异氰酸指数对HFC 365mfc发泡的硬泡的性能影响
硬质聚氨酯泡沫
催化剂:催化剂增加可加快反应速度,使体系的反应热聚在泡沫 内部,可能会造成泡沫开裂,另外反应速度增加,模压时间也要 相应加长。
原料的温度
原料的温度将直接影响反应速度,对系统的流动性和填充效果产 生很大的影响
其它助剂
脱模剂
作为脱模剂的物质通常是蜡、脂肪酸金属盐类和硅烷类聚合物。 目前使用最为普遍的是硅烷类聚合物。
外用脱模剂基本分为溶剂型和水基型脱模剂。因前者含大量有机 溶剂且存在火灾隐患,所以后者作为迅速发展起来的环保型脱模剂, 已形成完整的产品系列,取代溶剂型脱模剂。
四、连续板材生产工艺参数对板材的 影响
若面材温度过高,会导致反应速度加快,流动性差,体系的反应热 聚在泡沫内部可能会导致泡沫开裂;
若面材温度过低,泡沫与其接触面的脆性增加,影响粘结性,同时 泡沫的整体密度与芯密度的差值会增加。
双履带温度
双履带温度过高会造成表面不平整,气孔变大,易收缩,但粘结性 会好。一般PUR要求温度35-45℃,PIR要求温度45-60℃。
发泡指数(异氰酸根指数)
指数(Index)体现了异氰酸根基团和羟基的一种关系 指数=异氰酸根的量/羟基的量 Index>100可确保羟基能完全反应掉。硬泡系统是典型的
异氰酸根过量的系统(Index>100),系统指数低于100, 泡沫会收缩 指数和比例的关系:比例一般为异氰酸酯和多元醇混合物 的体积比。 如果泡沫在高指数下加工,并用了正确的催化剂,就会形 成异氰脲酸酯,相应的泡沫叫做异氰脲酸酯(PIR)泡沫。 通常PIR泡沫是在180~350的指数下加工的。
现在我们用的催化剂为PC-8,其主要作用为50%凝胶,50%发泡 三聚催化剂主要用于PIR的生产,以促进异氰酸酯聚合生成异氰脲酸 酯
HFC-245fa与HCFC-141b发泡PIR连续板材性能比较
高板材的产品质量,甚至在低注料量下就可以满足
37 81
强度的要求。
2 3 2 尺寸稳定性对比
由表 5 可见,在基础配方和异氰酸酯指数基本
泡沫的尺寸稳定性将直接体现板材的使用寿
一 致 的 情 况 下, 由 HCFC⁃141b 切 换 至 HFC⁃245fa
摘 要: 在相同的基础配方和异氰酸酯指数( 300) 下,对发泡剂 HCFC⁃141b、HFC⁃245fa 在聚氨酯
PIR 连续板材中的应用性能进行了研究,对比了 HCFC⁃141b 和 HFC⁃245fa 在发泡性能( 反应过程
中的泡沫爬升曲线、反应速率曲线、压力曲线等) 、阻燃性能、力学性能和保温性能上的差异。 结果
mgKOH / g,黏度 1 500 ~ 3 000 mPa·s) 、聚醚多元醇
水
凝胶型催化剂
( 羟 值 470 ~ 530 mgKOH / g, 黏 度 15 000 ~ 25 000
mPa·s) ,上海东大聚氨酯有限公司;泡沫稳定剂 X,
赢创德固赛公司;凝胶型催化剂 PC⁃8、三聚型催化
∗
三聚型催化剂
在保证异氰酸酯指数均为 300 的情况下,干白
料、发 泡 剂 HFC⁃245fa / HCFC⁃141b 及 黑 料 PM⁃200
的质量比见表 2。
质量比
A1( 干白料 ∶HFC⁃245fa) ∶PM⁃200
(100 ∶ 21 5) ∶ 190
A2( 干白料 ∶HCFC⁃141b) ∶ PM⁃200
发泡剂
表 4 为 Foamat 参数对比,其中 HFC⁃245fa 发泡
芯密度 / ( kg·m )
-3
全水发泡聚氨酯硬泡密度对性能影响的初步研究
全水发泡聚氨酯硬泡密度对性能影响的初步研究∗刘延磊㊀王磊㊀潘振勇㊀刘访艺㊀窦忠山(万华节能科技集团股份有限公司㊀山东烟台264006)摘㊀要:研究了全水发泡硬质聚氨酯泡沫塑料的密度对泡沫性能的影响㊂实验结果表明,在一定密度范围内,随着泡沫密度的上升,泡沫的氧指数㊁压缩强度逐渐升高,导热系数先升高后降低,尺寸稳定性先变差后变好㊂关键词:硬质聚氨酯泡沫塑料;全水发泡;泡沫密度中图分类号:TQ328 3㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1005-1902(2020)01-0023-03㊀∗㊀基金项目:十三五国家重点研发计划资助项目(2017YFC1501200之课题五2017YFC1501205)㊂㊀㊀硬质聚氨酯泡沫塑料具有优良的保温性能㊁物理性能以及耐化学腐蚀等性能,广泛地应用于建筑外墙外保温及冷库保温等领域[1-2]㊂HCFC⁃141b作为第二代发泡剂,因臭氧消耗潜能值(ODP)为0 11,对大气臭氧层有一定的破坏作用㊂根据中国聚氨酯泡沫行业第二阶段HCFC加速淘汰计划,我国将于2026年在聚氨酯泡沫行业将其完全淘汰[3-4]㊂全水发泡是替代HCFC⁃141b的主要途径之一㊂水是化学发泡剂,可生成CO2而形成泡孔㊂CO2不燃,无气味,无毒性,因此水作发泡剂更环保且更安全[5]㊂水用量不同,产生的气体量不同,可得到不同密度的硬泡㊂本工作结合实际应用实验,初步研究了聚氨酯泡沫全水发泡体系中水用量和密度的相关性,以及泡沫密度对其性能的影响,并分析检测了泡沫中的气味和挥发性有机物总量(TVOC)[6]㊂1㊀实验部分1 1㊀主要原料聚醚多元醇FR⁃2026(羟值200mgKOH/g)㊁聚醚多元醇F3135(羟值35mgKOH/g),万华容威聚氨酯有限公司;聚酯多元醇PS2352(羟值200mgKOH/g),斯泰潘(南京)化学有限公司;阻燃剂TCPP,江苏大明科技有限公司;前期发泡催化剂A1㊁催化剂PC5,凝胶催化剂A33,空气化工产品有限公司;有机硅泡沫稳定剂A㊁B和C,赢创特种化学(上海)有限公司;多异氰酸酯PM⁃200,万华化学集团有限公司㊂以上均为工业级㊂1 2㊀主要设备与仪器TMB3500型搅拌电钻,Bosch公司,搅拌桨自制;HC⁃2型氧指数测定仪,南京江宁仪器厂;WDW⁃20A型微机控制电子万能试验机,济南天辰试验机制造有限公司;HC⁃074型热流计,日本EKO公司;GC5890型气相色谱仪㊁7694E型顶空进样器,安捷伦科技有限公司㊂1 3㊀全水发泡聚氨酯泡沫制备全水发泡体系组合聚醚配方见表1㊂表1㊀全水发泡聚氨酯硬泡组合聚醚配方原料质量分数/%聚醚FR⁃20260 25聚醚F31350 30聚酯PS23525阻燃剂TCPP30 40水1 35催化剂A10 5 1 5催化剂PC⁃51 2催化剂A330 3有机硅泡沫稳定剂A㊁B㊁C均为0 1㊀注:低聚物多元醇总质量分数为35% 50%㊂按表1所示配方准确称取各原料于容器中,用电钻搅拌器搅匀,制备成A料㊂采用一步法发泡工艺,按照A料与B料(PM⁃200)体积比1ʒ1(质量比1ʒ1 1)自由发泡,控制聚醚与阻燃剂的用量不变,改变水的用量及其他助剂的用量来调节硬泡密度㊂配方的异氰酸酯指数随水含量的变化而变化㊂1 4㊀性能测试自由泡的表观密度按GB/T6343 2009测定;㊃32㊃2020年第35卷第1期2020.Vol.35No.1聚氨酯工业POLYURETHANEINDUSTRY自由泡的氧指数按GB/T2406 2009测定;板材的压缩强度按GB/T8813 2008测试;板材的尺寸稳定性按GB/T8811 2008测试;导热系数按GB3399 1982测试;TVOC(以单位质量的碳总挥发量表示)按GB18583 2008测定㊂每组泡沫样品重复测试3次,取平均值㊂由5个气味评价员分别对采样袋中的泡沫样品气味进行评价,气味等级定义为:1级无气味;2级有气味,不明显,但无干扰性气味;3级有明显气味,但无干扰性气味;4级有明显气味,有干扰性气味;5级以上有较强气味[6]㊂2㊀结果与讨论2 1㊀水的用量对泡沫密度的影响调节配方使泡沫起发时间约7 10s,拉丝时间15 20s,其中多元醇与阻燃剂质量比固定,控制料温在24 26ħ之间,搅拌时间5s,考察水用量与自由发泡泡沫密度之间的关系,结果见图1㊂图1㊀泡沫密度随多元醇组分水含量的变化关系由图1可见,随着水用量的增加,泡沫密度先迅速降低然后缓慢变化㊂这是由于随着水含量增加,生成的CO2气体增多,同时反应放热使过量的水汽化产生的水蒸气也越多,泡沫密度快速降低㊂在水量偏多情况下产生的大量CO2,与水蒸气混合达到一定程度时,发泡体系内的压力会抑制剩余的水参与反应,此时泡孔壁较薄,会在发泡气体压力的作用下发生破裂,泡沫开孔率升高,多余的水分变成水汽大部分挥发掉㊂因此在水的质量分数大于10%时,继续增加水的用量对泡沫密度影响较小㊂2 2㊀泡沫密度对开孔率和氧指数的影响对不同密度的泡沫进行氧指数和开孔率测试,结果见表2㊂表2㊀泡沫密度与开孔率和氧指数的关系泡沫密度/(kg㊃m-3)异氰酸酯指数开孔率/%氧指数/%80 219922 3190 789523 4321 498224 4511 754024 8832 18-25 01462 86-25 2㊀由表2可见,随着泡沫密度增加,开孔率降低㊂同时,在一定的密度区间内,氧指数随着泡沫密度的增加而增加,主要原因有4点:(1)随着泡沫密度的增加,单位体积泡沫中阻燃剂含量增加;(2)高异氰酸酯指数有利于改善阻燃性;(3)随着泡沫密度的增加,泡沫闭孔率逐渐增加,燃烧时泡孔壁与空气接触面小,氧指数增加;(4)闭孔泡孔中气体CO2阻燃,有利于增加氧指数㊂2 3㊀泡沫密度对压缩强度和导热系数的影响比较聚氨酯硬泡密度与压缩强度的关系,100mmˑ100mmˑ100mm泡沫块的测试结果见表3㊂25ħ下导热系数与泡沫密度的关系见表4㊂表3㊀泡沫密度与压缩强度的关系泡沫密度/(kg㊃m-3)19325183压缩强度/kPa2482178260表4㊀泡沫密度与导热系数的关系泡沫密度/(kg㊃m-3)8193251导热系数/[mW㊃(m㊃K)-1]43403632㊀由表3可见,泡沫压缩强度随着密度的增加而增加,这是因为泡孔壁膜厚度增加,并且泡沫闭孔率增加,抵抗压力的能力增加㊂由表4可见,泡沫导热系数随着密度的增加而降低,其主要影响因素有泡沫固体树脂部分导热系数㊁泡孔内气体导热系数和孔隙率3个方面㊂泡沫密度较低时,由于开孔率较高,且泡沫孔隙率较大,气体在泡沫体内产生对流,因此导热系数较高;随着密度的增大,闭孔率逐步增加,对流㊁辐射传热逐步受限,泡孔内CO2气体的热导率对泡沫导热系数起主导作用,导致了导热系数随密度的增加而变小㊂2 4㊀泡沫密度对尺寸稳定性的影响泡沫尺寸稳定性与泡沫密度关系如表5所示,㊃42㊃聚氨酯工业㊀㊀㊀㊀㊀第35卷测试条件80ħ㊁24h㊂表5㊀泡沫密度对泡沫尺寸稳定性的影响泡沫密度/(kg㊃m-3)8193251收缩率/%0 351 671 060 83㊀由表5结合表2可见,在密度8 51kg/m3范围内,泡沫尺寸稳定性随着泡沫密度的增加先变差后变好㊂这是因为当泡沫密度低至8kg/m3时,泡沫开孔率较高,有利于泡沫有较好的尺寸稳定性;当泡沫密度升高到19kg/m3时,闭孔率稍有增加,泡孔壁较薄,且因水量较高,可能有少量聚醚羟基未参与反应,在加热条件下孔壁树脂变软,使得收缩率增加;当泡沫密度升高到32kg/m3以上,异氰酸酯指数增至1 49以上,虽然开孔率降低,但泡孔壁树脂反应完全且产生三聚结构,且孔壁变厚,强度增加,有利于泡沫保持良好的尺寸稳定性㊂2 5㊀泡沫密度对气味和TVOC的影响水发泡的不同密度泡沫气味及TVOC测试结果见表6㊂采用与水发泡相同的原料,只将化学发泡剂水更换为物理发泡剂HCFC⁃141b,制备3种密度的HCFC⁃141b发泡泡沫,其TVOC测试结果见表7㊂表6㊀全水发泡泡沫密度与泡沫气味以及TVOC关系泡沫密度/(kg㊃m-3)8193251气味等级3 5444TVOC/(μgC㊃g-1)156189170162㊀表7㊀HCFC⁃141b体系泡沫密度与TVOC关系泡沫密度/(kg㊃m-3)305590TVOC/(μgC㊃g-1)15587111937526㊀表6和表7相比可见,全水发泡泡沫的TVOC很低,这是由于发泡气体是CO2,不属于VOC范畴,这是传统的物理发泡剂HCFC⁃141b无可比拟的㊂由表6可知,不同密度的全水发泡硬泡样品的TVOC含量在同一水平,相差不大㊂全水发泡体系可以将TVOC控制在200μgC/g以内㊂3㊀结论(1)当组合聚醚中水的质量分数不超过10%时,泡沫密度随着组合聚醚中水含量的增加而减少,当组合聚醚中水的质量分数超过10%后密度变化不大㊂(2)随着密度的上升,泡沫的氧指数㊁压缩强度升高,导热系数降低,尺寸稳定性先变差后变好㊂(3)与HCFC⁃141b体系相比,全水发泡体系可以有效降低气味等级与TVOC含量,有着更好的环保性能㊂参㊀考㊀文㊀献[1]㊀秦桑路,杨振国.