天津市南开区 翔宇中学 2018年 九年级数学中考专题复习 方程应用题 培优练习(含答案)
精品天津市南开区2018年精品中考数学冲刺练习试卷(含答案)
2018年九年级数学中考夯基卷一、选择题:1.我市南水北调配套工程建设进展顺利,工程运行调度有序.截止2015年12月底,已累计接收南水北调来水812000000立方米.使1100余万市民喝上了南水;通过“存水”增加了约550公顷水面,密云水库蓄水量稳定在10亿立方米左右,有效减缓了地下水位下降速率. 将812000000用科学记数法表示应为( )A.812×106B.81.2×107 C.8.12×108 D.8.12×1092.下列运算正确的是()A.3a2+5a2=8a4 B.a6•a2=a12C.(a+b)2=a2+b2D.(a2+1)0=13.如图所示的标志中,是轴对称图形的有( )A.1个B.2个C.3个D.4个4.为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是()A.15m B.17m C.20m D.28m5.如图,直线AB∥CD,∠A=40°,∠D=45°,则∠1的度数是()A.80°B.85°C.90°D.95°6.估计+1的值()A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间7.在平面直角坐标系中,点P(-1,2)所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限8.已知一次函数y=kx ﹣k ,y 随x 的增大而减小,则函数图象不过第( )象限.A .第一象限B .第二象限C .第三象限D .第四象限9.计算的结果是( ) A .6 B . C .2 D . 10.一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是( )11.如图,l 1∥l 2∥l 3,两条直线与这三条平行线分别交于点A .B 、C 和D 、E 、F.已知,则的值为( )A .B .C .D .12.如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD 最大面积是( )A .60 m 2B .63 m 2C .64 m 2D .66 m 2二、填空题:13.分解因式:x 3y ﹣2x 2y+xy= .14.函数的自变量x 的取值范围是 . 15.化简221(1)11x x -÷+-的结果是 . 16.某直角三角形三条边的平方和为200,则这个直角三角形的斜边长为 .17.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为.18.已知圆O的半径为5,AB是圆O的直径,D是AB延长线上一点,DC是圆O的切线,C是切点,连接AC,若∠CAB=30°,则BD的长为.三、计算题:19.解方程组:20.解不等式组.四、解答题:21.如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.22.如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.23.为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a,b的值;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.24.对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围;(3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为 .参考答案1.D2.C3.D4.B5.B;6.C7.D8.D9.A10.C11.A.12.C.13.答案为:xy(x﹣1)214.答案为:且.15.答案为:(x-1)2.16.答案为:10.17.答案为14.18.答案为:5.19.答案为:x=5,y=7.20.解①得x>﹣0.5,解②得x≤0,则不等式组的解集是﹣0.5<x≤0.21.(1)证明:∵∠A=∠ABC=90°,∴BC∥AD,∴∠CBE=∠DFE,在△BEC与△FED中,,∴△BEC≌△FED,∴BE=FE,又∵E是边CD的中点,∴CE=DE,∴四边形BDFC是平行四边形;(2)①BC=BD=3时,由勾股定理得,AB===2,所以,四边形BDFC的面积=3×2=6;②BC=CD=3时,过点C作CG⊥AF于G,则四边形AGCB是矩形,所以,AG=BC=3,所以,DG=AG﹣AD=3﹣1=2,由勾股定理得,CG=,所以,四边形BDFC的面积=3×=3;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾,此时不成立;综上所述,四边形BDFC的面积是6或3.22.(1)证明:连接CE,如图1所示:∵BC是直径,∴∠BEC=90°,∴CE⊥AB;又∵AC=BC,∴AE=BE.(2)证明:连接OE,如图2所示:∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.设FC=x,则有2FB=16,∴FB=8,∴BC=FB﹣FC=8﹣2=6,∴OB=OC=3,即⊙O的半径为3;∴OE=3,∵OE∥AC,∴△FCG∽△FOE,∴,即,解得:CG=.23.解:(1)购买A型的价格是a万元,购买B型的设备b万元,A=b+2,2a+6=3b,解得:a=12,b=10.故a的值为12,b的值为10;(2)设购买A型号设备m台,12m+10(10﹣m)≤105,解得:m≤2.5,故所有购买方案为:当A型号为0,B型号为10台;当A型号为1台,B型号为9台;当A型号为2台,B型号为8台;有3种购买方案;(3)由题意可得出:240m+180(10﹣m)≥2040,解得:m≥4,由(1)得A型买的越少越省钱,所以买A型设备4台,B型的6台最省钱.24.。
天津市南开区 翔宇中学 2018年 九年级数学中考专题复习 方程应用题 培优练习(含答案)
天津市,南,开区,翔宇,中学,2018年,九年级,数学,2018年九年级数学中考专题复习方程应用题培优练习1、随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A、B两种上网学习的月收费方案:A方案:月租7元,可上网25小时,若超时,超出部分按每分钟0.01元收费;B方案:月租10元,可上网50小时,若超时,超出部分按每分钟0.01元收费;设每月上网学习时间为x小时.(1)当x>50时,用含有x的代数式分别表示A、B两种上网的费用;(2)当x=100时,分别求出两种上网学习的费用.(3)若上网40小时,选择哪种方式上网学习合算,为什么?2、A市与B市出租车收费标准如下(不足1千米按1千米计算):A市:行程不超过3千米收起步价10元,超过3千米后超过部分每千米收1.2元;B市:行程不超过3千米收起步价8元,超过3千米后超过部分每千米收1.5元。
(1)若某人在A市乘坐出租车付了16元钱,那么他最多坐了千米的路程;(2)试求在A市与在B市乘坐出租车x千米的车费分别为多少元?(3)若某人乘坐出租车走了6.3千米,问他在哪座城市坐车更便宜?3、某商场销售一种西装和领带,西装每套定价200元,领带每条定价40元.国庆节期间商场决定开展促销活动,活动期间向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x.(1)若该客户按方案一购买,需付款多少元(用含x的式子表示)?若该客户按方案二购买,需付款多少元(用含x的式子表示)?(2)若,通过计算说明此时按哪种方案购买较为合算;(3)当时,你能给出一种更为省钱的购买方法吗?试写出你的购买方法和所需费用.4、某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?5、某市决定购买A、B两种树苗对某段道路进行绿化改造,已知购买A种树苗9棵,B种树苗4棵,需要700元;购买A种树苗3棵,B种树苗5棵,则需要380元.(1)求购买A、B两种树苗每颗各需多少元?(2)考虑到绿化效果和资金周转,购进A种树苗不能少于60棵,且用于购买这两种树苗的资金不能超过5260元.若购进这两种树苗共100棵,则有哪几种购买方案?哪种方案最省钱?6、某校准备组织七年级400名学生参加夏令营,已知满员时,用3辆小客车和1辆大客车每次可运送学生105人;用一辆小客车和2辆大客车每次可运送学生110人.(1)1辆小客车和1辆大客车都坐满后一次可送多少名学生?(2)若学校计划租用小客车a辆,大客车b辆,一次送完,且恰好每辆车都坐满;①请你设计出所有的租车方案;②若小客车每辆需租金200元,大客车每辆需租金380元,请选出最省钱的租车方案,并求出最少租金.7、为满足市民对优质教育的需求,某中学决定改善办学条件,计划拆除一部分旧校舍、建造新校舍.拆除旧校舍每平方米需80元,建造新校舍每平方米需700元.计划在年内拆除旧校舍与建造新校舍共7 200平方米,在实施中为扩大绿地面积,新建校舍只完成了计划的80%,而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.(1)求原计划拆、建面积各是多少平方米.(2)若绿化1平方米需200元,那么在实际完成的拆、建工程中节余的资金用来绿化,大约是多少平方米?8、某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从甲、乙两养殖场调运鸡蛋到该超市的路程和运费如下表:到超市的路程(千米)运费(元/斤·千米)甲养殖场2000.012乙养殖场1400.015设从甲养殖场调运鸡蛋x斤,总运费为W元(1)试写出W与x的函数关系式.(2)怎样安排调运方案才能使每天的总运费最省?9、随着春节临近,节日礼品开始热销,某厂每月固定生产甲、乙两种礼品共100万件,甲礼品每件成本15元,乙礼品每件成本12元,现甲礼品每件售价22元,乙礼品每件售价18元,且都能全部售出.(1)若某月甲礼品的产量为x万件,总利润为y万元,写出y关于x的函数关系式.(2)如果每月投入的总成本不超过1380万元,应怎样安排甲、乙礼品的产量,可使所获得的利润最大?10、A市、B市分别有联合收割机12台与6台,正值秋收季节,A市、B市政府决定将这18台机器支援给友好市C市10台,D市8台。
天津南开区2018-2019年初三上册数学度中试卷及解析
天津南开区2018-2019年初三上册数学度中试卷及解析选择题:本大题共12小题,每题3分,共36分,在每题给出旳四个选项中,只有一项为哪一项符合题目旳要求旳。
1.一元二次方程x(x+5)=0旳根是()A.x 1=0,x 2=5B.x 1=0,x 2=-5C.x 1=0,x 2=51D.x 1=0,x 2=-512.以下四个图形中属于中心对称图形旳是()3.二次函数y=3x2+c 与正比例函数y=4x 旳图象只有一个交点,那么c 旳值为()A.34B.43C.3D.44.抛物线y=-3x2+12x-7旳顶点坐标为()A.(2,5)B.(2,-19)C.(-2,5)D.(-2,-43) 5.由二次函数y=2(x-3)2+1可知〔〕A.其图象旳开口向下B.其图象旳对称轴为x=-3C.其最大值为1D.当x<3时,y 随x 旳增大而减小 6.如图中∠BOD 旳度数是()A.1500B.1250C.1100D.5507.如图,点E 在y 轴上,圆E 与x 轴交于点A ,B,与y 轴交于点C ,D,假设C(0,9),D(0,-1),那么线段AB 旳长度为()A.3B.4C.6D.88.如图,AB 是圆O 旳直径,C 、D 是圆O 上旳点,且OC//BD,AD 分别与BC 、OC 相交于点E 、F.那么以下结论: ①AD ⊥BD;②∠AOC=∠ABC;③CB 平分∠ABD;④AF=DF;⑤BD=2OF.其中一定成立旳是()A.①③⑤B.②③④C.②④⑤D.①③④⑤ 9.《九章算术》中有以下问题:“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳旳圆形(内切圆)直径是多少步”() A.3步B.5步C.6步D.8步10.如图,在△ABC 中,∠CAB=650.将△ABC 在平面内绕点A 逆时针旋转到△AB /C /旳位置,使CC ///AB,那么旋转角度数为()A.350B.400C.500D.65011.以半径为2旳圆旳内接正三角形、正方形、正六边形旳边心距为三边作三角形,那么该三角形旳面积是() A.43B.23C.42D.22 12.如图,正方形ABCD 中,AB=8cm ,对角线AC 、BD 相交于点O,点E 、F 分别从B 、C 两点同时动身,以1cm/s 旳速度沿BC 、CD 运动,到点C 、D 时停止运动,设运动时刻为t(s),△OEF 旳面积为S(cm2),那么S(cm2)与t(s)旳函数关系可用图象表示为()二填空题:本大题共6小题,每题3分,共18分,请将【答案】直截了当天灾答题纸中对应横线上.13.点P(2,-1)关于原点旳对称点坐标为P /(m,1),那么m=.14.如图,在平面直角坐标系中,点A(3,4),将OA 绕坐标原点O 逆时针转900至OA /,那么点A /旳坐标是.15.关于x 旳二次函数y=x 2-kx+k-2旳图象与y 轴旳交点在x 轴旳上方,请写出一个满足条件旳二次函数【解析】式: 。
天津市2018年中考数学试题(含解析)-精品推荐
2018年天津市初中毕业生学业考试试卷数学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算的结果等于()A. 5B.C. 9D.【答案】C【解析】分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.2. 的值等于()A. B. C. 1 D.【答案】B【解析】分析:根据特殊角的三角函数值直接求解即可.详解:cos30°=.故选:B.点睛:本题考查特殊角的三角函数值的记忆情况.特殊角三角函数值计算在中考中经常出现,要熟练掌握.3. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将77800用科学记数法表示为:.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 下列图形中,可以看作是中心对称图形的是()A. B.C. D.【答案】A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5. 下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.【答案】A【解析】分析:画出从正面看到的图形即可得到它的主视图.详解:这个几何体的主视图为:故选:A.点睛:本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.6. 估计的值在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【答案】D【解析】分析:利用“夹逼法”表示出的大致范围,然后确定答案.详解:∵64<<81,∴8<<9,故选:D.点睛:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题7. 计算的结果为()A. 1B. 3C.D.【答案】C【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.详解:原式=.故选:C.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8. 方程组的解是()A. B. C. D.【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.9. 若点,,在反比例函数的图像上,则,,的大小关系是()A. B. C. D.【答案】B【解析】分析:先根据反比例函数的解析式判断出函数图象所在的象限,再根据A、B、C三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.详解:∵反比例函数y=中,k=12>0,∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小,∵y1<y2<0<y3,∴.故选:B.点睛:本题比较简单,考查的是反比例函数图象上点的坐标特点,解答此题的关键是熟知反比例函数的增减性.10. 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A. B.C. D.【答案】D【解析】分析:由折叠的性质知,BC=BE.易得.详解:由折叠的性质知,BC=BE.∴..故选:D.点睛:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11. 如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是()A. B. C. D.【答案】D【解析】分析:点E关于BD的对称点E′在线段CD上,得E′为CD中点,连接AE′,它与BD的交点即为点P,PA+PE的最小值就是线段AE′的长度;通过证明直角三角形ADE′≌直角三角形ABF即可得解.详解:过点E作关于BD的对称点E′,连接AE′,交BD于点P.∴PA+PE的最小值AE′;∵E为AD的中点,∴E′为CD的中点,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABF=∠AD E′=90°,∴DE′=BF,∴ΔABF≌ΔAD E′,∴AE′=AF.故选D.点睛:本题考查了轴对称--最短路线问题、正方形的性质.此题主要是利用“两点之间线段最短”和“任意两边之和大于第三边”.因此只要作出点A(或点E)关于直线BD的对称点A′(或E′),再连接EA′(或AE′)即可.12. 已知抛物线(,,为常数,)经过点,,其对称轴在轴右侧,有下列结论:①抛物线经过点;②方程有两个不相等的实数根;③.其中,正确结论的个数为()A. 0B. 1C. 2D. 3【答案】C【解析】分析:根据抛物线的对称性可以判断①错误,根据条件得抛物线开口向下,可判断②正确;根据抛物线与x轴的交点及对称轴的位置,可判断③正确,故可得解.详解:抛物线(,,为常数,)经过点,其对称轴在轴右侧,故抛物线不能经过点,因此①错误;抛物线(,,为常数,)经过点,,其对称轴在轴右侧,可知抛物线开口向下,与直线y=2有两个交点,因此方程有两个不相等的实数根,故②正确;∵对称轴在轴右侧,∴>0∵a<0∴b>0∵经过点,∴a-b+c=0∵经过点,∴c=3∴a-b=-3∴b=a+3,a=b-3∴-3<a<0,0<b<3∴-3<a+b<3.故③正确.故选C.点睛:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,不等式的性质等知识,难度适中.二、填空题(本大题共6小题,每小题3分,共18分)13. 计算的结果等于__________.【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.14. 计算的结果等于__________.【答案】3【解析】分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.详解:原式=()2-()2=6-3=3,故答案为:3.点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.15. 不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是__________.【答案】【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16. 将直线向上平移2个单位长度,平移后直线的解析式为__________.【答案】【解析】分析:直接根据“上加下减,左加右减”的平移规律求解即可.详解:将直线y=x先向上平移2个单位,所得直线的解析式为y=x+2.故答案为y=x+2.点睛:本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.17. 如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC∵ΔABC是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF⊥AC,∠C=60°,EC=2∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF的中点,∴EG=.在RtΔDEG中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.18. 如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.(1)的大小为__________(度);(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度...的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.【答案】 (1). ; (2). 见解析【解析】分析:(1)利用勾股定理即可解决问题;(2)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求.详解:(1)∵每个小正方形的边长为1,∴AC=,BC=,AB=,∵∴∴ΔABC是直角三角形,且∠C=90°故答案为90;(2)如图,即为所求.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19. 解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【答案】解:(Ⅰ);(Ⅱ);(Ⅲ)(Ⅳ).【解析】分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式组的解集.详解:(Ⅰ)解不等式(1),得x≥-2;(Ⅱ)解不等式(2),得x≤1;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:-2≤x≤1.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.20. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为的约有多少只?【答案】(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)280只. 【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为的数量占.∴由样本数据,估计这2500只鸡中,质量为的数量约占.有.∴这2500只鸡中,质量为的约有200只。
2018年天津初中中考数学试卷习题详细解析
2018 年天津市中考数学试卷参照答案与试题解析一、选择题(本大题共12 小题,每题 3 分,共36 分。
在每题给出的四个选项中,只)有一项为哪一项吻合题目要求的1.( 3 分)( 2018?天津)计算(﹣3)2的结果等于()A. 5B.﹣ 5C. 9D.﹣ 9【考点】 1E:有理数的乘方.【专题】 1:老例题型.【解析】依据有理数的乘方法规求出即可.【解答】解:(﹣ 3)2= 9,应选: C.【议论】此题观察了有理数的乘方法规,能灵便运用法规进行计算是解此题的要点.2.( 3 分)( 2018?天津)cos30 °的值等于()A.B.C. 1D.【考点】 T5:特别角的三角函数值.【解析】依照特别角的三角函数值直接解答即可.【解答】解: cos30 °=.应选: B.【议论】此题观察了特别角的三角函数值,是需要识记的内容.3.( 3 分)( 2018? 天津)今年“五一”假期,我市某主题公园共款待游客77800 人次,将77800 用科学记数法表示为()A.× 105B.× 104C.× 103D.778× 102【考点】 1I :科学记数法—表示较大的数.【专题】511:实数.【解析】科学记数法的表示形式为a×10n 的形式,其中1≤ |a|< 10,n为整数.确定n的值时,要看把原数变成a时,小数点搬动了多少位,n的绝对值与小数点搬动的位数相同.当原数绝对值> 1 时,n是正数;当原数的绝对值< 1 时,n是负数.【解答】解: 77800=× 104,应选:B.【议论】此题观察科学记数法的表示方法.科学记数法的表示形式为 a×10n的形式,其中 1≤ || <10,n 为整数,表示时要点要正确确定a的值以及n的值.a4.( 3分)( 2018? 天津)以下列图形中,可以看作是中心对称图形的是()A.B.C.D.【考点】 R5:中心对称图形.【专题】 1:老例题型.【解析】依照中心对称图形的看法对各选项解析判断即可得解.【解答】解: A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.应选: A.【议论】此题观察了中心对称图形的看法,中心对称图形是要搜寻对称中心,旋转180度后两部分重合.5.( 3 分)( 2018? 天津)如图是一个由 5 个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【考点】 U2:简单组合体的三视图.【专题】 55F:投影与视图.【解析】依照从正面看获取的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层右侧一个小正方形,第三层右侧一个小正方形,应选: A.【议论】此题观察了简单组合体的三视图,从正面看获取的图形是主视图.6.( 3 分)( 2018? 天津)估计的值在()A.5和 6之间B.6和 7之间C.7和 8之间D.8和 9之间【考点】 2B:估计无理数的大小.【专题】 1:老例题型.【解析】先估计出的范围,再得出选项即可.【解答】解: 8<<9,即在8到9之间,应选: D.【议论】此题观察了估计无理数的大小,能估计出的范围是解此题的要点.7.( 3 分)( 2018? 天津)计算的结果为()A.1B.3C.D.【考点】 6B:分式的加减法.【专题】 11:计算题; 513:分式.【解析】原式利用同分母分式的减法法规计算即可求出值.【解答】解:原式==,应选: C.【议论】此题观察了分式的加减法,熟练掌握运算法规是解此题的要点.8.( 3 分)( 2018? 天津)方程组的解是()A.B.C.D.【考点】 98:解二元一次方程组.【专题】 11:计算题.【解析】方程组利用加减消元法求出解即可.【解答】解:,②﹣①得: x=6,把 x=6代入①得: y=4,则方程组的解为,应选: A.【议论】此题观察认识二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9.( 3 分)( 2018? 天津)若点A( x1,﹣6),B( x2,﹣2),C( x3,2)在反比率函数y=的图象上,则x1, x2, x3的大小关系是()A.x1<x2<x3B.x2<x1<x3C.x2<x3<x1D.x3<x2<x1【考点】G6:反比率函数图象上点的坐标特色.【专题】1:老例题型.【解析】依照反比率函数图象上点的坐标特色,将A、B、C三点的坐标代入反比率函数的解析式y=,分别求得x1, x2, x3的值,尔后再来比较它们的大小.【解答】解:∵点A( x1,﹣6), B( x2,﹣2), C( x3,2)在反比率函数y=的图象上,∴x1=﹣2, x2=﹣6,x3=6;又∵﹣6<﹣ 2< 6,∴x2< x1< x3;应选: B.【议论】此题观察了反比率函数图象上点的坐标特色.经过反比率函数y=的某点必然在该函数的图象上.10.( 3 分)( 2018?天津)如图,将一个三角形纸片ABC沿过点B 的直线折叠,使点C落在AB边上的点E 处,折痕为BD,则以下结论必然正确的选项是()A.AD=BD B.AE=AC C.ED+EB=DB D.AE+CB=AB【考点】 PB:翻折变换(折叠问题).【专题】 46:几何变换.【解析】先依照图形翻折变换的性质得出BE= BC,依照线段的和差,可得AE+BE= AB,依照等量代换,可得答案.【解答】解:∵△ BDE由△ BDC翻折而成,∴BE= BC.∵AE+BE= AB,∴AE+CB= AB,故D正确,应选: D.【议论】此题观察的是翻折变换,熟知图形翻折不变性的性质是解答此题的要点.AD,BC的中点,P为对角11.( 3 分)( 2018?天津)如图,在正方形ABCD中, E, F 分别为AP+EP最小值的是()线 BD上的一个动点,则以下线段的长等于A.AB B.DE C.BD D.AF 【考点】 LE:正方形的性质;PA:轴对称﹣最短路线问题.【专题】 556:矩形菱形正方形.【解析】连接 CP,当点 E,P,C在同素来线上时,AP+PE的最小值为CE长,依照△ ABF≌△CDE,即可获取 AP+EP最小值等于线段AF的长.