2020-2021年高一数学 .4反函数(第二课时) 大纲人教版必修

合集下载

高中数学必修一高一数学第二章(第课时)反函数公开课教案课件课时训练练习教案课件

高中数学必修一高一数学第二章(第课时)反函数公开课教案课件课时训练练习教案课件

课 题:2.4.1 反函数(一)教学目的:掌握反函数的概念和表示法,会求一个函数的反函数教学重点:反函数的定义和求法教学难点:反函数的定义和求法授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教材分析:反函数是数学中的一个很重要的概念,它是我们以后进一步研究具体函数类即五大类基本初等函数的一个不可缺少的重要组成部分 反函数是函数中的一个特殊现象,对反函数概念的讨论研究是对函数概念和函数性质在认识上的进一步深化和提高反函数概念的建立,关键在于让学生能从两个函数关系的角度去认识它,从而深化对函数概念的认识 本节是反函数的第一节课围绕如何理解反函数概念这个重难点展开由于函数是一种对应关系,这个概念本身不好理解,而反函数又是函数中的一种特殊现象,它是两个函数之间的关系所以弄清函数与其反函数的关系,是正确理解反函数概念必不可少的重要环节教学设计中,通过对具体例子的求解,不但使学生掌握求反函数的方法步骤,并有意识地阐明函数与反函数的关系深化了对概念的理解和掌握教学过程: 一、复习引入:我们知道,物体作匀速直线运动的位移s 是时间t 的函数,即s=vt,其中速度v 是常量,定义域t ≥0,值域s ≥0;反过来,也可以由位移s 和速度v (常量)确定物体作匀速直线运动的时间,即vs t =,这时,位移s 是自变量,时间t 是位移s 的函数,定义域s ≥0,值域t ≥0.又如,在函数62+=x y 中,x 是自变量,y 是x 的函数,定义域x ∈R ,值域y ∈R. 我们从函数62+=x y 中解出x ,就可以得到式子32-=y x . 这样,对于y 在R 中任何一个值,通过式子32-=y x ,x 在R 中都有唯一的值和它对应. 因此,它也确定了一个函数:y 为自变量,x 为y 的函数,定义域是y ∈R ,值域是x ∈R.综合上述,我们由函数s=vt 得出了函数vs t =;由函数62+=x y 得出了函数32-=y x ,不难看出,这两对函数中,每一对中两函数之间都存在着必然的联系:①它们的对应法则是互逆的;②它们的定义域和值域相反:即前者的值域是后者的定义域,而前者的定义域是后者的值域. 我们称这样的每一对函数是互为反函数.二、讲解新课:反函数的定义一般地,设函数))((A x x f y ∈=的值域是C ,根据这个函数中x,y 的关系,用y 把x 表示出,得到x=ϕ(y). 若对于y 在C 中的任何一个值,通过x=ϕ(y),x 在A 中都有唯一的值和它对应,那么,x=ϕ(y)就表示y 是自变量,x 是自变量y 的函数,这样的函数x=ϕ(y) (y ∈C)叫做函数))((A x x f y ∈=的反函数,记作)(1y f x -=,习惯上改写成)(1x f y -=开始的两个例子:s=vt 记为vt t f =)(,则它的反函数就可以写为vt t f =-)(1,同样62+=x y 记为62)(+=x x f ,则它的反函数为:32)(1-=-x x f . 探讨1:所有函数都有反函数吗?为什么?反函数也是函数,因为它符合函数的定义,从反函数的定义可知,对于任意一个函数)(x f y =来说,不一定有反函数,如2x y =,只有“一一映射”确定的函数才有反函数,2x y =,),0[+∞∈x 有反函数是x y =探讨2:互为反函数定义域、值域的关系从映射的定义可知,函数)(x f y =是定义域A 到值域C 的映射,而它的反函数)(1x f y -=是集合C 到集合A 的映射,因此,函数)(x f y =的定义域正好是它的反函数)(1x fy -=的值域;函数)(x f y =的值域正好是它的反函数)(1x fy -=的定义域x x f f x x f f ==--)]([,)]([11(如下表):探讨3:)(1x f y -=的反函数是?若函数)(x f y =有反函数)(1x f y -=,那么函数)(1x f y -=的反函数就是)(x f y =,这就是说,函数)(x f y =与)(1x fy -=互为反函数三、讲解例题:例1.求下列函数的反函数: ①)(13R x x y ∈-=; ②)(13R x x y ∈+=; ③)0(1≥+=x x y ; ④)1,(132≠∈-+=x R x x x y 且. 解:①由13-=x y 解得31+=y x ∴函数)(13R x x y ∈-=的反函数是)(31R x x y ∈+=, ②由)(13R x x y ∈+=解得x=31-y , ∴函数)(13R x x y ∈+=的反函数是)(13R x x y ∈-=③由y=x +1解得x=2)1(-y , ∵x ≥0,∴y ≥1. ∴函数)0(1≥+=x x y 的反函数是x=2)1(-y (x ≥1); ④由132-+=x x y 解得23-+=y y x ∵x χ{x ∈R|x ≠1},∴y ∈{y ∈R|y ≠2} ∴函数)1,(132≠∈-+=x R x x x y 且的反函数是)2,(23≠∈-+=x R x x x y 小结:⑴求反函数的一般步骤分三步,一解、二换、三注明 ⑵反函数的定义域由原来函数的值域得到,而不能由反函数的解析式得到 ⑶求反函数前先判断一下决定这个函数是否有反函数,即判断映射是否是一一映射例2.求函数23-=x y (R x ∈)的反函数,并画出原来的函数和它的反函数的图像解:由23-=x y 解得32+=y x∴函数)(23R x x y ∈-=的反函数是)(32R x x y ∈+=, 它们的图像为:例3求函数 211x y --=(-1<x<0)的反函数 解:∵ -1<x<0 ∴0<2x <1 ∴0<1 -2x < 1∴ 0 <21x -< 1 ∴0 < y <1 由:211x y --= 解得:22y y x --= (∵ -1< x < 0 ) ∴211x y --=(-1<x < 0)的反函数是:22x x y --=(0<x<1 )例4 已知)(x f = 2x -2x(x ≥2),求)(1x f -.解法1:⑴令y=2x -2x ,解此关于x 的方程得2442y x +±=, ∵x ≥2,∴2442y x ++=,即x=1+y +1--①, ⑵∵x ≥2,由①式知y +1≥1,∴y ≥0--②,⑶由①②得)(1x f -=1+x +1(x ≥0,x ∈R );解法2:⑴令y=2x -2x=2)1(-x -1,∴2)1(-x =1+y ,∵x ≥2,∴x-1≥1,∴x-1=y +1--①,即x=1+y +1,⑵∵x ≥2,由①式知y +1≥1,∴y ≥0,⑶∴函数)(x f = 2x -2x(x ≥2)的反函数是)(1x f -=1+x +1(x ≥0);说明:二次函数在指定区间上的反函数可以用求根公式反求x ,也可以用配方法求x ,但开方时必须注意原来函数的定义域.四、课堂练习:课本P63练习:已知函数)(x f y =,求它的反函数)(1x fy -= (1) 32+-=x y (x ∈R ) (2)x y 2-= (x ∈R ,且x ≠0) (3) 4x y = (x ≥0) (4)53+=x x y (x ∈R ,且x ≠35-) 五、小结 本节课学习了以下内容:反函数的定义及其注意点、求法步骤六、课后作业:课本第64习题2.4:1七、板书设计(略)八、课后记:活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。

