2013年高考数学理(福建卷)WORD解析版
2013年高考文科数学福建卷试题与答案word解析版
2013年普通高等学校夏季招生全国统一考试数学文史类(福建卷)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.答案:C解析:在复平面内,z =-1-2i 对应点的坐标为(-1,-2),故选C.2.答案:A解析:点(2,-1)在直线l :x +y -1=0上,而直线l 上的点的坐标不一定为(2,-1),故“x =2且y =-1”是“点P 在直线l 上”的充分而不必要条件.3.答案:C解析:由题知A ∩B ={1,3},故它的子集个数为22=4.4.答案:B解析:x 2-y 2=1的渐近线方程为y =±x ,顶点坐标为(±1,0),点(±1,0)到y =±x 的距离为2==. 5.答案:A解析:由f (0)=0可知函数图象经过原点.又f (-x )=f (x ),所以函数图象关于y 轴对称,故选A.6.答案:B解析:画出可行域如下图阴影部分所示.画出直线2x +y =0,并向可行域方向移动,当直线经过点(1,0)时,z 取最小值.当直线经过点(2,0)时,z 取最大值.故z max =2³2+0=4,z min =2³1+0=2.7.答案:D解析:∵2x +2y =1≥ ∴212⎛⎫ ⎪⎝⎭≥2x +y ,即2x +y ≤2-2. ∴x +y ≤-2.8.答案:B解析:若n =3,则输出S =7;若n =4,则输出S =15,符合题意.故选B.9.答案:B解析:∵f (x )的图象经过点⎛ ⎝⎭,∴sin θ又∵θ∈ππ,22⎛⎫- ⎪⎝⎭,∴π3θ=. ∴f (x )=πsin 23x ⎛⎫+ ⎪⎝⎭. 由题知g (x )=f (x -φ)=πsin 23x ϕ⎡⎤(-)+⎢⎥⎣⎦,又图象经过点⎛ ⎝⎭,∴g (0)=πsin 23ϕ⎛⎫-+= ⎪⎝⎭. 当5π6ϕ=时满足g (0)B. 10.答案:C解析:∵AC ²BD =-4³1+2³2=0,∴AC ⊥BD .S 四边形ABCD =12|AC ||BD |=152=. 11.答案:C 解析:123456762x +++++==, 021*******y +++++==, 122157n i ii n i i x y nx y b xnx ==-==-∑∑, 13a y bx =-=-,b ′=2021--=2>b ,a ′=-2<a . 12.答案:D解析:由函数极大值的概念知A 错误;因为函数f (x )的图象与f (-x )的图象关于y 轴对称,所以-x 0是f (-x )的极大值点.B 选项错误;因为f (x )的图象与-f (x )的图象关于x 轴对称,所以x 0是-f (x )的极小值点.故C 选项错误;因为f (x )的图象与-f (-x )的图象关于原点成中心对称,所以-x 0是-f (-x )的极小值点.故D 正确.第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.13.答案:-2解析:∵ππtan 144f ⎛⎫=-=-⎪⎝⎭,π4f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=f (-1)=2³(-1)3=-2. 14.答案:13 解析:由3a -1<0,得a <13. ∵0≤a ≤1,∴0≤a <13.根据几何概型知所求概率为11313=. 15.1解析:∵由y x +c )知直线的倾斜角为60°, ∴∠MF 1F 2=60°,∠MF 2F 1=30°.∴∠F 1MF 2=90°.∴MF 1=c ,MF 2.又MF 1+MF 2=2a ,∴c =2a ,即1e ==. 16.答案:①②③解析:①若y =x +1是从A 到B 的一个函数,且x ∈A ,则满足(ⅰ)B ={f (x )|x ∈A }.又f (x )=x +1是单调递增的,所以也满足(ⅱ);②若f (x )=92x -72时,满足(ⅰ)B ={f (x )|x ∈A },又f (x )=92x -72是单调递增的,所以也满足(ⅱ); ③若1tan π2y x ⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦(0<x <1)时,满足(ⅰ)B ={f (x )|x ∈A }.又()1tan π2f x x ⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦在(0,1)上是单调递增的,所以也满足(ⅱ).故填①②③.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.解:(1)因为数列{an }的公差d =1,且1,a 1,a 3成等比数列,所以a 12=1³(a 1+2),即a 12-a 1-2=0,解得a 1=-1或a 1=2.(2)因为数列{a n }的公差d =1,且S 5>a 1a 9,所以5a 1+10>a 12+8a 1,即a 12+3a 1-10<0,解得-5<a 1<2.18.解法一:(1)在梯形ABCD 中,过点C 作CE ⊥AB ,垂足为E ,由已知得,四边形ADCE 为矩形,AE =CD =3,在Rt △BEC 中,由BC =5,CE =4,依勾股定理得BE =3,从而AB =6.又由PD ⊥平面ABCD 得,PD ⊥AD ,从而在Rt △PDA 中,由AD =4,∠PAD =60°,得PD =正视图如图所示:正视图(2)取PB 中点N ,连结MN ,CN .在△PAB 中,∵M 是PA 中点,∴MN ∥AB ,MN =12AB =3. 又CD ∥AB ,CD =3,∴MN ∥CD ,MN =CD .∴四边形MNCD 为平行四边形.∴DM ∥CN .又DM ⊄平面PBC ,CN ⊂平面PBC ,∴DM ∥平面PBC .(3)V D -PBC =V P -DBC =13S △DBC ²PD ,又S △DBC =6,PD =V D -PBC =解法二:(1)同解法一.(2)取AB 的中点E ,连结ME ,DE .在梯形ABCD 中,BE ∥CD ,且BE =CD ,∴四边形BCDE 为平行四边形.∴DE ∥BC .又DE ⊄平面PBC ,BC ⊂平面PBC ,∴DE ∥平面PBC .又在△PAB 中,ME ∥PB ,ME ⊄平面PBC ,PB ⊂平面PBC ,∴ME ∥平面PBC .又DE ∩ME =E ,∴平面DME ∥平面PBC .又DM ⊂平面DME ,∴DM ∥平面PBC .(3)同解法一.19.解:(1)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名.所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60³0.05=3(人),记为A 1,A 2,A 3;25周岁以下组工人有40³0.05=2(人),记为B 1,B 2.从中随机抽取2名工人,所有的可能结果共有10种,它们是:(A 1,A 2),(A 1,A 3),(A 2,A 3),(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).其中,至少有1名“25周岁以下组”工人的可能结果共有7种,它们是:(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).故所求的概率P =710. (2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手60³0.25=15(人),“25所以得K 2=n ad bc a b c d a c bd (-)(+)(+)(+)(+)=1001525154560403070⨯(⨯-⨯)⨯⨯⨯=2514≈1.79. 因为1.79<2.706,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.20.解:(1)抛物线y 2=4x 的准线l 的方程为x =-1.由点C 的纵坐标为2,得点C 的坐标为(1,2),所以点C 到准线l 的距离d =2,又|CO |所以|MN |== 2.(2)设C 200,4y y ⎛⎫ ⎪⎝⎭,则圆C 的方程为2204y x ⎛⎫- ⎪⎝⎭+(y -y 0)2=4016y +y 02,即x 2-202y x +y 2-2y 0y =0. 由x =-1,得y 2-2y 0y +1+202y =0,设M (-1,y 1),N (-1,y 2),则2220002012441240,21.2y y y y y y ⎧⎛⎫∆=-+=->⎪ ⎪⎪⎝⎭⎨⎪=+⎪⎩ 由|AF |2=|AM |²|AN |,得|y 1y 2|=4, 所以202y +1=4,解得0y =Δ>0. 所以圆心C 的坐标为32⎛ ⎝或3,2⎛ ⎝.从而|CO |2=334,|CO |,即圆C. 21. 解:(1)在△OMP 中,∠OPM =45°,OMOP=由余弦定理得,OM 2=OP 2+MP 2-2³OP ³MP ³cos 45°,得MP 2-4MP +3=0,解得MP =1或MP =3.(2)设∠POM =α,0°≤α≤60°,在△OMP 中,由正弦定理,得sin sin OM OP OPM OMP=∠∠, 所以OM =sin45sin 45OP α︒(︒+). 同理ON =sin45sin 75OP α︒(︒+). 故S △OMN =12³OM ³ON ³sin∠MON =221sin 454sin 45sin 75OP αα︒⨯(︒+)(︒+)=1sin 45sin 4530αα(︒+)(︒++︒)⎣⎦. 因为0°≤α≤60°,30°≤2α+30°≤150°,所以当α=30°时,sin(2α+30°)的最大值为1,此时△OMN 的面积取到最小值,即∠POM =30°时,△OMN的面积的最小值为8-22.解法一:(1)由f (x )=x -1+e x a ,得f ′(x )=1-e xa , 又曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,得f ′(1)=0,即1-e a =0,解得a =e. (2)f ′(x )=1-e xa , ①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值.②当a >0时,令f ′(x )=0,得e x =a ,x =ln a .x ∈(-∞,ln a ),f ′(x )<0;x ∈(ln a ,+∞),f ′(x )>0,所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故f (x )在x =ln a 处取得极小值,且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,无极大值.(3)当a =1时,f (x )=x -1+1ex . 令g (x )=f (x )-(kx -1)=(1-k )x +1e x , 则直线l :y =kx -1与曲线y =f (x )没有公共点,等价于方程g (x )=0在R 上没有实数解.假设k >1,此时g (0)=1>0,11111<01e k g k -⎛⎫=-+ ⎪-⎝⎭, 又函数g (x )的图象连续不断,由零点存在定理,可知g (x )=0在R 上至少有一解,与“方程g (x )=0在R 上没有实数解”矛盾,故k ≤1.又k =1时,g (x )=1e x>0,知方程g (x )=0在R 上没有实数解. 所以k 的最大值为1.解法二:(1)(2)同解法一.(3)当a =1时,f (x )=x -1+1e x. 直线l :y =kx -1与曲线y =f (x )没有公共点,等价于关于x 的方程kx -1=x -1+1e x 在R 上没有实数解,即关于x 的方程:(k -1)x =1e x(*) 在R 上没有实数解. ①当k =1时,方程(*)可化为10e x=,在R 上没有实数解. ②当k ≠1时,方程(*)化为11k -=x e x . 令g (x )=x e x ,则有g ′(x )=(1+x )e x.令g ′(x )=0,得x当x =-1时,g (x )min =e-,同时当x 趋于+∞时,g (x )趋于+∞, 从而g (x )的取值范围为1,e ⎡⎫-+∞⎪⎢⎣⎭. 所以当11k -∈1,e ⎛⎫-∞- ⎪⎝⎭时,方程(*)无实数解,解得k 的取值范围是(1-e,1). 综上①②,得k 的最大值为1.。
2013年福建省高考数学试卷(理科)答案与解析
2013年福建省高考数学试卷(理科)参考答案与试题解析一、选择题:本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项符合题目的要求的.1.(5分)(2013•福建)已知复数z的共轭复数(i为虚数单位),则z在复平面内,3.(5分)(2013•福建)双曲线的顶点到渐近线的距离等于()B由对称性可取双曲线的顶点(,渐近线的顶点(,渐近线d=4.(5分)(2013•福建)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()5.(5分)(2013•福建)满足a,b∈{﹣1,0,1,2},且关于x的方程ax2+2x+b=0有实数解6.(5分)(2013•福建)阅读如图所示的程序框图,若输入的k=10,则该算法的功能是()7.(5分)(2013•福建)在四边形ABCD中,=(1,2),=(﹣4,2),则该四边形的B中,,的对角线互相垂直,又该四边形的面积:8.(5分)(2013•福建)设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以9.(5分)(2013•福建)已知等比数列{a n}的公比为q,记b n=a m(n﹣1)+1+a m(n﹣1)+2+…+a m(n*①=①,当时,,,此时,∴==,10.(5分)(2013•福建)设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f (x)满足:(i)T={f(x)|x∈S};(ii)对任意x1,x2∈S,当x1<x2时,恒有f(x1)<f(x2),)二、填空题:本大题共5小题,每小题4分,共20分.把答案填写在答题卡的相应位置.11.(4分)(2013•福建)利用计算机产生0~1之间的均匀随机数a,则事件“3a﹣1>0”发生的概率为.>=故答案为:.12.(4分)(2013•福建)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、俯视图、均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是12π.2r=r=13.(4分)(2013•福建)如图,在△ABC中,已知点D在BC边上,AD⊥AC,sin∠BAC=,AB=3,AD=3,则BD的长为.BAD=AB=3.故答案为:14.(4分)(2013•福建)椭圆Γ:=1(a>b>0)的左右焦点分别为F1,F2,焦距为2c,若直线y=与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于.可知斜率为可得进而与斜率有关系,,则,解得故答案为15.(4分)(2013•福建)当x∈R,|x|<1时,有如下表达式:1+x+x2+…+x n+…=两边同时积分得:dx+xdx+x2dx+…+x n dx+…=dx从而得到如下等式:1×+×()2+×()3+…+×()n+1+…=ln2请根据以上材料所蕴含的数学思想方法,计算:×+×()2+×()3+…+×()n+1=.=故答案为:三、解答题:本大题共5小题,共80分.解答应写出文字说明、证明过程或演算步骤. 16.(13分)(2013•福建)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分;方案乙的中奖率为,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为x,求x≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?,小红中奖的概率为,且两人抽奖中奖与否互不影响,先,)由题意知,小明中奖的概率为,小红中奖的概率为,∴=的概率为.))×=×=,,17.(13分)(2013•福建)已知函数f(x)=x﹣alnx(a∈R)(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;(2)求函数f(x)的极值.,)由,18.(13分)(2013•福建)如图,在正方形OABC中,O为坐标原点,点A的坐标为(10,0),点C的坐标为(0,10),分别将线段OA和AB十等分,分点分别记为A1,A2,…,A9和B1,B2,…,B9,连接OB i,过A i作x轴的垂线与OB i,交于点.(1)求证:点都在同一条抛物线上,并求抛物线E的方程;(2)过点C作直线l与抛物线E交于不同的两点M,N,若△OCM与△OCN的面积之比为4:1,求直线l的方程.)由题意,求出过且与的方程为.联立方程)证明:由题意,过且与的方程为,解得,即都在同一条抛物线上,抛物线消去,解得的方程为19.(13分)(2013•福建)如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱AA1⊥底面ABCD,AB∥DC,AA1=1,AB=3k,AD=4k,BC=5k,DC=6k,(k>0)(1)求证:CD⊥平面ADD1A1(2)若直线AA1与平面AB1C所成角的正弦值为,求k的值(3)现将与四棱柱ABCD﹣A1B1C1D1形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为f(k),写出f(k)的解析式.(直接写出答案,不必说明理由)、、的方向为,的一个法向量为=,取.∴==20.(14分)(2013•福建)已知函数f(x)=sin(wx+φ)(w>0,0<φ<π)的周期为π,图象的一个对称中心为(,0),将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度后得到函数g(x)的图象.(1)求函数f(x)与g(x)的解析式(2)是否存在x0∈(),使得f(x0),g(x0),f(x0)g(x0)按照某种顺序成等差数列?若存在,请确定x0的个数,若不存在,说明理由;(3)求实数a与正整数n,使得F(x)=f(x)+ag(x)在(0,nπ)内恰有2013个零点.=(,)时,<<在(,)在(,)内单调递增,而(,=2)×+=个单位长度后得到函数)的图象,,)时,,<,)内是否有解.(,())在(,)内单调递增,)﹣(>)在(,)内存在唯一零点,,,或,,(,),本题设有(21)、(22)、(23)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.21.(7分)(2013•福建)选修4﹣2:矩阵与变换已知直线l:ax+y=1在矩阵对应的变换作用下变为直线l′:x+by=1(I)求实数a,b的值(II)若点P(x0,y0)在直线l上,且,求点P的坐标.得,则有=,,又点,解得得22.(7分)(2013•福建)选修4﹣4:坐标系与参数方程在直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知点A的极坐标为,直线l的极坐标方程为,且点A在直线l上.(Ⅰ)求a的值及直线l的直角坐标方程;(Ⅱ)圆C的参数方程为,试判断直线l与圆C的位置关系.A上,得,<23.(2013•福建)设不等式|x﹣2|<a(a∈N*)的解集为A,且(Ⅰ)求a的值(Ⅱ)求函数f(x)=|x+a|+|x﹣2|的最小值.且。
2013年高考理科数学福建卷word解析版
