(x )=xf (x )+tf ′(x )+e -x=x 2+(1-t )x +1e x,∴φ′(x )=-x 2+(1+t )x -t e x=-(x -t )(x -1)e x. ①当t ≥1时,φ′(x )≤0,φ(x )在[0,1]上单调递减, ∴2φ(1)<φ(0),即t >3-e2>1;②当t ≤0时,φ′(x )>0,φ(x )在[0,1]上单调递增, ∴2φ(0)<φ(1),即t <3-2e<0;③当0<t <1时,若x ∈[0,t ),φ′(x )<0,φ(x )在[0,t )上单调递减,若t ∈(t ,1],φ′(x )>0,φ(x )在(t ,1)上单调递增,∴2φ(t )<max{φ(0),φ(1)}, 即2·t +1e t <max{1,3-t e}.(*)由(1)知,g (t )=2·t +1e t 在[0,1]上单调递减,故4e ≤2·t +1e t ≤2,而2e ≤3-t e ≤3e , ∴不等式(*)无解.综上所述,存在t ∈(-∞,3-2e)∪(3-e2,+∞),使得命题成立.合理分配高考数学答题时间找准目标,惜时高效——合理分配高考数学答题时间经过漫长的第一、第二轮复习,对于各知识点的演练同学们已经烂熟于心,我们把这称为战术上的纯熟。
高考数学(全国甲卷通用理科)考前抢分必做 考前回扣 回扣7 Word版含答案
回扣解析几何.直线方程的五种形式()点斜式:-=(-)(直线过点(,),且斜率为,不包括轴和平行于轴的直线).()斜截式:=+(为直线在轴上的截距,且斜率为,不包括轴和平行于轴的直线).()两点式:=(直线过点(,),(,),且≠,≠,不包括坐标轴和平行于坐标轴的直线).()截距式:+=(、分别为直线的横、纵截距,且≠,≠,不包括坐标轴、平行于坐标轴和过原点的直线).()一般式:++=(其中,不同时为)..直线的两种位置关系当不重合的两条直线和的斜率存在时:()两直线平行∥⇔=.()两直线垂直⊥⇔·=-.提醒:当一条直线的斜率为,另一条直线的斜率不存在时,两直线也垂直,此种情形易忽略. .三种距离公式()(,),(,)两点间的距离:=.()点到直线的距离:=(其中点(,),直线方程为++=).()两平行线间的距离:=(其中两平行线方程分别为:++=,:++=).提醒:应用两平行线间距离公式时,注意两平行线方程中,的系数应对应相等..圆的方程的两种形式()圆的标准方程:(-)+(-)=.()圆的一般方程:++++=(+->)..直线与圆、圆与圆的位置关系()直线与圆的位置关系:相交、相切、相离,代数判断法与几何判断法.()圆与圆的位置关系:相交、内切、外切、外离、内含,代数判断法与几何判断法..圆锥曲线的定义、标准方程与几何性质名称椭圆双曲线抛物线定义+=(>) -=(<)=点不在直线上,⊥于标准方程+=(>>) -=(>,>) =(>)图形几何性质范围≤,≤≥≥顶点(±,),(,±) (±,)(,)对称性关于轴,轴和原点对称关于轴对称焦点(±,) (,)轴长轴长,短轴长实轴长,虚轴长离心率==(<<) ==(>) =准线=-渐近线=±.直线与圆锥曲线的位置关系判断方法:通过解直线方程与圆锥曲线方程联立得到的方程组进行判断. 弦长公式:=-=-..范围、最值问题的常用解法()几何法①直线外一定点到直线上各点距离的最小值为该点到直线的垂线段的长度.。
高考数学(全国甲卷通用理科)考前抢分必做 考前回扣 回扣3 Word版含答案
回扣三角函数、平面向量.准确记忆六组诱导公式对于“±α,∈”的三角函数值,与α角的三角函数值的关系可按口诀记忆:奇变偶不变,符号看象限..同角三角函数的基本关系式α+α=,α=(α≠)..两角和与差的正弦、余弦、正切公式()(α±β)=αβ±αβ.()(α±β)=αβ∓αβ.()(α±β)=.()α+α=(α+φ)(其中φ=)..二倍角的正弦、余弦、正切公式()α=αα.()α=α-α=α-=-α.()α=..三种三角函数的性质函数===图象单调性在[-+π,+π](∈)上单调递增;在[+π,+π] (∈)上单调递减在[-π+π,π](∈)上单调递增;在[π,π+π](∈)上单调递减在(-+π,+π)(∈)上单调递增对称性对称中心:(π,)(∈);对称轴:=+π (∈)对称中心:(+π,)(∈);对称轴:=π(∈)对称中心:(,) (∈).函数=(ω+φ)(ω>,>)的图象()“五点法”作图:设=ω+φ,令=,,π,,π,求出相应的的值与的值,描点、连线可得.()由三角函数的图象确定解析式时,一般利用五点中的零点或最值点作为解题突破口. ()图象变换:==(+φ)=(ω+φ)=(ω+φ)..正弦定理及其变形===(为△外接圆的直径).变形:=,=,=.=,=,=.∶∶=∶∶..余弦定理及其推论、变形=+-,=+-,=+-.推论:=,=,=.变形:+-=,+-=,+-=..面积公式△===..解三角形()已知两角及一边,利用正弦定理求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中档大题规范练
中档大题规范练1 三角函数
1.(2016·浙江)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B .