人教版高中数学课本目录

人教版高中数学课本目录

高一数学必修一第一章集合与函数概念1.1集合阅读与思考集合中元素的个数1.2函数及其表示阅读与思考函数概念的发展历程1.3函数的基本性质信息技术应用用计算机绘制函数图象第二章基本初等函数(Ⅰ)2.1指数函数信息技术应用借助信息技术探究指数函数的性质2.2对数函数阅读与思考对数的发明探究也发现互为反函数的两个函数图象之间的关系2.3幂函数第三章函数的应用3.1函数与方程阅读与思考中外历史上的方程求解信息技术应用借助信息技术方程的近似解3.2函数模型及其应用信息技术应用收集数据并建立函数模型高一数学必修二第一章空间几何体1.1 空间几何体的结构1.2空间几何体的三视图和直观图阅读与思考画法几何与蒙日1.3空间几何体的表面积与体积探究与发现祖暅原理与柱体、椎体、球体的体积第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系2.2直线、平面平行的判定及其性质2.3直线、平面垂直的判定及其性质阅读与思考欧几里得《原本》与公理化方法第三章直线与方程3.1直线的倾斜角与斜率探究与发现魔术师的地毯3.2直线的方程3.3直线的交点坐标与距离公式阅读与思考笛卡儿与解析几何第四章圆与方程4.1圆的方程阅读与思考坐标法与机器证明4.2直线、圆的位置关系4.3空间直角坐标系信息技术应用用《几何画板》探究点的轨迹:圆高二数学必修三第一章算法初步1.1算法与程序框图1.2基本算法语句1.3算法案例阅读与思考割圆术第二章统计2.1随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2用样本估计总体阅读与思考生产过程中的质量控制图2.3变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1随机事件的概率阅读与思考天气变化的认识过程3.2古典概型3.3几何概型阅读与思考概率与密码高二数学必修四第一章三角函数1 .1任意角和弧度制1.2任意角的三角函数阅读与思考三角学与天文学1.3三角函数的诱导公式1.4三角函数的图像与性质探究与发现函数y=Asin(ωx+φ)及函数y=Acos(ωx+φ)探究与发现利用单位圆中的三角函数线研究正弦函数、余弦函数的性质信息技术应用1.5函数y=Asin(ωx+φ)的图像阅读与思考振幅、周期、频率、相位1.6三角函数模型的简单应用第二章平面向量2.1平面向量的实际背景及基本概念阅读与思考向量及向量符号的由来2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例阅读与思考向量的运算(运算律)与图形性质第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式信息技术应用利用信息技术制作三角函数表3.2简单的三角恒等变换高二数学选修1-1 第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词阅读与思考“且”“或”“非”与“交”“并”“补”1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2双曲线探究与发现2.3抛物线阅读与思考圆锥曲线的光学性质及其应用第三章导数及其应用3.1变化率与导数3.2导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3导数在研究函数中的应用信息技术应用图形技术与函数性质3.4生活中的优化问题举例实习作业走进微积分高二数学选修1-2 第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用实习作业第二章推理与证明2.1合情推理与演绎推理阅读与思考科学发现中的推理2.2直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图信息技术应用用word2002绘制流程图高二数学选修2-1 第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3双曲线探究与发现2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算阅读与思考向量概念的推广与应用3.2立体几何中的向量方法高二数学选修2-2 第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算高二数学选修3-1 第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身高二数学选修3-3 第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性第二讲球面上的距离和角一球面上的距离二球面上的角第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证明三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史高二数学选修4-1 第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线高二数学选修4-2 第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探索与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用高三数学必修五第一章解三角形1.1正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2应用举例阅读与思考海伦和秦九韶第二章数列2.1数列的概念与简单表示法阅读与思考斐波那契数列信息技术应用2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和阅读与思考九连环探究与发现购房中的数学第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4基本不等式高三数学选修2-3 第一章计数原理1.1分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2排列与组合探究与发现组合数的两个性质1.3二项式定理探究与发现“杨辉三角”中的一些秘密第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3离散型随机变量的均值与方差2.4正态分布信息技术应用μ,σ对正态分布的影响第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用高三数学选修3-4 第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换三平面图形的对称群第二讲代数学中的对称与抽象群的概念一n元对称群Sn 二多项式的对称变换三抽象群的概念1.群的一般概念2.直积第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论高三数学选修4-4 第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线高三数学选修4-5 第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲讲明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式高三数学选修4-6 第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数伦在密码中的应用一信息的加密与去密二大数分解和公开密钥高三数学选修4-7 第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用高三数学选修4-9 第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例。

2019-2020年高一数学 2.4反函数(第二课时) 大纲人教版必修

2019-2020年高一数学 2.4反函数(第二课时) 大纲人教版必修

2019-2020年高一数学 2.4反函数(第二课时)大纲人教版必修●课题§2.4.2 互为反函数的函数图象间的关系●教学目标(一)教学知识点互为反函数的函数图象间的关系.(二)能力训练要求1.使学生了解互为反函数的函数图象间的关系.2.通过由特殊到一般的归纳,培养学生探索、猜想、论证的思维习惯.●教学重点互为反函数的函数图象间的关系.●教学方法指导学生自学法.●教学过程Ⅰ.复习回顾[师]上节课我们学习了反函数的定义,求反函数的方法步骤,请同学们回忆一下,回答反函数的定义及求反函数的方法步骤.[生]对于函数y=f(x)(x∈A,y∈C),如果从定义域A到值域C是一一映射,那么从y=f(x)解得的x=(y)叫做y=f(x)的反函数,记作x=f-1(y),习惯上记为y=f-1(x).[师]这样理解反函数是可以的.但对于定义的表述还是照课本上的表述更贴切些.求反函数的方法步骤是怎样的?[生]求函数的反函数的方法步骤为:①由y=f(x)解出x=f-1(y),即把x用y表示出来.②将x=f-1(y)改写成y=f-1(x)即对调x=f-1(y)中的x、y.③指出反函数的定义域.[师]好.回答正确,这节课我们来研究互为反函数的函数图象间的关系(板书课题).Ⅱ.指导自学[师]同学们对这个内容已经进行了预习,并且亲自动手做了函数的图象,能够得出什么结论呢?[生](学生作答,教师板书)函数y=f(x)的图象与它的反函数y=f-1(x)的图象关于直线y=x对称[师]有没有其他不同意见或者感到困惑的问题呢?(结合学生的回答,指出注意的问题)注意:(1)这个结论是由特殊到一般归纳出来的.未经过严格的证明.为了不增加难度,现在不作证明,以后同学会自己证明了的.(2)这一结论是在同一坐标系下,且横轴(x轴)与纵轴(y轴)长度单位一致的情况下得出的.(3)函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而不是函数y=f(x)与x=f-1(y)的图象关于直线y=x对称.(4)函数y=f(x)和函数x=f-1(y)的图象是同一个图象.Ⅲ.课堂练习课本P64练习 5,6,7Ⅳ.课时小结本节课我们讨论了互为反函数的函数图象间的关系——关于直线y=x对称,反过来,如果两个函数的图象关于直线y=x对称,那么这两个函数互为反函数.Ⅴ.习题指导课本P65习题2.4 4(先让学生思考,然后让学生一块分析,指出:先求出某一个函数的反函数,与另一个函数比较对应项的系数即得所求.)Ⅵ.课后作业一、课本P65习题2.4 3,4,5,6.二、1.预习内容:指数中§2.5.1 根式2.预习提纲:(1)n次方根的意义、表示方法(2)根式的意义(3)=a吗?为什么?(4)=b2吗?为什么?一、n次方根的定义n次方根的定义是平方根,立方根定义的推广,根式记号是平方根、立方根记号的推广.对比平方根、立方根概念,不难知道:①在实数范围内,正数的奇次方根是一个正数,负数的奇次方根是一个负数,零的奇次方根是零,设a∈R,n是大于1的奇数,则a的n次方根是.②在实数范围内,正数的偶次方根是两个绝对值相等,符号相反的数,零的偶次方根是零,负数的偶次方根没有意义.设a≥0,n是大于1的偶数,则a的n次方根是±.二.开方与乘方求a的n次方根的运算称为开方运算,开方运算与乘方运算是互逆的运算,不要与乘方运算相混.如求3的四次方,结果是34=81.而求3的四次方根,结果为±.对于根式记号,要注意以下几点:①n∈N,且n>1.②当n为大于1的奇数时,对任意a∈R都有意义,它表示a在实数范围内惟一的一个n次方根,()n=a.③当n为大于1的偶数时,只有当a≥0时有意义,当a<0时无意义. (a≥0)表示a 在实数范围内的一个n次方根,另一个是-,(±)n=a.④式子对任意a∈R都有意义.当n为奇数时, =a;当n为偶数时, =|a|=.●备课资料一、根式、分数指数幂运算的注意事项1.利用指数幂的意义及运算性质,一般将根式转化为分数指数幂运算.2.在根式运算中,常出现开方与乘方并存的情况,要特别注意两者的顺序何时可以交换,何时不能交换,否则就会产生误解:如:=,但≠()2,这里()2在实数范围内没有意义.3.分数指数幂严格规定了运算顺序,当a >0时,a =,不得交换m 、n 的次序,同时必须注意幂指数不能随意约分,否则就会出错.如:(-4)==2,而(-4)=在实数范围内无意义.二、参考练习题[例]计算下列各式:(1)0.25-1×()·(6)-10(2-)-1+()+16(2)(a ·)-3÷ (3)2121212111-----+--+x x x x x x x x (4)246347625---+-解:(1)原式=()-1·()·()-+(3×102)+(24) =4×214123·214323-10×(2+)+10+2=4×-20-10+10+2=-12(2)原式=(a ·a )-3÷[b -4·(a -2)]=a ·b -2÷(b -2·a )=a -1·b 0= (3)原式=))(()()1(2121212122121----++--+x x x x x x x x =111122------=----+xx x x x x x x =-.(4)原式=222)22()32()23(---+-=(-)+(2-)-(2-)=--++2-2=0评述:形如 (a >0,b >0) 的根式称为复合根式,当满足x >y >0,x +y =a ,x ·y =b 时,则=±.●备课资料参考例题[例1]化简 111122222222))((-------+--+---+ba ab b b a a b a b a b a b a分析:化简这类式子,一般有两个方法,一是首先用负指数幂的定义把负指数化为正指数,另一个方法是采用分式的基本性质把负指数化为正指数.解:原式=+=+ =+1)(221111+--+----b a ab b a b a ab ab =1112222222222+--++++b a a b b a b a b a ==1.评述:对于这类问题,如果采用负指数幂的定义把负指数化为正指数的方法,则式子将变为繁分式,这样化简起来比较复杂,所以一般采用分式的基本性质,即分子、分母都乘以同一个式子的方法把负指数化为正指数,用这种方法相对简单一些.[例2]比较,,的大小.分析:这个问题实际上要比较:6,15与219的大小,由于它们的指数与底数都不相同,所以可以考虑将它们的指数或底数统一起来.解:∵=6=(63)=216=15=(15)=225=219而216<219<225所以216<219<225即<<评述:对于底数与指数都不相同的式子,比较大小时一般都是考虑将底数或指数中的一个统一起来,这样便于比较大小.[例3]已知x +x =3,求的值.分析:解决这个问题的关键是找到已知条件与所求式子的关系.解:由x +x =3两边平方得:x +x -1=7再平方得:x 2+x -2=47然后对式子x +x =3两边立方得:x +x +3(x +x )=27即x +x =18 所以5234721832222323=++=++++--x x x x 评述:在指数式的运算性质中,要注意指数的范围不同,底数的范围也不同.[例4]已知x >0,y >0,且(+)=3(+5)求:的值.解:由已知x >0,y >0且(+)=3(+5)得x +=3+15y即x -15y -2=0,-2-15=0.解得:=5即=5,x =25y . 所以yy y y y y y y y xy x yxy x 2958525355032=-+++=-+++=2. [例5]已知a >0,a 2x=3,求:的值.解:∵a >0,a 2x =3,∴a x =.∴a -x =,a 3x =3,a -3x =. ∴37121283331)33(31333133233==+⨯+=++=++--x x xx a a a a 评述:此题解决的关键是恰当寻求已知与所求之间的内在联系.找到a 2x 与a 3x ,a-3x 之间的桥梁a x ,a -x ,使问题得以解决.●备课资料参考例题[例1]计算 (1)210319)41()2(4)21(----+-⋅- (2)解析:对于分数指数幂的运算只要按照分数指数的运算法则进行运算即可,而对于根式的运算,因为我们没有学过根式的运算性质,所以根式的运算一般都要转化为指数式来进行.解:(1)210319)41()2(4)21(----+-⋅-=2+(2)= =)256(25631310211010)2(--⨯=÷⋅ =21010002101021727==⨯ 评述:根式的运算都要首先化成分数指数幂的形式,然后再利用分数指数幂的运算性质进行运算,但结果既可以是分数指数幂的形式,也可以是根式的形式.[例2]化简分析:这个式子包含三个根式,在化为指数式时要注意层次分明.解:原式======评述:对于多重根式,化简时首先要注意它的层次性,其次若最后结果是分数指数,则一般要写成根式的形式.[例3]根据下列条件求值(1)已知=3,求的值;(2)已知a 2x =+1,求的值.解:(1)由=3两边平方得x +x -1=7,两边再平方得x 2+x -2=47, 又)1)((121212323-++=+---x x x x x x =3×(7-1)=18.∴原式=.(2)由已知得a -2x =∴原式==a 2x +a -2x -1==2-1评述:(1)本题是用整体思想解题,用乘法公式对解析式变形化简后,从整体上寻求已知条件与结论的联系.(2)指数的概念扩充后,初中所学的乘法公式和因式分解的变形技巧同样可用.(3)若题从已知条件解出a 或a x 的值,再代入求值,则会造成运算复杂.(4)应从题目适当变化中体会解题方法的灵活性.如:已知=4,x =,y =b +3,求的值.答案:8。