2013年普通高等学校夏季招生全国统一考试数学理工农医类(福建卷)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013福建,理1)已知复数z 的共轭复数z =1+2i(i 为虚数单位),则z 在复平面内对应的点位于( ).A .第一象限B .第二象限C .第三象限D .第四象限2.(2013福建,理2)已知集合A ={1,a },B ={1,2,3},则“a =3”是“A B ”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.(2013福建,理3)双曲线24x -y 2=1的顶点到其渐近线的距离等于( ).A .25B .45 C. D.4.(2013福建,理4)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( ).A .588B .480C .450D .1205.(2013福建,理5)满足a ,b ∈{-1,0,1,2},且关于x 的方程ax 2+2x +b =0有实数解的有序数对(a ,b )的个数为( ).A .14B .13C .12D .106.(2013福建,理6)阅读如图所示的程序框图,若输入的k =10,则该算法的功能是( ).A .计算数列{2n -1}的前10项和B .计算数列{2n -1}的前9项和C .计算数列{2n -1}的前10项和D .计算数列{2n -1}的前9项和 7.(2013福建,理7)在四边形ABCD 中,AC =(1,2),BD =(-4,2),则该四边形的面积为( ).A..5 D .108.(2013福建,理8)设函数f (x )的定义域为R ,x 0(x 0≠0)是f (x )的极大值点,以下结论一定正确的是( ).A .∀x ∈R ,f(x)≤f(x0)B .-x0是f(-x)的极小值点C .-x0是-f(x)的极小值点D .-x0是-f(-x)的极小值点 9.(2013福建,理9)已知等比数列{a n }的公比为q ,记b n =a m (n -1)+1+a m (n -1)+2+…+a m (n -1)+m ,c n =a m (n -1)+1·a m (n-1)+2·…·a m (n -1)+m (m ,n ∈N *),则以下结论一定正确的是( ).A .数列{bn}为等差数列,公差为qmB .数列{bn}为等比数列,公比为q2mC .数列{cn}为等比数列,公比为qm2D .数列{cn}为等比数列,公比为qmm10.(2013福建,理10)设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数y =f (x )满足:(1)T ={f (x )|x ∈S };(2)对任意x 1,x 2∈S ,当x 1<x 2时,恒有f (x 1)<f (x 2),那么称这两个集合“保序同构”.以2下集合对不是“保序同构”的是( ).A .A =N*,B =NB .A ={x|-1≤x≤3},B ={x|x =-8或0<x≤10}C .A ={x|0<x <1},B =RD .A =Z ,B =Q第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置.11.(2013福建,理11)利用计算机产生0~1之间的均匀随机数a ,则事件“3a -1>0”发生的概率为________.12.(2013福建,理12)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是________.13.(2013福建,理13)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC=,AB=AD =3,则BD 的长为________.14.(2013福建,理14)椭圆Γ:22221x y a b +=(a >b >0)的左、右焦点分别为F1,F2,焦距为2C .若直线yx +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.15.(2013福建,理15)当x ∈R ,|x|<1时,有如下表达式: 1+x +x 2+…+x n+…=11x-. 两边同时积分得:11111222222011d d d d d 1nx x x x x x x x x+++++=-⎰⎰⎰⎰⎰, 从而得到如下等式:23111111111ln 22223212n n +⎛⎫⎛⎫⎛⎫⨯+⨯+⨯++⨯+= ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭.请根据以上材料所蕴含的数学思想方法,计算:2310121111111C C C C 2223212n n nn n n n +⎛⎫⎛⎫⎛⎫⨯+⨯+⨯++⨯= ⎪ ⎪⎪+⎝⎭⎝⎭⎝⎭________. 三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.16.(2013福建,理16)(本小题满分13分)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X ≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?17.(2013福建,理17)(本小题满分13分)已知函数f(x)=x-a ln x(a∈R).(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;(2)求函数f(x)的极值.2013 福建理科数学第3页18.(2013福建,理18)(本小题满分13分)如图,在正方形OABC中,O为坐标原点,点A的坐标为(10,0),点C的坐标为(0,10).分别将线段OA和AB十等分,分点分别记为A1,A2,…,A9和B1,B2,…,B9.连结OB i,过A i作x轴的垂线与OB i交于点P i(i∈N*,1≤i≤9).(1)求证:点P i(i∈N*,1≤i≤9)都在同一条抛物线上,并求该抛物线E的方程;(2)过点C作直线l与抛物线E交于不同的两点M,N,若△OCM与△OCN的面积比为4∶1,求直线l的方程.419.(2013福建,理19)(本小题满分13分)如图,在四棱柱ABCD-A1B1C1D1中,侧棱AA1⊥底面ABCD,AB ∥DC,AA1=1,AB=3k,AD=4k,BC=5k,DC=6k(k>0).(1)求证:CD⊥平面ADD1A1;(2)若直线AA1与平面AB1C所成角的正弦值为67,求k的值;(3)现将与四棱柱ABCD-A1B1C1D1形状和大小完全相同的两个四棱柱拼接成一个新的四棱柱.规定:若拼接成的新四棱柱形状和大小完全相同,则视为同一种拼接方案.问:共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为f(k),写出f(k)的解析式.(直接写出答案,不必说明理由).20.(2013福建,理20)(本小题满分14分)已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期为π,图象的一个对称中心为π,04⎛⎫⎪⎝⎭.将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得到的图象向右平移π2个单位长度后得到函数g(x)的图象.(1)求函数f(x)与g(x)的解析式;(2)是否存在x0∈ππ,64⎛⎫⎪⎝⎭,使得f(x0),g(x0),f(x0)g(x0)按照某种顺序成等差数列?若存在,请确定x0的个数;若不存在,说明理由;(3)求实数a与正整数n,使得F(x)=f(x)+ag(x)在(0,nπ)内恰有2 013个零点.2013 福建理科数学第5页621.(2013福建,理21)本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B 铅笔在答题卡上把所选题目对应题号右边的方框涂黑,并将所选题号填入括号中.(1)(本小题满分7分)选修4—2:矩阵与变换 已知直线l :ax +y =1在矩阵 1 20 1A ⎛⎫= ⎪⎝⎭对应的变换作用下变为直线l ′:x +by =1. ①求实数a ,b 的值;②若点P (x 0,y 0)在直线l 上,且0000x x A y y ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,求点P 的坐标. (2)(本小题满分7分)选修4—4:坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标为π4⎫⎪⎭,,直线l 的极坐标方程为ρπcos 4θ⎛⎫- ⎪⎝⎭=a ,且点A 在直线l 上. ①求a 的值及直线l 的直角坐标方程; ②圆C 的参数方程为1cos ,sin x y αα=+⎧⎨=⎩(α为参数),试判断直线l 与圆C 的位置关系.(3)(本小题满分7分)选修4—5:不等式选讲 设不等式|x -2|<a (a ∈N *)的解集为A ,且32∈A ,12∉A . ①求a 的值;②求函数f (x )=|x +a |+|x -2|的最小值.2013年普通高等学校夏季招生全国统一考试数学理工农医类(福建卷)第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.答案:D解析:由z=1+2i,得z=1-2i,故复数z对应的点(1,-2)在第四象限.2.答案:A解析:若a=3,则A={1,3}⊆B,故a=3是A⊆B的充分条件;而若A⊆B,则a不一定为3,当a=2时,也有A⊆B.故a=3不是A⊆B的必要条件.故选A.3.答案:C解析:双曲线24x-y2=1的顶点为(±2,0),渐近线方程为12y x=±,即x-2y=0和x+2y=0.故其顶点到渐近线的距离d===.4.答案:B解析:由频率分布直方图知40~60分的频率为(0.005+0.015)×10=0.2,故估计不少于60分的学生人数为600×(1-0.2)=480.5.答案:B解析:a=0时,方程变为2x+b=0,则b为-1,0,1,2都有解;a≠0时,若方程ax2+2x+b=0有实数解,则Δ=22-4ab≥0,即ab≤1.当a=-1时,b可取-1,0,1,2.当a=1时,b可取-1,0,1.当a=2时,b 可取-1,0,故满足条件的有序对(a,b)的个数为4+4+3+2=13.6.答案:A解析:当k=10时,执行程序框图如下:S=0,i=1;S=1,i=2;S=1+2,i=3;S=1+2+22,i=4;……S=1+2+22+…+28,i=10;S=1+2+22+…+29,i=11.7.解析:∵AC·BD=1×(-4)+2×2=0,∴AC⊥BD.又|AC|=,|BD|==S四边形ABCD=12|AC||BD|=5.8.答案:D解析:选项A,由极大值的定义知错误;对于选项B,函数f(x)与f(-x)的图象关于y轴对称,-x0应是f(-x)的极大值点,故不正确;对于C选项,函数f(x)与-f(x)图象关于x轴对称,x0应是-f(x)的极小值点,故不正确;而对于选项D,函数f(x)与-f(-x)的图象关于原点成中心对称,故正确.9.答案:C解析:∵{a n}是等比数列,∴1mn mm n maa+(-)+=q mn+m-m(n-1)-m=q m,∴1nncc+=1211121··mn mn mn mm n m n m n ma a aa a a+++(-)+(-)+(-)+⋅⋅⋅⋅=(q m)m=qm2.10.答案:D解析:由题意(1)可知,S为函数y=f(x)的定义域,T为函数y=f(x)的值域.由(2)可知,函数y=f(x)在定义域内单调递增,对于A,可构造函数y=x-1,x∈N*,y∈N,满足条件;2013 福建理科数学第7页对于B,构造函数8,1,51,13,2xyx x-=-⎧⎪=⎨(+)-<≤⎪⎩满足条件;对于C,构造函数ππtan22y x⎛⎫=-⎪⎝⎭,x∈(0,1),满足条件;对于D,无法构造函数其定义域为Z,值域为Q且递增的函数,故选D.第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置.11.答案:2 3解析:由3a-1>0得13a>,由几何概型知112313P-==.12.答案:12π解析:由题意知该几何体是一个正方体内接于球构成的组合体,球的直径2r==,所以r=S球=4πr2=4π×3=12π. 13.解析:∵AD⊥AC,∴∠DAC=π2.∵sin∠BAC=3,∴πsin23BAD⎛⎫∠+=⎪⎝⎭,∴cos∠BAD=3.由余弦定理得BD2=AB2+AD2-2AB·AD·cos∠BAD=2+32-2×3=3.∴BD14.1解析:由直线yx+c)知其倾斜角为60°,由题意知∠MF1F2=60°,则∠MF2F1=30°,∠F1MF2=90°.故|MF1|=c,|MF2|.又|MF1|+|MF2|=2a,∴1)c=2a,即1e==.15.答案:113112nn+⎡⎤⎛⎫-⎢⎥⎪+⎝⎭⎢⎥⎣⎦解析:由0122C C C C n nn n n nx x x++++…=(1+x)n,两边同时积分得:1111012222220000C1d C d C d C dn nn n n nx x x x x x x++++⎰⎰⎰⎰12(1)d nx x=+⎰,2310121111111C C C C2223212nnn n n nn+⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭8=111121111131|11112112n nnxn n n n+++⎡⎤⎡⎤⎛⎫⎛⎫(+)=+-=-⎢⎥⎪ ⎪⎢⎥++++⎣⎦⎝⎭⎝⎭⎢⎥⎣⎦.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.16.解法一:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这2人的累计得分X≤3”的事件为A,则事件A的对立事件为“X=5”,因为P(X=5)=2243515⨯=,所以P(A)=1-P(X=5)=1115,即这2人的累计得分X≤3的概率为11 15.(2)设小明、小红都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1),选择方案乙抽奖累计得分的数学期望为E(3X2).由已知可得,X1~B22,3⎛⎫⎪⎝⎭,X2~B22,5⎛⎫⎪⎝⎭,所以E(X1)=24233⨯=,E(X2)=24255⨯=,从而E(2X1)=2E(X1)=83,E(3X2)=3E(X2)=125.因为E(2X1)>E(3X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.解法二:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这2人的累计得分X≤3”的事件为A,则事件A包含有“X=0”,“X=2”,“X=3”三个两两互斥的事件,因为P(X=0)=22111355⎛⎫⎛⎫-⨯-=⎪ ⎪⎝⎭⎝⎭,P(X=2)=2221355⎛⎫⨯-=⎪⎝⎭,P(X=3)=22213515⎛⎫-⨯=⎪⎝⎭,所以P(A)=P(X=0)+P(X=2)+P(X=3)=11 15,即这2人的累计得分X≤3的概率为11 15.(2)设小明、小红都选择方案甲所获得的累计得分为X1,都选择方案乙所获得的累计得分为X2,则X1,X2的分布列如下:所以E(X1)=0×19+2×49+4×49=3,E(X2)=0×25+3×25+6×425=125.因为E(X1)>E(X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.17.解:函数f(x)的定义域为(0,+∞),f′(x)=1-ax.2013 福建理科数学第9页10(1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x(x >0), 因而f (1)=1,f ′(1)=-1,所以曲线y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1), 即x +y -2=0. (2)由f ′(x )=1-a x =x a x-,x >0知: ①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值;②当a >0时,由f ′(x )=0,解得x =A .又当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值.18.解法一:(1)依题意,过A i (i ∈N *,1≤i ≤9)且与x 轴垂直的直线方程为x =i ,B i 的坐标为(10,i ),所以直线OB i 的方程为y =10i x . 设P i 的坐标为(x ,y ),由,,10x i i y x =⎧⎪⎨=⎪⎩得y =110x 2,即x 2=10y .所以点P i (i ∈N *,1≤i ≤9)都在同一条抛物线上,且抛物线E 的方程为x 2=10y . (2)依题意,直线l 的斜率存在,设直线l 的方程为y =kx +10. 由210.10.y kx x y =+⎧⎨=⎩得x 2-10kx -100=0, 此时Δ=100k 2+400>0,直线l 与抛物线E 恒有两个不同的交点M ,N . 设M (x 1,y 1),N (x 2,y 2),则121210,100,x x k x x +=⎧⎨⋅=-⎩①②因为S △OCM =4S △OCN ,所以|x 1|=4|x 2|. 又x 1·x 2<0,所以x 1=-4x 2,分别代入①和②,得222310,4100,x k x -=⎧⎨-=-⎩解得32k =±. 所以直线l 的方程为y =32±x +10,即3x -2y +20=0或3x +2y -20=0.解法二:(1)点P i (i ∈N *,1≤i ≤9)都在抛物线E :x 2=10y 上.证明如下:过A i (i ∈N *,1≤i ≤9)且与x 轴垂直的直线方程为x =i ,B i 的坐标为(10,i ),所以直线OB i 的方程为y =10i x . 由,,10x i i y x =⎧⎪⎨=⎪⎩解得P i 的坐标为2,10i i ⎛⎫ ⎪⎝⎭,因为点P i 的坐标都满足方程x 2=10y ,所以点P i (i ∈N *,1≤i ≤9)都在同一条抛物线上,且抛物线E 的方程为x 2=10y . (2)同解法一. 19.解:(1)取CD 的中点E ,连结BE .2013 福建理科数学 第11页∵AB ∥DE ,AB =DE =3k ,∴四边形ABED 为平行四边形,∴BE ∥AD 且BE =AD =4k .在△BCE 中,∵BE =4k ,CE =3k ,BC =5k ,∴BE 2+CE 2=BC 2,∴∠BEC =90°,即BE ⊥CD ,又∵BE ∥AD ,∴CD ⊥AD .∵AA 1⊥平面ABCD ,CD ⊂平面ABCD ,∴AA 1⊥CD .又AA 1∩AD =A ,∴CD ⊥平面ADD 1A 1.(2)以D 为原点,DA ,DC ,1DD 的方向为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系,则A (4k,0,0),C (0,6k,0),B 1(4k,3k,1),A 1(4k,0,1),所以AC =(-4k,6k,0),1AB =(0,3k,1),1AA =(0,0,1).设平面AB 1C 的法向量n =(x ,y ,z ),则由10,0,AC AB ⎧⋅=⎪⎨⋅=⎪⎩n n得460,30.kx ky ky z -+=⎧⎨+=⎩取y =2,得n =(3,2,-6k ).设AA 1与平面AB 1C 所成角为θ,则 sin θ=|cos 〈1AA ,n〉|=11||||AA AA ⋅⋅n n 67=, 解得k =1,故所求k 的值为1.(3)共有4种不同的方案.f (k )=2257226,0,1853636,.18k k k k k k ⎧+<≤⎪⎪⎨⎪+>⎪⎩20.解法一:(1)由函数f (x )=sin(ωx +φ)的周期为π,ω>0,得ω=2πT=2. 又曲线y =f (x )的一个对称中心为π,04⎛⎫⎪⎝⎭,φ∈(0,π), 故ππsin 2044f ϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,得π2ϕ=,所以f (x )=cos 2x . 将函数f (x )图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得y =cos x 的图象,再将y =cos x 的图象向右平移π2个单位长度后得到函数π()=cos 2g x x ⎛⎫- ⎪⎝⎭的图象,所以g (x )=sin x .(2)当x ∈ππ,64⎛⎫ ⎪⎝⎭时,12<sin x <2,0<cos 2x <12, 所以sin x >cos 2x >sin x cos 2x .问题转化为方程2cos 2x =sin x +sin x cos 2x 在ππ,64⎛⎫ ⎪⎝⎭内是否有解.12设G (x )=sin x +sin x cos 2x -2cos 2x ,x ∈ππ,64⎛⎫ ⎪⎝⎭, 则G ′(x )=cos x +cos x cos 2x +2sin 2x (2-sin x ).因为x ∈ππ,64⎛⎫⎪⎝⎭,所以G ′(x )>0,G (x )在ππ,64⎛⎫ ⎪⎝⎭内单调递增. 又π1<064G ⎛⎫=- ⎪⎝⎭,π>042G ⎛⎫= ⎪⎝⎭, 且函数G (x )的图象连续不断,故可知函数G (x )在ππ,64⎛⎫ ⎪⎝⎭内存在唯一零点x 0, 即存在唯一的x 0∈ππ,64⎛⎫ ⎪⎝⎭满足题意. (3)依题意,F (x )=a sin x +cos 2x ,令F (x )=a sin x +cos 2x =0.当sin x =0,即x =k π(k ∈Z )时,cos 2x =1,从而x =k π(k ∈Z )不是方程F (x )=0的解,所以方程F (x )=0等价于关于x 的方程cos2sin x a x =-,x ≠k π(k ∈Z ).现研究x ∈(0,π)∪(π,2π)时方程cos2sin x a x=-的解的情况. 令()cos2sin x h x x=-,x ∈(0,π)∪(π,2π), 则问题转化为研究直线y =a 与曲线y =h (x ),x ∈(0,π)∪(π,2π)的交点情况.22cos (2sin 1)()sin x x h x x+'=,令h ′(x )=0,得π2x =或3π2x =. 当x当x >0且x 当x <π且x 趋近于π时,h (x )趋向于-∞,当x >π且x 趋近于π时,h (x )趋向于+∞,当x <2π且x 趋近于2π时,h (x )趋向于+∞.故当a >1时,直线y =a 与曲线y =h (x )在(0,π)内无交点,在(π,2π)内有2个交点;当a <-1时,直线y =a 与曲线y =h (x )在(0,π)内有2个交点,在(π,2π)内无交点;当-1<a <1时,直线y =a 与曲线y =h (x )在(0,π)内有2个交点,在(π,2π)内有2个交点.由函数h (x )的周期性,可知当a ≠±1时,直线y =a 与曲线y =h (x )在(0,n π)内总有偶数个交点,从而不存在正整数n ,使得直线y =a 与曲线y =h (x )在(0,n π)内恰有2 013个交点;又当a =1或a =-1时,直线y =a 与曲线y =h (x )在(0,π)∪(π,2π)内有3个交点,由周期性,2 013=3×671,所以依题意得n =671×2=1 342.