添加型阻燃剂对聚氨酯硬泡阻燃性能的影响[J].高分子材料科学与工程,2007,23(4):167-169.[2]㊀李艳,贾积恒,田盛益,等.含磷阻燃聚醚多元醇的制备及其在聚氨酯硬泡中的应用[J].聚氨酯工业,2016,31(1):25-28.[3]㊀殷锦捷,许明,韩海杰.聚氨酯泡沫材料发泡剂研究进展[J].山东化工,2018,47(19):60-61.[4]㊀孙博,郭晓林,邹宇田.我国聚氨酯泡沫行业氢氯氟烃加速淘汰第二阶段行业计划战略[J].聚氨酯工业,2017,32(S1):11-13.[5]㊀刘贺,张晓青,马凤国.发泡剂和扩链剂/交联剂对聚酯型聚氨酯泡沫的影响[J].合成材料老化与应用,2019,48(1):25-28.[6]㊀蒋宝林,吴先毅,熊国良,等.聚氨酯泡沫塑料VOC及气味性研究[J].聚氨酯工业,2019,34(1):20-23.收稿日期㊀2019-10-21㊀㊀修回日期㊀2020-01-02TheEffectoftheDensityonthePropertiesofAll⁃waterBlownRigidPolyurethaneFoamLIUYanlei,WANGLei,PANZhenyong,LIUFangyi,DOUZhongshan(WanhuaEnergysavScience&TechnologyGroupCo.Ltd,Yantai264000,Shandong,China)Abstract:Theeffectofthedensityonthepropertiesofall⁃waterblownrigidpolyurethanefoamwassimplystudied.Theresultshowedthat,inacertainrange,thelimitedoxygenindexandthecompressivestrengthofthefoamwouldbehigherwhenfoamdensityincrease,thethermalconductivityofthefoamwouldbelower,thesizechangerateofthefoambecameworsefirstandthenbetter.Keywords:rigidpolyurethanefoam;all⁃waterblowing;densityoffoam作者简介㊀刘延磊㊀男,1990年出生,硕士,研究方向为聚氨酯产品在矿山加固及汽车领域中的应用㊂㊃52㊃第1期㊀㊀㊀㊀㊀㊀㊀刘延磊,等㊃全水发泡聚氨酯硬泡密度对性能影响的初步研究。
软质泡沫发泡的影响因素
软质泡沫发泡的影响因素1、聚醚聚醚作为主要原料,与异氰酸酯反应生成氨基甲酸酯,是泡沫制品的骨架反应。
在官能度相同的情况下,分子量增加时,泡沫的拉伸强度、伸长率和回弹性提高,同类聚醚的反应活性下降;在当量值(分子量/官能度)相同的情况下,官能度增加,则反应相对加快,生成聚氨酯的交联度提高,泡沫硬度随之提高,伸长率下降。
多元醇的平均关能度应在2.5以上,若平均关能度太低,泡沫体在受压后回复性较差。
若聚醚用量多,相当于其他原料(TDI、水、催化剂等)减少,易造成泡沫制品开裂或塌泡。
若聚醚用量少,泡沫制品偏硬、弹性降低,手感不好。
2、发泡剂一般在制造密度大于21的聚氨酯块泡时,只使用水(化学发泡剂)做发泡剂,在低密度配方或超软配方中才使用二氯甲烷(MC)等低沸点化合物(物理发泡剂)作辅助发泡剂。
辅助发泡剂会使泡沫的密度及硬度下降,由于它的气化吸收了部分反应热会使固化减慢,需增加催化剂用量。
由于吸收热量,避免了烧芯的危险。
发泡能力可用发泡指数(100份聚醚所用水或水的当量数)来体现:m---发泡剂用量发泡指数IF=m(水)+m(F-11)/10+m(MC.)/9(100分聚醚)水作为发泡剂与异氰酸酯反应生成脲键并放出大量的CO2及热量,是一个链增长反应。
水量多,泡沫密度降低,硬度增加,同时泡孔支柱变小、变弱,降低了承载能力,易塌泡、裂泡。
消耗的TDI量增加,放热量多,易烧心。
若水量超过5.0份,则必须添加物理发泡剂以吸收部分热量,避免烧芯现象的发生。
水量少,催化剂用量相应减少,但密度增大3、甲苯二异氰酸酯一般软泡用TDI80/20,2,4和2,6异构体的混合物。
可用冷却法制备T100即纯2,4TDI。
TDI用量=(8.68+m水×9.67)×TDI指数。
TDI指数一般110-120。
异氰酸酯指数在一定范围内增大,则泡沫硬度增大,但达到某一点后硬度不再显著增大,而撕裂强度、拉伸强度和伸长率下降,泡沫形成大孔,闭孔上升,回弹率下降,表面长时间发粘,熟化时间长,引起烧芯。
不同发泡剂的硬质聚氨酯泡沫塑料
以异氰酸酯和水反应生成的C02作发泡荆,
万方数据
60
合成树脂及塑料
2001年第18卷
习惯上称之为水发泡。水发泡的优点是CQ的 ODP值为零,无毒、安全,不用投资改造发泡设备, 投资较低,因而有一定吸引力。缺点是发泡过程 中多元醇组分粘度较高,发泡压力和泡沫温度都 较高,泡沫塑料与基材的粘合性变差,而最大的缺 点是硬泡的导热系数高。表4显示冷冻集装箱用 C02发泡的硬泡性能。
1用于聚氨酯泡沫塑料的发泡剂 聚氨酯泡沫塑料是一种性能优良的绝热材料
和结构材料,它的主要特点是具有多孔性,因而密 度小,比强度高。聚氨酯泡沫塑料的主要原料为 异氰酸酯、多元醇化合物和助剂,其中发泡剂是主 要助剂之一。用于硬质聚氨酯泡沫塑料中发泡剂 的主要品种有CFCs、氢氟氯烃类化合物(HCFCs)、 氢氟烃类化合物(HFCs)、戊烷系列碳氢化合物、 C02等。
HcFC一14lb的沸点与CFC—11较为接近,室 温下是液体,不需要投资更改原有的发泡设备;在 聚醚多元醇中溶解性好;气体导热系数虽比 CFc一11略高,但与大多数cFC一1l替代品相比, 导热系数较小、低毒。HcFC—141b上述这些优点, 使该材料在美国等国家和地区得到广泛的应 用。但是,与CFC一11相比,HCFC一14lb极性较 高的缺点影响着聚氨酯基体材料,导致硬质泡沫 塑料压缩强度下降、尺寸稳定性变差。要克服这 些缺点,必须对HCFC一141b发泡的原料体系进 行改进,应提高聚醚多元醇分子的刚性和官能度,
cFc一1l作发泡剂的硬质聚氨酯泡沫塑料具 有极低的导热性,可以应用于许多领域。首先,以 CFC一11为发泡剂的泡沫塑料是闭孔型的。这是 由于cFC一1l沸点低,室温条件下是液体,操作
改性偶氮二甲酰胺
第44卷第19期包装工程2023年10月PACKAGING ENGINEERING·283·改性偶氮二甲酰胺/水复合发泡在硬质聚氨酯发泡中的应用研究莫国超,姜贵全,程士金,杨兆杰,庞久寅*(北华大学材料科学与工程学院,吉林吉林132013)摘要:目的通过偶氮二甲酰胺(AC)热分解反应释放出发泡用气体,用改性偶氮二甲酰胺/水复合发泡制备无卤素硬质聚氨酯泡沫(RPUF)。
探讨改性偶氮二甲酰胺在聚氨酯发泡中的可行性。
方法通过改变体系中改性偶氮二甲酰胺的用量,探讨改性偶氮二甲酰胺对聚醚发泡体系黏度、聚氨酯泡沫力学性能和导热系数的影响。
结果发泡剂的加入能显著降低聚醚体系的黏度,提高发泡物料的流动性,随着改性AC用量的增加,体系黏度逐渐增加,当改性AC的添加量为0.3 g时,体系黏度最低为2 080 mPaꞏs。
当改性AC用量为0.75 g时,聚氨酯泡沫的表观密度为78.65 kg/m3,压缩强度为539.35 kPa,改性AC的加入使得聚氨酯泡沫的导热系数增高,导热系数为0.023 51 W/mK。
结论改性AC的加入能显著提高硬质聚氨酯泡沫的压缩强度,相比纯水发泡,二者复合发泡性能更优异,可以作为无卤素发泡剂应用于聚氨酯发泡。
关键词:改性偶氮二甲酰胺;无卤素硬质聚氨酯;压缩强度;发泡剂中图分类号:TQ328.3;O6622.6 文献标识码:A 文章编号:1001-3563(2023)19-0283-06DOI:10.19554/ki.1001-3563.2023.19.036Application of Modified Azodicarbonamide/Water Composite Foam in RigidPolyurethane FoamsMO Guo-chao, JIANG Gui-quan, CHENG Shi-jin, YANG Zhao-jie, PANG Jiu-yin*(Material Science and Engineering College, Beihua University, Jilin Jilin 132013, China)ABSTRACT: The work aims to prepare halogen-free rigid polyurethane foam (RPUF) by compound foaming with mod-ified azodicarbonamide and water through the release of gases for foaming by thermal decomposition reaction of azodi-carbonamide (AC), to explore the feasibility of modified azodicarbonamide in polyurethane foaming. By changing the amount of modified azodicarbonamide