解直角三角形——教师版(带完整答案)
解直角三角形(5种题型)(解析版)
解直角三角形(5种题型)【知识梳理】一.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sin A=∠A的对边斜边=ac,cos A=∠A的邻边斜边=bc,tan A=∠A的对边∠A的邻边=ab.(a,b,c分别是∠A、∠B、∠C的对边)二.解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.三.解直角三角形的应用-坡度坡角问题(1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h/l=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.四.解直角三角形的应用-仰角俯角问题(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.在视线与水平线所成的角中,视线在水平线上方的角叫仰角;视线在水平线下方的角叫俯角;五.解直角三角形的应用-方向角问题(1)在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.(2)在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.【考点剖析】一.解直角三角形1.(2022春•闵行区校级期中)如图,在Rt△ABC中,∠ACB=90°,AC=BC=6,点D在边AC上,且AD =2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余弦值.【分析】(1)根据题意,AC=BC=6,AD=2CD,可得AD的长度,根据等腰直角三角形的性质可得AB=√2AC,由AE=sin45°•AD的长度,则BE=AB﹣AE,计算即可得出答案;(2)过点E作EF⊥BC,垂足为F,如图,根据等腰直角三角形的性质可得,EF=BF=sin45°•BE,则CF=BC﹣BF,根据勾股定理可得CE=√EF2+CF2,在Rt△ECF中,由cos∠ECB=CFCE 计算即可得出答案.【解答】解:(1)∵AC=BC=6,AD=2CD,∴AD=4,∵∠ACB=90°,∴AB=√2AC=6√2,∴∠DAE=45°,DE⊥AB,∴AE=sin45°•AD=√22×4=2√2,∴BE=AB﹣AE=6√2−2√2=4√2;(2)过点E作EF⊥BC,垂足为F,如图,∵∠B=45°,∴EF=BF=sin45°•BE=√22×4√2=4,∴CF=BC﹣BF=2,∴CE=√EF2+CF2=√42+22=2√5,在Rt△ECF中,cos∠ECB=CFCE =2√5=√55.【点评】本题主要考查了解直角三角形及等腰直角三角形形的性质,应用等腰直角三角形性质进行计算是解决本题的关键.2.(2022春•浦东新区校级期中)如图,在△ABC中,CD是边AB上的高,AE是BC边上的中线,已知AD=8,BD=4,cos∠ABC=45.(1)求高CD的长;(2)求tan∠EAB的值.【分析】(1)在Rt△BCD中,由已知条件cos∠ABC=BDBC =45,即可算出BC的长,根据勾股定理即可得出答案;(2)过点E作EF⊥AB,垂足为F,如图,可得CD∥EF,由E为BC的中点,可得EF是△BCD的中位线,即可算出EF=12CD,DF的长度,即可算出AF=AD+DF的长度,在Rt△AEF中,根据tan∠EAB=EFAF即可得出答案.【解答】解:(1)在Rt△BCD中,∵cos∠ABC=BDBC =45,∴4BC =45,∴BC=5,∴CD=√BC2−BD2=√52−42=3;(2)过点E作EF⊥AB,垂足为F,如图,∵EF⊥BD,∴CD∥EF,∵E为BC的中点,∴EF是△BCD的中位线,∴EF=12CD=12×3=32,DF=12BD=12×4=2,∴AF=AD+DF=8+2=10,在Rt△AEF中,∴tan∠EAB=EFAF =3210=15.【点评】本题主要考查了解直角三角形,熟练掌握解直角三角形的方法进行求解是解决本题的关键.3.(2022•黄浦区二模)如图,在Rt△ABC中,∠ACB=90°,AC=3,sin∠ABC=13,D是边AB上一点,且CD=CA,BE⊥CD,垂足为点E.(1)求AD 的长; (2)求∠EBC 的正切值.【分析】(1)过C 点作CH ⊥AD 于H ,如图,利用等腰三角形的性质得到AH =DH ,再证明∠ACH =∠ABC ,则sin ∠ACH =sin ∠ABC =13,然后利用正弦的定义求出AH ,从而得到AD 的长;(2)在Rt △ABC 中先求出AB =9,则BD =7,再证明∠HCD =∠EBD ,则sin ∠EBD =DE BD =13,利用正弦的定义求出DE =73,接着利用勾股定理计算出BE ,然后根据正切的定义求解.【解答】解:(1)过C 点作CH ⊥AD 于H ,如图, ∵CD =CA , ∴AH =DH ,∵∠ABC+∠BCH =90°,∠ACH+∠BCH =90°, ∴∠ACH =∠ABC , ∴sin ∠ACH =sin ∠ABC =13, 在Rt △ACH 中,sin ∠ACH =AH AC =13,∴AD =2AH =2;(2)在Rt △ABC 中,sin ∠ABC =AC AB=13,∴AB =3AC =9,∴BD =AB ﹣AD =9﹣2=7, ∵∠E =90°, 而∠EDB =∠HDC , ∴∠HCD =∠EBD , ∴sin ∠EBD =DE BD =13,∴DE =13BD =73,∴BE =√72−(73)2=14√23,在Rt △EBC 中,tan ∠EBC =EC EB=3+7314√23=4√27.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰直角三角形的性质. 二.解直角三角形的应用4.(2022•长宁区二模)冬至是一年中太阳光照射最少的日子,如果此时楼房最低层能采到阳光,一年四季整座楼均能受到阳光的照射,所以冬至是选房买房时确定阳光照射的最好时机.某居民小区有一朝向为正南方向的居民楼.该居民楼的一楼是高6米的小区超市,超市以上是居民住房,在该楼前面20米处要盖一栋高25米的新楼.已知上海地区冬至正午的阳光与水平线夹角为29°(参考数据:sin29°≈0.48;cos29°≈0.87;tan29°≈0.55)(1)冬至中午时,超市以上的居民住房采光是否有影响,为什么?(2)若要使得超市全部采光不受影响,两楼应至少相距多少米?(结果保留整数)【分析】(1)延长光线交CD 于点F ,过点F 作FG ⊥AB ,垂足为G ,根据题意可得∠AFG =29°,GF =BC =20米,GB =FC ,然后在Rt △AGF 中,利用锐角三角函数的定义求出AG ,从而求出GB 的长,进行比较,即可解答;(2)延长光线交直线BC 于点E ,根据题意可得∠AEB =29°,然后在Rt △ABE 中,利用锐角三角函数的定义求出BE 的长,即可解答.【解答】解:(1)冬至中午时,超市以上的居民住房采光有影响,理由:延长光线交CD于点F,过点F作FG⊥AB,垂足为G,则∠AFG=29°,GF=BC=20米,GB=FC,在Rt△AGF中,AG=FG•tan29°≈20×0.55=11(米),∵AB=25米,∴GB=AB﹣AG=25﹣11=14(米),∴FC=GB=14米,∵14米>6米,∴冬至中午时,超市以上的居民住房采光有影响;(2)延长光线交直线BC于点E,则∠AEB=29°,在Rt△ABE中,AB=25米,∴BE=ABtan29°≈250.55≈45(米),∴若要使得超市全部采光不受影响,两楼应至少相距45米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(2022•徐汇区二模)激光电视的光源是激光,它运用反射成像原理,屏幕不通电无辐射,降低了对消费者眼睛的伤害.根据THX观影标准,当观影水平视场角“θ”的度数处于33°到40°之间时(如图1),双眼肌肉处于放松状态,是最佳的感官体验的观影位.(1)小丽家决定要买一个激光电视,她家客厅的观影距离(人坐在沙发上眼睛到屏幕的距离)为3.5米,小佳家要选择电视屏幕宽(图2中的BC的长)在什么范围内的激光电视就能享受黄金观看体验?(结果精确到0.1m,参考数据:sin33°≈0.54,tan33°≈0.65,sin40°≈0.64,tan40°≈0.84,sin16.5°≈0.28,tan16.5°≈0.30,sin20°≈0.34,tan20°≈0.36)(2)由于技术革新和成本降低,激光电视的价格逐渐下降,某电器商行经营的某款激光电视今年每台销售价比去年降低4000元,在销售量相同的情况下,今年销售额在去年销售总额100万元的基础上减少20%,今年这款激光电视每台的售价是多少元?【分析】(1)过点A作AD⊥BC于点D,根据题意可得AB=AC,当∠BAC=33°时,当∠BAC=40°时,利用锐角三角函数即可解决问题;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意列出方程即可解决问题.【解答】解:(1)如图,过点A作AD⊥BC于点D,根据题意可知:AB=AC,AD⊥BC,∴BC=2BD,∠BAD=∠CAD=∠BAC,当∠BAC=33°时,∠BAD=∠CAD=16.5°,在△ABD中,BD=AD×tan16.5°≈3.5×0.30=1.05(m),∴BC=2BD=2.10(m),当∠BAC=40°时,∠BAD=∠CAD=20°,在△ABD中,BD=AD×tan20°≈3.5×0.36=1.26(m),∴BC=2BD=2.52m,答:小佳家要选择电视屏幕宽为2.10m﹣2.52m之间的激光电视就能享受黄金观看体验;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意可得:=,解得:x=16000,经检验x=16000是原方程的解,符合题意,答:今年这款激光电视每台的售价是16000元.【点评】本题考查了解直角三角形的应用,分式方程的应用,视点,视角和盲区,解决本题的关键是根据题意找到等量关系准确列出方程.6.(2022•崇明区二模)为解决群众“健身去哪儿”问题,某区2021年新建、改建90个市民益智健身苑点,图1是某益智健身苑点中的“侧摆器”.锻炼方法:面对器械,双手紧握扶手,双脚站立于踏板上,腰部发力带动下肢做左右摆式运动.(1)如图2是侧摆器的抽象图,已知摆臂OA的长度为80厘米,在侧摆运动过程中,点A为踏板中心在侧摆运动过程中的最低点位置,点B为踏板中心在侧摆运动过程中的最高点位置,∠BOA=25°,求踏板中心(精确到0.1厘米)(sin25°≈0.423,cos25°≈0.906,tan25°≈0.466)点在最高位置与最低位置时的高度差.(2)小杰在侧摆器上进行锻炼,原计划消耗400大卡的能量,由于小杰加快了运动频率,每小时能量消耗比原计划增加了100大卡,结果比原计划提早12分钟完成任务,求小杰原计划完成锻炼需多少小时?【分析】(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,然后在Rt△BOD中,利用锐角三角函数的定义求出OD的长,进行计算即可解答;(2)先设小杰原计划x小时完成锻炼,然后根据实际每小时的能量消耗﹣原计划每小时的能量消耗=100,列出方程进行计算即可解答.【解答】解:(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,在Rt△BOD中,∠BOA=25°,∴OD=BO•cos25°≈80×0.906=72.48(cm),∴AD=OA﹣OD=80﹣72.48≈7.5(cm),∴踏板中心点在最高位置与最低位置时的高度差约为7.5厘米;(2)设小杰原计划x小时完成锻炼,由题意得:,解得:,经检验:都是原方程的根,但不符合题意,舍去,答:小杰原计划锻炼1小时完成.【点评】本题考查了解直角三角形的应用,分式方程的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.7.(2022•宝山区二模)某超市大门口的台阶通道侧面如图所示,共有4级台阶,每级台阶高度都是0.25米.根据部分顾客的需要,超市计划做一个扶手AD,AB、DC是两根与地平线MN都垂直的支撑杆(支撑杆底端分别为点B、C).(1)求点B与点C离地面的高度差BH的长度;(2)如果支撑杆AB、DC的长度相等,且∠DAB=66°.求扶手AD的长度.(参考数据:sin66°≈0.9,cos66°≈0.4,tan66°≈2.25,cot66°≈0.44)【分析】(1)根据每级台阶高度都是0.25米,然后计算出3个台阶的总高度,即可解答;(2)连接BC,根据题意可得:AB=DC,AB∥DC,从而可得四边形ABCD是平行四边形,然后利用平行四边形的性质可得AD=BC,AD∥BC,从而求出∠CBH=66°,最后在Rt△CBH中,利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)∵每级台阶高度都是0.25米,∴BH=3×0.25=0.75(米),∴点B与点C离地面的高度差BH的长度为0.75米;(2)连接BC,由题意得:AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAB=∠CBH=66°,在Rt△CBH中,BH=0.75米,∴BC=≈=1.875(米),∴扶手AD的长度约为1.875米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.三.解直角三角形的应用-坡度坡角问题8.(2021秋•闵行区期末)如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米,那么斜面AB 的坡度为.【分析】根据坡度的概念计算,得到答案.【解答】解:斜面AB的坡度为20:30=1:1.5,故答案为:1:1.5.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.9.(2022春•浦东新区校级期中)工厂的传送带把物体从地面送到离地面5米高的地方,如果传送带与地面所成的斜坡的坡度i=1:2.4,那么物体所经过的路程为米.【分析】根据坡度的概念求出AC,根据勾股定理求出AB.【解答】解:∵传送带与地面所成的斜坡的坡度i=1:2.4,∴BCAC =12.4,即5AC=12.4,解得,AC=12,由勾股定理得,AB=√AC2+BC2=√122+52=13(米),故答案为:13.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.10.(2022•黄浦区二模)某传送带与地面所成斜坡的坡度i=1:2.4,如果它把物体从地面送到离地面10米高的地方,那么物体所经过的路程为米.【分析】根据坡度的概念求出水平距离,根据勾股定理计算,得到答案.【解答】解:∵传送带与地面所成斜坡的坡度i=1:2.4,它把物体从地面送到离地面10米高,∴水平距离为:2.4×10=24,∴物体所经过的路程为:√102+242=26(米),故答案为:26.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.11.