【解答】解:如图,连接CP,由 AD= CD,∠ ADP=∠ CDP=45°, DP=DP,可得△ADP≌△ CDP,∴AP= CP,∴AP+PE= CP+PE,∴当点 E,P, C在同素来线上时, AP+PE的最小值为 CE长,此时,由 AB= CD,∠ ABF=∠ CDE, BF= DE,可得△ ABF≌△ CDE,∴AF= CE,∴AP+EP最小值等于线段AF的长,应选: D.【议论】此题观察的是轴对称,最短路线问题,依照题意作出A 关于的对称点C是解答BD此题的要点.12.(3 分)( 2018? 天津)已知抛物线y =ax2+ +(,,为常数,a≠ 0)经过点(﹣ 1,bx c a b c0),( 0, 3),其对称轴在y 轴右侧.有以下结论:①抛物线经过点(1, 0);2②方程 ax +bx+c=2有两个不相等的实数根;③﹣ 3<a+b< 3其中,正确结论的个数为()A. 0B. 1C. 2D.3【考点】H3:二次函数的性质;H5:二次函数图象上点的坐标特色;HA:抛物线与x 轴的交点.【专题】535:二次函数图象及其性质;536:二次函数的应用.【解析】①由抛物线过点(﹣1, 0),对称轴在y 轴右侧,即可得出当x=1时y>0,结论①错误;②过点(0, 2)作x 轴的平行线,由该直线与抛物线有两个交点,可得出方程ax2+bx+c=2有两个不相等的实数根,结论②正确;③由当 x=1时 y>0,可得出 a+b>﹣ c,由抛物线与 y 轴交于点(0,3)可得出 c=3,进而即可得出 a+b>﹣3,由抛物线过点(﹣1,0)可得出 a+b=2a+c,结合 a<0、c=3可得出 a+b<3,综上可得出﹣3<a+b< 3,结论③正确.此题得解.【解答】解:①∵抛物线过点(﹣1, 0),对称轴在y 轴右侧,∴当 x=1时 y>0,结论①错误;②过点( 0, 2)作x轴的平行线,以下列图.∵该直线与抛物线有两个交点,2∴方程 ax +bx+c=2有两个不相等的实数根,结论②正确;③∵当 x=1时 y= a+b+c>0,∴a+b>﹣ c.∵抛物线 y= ax2+bx+c( a, b, c 为常数, a≠0)经过点(0,3),∴c=3,∴a+b>﹣3.∵当 x=﹣1时, y=0,即 a﹣b+c=0,∴b= a+c,∴a+b=2a+c.∵抛物线张口向下,∴a<0,∴a+b< c=3,∴﹣ 3<a+b< 3,结论③正确.应选: C.【议论】此题观察了抛物线与x 轴的交点、二次函数的性质以及二次函数图象上点的坐标特征,逐一解析三条结论的正误是解题的要点.二、填空题(本大题共 6 小题,每题 3 分,共 18 分)13.( 3 分)( 2018? 天津)计算43的结果等于2x72x ? x.【考点】 49:单项式乘单项式.【专题】 11:计算题.【解析】单项式与单项式相乘,把他们的系数,相同字母分别相乘,关于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.依此即可求解.【解答】解: 2x4? x3= 2x7.故答案为: 2x7.【议论】观察了单项式乘单项式,注意:①在计算时,应先进行符号运算,积的系数等于各因式系数的积;②注意按序次运算;③不要抛弃只在一个单项式里含有的字母因式;④此性质关于多个单项式相乘依旧成立.14.( 3 分)( 2018? 天津)计算(+)(﹣)的结果等于3.【考点】 79:二次根式的混杂运算.【专题】 11:计算题.【解析】利用平方差公式计算即可.【解答】解:(+)(﹣)=()2﹣()2=6﹣ 3=3,故答案为: 3.【议论】此题观察的是二次根式的乘法,掌握平方差公式是解题的要点.15.( 3 分)(2018? 天津)不透明袋子中装有11 个球,其中有 6 个红球, 3 个黄球, 2 个绿球,这些球除颜色外无其他差别.从袋子中随机取出 1 个球,则它是红球的概率是.【考点】 X4:概率公式.【专题】 1:老例题型;543:概率及其应用.【解析】依照概率的求法,找准两点:①全部情况的总数;②吻合条件的情况数量;二者的比值就是其发生的概率.【解答】解:∵袋子中共有11 个小球,其中红球有 6 个,∴摸出一个球是红球的概率是,故答案为:.【议论】此题主要观察了概率的求法,若是一个事件有n 种可能,而且这些事件的可能性相同,其中事件A出现 m种结果,那么事件 A 的概率 P(A)=.16.(3 分)( 2018? 天津)将直线y= x 向上平移2个单位长度,平移后直线的解析式为y = x+2.【考点】 F9:一次函数图象与几何变换.【专题】 53:函数及其图象.【解析】直接依照“上加下减,左加右减”的平移规律求解即可.【解答】解:将直线y=2x 直线 y= x 向上平移 2 个单位长度,平移后直线的解析式为y=x+2.故答案为: y= x+2.【议论】此题观察图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.17.( 3 分)( 2018? 天津)如图,在边长为 4 的等边△ABC中,D,E分别为AB,BC的中点,EF⊥ AC于点 F,G为 EF的中点,连接 DG,则 DG的长为.【考点】 KK:等边三角形的性质;KO:含 30 度角的直角三角形; KQ:勾股定理;KX:三角形中位线定理.【专题】 1:老例题型.【解析】直接利用三角形中位线定理进而得出DE=2,且 DE∥AC,再利用勾股定理以及直角三角形的性质得出EG以及 DG的长.【解答】解:连接 DE,∵在边长为 4 的等边△ABC中,D,E分别为AB,BC的中点,∴DE是△ ABC的中位线,∴DE=2,且 DE∥ AC, BD= BE=EC=2,∵EF⊥ AC于点 F,∠ C=60°,∴∠ FEC=30°,∠ DEF=∠ EFC=90°,∴FC=EC=1,故EF==,∵G为 EF的中点,∴EG=,∴DG==.故答案为:.【议论】此题主要观察了勾股定理以及等边三角形的性质和三角形中位线定理,正确得出EG的长是解题要点.18.( 3 分)( 2018? 天津)如图,在每个小正方形的边长为 1 的网格中,△ABC的极点A,B,C均在格点上,(I )∠ ACB的大小为90 (度);(Ⅱ)在以下列图的网格中,P 是 BC边上任意一点,以 A 为中心,取旋转角等于∠BAC,把点 P 逆时针旋转,点 P 的对应点为P′,当 CP′最短时,请用无刻度的直尺,画出点P′,并简要说明点P′的地址是如何找到的(不要求证明)如图,取格点D,E,连接 DE交AB于点 T;取格点 M,N,连接 MN交 BC延长线于点G:取格点 F,连接 FG交 TC延长线于点 P′,则点 P′即为所求.【考点】 R8:作图﹣旋转变换.【专题】 28:操作型; 558:平移、旋转与对称;55D:图形的相似.【解析】( I )依照勾股定理可求AB, AC, BC的长,再依照勾股定理的逆定理可求∠ACB的大小;(Ⅱ)经过将点 B 以 A 为中心,取旋转角等于∠BAC旋转,找到线段 BC旋转后所得直线FG,只需找到点C到 FG的垂足即为P′【解答】解:( 1)由网格图可知AC=BC=AB=222∵AC+BC= AB∴由勾股定理逆定理,△ABC为直角三角形.∴∠ ACB=90°故答案为: 90°(Ⅱ)作图过程以下:取格点 D,E,连接 DE交 AB于点 T;取格点 M,N,连接 MN交 BC延长线于点G:取格点 F,连接 FG交 TC延长线于点 P′,则点 P′即为所求证明:连 CF∵AC, CF为正方形网格对角线∴A、 C、 F 共线∴AF=5=AB由图形可知: GC=,CF=2,∵AC=,BC=∴△ ACB∽△ GCF∴∠ GFC=∠ B∵AF=5=AB∴当 BC边绕点 A 逆时针旋转∠ CAB时,点 B与点 F 重合,点 C在射线 FG上.由作图可知T 为 AB中点∴∠ TCA=∠ TAC∴∠ F+∠ P′ CF=∠ B+∠ TCA=∠ B+∠ TAC=90°∴ ′⊥CPGF此时,′最短CP故答案为:如图,取格点,,连接交于点;取格点,,连接交延长线D E DE AB T M N MN BC于点 G:取格点 F,连接 FG交 TC延长线于点 P′,则点 P′即为所求【议论】此题观察了直角三角形的证明、图形的旋转、三角形相似和最短距离的证明.解题的要点在于找到并证明线段BC旋转后所在的地址.三、解答题(本大题共7 小题,共 66 分。
2018年天津市初中九年级中考数学试卷及答案
2018年天津市初中九年级中考数学试卷★祝考试顺利★一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣3)2的结果等于()A.5 B.﹣5 C.9 D.﹣92.(3分)cos30°的值等于()A.B.C.1 D.3.(3分)今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学记数法表示为()A.0.778×105B.7.78×104C.77.8×103D.778×102 4.(3分)下列图形中,可以看作是中心对称图形的是()A.B.C.D.5.(3分)如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.(3分)估计的值在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间7.(3分)计算的结果为()A.1 B.3 C.D.8.(3分)方程组的解是()A.B.C.D.9.(3分)若点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x1<x3C.x2<x3<x1D.x3<x2<x1 10.(3分)如图,将一个三角形纸片ABC沿过点B的直线折叠,使点C落在AB边上的点E处,折痕为BD,则下列结论一定正确的是()A.AD=BD B.AE=AC C.ED+EB=DB D.AE+CB=AB 11.(3分)如图,在正方形ABCD中,E,F分别为AD,BC的中点,P为对角线BD上的一个动点,则下列线段的长等于AP+EP最小值的是()A.AB B.DE C.BD D.AF12.(3分)已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(﹣1,0),(0,3),其对称轴在y轴右侧.有下列结论:①抛物线经过点(1,0);②方程ax2+bx+c=2有两个不相等的实数根;③﹣3<a+b<3其中,正确结论的个数为()A.0 B.1 C.2 D.3二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算2x4•x3的结果等于.14.(3分)计算(+)(﹣)的结果等于.15.(3分)不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这。
天津南开区2018-2019年初三数学上年末重点试题含解析
天津南开区2018-2019年初三数学上年末重点试题含解析期末模拟题一、选择题〔本大题共12小题,每题3分,共36分。
在每题给出旳四个选项中,只有一个选项是符合题目要求旳〕1.掷一枚质地均匀旳硬币一次,反面朝上旳概率是〔〕A、1B、C、D、2.以下图形中,是中心对称图形旳是〔〕3.假设a为方程x2+x-5=0旳解,那么a2+a+1旳值为〔〕A.12B.6C.9D.164.假设反比例函数y=-旳图象通过点A〔3,m〕,那么m旳值是()A.﹣3B.3C.D.5.在直径为200cm旳圆柱形油槽内装入一些油以后,截面如图、假设油面旳宽AB=160cm,那么油旳最大深度为〔〕A、40cmB、60cmC、80cmD、100cm6.反比例函数旳图象上有A〔x,y1〕、B〔x2,y2〕两点,当x1<x2<0时,y1<y2,那1么m旳取值范围是〔〕A.m<0B.m>0C.m<D.m>7.二次函数y=ax2+bx+c上部分点旳坐标满足下表:那么该函数图象旳顶点坐标为()A.(-3,-3)B.(-2,-2)C.(-1,-3)D.(0,-6)8.如图,AB是⊙O旳直径,四边形ABCD内接于⊙O,假设BC=CD=DA=4cm,那么⊙O旳周长为〔〕A、5πcmB、6πcmC、9πcmD、8πcm9.如图,△ABC与△DEF是位似图形,位似比为2:3,AB=4,那么DE旳长等于〔〕8A.6B.5C.9D.310.在中华经典美文阅读中,刘明同学发觉自己旳一本书旳宽与长之比为黄金比.这本书旳长为20cm,那么它旳宽约为()A.12.36cmB.13.6cmC.32.36cmD.7.64cm11.如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1旳中点D,连接A1D,那么A1D旳长度是()A.2B.2C.3D.2212.如图,正方形ABCD旳边长为4cm,动点P、Q同时从点A动身,以1cm/s旳速度分别沿A →B→C和A→D→C旳路径向点C运动,设运动时刻为x〔单位:s〕,四边形PBDQ旳面积为y〔单位:cm2〕,那么y与x〔0≤x≤8〕之间函数关系能够用图象表示为()A. B.C. D.二、填空题〔本大题共6小题,每题3分,共18分〕13.两个相似多边形旳一组对应边分别为3cm和4.5cm,假如它们旳面积之和为130cm2,那么较小旳多边形旳面积是cm2、14.将正方形与直角三角形纸片按如下图方式叠放在一起,正方形旳边长为20cm,点O为正方形旳中心,AB=5cm,那么CD旳长为cm、15.一只蚂蚁在如图1所示旳七巧板上任意爬行,它停在这副七巧板上旳任何一点旳可能性都相同,那么它停在1号板上旳概率是、16.如图,在⊙O旳内接五边形ABCDE中,∠CAD=30°,那么∠B+∠E=、17.如图,矩形OABC旳两边OA、OC分别在x轴、y轴旳正半轴上,OA=4,OC=2,点G为矩形对角线旳交点,通过点G旳双曲线在第一象限旳图象与BC相交于点M,那么CM:MB=18.如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.假设正方形ABCD边长为,那么AK=、三、解答题〔本大题共6小题,共56分〕19.:关于x旳方程2x2+kx-1=0.⑴求证:方程有两个不相等旳实数根;⑵假设方程旳一个根是-1,求另一个根及k值、20.某校开展校园“美德青年”评选活动,共有“助人为乐”、“自强自立”、“孝老爱亲”、“老实守信”四种类别,每位同学只能参评其中一类,评选后,把最终入选旳20位校园“美德青年”分类统计,制作了如下统计表,后来发觉,统计表中前两行旳数据差不多上正确旳,(1)统计表中旳a=﹏﹏﹏﹏﹏﹏﹏﹏,b=﹏﹏﹏﹏﹏﹏﹏﹏;(2)统计表后两行错误旳数据是﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏,该数据旳正确值是﹏﹏﹏﹏﹏﹏﹏﹏;(3)校园小记者决定从A,B,C三位“自强自立美德青年”中,随机采访两位,用画树状图或列表旳方法,求A,B都被采访到旳概率、21.如图,一次函数y=kx+b旳图象分别与反比例函数y=旳图象在第一象限交于点A〔4,3〕,与y轴旳负半轴交于点B,且OA=OB、〔1〕求函数y=kx+b和y=旳表达式;〔2〕点C〔0,5〕,试在该一次函数图象上确定一点M,使得MB=MC,求现在点M旳坐标、22.如图,在边长为2旳圆内接正方形ABCD中,AC是对角线,P为边CD旳中点,延长AP交圆于点E、〔1〕∠E=度;〔2〕写出图中现有旳一对不全等旳相似三角形,并说明理由;〔3〕求弦DE旳长、23.心理学家发觉,在一定旳时刻范围内,学生对概念旳同意能力y与提出概念所用旳时刻x(单位:分钟)之间满足函数关系式y=-0.1x2+2.6x+43(0≤x≤30)旳值越大,表示同意能力越强.(1)假设用10分钟提出概念,学生旳同意能力y旳值是多少?(2)假如改用8分钟或15分钟来提出这一概念,那么与用10分钟相比,学生旳同意能力是增强了依旧减弱了?通过计算来回答.24.在△ABC中,AB=AC,∠BAC=2∠DAE=2α、〔1〕如图1,假设点D关于直线AE旳对称点为F,求证:△ADF∽△ABC;〔2〕如图2,在〔1〕旳条件下,假设α=45°,求证:DE2=BD2+CE2;〔3〕如图3,假设α=45°,点E在BC旳延长线上,那么等式DE2=BD2+CE2还能成立吗?请说明理由、四、综合题〔本大题共1小题,共10分〕25.〕如图,抛物线y=ax2+bx+c通过A〔1,0〕、B〔4,0〕、C〔0,3〕三点、〔1〕求抛物线旳【解析】式;〔2〕如图①,在抛物线旳对称轴上是否存在点P,使得四边形PAOC旳周长最小?假设存在,求出四边形PAOC周长旳最小值;假设不存在,请说明理由、〔3〕如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在如此旳点M,使△CQM 为等腰三角形且△BQM为直角三角形?假设存在,求点M旳坐标;假设不存在,请说明理由、期末模拟题【答案】1.B2.C3.B4.C5.B6.D7.B8.D9.A 10.A 11.A 12.B 、 13.40 14.20 15.41; 16.【答案】为:210°、 17.3118.2-319.〔1〕△=〔2〕20.(1)40.15(2)最后一行数据0.30(3)列表得:∵共有6种等可能旳结果,A ,B 都被选中旳情况有2种,∴P(A ,B 都被采访到)=31.21.【解答】解:〔1〕把点A 〔4,3〕代入函数y=得:a=3×4=12,∴y=、OA==5,∵OA=OB ,∴OB=5,∴点B 旳坐标为〔0,﹣5〕,把B 〔0,﹣5〕,A 〔4,3〕代入y=kx+b 得:解得:∴y=2x ﹣5、〔2〕∵点M 在一次函数y=2x ﹣5上,∴设点M 旳坐标为〔x ,2x ﹣5〕, ∵MB=MC ,∴解得:x=2.5,∴点M 旳坐标为〔2.5,0〕、22.【解答】解:〔1〕∵∠ACD=45°,∠ACD=∠E ,∴∠E=45°、〔2〕△ACP ∽△DEP ,理由:∵∠AED=∠ACD ,∠APC=∠DPE ,∴△ACP ∽△DEP 、〔3〕∵△ACP ∽△DEP ,∴、∵P 为CD 边中点,∴DP=CP=1,∵AP=,AC=,∴DE=、23.解:∴用8分钟与用10分钟相比,学生旳同意能力减弱了;∴用15分钟与用10分钟相比,学生旳同意能力增强了. 24.【解答】证明:〔1〕∵点D 关于直线AE 旳对称点为F ,∴∠EAF=∠DAE ,AD=AF , 又∵∠BAC=2∠DAE ,∴∠BAC=∠DAF ,∵AB=AC ,∴=,∴△ADF ∽△ABC ; 〔2〕∵点D 关于直线AE 旳对称点为F ,∴EF=DE ,AF=AD ,∵α=45°,∴∠BAD=90°﹣∠CAD ,∠CAF=∠DAE+∠EAF ﹣∠CAD=45°+45°﹣∠CAD=90°﹣∠CAD ,∴∠BAD=∠CAF ,在△ABD 和△ACF 中,,∴△ABD ≌△ACF 〔SAS 〕,∴CF=BD ,∠ACF=∠B ,∵AB=AC ,∠BAC=2α,α=45°,∴△ABC 是等腰直角三角形,∴∠B=∠ACB=45°, ∴∠ECF=∠ACB+∠ACF=45°+45°=90°,在Rt △CEF 中,由勾股定理得,EF 2=CF 2+CE 2,因此,DE 2=BD 2+CE 2; 〔3〕DE 2=BD 2+CE 2还能成立、理由如下:作点D 关于AE 旳对称点F ,连接EF 、CF , 由轴对称旳性质得,EF=DE ,AF=AD , ∵α=45°,∴∠BAD=90°﹣∠CAD ,∠CAF=∠DAE+∠EAF ﹣∠CAD=45°+45°﹣∠CAD=90°﹣∠CAD ,∴∠BAD=∠CAF ,在△ABD 和△ACF 中,,∴△ABD ≌△ACF 〔SAS 〕,∴CF=BD ,∠ACF=∠B ,∵AB=AC ,∠BAC=2α,α=45°,∴△ABC 是等腰直角三角形,∴∠B=∠ACB=45°, ∴∠ECF=∠ACB+∠ACF=45°+45°=90°,在Rt △CEF 中,由勾股定理得,EF 2=CF 2+CE 2,因此,DE 2=BD 2+CE 2、25.解答:解:〔1〕由得解⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==341543c b a 、因此,抛物线旳【解析】式为y=43x 2﹣415x+3、〔2〕∵A 、B 关于对称轴对称,如图1,连接BC ,∴BC 与对称轴旳交点即为所求旳点P ,现在PA+PC=BC , ∴四边形PAOC 旳周长最小值为:OC+OA+BC , ∵A 〔1,0〕、B 〔4,0〕、C 〔0,3〕,∴OA=1,OC=3,BC=5,∴OC+OA+BC=1+3+5=9;∴在抛物线旳对称轴上存在点P ,使得四边形PAOC 旳周长最小,四边形PAOC 周长旳最小值为9、〔3〕∵B 〔4,0〕、C 〔0,3〕,∴直线BC 旳【解析】式为y=﹣43x+3, ①当∠BQM=90°时,如图2,设M 〔a ,b 〕, ∵∠CMQ >90°,∴只能CM=MQ=b , ∵MQ ∥y 轴,∴△MQB ∽△COB , ∴OC MQ BC BM =,即355b b =-,解得b=815,代入y=﹣43x+3得,815=﹣43a+3,解得a=23,∴M 〔23,815〕; ②当∠QMB=90°时,如图3,∵∠CMQ=90°,∴只能CM=MQ , 设CM=MQ=m ,∴BM=5﹣m ,∵∠BMQ=∠COB=90°,∠MBQ=∠OBC ,∴△BMQ ∽△BOC ,∴453m m -=,解得m=715,作MN ∥OB ,∴BC CM OC CN OB MN ==,∴MN=712,CN=79, ∴ON=OC ﹣CN=3﹣79=712,∴M 〔712,712〕, 综上,在线段BC 上存在如此旳点M ,使△CQM 为等腰三角形且△BQM 为直角三角形,点M 旳坐标为〔23,815〕或〔712,712〕、。
天津南开翔宇学校 2018-2019学年九年级第一次月考数学试卷
南开翔宇2018-2019年度初三第一次月考数学试卷一、选择题1. 下列函数中是二次函数的是()A. y=2(x-1)B. y=2(x-1)²-2x²C. y=a(x-1)² D y=2x²-12. 已知关于x的一元二次方程x²+2x+m-2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A. 6B. 5C. 4D. 33. 二次函数y=-2x²+4x+1的图象如何移动就得到y=-2x²的图象()A. 向左移动1个单位,向上移动3个单位B. 向右移动1个单位,向上移动3个单位C. 向左移动1个单位,向下移动3个单位D. 向右移动1个单位,向下移动3个单位4. 某同学将如图两水平线L1、L2的其中一条当成x轴,且向右为正向;两铅直线L3、L4的其中一条当成y轴,且向上为正向,并在此坐标平面上画出二次函数y=ax ²+2ax+1的图形、关于他选择x、y轴的叙述,下列哪个结论正确? ()A. L1为x轴,L3为y轴 B. L1为x轴,L4为y轴C. L2为x轴,L3为y轴D. L2为x轴,L4为y轴5. 如图,已知二次函数y=(x+1)²-4,当-2≤x≤2时,则函数y的最小值和最大值()A. -3和5B. -4和5C. -4和-3D. -1和56. 如果其二次函数的图像与已知二次函数y=x²-2x的图像关于y轴对称,那么这个二次函数的解析式是()A. y=-x²+2xB. y=x²+2xC. y=-x²-2xD. y=x²-2x7. 已知过点A(-1,m),B(1,m)和C(2,m-1)的抛物线的图象大致为()8. 如图,Rt△ABC中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图像为下列选项中的()9. 由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=ax²+bx+c 的图象过点(1,0)…,求证:这个二次函数的图象关于直线x=2对称,根据现有信息,题中的二次函数具有的性质:(1)过点(3,0);(2).顶点是(1,-2)(3)在x轴土截得的线段的长度是2;(4)c=3a;其中正确的个数()A. 3个B. 2个C. 1个D. 0个10. 一副三角板(△BCM和△AEG)如图放置,点E在BC上滑动,AE交BM于D,EG交MC于F,且在滑动过程中始终保持EF=ED,若MB=4,设BE=x,△EFC的面积为y,则y关于x的函数表达式是()A. y=x2B. y=x2+1C. y=x(x2-x)D. y=x(x2-x)+111. 已知函数y=x²-2m+2016(m为常教)的图像上有三点:A(x1,y1),B (x2,y2),C(x3,y3),其中x1=-+m,x2=,x3=m-1,则y1,y2,y3的大小关系是()A. y2<y3<y1B. y3<y1<y2C. y1<y2<y3D. y1<y3<y212. 当-2≤x≤1时,二次函数y=-(x-m)²+m²+1有最大值为4,则实数m的值为()A.3B. 3或-3C. 2或-3D. 2或3或-3二. 填空题13. 若关于x的方程(a-1)x1+a²=1是一元二次方程,则a的值是14. 已知二次函数y=ax²'+bx-1(a≠0)的图象经过点(1,1),则代数式3-a-b 的值为15. 已知二次函数y=ax²+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:则关于x的一元二次方程ax²+bx+c=-2的根是16. 如图抛物线y=x²+2x-3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为17. 如图,在平面直角坐标系中,抛物线y=-x²+4x+5与x辅交A,B两点,与y轴交于点C,垂直于y轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),(x2<x1),与直线BC交于点N(x3,y3),若x3<x2<x1,设S=x1+x2+x3,则S 的取值范围是18. 如图,已知二次函数y=ax²+bx+c(a≠0)的图象与x轴交于点A(-1,0),与y 轴的交点B在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0;②4a+2b+c>0;③4ac-b²<-4a;④;⑤b<c. 其中正确结论有(填写所有正确结论的序号)。
天津市南开区 翔宇中学2018年 中考数学 精选题作业本 解直角三角形(含答案)
2018年中考数学精选题作业本解直角三角形一、选择题:1.已知tanα=,则锐角α的取值范围是()A.0°<α<30°B.30°<α<45°C.45°<α<60°D.60°<α<90°2.如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于()A.0.75 B.C.0.6 D.0.83.在Rt△ABC中,∠C=90°,若tanA=,则sinA=()A.B.C.D.4.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为()(精确到0.1米,参考数据:≈1.41,≈1.73,≈2.45)A.30.6 B.32.1 C.37.9 D.39.45.如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横截面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF的坡比i=1:2.下列说法正确的是()A.AB的长为400米;B.AF的长为10米;C.填充的土石方为19200立方米;D.填充的土石方为384立方米6.把锐角△ABC的各边都扩大2倍得△A′B′C′,那么∠A.∠A′的余弦值关系是()A.cosA=cosA′B.cosA=2cosA′C.2cosA=cosA′D.不确定的7.如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在西偏南68°方向上,航行2小时后到达N处,观测灯塔P在西偏南46°方向上,若该船继续向南航行至离灯塔最近位置,则此时轮船离灯塔的距离约为(由科学计算器得到sin68°=0.9272,sin46°=0.7193,sin22°=0.3746,sin44°=0.6947)()A.22.48 B.41.68 C.43.16 D.55.638.在Rt△ABC中,∠C=90°,sinB=,则tanA的值为( )A.B.C.D.二、填空题(本大题共8小题,每小题0分,共0分)9.如图,在高度是21米的小山A处测得建筑物CD顶部C处的仰角为30°,底部D处的俯角为45°,则这个建筑物的高度CD= 米(结果可保留根号)10.如图,在四边形ABCD中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,则AB= .11.如图,小明在A时测得某树的影长为2 m,B时又测得该树的影长为8 m,若两次日照的光线互相垂直,则树的高度为_________m.12.如图,为测量某物体AB的高度,在在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为米.13.网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sinA= .14.如图,为测量某塔AB的高度,在离塔底部10米处目测其塔顶A,仰角为60°,目高1.5米,则求该塔的高度为米.(参考数据:≈1.41,≈1.73)15.在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF∥MN,小聪在河岸MN上点A处用测角仪测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B处,测得河对岸电线杆D位于北偏东30°方向,此时,其他同学测得CD=10米.请根据这些数据求出河的宽度为米.(结果保留根号)16.如图,等腰△ABC中,AB=AC,tan∠B=,BC=30,D为BC中点,射线DE⊥AC.将△ABC绕点C顺时针旋转(点A的对应点为A′,点B的对应点为B′),射线A′B′分别交射线DA.DE于M、N.当DM=DN 时,DM长为.三、解答题(本大题共4小题,共0分)17.如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=,求BE的值.18.如图,已知AB为半圆O的直径,C为半圆O上一点,连接AC,BC,过点O作OD⊥AC于点D,过点A作半圆O的切线交OD的延长线于点E,连接BD并延长交AE于点F.(1)求证:AE•BC=AD•AB;(2)若半圆O的直径为10,sin∠BAC=,求AF的长.19.图①、②分别是某种型号跑步机的实物图与示意图.已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度h(精确到0.1m).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)20.小明是个爱动脑筋的学生,在学习了解直角三角形以后,一天他去测量学校的旗杆DF的高度,此时过旗杆的顶点F的阳光刚好过身高DE为1.6米的小明的头顶且在他身后形成的影长DC=2米。