in the system, the effects of modified azodicarbonamide on the viscosity, mechan-ical properties and thermal conductivity of the polyether foaming system were investigated. The results showed that the addition of the foaming agent could significantly reduce the viscosity of the polyether system and improve the fluidity of the foamed material, and the viscosity of the system gradually increased with the increase of the amount of modified AC, and the lowest viscosity of the system was 2 080 when the amount of modified AC was 0.3 g. When the amount of mod-ified AC was 0.75 g, the apparent density of polyurethane foam was 78.65 kg/m3, the compression strength was 539.35 kPa, and the addition of modified AC increased the thermal conductivity of polyurethane foam, which was 0.023 51 W mK-1. The addition of modified AC can obviously improve the compressive strength of rigid polyurethane foam. Com-pared with pure water foaming, the compound foaming performance of the two is superior and can be applied to polyure-thane foaming as a halogen-free foaming agent.KEY WORDS: modified azodicarbonamide; halogen-free rigid polyurethane; compressive strength; foaming agent收稿日期:2023-06-02·284·包装工程2023年10月在21世纪的聚氨酯工业中,硬质聚氨酯泡沫(RPUF)[1]被广泛用作建筑外墙保温、包装、冷链以及管道外层的保温抗压材料。
影响全水发泡硬质聚氨酯泡沫塑料性能的主要因素
N E W B U I L D I N G M A T E R I A L S0前言聚氨酯硬泡具有优良的保温隔热性能,作为一种新型墙体保温材料,其在外墙外保温系统中的应用将推动建筑节能工程的发展,有利于实现新的建筑节能目标。
但我国目前使用的硬质聚氨酯泡沫的发泡剂大多为低沸点烃类化合物,该类化合物是破坏臭氧层的元凶,而且易燃,使其在节能墙体中的应用受到限制。
研究发现,水是最廉价、最简便的发泡剂,且不燃、无毒,臭氧消耗能(ODP )为0,在发泡过程中与异氰酸酯反应生成脲,同时放出CO 2,放出的CO 2残留在泡孔中起到发泡的作用,是替代低沸点烃类化合物最好的发泡剂。
本文采用水作发泡剂,添加经表面处理的玻璃微珠以增强聚氨酯硬泡的力学性能。
1试验部分1.1主要原料及助剂4,4,-二苯基甲烷二异氰酸酯(粗MDI ),工业品,黏度(25℃)为150~250mPa ·s ,上海安宁化工科技有限公司;聚醚多元醇,工业品,牌号4100B ,羟值:(420±20)mgKOH/g ,黏度(25℃)为(2500±50)mPa ·s ,南京杰拉华聚氨酯有限公司。
催化剂三乙醇胺、二月桂酸二丁基锡,表面活性剂硅油,匀泡剂,均为工业品;HCFC-141b ;蒸馏水;中空玻璃微珠,粒径10~250μm ,堆积密度0.08~0.12g/cm 3,抗碎强度1.5~3.5MPa ,壁厚小于1μm ,长春建工集团提供。
1.2设备与仪器扫描电子显微镜,KYKY-2800B ,中国科学院科学仪器厂;微机控制电子式万能试验机,WDW-20,吉林省金力实验技术有限公司;电动搅拌器,7312-I ,转速100~6500r/min ,上海标本模具厂制造;数显黏度计,NDJ-9s ,上海精密科学仪器有限公司;导热系数测定仪,DRY-300F ,天津弗瑞德科技有限公司。
1.3手工发泡将定量的聚醚多元醇、硅油、催化剂和水加入到500mL 塑料杯中,用电动搅拌器搅拌均匀,向其中加入定量的MDI ,快速影响全水发泡硬质聚氨酯泡沫塑料性能的主要因素肖力光,罗晶,张兵(吉林建筑工程学院材料科学与工程学院,吉林长春130021)摘要:研究影响全水发泡硬质聚氨酯泡沫塑料性能的几种因素,如异氰酸酯指数和发泡剂,并研究了用偶联剂KH550处理玻璃微珠的方法对全水发泡硬质聚氨酯泡沫的微观形貌和压缩性能的影响。
聚异三聚氰酸酯硬泡沫和弹性体发泡材料绝热系统对比试验
需要 生产 。弹性体 发泡材 料是 一种柔 性材料 , 有很 具 好 的伸缩 回弹性 , 场使用 刀具 和胶 水进行 裁剪 包裹 现
和 粘贴 即可安 装 , 工非 常方便 。 施 弹性 体发 泡材料 D采 用 耐低 温 的二 烯 烃 聚合 物
a n ii p c a a iiis Th o e te a a we e c m bne nd a t—m a t c p b lt . e e prp ri s d t r o i d, a v n a e a d ia v n a e o h t d a tg n d s d a t g ft e wo
第 6期
聚 异 三 聚 氰 酸 酯 硬 泡 沫 和 弹 性体 发 泡 材料 绝 热 系统 对 比试 验
5 3
生 产过 程 中利用 发泡剂 等物 质产 生气泡 , 形成 许多 孑 L
绝 热效果 , 有板 材和 管材 2种 , 度 ( 径 ) 以根 据 厚 管 可
隙将 空 气 隔 绝 。在 封 闭 状 态 下 空 气 的 导 热 系 数 为
fr n e;n u ain e e t o ma c i s lto f c
1 引 言
设备 绝热 材料选 择 使用 提 供 理 论数 据 参 考 和 低温 环 境模 拟演 示 , 助于 设计人 员 和用户 经济有 效地 选用 有
绝 热材料 , 以降低成 本节 约能源 , 提高 装置 生产 效率 。
环 保 型发泡 剂 , 专 门配方 和严格 工艺条 件 下充分 混 经
料 T以 N R丁腈 橡 胶 聚 合 物为 基 材 , 过 一 系列 加 B 经 工 制造而 成 。丁腈橡 胶是 由丁二 烯 ( H C 2=C C = H—H C 2 和丙烯腈 ( t2=C C 经 乳 液共 聚而 制得 的 H ) Ct H.N)
不同异氰酸根指数对水性聚氨酯结构和性能的影响
中图分类号: TQ323 8 文献标识码: A 文章编号: 1005-5770 (2020) 09-0029-04
doi: 10 3969 / j issn 1005-5770 2020 09 006
开放科学 ( 资源服务) 标识码 ( OSID) :
Effect of Different Isocyanate Indexes on Structure and Properties of
dimethylolpropionic acid ( DMPA) as the hydrophilic chain extenderꎬ triethylamine ( TEA) as a neutralizing agentꎬ and hydration
incorporation ( HZ) as a chain extension terminal blocking agent. The different R values on the structure and properties of waterborne
第 48 卷第 9 期
2020 年 9 月
合成工艺
与 工 程
塑料工业
CHINA PLASTICS INDUSTRY
29
不同异氰酸根指数对水性聚氨酯结构
和性能的影响
钟家春ꎬ 胡林清ꎬ 刘静月ꎬ 何小航ꎬ 蒲泽军
( 四川轻化工大学材料科学与工程学院ꎬ 四川 自贡 643000)
摘要: 以聚碳酸酯二醇 ( PCDL) 为软段ꎬ 异佛尔酮二异氰酸酯 ( IPDI) 为硬段ꎬ 4ꎬ 4′-二羟甲基丙酸 ( DMPA) 为亲水扩
不同异氰酸根指数对水性聚氨酯结构和性能的影响计算得出黏度ph值相关性能参数?其具体数据如表1所示?从表1中可以看出?不同r值的水性聚氨酯乳液的固含量为32左右?其对应的ph值为78?表现为弱碱性?通过旋转黏度的测试可以看出?水性聚氨酯乳液的黏度随着r值的增加而增加?r值的增加即为水性聚氨酯结构上硬段含量的增加?体系内残留的nco与h2o发生反应后会生成具有疏水性的脲基基团?在水中不易分散?因此宏观上表现为黏度的增加?另外将乳液放置于离心机中在转速10000rmin下离心10min来模拟乳液稳定性能及使用寿命情况?离心前后乳液没有出现分层及沉降现象?表明制备的水性聚氨酯乳液具有较好的稳定性?且使用寿命可达6个月以上?2????2不同r值下的水性聚氨酯薄膜的表征2????2????1薄膜失重热性能分析atgbdtg图1不同r值的水性聚氨酯薄膜的tg和dtg曲线fig1thetganddtgcurvesofwaterbornepolyurethanefilmswithdifferentrvalues为表征薄膜热学性能?不同r值的水性聚氨酯薄膜的tg和dtg曲线如图1所示?表2为具体对应的失重温度值?由图1a可知?水性聚氨酯薄膜的初始热分解温度为260左右?其中质量损失率分别为520和50时所对应的温度t5t20t50如表2所示?可以看出?水性聚氨酯薄膜的热分解温度在失重率为5时能保持在270左右?失重率为20和50时的分解温度分别为304和328?热分解温度随r值的变化影响不大?具有较好的热稳定性?图1b为其对应的dtg曲线?由图可以看出?水性聚氨酯薄膜的分解主要分为软段和硬段两部分?表中可以看出硬段的分解温度t硬段为305左右?软段的分解温度t软段为344左右?其中硬段组分的失重率随着r值的增加呈现增加的趋势?软段组分的失重率随着r值的增加呈现减小的趋势?表明r值的增加有利于水性聚氨酯微相结构的分离?表2不同r值的水性聚氨酯薄膜的tg和dtg热分解数据tab2tganddtgthermaldecompositiondataofwaterbornepolyurethanefilmswithdifferentrvaluesr值tgdtgt5t20t50t硬段失重率t软段失重率1????327030032130125????0734173????801????426530432330625????3435081????74