(2022•浦东新区二模)如图,一个高BE为√3米的长方体木箱沿坡比为1:√3的斜面下滑,当木箱滑至如图位置时,AB=3米,则木箱端点E距地面AC的高度EF为米.【分析】根据坡度的概念求出∠DAF=30°,根据正弦的定义求出DE,进而求出BD,得到答案.【解答】解:设AB、EF交于点D,∵斜坡的坡比为1:√3,∴tan∠DAF=√3=√33,∴∠DAF=30°,∴∠ADF=90°﹣30°=60°,∴∠BDE=60°,在Rt△BDE中,sin∠BDE=BEDE,∴√3DE =√32,解得,DE=2(米),∴BD=1m,∴AD=AB﹣BD=2(米),在Rt△ADF中,∠DAF=30°,∴DF=12AD=1(米),∴EF=DE+DF=3(米),故答案为:3.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.四.解直角三角形的应用-仰角俯角问题12.(2021秋•浦东新区期末)在离旗杆20米处的地方,用测角仪测得旗杆顶的仰角为α,如测角仪的高为1.5米,那么旗杆的高为()米.A.20cotαB.20tanαC.1.5+20tanαD.1.5+20cotα【分析】由题意得,在直角三角形中,知道了已知角的邻边求对边,用正切值计算即可.【解答】解:根据题意可得:旗杆比仪器高20tanα,测角仪高为1.5米,故旗杆的高为(1.5+20tanα)米.故选:C.【点评】本题考查了解直角三角形的应用﹣仰角俯角,熟练掌握解直角三角形的方法是解题的关键.13.(2022•徐汇区二模)如图,小明在某次投篮中刚好把球打到篮板的点D处后进球,已知小明与篮板底的距离BC=5米,眼睛与地面的距离AB=1.7米,视线AD与水平线的夹角为α,已知tanα的值为0.3,则点D到地面的距离CD的长为米.【分析】根据题意可得AE=BC=5米,EC=AB=1.7米,然后在Rt△ADE中,利用锐角三角函数的定义求出DE的长,进行计算即可解答.【解答】解:由题意得:AE=BC=5米,EC=AB=1.7米,在Rt△ADE中,tanα=0.3,∴DE=AE•tanα=5×0.3=1.5(米),∴DC=DE+EC=1.5+1.7=3.2(米),∴点D到地面的距离CD的长为3.2米,故答案为:3.2.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.14.(2022•青浦区二模)小明要测量公园里一棵古树的高,被一条小溪挡住去路,采用计算方法,在A点测得古树顶的仰角为α,向前走了100米到B点,测得古树顶的仰角为β,则古树的高度为米.【分析】设CD=x米,用含x的代数式表示出AD和BD的长,再根据AD﹣BD=100可得x的值.【解答】解:设CD=x米,在Rt△ACD中,tanα=CDAD,∴AD=xtanα,在Rt△BCD中,tanβ=CDBD,∴BD=xtanβ,∵AD﹣BD=100,∴xtanα−xtanβ=100,解得x=100⋅tanβ⋅tanαtanβ−tanα,故答案为:100⋅tanβ⋅tanαtanβ−tanα.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.五.解直角三角形的应用-方向角问题15.(2021秋•黄浦区期末)如图,在东西方向的海岸线l上有一长为1千米的码头MN,在距码头西端M的正西方向58千米处有一观测站O,现测得位于观测站O的北偏西37°方向,且与观测站O相距60千米的小岛A处有一艘轮船开始航行驶向港口MN.经过一段时间后又测得该轮船位于观测站O的正北方向,且与观测站O相距30千米的B处.(1)求AB两地的距离;(结果保留根号)(2)如果该轮船不改变航向继续航行,那么轮船能否行至码头MN靠岸?请说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37≈0.75.)【分析】(1)过点A作AC⊥OB于点C.可知△ABC为直角三角形.根据勾股定理解答.(2)延长AB交l于D,比较OD与OM+MN的大小即可得出结论.【解答】解:(1)过点A作AC⊥OB于点C.由题意,得OA=60千米,OB=30千米,∠AOC=37°.∴AC=OAsin37°≈60×0.60=36(千米).在Rt△AOC中,OC=OA•cos∠AOC≈60×0.8=48(千米).∴BC=OC﹣OB=48﹣30=18(千米).在Rt△ABC中,AB=.(2)如果该轮船不改变航向继续航行,不能行至码头MN靠岸.理由:延长AB交l于点D.∵∠ABC=∠OBD,∠ACB=∠BOD=90°.∴△ABC∽△DBO,∴,∴,∴OD=60(千米).∵60>58+1,∴该轮船不改变航向继续航行,不能行至码头MN靠岸.【点评】本题考查了解直角三角形的应用,此题结合方向角,考查了阅读理解能力、解直角三角形的能力.计算出相关特殊角和作出辅助线构造相似三角形是解题的关键.16.(2021秋•嘉定区期末)如图,在航线l的两侧分别有两个灯塔A和B,灯塔A到航线l的距离为AC=3千米,灯塔B到航线l的距离为BD=4千米,灯塔B位于灯塔A南偏东60°方向.现有一艘轮船从位于灯塔B北偏西53°方向的N(在航线l上)处,正沿该航线自东向西航行,10分钟后该轮船行至灯塔A正南方向的点C(在航线l上)处.(1)求两个灯塔A和B之间的距离;(2)求该轮船航行的速度(结果精确到0.1千米/小时).(参考数据:,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【分析】(1)根据特殊角三角函数即可解决问题;(2)根据三角函数定义可得CN的长,进而可以求该轮船航行的速度.【解答】解:(1)由题意,得∠ACM=∠BDM=90°,AC=3,BD=4,∠CAM=∠DBM=60°,在Rt△ACM中,,∴cos60°=,∴AM=6,在Rt△BDM中,,∴cos60°=,∴BM=8,∴AB=AM+BM=14千米.答:两个灯塔A和B之间的距离为14千米.(2)在Rt△ACM中,,∴,∴,在Rt△BDM中,,∴, ∴, ∴,在Rt △BDN 中,,由题意,得∠DBN =53°∴, ∴DN =4tan53°,∴,设该轮船航行的速度是V 千米/小时,由题意,得,∴V ≈40.7(千米/小时 ),答:该轮船航行的速度是40.7千米/小时. 【点评】本题考查了解直角三角形的应用中的仰角俯角问题、矩形的判定与性质等知识;掌握仰角俯角定义是解题的关键.【过关检测】一、单选题 九年级假期作业)已知在ABC 中,【答案】B 【分析】过点C 作CD AB ⊥,垂足为D ,根据60A ∠=︒,得出30ACD ∠=︒,进而求得CD ,由已知条件得出CD BD =,进而得出45BCD ∠=︒,即可求解.【详解】解:如图所示,过点C 作CD AB ⊥,垂足为D ,在Rt ADC 中,60A ∠=︒,∴30ACD ∠=︒, ∴sin ,cos CD AD A A AC AC ==sin 602CD =︒∴⨯=11BD AB AD ∴=−=∴CD BD =,在Rt BCD 中,CD BD =45BCD ∴∠=︒75ACB ACD BCD ∴∠=∠+∠=︒故选:B .【点睛】本题考查了解直角三角形,构造直角三角形,掌握直角三角形的边角关系是解题的关键.【答案】D【分析】在直线y=2x 上任取一点P (a ,2a),过点P 作x 轴的垂线,垂足为点B ,则可求得α的正余弦、正余切值,从而可得答案.【详解】如图,在直线y=2x 上任取一点P (a ,2a),过点P作x 轴的垂线,垂足为点B则OB=|a|,PB=2|a| 由勾股定理得:|OPa ==在直角△POB 中,sin 5PB OP α==,cos 5OB OP α===, 2tan =2a PB OB a α==,1cot =22a OB PB a α==故选项D 正确故选:D【点睛】本题考查了正比例函数的图象与性质,锐角三角函数,关键是画出图形,并在直线任取一点,作x 轴的垂线得到直角三角形.【答案】D【分析】先求出120°的补角为60°,然后再把60°放在直角三角形中,所以过点C作CD⊥AB,交BA的延长线于点D,在Rt△ACD中可求出AD与CD的长,最后在Rt△BDC中利用勾股定理求出BC即可解答.【详解】解:过点C作CD⊥AB,交BA的延长线于点D,∵∠BAC=120°,∴∠CAD=180°-∠BAC=60°,在Rt△ACD中,AC=2,∴AD=ACcos60°=2×12=1,CD=ACsin60°=2×∵AB=4,∴BD=AB+AD=4+1=5,∴tanB=CD BD=, 故选:D .【点睛】本题考查了解直角三角形,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键. 4.(2023·上海·九年级假期作业)如图,45ACB ∠=︒,125PRQ ∠=︒,ABC 底边BC 上的高为1h ,PQR 底边QR 上的高为2h ,则有( )A .12h h =B .12h h <C .12h h >D .以上都有可能【答案】B 【分析】由已知可知高所对的斜边都为5,由正弦的定义可得到高关于正弦的表达式,比较正弦值即可得到答案.【详解】解:如图,分别作出两三角形的高12,h h∵45,5ACB AC ∠=︒=∴1sin 455sin 45h AC =⨯︒=︒ ∵125,5PRQ PR ∠=︒=∴()2sin 1801255sin55h PR =︒−︒=︒ ∵sin 55sin 45︒︒>∴21h h > 故选:B .【点睛】本题考查解直角三角形,依题意作高构造直角三角形是解题的关键.5.(2023·上海·九年级假期作业)小杰在一个高为h 的建筑物顶端,测得一根高出此建筑物的旗杆顶端的仰【答案】C 【分析】过A 作AE BC ⊥于E ,在Rt ACE △中,已知了CE 的长,可利用俯角CAE ∠的正切函数求出AE 的值;进而在Rt ABE △中,利用仰角BAE ∠的正切函数求出BE 的长;从而可得答案.【详解】解:如图,过A 作AE BC ⊥于E ,则四边形ADCE 是矩形,CE AD h ==.∵在Rt ACE △中,CE h =,60CAE ∠=︒,∴tan 60CE AE ==︒,∵在Rt ABE △中,30BAE ∠=︒,∴1tan 303BE AE h =︒==,∴1433BC BE CE h h h =+=+=. 即旗杆的高度为43h .故选C .【点睛】本题考查了解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再运用三角函数的定义解题,是中考常见题型,解题的关键是作出高线构造直角三角形.6.(2021·上海·九年级专题练习)如图,把两条宽度都是1的纸条,其中一条对折后再两条交错地叠在一起,相交成角α,则重叠部分的面积是( )【答案】C【分析】根据题意可知:所得图形是菱形,设菱形ABCD,由已知得∠ABE=α,过A作AE⊥BC于E,由勾股定理可求BE、AB、BC的长度,根据菱形的面积公式即可求出所填答案.【详解】解:由题意可知:重叠部分是菱形,设菱形ABCD,则∠ABE=α,过A作AE⊥BC于E,则AE=1,设BE=x,∵∠ABE=α,∴AB=1sin sinAEαα=,∴BC=AB=1sinα,∴重叠部分的面积是:1sinα×1=1sinα.故选:C.【点睛】本题主要考查了菱形的性质,勾股定理,含30°角的直角三角形的性质,菱形的面积公式等知识点,把实际问题转化成数学问题,利用所学的知识进行计算是解此题的关键.二、填空题7.(2023·上海·九年级假期作业)小球沿着坡度为1:1.5i=的坡面滚动了13m,则在这期间小球滚动的水平距离是___________m.【答案】【分析】设高度为x ,根据坡度比可得水平距离为1.5x ,根据勾股定理列方程即可得到答案;【详解】解:设高度为x ,∵坡度为1:1.5i =,∴水平距离为1.5x ,由勾股定理可得,222(1.5)13x x +=,解得:x =∴水平距离为1.5⨯=故答案为:【点睛】本题考查坡度比及勾股定理,解题的关键是根据坡度比得到高度与水平距离的关系.【答案】13【分析】根据斜坡AB 的坡度1i =AB 的值先求出AH ,再根据斜坡AC 的坡度21:2.4i =,求得AC ,即可求解.【详解】解:∵1i =∴tan 3ABH ∠==, ∴30ABH ∠=︒,∴152AH AB ==, ∵21:2.4i =,∴1tan 2.4AH ACB CH ∠==,∵5AH =,∴12=CH ,在Rt ACH 中,13AC ==,故答案为:13.【点睛】本题考查的是解直角三角形的应用,坡度问题,熟知锐角三角函数的定义是解答此题的关键.【答案】10【分析】作BH AC ⊥于H .由四边形ABCD 是矩形,推出OA OC OD OB ===,设5OA OC OD OB a ====,由余切函数,可得4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,求出a 即可解决问题.【详解】解:如图,作BH AC ⊥于H .∵四边形ABCD 是矩形,∴OA OC OD OB ===,设5OA OC OD OB a ====,则10AC a =.∵根据题意得:3cot 4OH BOH BH ∠==, ∴4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,∴1a =,∴10AC =.故答案为10.【点睛】本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题. 10.(2023·上海·九年级假期作业)已知:在ABC 中,60A ∠=︒,45B ∠=︒,8AB =.则ABC 的面积为____(结果可保留根号).【答案】48−【分析】过C 作CD AB ⊥于D ,利用直角三角形的性质求得CD 的长.已知AB 的长,根据三角形的面积公式即可求得其面积.【详解】解:过C 作CD AB ⊥于D ,在Rt ADC 中,90CDA ∠=︒Q ,∴tan tan 60CD DAC AD =∠=︒=即AD 在Rt BDC 中,45B ∠=︒, 45BCD ∴∠=︒, CD BD ∴=.8AB DB DA CD =+==,12CD ∴=−.118(124822ABC S AB CD ∴=⨯=⨯⨯−=−故答案为:48−【点睛】本题考查解直角三角形,直角三角形的性质及三角形的面积公式,熟练掌握通过作三角形的高,构造直角三角形是解题的关键.分别在DEF 的边,ABE 沿直线 【答案】67【分析】根据题意和翻折的性质可得ABCABE 是等腰直角三角形,ABC 是等腰直角三角形,所以AC BE ∥,得23DA AC DE HE ==,设2AC AE x ==,则3HE x =,4AD x =,所以7FE x =,6DE x =,然后根据锐角三角函数即可解决问题.【详解】解:如图所示:90DEF ∠=︒,45EBA ∠=︒,ABE ∴是等腰直角三角形,AE BE ∴=,ABE 沿直线AB 翻折,翻折后的点E 落在DEF 内部的点C ,ABC ∴是等腰直角三角形,∴∥AC BE ,∴23DA AC DE HE ==,FH AD =,设2AC AE x ==,则3HE x =,4AD x =,7FE x ∴=,6DE x =, ∴67DE FE =,6cot 7DE D FE ∴==. 故答案为:67.【点睛】本题考查了翻折变换,解直角三角形,解决本题的关键是掌握翻折的性质. 统考二模)在ABC 中,,那么ABC 的重心到【答案】4【详解】解:如下图所示,设点D 为BC 的中点,点E 为三角形的重心,∵AB AC =,∴AD BC ⊥,∵152BD BC ==,5cos 13B =,cos BD B AB = ∴13AB =,∴12AD ==,∵点E 为三角形的重心,∴21AE ED =, ∴4ED =,∵AD BC ⊥,∴ABC 的重心到底边的距离为4,故答案为:4.【点睛】本题考查解直角三角形、三角形重心的性质和勾股定理,解题的关键是熟知重心到顶点的距离与重心到对边中点的距离之比为2:1. 13.(2023·上海·一模)平面直角坐标系内有一点()1,2P ,那么OP 与x 轴正半轴的夹角为α,tan α=________.【答案】2【分析】过点P 作PA x ⊥轴于点A ,由P 点的坐标得PA 、OA 的长,根据正切函数的定义得结论.【详解】解:过点P 作PA x ⊥轴于点A ,如图:∵点PA x ⊥,∴2PA =,1OA =,∴2an 21t PA OA α===.故答案为:2.【点睛】本题考查了点在平面直角坐标系里的意义及解直角三角形.解决本题的关键是构造直角三角形. 一模)如图,已知在ABC 中, 【答案】95【分析】如图,设AP m =.证明AP MQ m ==,根据3cos cos 5A CMQ =∠=,构建方程求解.。
