zsz二次函数单元一

合集下载

二次函数知识点汇总(全)

二次函数知识点汇总(全)

二次函数知识点(第一讲)一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质:(上加下减)3. ()2y a x h =-的性质:(左加右减)4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k=-+与2y axbx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

九年上第二十二章 二次函数全章知识点总结

九年上第二十二章 二次函数全章知识点总结

二次函数二次函数的定义:一般地,形如()0,,2≠++=a c b a c bx ax y 是常数的函数,叫做二次函数,x 是自变量,c b a ,,分别是函数解析式的二次项系数、一次项系数和常数项。

开口方向:二次函数c bx ax y ++=2图像是一条抛物线,二次项系数()0≠a a 决定二次函数图像的开口方向,当0>a ,二次函数图像开口向上,当0<a ,二次函数图像开口向下。

在直角坐标系中画出二次函数221x y =,2x y =,22x y =的图像,观察图像可知三个二次函数图像的顶点坐标,对称轴都相同,开口大小逐渐减小。

规律:0>a ,a 越大,抛物线的开口越小。

在直角坐标系中画出二次函数221x y -=,2x y -=,22x y -=的图像,观察图像可知三个二次函数图像的顶点坐标,对称轴都相同,开口大小逐渐减小。

规律:0<a ,a 越小,抛物线的开口越小。

抛物线的开口大小与a 有关,a 越大,开口越小;a 越小,开口越大。

对称轴:二次函数()0,,2≠++=a c b a c bx ax y 是常数图像是轴对称图形,关于对称轴对称。

它的对称轴是ab x 2-= 二次函数的单调性:二次函数图像在对称轴左、右两边单调性是相反的。

0>a ,当a b x 2-<时,y 随x 的增大而减小,当a bx 2->时,y 随x 的增大而增大。

0<a ,当abx 2-<时,y 随x 的增大而增大,当abx 2->时,y 随x 的增大而减小。

二次函数的顶点:二次函数对称轴与二次函数图像的交点便是二次函数的顶点。

二次函数的顶点坐标是⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22,当0>a 时,二次函数的顶点是图像的最低点。

0<a 时,二次函数的顶点是图像的最高点。

二次函数的最值:若二次函数的自变量是全体实数,二次函数在图像的顶点处取得最值。

二次函数知识点归纳

二次函数知识点归纳

二次函数知识点归纳二次函数是一个一元二次方程的图像,其一般形式为y = ax^2 + bx + c,其中a、b、c 为实数且a不等于0。

1. 顶点:二次函数的图像是一个开口向上或向下的抛物线。

抛物线的最高点或最低点称为顶点。

顶点的横坐标为x = -b / (2a),纵坐标为y = f(-b / (2a))。

2. 对称轴:二次函数的图像关于一条直线对称。

这条直线称为对称轴,公式为x = -b / (2a)。

3. 开口方向:当a大于0时,二次函数图像开口向上;当a小于0时,二次函数图像开口向下。

4. 零点:二次函数的图像与x轴交点的横坐标称为零点,即使y = 0的解,可以通过求根公式得到。

5. 判别式:二次函数的判别式为Δ = b^2 - 4ac,用于判断二次函数的根的情况。

当Δ大于0时,有两个不相等的实根;当Δ等于0时,有两个相等的实根;当Δ小于0时,没有实根。

6. 特殊情况:当a大于0时,二次函数的图像开口向上,且顶点处为最小值。

函数的值随着x的增大而增加。

当a小于0时,二次函数的图像开口向下,且顶点处为最大值。

函数的值随着x的增大而减小。

当c等于0时,二次函数经过原点(0, 0),称为原点对称的二次函数。

7. 平移变换:纵向平移:对二次函数y = ax^2 + bx + c进行纵向平移为y = a(x - h)^2 + k,其中(h, k)为平移的向量。

横向平移:对二次函数y = ax^2 + bx + c进行横向平移为y = a(x - p)^2 + q,其中(p, q)为平移的向量。

8. 最值问题:在一定条件下,通过二次函数的最值可以求解一些实际问题。

求抛物线的最大值或最小值,可以通过求顶点来解决。

求某一变量取得最值的情况下,可以通过二次函数的顶点坐标和判别式来判断。

9. 范围:二次函数的值域根据开口方向有所不同。

当a大于0时,值域为[y₀, +∞),其中y₀为顶点的纵坐标。

当a小于0时,值域为(-∞, y₀]。

九年级数学浙教版上册 第1章二次函数单元复习(共29张PPT)

九年级数学浙教版上册 第1章二次函数单元复习(共29张PPT)
b 直线 x 对称的抛物线,抛物线与对称轴的交点 2a
是抛物线的顶点.
(2)不同形式的二次函数图象
y=ax2
y=ax2+k
y=a(x-h)2
y=a(x-h)2+k
(3)二次函数图象的平移
y=ax2 y=ax2
y=ax2
向上(或向下)
平移 k 单位长度
向左(或向右) 平移 h 单位长度
y=ax2+k
(4)抛物线y=ax2+bx+c(a≠0)的开口方向
当a>0时,抛物线开口向上,顶点是抛物线的最低点; 当a<0时,抛物线开口向下,顶点是抛物线的最高点. (5)抛物线y=ax2+bx+c(a≠0)的对称轴、顶点坐标 ①通过配方法将y=ax2+bx+c化成顶点式y=a(x-h)2+k; 对称轴为直线x=h, ②直接用公式法: 顶点坐标为(h,k).
1.下列函数:①y=-3x2;②y=2x2-1;③y=(x-2)2; ④y=-x2+2x+3.当x<0时,其中y随x的增大而增大的 函数有( C ) A.4个 B.3个 C.2个 D.1个 2.在二次函数y=1 (x-2)2+3的图象上有两点(-1,y1), 12
(1,y2),则y1与y2的大小关系是( A ) A. y1<y2 B. y1=y2 C. y1>y2
A.向上平移3个单位 C.向左平移3个单位
B.向下平移3个单位 D.向右平移3个单位
3.将抛物线y=(x-1)2+2向上平移2个单位长度,再向右 平移3个单位长度后,得到的抛物线的解析式为( B )
A.y=(x-1)2+4 C.y=(x+2)2+6

中考专题复习二次函数知识点总结

中考专题复习二次函数知识点总结

中考专题复习二次函数知识点总结知识点一:二次函数的定义1.二次函数的定义:一般地,形如2=++(a b cy ax bx c,,是常数,0a≠)的函数,叫做二次函数.其中a是二次项系数,b是一次项系数,c是常数项.知识点二:二次函数的图象与性质⇒⇒⇒抛物线的三要素:开口、对称轴、顶点2. 二次函数()2=-+的图象与性质y a x h k(1)二次函数基本形式2=的图象与性质:a的绝对值越大,抛物线的开口越小y ax(2)2=+的图象与性质:上加下减y ax c(3)()2y a x h =-的图象与性质:左加右减(4)二次函数()2y a x h k =-+的图象与性质3. 二次函数c bx ax y ++=2的图像与性质(1)当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-. (2)当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.4. 二次函数常见方法指导(1)二次函数2y ax bx c =++图象的画法 ①画精确图 五点绘图法(列表-描点-连线)利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.②画草图 抓住以下几点:开口方向,对称轴,与y 轴的交点,顶点. (2)二次函数图象的平移 平移步骤:① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 可以由抛物线2ax 经过适当的平移得到具体平移方法如下:向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 2平移规律:概括成八个字“左加右减,上加下减”. (3)用待定系数法求二次函数的解析式 ①一般式:,已知图象上三点或三对、的值,通常选择一般式.②顶点式:,已知图象的顶点或对称轴,通常选择顶点式.③交点式:,已知图象与轴的交点坐标、.(4)求抛物线的顶点、对称轴的方法①公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=. ②配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.③运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点. (5)抛物线c bx ax y ++=2中,c b a ,,的作用①a 决定开口方向及开口大小,这与2ax y =中的a 完全一样. ②b 和a 共同决定抛物线对称轴的位置由于抛物线c bx ax y ++=2的对称轴是直线abx 2-=,故 如果0=b 时,对称轴为y 轴;如果0>a b(即a 、b 同号)时,对称轴在y 轴左侧; 如果0<ab(即a 、b 异号)时,对称轴在y 轴右侧.③c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置当0=x 时,c y =,所以抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ),故 如果0=c ,抛物线经过原点; 如果0>c ,与y 轴交于正半轴; 如果0<c ,与y 轴交于负半轴.知识点三:二次函数与一元二次方程的关系5.函数c bx ax y ++=2,当0y =时,得到一元二次方程20ax bx c ++=,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解6.拓展:关于直线与抛物线的交点知识(1)y 轴与抛物线c bx ax y ++=2得交点为(0,)c .(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组 2y kx n y ax bx c=+⎧⎨=++⎩的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点;②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a acb ac a b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=-+=-=-=444222122122121知识点四:利用二次函数解决实际问题7.利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题。