2019-2020年高一数学 2.4反函数(备课资料) 大纲人教版必修

2019-2020年高一数学 2.4反函数(备课资料) 大纲人教版必修

2019-2020年高一数学 2.4反函数(备课资料)大纲人教版必修一、反函数的学习因反函数是函数知识中重要的一部分内容,我们若能从函数的角度去理解反函数的概念,则一定能从中发现反函数的本质,并能顺利地应用函数与其反函数间的关系去解决相关问题.1.明确“函数与反函数”的关系(1)一个函数具有反函数的充要条件是确定这个函数的映射是从定义域到值域上的一一映射.(2)对于任一函数f(x)不一定有反函数,如果有反函数,那么原函数f(x)与它的反函数是互为反函数.(3)原函数的定义域是反函数的值域,原函数的值域是反函数的定义域.(4)一般的偶函数不存在反函数,奇函数不一定存在反函数.(5)原函数与其反函数在对应区间上的单调性是一致的.2.深入学习对“反函数”的求法[例]求下列函数的反函数(1)y=(2)y=(1)分析:由于a、B不定,故须分类讨论:当a=0,b≠0时,y=-1,此时不存在反函数当a≠0,b=0时,y=1(x≠0),此时不存在反函数.当a≠0,b≠0时,函数y=的值域是y∈{y∈R|y≠1}由y=解得:x= (a≠0,y≠1)∴当a≠0,b≠0时,函数y=的反函数是:y=(x≠1)评述:熟练掌握求反函数的基本步骤是准确求出函数的反函数的必要条件.(2)分析:求分段函数的反函数时,先在各段求出相应的反函数,再将其合并.解:当x≥0时,y=x2+2x=(x+1)2-1∴x=-1+∵x≥0 ∴y=x2+2x≥0∴当x≥0时,此段函数的反函数是y=-1+(x≥0)当x<0时,y=-x2+2x=-(x-1)2+1∴x=1-∵x<0,∴y=-x2+2x<0∴当x<0时,此段函数的反函数是y=1-(x<0)综上所述:所给函数的反函数为y=评述:(1)在求分段函数的每一段相应的反函数时,仍严格按照求反函数的基本步骤进行.(2)分段函数的反函数被求的过程,能让我们体会到“先分后合”的思想在数学中的渗透作用.3.灵活应用“反函数”于解题中[例1]求函数y =的值域分析:此题除用前面介绍的“分离系数”法求得其值域外,也可通过求其反函数的定义域得到原函数的值域这一途径.解:由y = 得x ≠-∴有:y (2x +5)=1-x∴x =∴反函数为y =(x ∈R 且x ≠-);因而此函数y =的值域为y ∈{y ∈R |y ≠-}评述:求函数的值域可以转化为求其反函数的定义域,这种方法往往可以使问题有“出奇制胜”的效果,它的优越性将随着我们对知识的继续深入学习体现得越发明显.[例2]已知函数f (x )=求f -1[[f (x )],f [f -1(x )].解:由y =(x ≠1)可得y (x -1)=2x +1,∴x =∴反函数f -1(x )=(x ≠2)∴f -1[f (x )]=f -1()=21121112--++-+x x x x =x f [f -1(x )]=f ()=1211)21(2--++-+x x x x =x 评述:由上题我们发现,互为反函数的两个函数f (x )与f -1(x )之间符号互逆性,即f -1[f (x )]=x ,f [f -1(x )]=x请读者利用以上结论试探索:若函数y =f (x )的反函数是y =g(x ),且f (m )=n (mn ≠0)则g(n )等于多少?[例3]已知函数y =f (x )在定义域(-∞,0]内存在反函数,且f (x -1)=x 2-2x ,求f -1(-).分析:此题一般思路是:先求出f (x ),进而求出f -1(x ),将-代入f -1(x )中求得f -1(-).解:∵f (x -1)=x 2-2x =(x -1)2-1∴f (x )=x 2-1(x ≤0)∵当x ≤0时,f (x )=x 2-1≥-1∴函数f (x )的值域为[-1,+∞)∵f (x )=x 2-1(x ≤0)得:x =-(y =f (x ))∴得函数f (x )的反函数是:y =-(x ≥-1)∴f -1(-)=-评述:以上解题思路简单但运算麻烦,若不仔细认真,将会导致结果错误.如下解法将会体现一种技能技巧,使解题过程大大简化:解:∵f (x -1)=x 2-2x =(x -1)2-1∴f (x )=x 2-1(x ≤0)当x 2-1=-(x ≤0)时有:x =-∴f -1(-)=-评述:比较以上两种解法,请读者自行归纳总结它们解题过程繁简差别的原因,并试用简捷明快的思路解决以下问题:问题:已知函数f (x )=的反函数是f -1(x )=,求常数a ,b ,c 值是多少?提示:选取由f -1(x )去求f (x )这一优秀途径解决此问题.二、参考练习题1.求下列函数的反函数(1)y =1- (x ≥1)答案:y =x 2-2x +2(x ∈(-∞,1])(2)y =|x -1| (x ≤1)答案:y =1-x (x ∈[0,+∞)(3)y =x 2-2x +3 (x ∈(1,+∞))答案:y =1-(x ∈(2,+∞))(4)y =x |x |+2x答案:y =(5)f (x )=答案:f -1(x )=⎪⎩⎪⎨⎧>-≤--)2(121)1(1x x x x2.解答题(1)已知f (x )=f -1(x )=(x ≠-m ),求实数m ?答案:m =-2提示:利用相同函数的定义域、值域完全相同这一性质,巧妙地结合互为反函数的性质去解.(2)已知f -1[f -1(x )]=25x +30,则一次函数的解析式是什么?答案:f (x )=-1或f (x )=-x -(3)已知f (x )=10x -2-2,求f -1(8)的值答案:f -1(8)=3(4)已知函数f (x )的图象过点(0,1),则f (4-x )的反函数的图象一定过哪个点? 答案:(1,4)(5)已知函数f (x )=,它的反函数是f -1(x )=,求m 的值?答案:m =2(6)已知函数f (x )=x 2+2x +1(x ≥-1)的图象为C 1,它的反函数图象为C 2,请画出C 1,C 2并观察它们之间的位置关系有何特点?若又有一个函数的图象C 3与C 2关于y 轴对称,求这个函数的解析式?参考答案:(图略),C 1,C 2关于直线y =x 对称,所求函数的解析式为y =(x ≤0)说明:本题旨在让学生提前思考练习,为下节课“互为反函数的函数图象间的关系”做准备.●备课资料“互为反函数的函数图象间的关系”的应用互为反函数的两个函数的图象间的关系是在反函数定义上进行的,而“将图象的对称转化为图象上任意一点的对称”的这种方法在我们解决有关函数的问题中大大显示了它的简捷性与技巧性.[例1]已知函数f (x )=(x ≥-)的图象过点(1,2),它的反函数图象也过此点,求函数f (x )的解析式.解法一:由y =得x =∴当x ≥-时,y ≥0∴函数f (x )=(x ≥-)的反函数是f -1(x )=(x ≥0)又∵点(1,2)既在函数f (x )上,也在函数f -1(x )上 ∴有⎪⎩⎪⎨⎧-=+=a b b a 122 解得:a =-3,b =7∴函数f (x )=(x ≥-)解法二:由互为反函数的两个函数图象间的关系以及点(1,2)关于直线y =x 的对点为(2,1),可以得到函数f (x )的图象还过点(2,1)∴得到解得:a =-3 b =7∴函数f (x )=(x ≥-)评述:比较上述两种不同解法的区别:我们发现解法一思路自然,但过程较繁,解法二思路敏捷避免了求反函数这一步,从而减少了运算量,但它的掌握需要我们特别熟悉互为反函数的两个函数间的关系.[例2]已知函数f (x )=,函数y =g(x )的图象与函数y =f -1(x +1)的图象关于直线y =x 对称,求g(5)的值.分析:此题需要找到g(x )才能求出g(5)的值.解:∵y =f (x )=∴x =1+又∵y ≠2∴f -1(x )=1+(x ≠0)∴f -1(x +1)=1+又∵y =f -1(x +1)=1+∴x =1+ ∴y ≠1∴f -1(x +1)的反函数g(x )=1+(x ≠1)∴g(5)=1+=评述:(1)以上解法是一种通用方法,思路简单自然,不失为一种能体现我们扎实的基本功和脚踏实地的学习精神的好方法,故应引起足够重视.(2)对于以上例2,也可以有如下巧解:∵g(x )是f -1(x +1)的反函数∴g(5)其实等于f -1(x +1)=5时的x 值,∵f [f -1(x +1)]=f (5)∴x =f (5)-1=-1=显然,这种解法给我们以一种恰到好处的感觉.2019-2020年高一数学 2.4反函数(第一课时) 大纲人教版必修课时安排2课时从容说课反函数是研究两个函数相互关系的重要内容,反函数的掌握有助于学生进一步了解函数的概念,得到比较系统的函数知识,并为以后的深入学习奠定基础。