异氰酸酯类型对热塑性聚氨酯弹性体性能的影响
收稿日期:20180731 修改稿日期:20180818 基金项目:安徽省高校自然科学研究项目(KJ2017A031) 作者简介:王文君(1995-),女,安徽无为人,在读硕士生,师从黄毅萍教授,主要从事聚氨酯、丙烯酸树脂的研究。电话:
15215519352,E-mail:wwj1995qlmx@163.com 通讯联系人:黄毅萍
热塑性聚氨酯弹性体(TPU)具有高强度、高回 弹[1]和 优 异 的 耐 磨、耐 低 温 的 特 性,在 服 装[2]、电 缆[3]和医 药[4]等 多 个 领 域 具 有 广 泛 的 应 用。TPU 是由硬段 (包括异氰酸酯、小分子扩链剂)和 软 段 (大分子 多 元 醇 )构 成 的 线 性 嵌 段 共 聚 物[5]。 刚 性 的硬段与柔性的软段热力学不相容,因此硬段与软 段能分别 聚 集 形 成 独 立 的 微 区,从 而 产 生 相 分 离。
第 48卷第 4期 2019年 4月
应 用 化 工 AppliedChemicalIndustry
Vol.48No.4 Apr.2019
异氰酸酯类型对热塑性聚氨酯弹性体性能的影响
王文君,史高健,王猛猛,陶灿,鲍俊杰,黄毅萍,许戈文
(安徽大学 化学化工学院 安徽省绿色高分子重点实验室,安徽 合肥 230601)
(AnhuiKeyLaboratoryofGreenPolymers,CollegeofChemistryandChemicalEngineering, AnhuiUniversity,Hefei230601,China)
Hale Waihona Puke Abstract:Fiveisocyanateswereusedashardsegment,polybutyleneadipate1,4butanedioldiol(PBA) wasused assoftsegmenttopreparedifferentisocyanatetypethermoplasticpolyurethaneelastomers (TPUs).TheirstructureandpropertieswerecharacterizedbyFouriertransform infraredspectroscopy (FTIR),differentialscanningcalorimetry(DSC)andelectronstretching.Thentheeffectofisocyanate typeonthesofthardsegmentinteractionofTPU,PBA crystallinityandmechanicalpropertieswereex plored.TheresultsshowedthatthedegreeofaminohydrogenbondingofHDITPUisthehighest.Thede greeofhydrogenbondingbetweenhardsegmentsandsoftsegmentsofHMDITPUwasthehighest,which thesoftsegmentcrystallinitywasthehighest,too.Thehydrogenbondingdegreeandsoftsegmentcrystal linityofIPDITPUwasthelowest.AmongthefivekindsofTPUsprepared,HDITPUhasthebestcompre hensivemechanicalproperties,withthetensilestrengthof29.47MPa,elongationatbreakof874%,and ShoreDhardnessof44. Keywords:diisocyanate; thermoplasticpolyurethaneelastomer; hydrogen bond; crystallinity; mi crophaseseparation
LNG船货物围护系统用硬质聚氨酯绝热材料制备和性能研究
剂的加入则会增加物料黏度、降低物料流动性,使得 物料难以混合均匀,影响发泡过程和最终泡沫的力 学性能及绝热性能[5] 。 因此,在制备中需解决固体 阻燃剂的加入带来的物料黏度上升、 加工困难等 问题。
液化天然气船是液化天然气( LNG) 海上运输 的主要工具,货物维护系统( CCS) 是其核心部分[1] 。 为了降低 LNG 的日蒸发率,提高 LNG 在海上运输 过程中的安全性和经济性,需要选择导热系数低、密 度低而力学性能高、热膨胀系数小和吸水率低的性 能优异的绝热材料铺设在 CCS 中[2] 。
采用一步模压法高压发泡制备聚氨酯硬泡,基 本配方见表 1。
表 1 硬质聚氨酯泡沫塑料的基本配方
原料
用量 / 质量份
聚醚多元醇
100
PMDI
150
五氟丁烷
30 ~ 50
泡沫稳定剂
1������ 5 ~ 2
二月桂酸二丁基锡
0������ 9
三乙醇胺
0������ 2
十溴二苯乙烷80三氧化二锑 Nhomakorabea20
先将称量好的聚醚多元醇、阻燃剂粉末 DBDPE
NanoSEM 450 扫描电子显微镜观察;导热系数按照
入熟化箱在 70 ℃ 的条件下熟化 24 h 后脱模,得到
RPUF。 最后 用 高 速 切 割 机 切 除 材 料 表 皮, 制 得
成品。
1������ 3 测试与表征
表观密度和尺寸稳定性分别按照 ISO 845:2006
和 GB / T 8811—2008 测 试; 泡 孔 形 貌 采 用 Nova
苏威化工部氟化学品业务分部 - 中国泡沫行业淘汰ODS行动网
高效绝热泡沫发泡剂Solkane 365mfc和Solkane 365/227维勒·克雷柯(Werner Krucke)(苏威氟及衍生物有限公司德国汉诺威市D-30173)罗锦洲(Luo Jinzhou)(苏华化工有限公司广州市麓景路510080)摘要:就HFC-365mfc作了综合阐述,包括更新的HFC-365mfc基本资料,如何使用不可燃混合物HFC-365/227混合物等。
介绍基于存在周期估算(LCA)而得出的Solkane 365mfc在环保方面优势的简要信息。
举例说明使用HFC-365mfc、HFC-365mfc/227及Solkane 365mfc共沸混合物作发泡剂的优点。
也将介绍其典型的热传导系数及与其它替代物的比较。
同时也对泡沫的燃烧特性进行验证。
经过长期的研究,苏威公司认为HFC-365mfc是替代HCFC-141b的最佳选择,因此已于2000年1月建成了年产数百吨的中试车间,并于2003年建成工业化生产工厂。
关键词:发泡剂;氢氟烃;聚氨酯泡沫塑料1 引言苏威公司(Solvay)作为聚氨酯泡沫、苯酚泡沫和挤出PS/PE泡沫发泡剂的制造商,很早就开始进行替代发泡剂HCFC-141b的研究。
苏威公司在1996年建立起第一个中试车间,2000年1月建成了年产数百吨的大型中试车间。
苏威正在法国塔沃筹建一个商品化生产厂,预计该工厂于2003年投产。
新的发泡剂要进入商品市场必须先要通过毒性试验。
Solkane 365mfc的毒性试验结果非常令人鼓舞。
目前所获得的毒性数据显示,Solkane 365mfc的毒性作用比HCFC-141b还要低。
有关90天吸入试验研究很快会完成,而所有的试验于2002年中结束。
Solkane 365mfc正在进入欧洲新化学品(ELINS)通报程序,已经获得所谓的基本设立水平,产品的注册号为99-01-0570-00。
将很快获得进一步认可──水平1证书。
异氰酸酯指数对水性聚氨酯性能的影响
异氰酸酯指数对水性聚氨酯性能的影响赵小亮;邵水源;孙元娜【摘要】以聚氧化丙烯二醇2000、异佛尔酮二异氰酸酯(IPDI)、二羟甲基丙酸、1,4-丁二醇和三羟甲基丙烷为原料,釆用预聚体分散法制备了水性聚氨酯(WPU).固定其他原料用量,仅调节IPDI的用量来改变异氰酸酯指数(R),研究了乳化前原料的R对WPU性能的影响,并探索了其在织物疏水改性方面的应用.结果表明:当R值增加时,WPU乳液的粒径变大,黏度减小,胶膜耐水性提高,拉伸强度增大,断裂拉伸应变降低,热稳定性先提高后降低,提高了棉织物的疏水性能;当R值为1.25时,WPU综合性能优异,乳液呈现半透明且稳定,平均粒径93 nm,黏度49.0 mPa·s,胶膜拉伸强度18.42 MPa,热稳定性最好,对应的棉织物接触角为114.08°.【期刊名称】《合成树脂及塑料》【年(卷),期】2018(035)005【总页数】4页(P25-28)【关键词】水性聚氨酯;预聚体分散法;异氰酸酯指数;疏水【作者】赵小亮;邵水源;孙元娜【作者单位】西安工程大学材料工程学院,陕西省西安市710048;西安科技大学材料科学与工程学院,陕西省西安市710054;西安工程大学材料工程学院,陕西省西安市710048【正文语种】中文【中图分类】TQ323.8近年来,随着人们环保意识的不断增强,各国对环境保护的要求以及相关法律法规的建设趋于严格,相继出台环境保护方面的法律法规。
其中,对挥发性有机物(VOC)进行了明确规定,致使传统的溶剂型聚氨酯应用领域受到了限制。
因此,环境友好型的水性聚氨酯(WPU)受到国内外科研工作者青睐,市场占有量也随之不断上升[1-4]。
WPU具有优异的耐磨性、突出的附着力、耐化学药品腐蚀性、耐候性等优点,并且对环境无污染[5],广泛应用于涂料、胶黏剂、织物整理剂、电子封装、纸张、家具和汽车等领域[6-7]。