浙教版9年级上册数学第1章《二次函数》-分节知识点

浙教版9年级上册数学第1章《二次函数》-分节知识点
然后计算出对应的 y 值,这样的对应值选取越密集,描出的图象越准确。 要点诠释: 1、二次函数 y=ax2(a≠0)的图象.用描点法画二次函数 y=ax2(a≠0)的图象,该图象是轴对称图形,对称轴是
y 轴.y=ax2(a≠0)是最简单的二次函数,把 y=ax2(a≠0)的图象左右、上下平行移动可以得到 y=ax2+bx+c (a≠0)的图象。 2、画草图时应抓住以下几点:开口方向,对称轴,顶点,与 轴的交点,与 轴的交点。 3、二次函数 y=ax2(a≠0)的图象的性质 1、二次函数 y=ax2(a≠0)的图象的性质,见下表:
(1)
沿 轴平移:向上(下)平移 个单位,
变成
(或

(2)
沿 x 轴平移:向左(右)平移 个单位,
变成
(或

三、二次函数 y=ax2+bx+c(a≠0)的图象与性质
要点一、二次函数

之间的相互关系
1、顶点式化成一般式
1、从函数解析式
我们可以直接得到抛物线的顶点(h,k),所以我们称
函数 y=ax2 a>0
图象
开口方向 顶点坐标 对称轴
函数变化
最大(小)值
向上
(0,0)
x>0 时,
y 随 x 增大而增大; 当 x=0 时,
y轴
x<0 时,
y 随 x 增大而减小
y 最小=0
y=ax2 a<0
向下
(0,0)
x>0 时,
y 随 x 增大而减小; 当 x=0 时,
y轴
x<0 时,
y 随 x 增大而增大.
其顶点横坐标 x=0,抛物线平移不改变抛物线的形状,即 a 的值不变,只是位置发生变化而已。

浙教版数学九年级上册第1章《二次函数复习一》

浙教版数学九年级上册第1章《二次函数复习一》
【4】二次函数y=a (x-m)2 +k(a≠0)的图象 函数y=a (x-m)2 +k (a≠0)的图象,可以由函数y=ax²的图象先向
右(当m>0)或向左(当m<0)平移|m|个单位,再向上(当k>0)或向下
(当k<0)平移|k|个单位得到.函数y=a (x-m)2 +k的图象的顶点坐标是 __(m__,__k_)_,对称轴是直线__x_=_m___.
例题探究
解:(1)当 m=-1 时,图象过点(1,0)和(-3,0),

00= =a9+ a-b+ 3b3+,3,解得
a=-1, b=-2.
(2)∵函数图象过点(-m,0)和(3m,0), ∴函数图象的对称轴为直线x=m. 易知图象过点(0,3). 又∵图象过点(n,3),∴根据图象的对称性得n=2m. ∵-2<m<-1,∴-4<n<-2.
解:∵二次函数
y=2x 2-x +3
可化为
y=2
x-1 4
2+23, 8
∴由题意可得原二次函数的表达式为 y=2 x-14+2 2+23-3, 8
整理得 y=2x2+7x+6,
∴a=2,b=7,c=6.
∴a+b+c=2+7+6=15.
例题探究
【4】在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)是抛物线y=ax2 +bx+c(a>0)上任意两点,设抛物线的对称轴为直线x=t. (1)若对于x1=1,x2=2都有y1=y2,求t的值; (2)若对于0 < x1 <1,1 < x2 < 2都有 y1 < y2,求 t 的取值范围.
例题探究
①×3+②,得 12am2+12=0,∴am2=-1. ∴am2+bm+3=am2-2am2+3=-am2+3=4. ∴12a-b2=4.

单招普高二次函数知识点讲解

单招普高二次函数知识点讲解

单招普高二次函数知识点讲解二次函数是数学中的重要概念,也是单招普高数学考试中常考的知识点之一。

掌握二次函数的相关知识,对于解题和理解数学问题都有着重要的作用。

本文将对单招普高二次函数知识点进行详细讲解,帮助同学们更好地掌握和应用这一概念。

一、二次函数的定义二次函数是指函数表达式为f(x) = ax^2 + bx + c的一类函数。

其中,a、b、c为常数,且a≠0。

这里的x是自变量,f(x)是函数值。

二、二次函数图像的特点1. 抛物线形状:二次函数的图像通常是一个抛物线。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

2. 对称轴:二次函数的图像关于一条垂直于x轴的直线称为对称轴。

对称轴的方程可以通过公式x = -b/2a 计算得到。

三、二次函数图像的平移和缩放二次函数的图像可以通过平移和缩放来进行变换。

具体而言,对于函数f(x) = ax^2 + bx + c:1. 若在函的表达式中加上常数k,即f(x) + k,表示图像向上平移k个单位;2. 若在函数的表达式中加上常数-h,即f(x + h),表示图像向左平移h个单位;3. 若在函数的表达式中乘以常数k(k>1),即k*f(x),表示图像在y轴方向上被拉伸;4. 若在函数的表达式中乘以常数k(0<k<1),即k*f(x),表示图像在y轴方向上被压缩。

四、二次函数的顶点和零点1. 顶点:二次函数的顶点是图像的最高点或最低点,可以通过对称轴的方程计算得到。

顶点的x坐标等于对称轴的x坐标,可用公式 -b/2a 计算;顶点的y坐标等于将对称轴的x坐标代入函数表达式得到的值。

2. 零点:二次函数的零点是使得函数值等于零的x值。

可以通过解方程f(x) = 0 求得。

对于一般的二次方程ax^2 + bx + c = 0,可以使用求根公式x = (-b ± √(b^2 - 4ac))/(2a)来求解。

五、二次函数的最值对于二次函数f(x) = ax^2 + bx + c,最值即为函数的最高点或最低点的纵坐标。

二次函数知识点总结大一

二次函数知识点总结大一

二次函数知识点总结大一一、引言二次函数是高中数学中的重要内容之一,它在数学和实际问题中都具有广泛的应用。

本文将对二次函数的相关知识点进行总结,旨在加深对二次函数的理解和掌握。

二、定义与性质二次函数是指形如y = ax^2 + bx + c的函数,其中a、b、c为实数且a≠0。

二次函数的图像呈现出抛物线形状,开口的方向与a的正负有关。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