综上,当a =1,n =1 342或a =-1,n =1 342时,函数F (x )=f (x )+ag (x )在(0,n π)内恰有2 013个零点.解法二:(1)、(2)同解法一.(3)依题意,F (x )=a sin x +cos 2x =-2sin 2x +a sin x +1.现研究函数F (x )在(0,2π]上的零点的情况.设t =sin x ,p (t )=-2t 2+at +1(-1≤t ≤1),则函数p (t )的图象是开口向下的抛物线,又p (0)=1>0,p (-1)=-a -1,p (1)=a -1.当a >1时,函数p (t )有一个零点t 1∈(-1,0)(另一个零点t 2>1,舍去),F (x )在(0,2π]上有两个零点x 1,x 2,且x 1,x 2∈(π,2π);当a <-1时,函数p (t )有一个零点t 1∈(0,1)(另一个零点t 2<-1,舍去),F (x )在(0,2π]上有两个零点2013 福建理科数学 第13页 x 1,x 2,且x 1,x 2∈(0,π);当-1<a <1时,函数p (t )有一个零点t 1∈(-1,0),另一个零点t 2∈(0,1),F (x )在(0,π)和(π,2π)分别有两个零点.由正弦函数的周期性,可知当a ≠±1时,函数F (x )在(0,n π)内总有偶数个零点,从而不存在正整数n 满足题意.当a =1时,函数p (t )有一个零点t 1∈(-1,0),另一个零点t 2=1;当a =-1时,函数p (t )有一个零点t 1=-1,另一个零点t 2∈(0,1),从而当a =1或a =-1时,函数F (x )在(0,2π]有3个零点.由正弦函数的周期性,2 013=3×671,所以依题意得n =671×2=1 342.综上,当a =1,n =1 342或a =-1,n =1 342时,函数F (x )=f (x )+ag (x )在(0,n π)内恰有2 013个零点.21.解:①设直线l :ax +y =1上任意点M (x ,y )在矩阵A 对应的变换作用下的像是M ′(x ′,y ′). 由 1 220 1x x x y y y y '+⎛⎫⎛⎫⎛⎫⎛⎫==⎪ ⎪⎪ ⎪'⎝⎭⎝⎭⎝⎭⎝⎭, 得2,.x x y y y '=+⎧⎨'=⎩又点M ′(x ′,y ′)在l ′上,所以x ′+by ′=1,即x +(b +2)y =1,依题意得=1,2=1,a b ⎧⎨+⎩解得=1,1.a b ⎧⎨=-⎩ ②由0000x x A y y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,得000002,,x x y y y =+⎧⎨=⎩解得y 0=0. 又点P (x 0,y 0)在直线l 上,所以x 0=1.故点P 的坐标为(1,0).(2)选修4—4:坐标系与参数方程本小题主要考查极坐标与直角坐标的互化、圆的参数方程等基础知识,考查运算求解能力,考查化归与转化思想.满分7分.解:①由点A π4⎫⎪⎭在直线ρπcos 4θ⎛⎫- ⎪⎝⎭=a上,可得a =所以直线l 的方程可化为ρcos θ+ρsin θ=2,从而直线l 的直角坐标方程为x +y -2=0.②由已知得圆C 的直角坐标方程为(x -1)2+y 2=1,所以圆C 的圆心为(1,0),半径r =1,因为圆心C 到直线l 的距离d=2<1, 所以直线l 与圆C 相交.(3)选修4—5:不等式选讲本小题主要考查绝对值不等式等基础知识,考查运算求解能力,考查化归与转化思想.满分7分.解:①因为32∈A ,且12∉A ,所以32<2a -,且122a -≥, 解得12<a ≤32.又因为a ∈N *,所以a =1. ②因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当(x +1)(x -2)≤0,即-1≤x ≤2时取到等号.所以f (x )的最小值为3.。
2013年福建省高考(理科)数学试卷及答案(Word解析版)
2013年福建省高考数学试卷及解析(理工农医类)一.选择题1.已知复数z 的共轭复数12z i =+(i 为虚数单位)、则z 在复平面内对应的点位于( ) A . 第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】D【解析】z 的共轭复数12z i =+、则12z i =-、对应点的坐标为(1,2)-、故答案为D . 2.已知集合{}1,A a =,{}1,2,3B =,则“3a =”是“A B ⊆”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】3,a A B =⇒⊆2A B a ⊆⇒=、或3.因此是充分不必要条件.3.双曲线2214x y -=的顶点到其渐近线的距离等于( ) A .25 B .45 CD【答案】C【解析】 2214x y -=的顶点坐标为(2,0)±、渐近线为2204x y -=、即20x y ±=.带入点到直线距离公式d ==. 4.某校从高一年级学生中随机抽取部分学生、将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70), [70,80), [80,90), [90,100)加以统计、得到如图所示的频率分布直方图、已知高一年级共有学生600名、据此估计、该模块测试成绩不少于60分的学生人数为( ) A .588 B .480 C .450 D .120【答案】B【解析】由图知道60分以上人员的频率为后4项频率的和、由图知道(0.030.0250.0150.01)*P =+++=故分数在60以上的人数为600*0.8=480人.5.满足{},1,0,1,2a b ∈-、且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A .14B .13C .12D .10 【答案】B【解析】方程220ax x b ++=有实数解、分析讨论①当0a =时、很显然为垂直于x 轴的直线方程、有解.此时b 可以取4个值.故有4种有序数对②当0a ≠时、需要440ab ∆=-≥、即1ab ≤.显然有3个实数对不满足题意、分别为(1,2)、(2,1)、(2,2).(,)a b 共有4*4=16中实数对、故答案应为16-3=13.6.阅读如图所示的程序框图、若输入的10k =、则该算法的功能是( )A .计算数列{}12n -的前10项和 B .计算数列{}12n -的前9项和C .计算数列{}21n -的前10项和D .计算数列{}21n-的前9项和【答案】C【解析】第一循环:1,2S i ==、10i <第二条:3,3,10S i i ==<第三条:7,4,10S i i ==<…..第九循环:921,10,10S i i =-==.第十循环:1021,11,10S i i =-=>、输出S .根据选项、101(12)12S -=-、故为数列12n -的前10项和.故答案A .7.在四边形ABCD 中、(1,2)AC =、(4,2)BD =-、则四边形的面积为( )A B . C .5 D .10【答案】C【解析】由题意、容易得到AC BD ⊥.设对角线交于O 点、则四边形面积等于四个三角形面积之和 即S=11(****)(*)22AO DO AO BO CO DO CO BO AC BD +++=.容易算出AC BD ==、则算出S=5.故答案C8.设函数()f x 的定义域为R 、00(0)x x ≠是()f x 的极大值点、以下结论一定正确的是( )A .0,()()x R f x f x ∀∈≤B .0x -是()f x -的极小值点C .0x -是()f x -的极小值点D .0x -是()f x --的极小值点 【答案】D【解析】A .0,()()x R f x f x ∀∈≤、错误.00(0)x x ≠是()f x 的极大值点、并不是最大值点.B .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于y 轴的对称图像、故0x -应是()f x -的极大值点C .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于x 轴的对称图像、故0x 应是()f x -的极小值点.跟0x -没有关系.D .0x -是()f x --的极小值点.正确.()f x --相当于()f x 先关于y 轴的对象、再关于x 轴的对称图像.故D 正确9.已知等比数列{}n a 的公比为q 、记(1)1(1)2(1)...,n m n m n m n m b a a a -+-+-+=+++*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=∙∙∙∈则以下结论一定正确的是( )A .数列{}n b 为等差数列、公差为mq B .数列{}n b 为等比数列、公比为2mq C .数列{}n c 为等比数列、公比为2m q D .数列{}n c 为等比数列、公比为mm q【答案】C【解析】等比数列{}n a 的公比为q,同理可得2222222,m m m mm m m a a a a a a ++++=∙=∙112...m c a a a =∙∙∙,212...,m m m m c a a a +++=∙∙∙321222...,m m m m c a a a +++=∙∙∙2213c c c ∴=∙∴数列{}n c 为等比数列、2221212211212............m m m m m m m m m ma a a a a a q c q q c a a a a a a +++∙∙∙∙∙∙∙====∙∙∙∙∙∙故选C10.设S 、T 、是R 的两个非空子集、如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈对任意12,,x x S ∈当12x x <时、恒有12()()f x f x <、那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( )A .*,A NB N == B .{|13},{|8010}A x x B x x x =-≤≤==-<≤或C .{|01},A x x B R =<<=D .,A Z B Q == 【答案】D【解析】根据题意可知、令()1f x x =-、则A 选项正确;令55(13)()228(1)x x f x x ⎧+-<≤⎪=⎨⎪-=-⎩、则B 选项正确; 令1()tan ()2f x x π=-、则C 选项正确;故答案为D .二.填空题11.利用计算机产生0~1之间的均匀随机数a 、则时间“310a ->”发生的概率为________ 【答案】23【解析】13103a a ->∴>a 产生0~1之间的均匀随机数1(,1)3a ∴∈112313p -∴==12.已知某一多面体内接于一个简单组合体、如果该组合体的正视图.测试图.俯视图均如图所示、且图中的四边形是边长为2的正方形、则该球的表面积是_______________【答案】12π【解析】由图可知、图形为一个球中间是内接一个棱长为2的正方体、24122R S R ππ∴====球表13.如图ABC ∆中、已知点D 在BC 边上、AD ⊥AC、sin 33BAC AB AD ∠===则BD 的长为_______________【解析】sin sin()cos 23BAC BAD BAD π∠=∠+=∠=∴根据余弦定理可得222cos 2AB AD BD BAD AB AD+-∠=∙BD ==14.椭圆2222:1(0)x y a b a bΓ+=>>的左.右焦点分别为12,F F 、焦距为2c 、若直线)y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠、则该椭圆的离心率等于__________1【解析】由直线方程)y x c +⇒直线与x 轴的夹角12233MF F ππ∠=或、且过点1-F (c,0)12212MF F MF F ∠=∠∴122123MF F MF F π∠=∠=即12F M F M ⊥12RT F MF ∴∆在中,12122,,F F c FM c F M ===∴由椭圆的第一定义可得21c a c a =∴== 15.当,1x R x ∈<时、有如下表达式:211.......1nx x x x+++++=- 两边同时积分得:1111122222200011.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰从而得到如下等式:23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+ 请根据以下材料所蕴含的数学思想方法、计算:122311111111()()...()_____2223212nn n n n n n C C C C +⨯+⨯+⨯++⨯=+ 【答案】113[()1]12n n +-+【解析】由01221......(1)n nn n n n n C C x C x C x x +++++=+两边同时积分得:111112222220001......(1).nn n n n n C dx C xdx C x dx C x dx x dx +++++=+⎰⎰⎰⎰⎰从而得到如下等式:122311*********()()...()[()1]222321212n n n n n n n n n C C C C ++⨯+⨯+⨯++⨯=-++ 三.解答题 16.(本小题满分13分)某联欢晚会举行抽奖活动、举办方设置了甲.乙两种抽奖方案、方案甲的中奖率为23、中将可以获得2分;方案乙的中奖率为25、中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会、每次抽奖中将与否互不影响、晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖、小红选择方案乙抽奖、记他们的累计得分为,X Y 、求3X ≤的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖、问:他们选择何种方案抽奖、累计的得分的数学期望较大?本小题主要考查古典概型.离散型随机变量的分布列.数学期望等基础知识、考查数据处理能力.运算求解能力.应用意识、考查必然和或然思想、满分13分. 解:(Ⅰ)由已知得:小明中奖的概率为23、小红中奖的概率为25、两人中奖与否互不影响、记“这2人的累计得分3≤X ”的事件为A 、则A 事件的对立事件为“5=X ”、224(5)3515==⨯=P X 、11()1(5)15∴=-==P A P X ∴这两人的累计得分3≤X 的概率为1115. (Ⅱ)设小明.小红都选择方案甲抽奖中奖的次数为1X 、都选择方案乙抽奖中奖的次数为2X 、则这两人选择方案甲抽奖累计得分的数学期望为1(2)E X 、选择方案乙抽奖累计得分的数学期望为2(3)E X由已知:12~(2,)3X B 、22~(2,)5X B124()233∴=⨯=E X 、224()255=⨯=E X118(2)2()3∴==E X E X 、2212(3)3()5==E X E X12(2)(3)>E X E X∴他们都在选择方案甲进行抽奖时、累计得分的数学期望最大.17.(本小题满分13分)已知函数()ln ()f x x a x a R =-∈ (1)当2a =时、求曲线()y f x =在点(1,(1))A f 处的切线方程; (2)求函数()f x 的极值.本小题主要考查函数.函数的导数.不等式等基础知识、考查运算求解能力、考查函数与方程思想.分类与整合思想、数形结合思想.化归与转化思想.满分13分. 解:函数()f x 的定义域为(0,)+∞、()1'=-a f x x. (Ⅰ)当2=a 时、()2ln =-f x x x 、2()1(0)'=->f x x x、 (1)1,(1)1'∴==-f f 、()∴=y f x 在点(1,(1))A f 处的切线方程为1(1)-=--y x 、即20+-=x y .(Ⅱ)由()1,0-'=-=>a x a f x x x x可知: ①当0≤a 时、()0'>f x 、函数()f x 为(0,)+∞上的增函数、函数()f x 无极值; ②当0>a 时、由()0'=f x 、解得=x a ;(0,)∈x a 时、()0'<f x 、(,)∈+∞x a 时、()0'>f x()∴f x 在=x a 处取得极小值、且极小值为()ln =-f a a a a 、无极大值.综上:当0≤a 时、函数()f x 无极值当0>a 时、函数()f x 在=x a 处取得极小值ln -a a a 、无极大值.18.(本小题满分13分)如图、在正方形OABC 中、O 为坐标原点、点A 的坐标为(10,0)、点C 的坐标为(0,10).分别将线段OA 和AB 十等分、分点分别记为129,,....A A A 和129,,....B B B 、连结i OB 、过i A 做x 轴的垂线与i OB 交于点*(,19)i P i N i ∈≤≤. (1)求证:点*(,19)iP i N i ∈≤≤都在同一条抛物线上、并求该抛物线E 的方程; (2)过点C 做直线l 与抛物线E 交于不同的两点,M N 、若OCM ∆与OCN ∆的面积比为4:1、求直线l 的方程.本小题主要考查抛物线的性质.直线与抛物线的位置关系等基础知识、考查运算求解能力.推理论证能力、考查化归与转化思想、数形结合思想.函数与方程思想.满分13分.解:(Ⅰ)依题意、过*(,19)∈≤≤i A i N i 且与x 轴垂直的直线方程为=x i(10,)i B i 、∴直线i OB 的方程为10=iy x 设i P 坐标为(,)x y 、由10=⎧⎪⎨=⎪⎩x iiy x 得:2110=y x 、即210=x y 、 ∴*(,19)∈≤≤i P i N i 都在同一条抛物线上、且抛物线E 方程为210=x y(Ⅱ)依题意:直线l 的斜率存在、设直线l 的方程为10=+y kx由21010=+⎧⎨=⎩y kx x y得2101000--=x kx 此时2100+4000∆=>k 、直线l 与抛物线E 恒有两个不同的交点,M N 设:1122(,)(,)M x y N x y 、则121210100+=⎧⎨⋅=-⎩x x kx x4∆∆=OCM OCN S S ∴124=x x又120⋅<x x 、∴124=-x x分别带入21010=+⎧⎨=⎩y kx x y、解得32=±k 直线l 的方程为3+102=±y x 、即32200-+=x y 或3+2200-=x y 19.(本小题满分13分)如图、在四棱柱1111ABCD A B C D -中、侧棱1AA ABCD ⊥底面、//AB DC 、11AA =、3AB k =、4AD k =、5BC k =、6DC k =(0)k >.(1)求证:11;CD ADD A ⊥平面(2)若直线1AA 与平面1AB C 所成角的正弦值为67、求k 的值; (3)现将与四棱柱1111ABCD A B C D -形状和大小完全相同的两个四棱柱拼接成一个新的棱柱、规定:若拼接成的新的四棱柱形状和大小完全相同、则视为同一种拼接方案.问:共有几种不同的方案?在这些拼接成的新四棱柱中、记其中最小的表面积为()f k 、写出()f k 的表达式(直接写出答案、不必要说明理由)本小题主要考查直线与直线.直线与平面的位置关系.柱体的概念及表面积等基础知识、考查空间想象能力.推理论证能力.运算求解能力、考查数形结合思想.分类与整合思想.化归与转化思想、满分13分. 解:(Ⅰ)取CD 中点E 、连接BE//AB DE Q 、3AB DE k == ∴四边形ABED 为平行四边形//BE AD ∴且4BE AD k ==在BCE V 中、4,3,5BE k CE k BC k ===Q222BE CE BC ∴+=90BEC ∴∠=︒,即BE CD ⊥、又//BE AD Q 、所以CD AD ⊥1AA ⊥Q 平面ABCD 、CD ⊂平面ABCD 1AA CD ∴⊥、又1AA AD A =I 、CD ∴⊥平面11ADD A(Ⅱ)以D 为原点、1,,DA DC DD u u u r u u u r u u u r的方向为,,x y z 轴的正方向建立如图所示的空间直角坐标系(4,0,0)A k 、(0,6,0)C k 、1(4,3,1)B k k 、1(4,0,1)A k所以(4,6,0)AC k k =-u u u r 、1(0,3,1)AB k =u u u r 、1(0,0,1)AA =u u u r设平面1AB C 的法向量(,,)n x y z =、则由10AC n AB n ⎧⋅=⎪⎨⋅=⎪⎩uuu r uuu r得46030kx ky ky z -+=⎧⎨+=⎩取2y =、得(3,2,6)n k =-设1AA 与平面1AB C 所成角为θ、则111,sin |cos ,|||||AA nAA n AA n θ=〈〉=⋅uuu ruuu r uuu r67==、解得1k =.故所求k 的值为1 (Ⅲ)共有4种不同的方案2257226,018()53636,18k k k f k k k k ⎧+<≤⎪⎪=⎨⎪+>⎪⎩20.(本小题满分14分)已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的周期为π、图像的一个对称中心为(,0)4π、将函数()f x 图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变)、在将所得图像向右平移2π个单位长度后得到函数()g x 的图像. (1)求函数()f x 与()g x 的解析式; (2)是否存在0(,)64x ππ∈、使得0000(),(),()()f x g x f x g x 按照某种顺序成等差数列?