辅导解直角三角形概念及复习教案及习题附答案
解直角三角形一、知识点讲解:1.解直角三角形的依据在直角三角形ABC中,如果∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,那么(1)三边之间的关系为(勾股定理)(2)锐角之间的关系为∠A+∠B=90°(3)边角之间的关系为2.其他有关公式面积公式:(hc为c边上的高)3.解直角三角形的条件在除直角C外的五个元素中,只要已知其中两个元素(至少有一个是边)就可以求出其余三个元素。
4.解直角三角形的关键是正确选择关系式在直角三角形中,锐角三角函数是勾通三角形边角关系的结合部,只要题目中已知加未知的三个元素中有边,有角,则一定使用锐角三角函数,应如何从三角函数的八个公式中迅速而准确地优选出所需要的公式呢?(1)若求边:一般用未知边比已知边,去寻找已知角的某三角函数(2)若求角:一般用已知边比已知边(斜边放在分母),去寻找未知角的某三角函数。
(3)在优选公式时,尽量利用已知数据,避免“一错再错”和“累积误差”。
5.解直角三角形时需要注意的几个问题(1)在解直角三角形时,是用三角知识,通过数值计算,去求出图形中的某些边的长度或角的大小,这是数形结合为一种形式,所以在分析问题时,一般先根据已知条件画出它的平面或截面示意图,按照图中边角之间的关系去进行计算,这样可以帮助思考,防止出错。
(2)有些图形虽然不是直角三角形,但可添加适当的辅助线把它们分割成一些直角三角形和矩形,从而把它们转化为直角三角形的问题来解决。
(3)按照题目中已知数据的精确度进行近似计算二、例题解析:例1、已知直角三角形的斜边与一条直角边的和是16cm,另一条直角边为8cm,求它的面积,解:设斜边为c,一条直角边为a,另一条直角边b=8cm,由勾股定理可得,由题意,有c+a=16 ,b=8例2、在△ABC中,求:a、b、c的值及∠A。
解:,由直角三角形的边角关系,得,即又∵a+b=3+例3、已知△ABC中,∠C=90°,若△ABC的周长为30,它的面积等于30,求三边长。
【完整版】华师大版九年级上册数学第24章 解直角三角形含答案
华师大版九年级上册数学第24章解直角三角形含答案一、单选题(共15题,共计45分)1、如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB的值为()A.3B.C.D.22、课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB在地面上的影长BC为24米,那么旗杆AB的高度约是()A.12米B. 米C.24米D. 米3、已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为( )A.2a+2b-2cB.2a+2bC.2cD.04、三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.12B.14C.12或14D.以上都不对5、在△ABC中,∠C=90°,BC=2,AB=3,则cosB的值为A. B. C. D.6、如图,在矩形纸片ABCD中,已知AB=,BC=1,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE折叠,得到多边形AFGE,点B,C的对应点分别为点F、G.在点E从点C移动到点D的过程中,则点F运动的路径长为()A.πB. πC. πD. π7、在Rt△ABC中,∠C=90°,AB=13,AC=12,则sinB的值是()A. B. C. D.8、已知锐角α,且sinα=cos38°,则α=()A.38°B.62°C.52°D.72°9、已知sinA= ,那么锐角等于()A.15°B.30°C.45°D.60°10、已知两条线段的长度分别为2cm、8cm,下列能与它们构成三角形的线段长度为()A.4cmB.6cmC.8cmD.10cm11、在△ABC中,若,则∠C的度数为( )A.30°B.60°C.90°D.120°12、下列长度的三条线段能组成三角形的是()A.1,2,3B.3,4,5C.3,1,1D.3,4,713、如图,是屋架设计图的一部分,立柱BC垂直于横梁AC,AB=12m,∠A=30°,则立柱BC的长度为()A.4 mB.6 mC.8 mD.12 m14、平行四边形的对角线分别为x、y,一边长为 12,则x、y 的值可能是()A.8 与 14B.10 与 14C.18 与 20D.4 与 2815、如图是某河坝横断面示意图,迎水坡,为背水坡,过点A作水平面的垂线,设斜坡的坡度为,坡角为,斜坡的坡度为,坡角为,则下列结论正确的是( )A. B. C. D.二、填空题(共10题,共计30分)16、将一副三角尺如图所示叠放在一起,若 AB=4 cm,则阴影部分的面积是________cm217、如图,将矩形绕点旋转至矩形位置,此时的中点恰好与点重合,交于点.若=1,则矩形的面积为________.18、纸片中,,将它折叠使与重合,折痕交于点,则线段的长为________.19、如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋楼底部的俯角为60°,热气球A与楼的水平距离为120 m,这栋楼的高度BC是________m(≈1.732,结果取整数).20、如图,在△ABC中,已知BC=5,,∠C=30°,EF 垂直平分BC,点 P 为直线EF上一动点,则 AP+BP 的最小值是________.21、在等腰△ABC中,AB=AC,如果cosC=,那么tanA=________.22、如图,Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AC=4,BC=3,则∠DCB的正切值为________.23、如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC.若DE=1,则BC的长是________.24、在Rt△ABC中,∠C=90°,AC=5,BC=12,则sinA=________25、如图一张长方形纸片ABCD,其长AD为a,宽AB为b(a>b),在BC边上选取一点M,将△ABM沿AM翻折后B至B′的位置,若B′为长方形纸片ABCD的对称中心,则的值为________.三、解答题(共5题,共计25分)26、计算:.27、为缓解“停车难”问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图.按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入.(其中AB=9m,BC=0.5m)为标明限高,请你根据该图计算CE.(精确到0.1m)(参考数值,,)28、在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,且a= ,b= ,求这个直角三角形的其他元素。
九年级同步第13讲:解直角三角形的应用-教师版
ABCDE F12 3【例1】 如图,90C DEB ∠=∠=︒,FB // AC ,从A 看D 的仰角是______;从B 看D 的俯角是______;从A 看B 的______角是______;从D 看B 的______角是______.【难度】★【答案】2∠;3∠;仰;1∠;仰;3∠. 【解析】考查仰角、俯角的基本定义.【例2】 升国旗时,某同学站在离旗杆底部24米处行注目礼.当国旗升至旗杆顶端时,该 同学视线的仰角为30°.若双眼离地面1.5米,则旗杆的高度为______米.(用含根号的式子表示)【难度】★ 【答案】2338+. 【解析解:如图所示,AB 为旗杆,CD 为某同学. 则24==CA DE ,5.1==AE CD ,30BDE ∠=︒,在BDE Rt △中,DE BEBDE =∠tan ,∴2433BE=, ∴38=BE ,∴2338+=+=EB AE AB . 【总结】本题主要考查锐角三角比的实际应用以及对仰角的理解.例题解析ABC D 【例3】 如图,两建筑物水平距离为a 米,从点A 测得点C 的俯角为α,测得点D 的俯角 为β,则较低建筑物CD 的高为( )A .a 米B .(tan a αg )米C .tan a α米D .(tan tan )a αβ-米【难度】★ 【答案】D【解析】过C 作CE ⊥AB ,垂足为E . 由题意有:a BD CE ==,α=∠ACE ,β=∠ADB 在ACE Rt △中,CE AE ACE =∠tan , ∴αtan a AE =在ABD Rt △中,BDABADB =∠tan , ∴βtan a AB =∴()βαβαtan tan tan tan -=-=-==a a a AE AB BE DC【总结】本题主要考查锐角三角比的实际应用以及对俯角的理解.【例4】 如图,河对岸有一座铁塔AB ,若在河这边C 、D 处分别用测角仪器测得顶部A 的仰角为30°、45°,已知CD = 30米,求铁塔的高.(结果保留根号)【难度】★★ 【答案】15315+.【解析】解:由题意可得:︒=∠30ACB ,︒=∠45ADB . 设x AB =,则x BD =,在ABC Rt △中,BC AB ACB =∠tan ,∴3330=+x x ,解得:15315-=x . 【总结】本题主要考查锐角三角比的实际应用以及对仰角的理解.AB CDEABCDAB CDE【例5】 如图,热气球的探测器显示,从热气球看一栋高楼顶部的仰角为60°,看这栋高楼 底部的俯角为30°,热气球与高楼的水平距离为120m ,请问:这栋高楼有多高?(结果精确到0.1m )【难度】★★ 【答案】277.1米.【解析】解:由题意可得:︒=∠60BAD ,︒=∠30CAD ,120=AD在ABD Rt △中,AD BDBAD =∠tan ,∴1203BD=,∴3120=BD . 在ACD Rt △中,AD CDCAD =∠tan ,∴12033CD=,∴340=CD . ∴1.27731603403120≈=+=+=CD BD BC【总结】本题主要考查锐角三角比的实际应用以及对仰角、俯角的理解和运用.【例6】 如图,某幢大楼顶部有一块广告牌CD ,甲、乙两人分别在相距8米的A 、B 两处 测得点D 和点C 的仰角为45°和60°,且A 、B 、E 三点在一条直线上,若BE = 15米,3 1.73≈,计算结果保留整数)【难度】★★ 【答案】3【解析】解:由题意可得:︒=∠60CBE ,︒=∠45ADE ,在CBE Rt △中,BE CECBE =∠tan ,∴153CE=,∴315=CE 在AED Rt △中,AEDEDAE =∠tan ,∴1581+=DE,∴23=DE . ∴323315≈-=-=ED EC CD .【总结】本题主要考查锐角三角比的实际应用以及对仰角的理解和运用.【例7】 某高层建筑物图中AB 所示,小明家住在高层建筑物附近的“祥和”大厦(图中 CD 所示),小明想利用所学的有关知识测量出高层建筑物AB 的高度.他先在自己家 的阳台(图中的Q 点)测得AB 的顶端(点A )的仰角为37°,然后来到楼下,由于附 近建筑物影响测量,小明向AB 方向走了84米,来到另一座高楼的底端(图中的点P 处),测得点A 的仰角为45°.已知点C 、P 、B 在一条直线上,小明家的阳台距地面60米,请你画出示意图,并根据上述信息求出AB 的高度.(参考数据:sin370.6︒=,cos370.8︒=,tan370.75︒=) 【难度】★★★ 【答案】492米.【解析】过Q 作AE ⊥AB ,垂足为E . 解:由题意可得:︒=∠37AQE ,︒=∠45APB , 60=CQ ,84=PC .设x BA =,则x PB = 在AQE Rt △中,QEAEAQE =∠tan , ∴xx+-=846075.0,∴492=x .【总结】本题综合性较强,需要认真分析题目中的条件,然后利用锐角三角比解决实际问题.ABC D P QE【例8】 如图,为某小区的两幢10层住宅楼,由地面向上依次为第1层、第2层、…、第 10层,每层的高度为3米,两楼间的距离AC = 30米.现需了解在某一时间段内,甲 楼对乙楼采光的影响情况.假设某一时刻甲楼楼顶B 落在乙楼的影子长EC = h ,太阳光线与水平线的夹角为α.(1)用含α的式子表示h ;(2)当α= 30°时,甲楼楼顶B 的影子落在乙楼的第几层?从此时算起,若α每小时增加10°,约几小时后,甲楼的影子刚好不影响乙楼采光.(结果精确到0.01)【难度】★★★【答案】(1)αtan 3030-=h ;(2)第4层,6小时.【解析】解:(1)由题意可得:30103=⨯=AB . 过E 作FE ⊥AB ,垂足为F .在BEF Rt △中,EFFBBEF =∠tan ,∴tan 30FBα=,∴αtan 30=BF .∴αtan 3030-=-==AF AB AF EC . (2)如图2,30==AC AB , ∴︒=∠45BCA∵若α每小时增加10°, ∴()5.1103045=÷-.∴需要1.5小时才能从30°到90°.【总结】本题综合性较强,需要认真分析题目中的条件,然后利用锐角三角比解决实际问题.BD甲 楼乙 楼太阳光EF北北偏东30°南偏西45°北偏西70°南偏东50°30° 70° 45° 50°1、 方向角指北或指南方向线与目标方向线所成的小于90°的角叫做方向角. 如图:北偏东30°,北偏西70°,南偏东50°,南偏西45°.【例9】 如果由点A 测得点B 在北偏东15°的方向,则由B 测点A 的方向为( )A .北偏东15°B .北偏西75°C .南偏西15°D .南偏东75°【难度】★ 【答案】B【解析】考查方向角的定义.【例10】 如图,小明从A 地沿北偏东30°方向走1003米到B 地,再从B 地向正南方向走200米到C 地,此时小明离A 地_____米.【难度】★ 【答案】100.【解析】解:由题意可知:︒=∠30ABD在ADB Rt △中,AB ADABD =∠cos ,∴310033BD =,∴150=BD ,35022=-=DB AB AD . 