(1)证明:A =2B ;
(2)若△ABC 的面积S =,求角A 的大小.
a 24(1)证明 由正弦定理得sin B +sin C =2sin A cos B ,
故2sin A cos B =sin B +sin(A +B )
=sin B +sin A cos B +cos A sin B ,
于是sin B =sin(A -B ).又A ,B ∈(0,π),
故0<A -B <π,所以B =π-(A -B )或B =A -B ,
因此A =π(舍去)或A =2B ,所以A =2B .
(2)解 由S =得ab sin C =,
a 2412a 24故有sin B sin C =sin A =sin 2B =sin B cos B ,
1212由sin B ≠0,得sin C =cos B .
又B ,C ∈(0,π),所以C =±B .
π2当B +C =时,A =;
π2π2当C -B =时,A =.
π2π4
综上,A =或A =.
π2π42.(2016·北京)已知函数f (x )=2sin ωx cos ωx +cos 2ωx (ω>0)的最小正周期为π.
(1)求ω的值;
(2)求f (x )的单调递增区间.
解 (1)f (x )=2sin ωx cos ωx +cos 2ωx =sin 2ωx +cos 2ωx ==sin ,
2(2
2sin 2ωx +2
2cos 2ωx )2(2ωx +π
4)由ω>0,f (x )的最小正周期为π,得=π,解得ω=1.
2π
2ω
(2)由(1)得f (x )=sin ,2(2x +π4)
令-+2k π≤2x +≤+2k π,k ∈Z ,π2π4π2
解得-+k π≤x ≤+k π,k ∈Z ,3π8π8即f (x )的单调递增区间为(k ∈Z ).[-3π8+k π,π8+k π]
3.已知函数f (x )=2cos x (sin x -cos x )+1,x ∈R .
(1)求函数f (x )的单调递增区间;
(2)将函数y =f (x )的图象向左平移个单位后,再将图象上各点的横坐标伸长到原来的2倍,π
4
纵坐标不变,得到函数y =g (x )的图象,求g (x )的最大值及取得最大值时x 的集合.解 (1)f (x )=2cos x (sin x -cos x )+1
=sin 2x -cos 2x =sin(2x -),2π4
令2k π-≤2x -≤2k π+(k ∈Z ),π2π4π2
解得k π-≤x ≤k π+(k ∈Z ),π83π8
故函数f (x )的单调递增区间为[k π-,k π+](k ∈Z ).π83π8
(2)由已知,得g (x )=sin(x +),2π4
∴当sin(x +)=1,即x +=2k π+(k ∈Z ),π4π4π2
也即x =2k π+(k ∈Z )时,g (x )max =.π4
2∴当{x |x =2k π+(k ∈Z )}时,g (x )的最大值为.π4
24.(2016·四川)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且
+=.cos A a cos B b sin C c (1)证明:sin A sin B =sin C ;
(2)若b 2+c 2-a 2=bc ,求tan B .65
(1)证明 根据正弦定理,可设
===k (k >0),a
sin A b sin B c sin C
则a =k sin A ,b =k sin B ,c =k sin C .
代入+=中,有cos A a
cos B b sin C c +=
,变形可得cos A
k sin A cos B k sin B sin C
k sin C sin A sin B =sin A cos B +cos A sin B =sin(A +B ).
在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π-C )=sin C .所以sin A sin B =sin C .
(2)解 由已知,b 2+c 2-a 2=
bc ,根据余弦定理,有65
cos A ==.b 2+c 2-a 22bc 35所以sin A ==.1-cos2A 45
由(1),sin A sin B =sin A cos B +cos A sin B ,
所以sin B =cos B +sin B .454535
故tan B ==4.sin B
cos B 5.已知向量m =(sin x ,cos x ),n =(cos x ,cos x ),x ∈R ,设f (x )=m·n .
3(1)求函数f (x )的解析式及单调递增区间;
(2)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且a =1,b +c =2,f (A )=1,求△ABC 的面积.
解 (1)f (x )=m·n =sin x cos x +cos 2x
3=sin 2x +cos 2x +321
212
=sin(2x +)+,π612
由-+2k π≤2x +≤+2k π,k ∈Z ,π2π6π2
可得,-+k π≤x ≤+k π,k ∈Z ,π3π6
∴函数f (x )的单调递增区间为[-+k π,+k π],k ∈Z .π3π6
(2)∵f (A )=1,∴sin(2A +)=,π612
∵0<A <π,∴<2A +<,π6π613π6
∴2A +=,∴A =.π65π6π3
由a 2=b 2+c 2-2bc cos A ,
得1=b 2+c 2-2bc cos =4-3bc ,π3
∴bc =1,∴S △ABC =bc sin A =.1234。