本工作研究了异氰酸酯指数(R)对WPU性能的影响,并探索了其在织物疏水改性方面的应用,对制备出不同性能需求的WPU具有一定的指导意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Macromolecular Research, Vol. 16, No. 5, pp 467-472 (2008)*Corresponding Author. E-mail: bkkim@Effect of Isocyanate Index on the Properties of Rigid Polyurethane FoamsBlown by HFC 365mfcSung Hee Kim and Byung Kyu Kim*Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, KoreaHo LimKorea Polyol Co., Ulsan 680-090, KoreaReceived December 26, 2007; Revised January 29, 2008; Accepted January 30, 2008Abstract: Rigid polyurethane foams (RPUFs) were fabricated from crude MDI (CMDI) and polypropylene glycols (PPGs) of various isocyanate indices with a physical blowing agent (HFC 365mfc). There was a tendency for the gel time to decrease and the tack-free time to increase with increasing index value. With increasing index value the foam density and compression strength decreased and the glass transition temperature, dimension stability and ther-mal insulation increased, while the cell size and closed cell content were virtually unchanged. Allophanate crosslinks and condensation reactions between the isocyanate groups, which are favored with a high index value, exerted sig-nificant effects on the properties of RPUFs.Keywords : rigid polyurethane foam (RPUF), isocyanate index, cell structure, density, compression strength, dimen-sional stability, thermal conductivity.IntroductionPolyurethanes (PUs) are versatile engineering materials which find a wide range of applications because their prop-erties can be readily tailored by the type and composition of their components.1-3 PUs are used as coatings, adhesive,sealants, elastomers (CASE), and fibers as well as flexible,semi-rigid and rigid foams. Among them, rigid PU foams (RPUFs) have closed cell structure with low thermal con-ductivity, high compression strength, low density, high strength-to-weight ratio, and low moisture permeability.2-4Consequently, RPUF finds such applications as insulations of refrigerators, freezers, piping, tanks, ship building, and LNG cargos.5-7The foaming can be done in one shot or two shot method.In one shot method, all materials are put into a mixing cup and mixed homogeneously before they are poured into a mold. In two shot method, all materials except the isocyan-ate are mixed before the isocynate is added. The foaming can be carried out with a physical blowing agent, chemical blowing agent, or mixture of the two.5 In physical blowing,reactions between isocyanate and polyol produce polyure-thane linkages with the emission of heat of reaction. Then,the blowing agent vaporizes and the gas is trapped in the closed cells of the foam.8 Typically, thermal conductivity of the blown gas is very low. This, with small closed cell struc-ture gives extremely low thermal conductivity of the RPUF.In chemical blowing, water (most widely used blowing agent) reacts with isocyanate to form unstable carbamic acid which immediately decomposes into an amine and car-bon dioxide.2,9-11Recently, many of the conventional blowing agents such as monofluorotrichloromethane (R11) and difluorodichlo-romethane (R12) have been suggested to contribute to the depletion of the stratospheric ozone layer and the use has been regulated in many countries. Consequently, the use of environmentally friendly blowing agents has become an important and urgent issue in the synthesis of polyurethane foam.12-14 Water can in part replace such environmentally hazardous blowing agents. However, the excessive use of water causes a negative pressure gradient due to the rapid diffusion of CO 2 through the cell wall causing cell deforma-tion.2,3,15The kinetics of RPUF formation mainly depends on the rates of blowing and gelling reactions, which on the other hand are respectively governed by an amine and a tin cata-lyst.4,6 On the other hand, the properties of the foam mainly depend on the morphology of polyol such as functionality and hydroxyl value, and type and amount of surfactant, and blowing agent. To reinforce the foam, composites with par-S. H. Kim et al .ticle, clays and fiber are being considered.16-20We synthesized various types of RPUF from crude MDI (CMDI) and poly(propylene glycols) (PPGs) with an envi-ronmentally friendly physical blowing agent, viz. HFC 365mfc (CF 3CH 2CF 2CH 3). The effects of isocyanate index on the performances of the foams have been extensively analyzed in terms of reactivity, cell morphology, mechanical and dynamic mechanical properties, and thermal properties of the foams.ExperimentalRaw Materials. Two types of PPG having hydroxyl value (OHV , mg KOH/g of sample) of 450 (HR-450P) and 400(KR-403) were provided by Korea Polyol Co. (Korea).Crude MDI (CMDI) was provided by Huntsman (Suprasec-5005). HFC 365mfc was provided by Solvay Chemicals (Belgium), whereas Polycat-8 (PC 8) as foaming catalyst by Air Products. Silicon surfactant (B 8404) was provided by Goldschmidt. Polyols were dehydrated before use at 90o C for 24h in a vacuum oven. Other chemicals were used as received.Preparation of Samples. The rigid foams were synthe-sized