若存在、请确定0x 的个数; 若不存在、说明理由.(3)求实数a 与正整数n 、使得()()()F x f x ag x =+在(0,)n π内恰有2013个零点. 本小题主要考查同角三角函数的基本关系.三角恒等变换.三角函数的图像与性质.函数.函数的导数.函数的零点.不等式等基础知识、考查运算求解能力.抽象概括能力、考查函数与方程思想、数形结合思想、分类与整合思想.化归与转化思想、满分14分. 解:(Ⅰ)由函数()sin()f x x ωϕ=+的周期为π、0ω>、得2ω= 又曲线()y f x =的一个对称中心为(,0)4π、(0,)ϕπ∈故()sin(2)044f ππϕ=⨯+=、得2πϕ=、所以()cos 2f x x =将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得cos y x =的图象、再将cos y x =的图象向右平移2π个单位长度后得到函数()sin g x x =(Ⅱ)当(,)64x ππ∈时、1sin 2x <<、10cos 22x << 所以sin cos 2sin cos 2x x x x >>问题转化为方程2cos 2sin sin cos 2x x x x =+在(,)64ππ内是否有解 设()sin sin cos 22cos 2G x x x x x =+-、(,)64x ππ∈则()cos cos cos 22sin 2(2sin )G x x x x x x '=++- 因为(,)64x ππ∈、所以()0G x '>、()G x 在(,)64ππ内单调递增又1()064G π=-<、()04G π=> 且函数()G x 的图象连续不断、故可知函数()G x 在(,)64ππ内存在唯一零点0x 、 即存在唯一的0(,)64x ππ∈满足题意 (Ⅲ)依题意、()sin cos 2F x a x x =+、令()sin cos 20F x a x x =+=当sin 0x =、即()x k k Z π=∈时、cos 21x =、从而()x k k Z π=∈不是方程()0F x =的解、所以方程()0F x =等价于关于x 的方程cos 2sin xa x=-、()x k k Z π≠∈ 现研究(0,)(,2)x πππ∈U 时方程解的情况 令cos 2()sin xh x x=-、(0,)(,2)x πππ∈U 则问题转化为研究直线y a =与曲线()y h x =在(0,)(,2)x πππ∈U 的交点情况22cos (2sin 1)()sin x x h x x+'=、令()0h x '=、得2x π=或32x π= 当x 变化时、()h x 和()h x '变化情况如下表当0x >且x 趋近于0时、()h x 趋向于-∞ 当x π<且x 趋近于π时、()h x 趋向于-∞ 当x π>且x 趋近于π时、()h x 趋向于+∞ 当2x π<且x 趋近于2π时、()h x 趋向于+∞故当1a >时、直线y a =与曲线()y h x =在(0,)π内有无交点、在(,2)ππ内有2个交点; 当1a <-时、直线y a =与曲线()y h x =在(0,)π内有2个交点、在(,2)ππ内无交点; 当11a -<<时、直线y a =与曲线()y h x =在(0,)π内有2个交点、在(,2)ππ内有2个交点由函数()h x 的周期性、可知当1a ≠±时、直线y a =与曲线()y h x =在(0,)n π内总有偶数个交点、从而不存在正整数n 、使得直线y a =与曲线()y h x =在(0,)n π内恰有2013个交点;当1a =±时、直线y a =与曲线()y h x =在(0,)(,2)πππU 内有3个交点、由周期性、20133671=⨯、所以67121342n =⨯=综上、当1a =±、1342n =时、函数()()()F x f x ag x =+在(0,)n π内恰有2013个零点 21.(本题满分14分) (1)(本小题满分7分)矩阵与变换已知直线:1l ax y +=在矩阵1201A ⎡⎤=⎢⎥⎣⎦对应的变换作用下变为直线':1l x by +=. (1)求实数,a b 的值;(2)若点00(,)p x y 在直线l 上、且0000x x A y y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭、求点p 的坐标.本小题主要考查矩阵.矩阵与变换等基础知识、考查运算求解能力.考查化归与转化思想.满分7分.解:解:(Ⅰ)设直线:1l ax y +=上任意一点(,)M x y 在矩阵A 对应的变换作用下的像是(,)M x y '''由12201x x x y y y y '+⎛⎫⎛⎫⎛⎫⎛⎫==⎪ ⎪⎪ ⎪'⎝⎭⎝⎭⎝⎭⎝⎭、得2x x y y y '=+⎧⎨'=⎩ 又点(,)M x y '''在l '上、所以1x by ''+=、即(2)1x b y ++=依题意121a b =⎧⎨+=⎩、解得11a b =⎧⎨=-⎩(Ⅱ)由0000x x A y y ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭、得000002x x y y y =+⎧⎨=⎩解得00y = 又点00(,)P x y 在直线l 上、所以01x = 故点P 的坐标为(1,0)(2)(本小题满分7分)坐标系与参数方程在平面直角坐标系中、以坐标原点为极点、x 轴的非负半轴为极轴建立坐标系.已知点A 的极坐标为)4π、直线l 的极坐标方程为cos()4a πρθ-=、且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆c 的参数方程为1cos sin x y αα=+⎧⎨=⎩、(α为参数)、试判断直线l 与圆的位置关系.本小题主要考查极坐标与直角坐标的互化.圆的参数方程等基础知识.考查运算求解能力、考查化归与转化思想、满分7分.解:(Ⅰ)由点)4A π在直线cos()4a πρθ-=上、可得a =所以直线l 的方程可化为cos sin 2ρθρθ+= 从而直线l 的直角坐标方程为20x y +-=(Ⅱ)由已知得圆C 的直角坐标方程为22(1)1x y -+= 所以圆心为(1,0)、半径1r =以为圆心到直线的距离12d =<、所以直线与圆相交 (3)(本小题满分7分)不等式选讲 设不等式*2()x a a N -<∈的解集为A 、且32A ∈、12A ∉. (1)求a 的值;(2)求函数()2f x x a x =++-的最小值.本小题主要考查绝对猪不等式等基础知识、考查运算求解能力、考查化归与转化思想、满分7分. 解:(Ⅰ)因为32A ∈、且12A ∉、所以322a -<、且122a -≥解得1322a <≤、又因为*a N ∈、所以1a = (Ⅱ)因为|1||2||(1)(2)|3x x x x ++-≥+--=当且仅当(1)(2)0x x +-≤、即12x -≤≤时取得等号、所以()f x 的最小值为3。
2013年高考真题解析分类汇编(理科数学)含解析
2013高考试题解析分类汇编(理数)5:平面向量一、选择题1 .(2013年高考上海卷(理))在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为;以D为起点,其余顶点为终点的向量分别为.若分别为的最小值、最大值,其中,,则满足()A. B. C. D.D.【解答】作图知,只有,其余均有,故选D.2 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))已知点()A. B. C. D.A,所以,所以同方向的单位向量是,选A.3 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版))设是边上一定点,满足,且对于边上任一点,恒有.则()A. B. C. D.D以AB所在的直线为x轴,以AB的中垂线为y轴建立直角坐标系,设AB=4,C(a,b),P(x,0)则BP0=1,A(﹣2,0),B(2,0),P0(1,0)所以=(1,0),=(2﹣x,0),=(a﹣x,b),=(a﹣1,b)因为恒有所以(2﹣x)(a﹣x)≥a﹣1恒成立整理可得x2﹣(a+2)x+a+1≥0恒成立所以△=(a+2)2﹣4(a+1)≤0即△=a2≤0所以a=0,即C在AB的垂直平分线上所以AC=BC故△ABC为等腰三角形故选D4 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD版))在四边形ABCD中,,,则四边形的面积为()A. B. C.5 D.10C由题意,容易得到.设对角线交于O点,则四边形面积等于四个三角形面积之和即S= .容易算出,则算出S=5.故答案C5 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))在平面直角坐标系中,是坐标原点,两定点满足则点集所表示的区域的面积是()A. B. C. D.D.在本题中,.建立直角坐标系,设A(2,0),所以选D6 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))在平面上,,,.若,则的取值范围是()A. B. C. D.D【命题立意】本题考查平面向量的应用以及平面向量的基本定理。
2013年福建省高考理科数学试卷及答案(word解析版)
2013年福建省高考数学试卷及解析(理工农医类)一.选择题1.已知复数z 的共轭复数12z i =+(i 为虚数单位),则z 在复平面内对应的点位于( ) A . 第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】D【解析】z 的共轭复数12z i =+,则12z i =-,对应点的坐标为(1,2)-,故答案为D . 2.已知集合{}1,A a =,{}1,2,3B =,则“3a =”是“A B ⊆”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】3,a A B =⇒⊆2A B a ⊆⇒=,或3.因此是充分不必要条件.3.双曲线2214x y -=的顶点到其渐近线的距离等于( ) A .25 B .45【答案】C【解析】 2214x y -=0=.带入点到直线距离公式d ==4[40,50), [50,60), [60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A .588B .480C .450D .120【答案】B【解析】由图知道60分以上人员的频率为后4项频率的和,由图知道(0.030.0250.0150.01)*100.8P =+++= 故分数在60以上的人数为600*0.8=480人.5.满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A .14B .13C .12D .10【答案】B【解析】方程220ax x b ++=有实数解,分析讨论①当0a =时,很显然为垂直于x 轴的直线方程,有解.此时b 可以取4个值.故有4种有序数对 ②当0a ≠时,需要440ab ∆=-≥,即1ab ≤.显然有3个实数对不满足题意,分别为(1,2),(2,1),(2,2).(,)a b 共有4*4=16中实数对,故答案应为16-3=13.6.阅读如图所示的程序框图,若输入的10k =,则该算法的功能是( )A .计算数列{}12n -的前10项和 B .计算数列{}12n -的前9项和C .计算数列{}21n -的前10项和D .计算数列{}21n-的前9项和【答案】C【解析】第一循环:1,2S i ==,10i <第二条:3,3,10S i i ==<第三条:7,4,10S i i ==< …..第九循环:921,10,10S i i =-==.第十循环:1021,11,10S i i =-=>,输出S .根据选项,101(12)S -=,故为数列12n -的前10项和.故答案A .7.在四边形中,(1,2)AC =,(4,2)BD =-,则四边形的面积为( )A C .5 D .10【答案】C.设对角线交于O 点,则四边形面积等于四个三角形面积之和即S=11(****)(*)22AO DO AO BO CO DO CO BO AC BD +++=.容易算出AC BD ==,则算出S=5.故答案C8.设函数()f x 的定义域为R ,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是( )A .0,()()x R f x f x ∀∈≤B .0x -是()f x -的极小值点C .0x -是()f x -的极小值点D .0x -是()f x --的极小值点 【答案】D【解析】A .0,()()x R f x f x ∀∈≤,错误.00(0)x x ≠是()f x 的极大值点,并不是最大值点.B .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于y 轴的对称图像,故0x -应是()f x -的极大值点C .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于x 轴的对称图像,故0x 应是()f x -的极小值点.跟0x -没有关系.D .0x -是()f x --的极小值点.正确.()f x --相当于()f x 先关于y 轴的对象,再关于x 轴的对称图像.故D 正确9.已知等比数列{}n a 的公比为q ,记(1)1(1)2(1)...,n m n m n m n m b a a a -+-+-+=+++*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=∙∙∙∈则以下结论一定正确的是( )A .数列{}n b 为等差数列,公差为mq B .数列{}n b 为等比数列,公比为2mq C .数列{}n c 为等比数列,公比为2m q D .数列{}n c 为等比数列,公比为mm q【答案】C【解析】等比数列{}n a 的公比为q,同理可得2222222,m m m mm m m a a a a a a ++++=∙=∙112...m c a a a =∙∙∙,212...,m m m m c a a a +++=∙∙∙321222...,m m m m c a a a +++=∙∙∙2213c c c ∴=∙∴数列{}n c 为等比数列,2221212211212............m m m m m m m m m ma a a a a a q c q q c a a a a a a +++∙∙∙∙∙∙∙====∙∙∙∙∙∙故选C 10.设S ,T ,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈对任意12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( )A .*,A N B N == B .{|13},{|8010}A x x B x x x =-≤≤==-<≤或 C .{|01},A x x B R =<<= D .,A Z B Q == 【答案】D【解析】根据题意可知,令()1f x x =-,则A 选项正确;令55(13)()228(1)x x f x x ⎧+-<≤⎪=⎨⎪-=-⎩,则B 选项正确; 令1()tan ()2f x x π=-,则C 选项正确;故答案为D . 二.填空题11.利用计算机产生0~1之间的均匀随机数a ,则时间“310a ->”发生的概率为________ 【答案】23【解析】13103a a ->∴>a 产生0~1之间的均匀随机数1(,1)3a ∴∈112313p -∴==12.已知某一多面体内接于一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π【解析】由图可知,图形为一个球中间是内接一个棱长为2的正方体,212R R ππ∴==球13.如图ABC ∆中,已知点D 在3AD ==则BD 的长为_______________【解析】sin sin(BAC BAD ∠=∠∴3∴=14.椭圆2222:1(0)x y a b a bΓ+=>>的左.右焦点分别为12,F F ,焦距为2c ,若直线)y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于__________ 1【解析】由直线方程()y x c =+⇒直线与x 轴的夹角12233MF F ππ∠=或,且过点1-F (c,0)1222M F F M F F ∠=∠∴122123M F F M F F π∠=∠=即12F M F M ⊥12RT F MF ∴∆在中,12122,,F F c FM c F M ===∴由椭圆的第一定义可得21c a c a =∴==15.当,1x R x ∈<时,有如下表达式:211.......1nx x x x+++++=- 两边同时积分得:1111122222200011.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰从而得到如下等式:23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+ 请根据以下材料所蕴含的数学思想方法,计算:122311111111()()...()_____2223212nn n n n n n C C C C +⨯+⨯+⨯++⨯=+ 【答案】113[()1]12n n +-+ 【解析】由01221......(1)n nn n n n n C C x C x C x x +++++=+两边同时积分得:111112222220001......(1).nn nnnnC dx C xdx C x dx C x dx x dx +++++=+⎰⎰⎰⎰⎰从而得到如下等式:122311*********()()...()[()1]222321212n n n n n n nn n C C C C ++⨯+⨯+⨯++⨯=-++ 三.解答题16.(本小题满分13分)某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为23,中将可以获得2分;方案乙的中奖率为25,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,X Y ,求3X ≤的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?本小题主要考查古典概型.离散型随机变量的分布列.数学期望等基础知识,考查数据处理能力.运算求解能力.应用意识,考查必然和或然思想,满分13分. 解:(Ⅰ)由已知得:小明中奖的概率为23,小红中奖的概率为25,两人中奖与否互不影响,记“这2人的累计得分3≤X ”的事件为A ,则A 事件的对立事件为“5=X ”,224(5)3515==⨯=P X ,11()1(5)15∴=-==P A P X∴这两人的累计得分3≤X 的概率为1115.(Ⅱ)设小明.小红都选择方案甲抽奖中奖的次数为1X ,都选择方案乙抽奖中奖的次数为2X ,则这两人选择方案甲抽奖累计得分的数学期望为1(2)E X ,选择方案乙抽奖累计得分的数学期望为2(3)E X 由已知:12~(2,)3X B ,22~(2,)5X B124()233∴=⨯=E X ,224()255=⨯=E X 118(2)2()3∴==E X E X ,2212(3)3()5==E X E X12(2)(3)>E X E X∴他们都在选择方案甲进行抽奖时,累计得分的数学期望最大.17.(本小题满分13分)已知函数()ln ()f x x a x a R =-∈(1)当2a =时,求曲线()y f x =(2)求函数()f x 的极值.解:函数()f x 的定义域为(0,)+∞,(Ⅰ)当2=a 时,()2ln =-f x x (1)1,(1)1'∴==-f f ,()∴=y f x 在点(1,(1))A f 处的切线方程为1(1)-=--y x ,即20+-=x y .(Ⅱ)由()1,0-'=-=>a x a f x x x x可知: ①当0≤a 时,()0'>f x ,函数()f x 为(0,)+∞上的增函数,函数()f x 无极值; ②当0>a 时,由()0'=f x ,解得=x a ;(0,)∈x a 时,()0'<f x ,(,)∈+∞x a 时,()0'>f x()∴f x 在=x a 处取得极小值,且极小值为()ln =-f a a a a ,无极大值.综上:当0≤a 时,函数()f x 无极值当0>a 时,函数()f x 在=x a 处取得极小值ln -a a a ,无极大值.18.(本小题满分13分)如图,在正方形OABC 中,O 为坐标原点,点A 的坐标为(10,0),点C 的坐标为(0,10).分别将线段OA 和AB 十等分,分点分别记为129,,....A A A 和129,,....B B B ,连结i OB ,过i A 做x 轴的垂线与i OB 交于点*(,19)iP i N i ∈≤≤. (1)求证:点*(,19)i P i N i ∈≤≤都在同一条抛物线上,并求该抛物线E 的方程;(2)过点C 做直线l 与抛物线E 交于不同的两点,M N ,若OCM ∆与OCN ∆的面积比为4:1,求直线l 的方程.本小题主要考查抛物线的性质.直线与抛物线的位置关系等基础知识,考查运算求解能力.