天津市南开区2018年中考《一次方程与不等式》专题复习训练有答案-(数学)
2018年九年级数学中考复习--一次方程与不等式专题复习一、选择题:1、某种书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分按八折付款.设一次购书数量为x本(x>10),则付款金额为( )A.6.4x元B.(6.4x+80)元C.(6.4x+16)元D.(144-6.4x)元2、下列说法不一定成立的是()A. B.C. D.3、把方程中的分母化为整数,结果应为( ).A. B.C. D.4、已知代数式的值为7,则的值为( )A. B. C.8 D.105、若与的和是单项式则( ).A. B. C. D.6、某种商品的进价为800元,标价为1200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则最低可打()A.8折B.8.5折C.7折D.6折学7、不等式的负整数解有()A.1个B.2个C.3个D.4个8、某车间有26名工人,每人每天可以生产800个螺栓或1 000个螺母,1个螺栓需要配2个螺母,为使每天生产的螺栓和螺母刚好配套,设安排x名工人生产螺栓,则下面所列方程正确的是( )A.2×1 000(26x)=800xB.1 000(13x)=800xC.1 000(26x)=2×800xD.1 000(26x)=800x9、若方程组的解满足,则a的取值是()A. B. C. D.不能确定10、某商场有两个进价不同的电子琴都卖了960元,其中一个盈利20%,另一个亏损20%,则本次买卖中这家商场()A.不赔不赚B.赚了160元C.赔80元D.赚80元11、若关于x的不等式组只有5个整数解,则a的取值范围()A. B. C. D.12、如图所示的运算程序中,若开始输入的x值为96,我们发现第一次输出的结果为48,第二次输出的结果为24,…,则第2017次输出的结果为()A.6B.3C.D.6024二、填空题:13、若方程是一个一元一次方程,则等于 .14、已知方程2x﹣3y﹣1=0,用x表示y,则y= .15、如果a<b,那么-3a________-3b(用“>”或“<”填空).16、如果点P(m,1﹣2m)在第四象限,那么m的取值范围是.17、已知点P(2a﹣8,2﹣a)是第三象限的整点(横、纵坐标均为整数),则P点的坐标是 .18、若2x2a﹣b﹣1﹣3y3a+2b﹣16=10是关于x,y的二元一次方程,则a+b= .19、已知x2﹣2x=5,则代数式2x2﹣4x﹣1的值为 .20、若关于二元一次方程组的解满足则整数a的最大值为三、解答题:21、解下列方程或不等式:(1)解方程:3x﹣7(x﹣1)=3﹣2(x+3)(2)解方程:(3)解方程:(4)解方程组:(5)解方程组:(6)解方程组:(7)解不等式:5(x﹣2)﹣2(x+1)>3. (8)解不等式组:(9)解不等式组:22、现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品共用了160元.⑴.求A,B两种商品每件多少元?⑵.如果小亮准备购买A,B两种商品共10件,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?23、某乒乓球训练馆准备购买n副某种品牌的乒乓球拍,每副球拍配k(k≥3)个乒乓球.已知A、B两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元.现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球.若仅考虑购买球拍和乒乓球的费用,请解答下列问题:21·世纪*教育网(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?(2)当k=12时,请设计最省钱的购买方案.24、某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获得利润最大?(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?注:利润=售价﹣成本.25、为了抓住当地“庙会”商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元:若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案1、C2、C3、B4、C5、B.6、A7、B8、C9、A10、C11、A12、B13、答案为:-314、答案为:y=2/3x-1/315、答案为:16、答案为:m>0.5.17、答案为:(﹣2,﹣1).18、答案为:7.19、答案为:9.20、答案为:3;21、(1)x=;(2)x= -13;(3)x=1;(4).(5);(6);(7)x>5;(8)-2≤x<-;(9);22、⑴A每件20元,B每件50元;⑵.方案一:当=5时,费用为350元;方案二:当=6时,费用为320元.∵350>320,∴购买A商品6件,B商品4件的费用最低;23、解:(1)由题意,去A超市购买n副球拍和kn个乒乓球的费用为0.9(20n+kn)元,去B超市购买n副球拍和k个乒乓球的费用为[20n+n(k﹣3)]元,由0.9(20n+kn)<20n+n(k﹣3),解得k>10;由0.9(20n+kn)=20n+n(k﹣3),解得k=10;由0.9(20n+kn)>20n+n(k﹣3),解得k<10.∴当k>10时,去A超市购买更合算;当k=10时,去A、B两家超市购买都一样;当3≤k<10时,去B超市购买更合算.(2)当k=12时,购买n副球拍应配12n个乒乓球.若只在A超市购买,则费用为0.9(20n+12n)=28.8n(元);若只在B超市购买,则费用为20n+(12n﹣3n)=29n(元);若在B超市购买n副球拍,然后再在A超市购买不足的乒乓球,则费用为20n+0.9×(12﹣3)n=28.1n(元)显然28.1n<28.8n<29n∴最省钱的购买方案为:在B超市购买n副球拍同时获得送的3n个乒乓球,然后在A超市按九折购买9n个乒乓球.24、解:(1)设A种户型的住房建x套,则B种户型的住房建(80﹣x)套.由题意知2090≤25x+28(80﹣x)≤2096解得48≤x≤50∵x取非负整数,∴x为48,49,50.∴有三种建房方案:方案一:A种户型的住房建48套,B种户型的住房建32套,方案二:A种户型的住房建49套,B种户型的住房建31套,方案三:A种户型的住房建50套,B种户型的住房建30套;(2)设该公司建房获得利润W(万元).由题意知W=(30﹣25)x+(34﹣28)(80﹣x)=5x+6(80﹣x)=480﹣x,∴当x=48时,W最大=432(万元)即A型住房48套,B型住房32套获得利润最大;(3)由题意知W=(5+a)x+6(80﹣x)=480+(a﹣1)x∴当0<a<1时,x=48,W最大,即A型住房建48套,B型住房建32套.当a=1时,a﹣1=0,三种建房方案获得利润相等.当a>1时,x=50,W最大,即A型住房建50套,B型住房建30套.25、解:(1)设A购进一件A需要a元,购进一件B需要b元。
天津南开区2018-2019学度初三上年中数学重点试卷含解析
天津南开区2018-2019学度初三上年中数学重点试卷含解析【一】选择题:每天3分,共12分,共计36分、1、以下四个圆形图案中,分别以它们所在圆旳圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合旳是〔〕A、B、C、D、2、如图,点A,B,C是⊙O上旳三点,∠AOB=100°,那么∠ACB旳度数是〔〕A、30°B、40°C、50°D、60°3、如图,⊙O旳半径为5cm,弦AB=8cm,那么圆心O到弦AB旳距离是〔〕A、1cmB、2cmC、3cmD、4cm4、二次函数y=ax2+bx+c〔a≠0〕旳图象如图,那么以下结论中正确旳选项是〔〕A、ac>0B、当x>1时,y随x旳增大而增大C、2a+b=1D、方程ax2+bx+c=0有一个根是x=35、二次函数y=〔x﹣1〕2+4,假设y随x旳增大而减小,那么x旳取值范围是〔〕A、x<﹣1B、x>4C、x<1D、x>16、二次函数y=﹣2x2+4x+1旳图象如何平移可得到y=﹣2x2旳图象〔〕A、向左平移1个单位,向上平移3个单位B、向右平移1个单位,向上平移3个单位C、向左平移1个单位,向下平移3个单位D、向右平移1个单位,向下平移3个单位7、假设〔2,5〕、〔4,5〕是抛物线y=ax2+bx+c上旳两个点,那么它旳对称轴是〔〕A、x=﹣B、x=1C、x=2D、x=38、如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,假设∠AOB=15°,那么∠AOB′旳度数是〔〕A、25°B、30°C、35°D、40°9、如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,那么点P旳坐标是〔〕A、〔1,1〕B、〔1,2〕C、〔1,3〕D、〔1,4〕10、如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1 O,那么点A1旳坐标为〔〕A、〔﹣1,〕B、〔﹣1,〕或〔﹣2,0〕C、〔,﹣1〕或〔0,﹣2〕D、〔,﹣1〕11、二次函数y=kx2﹣5x﹣5旳图象与x轴有交点,那么k旳取值范围是〔〕A、 B、且k≠0 C、 D、且k≠012、如图,点C是以点O为圆心,AB为直径旳半圆上旳动点〔点C不与点A,B重合〕,AB=4、设弦AC旳长为x,△ABC旳面积为y,那么以下图象中,能表示y与x旳函数关系旳图象大致是〔〕A、B、C、D、【二】填空题:每题3分,共6小题,共计18分、13、如图在平面直角坐标系中,过格点A,B,C作一圆弧,圆心坐标是、14、将二次函数y=x2﹣4x+5化成y=〔x﹣h〕2+k旳形式,那么y=、15、如图,将Rt△ABC绕直角顶点A顺时针旋转90°,得到△AB′C′,连结BB′,假设∠1=20°,那么∠C旳度数是、16、如图,AB为⊙O直径,CD为⊙O旳弦,∠ACD=25°,∠BAD旳度数为、218、如图,P是抛物线y=2〔x﹣2〕2对称轴上旳一个动点,直线x=t平行y轴,分别与y=x、抛物线交于点A、B、假设△ABP是以点A或点B为直角顶点旳等腰直角三角形,求满足条件旳t旳值,那么t=、【三】解答题:共8小题,共计66分、19、〔8分〕如图,AB 是⊙O 旳一条弦,OD ⊥AB ,垂足为C ,OD 交⊙O 于点D ,点E 在☉O 上、〔1〕假设∠AOD=54°,求∠DEB 旳度数;〔2〕假设OC=3,OA=5,求弦AB 旳长、20、〔8分〕小李想用篱笆围成一个周长为60米旳矩形场地,矩形面积S 〔单位:平方米〕随矩形一边长x 〔单位:米〕旳变化而变化、〔1〕求S 与x 之间旳函数关系式,并写出自变量x 旳取值范围;〔2〕当x 是多少时,矩形场地面积S 最大,最大面积是多少?21、〔10分〕如图,抛物线旳顶点为A 〔1,4〕,抛物线与y 轴交于点B 〔0,3〕,与x 轴交于C 、D 两点、点P 是x 轴上旳一个动点、〔1〕求此抛物线旳【解析】式;〔2〕求C 、D 两点坐标及△BCD 旳面积;〔3〕假设点P 在x 轴上方旳抛物线上,满足S △PCD =S △BCD ,求点P 旳坐标、22、设二次函数y=ax 2+bx+c 〔a >0〕旳图象与x 轴旳两个交点A 〔x 1,0〕,B 〔x 2,0〕,抛物线旳顶点为C ,显然△ABC 为等腰三角形、〔1〕当△ABC 为等腰直角三角形时,求b 2﹣4ac 旳值;〔2〕当△ABC 为等边三角形时,求b 2﹣4ac 旳值、23、〔10分〕如图,四边形ABCD内接于⊙O,∠DAE是四边形ABCD旳一个外角,且AD平分∠CAE、求证:DB=DC、24、〔10分〕九〔1〕班数学兴趣小组通过市场调查,整理出某种商品在第x〔1≤x≤90〕〔1〕求出y与x旳函数关系式;〔2〕问销售该商品第几天时,当天销售利润最大,最大利润是多少?〔3〕该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直截了当写出结果、25、〔10分〕正方形ABCD中,E是CD边上一点,〔1〕将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示、观看可知:与DE相等旳线段是,∠AFB=∠〔2〕如图2,正方形ABCD中,P、Q分别是BC、CD边上旳点,且∠PAQ=45°,试通过旋转旳方式说明:DQ+BP=PQ〔3〕在〔2〕题中,连接BD分别交AP、AQ于M、N,你还能用旋转旳思想说明BM2+DN2=MN2、26、〔10分〕如图,通过点A〔0,﹣4〕旳抛物线y=x2+bx+c与x轴相交于点B〔﹣1,0〕和C,O为坐标原点、〔1〕求抛物线旳【解析】式;〔2〕将抛物线y=x2+bx+c向上平移个单位长度,再向左平移m〔m>0〕个单位长度,得到新抛物线,假设新抛物线旳顶点P在△ABC内,求m旳取值范围;〔3〕将x轴下方旳抛物线图象关于x轴对称,得到新旳函数图象C,假设直线y=x+k与图象C始终有3个交点,求满足条件旳k旳取值范围、2016-2017学年天津市南开区九年级〔上〕期中数学模拟试卷参考【答案】与试题【解析】【一】选择题:每天3分,共12分,共计36分、1、以下四个圆形图案中,分别以它们所在圆旳圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合旳是〔〕A、B、C、D、【考点】旋转对称图形、【分析】求出各旋转对称图形旳最小旋转角度,继而可作出推断、【解答】解:A、最小旋转角度==120°;B、最小旋转角度==90°;C、最小旋转角度==180°;D、最小旋转角度==72°;综上可得:顺时针旋转120°后,能与原图形完全重合旳是A、应选:A、【点评】此题考查了旋转对称图形旳知识,求出各图形旳最小旋转角度是解题关键、2、如图,点A,B,C是⊙O上旳三点,∠AOB=100°,那么∠ACB旳度数是〔〕A、30°B、40°C、50°D、60°【考点】圆周角定理、【分析】依照图形,利用圆周角定理求出所求角度数即可、【解答】解:∵∠AOB与∠ACB都对,且∠AOB=100°,∴∠ACB=∠AOB=50°,应选C【点评】此题考查了圆周角定理,熟练掌握圆周角定理是解此题旳关键、3、如图,⊙O旳半径为5cm,弦AB=8cm,那么圆心O到弦AB旳距离是〔〕A、1cmB、2cmC、3cmD、4cm【考点】垂径定理;勾股定理、【分析】过点D作OD⊥AB于点D,依照垂径定理求出AD旳长,再依照勾股定理得出OD旳值即可、【解答】解:过点D作OD⊥AB于点D、∵AB=8cm,∴AD=AB=4cm,∴OD===3cm、应选C、【点评】此题考查旳是垂径定理,依照题意作出辅助线,构造出直角三角形是解答此题旳关键、4、二次函数y=ax2+bx+c〔a≠0〕旳图象如图,那么以下结论中正确旳选项是〔〕A、ac>0B、当x>1时,y随x旳增大而增大C、2a+b=1D、方程ax2+bx+c=0有一个根是x=3【考点】二次函数图象与系数旳关系、【分析】依照图象可得出a<0,c>0,得出ac<0,对称轴x=1,在对称轴旳右侧,y随x旳增大而减小;依照x=﹣=1,得出b=﹣2a,从而得出2a+b=0;依照抛物线旳对称性另一个交点到x=1旳距离与﹣1到x=1旳距离相等,得出另一个根、【解答】解:∵抛物线开口向下,∴a<0,∵抛物线与y轴旳正半轴相交,∴c>0,∴ac<0,故A选项错误;∵对称轴x=1,∴当x>1时,y随x旳增大而减小;故B选项错误;∵x=﹣=1,∴b=﹣2a,∴2a+b=0,故C选项错误;∵对称轴x=1,一个交点是〔﹣1,0〕,∴另一个交点是〔3,0〕∴方程ax2+bx+c=0另一个根是x=3,故D选项正确、应选D、【点评】此题考查了抛物线与x轴旳交点问题以及二次函数旳图象与系数旳关系,是基础知识要熟练掌握、5、二次函数y=〔x﹣1〕2+4,假设y随x旳增大而减小,那么x旳取值范围是〔〕A、x<﹣1B、x>4C、x<1D、x>1【考点】二次函数旳性质、【分析】依照y=ax2+bx+c〔a,b,c为常数,a≠0〕,当a>0时,在对称轴左侧y随x旳增大而减小,可得【答案】、【解答】解:y=〔x﹣1〕2+4,a=,当x<1时y随x旳增大而减小、应选:C、【点评】此题考查了二次函数旳性质,二次函数y=ax2+bx+c〔a,b,c为常数,a≠0〕,当a>0时,在对称轴左侧y随x旳增大而减小,在对称轴右侧y随x旳增大而增大;当a<0时,在对称轴左侧y随x旳增大而增大,在对称轴右侧y随x旳增大而减小、正比例函数中当k>0时,y随x旳增大而增大,k<0时,y随x旳怎大而减小、6、二次函数y=﹣2x2+4x+1旳图象如何平移可得到y=﹣2x2旳图象〔〕A、向左平移1个单位,向上平移3个单位B、向右平移1个单位,向上平移3个单位C、向左平移1个单位,向下平移3个单位D、向右平移1个单位,向下平移3个单位【考点】二次函数图象与几何变换、【分析】依照配方法,可得顶点式【解析】式,依照右移减,上移加,可得【答案】、【解答】解:二次函数y=﹣2x2+4x+1旳顶点坐标为〔1,3〕,y=﹣2x2旳顶点坐标为〔0,0〕,只需将函数y=﹣2x2+4x+1旳图象向左移动1个单位,向下移动3个单位即可、应选:C、【点评】此题考查函数旳图象变换,讨论两个二次函数旳图象旳平移问题,只需看顶点坐标是如何平移得到旳即可、7、假设〔2,5〕、〔4,5〕是抛物线y=ax2+bx+c上旳两个点,那么它旳对称轴是〔〕A、x=﹣B、x=1C、x=2D、x=3【考点】二次函数旳性质、【分析】由,点〔2,5〕、〔4,5〕是该抛物线上关于对称轴对称旳两点,因此只需求两对称点横坐标旳平均数、【解答】解:因为点〔2,5〕、〔4,5〕在抛物线上,依照抛物线上纵坐标相等旳两点,其横坐标旳平均数确实是对称轴,因此,对称轴x==3;应选D、【点评】此题考查了二次函数旳对称性、二次函数关于对称轴成轴对称图形、8、如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,假设∠AOB=15°,那么∠AOB′旳度数是〔〕A、25°B、30°C、35°D、40°【考点】旋转旳性质、【分析】依照旋转旳性质旋转前后图形全等以及对应边旳夹角等于旋转角,进而得出【答案】即可、【解答】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA﹣∠A′OB′=45°﹣15°=30°,应选:B、【点评】此题要紧考查了旋转旳性质,依照旋转旳性质得出∠A′OA=45°,∠AOB=∠A′OB′=15°是解题关键、9、如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,那么点P旳坐标是〔〕A、〔1,1〕B、〔1,2〕C、〔1,3〕D、〔1,4〕【考点】坐标与图形变化-旋转、【分析】先依照旋转旳性质得到点A旳对应点为点A′,点B旳对应点为点B′,再依照旋转旳性质得到旋转中心在线段AA′旳垂直平分线,也在线段BB′旳垂直平分线,即两垂直平分线旳交点为旋转中心、【解答】解:∵将△ABC以某点为旋转中心,顺时针旋转90°得到△A′B′C′,∴点A旳对应点为点A′,点C旳对应点为点C′,作线段AA′和CC′旳垂直平分线,它们旳交点为P〔1,2〕,∴旋转中心旳坐标为〔1,2〕、应选:B、【点评】此题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转旳角度和图形旳专门性质来求出旋转后旳点旳坐标、常见旳是旋转专门角度如:30°,45°,60°,90°,180°、10、如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1 O,那么点A1旳坐标为〔〕A、〔﹣1,〕B、〔﹣1,〕或〔﹣2,0〕C、〔,﹣1〕或〔0,﹣2〕D、〔,﹣1〕【考点】坐标与图形变化-旋转、【分析】需要分类讨论:在把△ABO 绕点O 顺时针旋转150°和逆时针旋转150°后得到△A 1B 1O 时点A 1旳坐标、【解答】解:∵△ABO 中,AB ⊥OB ,OB=,AB=1,∴tan ∠AOB==,∴∠AOB=30°、如图1,当△ABO 绕点O 顺时针旋转150°后得到△A 1B 1O ,那么∠A 1OC=150°﹣∠AOB ﹣∠BOC=150°﹣30°﹣90°=30°,那么易求A 1〔﹣1,﹣〕;如图2,当△ABO 绕点O 逆时针旋转150°后得到△A 1B 1O ,那么∠A 1OC=150°﹣∠AOB ﹣∠BOC=150°﹣30°﹣90°=30°,那么易求A 1〔﹣2,0〕;综上所述,点A 1旳坐标为〔﹣1,﹣〕或〔﹣2,0〕;应选B 、【点评】此题考查了坐标与图形变化﹣﹣旋转、解题时,注意分类讨论,以防错解、11、二次函数y=kx 2﹣5x ﹣5旳图象与x 轴有交点,那么k 旳取值范围是〔〕A 、B 、且k ≠0C 、D 、且k ≠0【考点】抛物线与x 轴旳交点、【分析】直截了当利用抛物线与x 轴交点个数与△旳关系得出即可、【解答】解:∵二次函数y=kx 2﹣5x ﹣5旳图象与x 轴有交点,∴△=b 2﹣4ac=25+20k ≥0,k ≠0,解得:k ≥﹣,且k ≠0、应选:B 、【点评】此题要紧考查了抛物线与x 轴交点,正确得出△旳符号是解题关键、12、如图,点C 是以点O 为圆心,AB 为直径旳半圆上旳动点〔点C 不与点A ,B 重合〕,AB=4、设弦AC 旳长为x ,△ABC 旳面积为y ,那么以下图象中,能表示y 与x 旳函数关系旳图象大致是〔〕A、B、C、D、【考点】动点问题旳函数图象、【分析】依照题意列出函数表达式,函数不是二次函数,也不是一次函数,又AB为定值,当OC⊥AB时,△ABC面积最大,现在AC=2,用排除法做出解答、【解答】解:∵AB=4,AC=x,∴BC==,=BC•AC=x,∴S△ABC∵此函数不是二次函数,也不是一次函数,∴排除A、C,∵AB为定值,当OC⊥AB时,△ABC面积最大,现在AC=2,即x=2时,y最大,故排除D,选B、故【答案】为:B、【点评】此题考查了动点问题旳函数图象,依照题意列出函数表达式是解决问题旳关键、【二】填空题:每题3分,共6小题,共计18分、13、如图在平面直角坐标系中,过格点A,B,C作一圆弧,圆心坐标是〔2,0〕、【考点】垂径定理;点旳坐标;坐标与图形性质、【分析】依照垂径定理旳推论:弦旳垂直平分线必过圆心,能够作弦AB和BC旳垂直平分线,交点即为圆心、【解答】解:依照垂径定理旳推论:弦旳垂直平分线必过圆心,能够作弦AB和BC旳垂直平分线,交点即为圆心、如下图,那么圆心是〔2,0〕、故【答案】为:〔2,0〕、【点评】此题考查垂径定理旳知识,理解此题中圆心在圆旳弦旳垂直平分线上,是垂直平分线旳交点、14、将二次函数y=x 2﹣4x+5化成y=〔x ﹣h 〕2+k 旳形式,那么y=〔x ﹣2〕2+1、【考点】二次函数旳三种形式、【分析】将二次函数y=x 2﹣4x+5旳右边配方即可化成y=〔x ﹣h 〕2+k 旳形式、【解答】解:y=x 2﹣4x+5,y=x 2﹣4x+4﹣4+5,y=x 2﹣4x+4+1,y=〔x ﹣2〕2+1、故【答案】为:y=〔x ﹣2〕2+1、【点评】此题考查了二次函数旳三种形式:一般式:y=ax 2+bx+c ,顶点式:y=a 〔x ﹣h 〕2+k ;两根式:y=a 〔x ﹣x 1〕〔x ﹣x 2〕、15、如图,将Rt △ABC 绕直角顶点A 顺时针旋转90°,得到△AB ′C ′,连结BB ′,假设∠1=20°,那么∠C 旳度数是65°、【考点】旋转旳性质、【分析】依照直角三角形定义可得∠BAC=90°,依照旋转可得AB=AB ′,∠BAB ′=90°,∠C=∠AC ′B ′,然后求出∠AB ′C ′,从而可得∠C 旳度数、【解答】解:∵△ABC 是直角三角形,∴∠BAC=90°,∵Rt △ABC 绕直角顶点A 顺时针旋转90°,∴AB=AB ′,∠BAB ′=90°,∠C=∠AC ′B ′,∴∠AB ′B=45°,∵∠1=20°,∴∠AB ′C ′=45°﹣20°=25°,∴∠AC ′B ′=90°﹣25°=65°,∴∠C=65°,故【答案】为:65°、【点评】此题要紧考查了旋转旳性质,关键是掌握旋转后旳图形和原图形全等、16、如图,AB 为⊙O 直径,CD 为⊙O 旳弦,∠ACD=25°,∠BAD 旳度数为65°、【考点】圆周角定理、【分析】依照直径所对旳圆周角是直角,构造直角三角形ABD,再依照同弧所对旳圆周角相等,求得∠B旳度数,即可求得∠BAD旳度数、【解答】解:∵AB为⊙O直径∴∠ADB=90°∵相同旳弧所对应旳圆周角相等,且∠ACD=25°∴∠B=25°∴∠BAD=90°﹣∠B=65°、故【答案】为:65°、【点评】考查了圆周角定理旳推论、构造直径所对旳圆周角是圆中常见旳辅助线之一、17、初三数学课本上,用“描点法”画二次函数y=ax2+bx+c旳图象时,列了如下表格:y=﹣5、【考点】二次函数图象上点旳坐标特征、【分析】由点旳坐标结合二次函数旳对称性能够找出该二次函数图象旳对称轴,找出与x=3对称旳点旳坐标,由此即可得出y值、【解答】解:∵点〔0,﹣3.5〕、〔2,﹣3.5〕在二次函数y=ax2+bx+c旳图象上,∴二次函数图象旳对称轴为x==1,∵1×2﹣3=﹣1,且点〔﹣1,﹣5〕在二次函数y=ax2+bx+c旳图象上,∴当x=3时,二次函数y=ax2+bx+c中y=﹣5、故【答案】为:﹣5、【点评】此题考查了二次函数图象上点旳坐标特征以及二次函数旳性质,解题旳关键是找出与x=3对称旳点旳坐标、此题属于基础题,难度不大,解决该题型题目时,依照二次函数图象旳对称性找出y值相等旳两点是关键、18、如图,P是抛物线y=2〔x﹣2〕2对称轴上旳一个动点,直线x=t平行y轴,分别与y=x、抛物线交于点A、B、假设△ABP是以点A或点B为直角顶点旳等腰直角三角形,求满足条件旳t旳值,那么t=或1或3、【考点】二次函数综合题;等腰直角三角形、【分析】依题意,y=2x2﹣8x+8,设A〔t,t〕,B〔t,2t2﹣8t+8〕,那么AB=|t﹣〔2t2﹣8t+8〕|=|2t2﹣9t+8|,当△ABP是以点A为直角顶点旳等腰直角三角形时,那么∠PAB=90°,PA=AB=|t﹣2|;当△ABP是以点B为直角顶点旳等腰直角三角形时,那么∠PBA=90°,PB=AB=|t﹣2|;分别列方程求k旳值、【解答】解:∵y=2〔x﹣2〕2∴y=2x2﹣8x+8,∵直线x=t分别与直线y=x、抛物线y=2x2﹣8x+8交于点A、B两点,∴设A〔t,t〕,B〔t,2t2﹣8t+8〕,AB=|t﹣〔2t2﹣8t+8〕|=|2t2﹣9t+8|,①当△ABP是以点A为直角顶点旳等腰直角三角形时,∠PAB=90°,现在PA=AB=|t﹣2|,即|2t2﹣9t+8|=|t﹣2|,∴2t2﹣9t+8=t﹣2,或2t2﹣9t+8=2﹣t,解得t=或1或3;②当△ABP是以点B为直角顶点旳等腰直角三角形时,那么∠PBA=90°,现在PB=AB=|t﹣2|,结果同上、故【答案】为:或1或3、【点评】此题考查了二次函数旳综合运用、关键是依照函数【解析】式表示A、B两点坐标,再表示线段AB,依照题意,列方程求解、【三】解答题:共8小题,共计66分、19、如图,AB是⊙O旳一条弦,OD⊥AB,垂足为C,OD交⊙O于点D,点E在☉O上、〔1〕假设∠AOD=54°,求∠DEB旳度数;〔2〕假设OC=3,OA=5,求弦AB旳长、【考点】垂径定理;勾股定理;圆周角定理、【分析】〔1〕欲求∠DEB,又一圆心角,可利用圆周角与圆心角旳关系求解;〔2〕利用垂径定理能够得到AC=BC=AB=4,从而得到结论、【解答】解:〔1〕∵OD⊥AB,∴=,∴∠DEB=∠AOD=×54°=28°、〔2〕∵OC=3,OA=5,∴AC=4,∵OD⊥AB,∴弧AD=弧BD=弧AB,∴AC=BC=AB=4,∴AB=8、【点评】此题考查了圆周角与圆心角定理以及垂径定理,熟练掌握垂径定理得出AC=CB=4是解题关键、20、小李想用篱笆围成一个周长为60米旳矩形场地,矩形面积S 〔单位:平方米〕随矩形一边长x 〔单位:米〕旳变化而变化、〔1〕求S 与x 之间旳函数关系式,并写出自变量x 旳取值范围;〔2〕当x 是多少时,矩形场地面积S 最大,最大面积是多少?