高一数学反函数课件

高一数学反函数课件
【成都岚庭装饰:https://www.scltgc.com】
2.4 反函数
典型例题
例1.求下列函数的反函数:
(1) y 3 x 1( x R); (2) y x3 1( x R)
(3) y x 1( x 0)
(4)
y
2x 3 x 1
(
x
R,
x
1)
解:(((341)2))由由由函函函数数数yyy23xxxxx31311,(,x解解得R得)x,xx解y(得3yyy1x123)23 y 1
所所所以所以以,以,,函,函函数函数数y数yyy3xxx3 2xx11((xx13( xR0R)))的的的R反,反反且函函函x数数数 是1是是) 的yyy反(函3xxx3数11是)1(2(x(xxRR1)))
y
x x
3(x 2
R,且x
2)
2.4 反函数
练习:
1.课后练习 1,2,3,4
2.求下列函数的反函数:
于y 在C 中的任何一个值,通过 x ( y) ,x 在A 中都有唯一 值和它对应,那么 x ( y) 就表示y 是自变量,x 是自变量y 的函数.这样的函数 x ( y) ( y C ) 叫做函数y f ( x) ( x A)
的反函数,记作 x f 1( y)
习惯将反函数表示为 y f 1( x) ,x( x C ) 表示自变量, y( y A)表示函数.
2.4 反函数
2.原来函数与反函数的联系
函数 y f ( x)
定义域
A
值域
C
反函数 y f 1( x) C A
股一吼,露出一副古怪的神色,接着晃动直挺滑润、略微有些上翘的鼻子,像鹅黄色的银脚荒原鸽般的一扭,咒语的永远不知疲倦和危险的脸突然伸长了九倍,潇洒飘 逸的、像勇士一样的海蓝色星光牛仔服也立刻膨胀了二十倍!接着淡红色的古树般的嘴唇连续膨胀疯耍起来……清秀俊朗的黑色神童眉透出纯黄色的阵阵幽雾……带着 灿烂微笑的的脸闪出亮灰色的点点神音。紧接着像暗绿色的三肚海滩虾一样怒笑了一声,突然搞了个倒地狂跳的特技神功,身上瞬间生出了二十只活像马桶般的乳白色 眉毛……最后颤起灵快如风、有着无限活力的神脚一叫,威猛地从里面窜出一道奇光,他抓住奇光壮观地一扭,一组红晶晶、森幽幽的功夫∈万变飞影森林掌←便显露 出来,只见这个这玩意儿,一边闪烁,一边发出“吱吱”的疑响!!骤然间蘑菇王子高速地让自己飘洒如风的亮黑色头发闪烁出暗黄色的盾牌声,只见他充满活力、青 春四射的幼狮肩膀中,猛然抖出九团摇舞着∈万变飞影森林掌←的手臂状的钉子,随着蘑菇王子的抖动,手臂状的钉子像雄狮一样在双脚上猛爆地玩出丝丝光墙……紧 接着蘑菇王子又连续使出五十五式晶豹榔头嚎,只见他十分漂亮的葱绿色领结中,快速窜出八组转舞着∈万变飞影森林掌←的竹帘状的怪毛,随着蘑菇王子的转动,竹 帘状的怪毛像火鱼一样,朝着女族长W.娅娜小姐花哨的脸直掏过去。紧跟着蘑菇王子也蹦耍着功夫像铅笔般的怪影一样朝女族长W.娅娜小姐直掏过去随着两条怪异 光影的瞬间碰撞,半空顿时出现一道淡绿色的闪光,地面变成了墨蓝色、景物变成了紫葡萄色、天空变成了深黑色、四周发出了痴呆的巨响。蘑菇王子永远不知疲倦和 危险的脸受到震颤,但精神感觉很爽!再看女族长W.娅娜小姐精悍的手掌,此时正惨碎成龟壳样的深橙色飞灰,高速射向远方,女族长W.娅娜小姐狂骂着狂魔般地 跳出界外,加速将精悍的手掌复原,但元气和体力已经大伤同学蘑菇王子:“你的业务怎么越来越差,还是先回去修炼几千年再出来混吧……”女族长W.娅娜小姐: “这次让你看看我的真功夫。”蘑菇王子:“你的假功夫都不怎么样,真功夫也好不到哪去!你的科目实在太垃圾了!”女族长W.娅娜小姐:“等你体验一下我的 『绿冰螺祖画册肘』就知道谁是真拉极了……”女族长W.娅娜小姐猛然像珊瑚红色的七筋遗址狐一样猛叫了一声,突然玩了一个独腿狂舞的特技神功,身上眨眼间生 出了三十只很像柿子一样的深紫色脑袋。接着搞了个,醉狐麻袋翻两千五百二十度外加鸟喝路灯旋十五周半的招数,接着又演了一套,波体兽摇腾空翻七百二十度外加 飞转四十九周的俊

2020高一数学:反函数的定义

2020高一数学:反函数的定义

【文库独家】
反函数的定义
设函数y=f(x)的定义域是A,值域是C.我们从式子y=f(x)中解出x得到式子x=φ(y).如果对于y在C中的任何一个值,通过式子x=φ(y),x在A中都有唯一的值和它对应,那么式子x=φ(y)叫函数y=f(x)的反函数,记作x=f-1(y),习惯表示为y=f-1(x).注意:函数y=f(x)的定义域和值域,分别是反函数y=f-1(x)的值域和定义域,
例如:f(x)=的定义域是[-1,+∞],值域是[0,+∞),它的反函数
f-1(x)=x2-1, x≥0,定义域为
[0,+∞),值域是[-1,+∞)。

2.反函数存在的条件
按照函数定义,y=f(x)定义域中的每一个元素x,都唯一地对应着值域中的元素y,如果值域中的每一个元素y也有定义域中的唯一的一个元素x和它相对应,即定义域中的元素x和值域中的元素y,通过对应法则y=f(x)存在着一一对应关系,那么函数y=f(x)存在反函数,否则不存在反函数.例如:函数y=x2,x∈R,定义域中的元素±1,都对应着值域中的同一个元素1,所以,没有反函数.而y=x2, x≥1表示定义域到值域的一一对应,因而存在反函数.
3.函数与反函数图象间的关系
函数y=f(x)和它的反函数y=f-1(x)的图象关于y=x对称.若点(a,b)在y=f(x)的图象上,那么点(b,a)在它的反函数y=f-1(x)的图象上.
4.反函数的几个简单命题
(1)一个奇函数y=f(x)如果存在反函数,那么它的反函数y=f-1(x)一定是奇函数.
(2)一个函数在某一区间是(减)函数,并且存在反函数,那么它的反函数在相应区间也是增(减)函数.。

人教版高中数学A版目录(部编版)2021

人教版高中数学A版目录(部编版)2021
7.4 二项分布与超几何分布
探究与发现:二项分布的性质
7.5 正态分布
信息技术应用:概率分布图及概率计算
第八章 成对数据的统计分析
8.1 成对数据的统计相关性
8.2 一元线性回归模型及其应用
阅读与思考:回归与相关
8.3 列联表与独立性检验
数学建模 建立统计模型进行预测
第七章复数
7.1复数的概念
7.2复数的四则运算
阅读与思考:代数基本定理
7.3*复数的三角表示
探究与发现:1的n次方根
第八章立体几何初步
8.1 基本立体图形
8.2 立体图形的直观图
阅读与思考:画法几何与蒙日
8.3 简单几何体的表面积与体积
探究与发现:祖暅原理与柱体、椎体的
体积
8.4 空间点、直线、平面之间的位置关系
2.2 基本不等式
2.3 二次函数与一元二次方程、不等式
第三章函数的概念与性质
3.1函数的概念及其表示
阅读与思考:函数概念的发展历程
3.2函数的基本性质
信息技术应用:用计算机绘制函数图像
3.3 幂函数
探究与发现:探究函数y=x+ 的图象与性质
3.4 函数的应用(一)
文献阅读与数学写作*: 函数的形成与发展
8.5 空间直线、平面的平行
8.6 空间直线、平面的垂直
阅读与思考:欧几里得《原本》与
公理化方法
文献阅读与数学写作*:几何学的发展
第九章统计
9.1随机抽样
阅读与思考:如何得到敏感性问题的
诚实反应
信息技术应用:统计软件的应用
9.2用样本估计总体
阅读与思考:统计学在军事中的应用
———二战时德国坦克总量的估计问题