二次函数的图像称为抛物线。

1. 零点与顶点二次函数的零点即方程y = ax^2 + bx + c的解,可以通过解方程求得。

零点对应于抛物线与x轴的交点,若零点有两个,则抛物线与x轴有两个交点。

2. 对称性二次函数的图像具有对称性,即关于抛物线的顶点对称。

这意味着,如果(x, y)为抛物线上的一点,则(-x, y)也必然在抛物线上。

3. 最值对于抛物线开口向上的二次函数,其图像的最小值为抛物线的顶点;对于抛物线开口向下的二次函数,其图像的最大值也是抛物线的顶点。

可以通过求导等方法来找到二次函数的极值点。

三、图像和方程的关系抛物线的图像与二次函数的系数a、b、c之间有一定的对应关系,通过观察可以找出这种关系。

1. 确定a的影响系数a决定了抛物线的开口方向,当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

a的绝对值越大,抛物线越窄;a的绝对值越小,抛物线越胖。

2. 确定b的影响系数b决定了抛物线的位置和对称轴的倾斜程度。

当a>0时,抛物线的对称轴与y轴的交点为(-b/2a, 0);当a<0时,抛物线的对称轴与x轴的交点为(-b/2a, 0)。

3. 确定c的影响系数c决定了抛物线图像与y轴的截距,即抛物线与y轴的交点。

当c>0时,抛物线与y轴的交点在y轴上方;当c<0时,抛物线与y轴的交点在y轴下方。

四、求解方程与不等式二次函数在解方程和不等式中有广泛应用,通过解二次方程和二次不等式可以求解与二次函数相关的问题。

人教版初中数学九年级上册22.1.1 二次函数1

人教版初中数学九年级上册22.1.1 二次函数1

2、分别说出下列二次函数的二次项系数、一次项系数和常数 项:
13
(1)d= n2- n , (2)y=1-x2, (3)y=-x(x-3)
22
3、 二次函数 y=ax2+c 中,当 x=3 时,y=26 ;当 x=2 时,y=11 ;则当 x=5 时,
y=
.
4、已知一个直角三角形的两条直角边的和为 10cm。
1、 ⑴一次函数;⑵二次函数;⑶反比例函数;⑷二次函数;⑸正比例函数
13
2、 ⑴ ,- ⑵-1,1 ⑶-1,3
22
3、 74
1
25
4、 ⑴S= x(10-x ),0<x<10;⑵S= cm2
2
2
5、 ⑴当 a≠0 时;⑵当 a=0 且 b≠0 时;⑶当 a=0,c=0, b≠0 时。
6、 m=2
7、 s=2x2
8、 ⑴ห้องสมุดไป่ตู้=-4x2+24x ⑵当 AB=2 时 BC=16;当 AB=4 时 BC=8
相信自己,就能走向成功的第一步 教师不光要传授知识,还要告诉学生学会生活。数学思维
可以让他们更理性地看待人生
TB:小初高题库
(1)求这个直角三角形的面积 S 与其中一条直角边长 x 之间的函数关系式和自变量 x
的取值 范围;
(2)求当 x=5cm 时直 角三角形的面积。
5、函数 y=ax2+bx+c (a、b、c 是常 数),问当 a、b、c 满足什么条件时, (1)它是二次函数? (2)它是一次函数? (3)它是正比例函数?
6、若 y m2 m x m2 m 是二次函数,求 m 的值。
7、一个小球由静止开始在一个斜坡上 向下滚动,通过仪器观察得到小球滚动的距离 s

第一章二次函数综合复习2021-2022学年九年级数学浙教版上册

第一章二次函数综合复习2021-2022学年九年级数学浙教版上册

二次函数综合复习二次函数的概念:一般地,形如(a ,b ,c 是常数,)的函数,叫做二次函数。

二次函数的结构特征:1)等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2。

2)是常数,是二次项系数,是一次项系数,是常数项。

3)二次项系数,而b ,c 可以为零。

考查题型一 列二次函数关系式典例1.正方形的边长为4,若边长增加x ,那么面积增加y ,则y 关于x 的函数表达式为( )A .216y x =+B .2(4)y x =+C .28y x x =+D .2164y x =-基础练1用一根长60cm 的铁丝围成一个矩形,那么矩形的面积2()y cm 与它的一边长()x cm 之间的函数关系式为( ) A .230(030)y x x x =-<< B .230(030)y x x x =-+< C .230(030)y x x x =-+<<D .230(030)y x x x =-+<基础练2 在半径为4cm 的圆中,挖去了一个半径为xcm 的圆面,剩下一个圆环的面积为ycm 2,则y 与x 的函数关系式为( ) A .216y x ππ=-+ B .24y x π=- C .2(2)y x π=-D .2(4)y x =-+考查题型二 二次函数概念 典例2.函数y =(m +2)x +2x +1是二次函数,则m 的值为( )A .﹣2B .0C .﹣2或1D .1基础练3若关于x 的函数y =(2﹣a )x 2﹣x 是二次函数,则a 的取值范围是( ) A .a≠0B .a≠2C .a <2D .a >2基础练4当函数21(1)23ay a x x +=-++是二次函数时,a 的取值为( )A .1a =B .1a =±C .1a ≠D .1a =-考查题型三 二次函数平移典例3.如果将抛物线y =x 2+2向左平移1个单位,那么所得新抛物线的表达式是( ) A .y =x 2+1B .y =x 2+3C .y =(x ﹣1)2+2D .y =(x +1)2+2基础练5把抛物线y =﹣x 2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( ) A .y =﹣(x ﹣1)2+3 B .y =﹣(x +1)2+3C .y =﹣(x +1)2﹣3D .y =﹣(x ﹣1)2﹣3基础练6已知二次函数y =(a ﹣1)x 2﹣x +a 2﹣1图象经过原点,则a 的取值为( ) A .a =±1 B .a =1C .a =﹣1D .无法确定考查题型四 二次函数图像性质典例4-1.二次函数y =ax 2+bx +c (a ≠0,a 、b 、c 为常数)的图象如图所示,则方程ax 2+bx +c =m 有实数根的条件是( ) A .m ≥﹣4 B .m ≥0C .m ≥5D .m ≥64-2.在同一平面直角坐标系中,二次函数y =ax 2与一次函数y =bx +c 的图象如图所示,则二次函数y =ax 2+bx +c 的图象可能是( )A .B .C .D .4-3.二次函数y=ax2+bx+c的图象如图所示,其对称轴是直线x=1.下列结论:①abc<0;②a+c>b;③4a+c>0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为()A.4个B.3个C.2个D.1个基础练7已知A(,y1),B(2,y2),C(﹣,y3)是二次函数y=3(x﹣1)2+k图象上三点,则y1、y2、y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y2>y1D.y2>y3>y1基础练8在函数y=﹣x2+bx+c中,y与x的部分对应值如表,则m、n的大小关系为()x……﹣1134……y……﹣6m n﹣6……A.m>n B.m<n C.m=n D.无法确定基础练9如图,由二次函数y=ax2+bx+c的图象可知,不等式ax2+bx+c<0的解集是()A.﹣3<x<1B.x>1C.x<﹣3或x>1D.x<﹣3基础练10二次函数y=ax2+bx+c(a≠0)的图象如图,对称轴是直线x=1,有以下四个结论:①abc>0;②b2﹣4ac>0;③b=﹣2a;④a+b+c>2,其中正确的是(填写序号)考查题型五二次函数应用典例5.某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(t)之间的关系为m=50+0.2x,销售价y(万元/t)与原料的质量x(t)之间的关系如图所示.(1)求y与x之间的函数关系式;(2)设销售收入为P(万元),求P与x之间的函数关系式;(3)原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润=销售收入﹣总支出).综合提升.如图,在平面直角坐标系中,抛物线y=﹣x2﹣x+与直线y=x+b交于A、B两点,其中点A在x轴上,已知A点坐标(1,0).点P是直线AB 上方的抛物线上一动点(不与点A 、B 重合),过P 作y 轴的平行线交直线于点C ,连接P A 、PB .(1)求直线的解析式及B 点的坐标;(2)当△APB 面积最大时,求点P 的坐标以及最大面积.综合练习1.下列函数中,是二次函数的是( ) A .21y x x=+B .2132y x x =-C .()21y x x =+D .21y x =-+2.已知二次函数y =ax 2+4x +c ,当x 等于﹣2时,函数值是﹣1;当x =1时,函数值是5.则此二次函数的表达式为( )A .y =2x 2+4x ﹣1B .y =x 2+4x ﹣2C .y =﹣2x 2+4x +1D .y =2x 2+4x +1 3.已知二次函数2()(0)y a x m a =-<的图象经过点(1,)A p -,(3,)B q ,若p q <,则m 的值可能是( ) A .2-B .2-C .0D .524.平面直角坐标系中,抛物线22y x x =+经变换得到抛物线22y x x =-,则这个变换是( ) A .向左平移2个单位 B .向右平移2个单位 C .向左平移4个单位 D .向右平移4个单位5.函数y =﹣x 2﹣4x ﹣3图象顶点坐标是( )A. (2,﹣1)B. (﹣2,1)C. (﹣2,﹣1)D. (2,1)6.已知抛物线y =x 2+bx+c 的部分图象如图所示,若y <0,则x 的取值范围是( )A. ﹣1<x <4B. ﹣1<x <3C. x <﹣1或x >4D. x <﹣1或x >37.如图,二次函数的图象与y轴交于点C,与x轴的一个交点为,点B在抛物线上,且与点C关于抛物线的对称轴对称.已知一次函数的图象经过两点,根据图象,则满足不等式的x的取值范围是________。

九年级数学下册第1章二次函数小结与复习版湘教版

九年级数学下册第1章二次函数小结与复习版湘教版

二次函数y=ax2 一元二次方程
+bx+c的图象和 ax2+bx+c=0的
x轴交点

有两个交点
有两个相异的 实数根
有两个重合 的交点
有两个相等的 实数根
一元二次方程 ax2+bx+c=0根的 判别式(b2-4ac)
b2-4ac > 0
b2-4ac = 0
没有交点
没有实数根
b2-4ac < 0
6.二次函数的应用 1.二次函数的应用包括以下两个方面 (1)用二次函数表示实际问题变量之间的关系,解决最 大化问题(即最值问题); (2)利用二次函数的图像求一元二次方程的近似解.
A.b<1且b≠0
B.b>1
C.0<b<1
D.b<1
针对训练
1.对于y=2(x-3)2+2的图象,下列叙述正确的是( C ) A.顶点坐标为(-3,2) B.对称轴为y=3 C.当x≥3时,y随x的增大而增大 D.当x≥3时,y随x的增大而减小
2.下列函数中,当x>0时,y值随x值增大而减小的是
( D) A. y= x2
2.二次函数的图象与性质:
二次函数
y=a(x-h)2+k
y=ax2+bx+c
开口
a>0 开口向上
方向
a < 0 开口向下
对称轴
顶点坐标
最 a>0 值 a<0
x=h (h , k) y最小=k y最大=k
x b
2a
(
b
4ac b2
,
)
2a 4a
y最小=44aacc4a
b2 b2
y最大= 4a
25m
解:(1)由题意,得羊圈的长为25m,宽为(4025)÷2=7.5(m).