【考点】二次函数旳应用、【分析】〔1〕周长为60米,一边长为x ,那么另一边长为30﹣x 、〔2〕用配方法化简函数【解析】式,求出s 旳最大值、【解答】解:〔1〕S=x 〔30﹣x 〕〔2分〕自变量x 旳取值范围为:0<x <30、〔1分〕〔2〕S=x 〔30﹣x 〕=﹣〔x ﹣15〕2+225,〔2分〕∴当x=15时,S 有最大值为225平方米、即当x 是15时,矩形场地面积S 最大,最大面积是225平方米、〔1分〕【点评】此题考查旳是二次函数旳应用,难度属一般、21、〔10分〕〔2016秋•南开区期中〕如图,抛物线旳顶点为A 〔1,4〕,抛物线与y 轴交于点B 〔0,3〕,与x 轴交于C 、D 两点、点P 是x 轴上旳一个动点、〔1〕求此抛物线旳【解析】式;〔2〕求C 、D 两点坐标及△BCD 旳面积;〔3〕假设点P 在x 轴上方旳抛物线上,满足S △PCD =S △BCD ,求点P 旳坐标、【考点】二次函数综合题、【分析】〔1〕设抛物线顶点式【解析】式y=a 〔x ﹣1〕2+4,然后把点B 旳坐标代入求出a 旳值,即可得解;〔2〕令y=0,解方程得出点C ,D 坐标,再用三角形面积公式即可得出结论;〔3〕先依照面积关系求出点P 旳坐标,求出点P 旳纵坐标,代入抛物线【解析】式即可求出点P 旳坐标、【解答】解:〔1〕∵抛物线旳顶点为A 〔1,4〕,∴设抛物线旳【解析】式y=a 〔x ﹣1〕2+4,把点B 〔0,3〕代入得,a+4=3,解得a=﹣1,∴抛物线旳【解析】式为y=﹣〔x ﹣1〕2+4;〔2〕由〔1〕知,抛物线旳【解析】式为y=﹣〔x ﹣1〕2+4;令y=0,那么0=﹣〔x ﹣1〕2+4,∴x=﹣1或x=3,∴C 〔﹣1,0〕,D 〔3,0〕;∴CD=4,∴S △BCD =CD ×|y B |=×4×3=6;〔3〕由〔2〕知,S △BCD =CD ×|y B |=×4×3=6;CD=4,∵S △PCD =S △BCD ,∴S △PCD =CD ×|y P |=×4×|y P |=3,∴|y P |=,∵点P 在x 轴上方旳抛物线上,∴y P >0,∴y P =,∵抛物线旳【解析】式为y=﹣〔x ﹣1〕2+4;∴=﹣〔x ﹣1〕2+4,∴x=1±,∴P 〔1+,〕,或P 〔1﹣,〕、【点评】此题是二次函数综合题,要紧考查了待定系数法,坐标轴上点旳特点,三角形旳面积公式,解此题旳关键是求出抛物线【解析】式,是一道比较简单旳中考常考题、22、〔2018•曲阜市模拟〕设二次函数y=ax 2+bx+c 〔a >0〕旳图象与x 轴旳两个交点A 〔x 1,0〕,B 〔x 2,0〕,抛物线旳顶点为C ,显然△ABC 为等腰三角形、〔1〕当△ABC 为等腰直角三角形时,求b 2﹣4ac 旳值;〔2〕当△ABC 为等边三角形时,求b 2﹣4ac 旳值、【考点】二次函数综合题、【分析】〔1〕由于抛物线与x轴有两个不同旳交点,因此b2﹣4ac>0;可求得线段AB旳表达式,利用公式法可得到顶点C旳纵坐标,进而求得斜边AB上旳高〔设为CD〕,假设△ABC 为等腰直角三角形,那么AB=2CD,可依照那个等量关系求出b2﹣4ac旳值;〔2〕当△ABC为等边三角形时,解直角△ACE,得CE=AE=AB,据此列出方程,解方程求出b2﹣4ac旳值、【解答】解:〔1〕当△ABC为等腰直角三角形时,过C作CD⊥AB于D,那么AB=2CD;∵抛物线与x轴有两个交点,∴△>0,∴|b2﹣4ac|=b2﹣4ac,∵AB=,又∵CD=〔a≠0〕,∴=,即=,∴b2﹣4ac=,∵b2﹣4ac≠0,∴b2﹣4ac=4、〔2〕如图,当△ABC为等边三角形时,由〔1〕可知CE=AE=AB,∴=×,∵b2﹣4ac>0,∴=,∴b2﹣4ac=12、【点评】此题考查了二次函数综合题,涉及了等腰直角三角形、等边三角形旳性质,抛物线与x轴旳交点及根与系数旳关系定理,综合性较强,难度中等、23、〔10分〕〔2018秋•南京期中〕如图,四边形ABCD内接于⊙O,∠DAE是四边形ABCD 旳一个外角,且AD平分∠CAE、求证:DB=DC、【考点】圆内接四边形旳性质;圆周角定理、【分析】先依照圆周角定理得出∠DAC=∠DBC,再由角平分线旳性质得出∠EAD=∠DAC,依照圆内接四边形旳性质得出∠EAD=∠BCD,由此可得出结论、【解答】证明:∵∠DAC与∠DBC是同弧所对旳圆周角,∴∠DAC=∠DBC、∵AD平分∠CAE,∴∠EAD=∠DAC,∴∠EAD=∠DBC、∵四边形ABCD内接于⊙O,∴∠EAD=∠BCD,∴∠DBC=∠DCB,∴DB=DC、【点评】此题考查旳是圆内接四边形旳性质,熟知圆内接四边形旳任意一个外角等于它旳内对角是解答此题旳关键、24、〔10分〕〔2018•武汉〕九〔1〕班数学兴趣小组通过市场调查,整理出某种商品在第x〔1〕求出y与x旳函数关系式;〔2〕问销售该商品第几天时,当天销售利润最大,最大利润是多少?〔3〕该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直截了当写出结果、【考点】二次函数旳应用、【分析】〔1〕依照单价乘以数量,可得利润,可得【答案】;〔2〕依照分段函数旳性质,可分别得出最大值,依照有理数旳比较,可得【答案】;〔3〕依照二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,依照解不等式组,可得【答案】、【解答】解:〔1〕当1≤x<50时,y=〔200﹣2x〕〔x+40﹣30〕=﹣2x2+180x+2000,当50≤x≤90时,y=〔200﹣2x〕〔90﹣30〕=﹣120x+12000,综上所述:y=;〔2〕当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,=﹣2×452+180×45+2000=6050,当x=45时,y最大当50≤x≤90时,y随x旳增大而减小,=6000,当x=50时,y最大综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;〔3〕当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元旳天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元旳天数是50≤x≤60,共11天,因此该商品在销售过程中,共41天每天销售利润不低于4800元、【点评】此题考查了二次函数旳应用,利用单价乘以数量求函数【解析】式,利用了函数旳性质求最值、25、〔10分〕〔2018•抚州一模〕正方形ABCD中,E是CD边上一点,〔1〕将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示、观看可知:与DE相等旳线段是BF,∠AFB=∠AED〔2〕如图2,正方形ABCD中,P、Q分别是BC、CD边上旳点,且∠PAQ=45°,试通过旋转旳方式说明:DQ+BP=PQ〔3〕在〔2〕题中,连接BD分别交AP、AQ于M、N,你还能用旋转旳思想说明BM2+DN2=MN2、【考点】旋转旳性质;全等三角形旳判定与性质;勾股定理;正方形旳性质、【分析】〔1〕直截了当依照旋转旳性质得到DE=BF,∠AFB=∠AED;〔2〕将△ADQ绕点A按顺时针方向旋转90°,那么AD与AB重合,得到△ABE,依照旋转旳性质得∠EAQ=∠BAD=90°,AE=AQ,BE=DQ,而∠PAQ=45°,那么∠PAE=45°,再依照全等三角形旳判定方法得到△APE≌△APQ,那么PE=PQ,因此PE=PB+BE=PB+DQ,即可得到DQ+BP=PQ;〔3〕依照正方形旳性质有∠ABD=∠ADB=45°,将△ADN绕点A按顺时针方向旋转90°,那么AD与AB重合,得到△ABK,依照旋转旳性质得∠ABK=∠ADN=45°,BK=DN,AK=AN,与〔2〕一样可证明△AMN≌△AMK得到MN=MK,由于∠MBA+∠KBA=45°+45°=90°,得到△BMK为直角三角形,依照勾股定理得BK2+BM2=MK2,然后利用等相等代换即可得到BM2+DN2=MN2、【解答】解:〔1〕∵△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,∵DE=BF,∠AFB=∠AED、故【答案】为:BF,AED;〔2〕将△ADQ绕点A按顺时针方向旋转90°,那么AD与AB重合,得到△ABE,如图2,那么∠D=∠ABE=90°,即点E、B、P共线,∠EAQ=∠BAD=90°,AE=AQ,BE=DQ,∵∠PAQ=45°,∴∠PAE=45°,∴∠PAQ=∠PAE,在△APE和△APQ中∵,∴△APE≌△APQ〔SAS〕,∴PE=PQ,而PE=PB+BE=PB+DQ,∴DQ+BP=PQ;〔3〕∵四边形ABCD为正方形,∴∠ABD=∠ADB=45°,如图,将△ADN绕点A按顺时针方向旋转90°,那么AD与AB重合,得到△ABK,那么∠ABK=∠ADN=45°,BK=DN,AK=AN,与〔2〕一样可证明△AMN≌△AMK,得到MN=MK,∵∠MBA+∠KBA=45°+45°=90°,∴△BMK为直角三角形,∴BK2+BM2=MK2,∴BM2+DN2=MN2、【点评】此题考查了旋转旳性质:旋转前后两图形全等;对应点到旋转中心旳距离相等;对应点与旋转中心旳连线段旳夹角等于旋转角、也考查了三角形全等旳判定与性质、正方形旳性质以及勾股定理、26、〔10分〕〔2016秋•南开区期中〕如图,通过点A〔0,﹣4〕旳抛物线y=x2+bx+c与x轴相交于点B〔﹣1,0〕和C,O为坐标原点、〔1〕求抛物线旳【解析】式;〔2〕将抛物线y=x2+bx+c向上平移个单位长度,再向左平移m〔m>0〕个单位长度,得到新抛物线,假设新抛物线旳顶点P在△ABC内,求m旳取值范围;〔3〕将x轴下方旳抛物线图象关于x轴对称,得到新旳函数图象C,假设直线y=x+k与图象C始终有3个交点,求满足条件旳k旳取值范围、【考点】二次函数综合题、【分析】〔1〕该抛物线旳【解析】式中只有两个待定系数,只需将A、B两点坐标代入即可得解、〔2〕首先依照平移条件表示出移动后旳函数【解析】式,进而用m表示出该函数旳顶点坐标,将其代入直线AB、AC旳【解析】式中,即可确定P在△ABC内时m旳取值范围、〔3〕先依照函数【解析】式画出图形,然后结合图形找出抛物线与x 轴有三个交点旳情形,最后求得直线旳【解析】式,从而可求得m 旳值、【解答】解:〔1〕∵通过点A 〔0,﹣4〕旳抛物线y=x 2+bx+c 与x 轴相交于点B 〔﹣1,0〕,∴,∴,∴抛物线【解析】式为y=x 2﹣x ﹣4,〔2〕由〔1〕知,抛物线【解析】式为y=x 2﹣x ﹣4=〔x 2﹣7x 〕﹣4=〔x ﹣〕2﹣,∴此抛物线向上平移个单位长度旳抛物线旳【解析】式为y=〔x ﹣〕2﹣,再向左平移m 〔m >0〕个单位长度,得到新抛物线y=〔x+m ﹣〕2﹣,∴抛物线旳顶点P 〔﹣m+,﹣〕,关于抛物线y=x 2﹣x ﹣4,令y=0,x 2﹣x ﹣4=0,解得x=﹣1或8,∴B 〔8,0〕,∵A 〔0,﹣4〕,B 〔﹣1,0〕,∴直线AB 旳【解析】式为y=﹣4x ﹣4,直线AC 旳【解析】式为y=x ﹣4,当顶点P 在AB 上时,﹣=﹣4×〔﹣m+〕﹣4,解得m=,当顶点P 在AC 上时,﹣=〔﹣m+〕﹣4,解得m=,∴当点P 在△ABC 内时<m <、 〔3〕翻折后所得新图象如下图、平移直线y=x+k 知:直线位于l 1和l 2时,它与新图象有三个不同旳公共点、①当直线位于l 1时,现在l 1过点B 〔﹣1,0〕,∴0=﹣1+k ,即k=1、②∵当直线位于l 2时,现在l 2与函数y=﹣x 2+x+4〔﹣1≤x ≤8〕旳图象有一个公共点∴方程x+k=﹣x2+x+4,即x2﹣5x﹣8+2k=0有两个相等实根、∴△=25﹣4〔2k﹣8〕=0,即k=、综上所述,k旳值为1或、【点评】此题要紧考查旳是二次函数旳综合应用,一次函数、两直线平行k相同等知识,依照题意画出如图,找出新图象与直线y=x+m有三个不同公共点旳条件是解题旳关键、。
2017-2018年度南开翔宇初三第二次月考数学试卷
ABAC南开翔宇学校 2017—2018 学年度第一学期二月考九年级数学试卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分) 1. 已知 2x=3y ,则下面结论成立的是2. 下列四组图形中,一定相似的是 A. 正方形与矩形B. 正方形与菱形C. 菱形与菱形D. 正五边形与正五边3. 如图,六边形 ABCDEF ∽六边形 GHIJKL ,相似比为 2:1,则下列结论正确的是 A. ∠E=2∠KB. BC=2HIC. 六边形 ABCDEF 的周长=六边形 GHIJKL 的周长D. S 六边形 ABCDEF=2S 六边形 GHIJKL4. 如图,给出下列条件,其中不能单独判定△ABC ∽△ACD 的条件为A. ∠B=∠ACDB. ∠ADC=∠AC8C.AC = AB D.CD BCAC = AD5. 如图,⊙O 是△ABC 的外接圆,BC=2,∠BAC=30°,则劣弧 BC 的长等于2A.B. π332 3 3 C.D.336. 如图,在大小为 4×4 的正方形网格中,是相似三角形的是A. ①和②B. ②和③C. ①和③D. ②和④7. 如图,以点 0 为位似中心,将△ABC 放大得到△DEF ,若 AD=OA ,△ABC 的面积为 4,则△EDF 的面积为A. 2B. 8C. 16D. 248. 如图,已知 AB ||CD ||EF ,那么下列结论中正确的是A.CD=ADB. EF AFAB = BC C. CD EC AD =AF D.BC BECE =BEAF AD62 9. 如图,矩形 ABCD 的边 AB=1,BE 平分∠ABC ,交 AD 于点 E ,若点 E 是 AD 的中点,以点 B 为圆心,BE 长 为半径画弧,交 BC 于点 F ,则图中阴影部分的面积是A. 2-π43πB.-2 4C. 2-π83πD.-2 810. 在 Rt △ABC 中,AD 是斜边 BC 上的高线,若 BD=2,BC=6,则 AB=A.B. C. 2 3 D. 2 211. 圆锥的底面半径 r=3,高 h=4,则圆锥的侧面积是A. 12πB. 15πC. 24πD. 30π12. 如图,在 Rt △ABC 内有边长分别为 a ,b ,c 的三个正方形,则 a ,b ,c 满足的关系式是A. b=a+cB. b=acC. b ²=a ²+c ²D. b=2a=2c二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)13. 在比例尺为 l :10000 的地图上,某条道路的长为 5 厘米,则该道路的实际长度是 千米AD 14. 如图,在△ABC 中,若 DE ||BC ,DB= 2,DE=4,则 BC 的长是315. 如图,数学活动小组为了测量学校旗杆 AB 的高度,使用长为 2 米的竹竿 CD 作为测量工具,移动竹竿,使 竹竿顶端的影子与旗杆顶端的影子在地面 O 处重合,测得 OD=4 米,BD=14 米,则旗杆 AB 的高为米.16. 已知△ABC 的三个顶点坐标为 A (5,0),B (6,4),C (3,0),将△ABC 以坐标原点 O 为位似中心,以相 似比 2:1 进行缩小,则点 B 的对应点的坐标为17. 如图,已知 M (3,3),⊙M 的半径为 2,四边形 ABCD 是⊙M 的内接正方形,E 为 AB 中点,当正方形 ABCD 绕圆心 M 转动时,△OME 的面积最大值为18. 设△ABC 的面积为 1,如图①,将边 BC,AC 分别 2 等分,BE1,AD1 相交于点 O,△AOB 的面积记为 S1;如图②将边 BC,AC 分别 3 等分,BE1,AD1 相交于点 O,△AOB 的面积记为 S2,;…,以此类推,则 S n 可表示为(用含 n 的代数式表示,其中 n 为正整数)三、解答题(本大题共 7 小题,共 66 分)19. 如图,四边形 ABCD∽四边形 A’B’C’D’,求边 x,y 的长度和角α的大小。
天津市南开翔宇学校九年级数学上册第一单元《一元二次方程》测试题(答案解析)
一、选择题1.方程22(1)110m xm x -++-=是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠±l B .m≥-l 且m≠1 C .m≥-lD .m >-1且m≠12.用配方法解下列方程时,配方错误的是( )A .x 2﹣2x ﹣99=0化为(x ﹣1)2=100B .x 2+8x+9=0化为(x+4)2=25C .2x 2﹣7x ﹣4=0化为(x ﹣74)2=8116D .3x 2﹣4x ﹣2=0化为(x ﹣23)2=1093.已知一元二次方程2210x x --=的两个根分别是1x ,2x ,则2112x x x -+的值为( ). A .-1B .0C .2D .34.一个大正方形内放入两个同样大小的小正方形纸片,按如图1放置,两个小正方形纸片的重叠部分面积为4;按如图2放置(其中一小张正方形居大正方形的正中),大正方形中没有被小正方形覆盖的部分(阴影部分)的面积为44,则把两张小正方形按如图3放置时,两个小正方形重叠部分的面积为( )A .10B .12C .14D .165.日历中含有丰富的数学知识,如在图1所示的日历中用阴影圈出9个数,这9个数的大小之间存在着某种规律.小慧在2020年某月的日历中也按图1所示方式圈出9个数(如图2),发现这9个数中最大的数与最小的数乘积是297,则这9个数中,中间的数e 是( ) 日一二 三 四 五 六1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25262728293031abcd efghi图1图2A .17B .18C .19D .206.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为( ) A .12 B .15 C .12或15 D .18 7.若关于x 的一元二次方程260x x c -+=有两个相等的实数根,则常数c 的值为( ) A .3B .6C .8D .98.关于x 的方程()---=2a 3x 4x 10有两个不相等的实数根,则a 的取值范围是( ) A .1a ≥-且3a ≠ B .1a >-且3a ≠ C .1a ≥-D .1a >- 9.关于x 的方程x 2﹣kx ﹣2=0的根的情况是( )A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法确定 10.已知x 1、x 2是一元二次方程x 2﹣4x ﹣1=0的两个根,则x 1•x 2等于( ) A .4B .1C .﹣1D .﹣411.实数,m n 分别满足方程2199910m m ++=和219990n n ++=,且1mn ≠,求代数式41mn m n++的值( ) A .5-B .5C .10319-D .1031912.已知一元二次方程x 2﹣6x+c =0有一个根为2,则另一根及c 的值分别为( ) A .2,8B .3,4C .4,3D .4,8二、填空题13.一元二次方程2210x x -+=的一次项系数为_________.14.若关于x 的一元二次方程240x x k -+=有两个相等的实数根,则k =______. 15.一元二次方程-+=(5)(2)0x x 的解是______________.16.用因式分解法解关于x 的方程 260x px --=,将左边分解因式后有一个因式为3x -,则的p 值为_______17.已知(x 2+y 2)(x 2+y 2﹣5)=6,则x 2+y 2=_____.18.当m =___________时,方程(2150m m xmx --+=是一元二次方程.19.若关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根,则k 的取值范围是______.20.已知a 2+1=3a ,b 2+1=3b ,且a ≠b ,则11a b+=_____. 三、解答题21.已知关于x 的方程()220x mx m -+=-.(1)求证:不论m 为何值,该方程总有两个不相等的实数根; (2)若方程有一个根是2,求m 的值以及方程的另一个根. 22.(1)x 2﹣8x+1=0; (2)2(x ﹣2)2=x 2﹣4.23.在国家的调控下.某市商品房成交价由今年8月份的50000元2/m 下降到10月份的40500元2/m .(1)同8~9两月平均每月降价的百分率是多少?(2)如果房价继续回落,按此降价的百分率,你预测到12月份该市的商品房成交均价是否会跌破30000元/2m ?请说明理由. 24.解方程: (1)x 2+10x +9=0;(2)x 2=14. 25.定义:若关于x 的一元二次方程()200++=≠ax bx c a 的两个实数根1x ,()212x x x <,分别以1x ,2x 为横坐标和纵坐标得到点()12,M x x ,则称点M 为该一元二次方程的衍生点.(1)若关于x 的一元二次方程为()22210x m x m m --+-=.①求证:不论m 为何值,该方程总有两个不相等的实数根,并求出该方程的衍生点M 的坐标;②由①得到的衍生点M 在直线l :3y x =-+与坐标轴围成的区域上,求m 的取值范围.(2)是否存在b ,c ,使得不论()0k k ≠为何值,关于x 的方程20x bx c ++=的衍生点M 始终在直线()25y kx k =+-的图象?若有,求出b ,c 的值:若没有,说明理由.26.解方程: (1)2237x x +=; (2)x(2x+5)=2x+5.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据一元二次方程的定义及二次根式有意义的条件求解可得. 【详解】∵方程22(1)10m x -+-=是关于x 的一元二次方程, ∴210m -≠, 解得1m ≠±,10m +≥, 解得:1m ≥-, ∴1m >-且1m ≠, 故选:D . 【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.B解析:B 【分析】将常数项移到方程的右边,然后将二次项系数化为1,继而两边都加上一次项系数一半的平方配成完全平方式后即可得出答案. 【详解】解:A 、由x 2﹣2x ﹣99=0得x 2﹣2x=99,则x 2﹣2x+1=100,即(x ﹣1)2=100,故本选项正确,不符合题意;B 、由x 2+8x+9=0得x 2+8x=-9,则x 2+8x+16=-9+16即(x+4)2=7此选项错误,符合题意;C 、由2x 2﹣7x ﹣4=0得2x 2﹣7x=4,则x 2﹣72x =2,∴x 2﹣72x+4916=2+4916,即274x ⎛⎫- ⎪⎝⎭=8116,故本选项正确,不符合题意; D 、由3x 2﹣4x ﹣2=0,得3x 2﹣4x=2,则x 2﹣43x =23,∴故x 2﹣43x+49=23+49,即(x﹣23)2=109,故本选项正确,不符合题意;故选:B . 【点睛】本题主要考查解一元二次方程−配方法,用配方法解一元二次方程的步骤: ①把原方程化为a 2x +bx +c =0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边; ③方程两边同时加上一次项系数一半的平方; ④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.3.D解析:D【分析】分别根据一元二次方程的根的意义和一元二次方程根与系数的关系分别得到21112210,2x x x x --=+=,变形代入求值即可得到答案.【详解】解:由题意得21112210,2x x x x --=+=,即21121x x -=,∴原式211122123x x x x =-++=+=. 故选:D . 【点睛】此题主要考查了一元二次方程的解的根与系数的关系,灵活运用根与系数的关系是解答此题的关键.4.B解析:B 【分析】设大正方形的边长为 a ,小正方形的边长为 b ,利用图1得到一个 a 与 b 关系式,再利用图2得到一个 a 与 b 关系式,即可求出 a 和 b ,然后再求图3阴影面积即可. 【详解】图1中重叠部分的为正方形且其面积为4,∴重叠部分的边长为2, 设大正方形边长为a ,小正方形的边长为b ,∴a -b +2=b , 如图2,阴影部分面积=a 2-2b 2+(b -2a b -)2=44,解得:b =6,∴a =10, 如图3,两个小正方形重叠部分的面积=()2b b a ⨯-=12. 故答案为:B . 【点睛】此题考查的是代数式的运算,正方形的性质,解一元二次方程,找到每个图中的等量关系式是解决此题的关键.5.C解析:C 【分析】根据日历的特点得到8i e =+,8a e =-,列出一元二次方程解出e 的值. 【详解】解:根据日历的特点,同一列上下两个数相差7,前后两个数相差1, 则7h e =+,18i h e =+=+,7b e =-,18a b e =-=-, ∵最大的数与最小的数乘积是297,∴()()88297ai e e =-+=,解得19e =±,取正数,19e =. 故选:C . 【点睛】本题考查一元二次方程的应用,解题的关键是根据题意列出方程进行求解.6.B解析:B 【分析】首先求出方程的根,再根据三角形三边关系定理列出不等式,确定是否符合题意. 【详解】解:解方程x 2-9x+18=0,得x 1=3,x 2=6, 当3为腰,6为底时,不能构成等腰三角形;当6为腰,3为底时,能构成等腰三角形,周长为6+6+3=15. 故选:B . 【点睛】本题考查了解一元二次方程,从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.7.D解析:D 【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论. 【详解】 解:260x x c -+=有两个相等的实根,2(6)40c ∴∆=--=,解得:9c = 故选:D . 【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c 的一元一次方程是解题的关键.8.B解析:B 【分析】方程有两个不相等的实数根,显然原方程应该是关于x 的一元二次方程,因此得到二次项系数不为0即当a-3≠0时,且判别式0∆>即可得到答案. 【详解】∵关于x 的方程()32a x 4x 10---=有两个不相等的实数根∴a-3≠0,且2=(4)4(3)(1)440a a ∆--⨯-⨯-=+> 解得:1a ≥-且a≠3 故选B . 【点睛】本题主要考查方程的解,一元二次方程的根的判别式,根据判别式,列出关于参数a 的不等式,是解题的关键.9.C解析:C 【分析】根据一元二次方程根的判别式可得△=(﹣k )2﹣4×1×(﹣2)=k 2+8>0,即可得到答案. 【详解】解:△=(﹣k )2﹣4×1×(﹣2)=k 2+8. ∵k 2≥0,∴k 2+8>0,即△>0,∴该方程有两个不相等的实数根. 故选:C . 【点睛】本题考查一元二次方程根的判别式, 24b ac ∆=-,当0∆>时方程有两个不相等的实数根,当0∆=时方程有两个相等的实数根,当∆<0时方程没有实数根.10.C解析:C 【分析】据一元二次方程的根与系数的关系得到两根之和即可. 【详解】解:∵方程x 2-4x-1=0的两个根是x 1,x 2, ∴x 1∙x 2=-1. 故选:C . 【点睛】本题考查了一元二次方程ax 2+bx+c=0的根与系数关系,两根之和是-b a ,两根之积是c a. 11.A解析:A 【分析】由219990n n ++=可得211199910n n⋅+⋅+=,进而可得1,m n 是方程2199910x x ++=的两个根,然后根据一元二次方程的根与系数的关系可求解. 【详解】解:由219990n n ++=可得211199910n n⋅+⋅+=, ∴1,m n是方程2199910x x ++=的两个根, ∴19911,1919m m n n +=-⋅=,∴4119914451919mn m m m n n n ++=+⋅+=-+⨯=-; 故选A . 【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.12.D解析:D 【分析】设方程的另一个根为t ,根据根与系数的关系得到t +2=6,2t =c ,然后先求出t ,再计算c 的值. 【详解】解:设方程的另一个根为t , 根据题意得t +2=6,2t =c , 解得t =4,c =8. 故选:D . 【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a. 二、填空题13.-2【分析】根据一元二次方程的一次项系数的定义即可求解【详解】解:一元二次方程x2-2x +1=0一次项系数是:-2故答案为:-2【点睛】此题考查了一元二次方程的一般形式准确掌握一般式中的相关概念是解解析:-2 【分析】根据一元二次方程的一次项系数的定义即可求解. 【详解】解:一元二次方程x 2 -2x +1=0一次项系数是:-2. 