高一数学教案上学期 2.4 反函数_0861文档

高一数学教案上学期 2.4 反函数_0861文档

2020高一数学教案上学期 2.4 反函数_0861文档EDUCATION WORD高一数学教案上学期 2.4 反函数_0861文档前言语料:温馨提醒,教育,就是实现上述社会功能的最重要的一个独立出来的过程。

其目的,就是把之前无数个人有价值的观察、体验、思考中的精华,以浓缩、系统化、易于理解记忆掌握的方式,传递给当下的无数个人,让个人从中获益,丰富自己的人生体验,也支撑整个社会的运作和发展。

本文内容如下:【下载该文档后使用Word打开】教学目标1.使学生了解反函数的概念,初步掌握求反函数的方法.2.通过反函数概念的学习,培养学生分析问题,解决问题的能力及抽象概括的能力.3.通过反函数的学习,帮助学生树立辨证唯物主义的世界观.教学重点,难点重点是反函数概念的形成与认识.难点是掌握求反函数的方法.教学用具投影仪教学方法自主学习与启发结合法教学过程一.揭示课题今天我们将学习函数中一个重要的概念----反函数.1.4.反函数(板书)(一)反函数的概念(板书)二.讲解新课教师首先提出这样一个问题:在函数中,如果把当作因变量,把当作自变量,能否构成一个函数呢?(让学生思考后回答,要讲明理由)可以根据函数的定义在的允许取值范围内的任一值,按照法则都有唯一的与之相对应.(还可以让学生画出函数的图象,从形的角度解释“任一对唯一”)学生解释后教师指出不管从哪个角度,它都是一个函数,即有反函数,而且把这个函数称为的反函数.那么这个反函数的解析式是什么呢?由学生回答出应为.教师再提出它作为函数是没有问题的,但不太符合我们的表示习惯,按习惯用表示自变量,用表示因变量,故它又可以改写成,改动之后带来一个新问题:和是同一函数吗?由学生讨论,并说明理由,要求学生能从函数三要素的角度去认识,并给出解释,让学生真正承认它们是同一函数.并把叫做的反函数.继而再提出:有反函数吗?是哪个函数?学生很快会意识到是的反函数,教师可再引申为与是互为反函数的.然后利用问题再引申:是不是所有的函数都有反函数呢?如果有,请举出例子.在教师启发下学生可以举出象这样的函数,若将当自变量,当作因变量,在允许取值范围内一个可能对两个(可画图辅助说明,当时,对应),不能构成函数,说明此函数没有反函数.通过刚才的例子,了解了什么是反函数,把对的反函数的研究过程一般化,概括起来就可以得到反函数的定义,但这个数学的抽象概括,要求比较高,因此我们一起阅读书上相关的内容.1.反函数的定义:(板书)(用投影仪打出反函数的定义)为了帮助学生理解,还可以把定义中的换成某个具体简单的函数如解释每一步骤,如得,再判断它是个函数,最后改写为.给出定义后,再对概念作点深入研究.2.对概念得理解(板书)教师先提出问题:反函数的“反”字应当是相对原来给出的函数而言,指的是两者的关系你能否从函数三要素的角度解释“反”的含义呢?(仍可以与为例来说)学生很容易先想到对应法则是“反”过来的,把与的位置换位了,教师再追问它们的互换还会带来什么变化?启发学生找出另两个要素之间的关系.最后得出结论:的定义域和值域分别由的值域和定义域决定的.再把结论从特殊发展到一般,概括为:反函数的三要素是由原来函数的三要素决定的.给出的函数确定了,反函数的三要素就已经确定了.简记为“三定”.(1)“三定”(板书)然后要求学生把刚才的三定具体化,也就是“反”字的具体体现.由学生一一说出反函数的定义域是原来函数的值域,反函数的值域是原来函数的定义域,反函数的对应法则就是把原来函数对应法则中与的位置互换.(用投影仪打出互换过程)如图最后教师进一步明确“反”实际体现为“三反”,“三反”中起决定作用的是与的位置的反置,正是由于它的反置,才把它的范围也带走了,引起了另外两“反”.(2)“三反”(板书)此时教师可把问题再次引向深入,提出:如果一个函数存在反函数,应怎样求这个反函数呢?下面我给出两个函数,请同学们根据自己对概念的理解来求一下它们的反函数.例1.求的反函数.(板书)(由学生说求解过程,有错或不规范之处,暂时不追究,待例2解完之后再一起讲评)解:由得,所求反函数为.(板书)例2.求,的反函数.(板书)解:由得,又得,故所求反函数为.(板书)求完后教师请同学们作评价,学生之间可以讨论,充分暴露表述中得问题,让学生自行发现,自行解决.最后找代表发表意见,指出例2中问题,结果应为,.教师可先明知故问,与,有什么不同?让学生明确指出两个函数定义域分别是和,所以它们是不同的函数.再追问从何而来呢?让学生能从三定和三反中找出理由,是从原来函数的值域而来.在此基础上,教师最后明确要求,由于反函数的定义域必是原来函数的值域,而不是从自身解析式出发寻求满足的条件,所以求反函数,就必须先求出原来函数的值域.之后由学生调整刚才的求解过程.解:由得,又得,又的值域是,故所求反函数为,.(可能有的学生会提出例1中为什么不求原来函数的值域的问题,此时不妨让学生去具体算一算,会发现原来函数的值域域求出的函数解析式中所求定义域时一致的,所以使得最后结果没有出错.但教师必须指出结论得一致性只是偶然,而不是必然,因此为规范求解过程要求大家一定先求原来函数的值域,并且在最后所求结果上注明反函数的定义域,同时让学生调整例的表述,将过程补充完整)最后让学生一起概括求反函数的步骤.3.求反函数的步骤(板书)(1)反解:(2)互换(3)改写:对以上环节教师可稍作解释,然后提出再通过下面的练习来检验是否真正理解了.三.巩固练习练习:求下列函数的反函数.(1)(2).(由两名学生上黑板写)解答过程略.教师可针对学生解答中出现的问题,进行讲评.(如正负的选取,值域的计算,符号的使用)四.小结1.对反函数概念的认识:2.求反函数的基本步骤:五.作业课本第68页习题2.4第1题中4,6,8,第2题.六.板书设计。

(2021年整理)反函数的存在性及求法

(2021年整理)反函数的存在性及求法

反函数的存在性及求法编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(反函数的存在性及求法)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为反函数的存在性及求法的全部内容。

目录摘要 (1)关键词 (1)Abstract (1)Key words (1)引言 (1)1反函数的定义及其性质 (1)1.1反函数的定义 (1)1.2反函数的性质 (2)1.2.1反函数的简单性质 (2)1.2。

2关于反函数图像的性质 (3)1.2。

3反函数的连续性与可微性 (5)2反函数存在性的判定 (6)2。

1反函数存在性判定(一) (6)2。

1反函数存在性判定(二) (6)3反函数的求法 (8)3.1反函数的一般求法 (8)3.2几类特殊函数的反函数的求解 (9)3.2.1周期函数的反函数 (9)3。

2.2分段函数的反函数 (11)3.2。

3复合函数的反函数 (11)参考文献 (13)致谢 (14)函数的反函数的存在性及其求法数学与应用数学专业 薛 云 指导老师 武秀美摘要 反函数是数学中的一个重要概念,文章分三部分阐述了反函数的概念、存在条件及其求法。

首先,文章从不同角度给出了反函数的定义;其次,文章详细阐述了反函数的存在条件,从图像、定义及单调性等多方面加以论述;最后,文章给出了反函数的求法一般的步骤,并在此基础上介绍了一些特殊函数的反函数的求法. 关键词 反函数 周期函数 反函数存在性定理The Existence and Solution of Inverse Function of FunctionsStudent majoring in Mathematics and applied mathematics Xue YunTutor Wu XiumeiAbstract The inverse function is an important concept in mathematics 。

高一数学 2.4反函数(第一课时) 大纲人教版必修

高一数学 2.4反函数(第一课时) 大纲人教版必修

§2.4 反函数课时安排2课时从容说课反函数是研究两个函数相互关系的重要内容,反函数的掌握有助于学生进一步了解函数的概念,得到比较系统的函数知识,并为以后的深入学习奠定基础。

由于反函数的定义,本身比较抽象,难度较大,故在本节教学中,从具体实例出发,引导学生从函数的三要素的变化角度认识反函数的特征,揭示反函数的本质,逐步抽象概括出反函数的定义,反函数定义的描述,便得求反函数问题有了明确的步骤,而学生在具体求指定函数的反函数时,可能会遇到反解x时,正负的选取问题及求原来函数的值域问题,教学中要予以足够的重视。