上海长征中学九年级数学上册第二十二章《二次函数》知识点总结(含解析)

上海长征中学九年级数学上册第二十二章《二次函数》知识点总结(含解析)

一、选择题1.将二次函数221y xx =+-化为2()y x h k =-+的形式时,结果正确的是( ) A .2(1)2y x =+-B .2(1)2y x =--C .2(1)2y x =-+D .2(1)3y x =++A解析:A【分析】加上一次项系数的一半的平方凑成完全平方式,把一般式化为顶点式.【详解】 221y x x =+-=22111x x ++--=2(1)2y x =+-,故选:A .【点睛】此题考查二次函数的一般式转化为顶点式,掌握方法是解题的关键.2.二次函数y =ax 2+bx +c 的部分图象如图,图象过点A (3,0),对称轴为直线x =1,下列结论:①a ﹣b +c =0;②2a +b =0; ③4ac ﹣b 2>0;④a +b ≥am 2+bm (m 为实数);⑤3a +c >0.则其中正确的结论有( )A .2个B .3个C .4个D .5个B解析:B【分析】 由抛物线过点A(3,0)及对称轴为直线x=1,可得抛物线与x 轴的另一个交点,则可判断①②是否正确;由抛物线与x 轴有两个交点,可得△>0,据此可判断③是否正确;由x=1时,函数取得最大值,可判断④是否正确;把b=-2a 代入a-b+c=0得3a+c=0,则可判断⑤是否正确.【详解】解:∵二次函数y =ax 2+bx +c 的图象过点A (3,0),对称轴为直线x =1,∴点A (3,0)关于直线x =1对称点为(﹣1,0),∴当x =﹣1时,y =0,即a ﹣b +c =0.故①正确;∵对称轴为直线x =1,∴﹣2b a=1,∴b =﹣2a ,∴2a +b =0,故②正确; ∵抛物线与x 轴有两个交点,∴△=b 2﹣4ac >0,∴4ac ﹣b 2<0,故③错误; ∵当x =1时,函数有最大值,∴a +b +c ≥am 2+bm +c ,∴a +b ≥am 2+bm ,故④正确; ∵b =﹣2a ,a ﹣b +c =0,∴a +2a +c =0,即3a +c =0,故⑤错误;综上,正确的有①②④.故选:B .【点睛】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,数形结合并明确二次函数的相关性质是解题的关键.3.已知二次函数2(0)y ax bx c a =++≠的图象如图,有下列5个结论:①0abc <;②420a b c ++>;③b a c <+;④230c b -<;⑤2(1)a b an bn n +>+≠,其中正确的个数有( )A .1个B .2个C .3个D .4个D 解析:D【分析】根据抛物线的开口方向、对称轴、顶点坐标、最值、以及不等式的性质进行判断即可.【详解】抛物线开口向下,因此a <0,对称轴为x =−b 2a =1>0,a 、b 异号,因此b >0,且2a +b =0,抛物线与y 轴的交点在正半轴,因此c >0,所以:abc <0,因此①正确;当x =2时,y =4a +2b +c >0,因此②正确;当x =−1时,y =a−b +c <0,即,a +c <b ,因此③不正确;∵a−b +c <0,2a +b =0,∴−12b−b +c <0,即2c−3b <0,因此④正确; 当x =1时,y 最大值=a +b +c ,当x =n (n≠1)时,y =an 2+bn +c <y 最大值,即:a +b+c >an 2+b +c ,也就是2a+b an +bn(n 1)>≠,因此⑤正确,正确的结论有:①②④⑤,故选:D .【点睛】考查二次函数y =ax 2+bx +c 系数符号由抛物线开口方向、对称轴和、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.4.二次函数2y x bx =+的图象如图,对称轴为直线1x =.若关于x 的一元二次方程20x bx t +-=(t 为实数)在23x -<<的范围内有解,则t 的取值范围是( )A .1t ≥-B .13t -≤<C .18t -≤<D .38t <<C解析:C【分析】 根据对称轴求出b 的值,从而得到23x -<<时的函数值的取值范围,再根据一元二次方程x 2+bx-t=0(t 为实数)在-1<x <4的范围内有解相当于y=x 2+bx 与y=t 在x 的范围内有交点解答.【详解】解:对称轴为直线x=-21b ⨯=1, 解得b=-2,所以二次函数解析式为y=x 2-2x ,y=(x-1)2-1,x=1时,y=-1,x=-2时,y=4-2×(-2)=8,∵x 2+bx-t=0的解相当于y=x 2+bx 与直线y=t 的交点的横坐标,∴当-1≤t <8时,在-1<x <4的范围内有解.故选:C .【点睛】本题考查了二次函数与不等式,把方程的解转化为两个函数图象的交点的问题求解是解题的关键.5.如图所示,二次函数2y ax bx c =++的图象中,对称轴是直线1x =,王刚同学观察得出了下面四条信息:①1c >;②若()12,y ,()24,y 是抛物线上两点,则12y y >;③420a b c -+<;④方程20ax bx c ++=的两根是11x =-,23x =.其中说法正确的有( )A .①②③④B .②④C .①②④D .①③④A解析:A【分析】 由OC 与OA 的大小对①进行判断;利用二次函数的性质对②进行判断;利用x=-2时,y <0可对③进行判断;利用抛物线的对称性得到抛物线与x 轴的另一个交点为(3,0),然后根据抛物线与x 轴的交点问题可对④进行判断.【详解】∵抛物线与y 轴的交点在x 轴的上方,且OC >1,∴c >1,所以①正确;∵抛物线的对称轴为直线x=1,而点(2,y 1)到直线x=1的距离小于点(4,y 2)到直线x=1的距离相等,∴y 1>y 2,所以②正确;∵x=-2时,y <0,∴4a-2b+c <0,所以③正确;∵抛物线的对称轴为直线x=1,而抛物线与x 轴的一个交点为(-1,0),∴抛物线与x 轴的另一个交点为(3,0),∴方程ax 2+bx+c=0的两根是x 1=-1,x 2=3,所以④正确.故选:A .【点睛】考查了二次函数图象与系数的关系,解题关键是熟记二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点. 6.二次函数2y ax bx c =++()0a ≠的图象如图所示,观察得出了下面4条信息:①0abc >;②0a b c -+>;③230a b -=;④240b ac ->.你认为其中正确的结论有( )A .1B .2C .3D .4C解析:C【分析】 由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行分析,进而对所得结论进行判断.【详解】①由二次函数2y ax bx c =++的图象开口向上可知a >0,图象与y 轴交点在负半轴,c <0,对称轴b 1x=-=2a 3,2b=-a 3<0,因此0abc >,故正确; ②由图象可知x =−1时,y =a−b +c >0,故正确; ③对称轴b 1x=-=2a 3,2+30a b =,故错误; ④由图象与x 轴有两个交点,可知240b ac ->,故正确.所以①②④三项正确,故选:C .【点睛】本题考查了二次函数与系数的关系,解答本题关键是掌握二次函数y =ax 2+bx +c 系数符号的确定.7.下列各图象中有可能是函数()20y ax a a =+≠的图象( ) A . B . C . D .B 解析:B【分析】从0a >和0a <两种情况进行分析图象的开口方向和顶点坐标,选出正确的答案.【详解】解:当0a >时,开口向上,顶点在y 轴的正半轴;当0a <时,开口向下,顶点在y 轴的负半轴,故选:B .本题考查的是二次函数系数与图象的关系,熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标与系数的关系是解题的关键.8.如图所示的抛物线形构件为某工业园区的新厂房骨架,为了牢固起见,构件需要每隔0.4m 加设一根不锈钢的支柱,构件的最高点距底部0.5m ,则该抛物线形构件所需不锈钢支柱的总长度为( )A .0.8mB .1.6mC .2mD .2.2m B解析:B【分析】根据题意建立平面直角坐标系,得出B 、C 的坐标,然后根据待定系数法求出抛物线解析式,然后求出当当0.2x =和0.6x =时y 的值,然后即可求解.