by one shot method. All raw materials were first put into a mixing vessel (Utra-Turrox T-50, Ika-Werke) and mixed for 30 sec at 7,000rpm. Then the mixtures were dis-charged to an open mold (200×200×200 mm) and the foam cake was cured for 1 week at room temperature. The NCO index (isocyanate equivalents/polyol equivalents ×100)controlled from 90 to 130. The basic formulations are given in Table I.Characterizations. Density of the foam was measured according to ASTM D 1622 with sample size of 30×30×30mm (width×length×thickness), and an average of at least five measurements was taken to report. The closed cell con-tent was determined by an air pycnometer following ASTM D 2850 with specimen dimension 50×50×25 mm. Thermal conductivity was measured using HC-074 (L aser Comp)according to ASTM C 518. The cell morphology was observed under a scanning electron microscope (SEM, HITACHI S3500N). Samples were cryogenically fractured in liquid nitrogen and gold sputtered before they were scanned in the free rising direction. Dynamic mechanical tests were per-formed with a dynamic mechanical thermal analyzer (DMTA,Rheometrics MK-IV) from 30 to 250o C at 10hz and 2%strain using tensile mode. Mechanical properties at room temperature were measured using a Universal Testing (Ame-tek, Lloyd). Compression strength was determined by ASTM D 1621 at a crosshead speed of 3.0 mm/min with the sample dimension of 30×30×30 mm.7 The force required for at 10%deformation based on the original thickness has been taken as the compression strength of the foam. Dimensional sta-bility was measured at 80 and -30o C for the duration of 24 h following ASTM D 2126.Results and DiscussionReactivity of Foam Formation. Reactivity of the foam formation is followed by the physical change of the proper-ties such as cream time, gel time and tack-free time.4,6 The cream time corresponds to the start of bubble rise and hence color of the mixture becomes cream-like from dark brown due to the introduction of bubbles. Gel time is the starting point of stable network formation by intensive allophanate crosslinkings as well as urethane and urea linkages. At the tack-free time, the outer surface of the foam loses its sticki-ness and the foam can be removed from the mold.Table II shows that cream time is insensitive to the index value. On the other hand, gel time decreases and tack-free time increases with increasing index value although the dif-ferences are small. The decreasing tendency of gel time is probably due to the increased mixture mobility and allopha-nate reactions which are favored with more of the free iso-cyanate. On the contrary, it is also more probable to produce more of low molecular weight polymers including the unre-acted monomers as the stoichiometric imbalance between the reacting groups is increased. The low molecular weight species are preferably exposed to the free surfaces due toTable I. Formulations to Synthesize the RPUFs Samples Polyol(g)HFC 365mfc (g)B 8462 (g)PC 8 (g)CMDI (g)NCO IndexHR-450P KR-4039038.609.65 4.400.800.4046.159011034.828.7050.8811013031.717.9354.76130Table II. Reactivity and Foam Properties90110130Cream time (s)606161Gel time (s)208206204Tack-free time (s)245250254Density distribution 4.7 3.16 2.59Closed cell content (%)92.5092.7191.36Cell size (µm)143144146Effect of Isocyanate Index on the Properties of Rigid Polyurethane Foams Blown by HFC 365mfctheir low free energy and cause stickiness, which would give long tack-free time.Foam Density and Density Distr ibution. Density is a most important parameter to control the mechanical and thermal properties of closed cell foams.2,3 Figure 1 shows that the density decreases, i.e., blowing efficiency increases as the index increases. This is due to the combined effects of increased mixture mobility and additional blowing (other than the physical blowing) by the CO 2 produced from the condensation reactions between the isocyanate groups.2,3-NCO + -NCO → -NCN- + CO 2Regarding the density distribution, density decreases along the bubble rising direction i.e., from bottom to top, and the effect is less pronounced with increasing the index value.The vertical distribution of foam density is mainly due to the gravity effect giving rise to great compression at bottom.In addition, high index value provides cell walls with great elasticity by allophanate crosslinks, and the walls are less vulnerable to deformation.Cell Morphology Foam Diameter. Figure 2 shows the SEM morphology of the cell as a function of index value. It is seen that the foams consist of spherical and polyhedral shape. Size and closed cell content (Table II) are virtually