推理论证能力,考查化归与转化思想,数形结合思想.函数与方程思想.满分13分.解:(Ⅰ)依题意,过*(,19)∈≤≤i A i N i 且与x 轴垂直的直线方程为=x i(10,)i B i ,∴直线i OB 的方程为10=iy x 设i P 坐标为(,)x y ,由10=⎧⎪⎨=⎪⎩x iiy x 得:2110=y x ,即210=x y , ∴*(,19)∈≤≤i P i N i 都在同一条抛物线上,且抛物线E 方程为210=x y(Ⅱ)依题意:直线l 的斜率存在,设直线l 的方程为10=+y kx由21010=+⎧⎨=⎩y kx x y得2101000--=x kx 此时2100+4000∆=>k ,直线l 与抛物线E 恒有两个不同的交点,M N 设:1122(,)(,)M x y N x y ,则121210100+=⎧⎨⋅=-⎩x x kx x4∆∆=OCM OCN S S ∴124=x x又120⋅<x x ,∴124=-x x分别带入21010=+⎧⎨=⎩y kx x y,解得32=±k 直线l 的方程为3+102=±y x ,即32200-+=x y 或3+2200-=x y19.(本小题满分13分)如图,在四棱柱1111ABCD A B C D -中,侧棱1AA ABCD ⊥底面,//AB DC ,11AA =,3AB k =,4AD k =,5BC k =,6DC k =(0)k >.(1)求证:11;CD ADD A ⊥平面(2)若直线1AA 与平面1AB C 所成角的正弦值为67,求k 的值; (3)现将与四棱柱1111ABCD A B C D -形状和大小完全相同的两个四棱柱拼接成一个新的棱柱,规定:若拼接成的新的四棱柱形状和大小完全相同,则视为同一种拼接方案.问:共有几种不同的方案?在这些拼接成的新四棱柱中,记其中最小的表面积为()f k ,写出()f k 的表达式(直接写出答案,不必要说明理由)本小题主要考查直线与直线.直线与平面的位置关系.柱体的概念及表面积等基础知识,考查空间想象能力.推理论证能力.运算求解能力,考查数形结合思想.分类与整合思想.化归与转化思想,满分13分. 解:(Ⅰ)取CD 中点E ,连接BE//AB DE Q ,3AB DE k == ∴四边形ABED 为平行四边形//BE AD ∴且4BE AD k ==在BCE V 中,4,3,5BE k CE k BC k ===Q222BE CE BC ∴+=90BEC ∴∠=︒,即BE CD ⊥,又//BE AD Q ,所以CD AD ⊥1AA ⊥Q 平面ABCD ,CD ⊂平面ABCD 1AA CD ∴⊥,又1AA AD A =I ,CD ∴⊥平面11ADD A(Ⅱ)以D 为原点,1,,DA DC DD u u u r u u u r u u u r的方向为,,x y z 轴的正方向建立如图所示的空间直角坐标系(4,0,0)A k ,(0,6,0)C k ,1(4,3,1)B k k ,1(4,0,1)A k所以(4,6,0)AC k k =-u u u r ,1(0,3,1)AB k =u u u r ,1(0,0,1)AA =u u u r 设平面1AB C 的法向量(,,)n x y z =,则由10AC n AB n ⎧⋅=⎪⎨⋅=⎪⎩uuu r uuu r得46030kx ky ky z -+=⎧⎨+=⎩取2y =,得(3,2,6)n k =-设1AA 与平面1AB C 所成角为θ,则111,sin |cos ,|||||AA nAA n AA n θ=〈〉=⋅uuu ruuu r uuu r67==,解得1k =.故所求k 的值为1 (Ⅲ)共有4种不同的方案2257226,018()53636,18k k k f k k k k ⎧+<≤⎪⎪=⎨⎪+>⎪⎩20.(本小题满分14分)已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的周期为π,图像的一个对称中心为(,0)4π,将函数()f x 图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移2π个单位长度后得到函数()g x 的图像. (1)求函数()f x 与()g x 的解析式; (2)是否存在0(,)64x ππ∈,使得0000(),(),()()f x g x f x g x 按照某种顺序成等差数列?若存在,请确定0x 的个数;若不存在,说明理由.(3)求实数a 与正整数n ,使得()()()F x f x ag x =+在(0,)n π内恰有2013个零点.本小题主要考查同角三角函数的基本关系.三角恒等变换.三角函数的图像与性质.函数.函数的导数.函数的零点.不等式等基础知识,考查运算求解能力.抽象概括能力,考查函数与方程思想,数形结合思想,分类与整合思想.化归与转化思想,满分14分.解:(Ⅰ)由函数()sin()f x x ωϕ=+的周期为π,0ω>,得2ω= 又曲线()y f x =的一个对称中心为(,0)4π,(0,)ϕπ∈故()sin(2)044f ππϕ=⨯+=,得2πϕ=,所以()cos 2f x x =将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得cos y x =的图象,再将cos y x =的图象向右平移2π个单位长度后得到函数()sin g x x = (Ⅱ)当(,)64x ππ∈时,1sin 2x <<,10cos 22x << 所以sin cos 2sin cos 2x x x x >>问题转化为方程2cos 2sin sin cos 2x x x x =+在(,)64ππ内是否有解设()sin sin cos 22cos 2G x x x x x =+-,(,)64x ππ∈ 则()cos cos cos 22sin 2(2sin )G x x x x x x '=++- 因为(,)64x ππ∈,所以()0G x '>,()G x 在(,)64ππ内单调递增又1()064G π=-<,()042G π=> 且函数()G x 的图象连续不断,故可知函数()G x 在(,)64ππ内存在唯一零点0x , 即存在唯一的0(,)64x ππ∈满足题意 (Ⅲ)依题意,()sin cos 2F x a x x =+,令()sin cos 20F x a x x =+=当sin 0x =,即()x k k Z π=∈时,cos 21x =,从而()x k k Z π=∈不是方程()0F x =的解,所以方程()0F x =等价于关于的方程cos 2x当0x >且x 趋近于0时,()h x 趋向于-∞ 当x π<且x 趋近于π时,()h x 趋向于-∞ 当x π>且x 趋近于π时,()h x 趋向于+∞ 当2x π<且x 趋近于2π时,()h x 趋向于+∞故当1a >时,直线y a =与曲线()y h x =在(0,)π内有无交点,在(,2)ππ内有2个交点; 当1a <-时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内无交点;当11a -<<时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内有2个交点由函数()h x 的周期性,可知当1a ≠±时,直线y a =与曲线()y h x =在(0,)n π内总有偶数个交点,从而不存在正整数n ,使得直线y a =与曲线()y h x =在(0,)n π内恰有2013个交点;当1a =±时,直线y a =与曲线()y h x =在(0,)(,2)πππU 内有3个交点,由周期性,20133671=⨯,所以67121342n =⨯=综上,当1a =±,1342n =时,函数()()()F x f x ag x =+在(0,)n π内恰有2013个零点21.(本题满分14分)(1)(本小题满分7分)矩阵与变换已知直线:1l ax y +=在矩阵1201A ⎡⎤=⎢⎥⎣⎦对应的变换作用下变为直线':1l x by +=. (1)求实数,a b 的值;(2)若点00(,)p x y 在直线l 上,且0000x x A y y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,求点p 的坐标. 本小题主要考查矩阵.矩阵与变换等基础知识,考查运算求解能力.考查化归与转化思想.满分7分. 解:解:(Ⅰ)设直线:1l ax y +=上任意一点(,)M x y 在矩阵A 对应的变换作用下的像是(,)M x y '''由12201x x x y y y y '+⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪'⎝⎭⎝⎭⎝⎭⎝⎭,得2x x y y y '=+⎧⎨'=⎩ 又点(,)M x y '''在l '上,所以1x by ''+=,即(2)1x b y ++=依题意121a b =⎧⎨+=⎩,解得11a b =⎧⎨=-⎩ (Ⅱ)由0000x x A y y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,得000002x x y y y =+⎧⎨=⎩解得00y = 又点00(,)P x y 在直线l 上,所以01x =故点P 的坐标为(1,0)(2)(本小题满分7分)坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A的极坐标为)4π,直线l 的极坐标方程为cos()4a πρθ-=,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆c 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线l 与圆的位置关系. 本小题主要考查极坐标与直角坐标的互化.圆的参数方程等基础知识.考查运算求解能力,考查化归与转化思想,满分7分.解:(Ⅰ)由点)4A π在直线cos()4a πρθ-=上,可得a =所以直线l 的方程可化为cos sin 2ρθρθ+=从而直线l 的直角坐标方程为20x y +-=(Ⅱ)由已知得圆C 的直角坐标方程为22(1)1x y -+=所以圆心为(1,0),半径1r =以为圆心到直线的距离1d =<,所以直线与圆相交 (3)(本小题满分7分)不等式选讲 设不等式*2()x a a N -<∈的解集为A ,且32A ∈,12A ∉. (1)求a 的值;(2)求函数()2f x x a x =++-7分. 解:(Ⅰ)因为32A ∈,且12A ∉解得1322a <≤,又因为*a N ∈(Ⅱ)因为|1||2||(1)x x x ++-≥+当且仅当(1)(2)0x x +-≤,即1-≤。
2013年全国高考理科数学试题分类汇编11:概率与统计 Word版含答案
2013年全国高考理科数学试题分类汇编11:概率与统计一、选择题错误!未指定书签。
.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)60,80,820,100.若低于60分的人数是15人,则该班的学生人数20,40,40,60,[)[)是()A.45B.50C.55D.60【答案】B错误!未指定书签。
.(2013年高考陕西卷(理))某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为()A.11 B.12 C.13 D.14【答案】B错误!未指定书签。
.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是()A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班级男生成绩的平均数小于该班女生成绩的平均数【答案】C错误!未指定书签。
.(2013年高考湖南卷(理))某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A.抽签法B.随机数法C.系统抽样法D.分层抽样法【答案】D错误!未指定书签。
.(2013年高考陕西卷(理))如图, 在矩形区域ABCD的A, C两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是( )A .14π-B .12π-C .22π-D .4π 【答案】A错误!未指定书签。
2013年福建省高考试题数学试卷答案及解析
2013年普通高等学校招生全国统一考试(福建卷)数学试题(理工农医类)第Ⅰ卷(选择题 共50分)一.选择题1.已知复数z 的共轭复数12z i =+(i 为虚数单位),则z 在复平面内对应的点位于( ) A . 第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】D【解析】z 的共轭复数12z i =+,则12z i =-,对应点的坐标为(1,2)-,故答案为D . 2.已知集合{}1,A a =,{}1,2,3B =,则“3a =”是“A B ⊆”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】3,a A B =⇒⊆2A B a ⊆⇒=,或3.因此是充分不必要条件.3.双曲线2214x y -=的顶点到其渐近线的距离等于( ) A .25 B .45CD 【答案】C【解析】 2214x y -=的顶点坐标为(2,0)±,渐近线为2204x y -=,即20x y ±=.带入点到直线距离公式d ==. 4.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( ) A .588 B .480 C .450D .120【答案】B【解析】由图知道60分以上人员的频率为后4项频率的和,由图知道(0.030.0250.0150.01)*100.8P =+++=故分数在60以上的人数为600*0.8=480人.5.满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A .14B .13C .12D .10 【答案】B【解析】方程220ax x b ++=有实数解,分析讨论①当0a =时,很显然为垂直于x 轴的直线方程,有解.此时b 可以取4个值.故有4种有序数对②当0a ≠时,需要440ab ∆=-≥,即1ab ≤.显然有3个实数对不满足题意,分别为(1,2),(2,1),(2,2).(,)a b 共有4*4=16中实数对,故答案应为16-3=13.6.阅读如图所示的程序框图,若输入的10k =,则该算法的功能是( )A .计算数列{}12n -的前10项和 B .计算数列{}12n -的前9项和 C .计算数列{}21n -的前10项和 D .计算数列{}21n -的前9项和【答案】C【解析】第一循环:1,2S i ==,10i <第二条:3,3,10S i i ==<第三条:7,4,10S i i ==< …..第九循环:921,10,10S i i =-==.第十循环:1021,11,10S i i =-=>,输出S .根据选项,101(12)12S -=-,故为数列12n -的前10项和.故答案A .7.在四边形ABCD 中,(1,2)AC = ,(4,2)BD =-,则四边形的面积为( )A B . C .5 D .10【答案】C【解析】由题意,容易得到AC BD ⊥.设对角线交于O 点,则四边形面积等于四个三角形面积之和 即S=11(****)(*)22AO DO AO BO CO DO CO BO AC BD +++=.容易算出AC BD ==,则算出S=5.故答案C8.设函数()f x 的定义域为R ,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是( )A .0,()()x R f x f x ∀∈≤B .0x -是()f x -的极小值点C .0x -是()f x -的极小值点D .0x -是()f x --的极小值点 【答案】D【解析】A .0,()()x R f x f x ∀∈≤,错误.00(0)x x ≠是()f x 的极大值点,并不是最大值点. B .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于y 轴的对称图像,故0x -应是()f x -的极大值点C .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于x 轴的对称图像,故0x 应是()f x -的极小值点.跟0x -没有关系.D .0x -是()f x --的极小值点.正确.()f x --相当于()f x 先关于y 轴的对象,再关于x 轴的对称图像.故D 正确9.已知等比数列{}n a 的公比为q ,记(1)1(1)2(1)...,n m n m n m n m b a a a -+-+-+=+++*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=∙∙∙∈则以下结论一定正确的是( )A .数列{}n b 为等差数列,公差为mq B .数列{}n b 为等比数列,公比为2mq C .数列{}n c 为等比数列,公比为2m q D .数列{}n c 为等比数列,公比为mm q【答案】C【解析】等比数列{}n a 的公比为q,同理可得2222222,m m m mm m m a a a a a a ++++=∙=∙112...m c a a a =∙∙∙,212...,m m m m c a a a +++=∙∙∙321222...,m m m m c a a a +++=∙∙∙2213c c c ∴=∙∴数列{}n c 为等比数列,2221212211212............mm m m m m m m m ma a a a a a q c q q c a a a a a a +++∙∙∙∙∙∙∙====∙∙∙∙∙∙ 故选C 10.设S ,T ,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈对任意12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( )A .*,A N B N == B .{|13},{|8010}A x x B x x x =-≤≤==-<≤或 C .{|01},A x x B R =<<= D .,A Z B Q == 【答案】D【解析】根据题意可知,令()1f x x =-,则A 选项正确;令55(13)()228(1)x x f x x ⎧+-<≤⎪=⎨⎪-=-⎩,则B 选项正确; 令1()tan ()2f x x π=-,则C 选项正确;故答案为D .二.填空题11.利用计算机产生0~1之间的均匀随机数a ,则时间“310a ->”发生的概率为________ 【答案】23【解析】13103a a ->∴> a 产生0~1之间的均匀随机数1(,1)3a ∴∈112313p -∴== 12.已知某一多面体内接于一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π【解析】由图可知,图形为一个球中间是内接一个棱长为2的正方体,24122R S R ππ∴====球表13.如图ABC ∆中,已知点D 在BC 边上,AD ⊥AC,sin 33BAC AB AD ∠===则BD 的长为_______________【解析】sin sin()cos 2BAC BAD BAD π∠=∠+=∠=∴根据余弦定理可得222cos 2AB AD BD BAD AB AD +-∠=∙BD ==14.椭圆2222:1(0)x y a b a b Γ+=>>的左.右焦点分别为12,F F ,焦距为2c ,若直线)y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于__________1【解析】由直线方程)y x c =+⇒直线与x 轴的夹角12233MF F ππ∠=或,且过点1-F (c,0)12212MF F MF F ∠=∠∴122123MF F MF F π∠=∠=即12F M F M ⊥12RT F MF ∴∆在中,12122,,F F c F M c F M ===∴由椭圆的第一定义可得21c a c a =∴==15.当,1x R x ∈<时,有如下表达式:211.......1n x x x x+++++=- 两边同时积分得:1111122222200011.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰从而得到如下等式:23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+ 请根据以下材料所蕴含的数学思想方法,计算:122311111111()()...()_____2223212nn n n n nn C C C C +⨯+⨯+⨯++⨯=+【答案】113[()1]12n n +-+ 【解析】由01221......(1)n nn n n n n C C x C x C x x +++++=+两边同时积分得:111112222220001......(1).nn n n n n C dx C xdx C x dx C x dx x dx +++++=+⎰⎰⎰⎰⎰从而得到如下等式:122311*********()()...()[()1]222321212n n n n n n nn n C C C C ++⨯+⨯+⨯++⨯=-++ 三.解答题16.