【详解】如图,由题意得()0,0.5B ,()1,0C .设抛物线的解析式为2y ax c =+, 代入得12a =-,12c =, ∴抛物线的解析式为21122y x =-+. 当0.2x =时,0.48y =,当0.6x =时,0.32y =.∴()1122334420.480.32 1.6BC B C B C B C m +++=⨯+=,故选B .【点睛】本题考查了二次函数的拱桥问题,关键是要根据题意作出平面直角坐标系,并根据所建立的平面直角坐标系求出函数解析式.9.抛物线y=2(x -1)2-3向左平移3个单位长度,此时抛物线的对称轴是直线( ) A .x =-3B .x =-1C .x =-2D .x =4C解析:C根据二次函数图象的平移规律得出平移后的抛物线的解析式,由此即可得出答案.【详解】由题意,平移后的抛物线的解析式为2213()3y x =-+-,即22(2)3y x =+-, 则此时抛物线的对称轴是直线2x =-,故选:C .【点睛】本题考查了二次函数图象的平移、二次函数的对称轴,熟练掌握二次函数图象的平移规律是解题关键.10.二次函数2y ax bx c =++的图象如图所示,下列结论正确的是( )A .0abc >B .0a b c ++=C .420a b c ++=D .240b ac -<C解析:C【分析】 由二次函数的开口方向,对称轴0x >,以及二次函数与y 的交点在x 轴的上方,与x 轴有两个交点等条件来判断各结论的正误即可.【详解】A 、观察图象,二次函数的开口向下,∴0a <,与y 轴的交点在x 轴上方,∴0c >,又∵对称轴为2b x a =-,在x 轴的正半轴上, 故02b x a=->,即0b >. ∴0abc <,故选项A 不正确;B 、观察图象,抛物线对称轴为直线12122x -+== ∴在对称轴右侧,当1x =时,函数值0y a b c =++>,故选项B 不正确; C 、观察图象,当2x =时,函数值420y a b c =++=,故选项C 正确;D 、∵二次函数与x 轴有两个交点,∴240b ac =->,故D 不正确.故选:C .本题考查了二次函数的图象与系数的关系,能利用数形结合求解是解答此题的关键.二、填空题11.对于抛物线243y x x =-+,当712x -<<时,关于x 的一元二次方程2430x x t -+-=有解,则t 的取值范围是 ______.﹣1≤t <8【分析】结合直角坐标系将一元二次方程转化成二次函数与一次函数图象相交的问题确定二次函数在上的取值范围即可求解【详解】解:当时关于x 的一元二次方程有解∴即在图象上和在相交∵当x=2时有最小解析:﹣1≤t <8【分析】结合直角坐标系,将一元二次方程转化成二次函数与一次函数图象相交的问题,确定二次函数 21=43y x x -+在712x -<<上的取值范围即可求解. 【详解】 解:当712x -<<时,关于x 的一元二次方程2430x x t -+-=有解, ∴243x x t -+= 即在图象上21=43y x x -+和2=y t 在712x -<<相交, ∵()21=21y x -- 当x=2时,1y 有最小值﹣1当x =﹣1是,1y 有最大值8 即当712x -<<是,﹣1≤y 1<8 ∴﹣1≤t <8故答案为:﹣1≤t <8【点睛】本题主要考查二次函数与一次函数交点的问题,解题的关键是正确理解题意,将方程转化为二次函数与一次函数相交的问题.12.抛物线2y x x =+向下平移2个单位长度,再向左平移3个单位长度,得到的抛物线表达式为____.【分析】先把配成顶点式再利用顶点式写出平移后的抛物线的解析式【详解】此抛物线的顶点坐标为()把点()向下平移个单位长度再向左平移个单位长度所得对应点的坐标为()即()所以平移后得到的抛物线的解析式为 解析:2710y x x =++【分析】先把2y x x =+配成顶点式,再利用顶点式写出平移后的抛物线的解析式.【详解】2211()24y x x x =+=+-,此抛物线的顶点坐标为(12-,14-), 把点(12-,14-)向下平移2个单位长度,再向左平移3个单位长度, 所得对应点的坐标为(132--,124--),即(72-,94-), 所以平移后得到的抛物线的解析式为279()24y x =+-,即2710y x x =++. 故答案为:2710y x x =++.【点睛】 本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 13.公园广场前有一喷水池,喷水头位于水池中央,从喷头喷出水珠的路径可近似看作抛物线.如图是根据实际情境抽象出的图象,水珠在空中划出的曲线恰好是抛物线26y x x =-+(单位:m )的一部分,则水珠落地点(点P )到喷水口(点O )的距离为________m .6【分析】根据题意可以得到水珠落地点(点P )到喷水口(点O )的距离就是OP 的长度利用配方法或公式法求得其顶点坐标的横坐标的2倍即为本题的答案【详解】解:∵水在空中划出的曲线是抛物线y=-x2+6x ∴解析:6【分析】根据题意可以得到水珠落地点(点P )到喷水口(点O )的距离就是OP 的长度,利用配方法或公式法求得其顶点坐标的横坐标的2倍即为本题的答案.【详解】解:∵水在空中划出的曲线是抛物线y=-x 2+6x ,∴y=-x 2+6x=-(x-3)2+9,∴顶点坐标为:(3,9),∴水珠落地点(点P )到喷水口(点O )的距离为OP=3×2=6(米),故答案为:6.【点睛】本题考查了二次函数的应用,解决此类问题的关键是从实际问题中整理出函数模型,利用函数的知识解决实际问题.14.如果抛物线y =x 2﹣6x +c 的顶点到x 轴的距离是3,那么c 的值等于____.c=6或12【分析】根据题意得顶点的纵坐标是3或-3列出方程求出解则可【详解】解:根据题意得:±3解得:c=6或12故答案为:c=6或12【点睛】本题考查了二次函数的性质熟记顶点的纵坐标公式是解题的解析:c =6或12【分析】根据题意得顶点的纵坐标是3或-3,列出方程求出解则可.【详解】解:根据题意得:24(6)4c --=±3, 解得:c =6或12.故答案为:c =6或12.【点睛】本题考查了二次函数的性质,熟记顶点的纵坐标公式是解题的关键.15.在平面直角坐标系中,点A 是抛物线()24y a x k =-+与y 轴的交点,点B 是这条抛物线上的另一点,且//AB x 轴,则以AB 为边的等边三角形ABC 的周长为_____. 24【分析】根据抛物线的解析式即可确定对称轴则可以确定AB 的长度然后根据等边三角形的周长公式即可求解【详解】抛物线的对称轴是过点作于点如下图所示则则则以为边的等边的周长为故答案为24【点睛】此题考查解析:24【分析】根据抛物线的解析式即可确定对称轴,则可以确定AB 的长度,然后根据等边三角形的周长公式即可求解.【详解】抛物线2(4)y a x k =-+的对称轴是4x =过C 点作CD AB ⊥于点D ,如下图所示则4=AD ,则28AB AD ==则以AB 为边的等边ABC 的周长为2483=⨯.故答案为24.【点睛】此题考查了二次函数的性质,根据抛物线的解析式确定对称轴,从而求得AB 的长是关键.16.已知抛物线243y x x =-+与x 轴交于A 、B 两点,P 为抛物线上一点,且1APB S ∆=,则P 的坐标为_______.(2-1)或(2-1)或(2+1)【分析】当y=0时求得x 的值确定AB 的长设点P 坐标为根据三角形面积公式列方程求解即可【详解】解:当y=0时解得:∴AB=2设点P 坐标为∴∴当时解得x=2此时P 点坐标 解析:(2,-1)或(21),或(2,1).【分析】当y=0时,求得x 的值,确定AB 的长,设点P 坐标为2(,43)x x x -+,根据三角形面积公式列方程求解即可.【详解】解:当y=0时,243=0x x -+解得:121,3x x ==∴AB=2设点P 坐标为2(,43)x x x -+, ∴214312APB S AB x x ∆=-+= ∴2431x x -+=当2431x x -+=-时,解得x=2,此时P 点坐标为(2,-1)当2431x x -+=时,解得12=2+222x x =,P 点坐标为(2,1),或(2,1)综上,P 的坐标为:(2,-1)或(21),或(2,1)故答案为:(2,-1)或(2,1),或(2,1).【点睛】本题考查二次函数与图形,利用数形结合思想列方程求解是解题关键.17.设A (-3,y 1),B (-2,y 2),C (12,y 3)是抛物线y =(x+1)2-m 上的三点,则y 1,y 2,y 3的大小关系为_______.