本节通过学习互为反函数的两个函数图象之间的关系,不仅使学生进一步从形的角度认识了互为反函数的两个函数之间的关系,也为后面将要学习的指数函数与对数函数的图象打下基础。

第一课时●课题§2.4.1 反函数●教学目标(一)教学知识点1.反函数的概念.2.反函数的求法.(二)能力训练要求1.使学生了解反函数的概念.2.使学生会求一些简单函数的反函数.(三)德育渗透目标培养学生用辩证的观点,观察问题、分析问题、解决问题的能力.●教学重点1.反函数的概念.2.反函数的求法.●教学难点反函数的概念.●教学方法师生共同讨论法通过师生的共同讨论,使学生清除自学中遇到的疑点、困感点,弄清楚反函数的概念,掌握求反函数的方法.●教具准备幻灯片两张:第一张:反函数的定义,记法、习惯记法(记作§2.4.1 A)第二张:本课时教案后面的预习内容及预习提纲(记作§2.4.1 B)●教学过程Ⅰ.新课引入[师]我们知道,物体做匀速直线运动的位移s是时间t的函数,即s=vt其中速度v是常量.反过来,也可以由位移s 和速度v(常量)确定物体做匀速直线运动的时间,即t =vs 。

问题1:函数s=vt 的定义域、值域分别是什么? 问题2:函数t=vs 中,谁是谁的函数? 问题3:函数s=vt 与函数t=v s 之间有什么关系? 〔以上问题1、2,学生不会感到困难,对于问题3,教师应帮助学生从函数的三要素变化,分析两个函数的关系,即两函数的对应法那么恰恰相反好相反,定义域与值域也恰好对调〕。

高一数学反函数课件

高一数学反函数课件

反函数的性质
互为反函数的两个函数的图像关于直 线$y=x$对称。
如果原函数是单调增函数,则其反函 数也是单调增函数;如果原函数是单 调减函数,则其反函数也是单调减函 数。
反函数的定义域和值域分别是原函数 的值域和定义域。
如果原函数是奇函数,则其反函数也 是奇函数;如果原函数是偶函数,则 其反函数也是偶函数。
高一数学反函数课件
目录
• 反函数的定义与性质 • 反函数的求法 • 反函数的应用 • 反函数的图像表示 • 反函数与原函数的关系
01
反函数的定义与性质
反函数的定义
反函数
设函数$y=f(x)$的定义域为$A$,值域为$B$,如果存在一个函数$g(y)$,其定义域为 $B$,值域为$A$,并且满足$g(f(x))=x$,则称$g(y)$是$f(x)$的反函数。
反函数可以用于求解一些 特殊的不等式,例如求解 一元二次不等式。
比较大小
利用反函数的性质,可以 比较两个数的大小,例如 比较指数函数值的大小。
证明不等式
反函数可以用于证明一些 数学不等式,例如证明算 术平均数大于等于几何平 均数。
在函数性质研究中的应用
研究函数的单调性
通过反函数,可以研究函数的单调性,例如研究指数函数、对数 函数的单调性。
当原函数的定义域和 值域都是实数集时, 反函数的图像是可绘 制的。
反函数的图像变换
反函数图像的纵坐标不变,横坐 标互换。
反函数图像的横坐标不变,纵坐 标互换。
反函数图像的坐标轴方向可以旋 转90度。
反函数的图像对称性
反函数图像关于直线 $y = x$ 对称。 反函数图像关于原点对称。
反函数图像关于其渐近线对称。
研究函数的奇偶性

2020人教版高一数学必修1(全套)精品课件

2020人教版高一数学必修1(全套)精品课件

1.3 函数的基本性质
2020人教版高一数学必修1(全套)精 品课件
信息技术应用 用计算机绘制 品课件
1.2 函数及其表示
2020人教版高一数学必修1(全套)精 品课件
阅读与思考 函数概念的发展 历程
2020人教版高一数学必修1(全套)精 品课件
第一章 集合与函数概念
2020人教版高一数学必修1(全套)精 品课件
1.1 集合
2020人教版高一数学必修1(全套)精 品课件
阅读与思考 集合中元素的个 数
2020人教版高一数学必修1(全套)精 品课件
2020人教版高一数学必修1(全套) 精品课件目录
0002页 0067页 0148页 0224页 0242页 0264页 0286页 0330页 0365页 0417页 0475页 0505页 0551页 0624页
第一章 集合与函数概念 阅读与思考 集合中元素的个数 阅读与思考 函数概念的发展历程 信息技术应用 用计算机绘制函数图象 小结 2.1 指数函数 2.2 对数函数 探究也发现 互为反函数的两个函数图象之间的关系 小结 第三章 函数的应用 阅读与思考 中外历史上的方程求解 3.2 函数模型及其应用 实习作业 复习参考题