知识精讲例题解析A BC东南西D∴50150200=-=-=BD BC CD .∴10022=+=CD AD AC .【总结】本题主要考查对方位角的准确理解和运用.【例11】 如图,一艘轮船由海平面上A 地出发向南偏西40°的方向行驶40海里到达B地,再由B 地向北偏西20°的方向行驶40海里到达C 地,则A 、C 两地相距( ) A .30海里 B .40海里C .50海里D .60海里【难度】★ 【答案】B【解析】解:∵AB BC =,︒=∠60ABC ∴ABC △为等边三角形.∴40=AC .【总结】本题主要考查利用方位角解决实际问题.【例12】 在位于O 处某海防哨所的北偏东60°相距6海里的A 处,有一艘快艇正向正南方向航行,经过一段时间快艇到达哨所东南方向的B 处,则A 、B 间的距离是______海里.(精确到0.1海里,2 1.414≈,3 1.732≈)【难度】★★ 【答案】5.5.【解析】解:由题意可知:6=OA ,︒=∠30AOC ,︒=∠45BOC在AOC Rt △中,AO ACAOC =∠sin ,∴216=AC ,∴3CA =,3322=-=AC AO OC . ∴33==CO BC .∴5.5333≈+=+=BC AC AB .【总结】本题主要考查利用方位角解决实际问题.北 北 ABC【例13】 如图,一艘海轮位于灯塔P 的北偏东65°方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东34°方向上的B 处,请问,此时,海轮所在的B 处距离灯塔P 有多远?(精确到0.01海里,cos250.91︒≈,sin340.559︒≈)【难度】★★ 【答案】130.23.【解析】解:在APC Rt △中,APPCAPC =∠cos , ∴8091.0PC=,∴8.72=PC 在BPC Rt △中,BPPCCBP =∠sin ,∴BP8.72559.0=,∴23.130=PB . 【总结】本题主要考查利用方位角解决实际问题.【例14】 如图,A 、B 为湖滨的两个景点,C 为湖心一个景点.景点B 在景点C 的正东方向,从景点A 看,景点B 在北偏东75°方向,景点C 在北偏东30°方向.一游客自景 点A 驾船以20米/分的速度行驶了10分到达景点C ,之后又以同样的速度驶向景点B ,该游客从景点C 到景点B 需用多长时间?(tan75 3.732︒≈,精确到1分)【难度】★★ 【答案】27分.【解析】过A 作AD ⊥BC 的延长线于D . 由题意可得:︒=∠75BAD ,︒=∠30DAC ,2002010=⨯=AC .在ADC Rt △中,ACDCCAD =∠cos , ∴20023AD=,∴3100=AD ,100=DC 在ABD Rt △中,DABDBAD =∠tan ,∴3100732.3BD=,∴32.373=DB∴3824.64610032.373≈-=-=CD BD BC东南西北ABPCABC东北D∴2731.27203824.646≈==t .【总结】本题主要考查利用方位角解决实际问题.【例15】 如图,某船以36海里/时的速度向正东方向航行,在点A 测得某岛C 在北偏东60°方向上,航行半小时后到达点B ,测得该岛在北偏东30°方向上,已知该岛周围16海里内有暗礁.(1)试说明点B 是否在暗礁区域外?(2)若继续向东航行有无触礁危险?请说明理由. 【难度】★★【答案】(1)B 在暗礁区外;(2)有危险. 【解析】解:(1)由题意可得:︒=∠30CAB ,︒=∠60CBD ,182136=⨯=AB .∴︒=︒-︒=∠-∠=∠303060CAB CBD ACB , ∴ACB CAB ∠=∠ ∴1618>==BC AB∴B 在暗礁区外.(2)在BDC Rt △中,BCDCBCD =∠cos , ∴1823CD=,∴16188.1539<≈=CD∴若继续向东航行有触礁危险.【总结】本题主要考查利用方位角解决实际问题,注意在触礁问题中的最小距离指的是垂直距离.东A B CD【例16】 如图,AC 是某市环城路的一段,AE 、BF 、CD 都是南北方向的街道,其与环城路AC 的交叉路口分别是A 、B 、C .经测量,花卉世界D 位于点A 的北偏东45°方向、点B 的北偏东30°方向上,AB = 2千米,15DAC ∠=︒.(1)求B 、D 之间的距离; (2)求C 、D 之间的距离. 【难度】★★【答案】(1)2;(2)332. 【解析】解:(1)由题意得:︒=∠45EAD , ︒=∠30DBF .∵FB AE ∥∴︒=∠=∠60EAB FBC ∴︒=∠30DBC ∵15DAC ∠=︒ ∴︒=∠15ADB ∴DAB ADB ∠=∠∴2==AB BD(2)∵CD AE ∥ ∴︒=∠=∠45ADC EAD ∴︒=∠30BDC过C 作CG ⊥BD ,垂足为G 在GDC Rt △中,DCDGBDC =∠cos , ∴CD123=,∴332=CD .【总结】本题主要考查利用方位角解决实际问题,要注意认真分析题意.ABCDE F和平路 文化路中山路G11 / 32【例17】 如图,甲、乙两只捕捞船同时从A 港出海捕鱼,甲船以每小时152千米的速度沿北偏西60°的方向前进,乙船以每小时15千米的速度沿东北方向前进,甲船航行2 小时到达C 处,此时甲船发现渔具丢在乙船上,于是甲船加快速度(匀速)沿北偏东75°的方向追赶,结果两船在B 处相遇.(1) 甲船从C 处追赶上乙船用了多少时间?(2) 求甲船加快速度后,追赶乙船时的速度?(结果保留根号) 【难度】★★★【答案】(1)4小时;(2)231515+. 【解析】解:由题意可得:︒=∠45BCA , ︒=∠105BAC ,︒=∠30B , 2302215=⨯=AC .在ACD Rt △中,AC ADBCA =∠sin ,∴23022AD =, ∴30=AD , ∴30==AD CD ,602==AD AB ,330=BD . ∴(1)41560=÷=t ;(2)()231515433030+=÷+=v . 【总结】本题主要考查利用方位角解决实际问题,要注意认真分析题意.东东北 ABCD12 / 32【例18】 如图,在航线l 的两侧分别有观测点A 和B ,点A 到航线l 的距离为2千米,点B 位于点A 北偏东60°方向且与点A 相距10千米处.现有一艘轮船从位于点B 南偏 西76°方向的C 处,正沿该航线自西向东航行,5分钟后该轮船行至点A 正北方向的点D 处.(1)求观测点B 到航线l 的距离;(2)求该轮船航行的速度.(结果精确到0.1千米/时)(参考数据:3 1.73≈,sin760.97︒≈,cos760.24︒≈,tan76 4.01︒≈)【难度】★★★【答案】(1)3;(2)40.4.【解析】解:(1)由题意有:2=AD ,︒=∠30BAH .在BAH Rt △中,521==AB BH ,3522=-=BH AB AH ,∴325=-=-=-=AD BH FH BH BF .(2)在BCF Rt △中,BF CFCBF =∠tan ,∴301.4CF=,∴03.12=CF . ∴3503.12-=-=-=AH CF DF CF CD .∴()()112.03535min 12.035340.4/12v km km h km h =-÷=-÷≈. 【总结】本题主要考查利用方位角解决实际问题,要注意认真分析题目中给出的条件.ABC D E l东北F H13 / 32ABCDABC【例19】 某人沿着坡度为3 : 4的斜坡前进了10米,则他所在的位置比原来的位置升高______米.【难度】★ 【答案】6.【解析】考查坡度的定义.【例20】 某铁路路基的横断面是等腰梯形,其上底为10米,下底为13.6米,高1.2米,则腰面坡角的正切值为______.【难度】★ 【答案】32.【解析】考查等腰梯形双高的辅助线.【例21】 如图,坡角为30°的斜坡上两树间的水平距离AC 为2米,则两树间的坡面距离AB 为( )A .4米B 3C 43D .43米【难度】★ 【答案】C【解析】考查坡角的定义.【例22】 如图,燕尾槽的横断面中,槽口的形状是等腰梯形,其外口宽AD = 15毫米,槽的深度为12毫米,B 的正切值为43,则它的里口宽BC = ______.【难度】★★14 / 32【答案】33毫米.【解析】考查等腰梯形双高的辅助线.【例23】 河堤横断面是梯形,上底为4米,堤高为6米,斜坡AD 的坡度为1 : 3,斜坡CB 的坡角为45°,则河堤横断面的面积为______平方米.【难度】★★ 【答案】96.【解析】考查坡角的基本定义.【例24】 如图,一个大坝的横断面是一个梯形ABCD ,其中坝顶AB = 3米,经测量背水坡AD = 20米,坝高10米,迎水坡BC 的坡度i = 1 : 0.6,求迎水坡BC 的坡角C ∠的余切值和坝底宽CD .【难度】★★【答案】53;3109+.【解析】过A 、B 作AE ⊥CD ,BF ⊥CD .由题意可得:356.01tan ==C ,10==BF AE ,∴5316.0cot ==C . 在BCF Rt △中,CFBFC =∠tan , ∴CF1035=,∴6=CF .在ADE Rt △中,31022=-=AE AD DE ,ABCDE F15 / 32ABCD∴931063310+=++=++=FC EF DE CD .【总结】本题主要考查坡脚和坡比的概念.【例25】 如图,某村开挖一条长1600米的水渠,渠道的横断面为等腰梯形,渠道深0.8米,下底宽1.2米,坡度为1 : 1.求一共挖土多少立方米?【难度】★★ 【答案】2560. 【解析】()6.18.02.18.221=⨯+⨯=ABCD S 梯形,256016006.1=⨯=V .【总结】考查等腰梯形双高辅助线的做法和坡度的基本定义.【例26】 如图,小杰发现垂直地面的旗杆AB 的影子落在地面和斜坡上,影长分别为BC 和CD ,经测量得BC =10米,CD =10米,斜坡CD 的坡度为1:3i =,且此时测得垂直于地面的1米长标杆在地面上影长为2米,求旗杆AB 的长度.(答案保留整数,其中10 3.2≈) 【难度】★★ 【答案】13.【解析】解:延长AD 和BC 交于点E ,过D 作DF ⊥BE .由题意可知:31tan =∠DCF ,21tan =E .在DCF Rt △中,CF DF DCF =∠tan ,∴CF DF=31.设x DF =,x CF 3=,则()101032222==+=+=x x x FC FD DC ,∴10=x .∴10=DF ,103=CF .AB CDEF16 / 32在DEF Rt △中,EFDFE =∠tan , ∴EF1021=,∴102=EF 在ABC Rt △中,EBABE =∠tan ,∴1021031021++=AB ,∴1351025≈+=AB . 【总结】本题主要考查利用坡脚和坡比的概念以及锐角三角比的相关概念解决实际问题.【例27】 如图,斜坡AP 的坡度为1:2.4,坡长AP 为26米,在坡顶A 处的同一水平面上有一座古塔BC ,在斜坡底P 处测得该塔的塔顶B 的仰角为45°,在坡顶A 处测得该塔的塔顶B 的仰角为76°.求:(1)坡顶A 到地面PQ 的距离;(2)古塔BC 的高度.(结果精确到1米)(参考数据:sin760.97︒≈,cos760.24︒≈,tan76 4.01︒≈)【难度】★★【答案】(1)10;(2)19.【解析】解:延长BC 交PQ 于点E ,过A 作AD ⊥PQ由题意可知:︒=∠76BAC ,︒=∠45BPE1254.2:1tan ==∠APD .在APD Rt △中,PD DA APD =∠tan ,∴PD DA=125.设x DA 5=,x PD 12=, 则()()26131252222==+=+=x x x PD AD PA ,∴2=x .∴10=DA ,24=PD . 在BAC Rt △中,AC BC BAC =∠tan ,∴ACBC=01.4 设x CA =,x BC 01.4=,ABCPQD E17 / 32ABCDE F G H 在PBE Rt △中,EPEBBPE =∠tan , ∴241001.41++=x x ,∴65.4=x .∴1901.4≈=x BC .【总结】本题主要考查利用坡脚和坡比的概念以及锐角三角比的相关概念解决实际问题.【例28】 如图,某堤坝的横截面是梯形ABCD ,背水坡AD 的坡度i 为1 : 1.2,坝高为5米.现为了提高堤坝的防洪能力,市防汛指挥部决定加固堤坝,要求坝顶CD 加宽1米,形成新的背水坡EF ,其坡度为1 : 1.4,已知堤坝总长度为4000米.(1)求完成该工程需要多少立方米的土?(2)该工程由甲、乙两个工程队同时合作完成.按原计划需要20天.准备开工前接到上级 通知,汛期可能提前,要求两个工程队提高工作效率,甲队工作效率提高30%,乙队 工作效率提高40%,结果提前5天完成.问这两个工程队原计划每天各完成多少立方米?【难度】★★★【答案】(1)30000;(2)甲:1000;乙:500.【解析】由题意可知:652.1:1tan ==∠DAG ,754.1:1tan ==∠EFG .在AGD Rt △中,AGDG DAG =∠tan ,∴AG565=,∴6=AG . ∴516=-=-=GH AG AH . 在EFH Rt △中,FHEHEFG =∠tan , ∴FH575=,∴7=FH . ∴257=-=-=AH FH AF . ∴()()2155212121=⋅+=⋅+=EH AF ED S EDAF 梯形.∴300004000215=⨯=V . (2)设原计划甲工程队每天完成x 立方米,乙工程队每天完成y 立方米,18 / 32则根据题意可得:()()()()⎩⎨⎧=+++-=+30000]401301[5203000020y x y x %%,解得:⎩⎨⎧==5001000y x .∴原计划甲工程队每天完成1000立方米,乙工程队每天完成500立方米.【总结】本题主要考查利用坡脚和坡比的概念以及锐角三角比的相关概念解决实际问题. 【例29】 如图所示,在风景区观测塔高时,塔的底部不能直接到达.测绘员从观景台(横截面为梯形ABCD )的底部A 沿坡面AB 方向走30米到达顶部B 处,用测角仪(测角 仪的高度忽略不计)在点B 处测得塔顶E 的仰角是45°,沿BC 方向走20米到达点C 处 测得塔顶E 的仰角是60°.已知坡面AB 的坡度是1:3,根据上述测量数据能否求出塔高?若能,请求出塔高(精确到1米);若不能,说明还需测出哪些量才能求出塔高.【难度】★★★ 【答案】能,62米.【解析】由题意可知:︒=∠45EBC ,︒=∠60ECG .333:1tan ==∠BAD . 过B 作BH ⊥AD . 在ECG Rt △中,CGEG ECG =∠tan ,∴31EGCG =.设x CG =,x EG 3=, 在EBG Rt △中,BGEGEBG =∠tan , ∴BGEG=1. ∴2031+=x x,∴31010+=x . ∵333:1tan ==∠BAD , ∴︒=∠30BAC .∴1521==AB BH .∴6231045153≈+=+=+=x GF EG EF .【总结】本题主要考查利用坡脚和坡比的概念以及锐角三角比的相关概念解决实际问题,注AB C DEFGH19 / 32意认真分析题目中的条件,分析清楚仰角分别指的是哪个角.【例30】 如图,小智所住的楼房在一个不高的斜坡EF 上,楼房旁边不远处有一棵笔直而垂直于水平地面BE 的大树HD .小智想要测量这棵大树HD 的高度.