(用“>”连接)【分析】根据题目中的函数解析式和二次函数图像性质即可得到答案【详解】解:∵二次函数的解析式为∴抛物线的对称轴是直线∴当时随的增大而减小;当时随的增大而增大∵是抛物线上的三个点∴∴∴故答案是:【点睛】解析:132y y y >>【分析】根据题目中的函数解析式和二次函数图像性质即可得到答案.【详解】解:∵二次函数的解析式为()21y x m =+-∴抛物线的对称轴是直线1x =- ,10a =>∴当1x <-时,y 随x 的增大而减小;当1x >-时,y 随x 的增大而增大∵()13,A y -、()22,B y -、31,2C y ⎛⎫ ⎪⎝⎭是抛物线()21y x m =+-上的三个点 ∴()132---=,()121---=,()13122--= ∴3212>> ∴132y y y >>.故答案是:132y y y >>【点睛】本题考查了二次函数图像与系数的关系、二次函数图像上点的坐标特征,解答本题的关键是明确题意,能利用图像的增减性进行解答.18.在平面直角坐标系xOy 中,函数y=x 2的图象经过点M (x 1,y 1),N (x 2,y 2)两点,若﹣4<x 1<﹣2,0<x 2<2,则y 1 ______y 2 .(用“<”,“=”或“>”号连接)>【分析】根据二次函数的性质即可求解【详解】解:由y=x2可知∵a=1>0∴抛物线的开口向上∵抛物线的对称轴为y 轴∴当x >0时y 随x 的增大而增大∵-4<x1<-20<x2<2∴2<-x1<4∴y1>解析:>【分析】根据二次函数的性质即可求解.【详解】解:由y=x 2可知,∵a=1>0,∴抛物线的开口向上,∵抛物线的对称轴为y 轴,∴当x >0时,y 随x 的增大而增大,∵-4<x 1<-2,0<x 2<2,∴2<-x 1<4,∴y 1>y 2.故答案为:>.【点睛】本题考查了二次函数图象上的点的坐标特征及二次函数的性质.当a >0时,开口向上,在对称轴的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a <0,开口向下,在对称轴的左侧y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小; 19.将抛物线223y x x =---向右平移三个单位,再绕原点O 旋转180°,则所得抛物线的解析式____.【分析】先求出抛物线的顶点坐标再根据向右平移横坐标加求出平移后的抛物线的顶点坐标再根据旋转的性质求出旋转后的顶点坐标然后根据平移旋转只改变图形的位置不改变图形的大小和形状利用顶点式解析式写出即可【详解析:2(2)2y x =++【分析】先求出抛物线的顶点坐标,再根据向右平移横坐标加求出平移后的抛物线的顶点坐标,再根据旋转的性质求出旋转后的顶点坐标,然后根据平移、旋转只改变图形的位置不改变图形的大小和形状利用顶点式解析式写出即可.【详解】223y x x =---()22113x x =-+++-2(1)2x =-+-,所以,抛物线的顶点坐标为(-1,-2).∵向右平移三个单位,∴平移后的抛物线的顶点坐标为(2,-2).∵再绕原点O 旋转180°,∴旋转后的抛物线的顶点坐标为(-2,2),且开口向上∴所得抛物线解析式为2(2)2y x =++.故答案为:2(2)2y x =++.【点睛】本题考查了二次函数图象与几何变换,平移的规律:左加右减,上加下减,此类题目,利用顶点的变化求解更简便.20.若函数21y mx x =++的图象与x 轴只有一个公共点,则m 的值是_______.参考答案0或【分析】需要分类讨论:①若则函数为一次函数;②若则函数为二次函数由抛物线与轴只有一个交点得到根的判别式的值等于0且m 不为0即可求出m 的值【详解】解:①若则函数是一次函数与x 轴只有一个交点;②若则解析:0或14 【分析】需要分类讨论:①若0m =,则函数为一次函数;②若0m ≠,则函数为二次函数.由抛物线与x 轴只有一个交点,得到根的判别式的值等于0,且m 不为0,即可求出m 的值.【详解】解:①若0m =,则函数1y x =+,是一次函数,与x 轴只有一个交点;②若0m ≠,则函数21y mx x =++,是二次函数.根据题意得:140m ∆=-=,解得:14m =. 故答案为:0或14. 【点睛】 本题考查抛物线与x 轴的交点,一次函数图象与坐标轴的交点问题,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题21.如图,在平面直角坐标系中,抛物线(部分)刻画了某果园年初以来累积利润y (万元)与销售时间x (月)之间的关系(即当年前x 个月的利润总和为y ,y 和x 之间的关系).根据图象提供的信息,请解答下列问题:(1)求y 与x 的函数关系式;(2)求第8个月该果园所获利润是多少万元?(3)求到哪个月末时,该果园累积利润可达到30万元?解析:(1)2122y x x =-;(2)第8个月该果园所获利是5.5万元;(3)截止到第10月末该果园累积利润可达30万元.【分析】(1)通过构建函数模型解答销售利润的问题,应根据图象以及题目中所给的信息来列出y 与x 之间的函数关系式;(2)分别把x =7,x =8,代入函数解析式2122y x x =-,再把总利润相减就可得出; (3)把y =30代入2122y x x =-的函数关系式里,求得月份. 【详解】解:(1)由图象可知其顶点坐标为(2,-2),故可设其函数关系式为:2(2)2ya x ∵所求函数关系式的图象过(0,0), 于是得:20(02)2=--a ,解得12a =, ∴所求函数关系式为:21(2)22y x =--,即2122y x x =-. (2)把7x =代入2122y x x =-, 得1492710.52y =⨯-⨯=, 把8x =代入2122y x x =-, 得16428162y =⨯-⨯=, 第8个月该果园所获利润是:16﹣10.5=5.5万元,答:第8个月该果园所获利是5.5万元.(3)把30y =代入2122y x x =-, 化简得 24600x x --=,解得12106x x ==-,(舍去).答:截止到第10月末该果园累积利润可达30万元.【点睛】此题主要考查了二次函数的性质在实际生活中的应用,读懂题目意思,确定变量,建立函数模型,尤其是注意本题图象中所给的信息是解决问题的关键.22.某超市销售一种牛奶,进价为每箱36元,规定售价不低于进价.现在的售价为每箱60元,每月可销售100箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x 元(x 为正整数),每月的销量为y 箱.(1)写出y 与x 之间的函数关系式和自变量x 的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?解析:(1)10010y x =+,1≤x ≤24,且x 为整数;(2)超市定价为53元时,才能使每月销售牛奶的利润最大,最大利润是2890元.【分析】(1)根据价格每降低1元,平均每月多销售10箱,由每箱降价x 元,多卖10x ,据此可以列出函数关系式;(2)由利润=(售价-成本)×销售量列出函数关系式,求出最大值.【详解】解:(1)根据题意,得:y =100+10x ,由60﹣x ≥36得x ≤24,∴1≤x ≤24,且x 为整数;(2)设所获利润为W ,则W =(60﹣x ﹣36)(10x +100)=﹣10x 2+140x +2400=﹣10(x ﹣7)2+2890,∵此二次函数的二次项系数小于0,∴函数开口向下,有最大值,∴当x =7时,W 取得最大值,最大值为2890,此时售价为60-7=53(元),答:超市定价为53元时,才能使每月销售牛奶的利润最大,最大利润是2890元.【点睛】本题主要考查二次函数应用,由利润=(售价-成本)×销售量列出函数关系式求最值,用二次函数解决实际问题是解题的关键.23.如图,二次函数2y x bx c =++的图象与x 轴交于A 、B 两点,与y 轴交于点C ,OB OC =.点D 在函数图象上,//CD x 轴,且2CD =,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值.(2)如图①,连接BE ,线段OC 上的点F 关于直线l 的对称点F '恰好在线段BE 上,求点F 的坐标.