故答案为:-2. 【点睛】此题考查了一元二次方程的一般形式,准确掌握一般式中的相关概念是解题的关键.14.4【分析】根据一元二次方程根的判别式可直接进行求解【详解】解:∵关于的一元二次方程有两个相等的实数根∴解得:;故答案为4【点睛】本题主要考查一元二次方程根的判别式熟练掌握一元二次方程根的判别式是解题解析:4 【分析】根据一元二次方程根的判别式可直接进行求解. 【详解】解:∵关于x 的一元二次方程240x x k -+=有两个相等的实数根, ∴()224440b ac k ∆=-=--=,解得:4k =; 故答案为4. 【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.15.x1=5x2=-2【分析】直接利用因式分解法得出方程的根【详解】解:∵(x-5)(x+2)=0∴x-5=0或x+2=0∴x1=5x2=-2故答案为:x1=5x2=-2【点睛】此题主要考查了一元二次方解析:x 1=5,x 2=-2 【分析】直接利用因式分解法得出方程的根. 【详解】解:∵(x-5)(x+2)=0, ∴x-5=0或x+2=0, ∴x 1=5,x 2=-2, 故答案为:x 1=5,x 2=-2. 【点睛】此题主要考查了一元二次方程的解法,正确理解因式分解法解方程是解题关键.16.1【分析】方法一:根据题意因式分解得到再展开去括号根据恒等式即可求出p 的值;方法二:将代入方程可得一个关于p 的一元一次方程解方程即可得【详解】方法一:由题意得解得则;方法二:由题意得是关于x 的方程的解析:1 【分析】方法一:根据题意因式分解得到26(3)()x px x x a --=-+,再展开去括号,根据恒等式即可求出p 的值;方法二:将3x =代入方程可得一个关于p 的一元一次方程,解方程即可得. 【详解】方法一:由题意得,226(3)()(3)3x px x x a x a x a --=-+=+--,3p a ∴-=-,36a -=-,解得2a =, 则1p =;方法二:由题意得,3x =是关于x 的方程260x px --=的一个解,则将3x =代入得:23360p --=, 解得1p =, 故答案为:1. 【点睛】本题考查了多项式因式分解的方法、利用因式分解法解一元二次方程,熟练掌握多项式的运算法则和方程的解法是解题关键.17.6【分析】设x2+y2=m 把原方程转化为含m 的一元二次方程先用因式分解法求解再确定x2+y2的值【详解】设x2+y2=m 原方程可变形为:m(m ﹣5)=6即m2﹣5m ﹣6=0∴(m ﹣6)(m+1)=0解析:6 【分析】设x 2+y 2=m ,把原方程转化为含m 的一元二次方程,先用因式分解法求解,再确定x 2+y 2的值. 【详解】设x 2+y 2=m ,原方程可变形为:m (m ﹣5)=6, 即m 2﹣5m ﹣6=0. ∴(m ﹣6)(m +1)=0, 解得m 1=6,m 2=﹣1. ∵m =x 2+y 2≥0, ∴x 2+y 2=6. 故答案为:6. 【点睛】本题考查了一元二次方程的解法,掌握换元法和因式分解法解一元二次方程是解决本题的关键.18.【分析】根据一元二次方程的定义解答【详解】∵是一元二次方程∴且解得故答案为:【点睛】本题考查了一元二次方程的概念只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程一般形式是(且)特别要注意【分析】根据一元二次方程的定义解答. 【详解】∵(2150m m xmx -+-+=是一元二次方程,∴212m -=且0m +≠,解得m =,【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是20ax bx c ++=(且0a ≠).特别要注意0a ≠的条件.这是在做题过程中容易忽视的知识点.19.且【分析】根据题意结合一元二次方程的定义和根的判别式可得关于k 的不等式然后解不等式即可求解【详解】解:∵关于的一元二次方程有两个不相等的实数根∴∴的取值范围是且故答案为:且【点睛】本题考查了一元二次 解析:0k >且1k ≠【分析】根据题意,结合一元二次方程的定义和根的判别式可得关于k 的不等式,然后解不等式即可求解.【详解】解:∵关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根, ∴21024(1)(1)0k k -≠⎧⎨∆=--⨯->⎩,10k k ≠⎧⎨>⎩, ∴k 的取值范围是0k >且1k ≠,故答案为:0k >且1k ≠.【点睛】本题考查了一元二次方程的定义、根的判别式、解一元一次不等式,熟练掌握一元二次方程的根的判别式与根的关系是解答的关键.20.【分析】根据一元二次方程根的定义得到ab 是一元二次方程的两根得到a 和b 的和与积再把两根和与两根积求出代入所求的式子中即可求出结果【详解】解:∵a2+1=3ab2+1=3b 且a≠b ∴ab 是一元二次方程解析:3【分析】根据一元二次方程根的定义得到a 、b 是一元二次方程的两根,得到a 和b 的和与积,再把两根和与两根积求出,代入所求的式子中即可求出结果.【详解】解:∵a 2+1=3a ,b 2+1=3b ,且a ≠b∴a ,b 是一元二次方程x 2﹣3x +1=0的两个根,∴由韦达定理得:a +b =3,ab =1, ∴113a b a b ab++==. 故答案为:3.【点睛】 本题考查一元二次方程根与系数关系、一元二次方程根的定义、分式的通分,对一元二次方程根的定义的理解是解题的关键.三、解答题21.(1)见解析;(2)m 的值为2,另一个根为0【分析】(1)先计算判别式的值得到△=(m-2)2+4,然后根据判别式的意义得到结论;(2)设方程的另一个为t ,利用根与系数的关系得到2+t=m ,2t=m-2,然后解方程组即可.【详解】(1)证明:∵1a =,b m =-,2c m =-∴()()()222244124824-=--⨯⨯-=-+=-+b ac m m m m m ∵()220m -≥,∴()2240m -+>. ∴无论m 为何值,该方程总有两个不相等的实数根.(2)根据题意:()22220-+-=m m ,∴2m = 则220x x -=,∴10x =,22x =. ∴m 的值为2,另一个根为0.【点睛】 本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a,也考查了判别式的意义.22.(1)x 1=x 2=42)x 1=2,x 2=6.【分析】(1)先配方、然后运用直接开平方求解即可;(2)先将等式右边因式分解,然后移项,最后用因式分解法求解即可.【详解】解:(1)x 2﹣8x+1=0,x 2﹣8x =﹣1,x 2﹣8x+16=﹣1+16,(x ﹣4)2=15,∴x ﹣4=∴x1=x 2=4(2)∵2(x ﹣2)2=x 2﹣4,∴2(x ﹣2)2﹣(x+2)(x ﹣2)=0,则(x ﹣2)(x ﹣6)=0,∴x ﹣2=0或x ﹣6=0.解得x 1=2,x 2=6.【点睛】本题主要考查了一元二次方程的解法,掌握配方法、直接开平方法和因式分解法是解答本题的关键.23.(1)8、9两月平均每月降价的百分率是10%;(2)12月份该市的商品房成交均价不会跌破30000元2/m ,见解析【分析】(1)设8、9两月平均每月降价的百分率是x ,那么9月份的房价为50000(1-x ),10月份的房价为50000(1-x )2,然后根据10月份的40500元/m 2即可列出方程解决问题; (2)根据(1)的结果可以计算出今年12月份商品房成交均价,然后和30000元/m 2进行比较即可作出判断.【详解】解:(1)设这两月平均每月降价的百分率是x ,根据题意得:()250000140500x -=解得:1210% 1.9x x ==,(不合题意,舍去)答:8、9两月平均每月降价的百分率是10%(2)不会跌破30000元2/m . ()22405001405000.93280530000x -=⨯=>∴12月份该市的商品房成交均价不会跌破30000元2/m【点睛】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.24.(1)121,9x x =-=-;(2)1222,22x x == 【分析】(1)运用因式分解法求解即可(2)运用公式法求解即可.【详解】解:(1)∵x 2+10x +9=0,∴(x +1)(x +9)=0,则x +1=0或x +9=0,解得x 1=﹣1,x 2=﹣9;(2)x 2=14整理,得:x 2﹣14=0, ∵a=1,b c =﹣14, ∴△2﹣4×1×(﹣14)=4>0,则x =2b a-±=22,即x 1=22,x 2=22-. 【点睛】此题考查了一元二次方程的解法,熟练掌握一元二次方程的解法是解答此题的关键. 25.(1)①见解析,()1,M m m -;②12m ≤≤;(2)存在,12b =-,20c =【分析】(1)①根据根的判别式和衍生点的定义,即可得出结论;②先确定点出点M 在在直线y=x+1上,借助图象即可得出结论;(2)求出定点,利用根与系数的关系解决问题即可.【详解】解:(1)①()22210x m x m m --+-=,∵()()2221410m m m ⎡⎤∆=----=>⎣⎦, ∴不论x 为何值,该方程总有两个不相等的实数根,()22210x m x m m --+-=,解得:11x m =-,2x m =,方程()22210x m x m m --+-=的衍生点为()1,M m m -.②由①得,()1,M m m -,令1-=m x ,m y =,∴1y x =+,∴点M 在在直线1y x =+上,与y 轴交于A 点,当x=0时,y=1,∴()0,1A ,∵直线1l :3y x =-+与直线1y x =+交于B 点,解31y x y x =-+⎧⎨=+⎩, 解得12x y =⎧⎨=⎩, ∴()1,2B ,∵点M 的在直线l :3y x =-+与坐标轴围成的区域上∴12m ≤≤;(2)存在.直线()()25210y kx k k x =+-=-+,过定点()2,10M ,∴20x bx c ++=两个根为12x =,210x =,∴210b +=-,210c ⨯=,∴12b =-,20c =.【点睛】本题考查了新定义,一元二次方程根的判别式,一元二次方程的根与系数的关系,两条直线相交问题,解题的关键是理解题意,学会用转化的思想思考问题.26.(1)112x =,23x =;(2)11x =,252x =- 【分析】(1)先把方程化为一般式,然后利用因式分解法解方程;(2)利用因式分解法求解.【详解】解:(1)2x 2-7x+3=0,(2x-1)(x-3)=0,2x-1=0或x-3=0,所以x 1=12,x 2=3; (3)移项得,x (2x+5)-(2x+5)=0,因式分解得,(2x+5)(x-1)=0,∴x-1=0,2x+5=0,∴11x =,252x =-; 【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.。
天津市南开翔宇学校九年级数学上册第一单元《一元二次方程》测试(答案解析)
一、选择题1.用配方法转化方程2210xx +-=时,结果正确的是( ) A .2(1)2x += B .2(1)2x -= C .2(2)3x +=D .2(1)3x += 2.用配方法解方程x 2﹣4x ﹣7=0,可变形为( ) A .(x+2)2=3 B .(x+2)2=11C .(x ﹣2)2=3D .(x ﹣2)2=11 3.某口罩厂六月份的口罩产量为100万只,由于市场需求量减少,八月份的产量减少到81万只,则该厂七八月份的口罩产量的月平均减少率为 ( )A .10%B .29%C .81%D .14.5% 4.一元二次方程2610x x +-=配方后可变形为( )A .()2310x +=B .()238x +=C .()2310x -= D .()238x -= 5.由于疫情得到缓和,餐饮行业逐渐回暖,某地一家餐厅重新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x ,则x 满足的方程是( )A .5000(1+x )=6050B .5000(1+2x )=6050C .5000(1﹣x )2=6050D .5000(1+x )2=6050 6.方程()55x x x +=+的根为( )A .15=x ,25x =-B .11x =,25x =-C .0x =D .125x x ==-7.若整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根,并且使得关于y 的分式 方程32133ay y y y -+=--有整数解,则符合条件的整数a 的个数为( ) A .2B .3C .4D .5 8.关于x 的方程2mx 0x +=的一个根是1-,则m 的值为( )A .1B .0C .1-D .1或0 9.已知关于x 的一元二次方程()22210x m x m -+=-有实数根,则m 的取值范围是( )A .0m ≠B .14mC .14m <D .14m > 10.下列方程中,有两个不相等的实数根的是( )A .x 2=0B .x ﹣3=0C .x 2﹣5=0D .x 2+2=0 11.已知m 是方程2210x x --=的一个根,则代数式2242020m m -+的值为( ) A .2022B .2021C .2020D .2019 12.若()()2222230xy x y ++--=,则22x y +的值是( ) A .3 B .-1 C .3或1 D .3或-1 二、填空题13.方程2(3)30x x -+=的二次项系数为________,一次项系数为________,常数项为________.该方程判别式的值为_________,由此可以判断它的根的情况为___________. 14.填空:(1)214x x ++________2(7)x =+;(2)29x x -+_______=(x-____)2 15.若二次式236x -的值与2x -的值相等,则x 的值为_______.16.一元二次方程(x +2)(x ﹣3)=0的解是:_____.17.已知实数α,β满足α2+3α﹣1=0,β2﹣3β﹣1=0,且αβ≠1,则21a +3β的值为________.18.已知关于x 的一元二次方程2230ax x +-=有两个不相等的实数根,则a 的取值范围是______.19.参加足球联赛的每两队之间都进行两场比赛,共要比赛90场,共有________个队参加比赛.20.若a ,b 是方程22430x x +-=的两根,则22a ab b +-=________. 三、解答题21.解下列方程(1)22(4)216x x +=-;(2)22x x =+.22.(1)解方程290x (直接开平方法)(2)若关于x 的一元二次方程()221534m x x m m +++-=的常数项为0,求m 的值.23.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元:如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买了这种服装x 件.(1)填空:24.请回答下列各题:(1)先化简,再求值:2319369x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭,其中x = (2)已知关于x 的方程2320x x m +-=没有实数根,求实数m 的取值范围. 25.解方程(1)2420x x -+=(2)()255210x x ++=(3)2560x x -+=(4)()3133x x x +=+26.把一个足球垂直水平地面向上踢,时间为t (秒)时该足球距离地面的高度h (米)适用公式2205h t t =-.(1)经过多少秒后足球回到地面,(2)经过多少秒时足球距离地面的高度为10米?(3)小明同学说:“足球高度不可能达到21米!”你认为他说得对吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】方程两边都加上一次项系数的一半,利用完全平方公式进行转化,即可得到答案.【详解】解:2210x x +-=2212x x ++=∴2(1)2x +=,故选:A .【点睛】此题考查一元二次方程的配方法,掌握配方法是计算方法是解题的关键.2.D解析:D【分析】方程常数项移到右边,两边加上4变形得到结果即可.【详解】解:x 2﹣4x ﹣7=0,移项得:247x x -=配方得:24474x x -+=+ ,即2()211x -=故答案为:D .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.3.A解析:A设该厂七八月份的口罩产量的月平均减少率为x ,根据该厂六月份及八月份的口罩产量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设该厂七八月份的口罩产量月平均减少率为x ,根据题意得,()2100181x -=,解得10.110%x ==,2 1.9x =(不合题意,舍去).故选A .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 4.A解析:A【分析】方程常数项移到右边,两边加上一次项系数一半的平方即可得到结果.【详解】解:∵x 2+6x-1=0,∴x 2+6x=1,∴x 2+6x+9=10,∴(x+3)²=10,故选:A .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.5.D解析:D【分析】根据开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元列方程即可得到结论.【详解】解:设每天的增长率为x ,依题意,得:5000(1+x )2=6050.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6.B解析:B【分析】根据因式分解法解方程即可;()55x x x +=+,()()550+-+=x x x ,()()510x x +-=,11x =,25x =-;故答案选B .【点睛】本题主要考查了因式分解法解一元二次方程,准确计算是解题的关键.7.B解析:B【分析】对于关于x 的一元二次方程()2210a x -+=有两个实数根,利用判别式的意义得到a-2≠0且2a+3≥0且△=2-4(a-2)≥0,解不等式组得到整数a 为:-1,0,1,3,4,5;接着解分式方程得到y=61a -,而y≠3,则61a -≠3,解得a≠3,从而得到当a=-1,0,4时,分式方程有整数解,然后求符合条件的所有a 的个数.【详解】解:∵整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根, ∴a-2≠0且2a+3≥0且△=2-4(a-2)≥0, ∴31122a -≤≤且a≠2, ∴整数a 为:-1,0,1,3,4,5;去分母得3-ay+3-y=-2y ,解得y=61a -, 而y≠3,则61a -≠3,解得a≠3, 当a=-1,0,4时,分式方程有整数解,∴符合条件的所有a 的个数是3.故选:B .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.8.A解析:A由关于x 的方程x 2+mx=0的一个根为-1,得出将x=-1,代入方程x 2+mx=0求出m 即可.【详解】解:∵-1是方程x 2+mx=0的根,∴1-m=0,∴m=1,故答案为:A.【点睛】此题主要考查了一元二次方程的解,由方程的根为-1,代入方程是解决问题的关键. 9.B解析:B【分析】由方程有实数根即△=b 2﹣4ac ≥0,从而得出关于m 的不等式,解之可得.【详解】解:根据题意得,△=b 2﹣4ac =[﹣(2m ﹣1)]2﹣4m 2=﹣4m +1≥0, 解得:14m, 故选:B .【点睛】本题主要考查根的判别式,熟练掌握一元二次方程的根与判别式间的关系是解题的关键. 10.C解析:C【分析】利用直接开平方法分别求解可得.【详解】解:A .由x 2=0得x 1=x 2=0,不符合题意;B .由x ﹣3=0得x =3,不符合题意;C .由x 2﹣5=0得x 1=x 2=,符合题意; D .x 2+2=0无实数根,不符合题意;故选:C .【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键. 11.A解析:A【分析】把x m =代入方程2210x x --=求出221m m -=,把2242020m m -+化成()2222020m m -+,再整体代入求出即可.【详解】∵把x m =代入方程2210x x --=得:2210m m --=,∴221m m -=,∴()222420202220202120202022m m m m -+=-+=⨯+=,故选:A .【点睛】本题考查了一元二次方程的解,采用了整体代入的方法.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 12.A解析:A【分析】用22a x y =+,解出关于a 的方程,取正值即为22x y +的值是.【详解】解:令22a x y =+,则(2)30a a --=,即2230a a --=,即(3)(1)0a a ,解得13a =,21a =-,又因为220a x y =+>,所以3a =故22x y +的值是3,故选:A .【点睛】本题考查解一元二次方程,掌握换元思想可以使做题简单,但需注意220a x y =+>. 二、填空题13.2-6312有两个不相等的实数根【分析】先将方程化为一般形式再计算出判别式的值根据结果判断根的情况【详解】解:化简可得:二次项系数为2一次项系数为-6常数项为3该方程判别式的值为由此可以判断它的根的解析:2 -6 3 12 有两个不相等的实数根【分析】先将方程化为一般形式,再计算出判别式的值,根据结果判断根的情况.【详解】解:化简可得:22630x x -+=,二次项系数为2,一次项系数为-6,常数项为3,该方程判别式的值为()2642312--⨯⨯=,由此可以判断它的根的情况为:有两个不相等的实数根,故答案为:2;-6;3;12;有两个不相等的实数根.【点睛】本题考查了一元二次方程,解题的关键是掌握定义和根的判别式. 14.49【分析】运用配方法的运算方法填写即可【详解】解:(1)x2+14x+49=(x+7)2故答案为:49;(2)x2-9x+=(x-)2故答案为:【点睛】此题主要考查了配方法的应用熟练掌握完全平方公解析:49814 92 【分析】运用配方法的运算方法填写即可.【详解】解:(1)x 2+14x+49=(x+7)2故答案为:49;(2)x 2-9x+814=(x-92)2, 故答案为:814,92. 【点睛】此题主要考查了配方法的应用,熟练掌握完全平方公式是关键. 15.-1或【分析】先根据题意列出关于x 的方程整理为一般式再利用因式分解法求解即可【详解】解:根据题意得:3x2-6=x-2整理得:3x2-x-4=0∴(x+1)(3x-4)=0∴x+1=0或3x-4=0解析:-1或43 【分析】先根据题意列出关于x 的方程,整理为一般式,再利用因式分解法求解即可.【详解】解:根据题意,得:3x 2-6=x-2,整理,得:3x 2-x-4=0,∴(x+1)(3x-4)=0,∴x+1=0或3x-4=0, 解得1241,,3=-=x x ∴当x=-1或43时,二次式3x 2-6的值与x-2的值相等,故答案为:-1或43【点睛】 本题主要考查解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.16.x1=﹣2x2=3【分析】利用因式分解法把原方程化为x+2=0或x ﹣3=0然后解两个一次方程即可【详解】(x+2)(x ﹣3)=0x+2=0或x ﹣3=0所以x1=﹣2x2=3故答案为x1=﹣2x2=3解析:x 1=﹣2,x 2=3【分析】利用因式分解法把原方程化为x+2=0或x ﹣3=0,然后解两个一次方程即可.【详解】(x +2)(x ﹣3)=0,x +2=0或x ﹣3=0,所以x 1=﹣2,x 2=3.故答案为x 1=﹣2,x 2=3.【点睛】本题考查了解一元二次方程−因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).17.10【分析】原方程变为()-3()-1=0得到β是方程x2-3x-1=0的两根根据根与系数的关系得到关系式代入求出即可【详解】解:∵α2+3α﹣1=0∴()-3()-1=0∵实数αβ满足α2+3α﹣解析:10【分析】 原方程变为(21a)-3(1a )-1=0,得到1a 、β是方程x 2-3x-1=0的两根,根据根与系数的关系得到关系式,代入求出即可.【详解】解:∵α2+3α﹣1=0, ∴(21a )-3(1a )-1=0, ∵实数α,β满足α2+3α﹣1=0,β2﹣3β﹣1=0,且αβ≠1, ∴1a 、β是方程x 2﹣3x ﹣1=0的两根, ∴1a +β=3, a β =﹣1,2131a a=+,∴原式=1+3a +3β=1+3(1a+β)=1+3×3=10, 故答案为10.【点睛】 本题考查了根与系数的关系,熟练的根据根与系数的关系进行计算是解题的关键. 18.且【分析】根据题意一元二次方程有两个不相等的实数根可知根的判别式据此解一元一次不等式即可解题注意二次项系数不为零【详解】关于x 的一元二次方程有两个不相等的实数根即且故答案为:且【点睛】本题考查一元二 解析:13a >-且0a ≠.【分析】根据题意,一元二次方程2230ax x +-=有两个不相等的实数根,可知根的判别式2=40b ac ∆->,据此解一元一次不等式即可解题,注意二次项系数不为零.【详解】关于x 的一元二次方程2230ax x +-=有两个不相等的实数根,2=40b ac ∴∆->即224(3)0a -⨯-> 4120a +>13a ∴>-且0a ≠ 故答案为:13a >-且0a ≠. 【点睛】本题考查一元二次方程根的判别式、一元一次不等式、一元二次方程的定义等知识,是重要考点,难度较易,掌握相关知识是解题关键.19.10【分析】设共有x 个队参加比赛根据每两队之间都进行两场比赛结合共比了90场即可得出关于x 的一元二次方程解之即可得出结论【详解】解:设共有x 个队参加比赛根据题意得:2×x (x-1)=90整理得:x2解析:10.【分析】设共有x 个队参加比赛,根据每两队之间都进行两场比赛结合共比了90场即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:设共有x 个队参加比赛,根据题意得:2×12x (x-1)=90, 整理得:x 2-x-90=0,解得:x=10或x=-9(舍去).故答案为:10.【点睛】本题考查了一元二次方程的应用,根据每两队之间都进行两场比赛结合共比了90场列出关于x 的一元二次方程是解题的关键.20.4【分析】根据根与系数的关系得出a+b=-2ab=-再变形后代入即可求出答案【详解】解:∵是方程的两根∴故答案为:4【点睛】本题考查了根与系数的关系能够整体代入是解此题的关键解析:4【分析】根据根与系数的关系得出a+b=-2,ab=-32,再变形后代入,即可求出答案. 【详解】解:∵a ,b 是方程22430x x +-=的两根, ∴42232a b ab ⎧+=-=-⎪⎪⎨⎪=-⎪⎩, ()()()222222224a ab b a a b b a b a b +-=+-=--=-+=-⨯-=.故答案为:4.【点睛】本题考查了根与系数的关系,能够整体代入是解此题的关键.三、解答题21.(1)124,3x x ==-;(2)121,2x x =-=【分析】(1)化成一般式以后利用因式分解法解即可;(2)化成一般式以后利用因式分解法解即可;【详解】解:(1)28-x+4=x2x -x-12=0(x+3)(x-4)=0∴124,3x x ==-(2) 220x x --=(2)(1)0x x -+=121,2x x ∴=-=【分析】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.22.(1)13x =,23x =-;(2)4【分析】(1)利用直接开平方法求解可得答案;(2)根据常数项为0得出关于m 的方程,解之求出m 的值,结合一元二次方程的定义可得答案.【详解】(1)解:290x (直接开平方法)29x =,∴3x =±,∴13x =,23x =-.(2)解:∵关于x 的一元二次方程()221534m x x m m +++-=的常数项为0, ∴210340m m m +≠⎧⎨--=⎩, 解得4m =,1m =-(舍去),∴m 的值为4.【点睛】本题主要考查解一元二次方程的能力,也考查了一元二次方程的定义,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.23.(1)①80;②74;③25x ≥(2)20件【分析】(1)①如果一次性购买不超过10件,单价为80元;②用单价80元减去(13-10)×2,得出答案即可;③求出单价恰好是50元时的购买件数,即可分析得到;(2)根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可.【详解】解:(1)①∵如果一次性购买不超过10件,单价为80元,故填:80;②80-(13-10)×2=74,故填:74;③设购买a 件时,单价恰好是50元,80-(a -10)×2=50,解得:a =25,而题目中“单价不得低于50元”,∴25x ≥时,单价是50元,故填:25x ≥;(2)因为1200>800,所以一定超过了10件,设购买了x 件这种服装且多于10件,根据题意得出:[80-2(x -10)]x =1200,解得:x 1=20,x 2=30,当x =20时,80-2(20-10)=60元>50元,符合题意;当x =30时,80-2(30-10)=40元<50元,不合题意,舍去;答:购买了20件这种服装.【点睛】此题主要考查了一元二次方程的应用,根据已知得出每件服装的单价是解题关键.24.(1)12)13m <-. 【分析】(1)根据分式的加减乘除混合运算法则计算即可,求值时注意分母有理化.(2)根据方程没有实数根,可知∆<0,进而求得m 得取值范围.【详解】(1)由题意得:原式23193(3)x x x x x x +--⎛⎫=-÷ ⎪--⎝⎭ 2(3)(3)(1)(3)(3)9x x x x x x x x ⎡⎤+----=⨯⎢⎥--⎣⎦ 2229(3)(3)9x x x x x x x --+-=⨯-- 29(3)(3)9x x x x x --=⨯-- 29(3)(3)9x x x x x --=⨯--3x x-=.3x =,∴原式1===. (2)该方程没有实数根,2242430b ac m ∴∆=-=+⨯⨯<,故4120m +<,解得13m <-. 【点睛】本题考查分式的混合运算以及一元二次方程根的判别,熟练掌握分式运算法则以及根的判别公式是解题关键.25.(1)1222x x ==2)121x x ==-;(3)1232x x ==,;(4)1211x x =-=,【分析】(1)直接利用配方法解方程得出答案即可;(2)方程整理后,利用利用配方法解方程得出答案即可;(3)利用分解因式法解方程即可;(4)方程整理后,利用提取公因式法分解因式进而解方程即可.【详解】(1)2420x x -+=,移项得:242x x -=-,配方得:24424x x -+=-+,即2(2)2x -=,开方得:2x -=,解得:1222x x ==(2)()255210x x ++=, 整理得:2210x x ++=,即2(1)0x +=,∴121x x ==-;(3)2560x x -+=,因式分解得:()()320x x --=,∴30x -=,20x -=,∴1232x x ==,;(4)()3133x x x +=+,整理得:()()110x x x +-+=,因式分解得:()()110x x +-=,∴10x +=,10x -=, ∴1211x x =-=,. 【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.26.(1)4;(2)(2+秒或(2-秒;(3)小明说得对,理由见解析【分析】(1)求出0h =时t 的值即可得多少秒后足球回到地面;(2)根据高度为10米列方程可得;(3)列方程由根的判别式可作出判断.【详解】解:(1)当0h =时,22050t t -=,解得:0t =或4t =,答:经4秒后足球回到地面;(2)令220510h t t =-=,解得:2t =+2t =即经过(2+秒或(2-秒时足球距离地面的高度为10米. (3)小明说得对,理由如下:假设足球高度能够达到21米,即21h =,将21h =代入公式得:221205t t =-由判别式计算可知:2(20)4521200=--⨯⨯=-<△, 方程无解,假设不成立,所以足球确实无法到达21米的高度.【点睛】本题主要考查一元二次方程的应用,解题的关键是熟练掌握一元二次方程的解法.。