在下午的某个 时刻,他观察到这棵大树树梢H 的影子落在楼房的外墙面上的点G 处.同时,他又观 察到在大树旁边有一根笔直而垂直于水平地面BE 的木柱AB ,它在水平地面BE 上的影 子BC 也清晰可见.小智通过测量得到以下一些数据:AB = 1.6米,BC = 3.2米,DE =7.2米,EF = 2.6米,斜坡EF 的坡度i =1 : 2.4,FG = 1.6米.试求大树HD 的高.【难度】★★★ 【答案】7.4米.【解析】解:由题意可得:12:54.2:1tan ==∠FEN ,212.36.1tan tan ===∠=∠BC AB ACB HGM过F 作FM ⊥HD ,过F 作FN ⊥DN在EFN Rt △中,EN FN FEN =∠tan ,∴EN FN=125.设x FN 5=,x EN 12=, ∴则()()6.2131252222==+=+=x x x EN FN EF ,∴2.0=x .∴1=FN ,4.2=EN .∴6.94.22.7=+=+==EN DE DN MG .在HGM Rt △中,MG HMHGM =∠tan ,∴6.921HM =,∴8.4=HM .∴4.716.18.4=++=++=+=FN GF HM MD HM HD .【总结】本题主要考查利用坡脚和坡比的概念以及锐角三角比的相关概念解决实际问题,注意认真分析题目中的条件.A B CDEF GHM N随堂检测【习题1】某飞机在离地面1200米的上空测得地面控制点的俯角为60°,此时飞机与该地面控制点之间的距离是______米.【难度】★800.【答案】3【解析】考查俯角的定义.【习题2】一船在海上点B处沿南偏东10°方向航行到点C处,这时在小岛A测得点C 在南偏西80°方向,则=______.ACB【难度】★【答案】90°【解析】考查方向角的定义.【习题3】某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为25米,则这个坡面的坡度为______.【难度】★【答案】1:2【解析】考查坡度的定义.20/ 32AB CDE【习题4】 如图,已知楼房AB 高50米,铁塔塔基距楼房房基间的水平距离BD = 50米, 塔高DC 150503+ ) A .由楼顶望塔顶仰角为60° B .由楼顶望塔基俯角为60° C .由楼顶望塔顶仰角为30°D .由楼顶望塔基俯角为30°【难度】★★ 【答案】C .【解析】解:由图可知:50====AE DE DB AB , ∴3350503350150=-+=-=ED CD EC . 在ACE Rt △中,33503350tan ===∠AE CE CAE ,∴︒=∠30CAE .∴由楼顶望塔顶仰角为30°.【总结】本题主要考查利用已知条件解直角三角形,再利用锐角三角比的值求出角的度数.【习题5】 A 港在B 地的正南103A 港开出向西航行,某人第一次 在B 处望见该船在南偏西30°,半小时后,有望见该船在南偏西60°,则该船速度为______.【难度】★★ 【答案】40h km /.【解析】解:在ACB Rt △中,ABAC CBA =∠tan ,∴33310=CA ,解得:10=CA . 在ADB Rt △中,ABAD DBA =∠tan ,∴3310=DA ,解得:30=DA .∴201030=-=-=AC AD CD ,∴402120=÷=v . 【总结】本题主要考查利用方位角解决实际问题.DABCNM 【习题6】 如图,一架飞机在高度为5千米的点A 时,测得前方的山顶D 的俯角为30°, 水平向前飞行2千米到达点B 时,又测得山顶D 的俯角为45°,求这座山的高度DN .(结果可保留根号)【难度】★★ 【答案】43-米.【解析】解:由题意可得:5==CN AM , 2=AB ,︒=∠30CAD ,︒=∠45CBD .设x CD =,则x BC =.在ACD Rt △中,tan DC CAD AC ∠=,∴233+=x x,解得:13+=x , ∴()34135-=+-=-=CD CN DN .【总结】本题主要考查利用仰角和俯角的有关概念解决实际问题.【习题7】 小岛B 正好在深水港口A 的东南方向,一艘集装箱货船从港口A 出发,沿正 东方向以每小时30千米的速度行驶,40分钟后在C 处测得小岛B 在它的南偏东15°方向,求小岛B 离深水港口A 的距离.(精确到0.1千米)(参考数据:2 1.41≈,6 2.45≈,sin150.26︒≈,cos150.97︒≈,tan150.27︒≈) 【难度】★★ 【答案】38.6千米.【解析】解:由题意可得:203230=⨯=AC , ︒=∠45CAB ,︒=∠30B .过C 点作CD ⊥AB .在ACD Rt △中,ACDC CAD =∠sin ,∴2022CD=,解得:210=CD ,∴210==CD AD .在BCD Rt △中,BDDCB =tan ,∴BD 21033=,解得:610=BD . ∴6.38610210≈+=+=BD AD AB . 【总结】本题主要考查利用方位角解决实际问题.ABC北 北 D【习题8】 如图,以水库大坝横断面是梯形ABCD ,坝顶宽6米,坝高23米,斜坡AB的坡度1:3AB i =,斜坡CD 的坡度1:2.5CD i =.(1)求斜坡AB 和坝底AD 的长度;(2)若要把坝宽增加3米,同时背水坡AB 的坡度AB i 由原来的1 : 3变为1 : 5,请求出大坝横断面的面积增加了多少平方米.【难度】★★【答案】(1)1023,132.5;(2)598. 【解析】解:由题意可得: 6=BC ,23==CF BE ,31tan =A ,525.21tan ==D .在ABE Rt △中,AEBE A =tan ,∴AE2331=,解得:69=AE . ∴102369232222=+=+=AE BE AB . 在CDF Rt △中,DFCF D =tan ,∴DF 2352=,解得:2115=DF .∴5.1322115669=++=++=FD EF AE AD . (2)由(1)可得:66369=-=-=ME AE AM .在HGM Rt △中,HM GM H =tan , ∴HM2351=,∴115=HM . ∴4966115=-=-=AM HM AH .∴()()598234932121=⋅+=⋅+=GM AH GB S GHAB 梯形.【总结】本题主要考查利用坡度来解决实际问题,注意对题目中条件的认真分析.ABCDEFCD F G H【习题9】 某城市规划期间,欲拆除河岸边的一根电线杆AB (如图),已知距电线杆AB 水平距离14米处是河岸,即BD = 14米,该河岸的坡面CD 的坡比为1 : 2,岸高CF 为2米,在坡顶C 处测得杆顶A 的仰角为30°,D 、E 之间是宽2米的人行道,请你通 过计算说明在拆除电线杆AB 时,为确保安全,是否需要将此人行道封上?(在地面上以点B 为圆心,以AB 长为半径的圆形区域为危险区域)【难度】★★★【答案】不需要将此人行道封上. 【解析】解:由题意可知:︒=∠30ACG ,21tan =D .在Rt CDF △中,DF CF D =tan ,∴DF221=,解得:4=DF , ∴52422222=+=+=DF CF CD . ∴18414=+=+=DF BD BF .在AGC Rt △中,GC AG ACG =∠tan ,∴1833AG=,解得:36=AG , ∴392.12236≈+=+=GB AG AB . ∴BD AB <.∴不需要将此人行道封上.【总结】本题主要考查利用坡度来解决实际问题,注意对题目中条件的认真分析.【习题10】 如图,小唐同学在操场上放风筝,风筝从A 处起飞,一会儿便飞抵C 处,此 时,在AQ 延长线B 处的小宋同学,发现自己的位置与风筝和旗杆PQ 的顶点P 在同一直线上.(1)已知旗杆高为10米,若在B 处测得旗杆顶点P 的仰角为30°,A 处测得点P 的仰角为45°,试求A 、B 之间的距离;(2)此时,在A 处背向旗杆又测得风筝的仰角为75°.若绳子在空中视为一条线段,求绳子AC 约为多长?(结果保留根号)【难度】★★★ 【答案】65215+.【解析】解:(1)由题意可知:︒=∠30B , ︒=∠45PAQ ,10=PQ .在PBQ Rt △中,BQPQB =tan ,∴BQ1033=,解得:310=BQ , ∵10==PQ AQ ,∴10310+=+=QA BQ AB . (2)由题意有:︒=∠75CAD ∴︒=︒-︒=∠453075C . 过A 作AE ⊥BC ,在ABE Rt △中,ABAE B =sin ,∴3101023+=AE ,解得:1535+=AE ,在ACE Rt △中,ACEA C =sin ,∴AC351522+=,解得:65215+=AC . 【总结】本题综合性较强,主要是利用已知条件,结合仰角和俯角的运用解直角三角形.BCDPE【作业1】 身高相同的三个小朋友甲、乙、丙放风筝,他们放出的线长分别为300米,250 米,200米,线与地面所成的角度分别为30°,45°,60°(假设风筝线是拉直的),则 三人所放的风筝( )A .甲的最高B .乙的最低C .丙的最低D .乙的最高【难度】★ 【答案】D .【解析】由仰角的定义和解直角三角形可得:甲的风筝离地面150米,乙的风筝离地面 2125米,丙的风筝离地面3100米.∵150********>>∴乙的风筝最高.【总结】本题主要考查方位角的概念以及特殊角的锐角三角比的值.【作业2】 小明在东西方向是沿江大道A 处,测得江中灯塔P 在北偏东60°方向上,在A 处正东400米的B 处,测得江中灯塔P 在北偏东30°方向上,则灯塔P 到沿江大道的距离为______米.【难度】★ 【答案】3200.【解析】解:由题意可知:︒=∠30PAB ,︒=∠120PBA . ∴︒=∠30APB ∴APB PAB ∠=∠ ∴400==PB AB过P 作PC ⊥AB ,垂足为C 在PBC Rt △中,PBPCPBC =∠sin , ∴40023PC=∴3200=PC .【总结】本题主要考查方位角的概念及运用.课后作业【作业3】 某人从地面沿着坡度1:3i =的山坡走了100米,这时他离地面的高度是______米.【难度】★ 【答案】50【解析】考查坡度的定义和解直角三角形.【作业4】 如图,一渔船上的渔民在A 处看见灯塔M 在北偏东60°的方向,这艘渔船以 28海里/时的速度向正东航行,半小时到达B 处,在B 处看见灯塔M 在北偏东15°的方 向,此时灯塔M 与渔船的距离是( )A .14海里B .142海里C .7海里D .72海里【难度】★★ 【答案】D【解析】解:由题意有:︒=∠30MAB ,︒=∠105ABM ,142128=⨯=AB .∴︒=∠45M .过B 作BC ⊥AM ,垂足为C在ABC Rt △中,721==AB BC ;在MBC Rt △中,MBBCM =sin , ∴722MB=.∴27=MB .【总结】本题主要考查利用方位角结合锐角三角比解决实际问题.A BM北东C【作业5】 如图,在同一地面上有甲、乙两幢楼AB 、CD ,甲楼AB 高10米,从甲楼AB 的楼顶测得乙楼CD 的楼顶C 的仰角为30°,从乙楼CD 的楼顶C 拉下的节日庆典条幅 CE 与地面所成的角为60°,这时条幅与地面的固定点E 到甲楼B 的距离为24米,求条幅CE 的长度.【难度】★★【答案】24310+米.【解析】解:由题意可知:︒=∠30CAF ,︒=∠60CED 设x CE 2=,则x ED =,x CD 3=在ACF Rt △中,AF CF CAF =∠tan ,∴xx +-=2410333, ∴1235+=x .∴243102+==x CE .【总结】本题主要考查利用仰角和俯角的相关概念结合锐角三角比解决实际问题.AB CDEF【作业6】 如图,水坝的横截面是梯形ABCD ,上底AD = 4米,坝高3AM DN ==米,斜坡AB 的坡比11:3i =,斜坡DC 的坡比21:1i =.(1)求坝底BC 的长;(结果保留根号)(2)为了增加水坝的抗洪能力,在原来的水坝上增加高度,使得水坝的上底2EF =米,求水坝增加的高度.(精确到0.1米,参考数据3 1.73≈)【难度】★★【答案】(1)733+;(2)0.7米.【解析】解:(1)在MBA Rt △中,MBAMB =tan , ∴BM331=,∴33=MB . 在DNC Rt △中,NCDNC =tan , ∴NC31=,∴3=NC .∴7333433+=++=++=NC MN BM BC .(2)在EGB Rt △中,BG EGB =tan ,∴BG EG =31, 在FCH Rt △中,HC FH C =tan ,∴HCFH=1, 设x FH EG ==,则x BG 3=,x CH =,∴73323+=++=++=++=x x HC EF BG HC GH BG BC . ∴32+=x .∴7.013332≈-=-+=∆h .【总结】本题主要考查利用坡度和坡比的相关概念结合锐角三角比解决实际问题.ABCDNMABCDNMEF GH【作业7】 如图,某人在建筑物AB 的顶部测得一烟囱CD 的顶端C 的仰角为45°,测得点C 在湖中的倒影C 1的俯角为60°,已知AB = 20米,求烟囱CD 的高.【难度】★★【答案】40320+米.【解析】解:由题意可得:︒=∠45CAE ,︒=∠601EBC .过A 作AE ⊥CD ,垂足为E . 设x CE =,则x AE =. ∵C 和C 1关于BD 对称, ∴201+==x D C CD . 在1AEC Rt △中,AEEC EAC 11tan =∠, ∴xx 403+=,∴20320+=x .∴4032020+=+=x CD .【总结】本题主要考查利用俯角的相关概念结合锐角三角比解决实际问题,注意认真分析.【作业8】 如图,一水渠的横断面是等腰梯形,已知其迎水斜坡AD 和BC 的坡度为1: 0.6,现在测得放水前的水面宽EF 为1.2米,当水闸放水后,水渠内水面宽GH 为2.1米,求放水后水面上升的高度.【难度】★★【答案】放水后水面上升的高度为0.75米.【解析】解:由题意可知:四边形GEFH 为等腰梯形. 356.0:1tan ==∠MGE .过E 作EM ⊥GH ,过F 作FN ⊥GH 由等腰梯形的性质可得:45.0==NH GM .在GME Rt △中,GM EMMGE =∠tan ,∴45.035EM=,∴75.0=EM .∴放水后水面上升的高度为0.75米.【总结】本题主要考查利用坡度和坡比的相关概念结合锐角三角比解决实际问题.ABC DC 1E AC D EF GHMN31 / 32 【作业9】 台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋 风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220千米的B 处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就减弱一级,该台风中心现在以每小时15千米的速度沿北偏东30︒方向往C 移动,且台风中心风力不 变,若城市所受风力达到四级,则称受台风影响.(1)该城市是否会受这次台风影响?请说明理由.(2)若受台风影响,那么台风影响该城市的持续时间会有多长?(3)该城市受台风影响的最大风力是几级?【难度】★★★【答案】(1)受影响;(2)h 154;(3)6.5级.【解析】解:(1)会受到台风影响.过A 作AD ⊥BC .台风在移动时,距离A 最近D 处时, 在ABD Rt △中,1102202121=⨯==AB AD 110÷20=5.5;12-5.5=6.5;6.5超过4级,受台风影响. (2)当台风在移动,其与A 距离是()km 16041220=-⨯时开始受影响或结束影响.持续时间为h h t 15415110160222=-⨯=. (3)由(1)可得:该城市受台风影响的最大风力是6.5级.【总结】本题主要考查对方位角的理解以及是否受影响的理解,解题时要认真分析题意.A B C D32 / 32 【作业10】 如图,小明发现在小丘上种植着一棵香樟树AB ,它的影子恰好落在丘顶平地BC 和斜坡的坡面CD 上.小明测得BC = 4米,斜坡的坡面CD 的坡度为41:3,CD =2.5米.如果小明同时还测得附近的一根垂直于地面的2米高的木柱MN 的影长NP = 1.5 米,求这棵香樟树AB 的高度.【难度】★★★ 【答案】6.5米.【解析】解:由题意可得:4:334:1tan ==∠CDE 345.12tan tan ==∠=ADE P . 4==EF BC , 设x FC 3=,x DF 4=, ∴()()5.25432222==+=+=x x x DF CF CD . ∴5.0=x ,∴5.1=CF ,2=DF ,∴5.1==CF BE .在AED Rt △中,ED AE ADE =∠tan , ∴245.134++=AB , ∴5.6=AB .【总结】本题综合性较强,考查的知识点比较多,要认真分析题意,并且熟练使用相似的性质以及通过锐角三角比解直角三角形的方法.A B CD 光线P N M E F。