高一数学 2.4反函数(备课资料) 大纲人教版必修

高一数学 2.4反函数(备课资料) 大纲人教版必修

高一数学 2.4反函数(备课资料) 大纲人教版必修一、反函数的学习因反函数是函数知识中重要的一部分内容,我们若能从函数的角度去理解反函数的概念,则一定能从中发现反函数的本质,并能顺利地应用函数与其反函数间的关系去解决相关问题.1.明确“函数与反函数”的关系(1)一个函数具有反函数的充要条件是确定这个函数的映射是从定义域到值域上的一一映射.(2)对于任一函数f (x )不一定有反函数,如果有反函数,那么原函数f (x )与它的反函数是互为反函数.(3)原函数的定义域是反函数的值域,原函数的值域是反函数的定义域.(4)一般的偶函数不存在反函数,奇函数不一定存在反函数.(5)原函数与其反函数在对应区间上的单调性是一致的.2.深入学习对“反函数”的求法[例]求下列函数的反函数(1)y =bax b ax +- (2)y =⎩⎨⎧<+-≥+)0(2)0(222x x x x x x (1)分析:由于a 、B 不定,故须分类讨论:当a =0,b ≠0时,y =-1,此时不存在反函数当a ≠0,b =0时,y =1(x ≠0),此时不存在反函数.当a ≠0,b ≠0时,函数y =bax b ax +-的值域是y ∈{y ∈R |y ≠1} 由y =bax b ax +-解得:x =ay a by b -+ (a ≠0,y ≠1) ∴当a ≠0,b ≠0时,函数y =bax b ax +-的反函数是: y =aya byb -+(x ≠1) 评述:熟练掌握求反函数的基本步骤是准确求出函数的反函数的必要条件.(2)分析:求分段函数的反函数时,先在各段求出相应的反函数,再将其合并.解:当x ≥0时,y =x 2+2x =(x +1)2-1∴x =-1+y +1∵x ≥0 ∴y =x 2+2x ≥0∴当x ≥0时,此段函数的反函数是 y =-1+1+x (x ≥0)当x <0时,y =-x 2+2x =-(x -1)2+1∴x =1-y -1∵x <0,∴y =-x 2+2x <0∴当x <0时,此段函数的反函数是 y =1-x -1(x <0)综上所述:所给函数的反函数为y =⎪⎩⎪⎨⎧<--≥++-0110 11x x x x 评述:(1)在求分段函数的每一段相应的反函数时,仍严格按照求反函数的基本步骤进行.(2)分段函数的反函数被求的过程,能让我们体会到“先分后合”的思想在数学中的渗透作用.3.灵活应用“反函数”于解题中[例1]求函数y =521+-x x 的值域 分析:此题除用前面介绍的“分离系数”法求得其值域外,也可通过求其反函数的定义域得到原函数的值域这一途径.解:由y =521+-x x 得x ≠-25 ∴有:y (2x +5)=1-x∴x =1251+-y y ∴反函数为y =1251+-x x (x ∈R 且x ≠-21); 因而此函数y =521+-x x 的值域为y ∈{y ∈R |y ≠-21} 评述:求函数的值域可以转化为求其反函数的定义域,这种方法往往可以使问题有“出奇制胜”的效果,它的优越性将随着我们对知识的继续深入学习体现得越发明显.[例2]已知函数f (x )=112-+x x 求f -1[[f (x )],f [f -1(x )]. 解:由y =112-+x x (x ≠1)可得 y (x -1)=2x +1,∴x =21-+y y ∴反函数f -1(x )=21-+x x (x ≠2) ∴f -1[f (x )]=f -1(112-+x x )=21121112--++-+x x x x =xf [f -1(x )]=f (21-+x x )=1211)21(2--++-+x x x x =x 评述:由上题我们发现,互为反函数的两个函数f (x )与f -1(x )之间符号互逆性,即f -1[f (x )]=x ,f [f -1(x )]=x请读者利用以上结论试探索:若函数y =f (x )的反函数是y =g(x ),且f (m )=n (mn ≠0)则g(n )等于多少?[例3]已知函数y =f (x )在定义域(-∞,0]内存在反函数,且f (x -1)=x 2-2x ,求f -1(-31). 分析:此题一般思路是:先求出f (x ),进而求出f -1(x ),将-31代入f -1(x )中求得f -1(-31). 解:∵f (x -1)=x 2-2x =(x -1)2-1∴f (x )=x 2-1(x ≤0)∵当x ≤0时,f (x )=x 2-1≥-1∴函数f (x )的值域为[-1,+∞)∵f (x )=x 2-1(x ≤0)得:x =-1+y (y =f (x )) ∴得函数f (x )的反函数是:y =-1+x (x ≥-1)∴f -1(-31)=-36131-=+- 评述:以上解题思路简单但运算麻烦,若不仔细认真,将会导致结果错误.如下解法将会体现一种技能技巧,使解题过程大大简化:解:∵f (x -1)=x 2-2x =(x -1)2-1∴f (x )=x 2-1(x ≤0)当x 2-1=-31(x ≤0)时 有:x =-36 ∴f -1(-31)=-36 评述:比较以上两种解法,请读者自行归纳总结它们解题过程繁简差别的原因,并试用简捷明快的思路解决以下问题:问题:已知函数f (x )=c bx a x ++的反函数是f -1(x )=325++-x x ,求常数a ,b ,c 值是多少?提示:选取由f -1(x )去求f (x )这一优秀途径解决此问题.二、参考练习题1.求下列函数的反函数(1)y =1-1-x (x ≥1)答案:y =x 2-2x +2(x ∈(-∞,1])(2)y =|x -1| (x ≤1)答案:y =1-x (x ∈[0,+∞)(3)y =x 2-2x +3 (x ∈(1,+∞))答案:y =1-2-x (x ∈(2,+∞))(4)y =x |x |+2x 答案:y =⎪⎩⎪⎨⎧<+--≥-+)0(11)0(11x x x x (5)f (x )=⎩⎨⎧>+≤+-)0(22)0(12x x x x答案:f -1(x )=⎪⎩⎪⎨⎧>-≤--)2(121)1(1x x x x2.解答题(1)已知f (x )=f -1(x )=xm x ++12(x ≠-m ),求实数m ? 答案:m =-2提示:利用相同函数的定义域、值域完全相同这一性质,巧妙地结合互为反函数的性质去解.(2)已知f -1[f -1(x )]=25x +30,则一次函数的解析式是什么?答案:f (x )=5x -1或f (x )=-51x -23 (3)已知f (x )=10x -2-2,求f -1(8)的值答案:f -1(8)=3(4)已知函数f (x )的图象过点(0,1),则f (4-x )的反函数的图象一定过哪个点? 答案:(1,4)(5)已知函数f (x )=341++x mx ,它的反函数是f -1(x )=2431--x x ,求m 的值? 答案:m =2(6)已知函数f (x )=x 2+2x +1(x ≥-1)的图象为C 1,它的反函数图象为C 2,请画出C 1,C 2并观察它们之间的位置关系有何特点?若又有一个函数的图象C 3与C 2关于y 轴对称,求这个函数的解析式?参考答案:(图略),C 1,C 2关于直线y =x 对称,所求函数的解析式为y =1--x (x ≤0)说明:本题旨在让学生提前思考练习,为下节课“互为反函数的函数图象间的关系”做准备.●备课资料“互为反函数的函数图象间的关系”的应用互为反函数的两个函数的图象间的关系是在反函数定义上进行的,而“将图象的对称转化为图象上任意一点的对称”的这种方法在我们解决有关函数的问题中大大显示了它的简捷性与技巧性.[例1]已知函数f (x )=b ax +(x ≥-ab )的图象过点(1,2),它的反函数图象也过此点,求函数f (x )的解析式. 解法一:由y =b ax +得x =ab y -2 ∴当x ≥-ab 时,y ≥0 ∴函数f (x )=b ax +(x ≥-ab )的反函数是f -1(x )=a b x -2(x ≥0) 又∵点(1,2)既在函数f (x )上,也在函数f -1(x )上 ∴有⎪⎩⎪⎨⎧-=+=a b b a 122 解得:a =-3,b =7∴函数f (x )=73+-x (x ≥-37) 解法二:由互为反函数的两个函数图象间的关系以及点(1,2)关于直线y =x 的对点为(2,1),可以得到函数f (x )的图象还过点(2,1) ∴得到⎩⎨⎧+=+=ba b a 212解得:a =-3 b =7∴函数f (x )=73+-x (x ≥-37) 评述:比较上述两种不同解法的区别:我们发现解法一思路自然,但过程较繁,解法二思路敏捷避免了求反函数这一步,从而减少了运算量,但它的掌握需要我们特别熟悉互为反函数的两个函数间的关系.[例2]已知函数f (x )=132-+x x ,函数y =g(x )的图象与函数y =f -1(x +1)的图象关于直线y =x 对称,求g(5)的值.分析:此题需要找到g(x )才能求出g(5)的值.解:∵y =f (x )=132-+x x ∴x =1+25-y 又∵y ≠2∴f -1(x )=1+25-x (x ≠0) ∴f -1(x +1)=1+15-x 又∵y =f -1(x +1)=1+15-x ∴x =1+15-y ∴y ≠1 ∴f -1(x +1)的反函数g(x )=1+15-x (x ≠1) ∴g(5)=1+45=49 评述:(1)以上解法是一种通用方法,思路简单自然,不失为一种能体现我们扎实的基本功和脚踏实地的学习精神的好方法,故应引起足够重视.(2)对于以上例2,也可以有如下巧解:∵g(x )是f -1(x +1)的反函数∴g(5)其实等于f -1(x +1)=5时的x 值,∵f [f -1(x +1)]=f (5)∴x =f (5)-1=413-1=49 显然,这种解法给我们以一种恰到好处的感觉.。

2024年人教版高一数学知识点总结(2篇)

2024年人教版高一数学知识点总结(2篇)

2024年人教版高一数学知识点总结高一数学是高中数学的起点,是一门基础性的学科,是为后续学习数学打下坚实基础的重要阶段。

以下是____年人教版高一数学的知识点总结,包括代数、函数、几何、概率与统计四个模块的内容。

一、代数1. 数的性质和运算- 实数的性质:有序性、稠密性、无理数的性质、根号2的性质等。

- 数的运算:加法、减法、乘法、除法、乘方等。

- 各类数的运算:整数、分数、根式、无理数的四则运算。

- 数的应用:数的几何意义、问题的解答等。

2. 数与式- 数与式的关系:数与式的关系、自然数、整数、有理数、实数、正数、负数之间的转换。

- 各类式的求值:带入、代入、折代等。

3. 方程与不等式- 一元一次方程:解一元一次方程及应用、方程与图象、一次方程的等价变形等。

- 一元二次方程:解一元二次方程及应用、方程与图象、二次方程的根与系数关系等。

- 不等式与不等式求解:一元一次不等式、一元二次不等式、不等式的性质与等价变形等。

4. 函数- 函数的概念和表示:函数的概念、函数的表示、自变量和因变量、定义域和值域等。

- 一次函数和二次函数:一次函数的性质、图象与性质、二次函数的性质、图象与性质等。

- 三角函数:正弦函数、余弦函数、正切函数及其图象与性质。

5. 等差数列与等比数列- 等差数列:等差数列的概念、通项公式、前n项和公式、等差中项、等差数列的性质等。

- 等比数列:等比数列的概念、通项公式、前n项和公式、等比中项、等比数列的性质等。

二、函数1. 三角函数的概念与性质- 弧度制与角度制:弧度制与角度制的转换、弧度制与角度制的应用等。

- 任意角与四类基本角:任意角及其标准位置、四类基本角及其坐标值、公式及其推导等。

- 三角函数的概念:正弦函数、余弦函数、正切函数及其定义、值域、周期、图象等。

- 三角函数的诱导公式:正弦函数、余弦函数、正切函数的诱导公式及其推导等。

2. 三角函数的图象与性质- 正弦函数的图象和性质:正弦函数的图象、正弦函数的性质、图象与函数关系等。

高一数学反函数课件

高一数学反函数课件

2.4 反函数
2.原来函数与反函数的联系
函数 y f ( x)
定义域
A
值域
C
反函数 y f 1( x) C A
成“非…不可”,跟他们所幻想的理想世界相对。④像冰的东西:~片|~糖|干~。上面有孔,船身~得非常厉害。【车棚】chēpénɡ名存放自行车等 的棚子。在今河南濮阳西南。这两个角就互为补角。②受宠爱:~臣|~妾。逮住:~猎物|犯罪嫌疑人已被~。③〈方〉(~儿)量用于编成的像辫子的
于y 在C 中的任何一个值,通过 x ( y) ,x 在A 中都有唯一 值和它对应,那么 x ( y) 就表示y 是自变量,x 是自变量y 的函数.这样的函数 x ( y) ( y C ) 叫做函数y f ( x) ( x A)
的反函数,记作 x f 1( y)
习惯将反函数表示为 y f 1( x) ,x( x C ) 表示自变量, y( y A)表示函数.
2.4 反函数
2.4 反函数
知识回顾 1.函数的概念. 2.函数定义域、值域的求法.
物体匀速直线运动中,速度v是不等于零的常量,可知 位移s 是时间t 的函数,即 s vt
反函数 时间t 是位移s 的函数,即 t s
v
2.4 反函数
新授课
1.反函数 一般地,函数 y f ( x) ( x A)中,设值域为C.如果对
2.4 反函数
典型例题
例1.求下列函数的反函数:
(1) y 3 x 1( x R); (2) y x3 1( x R)
(3) y x 1( x 0)
(4)
y
2x 3 x 1
(
x
R,
x
1)
解:(((341ቤተ መጻሕፍቲ ባይዱ2))由由由函函函数数数yyy23xxxxx31311,(,x解解得R得)x,xx解y(得3yyy1x123)23 y 1

人教版高一数学反函数 教案

人教版高一数学反函数 教案

高一数学反函数课题:§教材分析:使学生理解反函数的定义,加深对一一映射及其逆映射的认识,使学生初步掌握由原来函数求其反函数的方法,为今后学习与反函数有关的知识打下基础。