(3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与BC 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得PQN 与APM △的面积相等,且线段NQ 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.解析:(1)2b =-,3c =-;(2)点F 坐标为(0,2)-;(3)存在,Q 的坐标为115,24⎛⎫- ⎪⎝⎭和315,24⎛⎫- ⎪⎝⎭ 【分析】(1)由条件可求得抛物线对称轴,则可求得b 的值;由OB=OC ,可用c 表示出B 点坐标,代入抛物线解析式可求得c 的值;(2)可设F (0,m ),则可表示出F′的坐标,由B 、E 的坐标可求得直线BE 的解析式,把F′坐标代入直线BE 解析式可得到关于m 的方程,可求得F 点的坐标;(3)设点P 坐标为(n ,0),可表示出PA 、PB 、PN 的长,作QR ⊥PN ,垂足为R ,则可求得QR 的长,用n 可表示出Q 、R 、N 的坐标,在Rt △QRN 中,由勾股定理可得到关于n 的二次函数,利用二次函数的性质可知其取得最小值时n 的值,则可求得Q 点的坐标,【详解】解:(1)∵CD//x 轴,2CD =,∴抛物线对称轴为直线:1l x =, ∴12b -=,即2b =-, ∵OB OC =,(0,)C c ,∴B 点坐标为(,0)c -, ∴202c c c =++,解得3c =-或0c(舍去);∴3c =-.(2)设点F 坐标为(0,)m ,∵对称轴是直线:1l x =,∴点F 关于直线l 的对称点F '的坐标为(2,)m ,由(1)可知抛物线解析式为y=x 2-2x-3=(x-1)2-4,∴E (1,-4),∵直线BE 经过点(3,0)B ,(1,4)E -,∴直线BE 的表达式为26y x =-,∵点F '在BE 上,∴2262m =⨯-=-,即点F 坐标为(0,2)-.(3)存在点Q 满足题意.设点P 坐标为(,0)n ,则1PA n =+,3PB PM n ==-,223PN n n =-++, 如解图,连接QN ,过点Q 作QR PN ⊥,垂足为R ,∵PQN APM SS =, ∴1(1)(3)2n n +- ()21232n n QR =-++⋅, ∴1QR =,①点Q 在直线PN 的左侧时,Q 点坐标为()21,4n n n --,R 点坐标为()2,4n n n -,N 点坐标为()2,23n n n --,∴()2242323RN n n n n n =----=-+∴在Rt QRN 中,221(23)NQ n =+-,∴当3n 2=时,NQ 取得最小值1, 此时Q 点坐标为115,24⎛⎫-⎪⎝⎭; ②点Q 在直线PN 的右侧时,Q 点坐标为()21,4n n +-,同理21RNn =-,221(21)NQ n =+-, ∴当12n =时,NQ 取得最小值1, 此时Q 点坐标为315,24⎛⎫-⎪⎝⎭, 综上所述:满足题意的点Q 的坐标为115,24⎛⎫- ⎪⎝⎭和315,24⎛⎫- ⎪⎝⎭.【点睛】本题为二次函数的综合应用,涉及待定系数法、轴对称、三角形的面积、勾股定理、二次函数的性质、方程思想及分类讨论思想等知识.在(1)中求得抛物线的对称轴是解题的关键,在(2)中用F 点的坐标表示出F′的坐标是解题的关键,在(3)中求得QR 的长,用勾股定理得到关于n 的二次函数是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大.24.某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边长为x 米,面积为S 平方米.(1)求出S 与x 之间的函数关系式,并确定自变量x 的取值范围;(2)请你设计一个方案,使获得的设计费最多,并求出这个费用.解析:(1)S =﹣x 2+6x ,其中0<x <6;(2)矩形一边长为3m 时,面积最大为9m 2,9000元.【分析】(1)根据矩形的面积公式和已知条件列出S 与x 之间的函数关系式并确定自变量x 的取值范围即可;(2)根据(1)得出的关系式,利用配方法求出函数的最大值即可.【详解】解:(1)∵矩形的一边长为x 米,∴另一边长为1222x -米,即(6﹣x )米, ∴S =x (6﹣x )=﹣x 2+6x ,即S =﹣x 2+6x ,其中0<x <6; (2)根据(1)得:S =x (6﹣x )=﹣(x ﹣3)2+9,则矩形一边长为3m 时,面积最大为9m 2.则此时最大费用为9×1000=9000(元).【点睛】本题考查了二次函数在几何图形中的应用,根据题意确定S 与x 之间的函数关系式成为解答本题的关键.25.如图,在平面直角坐标系中,有抛物线y =ax 2+bx+3,已知OA =OC =3OB ,动点P 在过 A 、B 、C 三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P ,使得△ACP 是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标,若不存在,说明理由;解析:(1)2y x 2x 3=-++;(2)存在,()1,4P 或()2,5--.【分析】(1)根据A的坐标,即可求得OA的长,则B、C的坐标即可求得,然后利用待定系数法即可求得函数的解析式;(2)分点A为直角顶点时,和C的直角顶点两种情况讨论,根据等腰三角形的性质得到两直角边相等,即可列方程分别求解.【详解】解:(1)由题意可知:c=3∴OC=OA=3OB=3,∴点A、B、C的坐标分别为:(0,3)、(﹣1,0)、(3,0),将点B、C代入抛物线的表达式为:09a33 03ba b=++⎧⎨=-+⎩,解得:a12 b=-⎧⎨=⎩∴抛物线的表达式为:y=﹣x2+2x+3;(2)过点A、C分别作直线AC的垂线,分别交抛物线于P1、P2.过点P1作P1M⊥ y轴,垂足为M.∵OC=OA∴∠OAC=∠OCA=45º∴∠MAP1=∠MP1A=45º∴MA=MP1设P1点坐标(a,﹣a2+2a+3)则MP1=a,OP1=﹣a2+2a+3∵OA=3∴MA=﹣a2+2a+3-3=﹣a2+2a∴﹣a2+2a=a解之得:a1=0(舍去),a2=1∴﹣a2+2a+3=4∴P的坐标为(1,4)过点P2作P2N⊥ x轴,垂足为N.∵OC=OA ∴∠OAC=∠OCA=45º∴∠NAP2=∠NP2C=45º∴CN=NP2设P2点坐标(a,﹣a2+2a+3)则NP2=a2-2a-3,ON=﹣a∵a2-2a-3=3-a解之得:a1=3(舍去), a2=-2,∴﹣a2+2a+3=-5∴点P的坐标为(﹣2,﹣5)∴当点P的坐标为(1,4)或(﹣2,﹣5)时,使得△ACP是以AC为直角边的直角三角形.【点睛】本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求抛物线的解析式,以及等腰三角形的性质.在求有关动点问题时要注意分析题意分情况讨论结果.26.疫情期间,某防疫物晶销售量y(件)与售价x(元)满足一次函数关系,部分对应值如下麦,当售价为70元时,每件商品能获得40%的利润.售价x(元)...706560...销售量y(个)...300350400...(2)售价为多少时利润最大?最大利润为多少?解析:(1) y=-10x+1000;(2)售价为75元时有最大利润为6250元【分析】(1)设一次函数的解析式为y=kx+b,然后再代入点(70,300)和点(65,350)即可求解;(2)由售价为70元时,每件商品能获得40%的利润求出商品的成本为50元,进而得出商品的单个利润为(x-50),再乘以销售量y即得到关于x的二次函数,再利用二次函数求出最大利润即可.【详解】解:(1)设一次函数的解析式为y=kx+b,代入点(70,300)和点(65,350),∴3007035065k bk b=+⎧⎨=+⎩,解得101000kb=-⎧⎨=⎩,∴y与x的函数关系式为:y=-10x+1000;(2)∵售价为70元时,每件商品能获得40%的利润求出商品的成本为50元,∴商品的成本为:70÷(1+40%)=50元,∴商品的单个利润为:(x-50)元,设销售额为w元,则w=(x-50)y=(x-50)(-10x+1000)=-10x²+1500x-50000,此时w是关于x的二次函数,且对称轴为x=75,∴当x=75时,w有最大值为:-10×75²+1500×75-50000=6250元,故答案为:售价为75元时有最大利润为6250元.。