天津市南开区2018年中考数学冲刺练习试卷(有答案)
2018年九年级数学中考夯基卷一、选择题:1.我市南水北调配套工程建设进展顺利,工程运行调度有序.截止2015年12月底,已累计接收南水北调来水812000000立方米.使1100余万市民喝上了南水;通过“存水”增加了约550公顷水面,密云水库蓄水量稳定在10亿立方米左右,有效减缓了地下水位下降速率. 将812000000用科学记数法表示应为( )A.812×106B.81.2×107 C.8.12×108 D.8.12×1092.下列运算正确的是()A.3a2+5a2=8a4 B.a6•a2=a12C.(a+b)2=a2+b2D.(a2+1)0=13.如图所示的标志中,是轴对称图形的有( )A.1个B.2个C.3个D.4个4.为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是()A.15m B.17m C.20m D.28m5.如图,直线AB∥CD,∠A=40°,∠D=45°,则∠1的度数是()A.80°B.85°C.90°D.95°6.估计+1的值()A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间7.在平面直角坐标系中,点P(-1,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.已知一次函数y=kx﹣k,y随x的增大而减小,则函数图象不过第()象限.9.计算的结果是( )A .6B .C .2D .10.一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是( )11.如图,l 1∥l 2∥l 3,两条直线与这三条平行线分别交于点A .B 、C 和D 、E 、F.已知,则的值为( )A .B .C .D .12.如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD 最大面积是( ) A .60 m 2B .63 m 2C .64 m 2D .66 m 2二、填空题:13.分解因式:x 3y ﹣2x 2y+xy= . 14.函数的自变量x 的取值范围是 .15.化简221(1)11x x -÷+-的结果是 . 16.某直角三角形三条边的平方和为200,则这个直角三角形的斜边长为 .17.如图,△ABC 中,AB=AC=10,BC=8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为 .18.已知圆O 的半径为5,AB 是圆O 的直径,D 是AB 延长线上一点,DC 是圆O 的切线,C 是切点,连接AC ,若三、计算题:19.解方程组:20.解不等式组.四、解答题:21.如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.22.如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.23.为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.A型B型价格(万元/台) a b处理污水量(吨/月)240 180(1)求a,b的值;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.24.对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围;(3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为 .参考答案1.D2.C3.D4.B5.B;6.C7.D8.D9.A10.C11.A.12.C.13.答案为:xy(x﹣1)214.答案为:且.15.答案为:(x-1)2.16.答案为:10.17.答案为14.18.答案为:5.19.答案为:x=5,y=7.20.解①得x>﹣0.5,解②得x≤0,则不等式组的解集是﹣0.5<x≤0.21.(1)证明:∵∠A=∠ABC=90°,∴BC∥AD,∴∠CBE=∠DFE,在△BEC与△FED中,,∴△BEC≌△FED,∴BE=FE,又∵E是边CD的中点,∴CE=DE,∴四边形BDFC是平行四边形;(2)①BC=BD=3时,由勾股定理得,AB===2,所以,四边形BDFC的面积=3×2=6;②BC=CD=3时,过点C作CG⊥AF于G,则四边形AGCB是矩形,所以,AG=BC=3,所以,DG=AG﹣AD=3﹣1=2,由勾股定理得,CG=,所以,四边形BDFC的面积=3×=3;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾,此时不成立;综上所述,四边形BDFC的面积是6或3.22.(1)证明:连接CE,如图1所示:∵BC是直径,∴∠BEC=90°,∴CE⊥AB;又∵AC=BC,∴AE=BE.(2)证明:连接OE,如图2所示:∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.设FC=x,则有2FB=16,∴FB=8,∵OE∥AC,∴△FCG∽△FOE,∴,即,解得:CG=.23.解:(1)购买A型的价格是a万元,购买B型的设备b万元,A=b+2,2a+6=3b,解得:a=12,b=10.故a的值为12,b的值为10;(2)设购买A型号设备m台,12m+10(10﹣m)≤105,解得:m≤2.5,故所有购买方案为:当A型号为0,B型号为10台;当A型号为1台,B型号为9台;当A型号为2台,B型号为8台;有3种购买方案;(3)由题意可得出:240m+180(10﹣m)≥2040,解得:m≥4,由(1)得A型买的越少越省钱,所以买A型设备4台,B型的6台最省钱.24.。
天津市南开翔宇学校九年级数学上册第二十一章《一元二次方程》经典复习题(培优)
一、选择题1.一面足够长的墙,用总长为30米的木栅栏(图中的虚线)围一个矩形场地ABCD ,中间用栅栏隔成同样三块,若要围成的矩形面积为54平方米,设垂直于墙的边长为x 米,则x 的值为( )A .3B .4C .3或5D .3或4.5 2.方程()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,则m 的值为( ) A .2±B .2-C .2D .4 3.用配方法解方程x 2﹣6x ﹣3=0,此方程可变形为( )A .(x ﹣3)2=3B .(x ﹣3)2=6C .(x+3)2=12D .(x ﹣3)2=12 4.下列方程是关于x 的一元二次方程的是( )A .20ax bx c ++=B .210x y -+=C .2120x x +-=D .(1)(2)1x x x -+=-5.关于x 的一元二次方程()2230x a a x a +-+=的两个实数根互为倒数,则a 的值为( )A .-3B .0C .1D .-3或0 6.若关于x 的一元二次方程2(2)210m x x --+=有实数根,则m 的取值范围是( ) A .3m <B .3mC .3m <且2m ≠D .3m 且2m ≠ 7.x=-2是关于x 的一元二次方程2x 2+3ax -2a 2=0的一个根,则a 的值为( ) A .1或4B .-1或-4C .-1或4D .1或-4 8.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B .1k ≥-C .0k ≠D .1k >-且0k ≠ 9.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为( )A .12B .15C .12或15D .18 10.一元二次方程20x x -=的根是( ) A .10x =,21x =B .11x =,21x =-C .10x =,21x =-D .121x x == 11.关于x 的方程x 2﹣kx ﹣2=0的根的情况是( )A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法确定12.若关于x 的一元二次方程2(1)210m x x +--=有实数根,则m 的取值范围是( ) A .2m >-B .2m ≥-C .2m >-且1m ≠-D .2m ≥-且1m ≠- 13.有1人患了流感,经过两轮传染后共有81人患流感,则每轮传染中平均一个人传染了( )人.A .40B .10C .9D .814.关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,那么m 的取值范围是( ) A .m≤14 B .m≥14-且m≠2 C .m≤14-且m≠﹣2 D .m≥14- 15.一元二次方程(x ﹣3)2﹣4=0的解是( ) A .x =5 B .x =1 C .x 1=5,x 2=﹣5D .x 1=1,x 2=5 二、填空题16.把方程2230x x --=化为2()x h k +=的形式来求解的方法我们叫配方法,其中h ,k 为常数,那么本题中h k +的值是_________.17.将一元二次方程(32)(1)83x x x -+=-化成一般形式是_____.18.已知实数α,β满足α2+3α﹣1=0,β2﹣3β﹣1=0,且αβ≠1,则21a +3β的值为________.19.已知一元二次方程2x 2+3x ﹣1=0的两个根是x 1,x 2,则x 1•x 2=_____.20.关于x 的方程222(1)0x m x m m +-+-=有两个实数根α,β,且2212αβ+=,那么m 的值为________.21.有一人患了流感,经过两轮传染后共有81人患了流感,若每轮传染中平均每个人传染的人数相同,那么第三轮过后,共有______人患有流感.22.“新冠肺炎”防治取得战略性成果.若有一个人患了“新冠肺炎”,经过两轮传染后共有16个人患了“新冠肺炎”,则每轮传染中平均一个人传染了______人.23.已知关于x 的方程28m 0x x ++=有一根为2-,则方程的另一根为______ 24.当x=______时,−4x 2−4x+1有最大值.25.已知关于x 的方程x 2﹣px +q =0的两根为﹣3和﹣1,则p =_____,q =_____. 26.关于x 的一元二次方程有两个根0和3,写出这个一元二次方程的一个一般式为______.参考答案三、解答题27.某精准扶贫办对某地甲、乙两个猕猴桃品种进行种植对比实验研究.去年甲、乙两个品种各种植了100亩.收获后甲、乙两个品种的售价均为6元/kg ,且乙的平均亩产量比甲的平均亩产量高500kg ,甲、乙两个品种全部售出后总收入为1500000元. (1)请求出甲、乙两个品种去年平均亩产量分别是多少?(2)今年,精准扶贫办加大了对猕猴桃培育的力度,在甲、乙种植亩数不变的情况下,预计甲、乙两个品种平均亩产量将在去年的基础上分别增加%a 和2%a .由于乙品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨%a ,而甲品种的售价不变,甲、乙两个品种全部售出后总收入将在去年的基础上增加58%25a .求a 的值. 28.先阅读理解下面的例题,再按要求解答下面的问题:例题:说明代数式m 2+2m+4的值一定是正数.解:m 2+2m+4=m 2+2m+1+3=(m+1)2+3.∵(m+1)2≥0,∴(m+1)2+3≥3,∴m 2+2m+4的值一定是正数.(1)说明代数式﹣a 2+6a ﹣10的值一定是负数. (2)设正方形面积为S 1,长方形的面积为S 2,正方形的边长为a ,如果长方形的一边长比正方形的边长少3,另一边长为4,请你比较S 1与S 2的大小关系,并说明理由. 29.按要求的方法解方程,否则不得分.(1)2450x x -=+(配方法)(2)22730x x -+=(公式法)(3)(1)(2)24x x x ++=+(因式分解法)30.解方程:(1)x 2+6x ﹣2=0.(2)(2x ﹣1)2=x (3x +2)﹣7.。
天津市南开翔宇学校九年级数学上册第二十一章《一元二次方程》测试题
一、选择题1.用配方法解方程x 2﹣6x ﹣3=0,此方程可变形为( )A .(x ﹣3)2=3B .(x ﹣3)2=6C .(x+3)2=12D .(x ﹣3)2=12D解析:D【分析】先移项,再把方程两边同时加上一次项系数一半的平方,最后配方即可得新答案.【详解】由原方程移项得:x 2﹣6x =3,方程两边同时加上一次项系数一半的平方得:x 2﹣6x+9=12,配方得;(x ﹣3)2=12.故选:D .【点睛】此题主要考查配方法的运用,配方法的一般步骤为:移项、二次项系数化为1、两边同时加上一次项系数一半的平方、配方完成;熟练掌握配方法的步骤并熟记完全平方公式是解题关键.2.若m 是方程220x x c --=的一个根,设2(1)p m =-,2q c =+,则p 与q 的大小关系为( )A .p <qB .p =qC .p >qD .与c 的取值有关A 解析:A【分析】结合m 是方程220x x c --=的一个根,计算p-q 的值即可解决问题.【详解】解:∵m 是方程220x x c --=的一个根,∴220m m c --=∵2(1)p m =-,2q c =+,∴222(1)(2)212211p q m c m m c m m c -=--+=-+--=---=-,∴p <q故选:A .【点睛】此题主要考查了一元二次方程的解以及整式的运算,熟练掌握一元二次方程的解的应用是解答此题的关键.3.方程()55x x x +=+的根为( )A .15=x ,25x =-B .11x =,25x =-C .0x =D .125x x ==-B 解析:B根据因式分解法解方程即可;【详解】()55x x x +=+,()()550+-+=x x x ,()()510x x +-=,11x =,25x =-;故答案选B .【点睛】本题主要考查了因式分解法解一元二次方程,准确计算是解题的关键.4.下列一元二次方程中,没有实数根的是( )A .(2)(2)0x x -+=B .220x -=C .2(1)0x -=D .2(1)20x ++=D 解析:D【分析】分别利用因式分解法和直接开平方法解一元二次方程、一元二次方程的根的判别式即可得.【详解】A 、由因式分解法得:122,2x x ==-,此项不符题意;B 、由直接开平方法得:120x x ==,此项不符题意;C 、由直接开平方法得:121x x ==,此项不符题意;D 、方程2(1)20x ++=可变形为2230x x ++=,此方程的根的判别式2241380∆=-⨯⨯=-<,则此方程没有实数根,此项符合题意; 故选:D .【点睛】本题考查了解一元二次方程,熟练掌握各解法是解题关键.5.为促进消费,重庆市政府开展发放政府补贴消费的“消费券活动”,某超市的月销售额逐步增加;据统计4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元,若设5月、6月每月的增长率为x ,则可列方程为( )A .()2001500x +=B .()2002001500x ++=C .()22001500+=xD .()20012500+=x C解析:C【分析】根据“4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元”,可以列出相应的一元二次方程,本题得以解决.解:由题意可得,200(1+x )2=500,故选:C .【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题,是中考常考题.6.若关于x 的一元二次方程260x x c -+=有两个相等的实数根,则常数c 的值为( ) A .3B .6C .8D .9D 解析:D【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论.【详解】解:260x x c -+=有两个相等的实根,2(6)40c ∴∆=--=,解得:9c =故选:D .【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c 的一元一次方程是解题的关键.7.不解方程,判断方程23620x x --=的根的情况是( )A .无实数根B .有两个相等的实数根C .有两个不相等的实数根D .以上说法都不正确C 解析:C【分析】根据方程的系数结合根的判别式即可得出△=60>0,由此即可得出结论.【详解】解:∵在方程23620x x --=中,△=(-6)2-4×3×(2)=60>0,∴方程23620x x --=有两个不相等的实数根.故选: C【点睛】本题考查了根的判别式,熟练掌握“当△>0时方程有两个不相等的实数根”是解题的关键.8.已知2x 2+x ﹣1=0的两根为x 1、x 2,则x 1•x 2的值为( )A .1B .﹣1C .12D .12-D 解析:D直接利用根与系数的关系解答.【详解】解:∵2x 2+x ﹣1=0的两根为x 1、x 2,∴x 1•x 2=12=﹣12. 故选:D .【点睛】 此题主要考查了根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a. 9.已知x 1、x 2是一元二次方程x 2﹣4x ﹣1=0的两个根,则x 1•x 2等于( ) A .4B .1C .﹣1D .﹣4C 解析:C【分析】据一元二次方程的根与系数的关系得到两根之和即可.【详解】解:∵方程x 2-4x-1=0的两个根是x 1,x 2,∴x 1∙x 2=-1.故选:C .【点睛】本题考查了一元二次方程ax 2+bx+c=0的根与系数关系,两根之和是-b a ,两根之积是c a . 10.已知a 、b 、m 、n 为互不相等的实数,且(a +m )( a +n )=2,(b +m )( b +n )=2,则ab ﹣mn 的值为( )A .4B .1C .﹣2D .﹣1C解析:C【分析】先把已知条件变形得到a 2+ (m +n ) a +mn ﹣2=0,b 2+( m +n ) b +mn ﹣2=0,则可把a 、b 看作方程x 2+( m +n ) x +mn ﹣2=0的两实数根,利用根与系数的关系得到ab =mn ﹣2,从而得到ab ﹣mn 的值.【详解】解:∵(a +m )( a +n )=2,(b +m )( b +n )=2,∴a 2+( m +n )a +mn ﹣2=0,b 2+( m +n )b +mn ﹣2=0,而a 、b 、m 、n 为互不相等的实数,∴可以把a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两个实数根,∴ab =mn ﹣2,∴ab ﹣mn =﹣2.故选:C .本题考查一元二次方程根与系数的关系及整式的乘法,理解代数思想,把“a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两实数根”是解题关键.二、填空题11.解方程:268x x +=-解:两边同时加_________,得26x x ++________8=-+________则方程可化为(_______)2=________两边直接开平方得_____________即_________或_____________所以1x =__________,2x =___________.999x+31x+3=±1x+3=1x+3=-1-2-4【分析】根据配方法求解即可【详解】解:两边同时加9得99则方程可化为1两边直接开平方得x+3=±1即x+3=1或x+3=-1所以-2-4故答案解析:9 9 9 x+3 1 x+3=±1 x+3=1 x+3=-1 -2 -4【分析】根据配方法求解即可.【详解】解:两边同时加9,得26x x ++98=-+9,则方程可化为()23x +=1,两边直接开平方得x+3=±1,即x+3=1或x+3=-1,所以1x =-2,2x =-4.故答案为:9;9;9;x+3;1;x+3=±1;x+3=1;x+3=-1;-2;-4.【点睛】本题考查了配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.12.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,那么这个增长率是_________.20【分析】设每年绿化面积的增长率为x 根据该小区2019年及2021年的绿化面积即可得出关于x 的一元二次方程解之取其正值即可得出结论【详解】解:设每年绿化面积的增长率为x 依题意得:3000(1+x )解析:20%【分析】设每年绿化面积的增长率为x ,根据该小区2019年及2021年的绿化面积,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设每年绿化面积的增长率为x ,依题意,得:3000(1+x )2=4320,解得:x 1=0.2=20%,x 2=-2.2(不合题意,舍去).故答案为:20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 13.已知0x =是关于x 的一元二次方程()()22213340m x m x m m -+++-=的一个根,则m =__________.-4【分析】根据方程根的定义把代入原方程求出m 的值【详解】解:将代入原方程得解得∵该方程是一元二次方程∴即∴故答案是:【点睛】本题考查一元二次方程根的定义和解一元二次方程需要注意一元二次方程的二次项解析:-4【分析】根据方程根的定义,把0x =代入原方程,求出m 的值.【详解】解:将0x =代入原方程,得2340m m +-=,解得14m =-,21m =,∵该方程是一元二次方程,∴10m -≠,即1m ≠,∴4m =-.故答案是:4-.【点睛】本题考查一元二次方程根的定义和解一元二次方程,需要注意一元二次方程的二次项系数不能为0.14.写出有一个根为1的一元二次方程是______.(答案不唯一)【分析】有一个根是1的一元二次方程有无数个只要含有因式x1的一元二次方程都有一个根是1【详解】可以用因式分解法写出原始方程然后化为一般形式即可如化为一般形式为:故答案为:【点睛】本题考解析:20x x -=(答案不唯一)【分析】有一个根是1的一元二次方程有无数个,只要含有因式x -1的一元二次方程都有一个根是1.【详解】可以用因式分解法写出原始方程,然后化为一般形式即可,如()10x x -=,化为一般形式为:20x x -=故答案为:20x x -=.【点睛】本题考查的是一元二次方程的根,有一个根是1的一元二次方程有无数个,写出一个方程就行.15.某商贸公司2017年盈利100万元,2019年盈利144万元,且2017年到2019年每年盈利的增长率相同,则该公司2018年盈利_____万元.120【分析】设平均年增长率为x 列式求出年平均增长率即可算出结果【详解】解:设平均年增长率为x 根据题意得:整理得:开方得:解得:(舍去)则平均年增长率为20∴该公司2018年盈利100(1+20)=解析:120【分析】设平均年增长率为x ,列式()21001144x +=,求出年平均增长率,即可算出结果.【详解】解:设平均年增长率为x ,根据题意得:()21001144x +=,整理得:()21 1.44x +=,开方得:1 1.2x +=±,解得:10.2x =,2 2.2x =-(舍去),则平均年增长率为20%,∴该公司2018年盈利100(1+20%)=120(万元).故答案为:120.【点睛】本题考查一元二次方程的应用,解题的关键是掌握增长率问题的求解方法.16.一元二次方程x 2-10x+25=2(x ﹣5)的解为____________.x1=5x2=7【分析】移项后分解因式即可得出两个一元一次方程求出方程的解即可;【详解】解:∵(x ﹣5)2﹣2(x ﹣5)=0∴(x ﹣5)(x ﹣7)=0则x ﹣5=0或x ﹣7=0解得x1=5x2=7故答解析:x 1=5,x 2=7【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;【详解】解:∵(x ﹣5)2﹣2(x ﹣5)=0,∴(x ﹣5)(x ﹣7)=0,则x ﹣5=0或x ﹣7=0,解得x 1=5,x 2=7,故答案为:x 1=5,x 2=7.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.17.一元二次方程()10x x -=的根是________________________.【分析】利用因式分解法把原方程转化为x=0或x-1=0然后解两个一次方程即可;【详解】∵∴x=0或x-1=0解得故答案为:【点睛】本题考查了一元二次方程的解法先把方程的右边化为0再把左边通过因式分解解析:120,1x x ==【分析】利用因式分解法把原方程转化为x=0或x-1=0,然后解两个一次方程即可;【详解】∵()10x x -= ,∴ x=0或x-1=0,解得1x =0,21x = ,故答案为:1x =0,21x =【点睛】本题考查了一元二次方程的解法,先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,求解即可;18.已知1x ,2x 是关于x 的一元二次方程260x x a -+=的两个实数根,且221212x x -=,则a =________.8【分析】由一元二次方程根与系数的关系得:解方程可得进一步可得结论【详解】解:由一元二次方程根与系数的关系得:又∴∴∴解得故答案为:8【点睛】本题考查了根与系数的关系牢记两根之和等于-两根之积等于是解析:8【分析】由一元二次方程根与系数的关系得:126x x +=,12x x a =,解方程221212x x -=可得122x x -=,进一步可得结论.