(本小题满分13分)某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为23,中将可以获得2分;方案乙的中奖率为25,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,X Y ,求3X ≤的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?本小题主要考查古典概型.离散型随机变量的分布列.数学期望等基础知识,考查数据处理能力.运算求解能力.应用意识,考查必然和或然思想,满分13分. 解:(Ⅰ)由已知得:小明中奖的概率为23,小红中奖的概率为25,两人中奖与否互不影响,记“这2人的累计得分3≤X ”的事件为A ,则A 事件的对立事件为“5=X ”,224(5)3515==⨯= P X ,11()1(5)15∴=-==P A P X∴这两人的累计得分3≤X 的概率为1115. (Ⅱ)设小明.小红都选择方案甲抽奖中奖的次数为1X ,都选择方案乙抽奖中奖的次数为2X ,则这两人选择方案甲抽奖累计得分的数学期望为1(2)E X ,选择方案乙抽奖累计得分的数学期望为2(3)E X由已知:12~(2,)3X B ,22~(2,)5X B124()233∴=⨯=E X ,224()255=⨯=E X 118(2)2()3∴==E X E X ,2212(3)3()5==E X E X12(2)(3)> E X E X∴他们都在选择方案甲进行抽奖时,累计得分的数学期望最大.17.(本小题满分13分)已知函数()ln ()f x x a x a R =-∈ (1)当2a =时,求曲线()y f x =在点(1,(1))A f 处的切线方程; (2)求函数()f x 的极值.本小题主要考查函数.函数的导数.不等式等基础知识,考查运算求解能力,考查函数与方程思想.分类与整合思想,数形结合思想.化归与转化思想.满分13分. 解:函数()f x 的定义域为(0,)+∞,()1'=-a f x x. (Ⅰ)当2=a 时,()2ln =-f x x x ,2()1(0)'=->f x x x, (1)1,(1)1'∴==-f f ,()∴=y f x 在点(1,(1))A f 处的切线方程为1(1)-=--y x ,即20+-=x y .(Ⅱ)由()1,0-'=-=>a x a f x x x x可知: ①当0≤a 时,()0'>f x ,函数()f x 为(0,)+∞上的增函数,函数()f x 无极值; ②当0>a 时,由()0'=f x ,解得=x a ;(0,)∈ x a 时,()0'<f x ,(,)∈+∞x a 时,()0'>f x()∴f x 在=x a 处取得极小值,且极小值为()ln =-f a a a a ,无极大值.综上:当0≤a 时,函数()f x 无极值当0>a 时,函数()f x 在=x a 处取得极小值ln -a a a ,无极大值.18.(本小题满分13分)如图,在正方形OABC 中,O 为坐标原点,点A 的坐标为(10,0),点C 的坐标为(0,10).分别将线段OA 和AB 十等分,分点分别记为129,,....A A A 和129,,....B B B ,连结i OB ,过i A 做x 轴的垂线与i OB 交于点*(,19)i P i N i ∈≤≤.(1)求证:点*(,19)i P i N i ∈≤≤都在同一条抛物线上,并求该抛物线E 的方程;(2)过点C 做直线l 与抛物线E 交于不同的两点,M N ,若OCM ∆与OCN ∆的面积比为4:1,求直线l 的方程.本小题主要考查抛物线的性质.直线与抛物线的位置关系等基础知识,考查运算求解能力.推理论证能力,考查化归与转化思想,数形结合思想.函数与方程思想.满分13分. 解:(Ⅰ)依题意,过*(,19)∈≤≤i A i N i 且与x 轴垂直的直线方程为=x i(10,) i B i ,∴直线i OB 的方程为10=iy x 设i P 坐标为(,)x y ,由10=⎧⎪⎨=⎪⎩x ii y x 得:2110=y x ,即210=x y ,∴*(,19)∈≤≤i P i N i 都在同一条抛物线上,且抛物线E 方程为210=x y(Ⅱ)依题意:直线l 的斜率存在,设直线l 的方程为10=+y kx由21010=+⎧⎨=⎩y kx x y得2101000--=x kx 此时2100+4000∆=>k ,直线l 与抛物线E 恒有两个不同的交点,M N设:1122(,)(,)M x y N x y ,则121210100+=⎧⎨⋅=-⎩x x kx x4∆∆= OCM OCN S S ∴124=x x又120⋅< x x ,∴124=-x x分别带入21010=+⎧⎨=⎩y kx x y,解得32=±k直线l 的方程为3+102=±y x ,即32200-+=x y 或3+2200-=x y19.(本小题满分13分)如图,在四棱柱1111ABCD A B C D -中,侧棱1AA ABCD ⊥底面,//AB DC ,11AA =,3AB k =,4AD k =,5BC k =,6DC k =(0)k >.(1)求证:11;CD ADD A ⊥平面(2)若直线1AA 与平面1AB C 所成角的正弦值为67,求k 的值; (3)现将与四棱柱1111ABCD A B C D -形状和大小完全相同的两个四棱柱拼接成一个新的棱柱,规定:若拼接成的新的四棱柱形状和大小完全相同,则视为同一种拼接方案.问:共有几种不同的方案?在这些拼接成的新四棱柱中,记其中最小的表面积为()f k ,写出()f k 的表达式(直接写出答案,不必要说明理由)本小题主要考查直线与直线.直线与平面的位置关系.柱体的概念及表面积等基础知识,考查空间想象能力.推理论证能力.运算求解能力,考查数形结合思想.分类与整合思想.化归与转化思想,满分13分. 解:(Ⅰ)取CD 中点E ,连接BE//AB DE Q ,3AB DE k == ∴四边形ABED 为平行四边形 //BE AD ∴且4BE AD k ==在BCE V 中,4,3,5BE k CE k BC k ===Q222BE CE BC ∴+=90BEC ∴∠=︒,即BE CD ⊥,又//BE AD Q ,所以CD AD ⊥1AA ⊥Q 平面ABCD ,CD ⊂平面ABCD 1AA CD ∴⊥,又1AA AD A =I ,CD ∴⊥平面11ADD A(Ⅱ)以D 为原点,1,,DA DC DD uu u r uuu r uuur的方向为,,x y z 轴的正方向建立如图所示的空间直角坐标系(4,0,0)A k ,(0,6,0)C k ,1(4,3,1)B k k ,1(4,0,1)A k所以(4,6,0)AC k k =-uuu r ,1(0,3,1)AB k =uuu r ,1(0,0,1)AA =uuu r设平面1AB C 的法向量(,,)n x y z =,则由100AC n AB n ⎧⋅=⎪⎨⋅=⎪⎩uuu r uuu r得46030kx ky ky z -+=⎧⎨+=⎩取2y =,得(3,2,6)n k =-设1AA 与平面1AB C 所成角为θ,则111,sin |cos ,|||||AA nAA n AA n θ=〈〉=⋅uuu ruuur uuu r67==,解得1k =.故所求k 的值为1 (Ⅲ)共有4种不同的方案2257226,018()53636,18k k k f k k k k ⎧+<≤⎪⎪=⎨⎪+>⎪⎩20.(本小题满分14分)已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的周期为π,图像的一个对称中心为(,0)4π,将函数()f x 图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移2π个单位长度后得到函数()g x 的图像. (1)求函数()f x 与()g x 的解析式; (2)是否存在0(,)64x ππ∈,使得0000(),(),()()f x g x f x g x 按照某种顺序成等差数列?若存在,请确定0x 的个数; 若不存在,说明理由.(3)求实数a 与正整数n ,使得()()()F x f x ag x =+在(0,)n π内恰有2013个零点. 本小题主要考查同角三角函数的基本关系.三角恒等变换.三角函数的图像与性质.函数.函数的导数.函数的零点.不等式等基础知识,考查运算求解能力.抽象概括能力,考查函数与方程思想,数形结合思想,分类与整合思想.化归与转化思想,满分14分. 解:(Ⅰ)由函数()sin()f x x ωϕ=+的周期为π,0ω>,得2ω= 又曲线()y f x =的一个对称中心为(,0)4π,(0,)ϕπ∈故()sin(2)044f ππϕ=⨯+=,得2πϕ=,所以()cos 2f x x =将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得cos y x =的图象,再将cos y x =的图象向右平移2π个单位长度后得到函数()sin g x x =(Ⅱ)当(,)64x ππ∈时,1sin 22x <<,10cos 22x << 所以sin cos2sin cos2x x x x >>问题转化为方程2cos2sin sin cos2x x x x =+在(,)64ππ内是否有解设()sin sin cos 22cos 2G x x x x x =+-,(,)64x ππ∈ 则()cos cos cos 22sin 2(2sin )G x x x x x x '=++- 因为(,)64x ππ∈,所以()0G x '>,()G x 在(,)64ππ内单调递增又1()064G π=-<,()042G π=> 且函数()G x 的图象连续不断,故可知函数()G x 在(,)64ππ内存在唯一零点0x ,即存在唯一的0(,)64x ππ∈满足题意 (Ⅲ)依题意,()sin cos 2F x a x x =+,令()sin cos 20F x a x x =+=当sin 0x =,即()x k k Z π=∈时,cos21x =,从而()x k k Z π=∈不是方程()0F x =的解,所以方程()0F x =等价于关于x 的方程cos 2sin xa x=-,()x k k Z π≠∈ 现研究(0,)(,2)x πππ∈U 时方程解的情况 令cos 2()sin xh x x=-,(0,)(,2)x πππ∈U 则问题转化为研究直线y a =与曲线()y h x =在(0,)(,2)x πππ∈U 的交点情况22cos (2sin 1)()sin x x h x x +'=,令()0h x '=,得2x π=或32x π=当x 变化时,()h x 和()h x '变化情况如下表当0x >且x 趋近于0时,()h x 趋向于-∞ 当x π<且x 趋近于π时,()h x 趋向于-∞ 当x π>且x 趋近于π时,()h x 趋向于+∞ 当2x π<且x 趋近于2π时,()h x 趋向于+∞故当1a >时,直线y a =与曲线()y h x =在(0,)π内有无交点,在(,2)ππ内有2个交点; 当1a <-时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内无交点; 当11a -<<时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内有2个交点 由函数()h x 的周期性,可知当1a ≠±时,直线y a =与曲线()y h x =在(0,)n π内总有偶数个交点,从而不存在正整数n ,使得直线y a =与曲线()y h x =在(0,)n π内恰有2013个交点;当1a =±时,直线y a =与曲线()y h x =在(0,)(,2)πππU 内有3个交点,由周期性,20133671=⨯,所以67121342n =⨯=综上,当1a =±,1342n =时,函数()()()F x f x ag x =+在(0,)n π内恰有2013个零点 21.(本题满分14分) (1)(本小题满分7分)矩阵与变换已知直线:1l ax y +=在矩阵1201A ⎡⎤=⎢⎥⎣⎦对应的变换作用下变为直线':1l x by +=. (1)求实数,a b 的值;(2)若点00(,)p x y 在直线l 上,且0000x x A y y ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,求点p 的坐标. 本小题主要考查矩阵.矩阵与变换等基础知识,考查运算求解能力.考查化归与转化思想.满分7分.解:解:(Ⅰ)设直线:1l ax y +=上任意一点(,)M x y 在矩阵A 对应的变换作用下的像是(,)M x y '''由12201x x x y y y y '+⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪'⎝⎭⎝⎭⎝⎭⎝⎭,得2x x y y y '=+⎧⎨'=⎩又点(,)M x y '''在l '上,所以1x by ''+=,即(2)1x b y ++=依题意121a b =⎧⎨+=⎩,解得11a b =⎧⎨=-⎩(Ⅱ)由0000x x A y y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,得000002x x y y y =+⎧⎨=⎩解得00y =又点00(,)P x y 在直线l 上,所以01x = 故点P 的坐标为(1,0)(2)(本小题满分7分)坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A 的极坐标为)4π,直线l 的极坐标方程为cos()4a πρθ-=,且点A 在直线l 上. (1)求a 的值及直线l 的直角坐标方程;(2)圆c 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线l 与圆的位置关系.本小题主要考查极坐标与直角坐标的互化.圆的参数方程等基础知识.考查运算求解能力,考查化归与转化思想,满分7分.解:(Ⅰ)由点)4A π在直线cos()4aπρθ-=上,可得a =所以直线l 的方程可化为cos sin 2ρθρθ+= 从而直线l 的直角坐标方程为20x y +-=(Ⅱ)由已知得圆C 的直角坐标方程为22(1)1x y -+= 所以圆心为(1,0),半径1r =以为圆心到直线的距离12d =<,所以直线与圆相交 (3)(本小题满分7分)不等式选讲 设不等式*2()x a a N -<∈的解集为A ,且32A ∈,12A ∉. (1)求a 的值;(2)求函数()2f x x a x =++-的最小值.本小题主要考查绝对猪不等式等基础知识,考查运算求解能力,考查化归与转化思想,满分7分.解:(Ⅰ)因为32A ∈,且12A ∉,所以322a -<,且122a -≥解得1322a <≤,又因为*a N ∈,所以1a = (Ⅱ)因为|1||2||(1)(2)|3x x x x ++-≥+--=当且仅当(1)(2)0x x +-≤,即12x -≤≤时取得等号,所以()f x 的最小值为3。
2013年福建高考数学文科试卷带详解
2013年普通高等学校招生全国统一考试(福建卷)数学试题(文史类)第I 卷(选择题 共60分)一.选择题1.复数12i z =--(i 为虚数单位)在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【测量目标】复平面.【考查方式】通过复数对应点的坐标判断其在复平面内的象限位置. 【参考答案】C【试题解析】12i z =--在复平面内对应的点为(1,2)--,它位于第三象限. 2.设点),(y x P ,则“2=x 且1-=y ”是“点P 在直线01:=++y x l 上”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【测量目标】充分、必要条件.【考查方式】根据所给点与直线的位置关系条件判断充分条件与必要条件. 【参考答案】A【试题解析】当2x =且1y =-时,满足方程10x y +-=,即点(2,1)P -在直线l 上.(步骤1)点(0,1)P '在直线l 上,但不满足2x =且1y =,(步骤2)∴ “2x =且1y =-”是“点(,)P x y 在直线l 上”的充分而不必要条件.(步骤3) 3.若集合{1,2,3},{1,3,4}A B ==,则A B 的子集个数为( )A .2B .3C .4D .16 【测量目标】集合间的关系.【考查方式】直接给出集合,用列举法求出两集合的交集的子集. 【参考答案】C【试题解析】{}1,3A B = ,其子集有{}{}{},1,3,1,3∅,共4个. 4.双曲线122=-y x 的顶点到其渐近线的距离等于( )A .21B .22C .1D .2【测量目标】双曲线标准方程及其几何性质.【考查方式】根据所给双曲线的标准方程得到双曲线顶点坐标、渐近线的方程,再利用点到直线的距离公式求解.【参考答案】B【试题解析】双曲线221x y -=的顶点坐标为()1,0±,渐近线为y x =±,∴0x y ±=,(步骤1)∴顶点到渐近线的距离为2d ==.(步骤2) 5.函数()2()ln 1f x x =+的图象大致是( )A B C D第5题图 【测量目标】对数函数的图象.【考查方式】给出对数函数和图象,根据图象的特殊点、奇偶性以及对数函数的性质判定. 【参考答案】A【试题解析】2()ln(1)f x x =+,x ∈R ,当0x =时,(0)ln10f ==,即()f x 过点(0,0),排除B,D .(步骤1)∵22()ln ()1ln(1)()f x x x f x ⎡⎤-=-+=+=⎣⎦,∴()f x 是偶函数,其图象关于y 轴对称,故选A .(步骤2)6.若变量y x ,满足约束条件210x y x y +⎧⎪⎨⎪⎩≤≥≥,则y x z +=2的最大值和最小值分别为( )A .4和3B .4和2C .3和2D .2和0 【测量目标】二元线性规划求目标函数最值.【考查方式】给出不等式组,作出其表示的可行域、再通过平移图象求最优解. 【参考答案】B【试题解析】作出可行域,通过目标函数线的平移寻求最优解.作出可行域如图阴影部分.(步骤1)作直线20x y +=,并向右上平移,过点A 时z 取最小值,过点B 时z 取最大值,可求得(1,0),(2,0)A B , 第6题图∴min max 2,4z z ==.(步骤2)7.若122=+yx ,则y x +的取值范围是( )A .]2,0[B .]0,2[-C .),2[+∞-D .]2,(--∞ 【测量目标】基本不等式.【考查方式】考查了指数幂转化不等式,通过均值不等式的求解求取值范围. 【参考答案】D 【试题解析】利用基本不等式转化为关于x y +的不等式,求解不等式即可.∵2221x y x y ++=≥,∴1,∴21224x y+-=≤,∴2x y +-≤,即(](),2x y +∈-∞.8.阅读如图所示的程序框图,运行相应的程序,如果输入某个正整数n 后,输出的)20,10(∈S ,那么n 的值为( )A .3B .4C .5D .6 【测量目标】循环结构的程序框图. 【考查方式】根据所给程序框图读出其循环结构表示的求和功能,再用等比数列的求和公式求解. 第8题图 【参考答案】B【试题解析】先读出框图的计算功能,再结合等比数列求和公式求解.框图功能为求和,即1211222n S -=++++ .(步骤1)由于()()1122110,2012nn S ⨯-==-∈-,∴102120n <-<,∴11221n <<,∴4n =,即求前4项和.∴判断框内的条件为4k >,即4n =.(步骤2)9.将函数ππ()sin(2)22f x x θθ⎛⎫=+-<< ⎪⎝⎭的图象向右平移)0(>ϕϕ个单位长度后得到函数)(x g 的图象,若)(),(x g x f的图象都经过点0,2P ⎛ ⎝⎭,则ϕ的值可以是( )A .5π3 B .5π6 C .π2 D .π6【测量目标】三角函数的图象和性质.【考查方式】给出三角函数,根据所给的点求得函数中的字母,再将点代入平移后得到的函数求ϕ值.【参考答案】B【试题解析】先求出解析式中的字母的取值,再利用代入法确定答案.∵30,2P ⎛⎫⎪⎝⎭在()f x的图象上,∴(0)sin 2f θ==.(步骤1)∵ππ,22θ⎛⎫∈- ⎪⎝⎭,∴π3θ=,∴π()sin 23f x x ⎛⎫=+ ⎪⎝⎭,∴π()sin 2()3g x x ϕ⎡⎤=-+⎢⎥⎣⎦.(步骤2)∵(0)2g =,∴ππ54sin 2sin πsin π3333ϕ⎛⎫⎛⎫⎛⎫-=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(步骤3) 10.在四边形ABCD 中,(1,2),(4,2)AC BD ==-,则该四边形的面积为( )A .5B .52C .5D .10 【测量目标】平面向量的应用.【考查方式】通过平面向量的坐标运算进行向量的垂直证明进而求解四边形面积. 【参考答案】C【试题解析】先利用向量的数量积证明四边形的对角线垂直,再求面积.∵(1,2)(4,2)440AC BD =-=-+=,∴AC BD ⊥ ,∴11522ABCD S AC BD ===四边形.11.已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为a x b y ˆˆˆ+=.若某同学根据上表中前两组数据)0,1(和)2,2(求得的直线方程为a x b y '+'=,则以下结论正确的是( )A .a a b b'>'>ˆ,ˆ B .a a b b '<'>ˆ,ˆ C .a a b b '>'<ˆ,ˆ D .a a b b '<'<ˆ,ˆ 【测量目标】线性回归方程.【考查方式】给出x 与y 的几组数据,求出直线方程和y 对x 的线性回归方程,再比较其系数大小.