华师大版初中数学九年级上册24.4《解直角三角形(第1课时)教案(含答案)
华师大版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!华师大初中数学和你一起共同进步学业有成!24.4 解直角三角形第1课时解直角三角形【知识与技能】1.使学生理解解直角三角形的意义;2.能运用直角三角形的三个关系式解直角三角形.【过程与方法】让学生学会用直角三角形的有关知识去解决某些简单的实际问题,从而进一步把形和数结合起来,提高分析和解决问题的能力.【情感态度】通过对问题情境的讨论,以及对解直角三角形所需的最简条件的探究,培养学生的问题意识,体验经历运用数学知识解决一些简单的实际问题,渗透“数学建模”的思想.【教学重点】用直角三角形的三个关系式解直角三角形.【教学难点】用直角三角形的有关知识去解决简单的实际问题.一、情境导入,初步认识前面的课时中,我们学习了直角三角形的边角关系,下面我们通过一道例题来看看大家掌握得怎样.例在Rt△ABC中,∠C=90°,AB=5,BC=3,求∠A的各个三角函数值.二、思考探究,获取新知把握好直角三角形边角之间的各种关系,我们就能解决直角三角形有关的实际问题了.例1如图,一棵大树在一次强烈的地震中于离地面5米折断倒下,树顶在离树根12米处,大树在折断之前高多少?例子中,能求出折断的树干之间的夹角吗?学生结合引例讨论,得出结论:利用锐角三角函数的逆过程.通过上面的例子,你们知道“解直角三角形”的含义吗?学生讨论得出“解直角三角形”的含义:在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形.【教学说明】学生讨论过程中需使其理解三角形中“元素”的内涵,至于“元素”的定义不作深究.问:上面例子中,若要完整解该直角三角形,还需求出哪些元素?能求出来吗? 学生结合定义讨论目标和方法,得出结论:利用两锐角互余.【探索新知】问:上面的例子是给了两条边.那么,如果给出一个角和一条边,能不能求出其他元素呢?例2如图,东西两炮台A 、B 相距2000米,同时发现入侵敌舰C ,在炮台A 处测得敌舰C 在它的南偏东40°的方向,在炮台B 处测得敌舰C 在它的正南方,试求敌舰与两炮台的距离(精确到1米).解:在Rt △ABC 中,∵∠CAB=90°-∠DAC=50°,BCAB=tan ∠CAB,∴BC=AB·tan ∠CAB=2000×tan50°≈2384(米). ∵AB AC=cos50°, ∴AC=20005050AB cos cos =︒︒≈3111(米). 答:敌舰与A 、B 两炮台的距离分别约为3111米和2384米.问:AC 还可以用哪种方法求?学生讨论得出各种解法,分析比较,得出:使用题目中原有的条件,可使结果更精确. 问:通过对上面两个例题的学习,如果让你设计一个关于解直角三角形的题目,你会给题目几个条件?如果只给两个角,可以吗?(几个学生展示)学生讨论分析,得出结论.问:通过上面两个例子的学习,你们知道解直角三角形有几种情况吗?学生交流讨论归纳:解直角三角形,只有下面两种情况:(1)已知两条边;(2)已知一条边和一个锐角.【教学说明】使学生体会到“在直角三角形中,除直角外,只要知道其中2个元素(至相信自己,就能走向成功的第一步教师不光要传授知识,还要告诉学生学会生活。
人教版备考2023中考数学二轮复习 专题20 解直角三角形(教师版)
人教版备考2023中考数学二轮复习 专题20 解直角三角形一、单选题1.(2021九上·莘县期中)河堤横断面如图所示,堤高BC =6米,迎水坡AB 的坡比是1∶√3,则AC的长是( )A .6√2米B .12米C .3√3米D .6√3米【答案】D【知识点】解直角三角形的应用﹣坡度坡角问题 【解析】【解答】解:∵迎水坡AB 的坡比为1∶√3, ∴BC AC =1√3,∵堤高BC=6米,∴AC =√3BC =6√3(米). 故答案为:D.【分析】根据坡度比可得BC AC =√3,再将数据代入求出AC 的长即可。
2.(2021九上·莘县期中)如图,一艘海轮位于灯塔P 的北偏东55°方向的A 处,已知PA =6海里,如果海轮沿正南方向航行到灯塔的正东方向,则海轮航行的距离AB 的长是( )A .6海里B .6cos55°海里C .6sin55°海里D .6tan55°海里【答案】B【知识点】解直角三角形的应用﹣方向角问题【解析】【解答】由题意可知∠NPA =55°,PA =6海里,∠ABP =90°.∵AB ∥NP ,∴∠A =∠NPA =55°.在Rt△ABP中,∵∠ABP=90°,∠A=55°,PA=6海里,∴AB=AP•cosA=6cos55°海里.故答案为:B.【分析】先利用平行线的性质可得∠A=∠NPA=55°,再利用解直角三角形的方法求出AB=AP•cosA =6cos55°海里即可。
3.(2022九上·襄汾期中)一配电房示意图如图所示,它是一个轴对称图形,已知BC=6m,∠ABC=α,则房顶A离地面EF的高度为()A.(4+3sinα)m B.(4+3tanα)m C.(4+3sinα)m D.(4+3tana)m【答案】B【知识点】解直角三角形的应用【解析】【解答】解:过点A作AD⊥BC于D,如图所示:∵它是一个轴对称图形,∴BD=DC=12BC=3m,∴tanα=ADBD=AD3,即AD=3tanα,∴房顶A离地面EF的高度为(4+3tanα)m,故答案为:B.【分析】过点A作AD⊥BC于D,根据tanα=ADBD=AD3,求出AD=3tanα,再求出EF的长即可。
第8讲.解直角三角形答案版
三角形16级全等到相似的转化三角形17级相似与位似三角形18级解直角三角形中考内容中考要求A B C解直角三角形知道解直角三角形的含义会解直角三角形;能根据问题的需要添加辅助线构造直角三角形;会解由两个特殊直角三角形构成的组合图形的问题能综合运用直角三角形的性质解决有关冋题解直角三角形的知识是近年各地中考的热点之一,考查内容以基础知识与基本技能为主。
用意识进一步增强,联系实际,综合运用知识、技能的要求也越来越高。
北京中考题中的第题是简单的三角函数计算,第20题是计算长度问题,一般可以转化为直角三角形运用三角函数应得到解决。
本部分内容要求同学们能掌握三角函数的概念,会熟练运用特殊角的三角函数值;将实际问题转化为数学问题,建立数学模型;涉及解斜三角形的问题时,构造数学几何模型,即通过添加适当的辅助线将解一般三角形转化为解直角三角形。
年份2015 年2016 年2017 年题号13, 20 11,13,19 14,20,25分值11分14分18分考占P八、、三角函数计算;运用三角函数解直角三角形利用相似解直角三角形的应用题;三角函数计算;运用三角函数解直角三角形三角函数计算;圆中的解直角三角形;解直角三角形在圆中计算的综合从直角三角形中的已知元素(至少有一条是边)探求其未知的一些元素的问题叫做解直角三角形.解直角三角形的关键是合理选用边角关系,它包括勾股定理、直角三角形的两个锐角互余及锐角三角函数的概念,解直角三角形的应用主要有以下两方面:初三秋季•第8讲•目标班•教师版#题型一:解直角三角形(1) 求线段的长、角的度数许多几何计算问题都可归结为解直角三角形 (2) 解决实际问题应用三角函数解决的实际问题主要涉及测量、建筑、工程技术和物理学中,解决问题的关键是在理解有关名词意义的基础上,把实际问题抽象为几何图形,转化为解直角三角形【例1】 ⑴一个三角形的一边长为 2,这条边上的中线是1,另两边之和是 3 1,则这个三角 形的另两边之长分别是 ___________ 和 ____________ .⑵ 在 Rt △ ABC 中,三C=90&, AC =6 , Z A 的平分线 AD =4J3,贝U AB = _____________ . ⑶如果等腰三角形的底角是30 ,面积为,那么该三角形的周长是⑷ 在厶 ABC 中,N B =30。
解直角三角形及其应用(教师版)知识点+详细答案
解直角三角形及其应用【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.要点二、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC 两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,角锐角、对边 (如∠A ,a)∠B=90°-∠A ,,斜边、锐角(如c ,∠A)∠B=90°-∠A ,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键. 解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形. (4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解. 拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念: (1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h 和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】类型一、解直角三角形1.在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,根据下列条件,解这个直角三角形.(1)∠B=60°,a=4; (2)a=1,3b=.【答案】(1)∠A=90°-∠B=90°-60°=30°.由tanbBa=知,tan4tan6043b a B==⨯=°.由cos a B c =知,48cos cos 60a c B ===°. (2)由tan 3bB a==得∠B =60°,∴ ∠A =90°-60°=30°.∵ 222a b c +=,∴ 2242c a b =+==.2.如图所示,在Rt △ABC 中,∠C =90°,∠B =30°,b =20,解这个直角三角形.【答案】由∠C =90°知,∠A+∠B =90°,而∠B =30°, ∴ ∠A =90°-30°=60°.又 sin 30bc=°,∴ 1202c =.∴ c =40.由勾股定理知222a cb =-. ∴ 2224020a =-,203a =. 举一反三:(1)已知a=23,b=2 ,求∠A 、∠B 和c ;(2)已知sinA=23, c=6 ,求a 和b ; 【答案】(1)c=4;∠A=60°、∠B=30°; (2)a=4;b=25 类型二、解直角三角形在解决几何图形计算问题中的应用3.如图所示,BC 是半圆⊙O 的直径,D 是 AC 的中点,四边形ABCD 的对角线AC 、BD 交于点E ,(1)求证:△ABE ∽△DBC ; (2)已知BC =52,CD =52,求sin ∠AEB 的值; (3)在(2)的条件下,求弦AB 的长.【答案】(1)∵ AD CD=,∴ ∠1=∠2, 又BC 是⊙O 的直径,∴ ∠BAC =∠BDC =90°.∴ △ABE ∽△DBC .(2)由△ABE ∽△DBC ,∴ ∠AEB =∠DCB . 在Rt △BDC 中,BC =52,CD =52, ∴ BD =225BC CD -=, ∴ sin ∠AEB =sin ∠DCB =525552BD BC ==. (3)在Rt △BDC 中,BD =5,又∠1=∠2=∠3,∠ADE =∠BDA ,∴ △AED ∽△BAD . ∴AD DE DB AD=,∴ 2AD DE DB = . 又∵ 52CD AD ==,∴ CD 2=(BD -BE)·BD , 即25(5)52BE ⎛⎫=- ⎪ ⎪⎝⎭,∴ 354BE =. 在Rt △ABE 中,AB =BE .sin ∠AEB =32355452⨯=. 举一反三:如图,在△ABC 中,AC=12cm ,AB=16cm ,sinA=13. (1)求AB 边上的高CD ;(2)求△ABC 的面积S ;(3)求tanB .【答案】(1)CD=4cm ;(2)S=32 cm 2;(3)tanB=+224.类型三、解直角三角形在解决实际生活、生产问题中的应用4.某过街天桥的截面图为梯形,如图所示,其中天桥斜面CD 的坡度为1:3i =(i =1:3是指铅直高度DE 与水平宽度CE 的比),CD 的长为10 m ,天桥另一斜面AB 的坡角∠ABC =45°.(1)写出过街天桥斜面AB 的坡度; (2)求DE 的长;(3)若决定对该过街天桥进行改建,使AB 斜面的坡度变缓,将其45°坡角改为30°,方便过路群众,改建后斜面为AF ,试计算此改建需占路面的宽度FB 的长(结果精确到.0.01 m). 【答案】(1)作AG ⊥BC 于G ,DE ⊥BC 于E ,在Rt △AGB 中,∠ABG =45°,AG =BG . ∴ AB 的坡度1AGi BG'==. (2)在Rt △DEC 中,∵ 3tan 3DE C EC ∠==,∴ ∠C =30°.又∵ CD =10 m .∴ 15m 2DE CD ==. (3)由(1)知AG =BG =5 m ,在Rt △AFG 中,∠AFG =30°,tan AG AFG FG ∠=,即3535FB =+,解得535 3.66(m)FB =-=. 答:改建后需占路面的宽度FB 的长约为3.66 m .5.腾飞中学在教学楼前新建了一座“腾飞”雕塑.为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图所示).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1米,参考数据3=1.73).【答案】过点C 作CE ⊥AB 于E .∵ ∠D =90°-60°=30°,∠ACD =90°-30°=60°, ∴ ∠CAD =180°-30°-60°=90°.