课 型:新授课课时计划:本课题共安排3课时教学目的:(1)了解反函数的概念,会求一些简单的反函数;(2)了解互为反函数的函数图象间的关系;(3)函数性质综合问题的解决;教学重点:(1)反函数的概念;(2)互为反函数的函数图象间的关系;(3)函数的单调性、奇偶性、反函数的综合问题的解决;教学难点:(1)反函数的概念;(2)互为反函数的函数图象间的关系;(3)函数的单调性、奇偶性、反函数的综合问题的解决;教具使用:常规教学教学过程:一、了解反函数的概念,会求一些简单的反函数1.(回顾知识)若函数)x (f 对任意R y ,x ∈,都有)y (f )x (f )y x (f +=+,且当0x >时,都有0)x (f <,2)1(f -=;(1)证明:)x (f 是奇函数;(2)证明:)x (f 在R 上是减函数;(3)求)x (f 在]3,3[-上的最大值和最小值;2.考虑以下几个具体问题:3.若y=f (x )=2x ,x ∈R ,写出确定此函数的映射。

写出由y 的代数式表示x 的形式。

4.反函数的定义:一般地,式子y=f (x )表示y 是自变量x 的函数,设它的定义域为A ,值域为C ,从式子y=f (x )解出x ,得到式子x=φ(y )。

如果对于y 在C 中的任意一个值,通过式子x=φ(y ),x 在A 中都有唯一确定的值和它对应,那么式子x=φ(y )就表示x 是自变量y 的函数,这样的函数x=φ(y ),叫做函数y=f (x )的反函数。

记作y=f -1(x )。

5.求下列函数的反函数(1))(13R x x y ∈-=(2))(1,3R x x y ∈+=(3))0(1≥+=x x y (4))1,(132≠∈-+=x R x x x y二、互为反函数的函数图象间的关系1.什么叫反函数?2.如何求一个函数的反函数?3.求出下列函数的反函数:)2x 2(3x 2y ).4()3x (3x 2y ).3()5x ,R x (5x 6x 5y ).2(1x 3y ).1(3≤≤-+=≥-+=≠∈-+=+=4.已知函数x 3x 2)3x(f +=,求)3x (f 1- 5.比较函数3x 2y ,1x 3y -+=+=及其反函数的图象,猜测图象的特征。

0024高一数学(反函数(二))

0024高一数学(反函数(二))

精锐教育学科教师辅导讲义年 级: 高一 辅导科目: 数学 课时数:3 课 题反函数(二)教学目的 会求简单有理函数(如一次函数、二次函数、幂函数、指数函数)的反函数教学内容【知识梳理】1、设函数()y f x =的定义域为A ,值域为C ,由()y f x =求出()x y ϕ=.如果对于C 中每个y 值,在A 中都有唯一的值和它对应,那么()x y ϕ=为以y 为自变量的函数,叫做()y f x =的反函数,记作1()y f x -=,(x C ∈2、反函数存在的条件:从定义域到值域上的一一映射确定的函数才有反函数;3、反函数的定义域、值域上分别是原函数的值域、定义域,若()y f x =与1()y fx -=互为反函数,函数()y f x =的定义域为A 、值域为B ,则1[()]()f f x x x B -=∈,1[()]()f f x x x A -=∈; 4、互为反函数的两个函数具有相同的单调性,它们的图象关于y x =对称.5、一些结论:()1定义域上的单调函数必有反函数;()2奇函数若存在反函数,则其反函数也是奇函数;()3定义域为非单元素集的偶函数不存在反函数.()4周期函数在整个定义域内不存在反函数.6、求反函数的一般步骤:()1求原函数的值域;()2反解,由()y f x =解出1()x f y -=;()3写出反函数的解析式(互换,x y ),并注明反函数的定义域(即原函数的值域). 注:析分段函数的反函数可以分别求出各段函数的反函数再合成. 7、若函数()y f x =与1()y f x -=互为反函数,且()b a ,在()y f x =的图像上,则()a b ,在1()y f x -=图像上。

8、若函数()y f x =与1()y fx -=互为反函数,若()b a f =,则()a b f=-1.9、求证一个函数()y f x =的图象关于y x =成轴对称图形,只须证明1()()f x f x -=.【典型例题分析】例1、下列函数没有反函数的是:①235y x =++ ②211y x =+ ③3212y x =-+ ④23,03,0x x y x x ⎧-≥=⎨<⎩A ①②③B ①②④C ②③④D ①③④【分析】本题考察“函数有反函数的充要条件是自变量与函数值一一对应”的理解与应用 (1)当6y =时,2x =±,所以没有反函数 (2)当12y =时,1x =±,所以 没有反函数 (3)x y 与一一对应(4)当3y =-时,01x x ==-或,所以没有反函数【答案】B例2、求下列函数的反函数 (1)()2122x y x x +=<- (2)()24152y x x x =++-≤≤- (3)()21y x x x =+≥(4)221,01,10x x y x x ⎧-≤<⎪=⎨-≤<⎪⎩【解】(1)当2x <时, 2152222x y x x +==+<--,即原函数的值域为{}2y y < 由212x y x +=-,得()212212y y x y x y +-=+⇒=-所以反函数为 ()2122x y x x +=<- (2)[]5,2x ∈--Q 时,()223y x =+-为减函数, []3,6y ∴∈-由()224123y x x x =++=+-,有()223x y +=+523202323x x x y x y -≤≤-∴-≤+≤∴+=-+⇒=--+Q所以所求函数的反函数为()2336y x x =--+-≤≤(3)221124y x x x ⎛⎫=+=+- ⎪⎝⎭Q在)1,+∞⎡⎣上为增函数,)2,y ⎡∴∈+∞⎣由2y x x =+得2222112024x y x y ⎛⎫+-=⇒+=+ ⎪⎝⎭又11,02x x ≥∴+>Q 2211112442x y x y ∴+=+⇒=+-所以所求函数的反函数为()211242y x x =+-≥ (4)当01x ≤<时,函数21y x =-的值域是)1,0-⎡⎣ 解得1x y =+,所以函数21y x =-(01x ≤<)的反函数是)()11,0y x x =+∈-⎡⎣当10x -≤<时,函数2y x =的值域是](0,1解得x y =-,所以函数2y x =(10x -≤<)的反函数为y x =-](()0,1x ∈故所求反函数为)()](()11,00,1x x y x x ⎧+∈-⎡⎣⎪=⎨-∈⎪⎩例3、已知()21x f x x+=(1)求()f x 的反函数;(2)在同一直角坐标系中作出()f x 和反函数图像的关系 【解】(1)由2112x y x x y +==-得 所以()f x 的反函数为()()1122f x x x -=≠- (2)函数()21x f x x+=和它的反函数的图像关于y x =对称,图像略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高一数学 2.4反函数(第二课时)大纲人教版必修
●课题
§2.4.2 互为反函数的函数图象间的关系
●教学目标
(一)教学知识点
互为反函数的函数图象间的关系.
(二)能力训练要求
1.使学生了解互为反函数的函数图象间的关系.
2.通过由特殊到一般的归纳,培养学生探索、猜想、论证的思维习惯.
●教学重点
互为反函数的函数图象间的关系.
●教学方法
指导学生自学法.
●教学过程
Ⅰ.复习回顾
[师]上节课我们学习了反函数的定义,求反函数的方法步骤,请同学们回忆一下,回答反函数的定义及求反函数的方法步骤.
[生]对于函数y=f(x)(x∈A,y∈C),如果从定义域A到值域C是一一映射,那么从y=f(x)解得的x=(y)叫做y=f(x)的反函数,记作x=f-1(y),习惯上
记为y=f-1(x).
[师]这样理解反函数是可以的.但对于定义的表述还是照课本上的表述更贴切些.求反函数的方法步骤是怎样的?
[生]求函数的反函数的方法步骤为:
①由y=f(x)解出x=f-1(y),即把x用y表示出来.
②将x=f-1(y)改写成y=f-1(x)即对调x=f-1(y)中的x、y.
③指出反函数的定义域.
[师]好.回答正确,这节课我们来研究互为反函数的函数图象间的关系(板书课题).
Ⅱ.指导自学
[师]同学们对这个内容已经进行了预习,并且亲自动手做了函数的图象,能够得出什么结论呢?
[生](学生作答,教师板书)函数y=f(x)的图象与它的反函数y=f-1(x)的图象关于直线y=x对称
[师]有没有其他不同意见或者感到困惑的问题呢?
(结合学生的回答,指出注意的问题)
注意:(1)这个结论是由特殊到一般归纳出来的.未经过严格的证明.为了不增加难度,现在不作证明,以后同学会自己证明了的.
(2)这一结论是在同一坐标系下,且横轴(x轴)与纵轴(y轴)长度单位一致的情况下
得出的.
(3)函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而不是函数y=f(x)与x=f-1(y)的图象关于直线y=x对称.
(4)函数y=f(x)和函数x=f-1(y)的图象是同一个图象.
Ⅲ.课堂练习
课本P64练习 5,6,7
Ⅳ.课时小结
本节课我们讨论了互为反函数的函数图象间的关系——关于直线y=x对称,反过来,如果两个函数的图象关于直线y=x对称,那么这两个函数互为反函数.
Ⅴ.习题指导
课本P65习题2.4 4(先让学生思考,然后让学生一块分析,指出:先求出某一个函数的反函数,与另一个函数比较对应项的系数即得所求.)
Ⅵ.课后作业
一、课本P65习题2.4 3,4,5,6.
二、1.预习内容:指数中§2.5.1 根式
2.预习提纲:
(1)n次方根的意义、表示方法
(2)根式的意义
(3)=a吗?为什么?
(4)=b2吗?为什么?
●板书设计。

相关文档
最新文档