【参考答案】C【试题解析】根据所给数据求出直线方程y b x a ''=+和回归直线方程的系数,并比较系数大小.由(1,0),(2,2)求,b a ''.20221b -'==-,0212a '=-⨯=-.(步骤1) 求 ,b a 时,6104312152458i ii x y ==+++++=∑,133.5,6x y ==,62114916253691ii x ==+++++=∑,∴213586 3.556916 3.57b -⨯⨯==-⨯ ,13513513.567623a =-⨯=-=-,(步骤2)∴ ,b b a a ''<> .(步骤3)12.设函数)(x f 的定义域为R ,)0(00≠x x 是)(x f 的极大值点,以下结论一定正确的是( )A .0,()()x f x f x ∀∈R ≤B .0x -是)(x f -的极小值点C .0x -是)(x f -的极小值点D .0x -是)(x f --的极小值点 【测量目标】利用导数研究函数的极值问题.【考查方式】列出符合题目所给条件函数,通过导数求解函数的极值判定正确的选项. 【参考答案】D【试题解析】不妨取函数3()3f x x x =-,则()3(1)(1)f x x x '=-+,易判断01x =-为()f x 的极大值点,但显然0()f x 不是最大值,故排除A ;(步骤1)因为3()3,()3(1)(1)f x x x f x x x '-=-+-=-+-,易知,01x -=为()f x -的极大值点,故排除B ;(步骤2)又[]3()3,()3(1)(1)f x x x f x x x '-=-+-=-+-,易知,01x -=为()f x -的极大值点,故排除C ;(步骤3)∵()f x --的图象与()f x 的图象关于原点对称,由函数图象的对称性可得0x -应为函数()f x --的极小值点.故D 正确.(步骤4) 二.填空题13.已知函数32,0()πtan ,02x x f x x x ⎧<⎪=⎨-<⎪⎩≤,则π4f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭【测量目标】分段函数求值.【考查方式】分段函数的函数值及正切函数值的求解. 【参考答案】2- 【试题解析】∵ππ0,42⎡⎫∈⎪⎢⎣⎭,∴ππtan 144f ⎛⎫=-=- ⎪⎝⎭,(步骤1) ∴3π(1)2(1)24f f f ⎛⎫⎛⎫=-=⨯-=-⎪ ⎪⎝⎭⎝⎭.(步骤2) 14.利用计算机产生1~0之间的均匀随机数a ,则事件“013<-a ”发生的概率为【测量目标】几何概型.【考查方式】给出不等式,选择区间长度为测度求解几何概型. 【参考答案】31【试题解析】选择区间长度为测度求解几何概型.已知01a ≤≤,事件“310a -<”发生时,103a <<,取区间长度为测度,由几何概型得其概率为13P =. 15.椭圆)0(1:2222>>=+Γb a by a x 的左、右焦点分别为21,F F ,焦距为c 2.若直线)y x c +与椭圆Γ的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆的离心率等于【测量目标】椭圆的简单几何性质,椭圆的离心率.【考查方式】利用几何图形寻求字母之间的关系,进一步求解离心率. 【参考答案】13-【试题解析】已知12(,0),(,0)F c F c -,直线)y x c +过点1F ,1260MF F ∠= .(步骤1)∵21121302MF F MF F ∠=∠= ,∴1290F MF ∠= ,∴12,MF c MF ==(步骤2).由椭圆定义知122MF MF c a +==,∴离心率1c e a ===.(步骤3)16.设,S T 是R 的两个非空子集,如果存在一个从S 到T 的函数)(x f y =满足;(i ){()|}T f x x S =∈;(ii )对任意12,x x S ∈,当21x x <时,恒有)()(21x f x f <.那么称这两个集合“保序同构”.现给出以下3对集合: ①,A B *==N N ;②{|13},{|810}A x x B x x =-=-≤≤≤≤; ③{|01},A x x B =<<=R .其中,“保序同构”的集合对的序号是 (写出所有“保序同构”的集合对的序号)【测量目标】“保序同构”的集合的定义.【考查方式】判断所给集合是否为保序同构的集合. 【参考答案】①②③【试题解析】举例说明有符合条件的函数即可.①取()1f x x =+,符合题意.(步骤1) ②取97()22f x x =-,符合题意.(步骤2) ③取1()tan π2f x x ⎛⎫=- ⎪⎝⎭,符合题意.(步骤3) 三.解答题17.(本小题满分12分)已知等差数列{}n a 的公差1d =,前n 项和为n S . (1)若131,,a a 成等比数列,求1a ; (2)若519S a a >,求1a 的取值范围.【测量目标】等差数列的概念、等比数列的概念及其通项、求和公式. 【考查方式】考查了求解等比数列首项的求解(利用等比中项求解),利用等差数列的通项公式与求和公式将不等式转化为含有首项的不等式求解.【试题解析】解:(1)因为数列{}n a 的公差1d =,且131,,a a 成等比数列, 所以2111(2)a a =⨯+,即21120a a --=,解得11a =-或12a =.(步骤1) (2)因为数列{}n a 的公差1d =,且519S a a >, 所以21115108a a a +>+;(步骤2)即2113100a a +-<,解得152a -<<.(步骤3)18.(本小题满分12分)如图,在四棱锥P ABCD -中,PD ABCD ⊥面,AB DC ,AB AD ⊥,5BC =,3DC =,4AD =,60PAD ∠= .(1)当正视图方向与向量AD的方向相同时,画出四棱锥P ABCD -的正视图.(要求标出尺寸,并画出演算过程);(2)若M 为PA 的中点,求证:DM PBC 面 ;(3)求三棱锥D PBC -的体积.第18题图【测量目标】几何体的正视图、勾股定理、线面平行的判定定理、几何体体积公式.【考查方式】给出了四棱锥及其空间位置关系、三边长度和一个角的角度,从而画出正视图,由侧棱中点,判断线面平行以及几何体体积. 【试题解析】解法一:(Ⅰ)在梯形ABCD 中,过点C 作CE AB ⊥,垂足为E ,由已知得,四边形ADCE 为矩形,3AE CD ==.(步骤1) 在Rt △BEC 中,由5BC =,4CE =,依勾股定理得: 3BE =,从而6AB =.(步骤2)又由PD ⊥平面ABCD 得,PD AD ⊥.(步骤3) 第18题图(1)从而在Rt △PAD 中,由4AD =,60PAD ∠=︒,得PD =.(步骤4)正视图如右图(2)所示:第18题图(2) (步骤5) (Ⅱ)取PB 中点N ,连结MN ,CN在△PAB 中,M 是PA 中点, ∴MN AB ,132MN AB ==,(步骤6) 又CD AB ,3CD =∴MN CD ,MN CD =(步骤7)∴四边形MNCD 为平行四边形,∴DM CN , 第18题图(3) 又DM ⊄平面PBC ,CN ⊂平面PBC ,∴DM 平面PBC (步骤8) (Ⅲ)13D PBC P DBC DBC V V S PD --∆==又6DBC S ∆=,PD =,所以D PBC V -=9)解法二:(Ⅰ)同解法一 第18题图(4) (Ⅱ)取AB 的中点E ,连结ME ,DE (步骤1)在梯形ABCD 中,BE CD ,且BE CD =,∴四边形BCDE 为平行四边形,∴DE BC ,(步骤2)又DE ⊄平面PBC ,BC ⊂平面PBC , ∴DE 平面PBC ,(步骤3) 又在PAB ∆中,ME PB ,ME ⊄平面PBC ,PB ⊂平面PBC ,∴ME 平面PBC .(步骤4)又DE ME E = ,∴平面DME 平面PBC ,(步骤5)又DM⊂平面DME∴DM 平面PBC.(步骤6)(Ⅲ)同解法一19.(本小题满分12分)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的频率.(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成22⨯的列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附表:()21112122121212n n n n nXn n n n++++-=【考查方式】考查了用列举法列出基本事件并结合古典概型求概率,独立性检验公式.【试题解析】解:(Ⅰ)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名.所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有600.053⨯=(人),记为1A,2A,3A;25周岁以下组工人有400.052⨯=(人),记为1B,2B.(步骤1)从中随机抽取2名工人,所有可能的结果共有10种,他们是:12(,)A A,13(,)A A,23(,)A A,11(,)A B,12(,)A B,21(,)A B,22(,)A B,31(,)A B,32(,)A B,12(,)B B.(步骤2)其中,至少有名“25周岁以下组”工人的可能结果共有7种,它们是:11(,)A B,12(,)A B,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B .故所求的概率:710P =.(步骤3) (Ⅱ)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手600.2515⨯=(人),“25周岁以下组”中的生产能手400.37515⨯=(人),据此可得22⨯列所以得:222()100(15251545)251.79()()()()6040307014n ad bc K a b c d a c b d -⨯⨯-⨯===≈++++⨯⨯⨯.(步骤4) 因为1.79 2.706<,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.(步骤5)20.如图,在抛物线2:4E y x =的焦点为F ,准线l 与x 轴的交点为A .点C 在抛物线E上,以C 为圆心OC 为半径作圆,设圆C 与准线l 的交于不同的两点,M N .(1)若点C 的纵坐标为2,求MN ; (2)若2AFAM AN = ,求圆C 的半径.【测量目标】抛物线的方程、圆的方程与性质、直线与圆的位置关系、根与系数的关系. 【考查方式】根据抛物线的准线结合直角三角形的性质求解,再利用圆心在曲线上设出坐标并建立圆的方程,同时考虑直线与圆的位置关系.【试题解析】解:(Ⅰ)抛物线24y x =的准线l 的方程为1x =-, 由点C 的纵坐标为2,得点C 的坐标为(1,2) 所以点C 到准线l 的距离2d =,又||CO =所以||2MN ===.(步骤1)(Ⅱ)设200,4y C y ⎛⎫ ⎪⎝⎭,则圆C 的方程为224220000()416y y x y y y ⎛⎫-+-=+ ⎪⎝⎭,即22200202y x x y y y -+-=. 由1x =-,得22002102y y y y -++=.(步骤2)设1(1,)M y -,2(1,)N y -,则:2220002012441240212y y y y y y ⎧⎛⎫∆=-+=->⎪ ⎪⎪⎝⎭⎨⎪=+⎪⎩,(步骤3) 由2||||||AF AM AN = ,得12||4y y =, 所以20142y +=,解得0y =,(步骤4) 此时0∆>,所以圆心C的坐标为32⎛ ⎝或3,2⎛ ⎝,(步骤5) 从而233||4CO =,||CO =,即圆C.(步骤6)21.如图,在等腰直角三角形△OPQ 中,90POQ ︒∠=,OP =,点M 在线段PQ 上.(1)若OM =PM 的长;(2)若点N 在线段MQ 上,且30MON ∠= ,问:当POM ∠取何值时,△OMN 的面积最小?并求出面积的最小值.【测量目标】解三角形、同角三角函数的基本关系、两角和与差的三角函数.【考查方式】根据所给条件,由三角函数余弦定理、正弦定理求线段长度以及函数的最值求解并要注意角的取值范围.【试题解析】解:(Ⅰ)在△OMP 中,45OPM ∠=,OM =OP =, 由余弦定理得,2222cos45OM OP MP OP MP =+-⨯⨯⨯ ,(步骤1)得2430MP MP -+=,解得1MP =或3MP =.(步骤2)(Ⅱ)设POM α∠=,060α≤≤,在OMP ∆中,由正弦定理,得sin sin OM OP OPM OMP=∠∠,(步骤3) 所以()sin 45sin 45OP OM α=+,(步骤4) 同理()sin 45sin 75OP ON α=+,(步骤5) 故1sin 2OMN S OM ON MON ∆=⨯⨯⨯∠ ()()221sin 454sin 45sin 75OP αα=⨯++()()1sin 45sin 4530αα=+++=====.(步骤6) 因为060α ≤≤,30230150α+ ≤≤,所以当30α=时,()sin 230α+︒的最大值为1,此时OMN △的面积取到最小值.即230POM ∠=︒时,OMN △的面积的最小值为8-.(步骤7)22.已知函数()1ex a f x x =-+(a ∈R ,e 为自然对数的底数).(1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值;(2)求函数()f x 的极值;(3)当1a =的值时,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.【测量目标】利用导数求函数的极值、函数的性质.【考查方式】利用导数求切线斜率,讨论字母a 的取值,构造函数再结合函数的零点存在性定理求解.【试题解析】解:(Ⅰ)由()1e x a f x x =-+,得()1ex a f x '=-.(步骤1) 又曲线()y f x =在点()()1,1f 处的切线平行于x 轴, 得()10f '=,即10ea -=,解得e a =.(步骤2) (Ⅱ)()1e x a f x '=-, ①当0a ≤时,()0f x '>,()f x 为(),-∞+∞上的增函数,所以函数()f x 无极值.(步骤3)②当0a >时,令()0f x '=,得e x a =,ln x a =.(步骤4)(),ln x a ∈-∞,()0f x '<;()ln ,x a ∈+∞,()0f x '>.所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增,故()f x 在ln x a =处取得极小值,且极小值为()ln ln f a a =,无极大值,(步骤5) 综上,当0a ≤时,函数()f x 无极小值;当0a >,()f x 在ln x a =处取得极小值ln a ,无极大值.(步骤6)(Ⅲ)当1a =时,()11e xf x x =-+, 令()()()()111e x g x f x kx k x =--=-+,(步骤7) 则直线l :1y kx =-与曲线()y f x =没有公共点,等价于方程()0g x =在R 上没有实数解.(步骤8)假设1k >,此时()010g =>,1111101e k g k -⎛⎫=-+< ⎪-⎝⎭, 又函数()g x 的图象连续不断,由零点存在定理,可知()0g x =在R 上至少有一解,与“方程()0g x =在R 上没有实数解”矛盾,故1k ≤.(步骤9)又1k =时,()10ex g x =>,知方程()0g x =在R 上没有实数解. 所以k 的最大值为1.(步骤10)解法二:(Ⅰ)(Ⅱ)同解法一.(Ⅲ)当1a =时,()11e xf x x =-+.(步骤1) 直线l :1y kx =-与曲线()y f x =没有公共点,等价于关于x 的方程111ex kx x -=-+在R 上没有实数解,即关于x 的方程: ()11ex k x -= *() 在R 上没有实数解.(步骤2)①当1k =时,方程*()可化为10ex =,在R 上没有实数解.(步骤3) ②当1k ≠时,方程*()化为1e 1x x k =-. 令()e x g x x =,则有()()1e xg x x '=+. 令()0g x '=,得1x =-,(步骤4)当x 变化时,()g x '的变化情况如下表:当1x =-时,()min e g x =-,同时当x 趋于+∞时,()g x 趋于+∞,从而()g x 的取值范围为1,e ⎡⎫-+∞⎪⎢⎣⎭.(步骤5) 所以当11,1e k ⎛⎫∈-∞- ⎪-⎝⎭时,方程*()无实数解,(步骤6) 解得k 的取值范围是()1e,1-.综上,得k 的最大值为1.(步骤7)。
平面向量培优试题
一、选择题1 .(2013年高考上海卷(理))在边长为1的正六边形ABCDEF 中,记以A 为起点,其余顶点为终点的向量分别为12345,,,,a a a a a ;以D 为起点,其余顶点为终点的向量分别为12345,,,,d d d d d .若,m M 分别为()()i j k r s t a a a d d d ++⋅++的最小值、最大值,其中{,,}{1,2,3,4,5}i j k ⊆,{,,}{1,2,3,4,5}r s t ⊆,则,m M 满足( )A .0,0m M =>B .0,0m M <>C .0,0m M <=D .0,0m M <<【答案】D .3 .(2013年普通高等学校招生统一考试浙江数学(理))设0,P ABC ∆是边AB 上一定点,满足AB B P 410=,且对于边AB 上任一点P ,恒有C P B P 00∙≥∙.则 ( )A .090=∠ABCB .090=∠BAC C .AC AB =D .BC AC =【答案】D4 .(2013年普通高等学校招生统一考试福建数学(理))在四边形ABCD中,(1,2)AC =,(4,2)BD =-,则四边形的面积为 ( )A B .C .5D .10【答案】C5 .(2013年普通高等学校招生统一考试安徽数学(理))在平面直角坐标系中,O 是坐标原点,两定点,A B 满足2,OA OB OA OB ===则点集{}|,1,,P O P O A O B Rλμλμλμ=++≤∈所表示的区域的面积是 ( )A .B .C .D .【答案】D6 .(2013年普通高等学校招生统一考试重庆数学(理))在平面上,12AB AB ⊥,121OB OB ==,12AP AB AB =+.若12OP <,则OA 的取值范围是 ( )A .0,2⎛ ⎝⎦B .,22⎛⎝⎦C .2⎛⎝ D .2⎛⎝【答案】D7 .(2013年高考湖南卷(理))已知,a b 是单位向量,0a b =.若向量c 满足1,c a b c --=则的取值范围是( )A.⎤⎦B.⎤⎦C.1⎡⎤⎣⎦D.1⎡⎤⎣⎦【答案】A9 .(2013年高考湖北卷(理))已知点()1,1A -.()1,2B .()2,1C --.()3,4D ,则向量AB在CD 方向上的投影为( )ABC.D. 【答案】A [12.(2013年普通高等学校招生统一考试山东数学(理))已知向量AB 与AC 的夹角为120°,且3AB =,2AC =,若AP AB AC λ=+,且AP BC ⊥, 则实数λ的值为__________.【答案】71214.(2013年高考北京卷(理))向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R),则λμ=_________.【答案】416.(2013年普通高等学校招生全国统一招生考试江苏卷)设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若21λλ+= (21λλ,为实数),则21λλ+的值为__________.【答案】1217.(2013年高考四川卷(理))在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB AD AO λ+=,则λ=_________.【答案】218.(2013年高考江西卷(理))设1e ,2e 为单位向量.且1e ,2e 的夹角为3π,若123a e e =+,12b e =,则向量a 在b 方向上的射影为 ___________【答案】5219.(2013年普通高等学校招生统一考试天津数学(理))在平行四边形ABCD 中, AD = 1,60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =, 则AB 的长为______.【答案】12【答案】 A3.设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |=( )A. 5B.10 C .2 5D .10【解析】 ∵a =(x,1),b =(1,y ),c =(2,-4), 由a ⊥c 得a ·c =0,即2x -4=0,∴x =2. 由b ∥c 得1×(-4)-2y =0,∴y =-2. ∴a =(2,1),b =(1,-2). ∴a +b =(3,-1),∴|a +b |=32+(-1)2=10.【答案】 B4.(2013·长沙质检)在△ABC 中,AB =2,AC =3,AB →·BC →=1,则BC =( )A. 3B.7 C .2 2D.23【解析】 ∵AB →·BC →=1,且AB =2, ∴1=|AB →||BC →|cos(π-B ),∴|BC →|cos B =-12.在△ABC 中,|AC |2=|AB |2+|BC |2-2|AB ||BC |cos B , 即9=4+|BC |2-2×2×(-12).∴|BC |= 3. 