insensitive to the index value.Regarding the formation of cells, exothermic heat of reac-tion causes the supersaturation of the reactive mixture, lead-ing to phase separation into gas followed by diffusion into the nuclei which are small air bubbles entrapped during the mixing of raw materials.21 Then the nuclei grow into bub-bles and spherical cells by adopting more gases or by coa-lescence with neighboring ones. As the blow ratio increases the spherical bubbles are eventually separated by the cellmembrane and become polyhedral.As the index value increases, elasticity of the cell wall increases by the allophanate crosslinks. Then the growth and coalescence of the bubbles become difficult. This would keep the bubble small. On the hand, CO 2 blows and expands new bubbles. It seems that the two conflicting forces are more or less balanced to give similar size of bubbles regard-less of the index value.Compr ession Str ength. The compression strength is closely related to the dimensional stability of closed cell foams. As the temperature goes up, gas pressure inside the cell increases, and the pressure difference relative to the atmospheric pressure becomes great. If the foam is to be dimensionally stable under these conditions, the compres-sion strength must be greater than the pressure rise.2 A minimum compression strength of 0.1MPa is generallyFigure 1.Densities of the RPUFs vs. isocyanate index.Figure 2.SEM micrographs of the RPUFs vs. isocyanate index.Figu re 3. Thermal conductivities of the RPUFs vs. isocyanate index.S. H. Kim et al .recommended for closed cell foam.3 The compression strength of our foam is greater than 1.2 MPa and its anisotropy (strength ratio of parallel to perpendicular direction)decreases with increasing the index value (Figure 4), due mainly to the decreased foam density although the cell elas-ticity is enhanced. The elasticity of crosslinked polymer is given by 22Here, , ρ, R , T , and M c are is the rubbery plateau mod-ulus, density, gas constant (8.314m 3 Pamol -1K -1), tempera-ture, and molecular weight between cross-links, respectively.As the index value increases more of allophanate crosslinks are introduced, which gives a decrease in M c and an increase in elasticity. This will be seen as the increased T g with increasing index value from the dynamic mechanical mea-surements.Dynamic Mechanical Analysis. The damping character-istics of the foams are shown in Figure 5 where the glass transition temperature (T g ) are seen in terms of tan δ peak .As expected, the T g of PU increases with increasing the index value. Since T g of polymer increases with increasing crosslink density,23 this confirms that more of the allophanate crosslinks are formed as the index value increases.Dimensional Stability. Closed cell foams shrink at low temperature and expand at high temperature. Typically, less than 1% of volume change is desired for sufficient strength.Figure 6 shows that the volume change asymptotically decreases with increasing the index value, and the largest volume change is less than 1%. The decrease is mainly due to the increased allophanate crosslinks of the foam with increasing the index value. The shrinkage at -30o C is smaller than the expansion at 80o C for index values of 110and 130 due probably to the great elasticity of crosslinked cell wall at low temperature. However, the opposite is seen for index value of 90 where the allophanate crosslinks are presumably insignificant and properties at low temperatureG N oρRT M c----------=G NoFigure 4. Compression strengths (a) and their anisotropies (b) ofthe RPUFs vs. isocyanate index.Figure 5. Storage modulus (a) and tan δ peaks (b) of the RPUFs v.s isocyanate index.Effect of Isocyanate Index on the Properties of Rigid Polyurethane Foams Blown by HFC 365mfcare mainly governed by the polyol.Ther mal Conductivity of the Foam. Heat conduction through the closed cell foams can be approximated by a series model which is composed of polymer walls and gas cells in series.24 Conductive heat flux (q ) through the com-posite wall is given by (1)where ΔT is the temperature drop across the foam and R is the conduction resistance given by the following equation.