【详解】解:由一元二次方程根与系数的关系得:126x x +=,12x x a =,又221212x x -=,∴1212()()12x x x x +-=∴122x x -=,∴22121212()()43644x x x x x x a -=+-=-=解得,8a =,故答案为:8.【点睛】本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于c a ”是解题的关键.19.当m =___________时,方程(2150m m x mx --+=是一元二次方程.【分析】根据一元二次方程的定义解答【详解】∵是一元二次方程∴且解得故答案为:【点睛】本题考查了一元二次方程的概念只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程一般形式是(且)特别要注意【分析】根据一元二次方程的定义解答.【详解】∵(2150m m x mx -+-+=是一元二次方程,∴212m -=且0m +≠,解得m =,【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是20ax bx c ++=(且0a ≠).特别要注意0a ≠的条件.这是在做题过程中容易忽视的知识点.20.若a 是方程210x x ++=的根,则代数式22020a a --的值是________.2021【分析】把x=a 代入已知方程并求得a2+a=-1然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x2+x+1=0得a2+a+1=0解得a2+a=-1所以2020-a2-a=2解析:2021【分析】把x=a 代入已知方程,并求得a 2+a=-1,然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x 2+x+1=0,得a 2+a+1=0,解得a 2+a=-1,所以2020-a 2-a=2020+1=2021.故答案是:2021.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.三、解答题21.已知关于x的方程x2﹣8x﹣k2+4k+12=0.(1)求证:无论k取何值,这个方程总有两个实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求k的值.解析:(1)证明见解析;(2)k的值为2或1或3.【分析】(1)先计算出△=4(k﹣2)2,然后根据判别式的意义即可得到结论;(2)先利用因式分解法求出方程的解为x1=﹣k+6,x2=k+2,然后分类讨论:当AB=AC 或AB=BC或AC=BC时△ABC为等腰三角形,然后求出k的值.【详解】解:(1)证明:∵△=(﹣8)2﹣4(﹣k2+4k+12)=4(k﹣2)2≥0,∴无论k取何值,这个方程总有两个实数根;(2)解:x2﹣8x﹣k2+4k+12=0,(x+k﹣6)(x﹣k﹣2)=0,解得:x1=﹣k+6,x2=k+2,当AB=AC时,﹣k+6=k+2,则k=2;当AB=BC时,﹣k+6=5,则k=1;当AC=BC时,则k+2=5,解得k=3,综合上述,k的值为2或1或3.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了三角形三边的关系以及等腰三角形的性质.22.某口罩生产厂生产的口罩1月份平均日产量为30000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,厂决定从2月份起扩大产量,3月份平均日产量达到36300个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?解析:(1)口罩日产量的月平均增长率为10%;(2)预计4月份平均日产量为39930个.【分析】(1)根据题意设口罩日产量的月平均增长率为x,根据题意列出方程即可求解;(2)结合(1)按照这个增长率,根据3月份平均日产量为36300个,即可预计4月份平均日产量.【详解】(1)设口罩日产量的月平均增长率为x,根据题意,得30000(1+x)2=36300,解得x1=−2.1(舍去),x2=0.1=10%,答:口罩日产量的月平均增长率为10%;(2)36300(1+10%)=39930(个).答:预计4月份平均日产量为39930个.【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握增长率问题应用题的等量关系. 23.某种品牌的衬衫,进货时的单价为50元.如果按每件60元销售,可销售800件;售价每提高1元,其销售量就减少20件.若要获得12000元的利润,则每件的售价为多少元? 解析:每件的售价为70元或80元.【分析】要求衬衫的单价,就要设每件的售价为x 元,则每件衬衫的利润是(x-50)元,销售服装的件数是[800-20(x-60)]件,以此等量关系列出方程即可.【详解】解:设每件的售价为x 元,根据题意,得()()50800206012000 ,x x ⎡⎤⎣⎦---=化简整理,得215056000x x -+=()70800()x x --=1270,80x x ∴==答:每件的售价为70元或80元.【点睛】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.24.设,a b 是一个直角三角形的两条直角边的长,且()()2222112a ba b +++=,求这个直角三角形的斜边长c 的值.【分析】对题目中所给的条件进行变形,利用整体思想求解出22a b +的值,从而结合勾股定理求解斜边长即可.【详解】由题意得()()22222120a b a b +++-=, ()()2222340a b a b +∴+-+=223a b ∴+=或224a b +=-(不合题意,舍去)则2223c a b =+=c ∴=负舍).【点睛】本题考查解一元二次方程及勾股定理的应用,能够准确从条件中求解出直角边的平方和是解题关键.25.用配方法解方程:22450x x +-=.解析:121,122x x =-+=-- 【分析】 利用完全平方公式进行配方解一元二次方程即可得.【详解】22450x x +-=,2245x x +=,2522x x +=, 252112x x ++=+, ()2712x +=,12x +=±,12x =-±,即121,122x x =-+=--. 【点睛】 本题考查了利用配方法解一元二次方程,熟练掌握配方法是解题关键.26.某玩具店购进一批甲、乙两款乐高积木,它们的进货单价之和是720元.甲款积木零售单价比进货单价多80元.乙款积木零售价比进货单价的1.5倍少120元,按零售单价购买甲款积木4盒和乙款积木2盒,共需要2640元.(1)分别求出甲乙两款积木的进价.(2)该玩具店平均一个星期卖出甲款积木40盒和乙款积木24盒,经调查发现,甲款积木零售单价每降低2元,平均一个星期可多售出甲款积木4盒,商店决定把甲款积木的零售价下降()0m m >元,乙款积木的零售价和销量都不变.在不考虑其他因素的条件下,为了顾客能获取更多的优惠,当m 为多少时,玩具店一个星期销售甲、乙两款积木获取的总利润恰为5760元.解析:(1)(1)甲款每盒400元,乙款每盒320元;(2)40.【分析】(1)设甲款积木的进价为每盒x 元,乙款积木的进价为每盒y 元,列出二元一次方程组计算即可;(2)根据题意得出()()8040224405760m m -++⨯=,计算即可;【详解】(1)设甲款积木的进价为每盒x 元,乙款积木的进价为每盒y 元,则()()72048021.51202640x y x y +=⎧⎨++-=⎩, 解得:400320x y =⎧⎨=⎩. 答:甲款积木的进价为每盒400元,乙款积木的进价为每盒320元.(2)由题可得:()()8040224405760m m -++⨯=,解得120m =,240m =,因为顾客能获取更多的优惠,所以40m =.【点睛】本题主要考查了一元二次方程的应用,结合二元一次方程组求解计算是解题的关键. 27.手工课上,小明打算用一张周长为40cm 的长方形白纸做一张贺卡,白纸内的四周涂上宽为2cm 的彩色花边,小明想让中间白色部分的面积大于彩色花边的面积,但又不能确定能否办到.请同学们帮助小明判断他是否能办到,并说明理由.解析:不能办到,见解析【分析】设中间部分的面积为:S 求出S 与x 的关系式,即关于中间部分的面积公式,并求出该二次函数的最大值,即中间部分的最大值,与花边部分的面积相比较,若大于则能做到,小于则做不到.【详解】答:不能办到.理由:设纸的一边长为cm x则另一边为(20)cm x -.依题意得:彩色花边面积为:2222(204)64x x ⨯⨯+⨯⨯--=中间白色部分面积为:22(4)(16)2064(10)36S x x x x x =--=-+-=--+ 416x <<,当10x =时,白色部分面积最大为36.3664<,∴小明不能办到.【点睛】本题主要考查一元二次方程的应用,关键在于理解清楚题意找出等量关系,即:花边部分的面积=总面积-中间部分的面积;已知花边部分的面积,而中间部分的面积又不定,只需求出中间部分面积的最值与其比较即可.28.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元:如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买了这种服装x 件.(1)填空:x≥(2)20件解析:(1)①80;②74;③25【分析】(1)①如果一次性购买不超过10件,单价为80元;②用单价80元减去(13-10)×2,得出答案即可;③求出单价恰好是50元时的购买件数,即可分析得到;(2)根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可.【详解】解:(1)①∵如果一次性购买不超过10件,单价为80元,故填:80;②80-(13-10)×2=74,故填:74;③设购买a件时,单价恰好是50元,80-(a-10)×2=50,解得:a=25,而题目中“单价不得低于50元”,x≥时,单价是50元,∴25x≥;故填:25(2)因为1200>800,所以一定超过了10件,设购买了x件这种服装且多于10件,根据题意得出:[80-2(x-10)]x=1200,解得:x1=20,x2=30,当x=20时,80-2(20-10)=60元>50元,符合题意;当x=30时,80-2(30-10)=40元<50元,不合题意,舍去;答:购买了20件这种服装.【点睛】此题主要考查了一元二次方程的应用,根据已知得出每件服装的单价是解题关键.。
【精选试卷】天津市南开翔宇学校中考数学解答题专项练习经典复习题(培优)
一、解答题1.解方程组:226,320.x y x xy y +=⎧⎨-+=⎩2.问题:探究函数y =x +2x的图象和性质.小华根据学习函数的方法和经验,进行了如下探究,下面是小华的探究过程,请补充完整:(1)函数的自变量x 的取值范围是:____;(2)如表是y 与x 的几组对应值,请将表格补充完整: x … ﹣3 ﹣2 ﹣32﹣1 −12 12 1 322 3 … y… ﹣323﹣3−256﹣3﹣412412256323…(3)如图,在平面直角坐标系中描点并画出此函数的图象;(4)进一步探究:结合函数的图象,写出此函数的性质(一条即可).3.某公司销售两种椅子,普通椅子价格是每把180元,实木椅子的价格是每把400元. (1)该公司在2019年第一月销售了两种椅子共900把,销售总金额达到了272000元,求两种椅了各销售了多少把?(2)第二月正好赶上市里开展家俱展销活动,公司决定将普通椅子每把降30元后销售,实木椅子每把降价2a %(a >0)后销售,在展销活动的第一周,该公司的普通椅子销售量比上一月全月普通椅子的销售量多了103a %:实木椅子的销售量比第一月全月实木椅子的销售量多了a %,这一周两种椅子的总销售金额达到了251000元,求a 的值. 4.已知n 边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n 边形变为(n+x )边形,发现内角和增加了360°,用列方程的方法确定x.5.计算:()()()21a b a 2b (2a b)-+--;()221m 4m 421m 1m m -+⎛⎫-÷ ⎪--⎝⎭. 6.将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D '处,折痕为EF .(1)求证:ABE AD F '≌;(2)连结CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.7.某市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如右两幅统计图.请你根据图中所给信息解答意)(1)等奖所占的百分比是________;三等奖的人数是________人;(2)据统计,在获得一等奖的学生中,男生与女生的人数比为11:,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率; (3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?8.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元 (1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?9.如图,在平面直角坐标系中,小正方形格子的边长为1,Rt △ABC 三个顶点都在格点上,请解答下列问题:(1)写出A ,C 两点的坐标;(2)画出△ABC 关于原点O 的中心对称图形△A 1B 1C 1;(3)画出△ABC 绕原点O 顺时针旋转90°后得到的△A 2B 2C 2,并直接写出点C 旋转至C 2经过的路径长.10.如图,AB 是半圆O 的直径,AD 为弦,∠DBC=∠A .(1)求证:BC 是半圆O 的切线;(2)若OC ∥AD ,OC 交BD 于E ,BD=6,CE=4,求AD 的长. 11.计算:103212sin45(2π)-+--+-.12.4月18日,一年一度的“风筝节”活动在市政广场举行,如图,广场上有一风筝A ,小江抓着风筝线的一端站在D 处,他从牵引端E 测得风筝A 的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC =30米)的居民楼顶B 处测得风筝A 的仰角是45°,已知小江与居民楼的距离CD =40米,牵引端距地面高度DE =1.5米,根据以上条件计算风筝距地面的高度(结果精确到0.1米,参考数据:sin67°≈1213,cos67°≈513,tan67°≈125,2≈1.414).13.某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度,方法如下:如图,首先在测量点A 处用高为1.5m 的测角仪AC 测得人民英雄纪念碑MN 项部M 的仰角为37°,然后在测量点B 处用同样的测角仪BD 测得人民英雄纪念碑MN 顶部M的仰角为45°,最后测量出A,B两点间的距离为15m,并且N,B,A三点在一条直线上,连接CD并延长交MN于点E.请你利用他们的测量结果,计算人民英雄纪念碑MN 的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan35°≈0.75)14.计算:219(34)02cos452-︒⎛⎫-+--⎪⎝⎭.15.已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0的解,tan∠BAO=12.(1)求点A的坐标;(2)点E在y轴负半轴上,直线EC⊥AB,交线段AB于点C,交x轴于点D,S△DOE=16.若反比例函数y=kx的图象经过点C,求k的值;(3)在(2)条件下,点M是DO中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.16.已知关于x的方程220x ax a++-=.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.17.垃圾分类有利于对垃圾进行分流处理,能有效提高垃圾的资源价值和经济价值,力争物尽其用,为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,某校对本校甲、乙两班各60名学生进行了垃极分类相关知识的测试,并分别随机抽取了15份成绩,整理分析过程如下,请补充完整(收集数据)甲班15名学生测试成绩统计如下:(满分100分)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80乙班15名学生测试成绩统计如下:(满分100分)86,89,83,76,73,78,67,80,80,79,80,84,82,80,83(整理数据)按如下分数段整理、描述这两组样本数据在表中,a = ,b = . (分析数据)(1)两组样本数据的平均数、众数、中位数、方差如下表所示:在表中:x = ,y = .(2)若规定得分在80分及以上(含80分)为合格,请估计乙班60名学生中垃圾分类相关知识合格的学生有 人(3)你认为哪个班的学生掌握垃圾分类相关知识的情况较好,说明理由.18.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:231+=(,善于思考的小明进行了以下探索:设(2a m +=+(其中ab m n 、、、均为整数),则有22a m 2n +=++∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a +法.请你仿照小明的方法探索并解决下列问题:当a b m n 、、、均为正整数时,若(2a m +=+,用含m 、n 的式子分别表示a b 、,得a = ,b = ;(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( +)2;(3)若(2a m +=+,且ab m n 、、、均为正整数,求a 的值.19.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(020)x <<之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?20.某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?21.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC 于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的面积.22.如图,某地修建高速公路,要从A地向B地修一座隧道(A、B在同一水平面上),为了测量A、B两地之间的距离,某工程师乘坐热气球从B地出发,垂直上升100米到达C处,在C处观察A地的俯角为39°,求A、B两地之间的距离.(结果精确到1米)(参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81)23.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sinB=513,求DG的长,24.某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.25.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.26.如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A 位于B 的北偏西30°的方向上.求A 、C 之间的距离.(结果精确到0.1海里,参考数据2≈1.41,3≈1.73)27.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y (元)与绿化面积x (平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元. (1)求如图所示的y 与x 的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.28.计算:(1)2(m ﹣1)2﹣(2m+1)(m ﹣1) (2)(1﹣1x+2)÷x 2−1x+229.小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:ooo o 33711sin 37tan37s 48tan48541010in ,,,≈≈≈≈) 30.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有 人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、解答题1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、解答题1.114,2;x y =⎧⎨=⎩223,3.x y =⎧⎨=⎩ 【解析】【分析】先对x 2-3xy+2y 2=0分解因式转化为两个一元一次方程,然后联立①,组成两个二元一次方程组,解之即可.【详解】将方程22320x xy y -+= 的左边因式分解,得20x y -=或0x y -=.原方程组可以化为6,20x y x y +=⎧⎨-=⎩或6,0.x y x y +=⎧⎨-=⎩解这两个方程组得114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 所以原方程组的解是114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 【点睛】本题考查了高次方程组,将高次方程化为一次方程是解题的关键.(1)x≠0;(2)3,3;(3)详见解析;(4)此函数有最小值和最大值.【解析】【分析】(1)由分母不为零,确定x的取值范围即可;(2)将x=1,x=2代入解析式即可得答案;(3)描点画图即可;(4)观察函数图象有最低点和最高点,得到一个性质;【详解】(1)因为分母不为零,∴x≠0;故答案为a≠0.(2)x=1时,y=3;x=2时,y=3;故答案为3,3.(3)如图:(4)此函数有最小值和最大值;【点睛】本题考查了函数自变量的取值范围:自变量的取值范围必须使含有自变量的表达式都有意义.3.(1)普通椅子销售了400把,实木椅子销售了500把;(2)a的值为15.【解析】【分析】(1)设普通椅子销售了x把,实木椅子销售了y把,根据总价=单价×数量结合900把椅子的总销售金额为272000元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据销售总价=销售单价×销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出结论.【详解】(1)设普通椅子销售了x把,实木椅子销售了y把,依题意,得:900180400272000x y x y +=⎧⎨+=⎩, 解得:400500x y =⎧⎨=⎩. 答:普通椅子销售了400把,实木椅子销售了500把.(2)依题意,得:(180﹣30)×400(1+103a%)+400(1﹣2a%)×500(1+a%)=251000,整理,得:a 2﹣225=0,解得:a 1=15,a 2=﹣15(不合题意,舍去).答:a 的值为15.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,找准等量关系,正确列出二元一次方程组和一元二次方程是解题关键. 4.(1)甲对,乙不对,理由见解析;(2)2.【解析】试题分析:(1)根据多边形的内角和公式判定即可;(2)根据题意列方程,解方程即可. 试题解析:(1)甲对,乙不对.∵θ=360°,∴(n-2)×180°=360°,解得n=4.∵θ=630°,∴(n-2)×180°=630°,解得n=.∵n 为整数,∴θ不能取630°.(2)由题意得,(n-2)×180+360=(n+x-2)×180,解得x=2.考点:多边形的内角和.5.(1)223a 5ab 3b -+-;(2)m m 2-. 【解析】【分析】 ()1根据多项式乘多项式、完全平方公式展开,然后再合并同类项即可;()2括号内先通分进行分式的减法运算,然后再进行分式的除法运算即可.【详解】()()()21a b a 2b (2a b)-+--=2222a 2ab ab 2b 4a 4ab b +---+-223a 5ab 3b =-+-; (2)221m 4m 41m 1m m -+⎛⎫-÷ ⎪--⎝⎭=()2m m 1m 2m 1(m 2)--⋅-- m m 2=-. 【点睛】 本题考查了整式的混合运算、分式的混合运算,熟练掌握它们的运算法则是解题的关键. 6.(1)证明见解析;(2)四边形AECF 是菱形.证明见解析.【解析】【分析】(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB=AD′,∠1=∠3,从而利用ASA 判定△ABE ≌△AD′F ;(2)四边形AECF 是菱形,我们可以运用菱形的判定,有一组邻边相等的平行四边形是菱形来进行验证.【详解】解:(1)由折叠可知:∠D=∠D′,CD=AD′,∠C=∠D′AE .∵四边形ABCD 是平行四边形,∴∠B=∠D ,AB=CD ,∠C=∠BAD .∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD ,即∠1+∠2=∠2+∠3.∴∠1=∠3.在△ABE 和△AD′F 中∵{13D BAB AD ∠'=∠='∠=∠∴△ABE ≌△AD′F (ASA ).(2)四边形AECF 是菱形.证明:由折叠可知:AE=EC ,∠4=∠5.∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠5=∠6.∴∠4=∠6.∴AF=AE .∵AE=EC ,∴AF=EC .又∵AF ∥EC ,∴四边形AECF 是平行四边形.又∵AF=AE ,∴平行四边形AECF 是菱形.考点:1.全等三角形的判定;2.菱形的判定.7.(1)8%,16;(2)P (1名男生和1名女生)23=;(3)至少需要选取6人进行集训. 【解析】【分析】(1)一等奖所占的百分比=1减去其它奖项的百分比即可求解;根据优秀奖比例和人数可计算总数,进而计算出三等奖人数.(2)求出一等奖男女各有多少人,然后列表或画树形图即可解;(3)设需要选取x 人进行集训,依据使获得一等奖的人数不少于二等奖人数的2倍,列不等式解答即可.【详解】(1)一等奖所占的百分比=1-40%-30%-32=8%;总人数=20÷40%=50(人), 三等奖的人数是=50×32%=16(人); (2)一等奖的人数=508%4⨯=,男女都有的人数14211⨯=+, 列表得:∴一等奖有两位男生两位女生,一共有12种等可能结果,其中恰是一男一女的结果数是8,∴P (1名男生和1名女生)82123==. (3)设需要选取x 人进行集训,根据题意得:()4210x x +≥-,解得 163x ≥, 因为x 是整数,所以x 取6.答:至少需要选取6人进行集训.【点睛】本题主要考查了条形统计图及扇形统计图以及求随机事件的概率,不等式的应用,解题的关键是能从条形统计图及扇形统计图得出相关数据.列表或画出树形图解答.8.(1该档次蛋糕每件利润为18元;(2)该烘焙店生产的是四档次的产品.【解析】【分析】(1)依题意可求出产品质量在第五档次的每件的利润.(2)设烘焙店生产的是第x 档次的产品,根据单件利润×销售数量=总利润,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】(1)10+2×(5-1)=18(元).答:该档次蛋糕每件利润为18元.(2)设烘焙店生产的是第x 档次的产品,根据题意得:[10+2(x -1)]×[76-4(x -1)]=1024, 整理得:x 2﹣16x +48=0,解得:x 1=4,x 2=12(不合题意,舍去).答:该烘焙店生产的是四档次的产品.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据单件利润×销售数量=总利润,列出关于x 的一元二次方程.9.(1)A 点坐标为(﹣4,1),C 点坐标为(﹣1,1);(2)见解析;(3)2π. 【解析】【分析】(1)利用第二象限点的坐标特征写出A ,C 两点的坐标;(2)利用关于原点对称的点的坐标特征写出A 1、B 1、C 1的坐标,然后描点即可;(3)利用网格特点和旋转的性质画出点A 、B 、C 的对应点A 2、B 2、C 2,然后描点得到△A2B2C2,再利用弧长公式计算点C旋转至C2经过的路径长.