∵ CD =10,∴ AC =12CD =5. 在Rt △ACE 中,AE =AC ·sin ∠ACE =5×sin 30°=52, CE =AC ·cos ∠ACE =5×cos 30°=532, 在Rt △BCE 中,∵ ∠BCE =45°, ∴ 5553(31)222AB AE BE =+=+=+≈6.8(米). ∴ 雕塑AB 的高度约为6.8米.【巩固练习】一、选择题1.在△ABC 中,∠C =90°,4sin 5A =,则tan B =( ). A .43 B .34 C .35 D .452.在Rt △ABC 中,∠C =90°,∠B =35°,AB =7,则BC 的长为( ).A .7sin 35°B .7cos35°C .7cos 35°D .7tan 35°3.河堤、横断面如图所示,堤高BC =5米,迎水坡AB 的坡比是1:3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),则AC 的长是( ).A .53米B .10米C .15米D .103米4.如图所示,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点, 则cos ∠OMN 的值为( ).A .12 B .22C .32D .1第3题 第4题 第5题5.如图所示,某游乐场一山顶滑梯的高为h ,滑梯的坡角为α,那么滑梯长l 为 ( )A .sin h α B .tan h α C .cos h αD .sin h α6.如图所示,在△ABC 中,∠C =90°,AC =16 cm ,AB 的垂直平分线MN 交AC 于D ,连接BD , 若3cos 5BDC ∠=,则BD 的长是( ). A .4 cm B .6 cm C .8 cm D .10 cm7.如图所示,一艘轮船由海平面上A 地出发向南偏西40°的方向行驶40海里到达B 地,再由B 地向北偏西20°的方向行驶40海里到达C 地,则A 、C 两地相距( ). A .30海里 B .40海里 C .50海里 D .60海里第6题 第7题 第8题8.如图所示,为了测量河的宽度,王芳同学在河岸边相距200 m 的M 和N 两点分别测定对岸一棵树P 的位置,P 在M 的正北方向,在N 的北偏西30°的方向,则河的宽度是( ).A .2003mB .20033m C .1003m D .100m二、填空题9.如图所示,在Rt △ABC 中,∠C =90°,AM 是BC 边上的中线,sin ∠CAM =35,则tan ∠B 的值为______. 10.如图所示,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的点,AD =BE ,AE 与CD 交于点F ,AG ⊥CD 于点G ,则AGAF的值为________.第9题 第10题 第11题11.如图所示,一艘海轮位于灯塔P 的东北方向,距离灯塔402海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则海轮行驶的路程AB 为________海里(结果保留根号).12.如图所示,直角梯形ABCD 中,AB ⊥BC ,AD ∥BC ,BC >AD ,AD =2,AB =4,点E 在AB 上,将△CBE 沿CE 翻折,使B 点与D 点重合,则∠BCE 的正切值是________.13.如图所示.线段AB 、DC 分别表示甲、乙两座建筑物的高.AB ⊥BC ,DC ⊥BC ,两建筑物间距离 BC =30米,若甲建筑物高AB =28米,在A 点测得D 点的仰角α=45°,则乙建筑物高DC =__ __米.第12题第13题第14题14.在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图所示),那么,由此可知,B、C两地相距________m.三、解答题15.如图所示,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为1:3(即AB:BC=1:3),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).16. 如图所示,某校数学兴趣小组的同学欲测量一座垂直于地面的古塔BD的高度,他们先在A处测得古塔顶端点D的仰角为45°,再沿着BA的方向后退20m至C处,测得古塔顶端点D的仰角为30°.求该古塔BD的高度(3≈1.732,结果保留一位小数).17.如图所示是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管AB与支架CD所在直线相交于水箱横断面⊙O的圆心,支架CD与水平面AE垂直,AB=150厘米,∠BAC=30°,另一根辅助支架DE=76厘米,∠CED=60°.(1)求垂直支架CD的长度.(结果保留根号)(2)求水箱半径OD的长度.(结果保留三个有效数字,参考数据:2≈1.41,3≈1.73)【答案与解析】 一、选择题 1.【答案】B ;【解析】如图,sin A =45BC AB =,设BC =4x .则AB =5x .根据勾股定理可得AC =223AC AB BC x =-=,∴ 33tan 44AC x B BC x ===. 2.【答案】C ;【解析】在Rt △ABC 中,cos BCB AB=.∴ BC =ABcosB =7cos 35°. 3.【答案】A ; 【解析】由tan BCi A BC===1:3知,353AC BC == (米). 4.【答案】B ;【解析】由题意知MN ∥BC ,∠OMN =∠OBC =45°,∴ 2cos 2OMN ∠=. 5.【答案】A ;【解析】由定义sin hlα=,∴ sin h l α=.6.【答案】D ;【解析】∵ MN 是AB 的中垂线, ∴ BD =AD .又3cos 5DC BDC BD ∠==, 设DC =3k ,则BD =5k ,∴ AD =5k ,AC =8k .∴ 8k =16,k =2,BD =5×2=10.7.【答案】B ;【解析】 连接AC ,∵ AB =BC =40海里,∠ABC =40°+20°=60°, ∴ △ABC 为等边三角形,∴ AC =AB =40海里. 8.【答案】A【解析】依题意PM ⊥MN ,∠MPN =∠N =30°,tan30°200PM=,2003PM =.二、填空题9.【答案】23;【解析】在Rt△ACM中,sin∠CAM=35,设CM=3k,则AM=5k,AC=4k.又∵ AM是BC边上的中线,∴ BM=3k,∴ tan∠B=4263 AC kBC k==.10.【答案】32;【解析】由已知条件可证△ACE≌△CBD.从而得出∠CAE=∠BCD.∴∠AFG=∠CAE+∠ACD=∠BCD+∠ACD=60°,在Rt△AFG中,3sin602 AGAF==°.11.【答案】40403+;【解析】在Rt△APC中,PC=AC=AP·sin∠APC=2 402402⨯=.在Rt△BPC中,∠BPC=90°-30°=60°,BC=PC·tan∠BPC=403,所以AB=AC+BC=40403+.12.【答案】12;【解析】如图,连接BD,作DF⊥BC于点F,则CE⊥BD,∠BCE=∠BDF,BF=AD=2,DF=AB=4,所以21 tan tan42BFBCE BDFDF∠=∠===.13.【答案】58;【解析】α=45°,∴ DE=AE=BC=30,EC=AB=28,DE=DE+EC=58 14.【答案】200;【解析】由已知∠BAC=∠C=30°,∴ BC=AB=200.三、解答题15.【答案与解析】过点A作AF⊥DE于F,则四边形ABEF为矩形,∴ AF=BE,EF=AB=2.设DE=x,在Rt△CDE中,3tan tan603DE DECE xDCE===∠°.在Rt △ABC 中,∵ 13AB BC =,AB =2,∴ 23BC =. 在Rt △AFD 中,DF =DE-EF =x-2.∴ 23(2)tan tan 30DF x AF x DAF -===-∠°∵ AF =BE =BC+CE .∴ 33(2)233x x -=+,解得6x =. 答:树DE 的高度为6米.16.【答案与解析】根据题意可知:∠BAD =45°,∠BCD =30°,AC =20m .在Rt △ABD 中,由∠BAD =∠BDA =45°,得AB =BD .在Rt △BDC 中,由tan ∠BCD =BD BC ,得3tan 30BD BC BD ==°. 又∵ BC-AB =AC .∴ 320BD BD -=,∴ BD =2031-≈27.3(m). 答:该古塔的高度约为27.3m .17.【答案与解析】(1)在Rt △DCE 中,∠CED =60°,DE =76,∵ sin ∠CED =DC DE,∴ DC =DE ×sin ∠CED =383(厘米) 答:垂直支架CD 的长度为383厘米.(2)设水箱半径OD =x 厘米,则OC =(383)x +厘米,AO =(150)x +厘米,∵ Rt △OAC 中,∠BAC =30°∴ AO =2×OC ,即:150+x =2(383)x +厘米,AO =(150+x)厘米, 解得:150763x =-≈18.52≈18.5(厘米)答:水箱半径OD 的长度约为18.5厘米.。
解直角三角形(含答案)
一、知识聚焦:1. 解直角三角形在直角三角形中,由已知元素求出的过程叫做解直角三角形.解直角三角形的常见类型有:我们规定:Rt△ABC,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.①已知两边,求另一边和两个锐角;②已知一条边和一个角,求另一个角和其他两边.2. 解直角三角形的应用(1)相关术语铅垂线:重力线方向的直线.水平线:与铅垂线垂直的直线,一般情况下,地平面上的两点确定的直线我们认为是水平线.仰角:向上看时,视线与的夹角.俯角:向下看时,视线与水平线的夹角.坡角:坡面与水平面的夹角.坡度:坡的与的比叫做坡度(坡比).一般情况下,我们用h表示坡的铅直高度,用l表示水平宽度,用i表示坡度,即:i==tan α.方向角:指北或指南方向线与目标方向线所成的小于90°的角.如图:(2)应用解直角三角形来解决实际问题时,要注意:①计算结果的精确度要求,一般说来中间量要多取一位有效数字.②在题目中求未知时,应尽量选用直接由已知求未知.③遇到非直角三角形时,常常要作辅助线才能应用解直角三角形知识来解答.其方法可以归纳为:已知斜边用正弦或余弦,已知直角边用正切和余切,•能够使用乘法计算的要尽量选用乘法,尽量直接选用已知条件进行计算. 二、经典例题:例1.已知:a =36, ∠A =30°,∠C=90°,求∠B 、b 、c.例2. 如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为 米(精确到0.1).(参考数据:414.12≈ 732.13≈)例3. 河堤横断面如图所示,堤高BC =5米,迎水坡AB 的坡比1:3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),则AC 的长是( )A .53米B .10米C .15米D .103米例4. 如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A 处测得灯塔C 在北偏西30°方向,轮船航行2小时后到达B 处,在B 处测得灯塔C 在北偏西60°方向.当轮船到达灯塔C 的正东方向的D 处时,求此时轮船与灯塔C 的距离.(结果保留根号) 答案:例1. 解:∠B =90°-30°= 60°, b =92, c =66 例2.82.0 例3.A 例4. 解:由题意得∠CAB=30°,∠CBD=60°, ∴∠ACB=30°∴∠ACB=∠CAB ,∴BC=AB=20×2=40 ∵∠CDB=90°,∴sin ∠CBD=BC CD ,即sin60°=BC CD=23 ∴CD=BC ×23=40×23=203 ∴此时轮船与灯塔C 的距离为203海里.三、基础演练:1.在△ABC中,AB=2,AC=2,∠B=30°,则∠BAC的度数是______.2.计算2sin30°-2cos60°+tan45°=________.3.在Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=_____.4.在△ABC中,若BC=2,AB=7,AC=3,则cosA=________.5.根据如图1所示的数据,求得避雷针CD的长约为______m(•结果精确到0.01m).(可用计算器求,也可用下列参考数据求:sin43°≈0.6820,sin40•°≈0.6428,cos43°≈0.7314,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.•8391)(1) (2) 6.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为________米.(•保留两个有效数字,2≈1.41,3≈1.73)7.如图3,A市东偏北60°方向有一旅游景点M,在A市东偏北30•°的公路上向前行800米到C处,测得M位于C的北偏西15°,则景点M到公路AC•的距离MN为________米(结果保留根号).(3) (4) (5) (6)8.如图4,B、C是河岸边两点,A是对岸岸边一点,测得∠ABC=45°,∠ACB=45°,BC=60米,则点A 到岸边BC的距离是________米.9.如图5,防洪大堤的横断面是梯形,坝高AC等于6米,背水坡AB的坡度i=1:2,则斜坡AB的长为_______米.10.如图6,小明想测量电线杆AB的高度,发现电线杆的影子恰好落在山坡的坡面CD和地面BC上,量得CD=4米,BC=10米,CD与地面成30°角,•且此时测得1米杆的影子长为2米,则电线杆的高度约为_______米(结果保留两位有效数字,•2≈1.41,3≈1.73).答案:例1. 105°或15° 2.1 3.354.735.4.86 6.17 7.200(3+1) 8.30 9.5610.8.7四、能力提升:1. 如图,已知Rt△ABC中,AC=3,BC= 4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1,A1C1,12C A,…,则CA1= ,5554CAAC2.如图,某船以每小时36海里的速度向正东航行,在A•点测得某岛C在北偏东60°方向上,航行半小时后到B点,测得该岛在北偏东30°方向上,•已知该岛周围16海里内有暗礁.(1)试说明B点是否在暗礁区域处...;(2)若继续向东航行,有无触礁危险?请说明理由.3.如图所示,从一块矩形薄板ABCD上裁下一个工件GEHCPD(阴影部分).•图中EF∥BC,GH∥AB,∠AEG=11°18′,∠PCF=33°42′,AG=2cm,FC=6cm,求工件GEHCPD的面积.(参考数据:tan11°18′≈15,tan33°42′≈23)4.海船以5海里/小时的速度向正东方向行驶,在A处看见灯塔B在海船的北偏东60°方向,2小时后船行驶到C处,发现此时灯塔B在海船的北偏西45方向,求此时灯塔B到C处的距离.答案:1.125;452. (1)不在(2)BC=15.59<16 有危险3. 48cm24.解:如图,过B点作BD⊥AC于D∴∠DAB=90°-60°=30°,∠DC B=90°-45°=45°设BD=x 在Rt△ABD中,AD=x⋅tan30°=3 3x在Rt△BDC中 BD=DC=x BC2x又AC=5×2=10 ∴3103x x+=得5(31)x=∴25(31)5(62)BC =⋅-=-(海里) 答:灯塔B 距C 处5(62)-海里五、个性天地:(SHY00015)如图,在Rt ABC ∆中,∠=C 90 ,D 为BC 上一点,∠=ABC 45 ,∠=ADC 60 ,BD =1,求AB 。