(2)Here X W ,i and X G ,i are the cell wall thickness and cell dimen-sion, and n is the number of polymer walls, respectively. Foruniform cells, wall thickness (X W ,i ) and cell dimension (X G ,i )are constant to give (3)In a typical closed cell foam, the polymer walls occupy 3-6 vol% of the foam. In addition, the conductivity of the polymer is much greater than that of the blowing gas. So,the first term, viz. polymer wall resistance can be neglected to give (4)The above simple analysis shows that the thermal insula-tion of closed cell foams increase linearly with the number of closed cells, i.e., effect of insulation increases as the cell size decreases.25The thermal conductivity of our foam decreases withincreasing the index value (Figure 3). Since the cell size of our foams was virtually insensitive to the index value, ther-mal conductivity doesn’t greatly depend on X G in eq. (4)The decrease is in part due to the decreased density of the foam giving a larger value of ‘n ’ which is caused by the additional blowing reactions between the isocyanates groups to produce CO 2 having much smaller thermal conductivity as compared with polymer walls.ConclusionsRPUFs have been fabricated from CMDI and PPGs of various isocyanate indices with an environmently friendly blowing agent (HFC 365mfc) and the following conclusi-ons have been derived.Though marginal, gel time decreased and tack-free time increased with increasing index value due respectively to the increased mixture mobility and allophanate crosslinks,and the presence of low molecular weight polymers which are preferentially exposed to the surface and cause stickiness.Foam density decreased as the index value increased due to the additional blowing by the CO 2 which was produced from the condensation reactions between the isocyanates,followed by the decreased compression strength and decreased thermal conductivity. The low thermal conductiv-ity of CO 2 has been considered as the prime reason for the low thermal conductivity of the foam.The decrease of volume changes or the increase of dimen-sional stability of the foam with the increase of index value was caused by the increased glass transition temperature which on the otherhand was introduced by the increased allophanate crosslinks. A direct evidence of the increased crosslink density was seen from the increased glass transi-tion temperature.Acknowledgments. This research was supported by the Ministry of Commerce, Industry and Energy (MOCIE) and Korea Industrial Technology Foundation (KOTEF) through the Human Resource Training Project for Regional Innova-tion. BKK is also indebted to the NCRC organized at PNU.References(1)C. Hapburn, Polyurethane Elastomers , Elsevier, Oxford, 1991,p.1.(2)G . Oertel, Polyurethane Handbook , Hanser, Publishers, 1985,p. 161.(3)M. Szycher, S zycher ’s Han dbook of Polyurethan es , CRCPress, New York, 1999.(4)H. Singh, T. P . Sharma, and A. K. Jain, J. Appl. Polym. Sci.,106, 1014 (2007).(5)P . Mondal and D.V . Khakhar, Macromol. Symp., 216, 241(2004).(6)W. J. Seo, J. H. Park, Y . T. Sung, D. H. Hwang, W. N. Kim,and H. S. Lee, J. Appl. Polym. Sci., 93, 2334 (2004).q ΔT R------=R X W i ,k W--------X G i ,k G --------+⎝⎠⎛⎞i 1=n∑=R n X Wk W ------X G k G -----+⎝⎠⎛⎞=R n X G k G -----⎝⎠⎛⎞=Figure 6. V olume changes of the RPUFs for a duration of 24h vs. isocyanate index.S. H. Kim et al.(7)W. J. Seo, H. C. Jung, J. C. Hyun, W. N. Kim, Y. B. Lee, K.H. Choe, and S. B. Kim, J. Appl. Polym. Sci., 90, 12 (2003).(8)J. B. Chai, B. K. Kim, and Y. J. Shin, J. Korean Ind. Eng.Chem., 9, 648 (1998).(9)O. J. Kwon, S. R. Yang, D. H. Kim, and J. S. Park, J. Appl.Polym. Sci., 103, 1544 (2007).(10)G. Harikrishnan and D. V. Khakhar, J. Appl. Polym. Sci., 105,3439 (2007).(11)Y. H. Kim, S. K. J. Choi, J. M. Kim, M. S. Han, and W. N.Kim Macromol. Res., 15, 676 (2007).(12)B. Antolini, F. Bianchi, M. Bottazzi, M. Careri, and M.Musci, Chromatographia, 60, 323 (2004).(13)A. M. Heintz, D. J. Duffy, S. L. Hsu, W. Suen, W. Chu, andC. W. Paul, Macromolecules, 36, 2695 (2003).(14)T. Widya and C. W. Macosko, J. Macromol. Sci. Part B-Phys.,44, 897 (2005).(15)S. H. Kim, H. Lim, and J. C. Song, J. Macromol. Sci., PureAppl. Chem.,45, 1 (2008).(16)S. H. Goods, C. L. Neuschwanger, L. L. Whinnery, and W. D.Nix, J. Appl. Polym. Sci., 74, 2724 (1999).(17)X. Cao, L. J. Lee, T. Widya, and C. Macosko, Polymer, 46,775 (2005).(18)Z. Xu, X. Tang, A. Gu, and Z. Fang, J. Appl. Polym. Sci., 106,439 (2007).(19)M. Modesti, A. Lorenzetti, and S. Besco, Polym. Eng. Sci.,47, 1351 (2007).(20)Z. G. Yang, B. Zhao, S. L. Qin, Z. F. Hu, Z. K. Jin, and J. H.Wang, J. Appl. Polym. Sci., 92, 1493 (2004).(21)D. Niyogi, R. Kumar, and K. S. Gandhi, Polym. Eng. Sci., 39,199 (1999).(22)N. Gent, Engineering with Rubber: How to Design RubberComponents, 2nd edition, Hanser Gardner Publications, 2001.(23)U. W. Gedde, Polymer Physics, Chapman and Hall, London,UK, 1995.(24)R. B. Bird, W. E. Stewart, and E. N. Lightfoot, TransportPhenomena, Wiley, New York, 2006.(25)J. W. Wu, W. F. Sung, and H. S. Chu, In t. J. Heat. Mass.Transf., 42, 2211 (1999).。