【详解】解:(1)A点坐标为(﹣4,1),C点坐标为(﹣1,1);(2)如图,△A1B1C1为所作;(3)如图,△A2B2C2为所作,OC2213+10,点C旋转至C2经过的路径长=9010180π⋅=102π.【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了弧长公式.10.(1)见解析;(2)AD=4.5.【解析】【分析】(1)若证明BC是半圆O的切线,利用切线的判定定理:即证明AB⊥BC即可;(2)因为OC∥AD,可得∠BEC=∠D=90°,再有其他条件可判定△BCE∽△BAD,利用相似三角形的性质:对应边的比值相等即可求出AD的长.【详解】(1)证明:∵AB是半圆O的直径,∴BD⊥AD,∴∠DBA+∠A=90°,∵∠DBC=∠A,∴∠DBA+∠DBC=90°即AB⊥BC,∴BC是半圆O的切线;(2)解:∵OC∥AD,∴∠BEC=∠D=90°,∵BD⊥AD,BD=6,∴BE=DE=3,∵∠DBC=∠A ,∴△BCE ∽△BAD ,∴=CE BE BD AD ,即436=AD; ∴AD=4.5【点睛】 本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质.11.13【解析】【分析】根据负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质分别化简各项后,再合并即可解答.【详解】原式11213=+-=111313=. 【点睛】本题主要考查了实数运算,利用负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质正确化简各数是解题关键.12.风筝距地面的高度49.9m .【解析】【分析】作AM ⊥CD 于M ,作BF ⊥AM 于F ,EH ⊥AM 于H .设AF =BF =x ,则CM =BF =x ,DM =HE =40-x ,AH =x +30-1.5=x +28.5, 在Rt △AHE 中,利用∠AEH 的正切列方程求解即可.【详解】如图,作AM ⊥CD 于M ,作BF ⊥AM 于F ,EH ⊥AM 于H .∵∠ABF=45°,∠AFB=90°,∴AF=BF,设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5,在Rt△AHE中,tan67°=AH HE,∴1228.5 540xx+=-,解得x≈19.9 m.∴AM=19.9+30=49.9 m.∴风筝距地面的高度49.9 m.【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.13.人民英雄纪念碑MN的高度约为36.5米.【解析】【分析】在Rt△MED中,由∠MDE=45°知ME=DE,据此设ME=DE=x,则EC=x+15,在Rt△MEC 中,由ME=EC•tan∠MCE知x≈0.7(x+15),解之求得x的值,根据MN=ME+EN可得答案.【详解】由题意得四边形ABDC、ACEN是矩形,∴EN=AC=1.5,AB=CD=15,在Rt△MED中,∠MED=90°,∠MDE=45°,∴ME=DE,设ME=DE=x,则EC=x+15,在Rt△MEC中,∠MEC=90°,∠MCE=35°,∵ME=EC•tan∠MCE,∴x≈0.7(x+15),解得:x≈35,∴ME≈35,∴MN=ME+EN≈36.5,答:人民英雄纪念碑MN的高度约为36.5米.【点睛】本题考查了解直角三角形中的仰俯角问题,解题的关键是从实际问题中整理出直角三角形并利用解直角三角形的知识解题.14.1【解析】【分析】直接利用零指数幂的性质以及特殊角的三角函数值和负指数幂的性质分别化简得出答案.【详解】解:原式=4﹣3+1﹣2 22⨯=2﹣1=1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.15.(1)(-8,0)(2)k=-19225(3)(﹣1,3)或(0,2)或(0,6)或(2,6)【解析】【分析】(1)解方程求出OB的长,解直角三角形求出OA即可解决问题;(2)求出直线DE、AB的解析式,构建方程组求出点C坐标即可;(3)分四种情形分别求解即可解决问题;【详解】解:(1)∵线段OB的长是方程x2﹣2x﹣8=0的解,∴OB=4,在Rt△AOB中,tan∠BAO=12 OBOA=,∴OA=8,∴A(﹣8,0).(2)∵EC⊥AB,∴∠ACD=∠AOB=∠DOE=90°,∴∠OAB+∠ADC=90°,∠DEO+∠ODE=90°,∵∠ADC=∠ODE,∴∠OAB=∠DEO,∴△AOB∽△EOD,∴OA OB OE OD=,∴OE:OD=OA:OB=2,设OD=m,则OE=2m,∵12•m•2m=16,∴m=4或﹣4(舍弃),∴D(﹣4,0),E(0,﹣8),∴直线DE的解析式为y=﹣2x﹣8,∵A(﹣8,0),B(0,4),∴直线AB的解析式为y=12x+4,由28142y xy x--⎧⎪⎨+⎪⎩==,解得24585xy⎧-⎪⎪⎨⎪⎪⎩==,∴C(245-,85),∵若反比例函数y=kx的图象经过点C,∴k=﹣192 25.(3)如图1中,当四边形MNPQ是矩形时,∵OD=OB=4,∴∠OBD=∠ODB=45°,∴∠PNB=∠ONM=45°,∴OM=DM=ON=2,∴BN=2,PB=PN=2,∴P(﹣1,3).如图2中,当四边形MNPQ是矩形时(点N与原点重合),易证△DMQ是等腰直角三角形,OP=MQ=DM=2,P(0,2);如图3中,当四边形MNPQ是矩形时,设PM交BD于R,易知R(﹣1,3),可得P (0,6)如图4中,当四边形MNPQ是矩形时,设PM交y轴于R,易知PR=MR,可得P(2,6).综上所述,满足条件的点P坐标为(﹣1,3)或(0,2)或(0,6)或(2,6);【点睛】考查反比例函数综合题、一次函数的应用、矩形的判定和性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.16.(1)12,32;(2)证明见解析.【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1,∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用. 17.【整理数据】:7,4;【分析数据】(1)85,80;(2)40;(3)乙班的学生掌握垃圾分类相关知识的整体水平较好,见解析.【解析】【分析】由收集的数据即可得;(1)根据众数和中位数的定义求解可得;(2)用总人数乘以乙班样本中合格人数所占比例可得;(3)甲、乙两班的方差判定即可.【详解】解:乙班75.5~80.5分数段的学生数为7,80.5~85.5分数段的学生数为4, 故a =7,b =4,故答案为:7,4;(1)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80,众数是x =85,67,73,76,78,79,80,80,80,80,82,83,83,84,86,89,中位数是y =80,故答案为:85,80;(2)60×1015=40(人), 即合格的学生有40人,故答案为:40; (3)乙班的学生掌握垃圾分类相关知识的整体水平较好,∵甲班的方差>乙班的方差,∴乙班的学生掌握垃圾分类相关知识的整体水平较好.【点睛】本题考查了频数分布直方图,众数,中位数,正确的理解题意是解题的关键. 18.(1)22m 3n +,2mn ;(2)4,2,1,1(答案不唯一);(3)a =7或a =13.【解析】【分析】【详解】(1)∵2(a m +=+,∴2232a m n +=++,∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13. 19.(1)10100y x =+;(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.【解析】【分析】(1)根据图象可得:当2x =,120y =,当4x =,140y =;再用待定系数法求解即可;(2)根据这种干果每千克的利润×销售量=2090列出方程,解方程即可.【详解】解:(1)设一次函数解析式为:y kx b =+,根据图象可知:当2x =,120y =;当4x =,140y =;∴21204140k b k b +=⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩, ∴y 与x 之间的函数关系式为10100y x =+;(2)由题意得:(6040)(10100)2090x x --+=,整理得:21090x x -+=,解得:11x =.29x =,∵让顾客得到更大的实惠,∴9x =.答:商贸公司要想获利2090元,这种干果每千克应降价9元.【点睛】本题考查了一元二次方程的应用和一次函数的应用,读懂图象信息、熟练掌握待定系数法、正确列出一元二次方程是解题的关键.20.(1)6月份出售这种蔬菜每千克的收益是2元.(2)5月份出售这种蔬菜,每千克的收益最大.(3)4月份的销售量为4万千克,5月份的销售量为6万千克.【解析】分析:(1)找出当x=6时,y 1、y 2的值,二者作差即可得出结论;(2)观察图象找出点的坐标,利用待定系数法即可求出y 1、y 2关于x 的函数关系式,二者作差后利用二次函数的性质即可解决最值问题;(3)求出当x=4时,y 1﹣y 2的值,设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,根据总利润=每千克利润×销售数量,即可得出关于t 的一元一次方程,解之即可得出结论.详解:(1)当x=6时,y 1=3,y 2=1,∵y 1﹣y 2=3﹣1=2,∴6月份出售这种蔬菜每千克的收益是2元.(2)设y 1=mx+n ,y 2=a (x ﹣6)2+1.将(3,5)、(6,3)代入y 1=mx+n ,3563m n m n +=⎧⎨+=⎩,解得:237m n ⎧=-⎪⎨⎪=⎩, ∴y 1=﹣23x+7; 将(3,4)代入y 2=a (x ﹣6)2+1,4=a (3﹣6)2+1,解得:a=13, ∴y 2=13(x ﹣6)2+1=13x 2﹣4x+13. ∴y 1﹣y 2=﹣23x+7﹣(13x 2﹣4x+13)=﹣13x 2+103x ﹣6=﹣13(x ﹣5)2+73. ∵﹣13<0, ∴当x=5时,y 1﹣y 2取最大值,最大值为73, 即5月份出售这种蔬菜,每千克的收益最大.(3)当t=4时,y 1﹣y 2=﹣13x 2+103x ﹣6=2. 设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,根据题意得:2t+73(t+2)=22, 解得:t=4,∴t+2=6.答:4月份的销售量为4万千克,5月份的销售量为6万千克.点睛:本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:(1)观察函数图象,找出当x=6时y1﹣y2的值;(2)根据点的坐标,利用待定系数法求出y1、y2关于x的函数关系式;(3)找准等量关系,正确列出一元一次方程.21.(1)DE与⊙O相切,理由见解析;(2)阴影部分的面积为2π﹣332.【解析】【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案.【详解】(1)DE与⊙O相切,理由:连接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分线交⊙O于点D,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE与⊙O相切;(2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,∴DE=DF=3,3223+33()=6,∵sin∠DBF=31 =62,∴∠DBA=30°,∴∠DOF=60°,∴sin60°=3DF DO DO ==则1322π-= 【点睛】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO 的长是解题关键. 22.123米.【解析】【分析】在Rt △ABC 中,利用tan BC CAB AB∠=即可求解. 【详解】解:∵CD ∥AB ,∴∠CAB=∠DCA=39°.在Rt △ABC 中,∠ABC=90°, tan BC CAB AB ∠=. ∴100123tan 0.81BC AB CAB ==≈∠. 答:A 、B 两地之间的距离约为123米.【点睛】本题考查解直角三角形,选择合适的锐角三角函数是解题的关键.23.(1)证明见解析; 【解析】【分析】(1)连接OD ,由AD 为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD 与AC 平行,得到OD 与BC 垂直,即可得证; (2)连接DF ,由(1)得到BC 为圆O 的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD 与三角形ADF 相似,由相似得比例,即可表示出AD ;(3)连接EF ,设圆的半径为r ,由sinB 的值,利用锐角三角函数定义求出r 的值,由直径所对的圆周角为直角,得到EF 与BC 平行,得到sin ∠AEF=sinB ,进而求出DG 的长即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年九年级数学中考专题复习方程应用题培优练习1、随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A、B两种上网学习的月收费方案:A方案:月租7元,可上网25小时,若超时,超出部分按每分钟0.01元收费;B方案:月租10元,可上网50小时,若超时,超出部分按每分钟0.01元收费;设每月上网学习时间为x小时.(1)当x>50时,用含有x的代数式分别表示A、B两种上网的费用;(2)当x=100时,分别求出两种上网学习的费用.(3)若上网40小时,选择哪种方式上网学习合算,为什么?2、A市与B市出租车收费标准如下(不足1千米按1千米计算):A市:行程不超过3千米收起步价10元,超过3千米后超过部分每千米收1.2元;B市:行程不超过3千米收起步价8元,超过3千米后超过部分每千米收1.5元。
(1)若某人在A市乘坐出租车付了16元钱,那么他最多坐了千米的路程;(2)试求在A市与在B市乘坐出租车x千米的车费分别为多少元?(3)若某人乘坐出租车走了6.3千米,问他在哪座城市坐车更便宜?3、某商场销售一种西装和领带,西装每套定价200元,领带每条定价40元.国庆节期间商场决定开展促销活动,活动期间向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x.(1)若该客户按方案一购买,需付款多少元(用含x的式子表示)?若该客户按方案二购买,需付款多少元(用含x的式子表示)?(2)若,通过计算说明此时按哪种方案购买较为合算;(3)当时,你能给出一种更为省钱的购买方法吗?试写出你的购买方法和所需费用.4、某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?5、某市决定购买A、B两种树苗对某段道路进行绿化改造,已知购买A种树苗9棵,B种树苗4棵,需要700元;购买A种树苗3棵,B种树苗5棵,则需要380元.(1)求购买A、B两种树苗每颗各需多少元?(2)考虑到绿化效果和资金周转,购进A种树苗不能少于60棵,且用于购买这两种树苗的资金不能超过5260元.若购进这两种树苗共100棵,则有哪几种购买方案?哪种方案最省钱?6、某校准备组织七年级400名学生参加夏令营,已知满员时,用3辆小客车和1辆大客车每次可运送学生105人;用一辆小客车和2辆大客车每次可运送学生110人.(1)1辆小客车和1辆大客车都坐满后一次可送多少名学生?(2)若学校计划租用小客车a辆,大客车b辆,一次送完,且恰好每辆车都坐满;①请你设计出所有的租车方案;②若小客车每辆需租金200元,大客车每辆需租金380元,请选出最省钱的租车方案,并求出最少租金.7、为满足市民对优质教育的需求,某中学决定改善办学条件,计划拆除一部分旧校舍、建造新校舍.拆除旧校舍每平方米需80元,建造新校舍每平方米需700元.计划在年内拆除旧校舍与建造新校舍共7 200平方米,在实施中为扩大绿地面积,新建校舍只完成了计划的80%,而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.(1)求原计划拆、建面积各是多少平方米.(2)若绿化1平方米需200元,那么在实际完成的拆、建工程中节余的资金用来绿化,大约是多少平方米?8、某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从甲、乙两养殖场调运鸡蛋到该超市的路程和运费如下表:设从甲养殖场调运鸡蛋x斤,总运费为W元(1)试写出W与x的函数关系式.(2)怎样安排调运方案才能使每天的总运费最省?9、随着春节临近,节日礼品开始热销,某厂每月固定生产甲、乙两种礼品共100万件,甲礼品每件成本15元,乙礼品每件成本12元,现甲礼品每件售价22元,乙礼品每件售价18元,且都能全部售出.(1)若某月甲礼品的产量为x万件,总利润为y万元,写出y关于x的函数关系式.(2)如果每月投入的总成本不超过1380万元,应怎样安排甲、乙礼品的产量,可使所获得的利润最大?10、A市、B市分别有联合收割机12台与6台,正值秋收季节,A市、B市政府决定将这18台机器支援给友好市C市10台,D市8台。
以帮助C市、D市的农民收割农作物。
已知从A市调运一台机器到C市与D 市的运费分别是400元和800元,从B市调运一台机器到C市和D市的运费分别是300元与500元。
求:①现设从B市调往C市的机器数为,试用含的代数式表示从B市调往D市,以及从A市调往C、D 两市的机器数。
请将相应的代数式填入表格中:②接第①问,试用含的代数式表示总运费。
③运输方案如何安排,可使总运费最低?写出使总运费最低的运输方案,并求出这个最低运费。
11、荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?12、某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?13、某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为14米(如图所示),设这个苗圃园垂直于墙的一边长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积S有最大值吗?如果有,求出最大值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.14、“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?15、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利44元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出5件。
(1)若商场平均每天要盈利1600元,每件衬衫应降价多少元?(2)如果你是该商场经理,你将如何决策?使商场平均每天能获得最大盈利是多少?16、如图,在矩形ABCD中,AB=5 cm,BC=6 cm,点P从点A开始沿边AB向终点B以1 cm/s的速度移动,与此同时,点Q从点B开始沿边BC向终点C以2 cm/s的速度移动.如果P,Q分别从A,B同时出发,当点Q运动到点C时,两点停止运动.设运动时间为t s.(1)填空:BQ=__cm__,PB=____;(用含t的代数式表示)(2)当t为何值时,PQ的长度等于5 cm?(3)是否存在t的值,使得五边形APQCD的面积等于26 cm2?若存在,请求出此时t的值;若不存在,请说明理由.17、某水果经销商上月份销售一种新上市的水果,平均售价为10元/千克,月销售量为1 000千克.经市场调查,若将该水果价格调低至x元/千克,则本月份销售量y(千克)与x(元/千克)之间符合一次函数关系式y=kx+b,当x=7时,y=2 000;当x=5时,y=4 000.(1)求y与x之间的函数解析式;(2)已知该种水果上月份的成本价为5元/千克,本月份的成本价为4元/千克,要使本月份销售该种水果所获利润比上月份增加20%,同时又要让顾客得到实惠,那么该种水果价格每千克应调低至多少元?(利润=售价-成本价)18、如图,矩形ABCD为某中学课外活动小组围建的一个生物苗圃园,其中两边靠墙(墙足够长),另外两边用长度为16米的篱笆(虚线部分)围成.设AB边的长度为x米,矩形ABCD的面积为y平方米.(1)y与x之间的函数关系式为(不要求写自变量的取值范围);(2)求矩形ABCD的最大面积.19、某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长.已知该养殖户第一年的可变成本为3万元,如果该养殖户第三年的养殖成本为7.63万元,求可变成本平均每年增长的百分率.20、某校园商店经销甲、乙两种文具.现有如下信息:信息1:甲、乙两种文具的进货单价之和是3元;信息2:甲文具零售单价比进货单价多1元,乙文具零售单价比进货单价的2倍少1元.信息3:某同学按零售单价购买甲文具3件和乙文具2件,共付了12元.请根据以上信息,解答下列问题:(1)甲、乙两种文具的零售单价分别为__________元和__________元.(直接写出答案)(2)该校园商店平均每天卖出甲文具50件和乙文具120件.经调查发现,甲种文具零售单价每降0.1元,甲种文具每天可多销售10件.为了降价促销,使学生得到实惠,商店决定把甲种文具的零售单价下降m(m >0)元.在不考虑其他因素的条件下,当m定为多少时,可以使商店每天销售甲、乙两种文具获取的利润保持不变?参考答案1、(1)方案A费用为:0.01x+6.75.方案B费用为:10+0.01(x-50)=0.01x+9.5.(2)当x=100时,方案A费用为:0.01x+6.75=7.75.方案B费用为: 0.01x+9.5=10.5.(3)当x=40时,方案A费用为:0.01x+6.75=7.15.方案B费用为:10.∵7.15<10,∴选择A方式上网学习合算.2、(1)15;(2)当x≤3时,A市车费为10元,B市车费为8元;当x>3时,A市车费为:10+1.2(x-3)=(1.2x+6.4)元,B市车费为:8+1.5(x-3)=(1.5x+3.5)元(3)当乘坐出租车6.3千米时,应按7千米计算当x=7时,1.2x+6.4=1.2×7+6.4=14.8(元)1.5x+3.5=1.5×7+3.5=14(元)∴在B市坐车更便宜3、(1)方案一购买,需付款:(元),按方案二购买,需付款:(元);(2)把分别代入:(元),(元).因为,所以按方案一购买更合算;(3)先按方案一购买20套西装(送20条领带),再按方案二购买条领带,共需费用:,当时,(元).4、解:(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元,根据题意得,解得.答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元;(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.5、(1)解:设购买A种树苗每棵x元,B种树苗每棵y元,,得,答:购买A种树苗每棵60元,B种树苗每棵40元;(2)解:设购买A种树苗a棵,,解得,60≤a≤63,∴有四种购买方案,方案一:购买A种树苗60棵,B种树苗40棵,方案二:购买A种树苗61棵,B种树苗39棵,方案三:购买A种树苗62棵,B种树苗38棵,方案四:购买A种树苗63棵,B种树苗37棵,∵A种树苗比B种树苗贵,∴方案一最省钱.6、解:(1)设每辆小客车能坐a名学生,每辆大客车能坐b名学生根据题意,得解得a+b=20+45=65,答:1辆小客车和1辆大客车都坐满后一次可送65名学生.(2)①由题意得:20m+45n=400,∴n=,∵m、n为非负整数,∴或或,∴租车方案有三种:方案一:小客车20车、大客车0辆,方案二:小客车11辆,大客车4辆,方案三:小客车2辆,大客车8辆;②方案一租金:200×20=4000(元),方案二租金:200×11+380×4=3640(元),方案三租金:200×2+380×8=3280(元),∴方案三租金最少,最少租金为3280元.7、解:(1)设原计划拆除旧校舍x平方米,新建校舍y平方米.根据题意,得解得答:原计划拆除旧校舍4 800平方米,新建校舍2 400平方米.(2)实际比原计划拆除与新建校舍节约资金为(4 800×80+2 400×700)-[4 800×(1+10%)×80+2 400×80%×700]=297 600(元).用此资金可绿化面积是297 600÷200=1 488(平方米).答:原计划拆除旧校舍4 800平方米,新建校舍2 400平方米,实际施工中节约的资金可绿化1 488平方米.8、解:从甲养殖场调运了x斤鸡蛋,从乙养殖场调运了(1200﹣x)斤鸡蛋,根据题意得:解得:300≤x≤800,总运费W=200×0.012x+140×0.015×(1200﹣x)=0.3x+2520,(300≤x≤800),∵W随x的增大而增大,∴当x=300时,W最小=2610元,∴每天从甲养殖场调运了300斤鸡蛋,从乙养殖场调运了900斤鸡蛋,每天的总运费最省.9、(1);(2)≤;≤60;y随x的增大而增大,当x=60时,y最大. 此时生产甲礼品60件,乙礼品40件.10、解:(1)(2)总运费为:8600+200x(3)最低运费方案如下最低运费为8600元11、解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得 x=5经检验,x=5是原方程的解.所以 x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8﹣a)由题意得 25a+5(2a+8﹣a)≤670解得 a≤21∴荣庆公司最多可购买21个该品牌的台灯.12、解:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,依题意有:+10=,解得x=120,经检验,x=120是原方程的解,且符合题意.答:该商家购进的第一批衬衫是120件.(2)3x=3×120=360,设每件衬衫的标价y元,依题意有(360﹣50)y+50×0.8y≥(13200+28800)×(1+25%),解得y≥150.答:每件衬衫的标价至少是150元.13、解:(1)苗圃园与墙平行的一边长为(30-2x)米.依题意可列方程x(30-2x)=72,即x2-15x+36=0.解得x1=3,x2=12.(2)依题意,得8≤30-2x≤14.解得8≤x≤11.S=x(30-2x)=-2(x-)2+∵抛物线开口向下,对称轴是直线x=又∵8≤x≤11∴在对称轴的右侧S随x的增大而减小当x=8时,S有最大值,S最大=112;(3)x的取值范围是5≤x≤10.14、(1)根据题意列方程:64(1+x)2="100" ,解得x=-225%(不合题意,舍去), x= 25%,100×(1+25%)=125(辆)(2)设进B型车x辆,则进A型车辆,根据题意得不等式组: 2x≤≤2.8x ,解得:12.5≤x≤15,自行车辆数为整数,所以13≤x≤15,销售利润W=(700-500)×+(1300-1000)x .整理得:W=-100x+12000,∵ W随着x的增大而减小,∴当x=13时,销售利润W有最大值,此时,=34,15、16、解:2t;(5-t)cm(2)由题意得(5-t)2+(2t)2=52,解得t1=0(不合题意,舍去),t2=2,∴当t=2 s时,PQ的长度等于5cm(3)存在,t=1 s时,能够使得五边形APQCD的面积等于26 cm2.理由如下:长方形ABCD的面积是5×6=30(cm2),若使得五边形APQCD的面积等于26 cm2,则△PBQ的面积为30-26=4(cm2),则(5-t)×2t×=4,解得t1=4(不合题意,舍去),t2=1,即当t=1 s时,使得五边形APQCD的面积等于26 cm217、(1)y=-1 000x+9 000;(2)由题意可得1 000(10-5)(1+20%)=(-1 000x+9 000)(x-4),整理得x2-13x+42=0,解得x1=6,x2=7(舍去),所以该种水果价格每千克应调低至6元18、解:(1)由题意可得;(2)∵,∴.∵,∴当时,的最大值为64.答:矩形ABCD的最大面积为64平方米.19、解:设可变成本平均每年增长的百分率为x,3(1+x)2=7.63﹣4解得,x=0.1或x=﹣2.1(舍去),即可变成本平均每年增长的百分率是10%.20、解:(1)假设甲、种商品的进货单价为x,y元,乙种商品的进货单价为y元,根据题意可得:,解得:.答:甲、乙零售单价分别为2元和3元.故答案为2,3;(2)该校园商店平均每天卖出甲文具50件和乙文具120件时,获取的利润为:50×1+120(3﹣2)=170(元).根据题意得出:(1﹣m)(50+10×)+1×120=170,即2m2﹣m=0,解得m=0.5或m=0(舍去).答:当m定为0.5元时,可以使商店每天销售甲、乙两种文具获取的利润保持不变.。