(2021年整理)解直角三角形(2013-2014)-教师版
解直角三角形(2013-2014)-教师版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(解直角三角形(2013-2014)-教师版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为解直角三角形(2013-2014)-教师版的全部内容。
解直角三角形解直角三角形2014年中考解决方案 学生姓名: 上课时间:内容基本要求 略高要求较高要求解直角三角形知道直角三角形的含义会解直角三角形;能根据问题的需要添加辅助线构造直角三角形;会解由两个特殊直角三角形构成的组合图形的问题能综合运用直角三角形的性质解决有关问题一、解直角三角形的概念在直角三角形中,由已知元素求未知元素的过程叫做解直角三角形二、直角三角形的边和角的关系如图,在Rt ABC △中,若90C ∠=︒,则cb aCBA1. 三边之间的关系:222a b c += (勾股定理) 2. 锐角之间的关系:90A B ∠+∠=︒3. 边角之间的关系:sin cos ,cos sin ,tan a b aA B A B A c c b=====三、解直角三角形的类型及解法1.已知两边(1)已知两直角边(如a 和b ),求出22c a b =+,由tan aA b=,得90B A ∠=︒-∠.中考说明自检自查必考点(2)已知斜边和一直角边(如斜边c ,直角边a ),由sin a A c=求出A ∠,则90B A ∠=︒-∠,22b c a -.2.已知一边一角(1)已知斜边和一锐角(如斜边c ,锐角A ),求出90B A ∠=︒-∠,sin a c A =,cos b c A =.(2)已知一直角边和一锐角(如a 和锐角A ),求出90B A ∠=︒-∠,tan b a B =,sin ac A=.四、直角三角形中其他重要概念1.仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图(1). 2.坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为h i l =,坡面与水平面的夹角记作α,叫做坡角,则tan h i lα==.坡度越大,坡面就越陡.如图⑵.3.方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图⑶.γβα图(3)i =h :l图(2)αl h图(1)俯角仰角视线视线水平线铅垂线五、解非直角三角形问题:在不含直角三角形的图形中,我们应通过适当的垂线构造直角三角形,从而转化为解直角三角形问题。
第07讲 解直角三角形及其应用(教师版)
第二十八章锐角三角函数28.2 解直角三角形及其应用课程标准课标解读能用锐角三角函数解直角三角形,能用相关知识解决一些简单的实际问题。
能够利用锐角三角函数的边角关系,求解直角三角形角或者边,从而解决实际问题知识点01 解直角三角形1.解直角三角形:在直角三角形中,由已知元素求未知元素的过程叫作解直角三角形.2.直角三角形的边角关系在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c。
(1)三边之间的关系:a²+b²=c².(2)锐角之间的关系:∠A+∠B=90°.(3)边角之间的关系:sinA=ac,cosA=bc,tanA=ab,sinB=bc,cosB=ac,tanB=ba.【即学即练1】已知ABC中,90C∠=︒,1tan2A=,D是AC上一点,CBD A∠=∠,则cos CDB∠的值为()目标导航知识精讲A .12 B C D .35【答案】B【分析】根据tan tan DCA CBD BC==∠∠求得BC =2DC ,再在Rt ∠DCB 中,运用勾股定理求得BD =,即可作答.【详解】∠∠C =90°,∠A =∠CBD , ∠tan tan DCA CBD BC==∠∠, ∠1tan 2A ∠=, ∠12DC BC =, ∠BC =2DC ,∠在Rt ∠DCB 中,BD =,∠cosCD CDB DB ∠==, 故选:B .知识点02 解直角三角形的应用1.解直角三角形的几种类型及解法(1)已知一条直角边和一个锐角(如a ,∠A ),其解法为 ∠B =90∘−∠A,c =a sinA ,b =atanA (或 b =√c 2−a 2).(2)已知斜边和一个锐角(如c ,∠A ),其解法为∠B =90°-∠A ,a =c·sin A ,b =c·cos A (或 b =√c 2−a 2). (3)已知两直角边a ,b ,其解法为 c =√a 2+b 2,由 tanA =ab 得∠A ,∠B =90°-∠A .(4)已知斜边和一直角边(如c ,a ),其解法为b = √c 2−a 2,由 sinA =ac 求出∠A ,∠B =90°-∠A .2.解直角三角形的应用(1)仰角与俯角:当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角;当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角.(2)坡角与坡度:坡角是坡面与水平面所成的角;坡面的铅直高度与水平宽度的比称为坡度(或坡比),常用i 表示,也就是坡角的正切值,坡角越大,坡度越大,坡面越陡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(C).
2 2
(D). 2 2
2、如果 是锐角,且 cos
4 ,那么 sin 的值是( ) . 5
(C)
(A)
9 25
(B)
4 5
3 5
(D)
16 25
) .
3、等腰三角形底边长为 10 ㎝,周长为 36cm,那么底角的余弦等于( (A)
5 13
(B)
12 13Leabharlann (C)10 13(D) )
21.如图是五角星,已知 AC=a,求五角星外接圆的直径(结果用含三角函数的式子表示) 。
6 / 14
参考答案 一、选择题 1、B 2、C 3、A 4、D 5、B 6、B 7、C 8、A 9、A 10、A 二、填空题 11、
1 2
12、2.3
13、1.5 +20tan
14、13
15、3.93 米
s i nA
A的对边 a 斜边 c
B . 锐 角 A 的 邻 边 与 斜 边 的 比 叫 做 ∠ A 的 余 弦 , 记 为 cosA , 即
cos A
A的邻边 b 斜边 c A的对边 a A的邻边 b
C.锐角 A 的对边与邻边的比叫做∠A 的正切,记为 tanA,即 tan A
sin 2 A cos2 A 1
tanA tan(90°—A)=1 tanA=
sin A cos A
4 1.在 Rt△ABC 中,∠C=90°,sinA= 5 ,则 cosB 的值等于( b )
3 A. 5
4 B. 5
3 C. 4
5
D. 5
2.在正方形网格中, △ ABC 的位置如图所示,则 cos B 的值为( b
D.锐角 A 的邻边与对边的比叫做∠A 的余切,记为 cotA,即 cotA
A的邻边 b A的对边 a
锐角 A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数 【经典例题】 在 Rt△ABC 中,各边的长度都扩大 2 倍,那么锐角 A 的正弦、余弦 ( c ) (A) 都扩大 2 倍 (B) 都扩大 4 倍 (C) 没有变化 (D) 都缩小一半
≈2.89(m) . ∴ BD=2DF≈2³2.89≈5.8(m). ∴ CD=1.3+5-DF≈6.3-2.89≈3.4(m) 答:AC 约为 7.1 米,BD 约为 5.8 米,CD 约为 3.4 米.
7、摄影定理 在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直 角边是它们在斜边上的摄影和斜边的比例中项 ∠ACB=90° CD 2 AD BD
;
(3) 量出测点 A 到测点 B 的水平距离 AB=m; (4) 量出测倾器的高度 AC=h。 根据上述测量数据可以求出小山 MN 的高度
连AO,并延长交圆O于F,连结CF , 则ACF 90 CAD
0
1分 3分
A , B, C , D , E是圆O的五等分点 1 1800 360 5 21、 1 CAF CAD 180 2 在RtACF中, AC a AF AC a cos CAF cos180 5分 6分
3 8
1 2 sin 60 cos 45 2 5.求值: 2
.
sinx+2cosx 4 6.已知:tanx=2 ,则 =______ ______. 2sinx-cosx 3 7.某型号飞机的机翼形状如图所示,AB∥CD,根据数据计算 AC、BD 和 CD 的长度(精 确到 0.1 米, 2 ≈1.414, 3 ≈1.732). 解:如图,过 C 作 CE⊥BA 交 BA 延长线于 E, 过 B 作 BF⊥CD 交 CD 延长线线于 F. 在 Rt△CAE 中,∠DBF=30°, ∴ DF=FB²tan30°=5³ 3 ≈5³0.577 3
CD⊥AB
AC2 AD AB BC2 BD AB
8、坡角与坡度(了解) 坡面与水平面的夹角称为坡角,坡面的铅直高度与水平宽度的比为坡度(或坡比) ,即坡度等于坡角的正切。
3 / 14
二、课堂练习 一、选择题 1、如图,已知正方形 ABCD 的边长为 2,如果将线段 BD 绕着点 B 旋转后,点 D 落在 CB 的延长线上的 D′处,那么 tan∠BAD′等于( ) (A).1 (B). 2
10分
7 / 14
专题二
一、重点应用类型 1、解斜三角形 例如图所示,在△ABC 中,∠B=45°,AC=5,BC=3. 求:sinA 和 AB.
解直角三角形的应用
A
D
分析:涉及到特殊角常常需把特殊角放在直角三角形中,因此需过 C 点作 CD ⊥AB,利用解直角三角形的知识即可解决. 解:过 C 作 CD⊥AB,D 为垂足. 在 Rt△BCD 中,∠B=45°,BC=3, ∴DC=BC²sin45°=
三、解答题 16、8 3 17、18.1 米
18、可求出 AB= 4 3 米 ∵8>4 3 ∴距离 B 点 8 米远的保护物不在危险区内 19、 ∠A =22 01′ AB=37.8 米 20、1) 2)方案如下: (1) 测点 A 处安置测倾器, 测得旗杆顶部 M (2) 测点 B 处安置测倾器, 测得旗杆顶部 M 的仰角∠MCE=α ; 的仰角∠MDE=
2 2 2
【经典例题】 0 如图:一棵大树的一段 BC 被风吹断,顶端着地与地面成 30 角,顶端着地处 C 与大树底端相距 4 米,则原来大树高为____4 3_____米.
3、锐角三角函数概念 如图,在△ABC 中,∠C=90° A . 锐 角 A 的 对 边 与 斜 边 的 比 叫 做 ∠ A 的 正 弦 , 记 为 sinA , 即
)
1 A. 2
2 2 B.
2
3 2 C.
3 3 D.
2
3.化简 (1-sin50°) - (1-tan50°) 的结果为( c
)
A. tan50°-sin50° C. 2-sin50°-tan50°
B. sin50°-tan50° D. -sin50°-tan50°
2 / 14
4.当 x=
45°
sin x cos x 0 0 时, sin x cos x 无意义.(0 <x<90 )
6、在矩形 ABCD 中,DE⊥AC 于 E,设∠ADE= ,且 cos AB = 4, 则 AD 的长为( (A)3 (B) ) . (C)
3 , 5
A
D
16 3
20 3
(D)
16 5
B
E C
) .
20米
7、某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某 种草皮以美化环境,已知这种草皮每平方米 a 元,则购买这种草皮至少要( (A)450a 元 (B)225a 元 (C)150a 元 (D)300a 元 )
B
C
3 2 , 2
∴BD=CD=
3 2 , 2 3 2 , 2
在 Rt△ADC 中,AC=5,CD=
∴sinA=
3 2 82 ,AD= , 10 2 3 2 82 . 2
∴AB=BD+AD=
2、实际应用题 例1 青岛位于北纬 36°4′,通过计算可以求得: 在冬至日正午时分的太阳入射角为 30°30′.因此,在规划建 设楼高为 20m 的小区时,两楼间的距离最小为_________m,才能保证不挡光?(结果保留四个有效数字) (提示:sin30° 30′=0.507,tan30°30′=0.589 0)
跨度
三、解答题 16、已知:如图,在Δ ABC 中,∠ACB=90°,CD⊥AB,垂足为 D,若∠B=30°,CD=6,求 AB 的长. C
A
D
B
17、如图,某公路路基横断面为等腰梯形.按工程设计要求路面宽度为 10 米,坡角 为 55 ,路基高度为 5.8 米,求路基下底宽(精确到 0.1 米).
150
30米
8、已知α 为锐角,tan(90°-α )= 3 ,则α 的度数为( (A)30° (B)45° (C)60° (D)75° 9、在△ ABC 中,∠C=90°,BC=5,AB=13,则 sinA 的值是(
5 13 (A) 12 (B) 13 5 12 (C)
)
12 (D) 5
10、如果∠a 是等边三角形的一个内角,那么 cosa 的值等于( (A)
C D
60
30
A
B
5 / 14
19、如图,某一水库大坝的横断面是梯形 ABCD,坝顶宽 CD=5 米,斜坡 AD=16 米,坝高 6 米,斜坡 BC 的坡度 i 1 : 3 .求斜坡 AD 的坡角∠A(精确到 1 分)和坝底宽 AB. (精确到 0.1 米)
D A
C B
20. 在一次实践活动中, 某课题学习小组用测倾器、 皮尺测量旗杆的高度, 他们设计了如下的方案 (如图 1 所示) : (1) 在测点 A 处安置测倾器,测得旗杆顶部 M 的仰角∠MCE=α ; M (2) 量出测点 A 到旗杆底部 N 的水平距离 AN=m; (3) 量出测倾器的高度 AC=h。 根据上述测量数据,即可求出旗杆的高度 MN。 如果测量工具不变,请参照上述过程,重新设计一个方案测量某小山高度(如图 2) C 1) 在图 2 中,画出你测量小山高度 MN 的示意图 E (标上适当的字母) A N 2)写出你的设计方案。 ( (图 2)
D
10m
C
5.8m
A
55
B
18、为申办 2010 年冬奥会,须改变哈尔滨市的交通状况。在大直街拓宽工程中,要伐掉一 棵树 AB,在地面上事先划定以 B 为圆心,半径与 AB 等长的圆形危险区,现在某工人站在离 B 点 3 米远的 D 处,从 C 点测得树的顶端 A 点的仰角为 60°,树的底部 B 点的俯角为 30°. 问:距离 B 点 8 米远的保护物是否在危险区内?