二次函数复习1

二次函数复习1

试一试
1、如果a<0, >0,c>0,则你能画出 如果 <0,b>0, >0, <0, >0, >0 二次函数y=ax2+bx+c的大致图象吗? 二次函数 = + 的大致图象吗? 的大致图象吗
y y y y
D
x D
O A
x B
O
x
O
x
O
C
试一试
在同一坐标系中一次函数y= + 2、在同一坐标系中一次函数 =ax+b 和二次函数y= 和二次函数 =ax2+bx 的图象可能为 ( A)
y
O
x
试一试
2.如图是抛物线 = 2.如图是抛物线y=ax2+bx+c的一 如图是抛物线 + 的一 部分,图象过点A(-3,0),对称 部分,图象过点A(-3 ),对称 轴为直线x=- =-1 给出四个结论: 轴为直线 =-1.给出四个结论: =0; ①b2>4ac; ②2a+b=0; ; + =0 =0; ③a-b+c=0;④5a<b. - + =0 < . 其中正确结论是( B ). 其中正确结论是( (A)②④ (B)①④ (C)②③ (D)①③
——二次函数图象与系数
绍兴县实验中学
单国炎
知识梳理
数形结合
二次函数y= 二次函数 =ax2+bx+c的图象 + 的图象 如图所示, 如图所示,你能从图象中获得 哪些与a 有关的信息 哪些与 、b、c有关的信息? 有关的信息?
-1
x=1
识图要点:一看开口,二看对称轴, 识图要点:一看开口,二看对称轴,三看特殊点
变式思考2
轴的一个交点A 抛物线 y = ax + bx + c 与 x 轴的一个交点 在点( , ) 在点(-2,0)和(-1,0)之间(包括这 , )之间( 两点),若顶点C是矩形 ),若顶点 是矩形DEFG上(包括 两点),若顶点 是矩形 上 边界和内部)的一个动点,试求a的取值 边界和内部)的一个动点,试求 的取值 范围。 范围。

九上数学教学课件:二次函数的应用(1)课件

九上数学教学课件:二次函数的应用(1)课件

解:设花园的面积为y
Dห้องสมุดไป่ตู้
G C 则 y=60-x2 -(10-x)(6-x)
练一练
1、有一种大棚种植的西红柿,经过实验,其单位面 积的产量与这个单位面积种植的株数成构成一种函数 关系。每平方米种植4株时,平均单株产量为2kg;以 同样的栽培条件,每平方米种植的株数每增加1株,单 株产量减少1/4kg。
问每平方米种植多少株时,能获得最大的产量?最 大的产量为多少?
2、在矩形荒地ABCD中,AB=10,BC=6,今在四边上分 别选取E、F、G、H四点,且AE=AH=CF=CG=x,建一个 花园,如何设计,可使花园面积最大?
?8-π4+2 x
x
答:当隧道的底部宽度为4.48米时,隧道的截面积最大。
已知有一张边长为10cm的正三角形纸板,若要从中
剪一个面积最大的矩形纸板,应怎样剪?最大面积
为多少?
A
D BK
E FC
想一想
y 2x2 4x 5
例1、如图,B船位于A船正东26km处,现在A,B两船
同时出发,A船以12km/h的速度朝正北方向行驶,B船
小结:应用二次函数的性质解 决日常生活中的最值问题,一 般的步骤为:
①把问题归结为二次函数问题(设自变量和函数);
②求出函数解析式(包括自变量的取值范围);
③在自变量的取值范围内求出最值; (数形结合找最值)
④答。
给你长6m的铝合金条,设问: ①你能用它制成一矩形窗框吗? ②怎样设计,窗框的透光面积最大?
状相同的抛物线落下。建立如图所示的坐标系,如果喷头所在
处A(0,1.25),水流路线最高处B(1,2.25),则该抛物线
的表达式为 y= -(x-1)2 +2.25
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《二次函数》单元测试题(一)
一、选择题(每题3分,共39分)
1. 抛物线3)2(2+-=x y 的对称轴是( )
A. 直线3-=x
B. 直线3=x
C. 直线2-=x
2=x 2. 二次函数c bx ax y ++=2的图象如右图,则点)
,(a
c
b M 在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 已知二次函数
c bx ax y ++=2,且0<a ,0>+-c b a ,
则一定有( ) A. 042>-ac b
B. 042=-ac b
C. 042<-ac b
D. ac b 42-≤0
4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式
是532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=c C. 3=b ,3=c
D. 9-=b ,21=c
5.函数2
+y ax b y ax bx c =+=+与在同一直角坐标系内的图象大致是 ( )
6.把抛物线
的图象向左平移2个单位,再向上平移3个单位,所得的抛
物线的函数关系式是( ) A. B. C.
D.
7. 抛物线y =x 2+px +q 的顶点在x 轴上,则q 等于 ( )
(A) (B)- (C) (D)-
8、二次函数y =2x 2-8x +1的最小值是 ( )
(A)7 (B)-7 (C)9 (D)-9
9. 直线y =3x -3与抛物线y =x 2-x +1的交点的个数是( ).
(A ) 0 (B ) 1 (C ) 2 (D ) 不确定
10. 二次函数c bx ax y ++=2的图象如图所示,若
c b a M ++=24c b a N +-=,b a P -=4,则( )
A.
0>M ,0>N ,0>P B. 0<M ,0>N ,0>P C. 0>M ,0<N ,0>P D.
0<M ,0>N ,0<P
11、
在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s =5t 2
+2t ,则当t =4时,该物体所经过的路程为( )
A.28米
B.48米
C.68米
D.88米
12、已知抛物线y=ax 2+bx+c 的部分图象如图所示,若y >0,则x 的取值范围是( ) A .x <-1或x >3 B .-1<X <3 C .x <-1或x >2
D .-1<X <2
13、向空中发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度的关系为y=ax 2+bx+c (a≠0)、若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是( ) A .第8秒 B .第10秒
C .第12秒
D .第15秒
二、填空题:(每题3分,共21分)
1、将二次函数322+-=x x y 配方成k h x y +-=2)(的形式,则y =______________________.
2、已知抛物线c x ax y ++=2与x 轴交点的横坐标为1-,则c a +=_________.
3、如图,抛一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为
4、物线的对称轴是1=x ,与x 轴交于A 、B 两点,若B 点坐标是)0,3(,则A 点的坐标是________________.
5、巴人广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管最大高度为3米,此时喷水水平距离为
2
1
米,在如图所示的坐标系中,这支喷泉的函数关系式是
6、一人乘雪橇沿如图所示的斜坡笔直滑下,滑下的距离s (米)与时间t (秒)间的关系式为s=10t+t 2,若滑到坡底的时间为2秒,则此人下滑的高度为
7、函数y=x 2-2x+3的图象的顶点坐标是
三、解答题
1、已知抛物线y=ax 2+bx+c 经过(-1,0),(0,-3),(2,-3)三点. (1)求这条抛物线的解析式;
(2)写出抛物线的开口方向、对称轴和顶点坐标.(本题8分)
2、若二次函数的图象的对称轴方程是,并且图象过A(0,-4)和B(4,0) (1)求此二次函数图象上点A 关于对称轴对称的点A ′的坐标;
(2)求此二次函数的解析式;(本题8分)
3、 如右图,抛物线n x x y ++-=52经过点)0,1(A ,与y 轴交于点B .
(1)求抛物线的解析式;
(2)P 是y 轴正半轴上一点,且△P AB 是以AB 为腰的等腰三角形,试求点P 的坐标. (本题12分)
4、已知二次函数223y ax ax =-+的图象与x 轴交于点A ,点B ,与y 轴交于点C ,其顶点为D ,直线DC 的函数关系式为3y kx =+,又45CBO ∠=︒(本题12分) (1)求二次函数的解析式和直线DC 的函数关系式 (2)求A B C △的面积
y=x 2-2x-3 开口方向向上,对称轴为x=1,顶点坐标为(1,-4).
32. 解:(1)由题意得051=++-n . ∴4-=n . ∴抛物线的解析式为452-+-=x x y .
(2)∵点A 的坐标为(1,0),点B 的坐标为)4,0(-. ∴OA =1,OB =4.
在Rt △OAB 中,1722=+=OB OA AB ,且点P 在y 轴正半轴上. ①当PB =P A 时,17=PB . ∴417-=-=OB PB OP . 此时点P 的坐标为)417,
0(-.
②当P A =AB 时,OP =OB =4 此时点P 的坐标为(0,4).。

相关文档
最新文档