【答案】 A5.(2013·广东高考)设a 是已知的平面向量且a ≠0.关于向量a 的分解,有如下四个命题:①给定向量b ,总存在向量c ,使a =b +c ;②给定向量b 和c ,总存在实数λ和μ,使a =λb +μ c ;③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使a =λb +μ c ; ④给定正数λ和μ,总存在单位向量b 和单位向量c ,使a =λb +μ c . 上述命题中的向量b ,c 和a 在同一平面内且两两不共线,则真命题的个数是( )A .1B .2C .3D .4【解析】 显然命题①②是正确的.对于③,以a 的终点作长度为μ的圆,这个圆必须和向量λb 有交点,这个不一定能满足,③是错的,对于命题④,若λ=μ=1,|a |>2时,与|a |=|b +c |≤|b |+|c |=2矛盾,则④不正确.【答案】 B 二、填空题6.(2013·课标全国卷Ⅰ)已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b ,若b ·c =0,则t =________.【解析】 ∵c =t a +(1-t )b ,且〈a ,b 〉=60°,∴c·b =t a·b +(1-t )·b 2=t ×1×1×cos 60°+(1-t )×12=0, 则1-12t =0,∴t =2. 【答案】 27.(2013·南京调研)如图2-3-2所示,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,若AB →·AF →=2,则AE →·BF →的值是________.图2-3-2【解析】 以A 为坐标原点,AB ,AD 所在直线为x 轴,y 轴建立平面直角坐标系,则A (0,0),B (2,0),E (2,1),F (x,2).故AB →=(2,0),AF →=(x,2),AE →=(2,1),BF →=(x -2,2).∴AB →·AF →=(2,0)·(x,2)=2, 则2x =2,∴x =1.因此AE →·BF →=(2,1)·(1-2,2)= 2. 【答案】28.(2013·浙江高考)设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则|x ||b |的最大值等于________.【解析】 根据题意,得⎝ ⎛⎭⎪⎫|x ||b |2=x 2(x e 1+y e 2)2=x 2(x e 1)2+(y e 2)2+2xy e 1·e 2=x 2x 2+y 2+2xy cos π6=x 2x 2+y 2+3xy=11+⎝ ⎛⎭⎪⎫y x 2+3y x=1⎝ ⎛⎭⎪⎫y x +322+14.因为(y x +32)2+14≥14,所以0<⎝ ⎛⎭⎪⎫|x ||b |2≤4,所以0<|x ||b |≤2.故|x ||b |的最大值为2.【答案】 2 三、解答题9.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若BP →=2P A →,且OQ →·AB →=1,求P 点的轨迹方程.【解】 设A (x 0,0)(x 0>0),B (0,y 0)(y 0>0), ∵P (x ,y )与Q 关于y 轴对称,∴Q (-x ,y ), 由BP →=2P A →,即(x ,y -y 0)=2(x 0-x ,-y ),可得⎩⎨⎧x 0=32xy 0=3y(x ,y >0).又OQ →=(-x ,y ),AB →=(-x 0,y 0)=(-32x,3y ). ∵OQ →·AB →=1,∴32x 2+3y 2=1(x >0,y >0).∴点P 的轨迹方程为32x 2+3y 2=1(x >0,y >0).10.已知向量a =(cos 32x ,sin 32x ),b =(cos x 2,-sin x 2),且x ∈[0,π2].求:(1)a·b及|a+b|;(2)若f(x)=a·b-2λ|a+b|的最小值为-32,求正实数λ的值.【解】(1)a·b=cos 32x·cosx2-sin32x sinx2=cos 2x.∵a+b=(cos 32x+cosx2,sin32x-sinx2),∴|a+b|2=(cos 32x+cosx2)2+(sin 32x-sinx2)2=2+2(cos 32x cosx2-sin32x sinx2)=2+2cos 2x=4cos2x.∵x∈[0,π2],∴cos x≥0,因此|a+b|=2cos x.(2)由(1)知f(x)=cos 2x-4λcos x=2cos2x-4λcos x-1,∴f(x)=2(cos x-λ)2-1-2λ2,cos x∈[0,1].①若0<λ≤1,则当cos x=λ时,f(x)有最小值-1-2λ2=-3 2,解得λ=1 2.②若λ>1,则当cos x=1时,f(x)有最小值1-4λ=-3 2,解得λ=58与λ>1矛盾.综合①②知,λ=12为所求.11.(2013·济南模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos A2=255,AB→·AC→=3.(1)求△ABC 的面积;(2)若c =1,求a ,sin B 的值.【解】 (1)∵cos A =2cos 2A 2-1=2×(255)2-1=35, 而AB →·AC →=|AB →|·|AC →|·cos A =35bc =3, ∴bc =5.又A ∈(0,π),∴sin A =45,∴△ABC 的面积S △ABC =12bc sin A =12×5×45=2. (2)由(1)知bc =5,而c =1,∴b =5.∴a 2=b 2+c 2-2bc cos A =52+12-2×1×5×35=20,∴a =2 5.又a sin A =bsin B , ∴sin B =b ·sin A a =525×45=255. 2. 【江西九江市都昌一中 湖口中学 彭泽一中 瑞昌一中 修水一中 永修一中 德安一中2014届高三七校联考】设非零向量c b a ,,===+,则〉〈b a ,sin =A .12-B .12CD .3. 【江西九江市都昌一中 湖口中学 彭泽一中 瑞昌一中 修水一中 永修一中 德安一中2014届高三七校联考】(12分)斜三棱柱11B CA OAB -,其中向量,,OA a OB b OC c ===,三个向量之间的夹角均为3π,点,M N 分别在11,BA CA 上且111,2CM MA BN NA ==,2,2,OA OB OC == =4,如右图(Ⅰ)把向量AM 用向量,a c 表示出来,并求AM ; (Ⅱ)把向量ON 用,,a b c 表示; (Ⅲ)求AM 与ON 所成角的余弦值。
13年全国各省(市)高考数学真题分类汇编(二)OK
2013年全国各省(市)高考真题数学(理)分类汇编与解析(二)函数与导数1、(2013安徽卷20题)(本小题满分13分)设函数22222()1(,)23nnnx x xf x x x R n Nn=-+++++∈∈,证明:(Ⅰ)对每个nn N∈,存在唯一的2[,1]3nx∈,满足()0n nf x=;(Ⅱ)对任意np N∈,由(Ⅰ)中nx构成的数列{}n x满足1n n px xn+<-<。
2、(2013北京卷18题)(本小题共13分)设l为曲线C:ln xyx=在点(1,0)处的切线,(I)求l的方程;(II)证明:除切点(1,0)之外,曲线C在直线l的下方3、(2013福建卷17题)(本小题满分13分)已知函数()ln ()f x x a x a R =-∈,(1)当2a =时,求曲线()y f x =在点(1,(1))A f 处的切线方程;(2)求函数()f x 的极值.本小题主要考查函数.函数的导数.不等式等基础知识,考查运算求解能力,考查函数与方程思想.分类与整合思想,数形结合思想.化归与转化思想.4、(2013广东卷21题)(本小题满分14分)设函数()()21x f x x e kx =--(其中k ∈R ),(Ⅰ) 当1k =时,求函数()f x 的单调区间;(Ⅱ) 当1,12k ⎛⎤∈⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M.5、(2013广西卷22题)(本小题满分12分)已知函数()()()1=ln 1.1x x f x x xλ++-+(I )若()0,0,x f x λ≥≤时求的最小值;(II )设数列{}211111,ln 2.234n n n n a a a a n n =+++⋅⋅⋅+-+>的通项证明:6、(2013全国新课标二卷21题)(本小题满分12分)已知函数f(x)=e x -ln(x+m),(Ι)设x=0是f(x)的极值点,求m ,并讨论f(x)的单调性;(Ⅱ)当m ≤2时,证明f(x)>0。
2013年高考数学真题(理)(广东安徽山东浙江福建)
0, 0 x 1 ,现有四个命题: x 1 ln x,
①若 a 0, b 0 ,则 ln (ab ) b ln a ②若 a 0, b 0 ,则 ln (ab) ln a ln b ③若 a 0, b 0 ,则 ln ( a ) ln a ln b
9
(Ⅰ)求 a,c 的值; (Ⅱ)求 sin(A-B)的值. 解答: (1)由 cosB= 7 与余弦定理得, a 2 c 2 4 14 ac ,又 a+c=6,
18(本小题满分 4 分) 如图 5,在等腰直角三角形 ABC 中,∠A =900 BC=6,D,E 分别是 AC,AB 上的点,CD=BE=
错误!未找到引用源。
,O 为 BC 的中点.将△ADE 沿 DE 折起,得到如图 6 所示的四棱椎 A’-BCDE,其中 A’O=?3
(1) 证明:A’O⊥平面 BCDE; (2) 求二面角 A’-CD-B 的平面角的余弦值 19.(本小题满分 14 分) 设数列{an}的前 n 项和为 Sn,已知 a1=1,错误!未找到引用源。=an+1-错误!未找到
3 4
的一个可能取值
( B)
4
(C)0
( D)
4
(6)在平面直角坐标系 xOy 中,M
2x y 2 0 为不等式组: x 2y 1 0 , 3x y 8 0
所 表 示 的 区 域 上 一 动 点 , 则 直 线 OM 斜 率 的 最 小 值 为 C (A)2 (B)1 (C)
14(坐标系与参数方程选做题)已知曲线 C 的参数方程为 (t 为参数) ,C 在 点(1,1)处的切线为 L,一座标原点为极点,x 轴的正半轴为极轴建立极坐标,则 L 的极 坐标方程为_______. 15.(几何证明选讲选做题)如图 3,AB 是圆 O 的直径,点 C 在圆 O 上,延长 BC 到 D 是 BC=CD,过 C 作圆 O 的切线交 AD 于 E。若 AB=6,ED=2,则 BC=______.
2013年福建高考理科数学试卷(带详解)
2013年普通高等学校招生全国统一考试(福建卷)数学(理工农医类)一.选择题1.已知复数z 的共轭复数12i z =+(i 为虚数单位),则z 在复平面内对应的点位于 ( ) A . 第一象限 B .第二象限 C .第三象限 D .第四象限 【测量目标】复平面【考查方式】给出复数z 的共轭复数,判断z 在复平面内所在的象限. 【难易程度】容易 【参考答案】D【试题解析】由12i z =+,得z =1-2i ,故复数z 对应的点(1,-2)在第四象限.2.已知集合{}1,A a =,{}1,2,3B =,则“3a =”是“A B ⊆”的 ( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【测量目标】充分、必要条件.【考查方式】给出元素与集合间的关系两个命题,判断两个命题之间的关系. 【难易程度】容易 【参考答案】A【试题解析】若a =3,则A ={1,3}⊆B ,故a =3是A ⊆B 的充分条件;(步骤1)而若A ⊆B ,则a 不一定为3,当a =2时,也有A ⊆B .故a =3不是A ⊆B 的必要条件.故选A .(步骤2)3.双曲线2214x y -=的顶点到其渐近线的距离等于 ( )A .25 B .45C D 【测量目标】双曲线的简单几何性质.【考查方式】给出双曲线的方程,判断顶点到其渐近线的距离. 【难易程度】容易 【参考答案】C【试题解析】双曲线24x -y 2=1的顶点为(±2,0),渐近线方程为12y x =±,(步骤1)即x -2y =0和x +2y =0.故其顶点到渐近线的距离d ===(步骤2)4.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70),[70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为 ( ) A .588 B .480 C .450 D .120第4题图【测量目标】频率分布直方图.【考查方式】给出频率分布直方图,判断一定范围内的样本容量. 【难易程度】容易 【参考答案】B【试题解析】由频率分布直方图知40~60分的频率为(0.005+0.015)×10=0.2,故估计不少于60分的学生人数为600×(1-0.2)=480.5.满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( ) A .14 B .13 C .12 D .10 【测量目标】实系数一元二次方程.【考查方式】给出含参量系数的一元二次方程,判断方程有序数对的个数. 【难易程度】容易 【参考答案】B【试题解析】a =0时,方程变为2x +b =0,则b 为-1,0,1,2都有解;(步骤1)a ≠0时,若方程ax 2+2x +b =0有实数解,则Δ=22-4ab …0,即ab … 1.(步骤2)当a =-1时,b 可取-1,0,1,2.当a =1时,b 可取-1,0,1.当a =2时,b 可取-1,0,故满足条件的有序对(a ,b )的个数为4+4+3+2=13.(步骤3)6.阅读如图所示的程序框图,若输入的10k =,则该算法的功能是 ( )A .计算数列{}12n -的前10项和 B .计算数列{}12n -的前9项和 C .计算数列{}21n -的前10项和 D .计算数列{}21n -的前9项和第6题图【测量目标】循环结构程序框图,等比数列的通项.【考查方式】给出程序框图的输入值,判断给出的程序框图的功能. 【难易程度】容易 【参考答案】A【试题解析】当k =10时,执行程序框图如下: S =0,i =1; S =1,i =2; S =1+2,i =3; S =1+2+22,i =4; …S =1+2+22+…+28,i =10; S =1+2+22+…+29,i =11.7.在四边形ABCD 中,(1,2)AC = ,(4,2)BD =-,则四边形的面积为 ( )A B . C .5 D .10 【测量目标】向量的数量积运算.【考查方式】给出四边形两条边的向量坐标,判断四边形的面积. 【难易程度】容易 【参考答案】C【试题解析】∵AC BD =1×(-4)+2×2=0,∴AC ⊥BD.(步骤1)又|AC ||BD |==S 四边形ABCD =12|AC||BD |=5.(步骤2)8.设函数()f x 的定义域为R ,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是 ( )A .0,()()x f x f x ∀∈R …B .0x -是()f x -的极小值点C .0x -是()f x -的极小值点D .0x -是()f x --的极小值点 【测量目标】函数单调性的综合应用.【考查方式】给出函数()f x 的极值点0x 0(0)x ≠,判断()f x -及()f x --的极值点.【难易程度】容易 【参考答案】D【试题解析】选项A ,由极大值的定义知错误;(步骤1)对于选项B ,函数f (x )与f (-x )的图象关于y 轴对称,-x 0应是f (-x )的极大值点,故不正确;(步骤2) 对于C 选项,函数f (x )与-f (x )图象关于x 轴对称,x 0应是-f (x )的极小值点,故不正确;(步骤3) 而对于选项D ,函数f (x )与-f (-x )的图象关于原点成中心对称,故正确.(步骤4)9.已知等比数列{}n a 的公比为q ,记(1)1(1)2(1)...,n m n m n m n m b a a a -+-+-+=+++(1)1(1)2(1)...(,),n m n m n m n m c a a a m n -+-+-+=∈*N 则以下结论一定正确的是 ( )A .数列{}n b 为等差数列,公差为mq B .数列{}n b 为等比数列,公比为2mq C .数列{}n c 为等比数列,公比为2m qD .数列{}n c 为等比数列,公比为mm q【测量目标】等差、等比数列的性质,通项与求和.【考查方式】给出由等比数列{}n a 的m 项组成的数列 {}n b ,{}n c ,判断它们的性质 【难易程度】中等 【参考答案】C【试题解析】∵{a n }是等比数列,∴1mn m m n ma a +(-)+=(1)mn m m n m m q q +---=,(步骤1)∴1n n c c +=1211121mn mn mn m m n m n m n ma a a a a a +++(-)+(-)+(-)+ ……=(q m )m=2m q .(步骤2)10.设S ,T ,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(i){()|};(ii)T f x x S =∈ 对任意12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( )A .,AB ==*N N B .{|13},{|8010}A x x B x x x =-==-<或剟?C .{|01},A x x B =<<=RD .,A B ==Z Q【测量目标】函数的图象与性质.【考查方式】定义集合间的一种新关系,判断给出的集合是否符合. 【难易程度】较难 【参考答案】D【试题解析】由题意(1)可知,S 为函数y =f (x )的定义域,T 为函数y =f (x )的值域.由(2)可知,函数y =f (x )在定义域内单调递增,对于A ,可构造函数y =x -1,x ∈N *,y ∈N ,满足条件;(步骤1)对于B ,构造函数8,1,51,13,2x y x x -=-⎧⎪=⎨(+)-<⎪⎩…满足条件;(步骤2)对于C ,构造函数ππtan 22y x ⎛⎫=- ⎪⎝⎭,x ∈(0,1),满足条件;(步骤3)对于D ,无法构造函数其定义域为Z ,值域为Q 且递增的函数,故选D .(步骤4)二.填空题11.利用计算机产生0~1之间的均匀随机数a ,则时间“310a ->”发生的概率为________ 【测量目标】几何概型.【考查方式】利用几何概型求解事件概率. 【难易程度】容易 【参考答案】23【试题解析】由3a -1>0得13a >,由几何概型知112313P -==.12.已知某一多面体内接于一个简单组合体,如果该组合体的正视图.侧视图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________第12题图【测量目标】由三视图求几何体的表面积【考查方式】给出一个几何体的三视图,判断此几何体图形并求球的表面积. 【难易程度】容易 【参考答案】12π【试题解析】由题意知该几何体是一个正方体内接于球构成的组合体,球的直径2r ==,所以r =S 球=4πr 2=4π×3=12π.13.如图ABC △中,已知点D 在BC 边上,AD ⊥AC ,sin 3BAC AB AD ∠===则BD 的长为_______________第13题图【测量目标】诱导公式,余弦定理.【考查方式】给出一个三角形的边角函数值,利用解三角形求线段长. 【难易程度】中等【试题解析】∵AD ⊥AC ,∴∠DAC =π2.(步骤1)∵sin ∠BAC =3,∴πsin 23BAD ⎛⎫∠+= ⎪⎝⎭,∴cos ∠BAD =3.(步骤2)由余弦定理得BD 2=AB 2+AD 2-2AB AD cos ∠BAD =2+32-2×3×3=3.∴BD (步骤3)14.椭圆2222:1(0)x y a b a bΓ+=>>的左.右焦点分别为12,F F ,焦距为2c ,若直线)y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于__________【测量目标】直线与椭圆的位置关系,椭圆的简单几何性质.【考查方式】给出直线与椭圆的交点与椭圆两焦点形成的角的关系,及椭圆的焦距,判断椭圆离心率.【难易程度】中等1【试题解析】由直线yx+c)知其倾斜角为60°,由题意知∠MF1F2=60°,则∠MF2F1=30°,∠F1MF2=90°.故|MF1|=c,|MF2|.(步骤1)又|MF1|+|MF2|=2a,∴1)c=2a,即1e==.(步骤2)15.当,1x x∈<R时,有如下表达式:211.......1nx x xx+++++=-两边同时积分得:111112222220000011.......1ndx xdx x dx x dx dxx+++++=-⎰⎰⎰⎰⎰从而得到如下等式:23111111111()()...()...ln2.2223212nn+⨯+⨯+⨯++⨯+=+请根据以下材料所蕴含的数学思想方法,计算:0122311111111C C()C()+C()2223212n nn n n nn+⨯+⨯+⨯+⨯+…【测量目标】微积分基本定理求定积分,二项式定理.【考查方式】根据给出的运用定积分计算的技巧,求解等式的值.【难易程度】较难【参考答案】113[()1]12nn+-+【试题解析】由0122C C C C n nn n n nx x x++++…=(1+x)n,两边同时积分得:1111012222220000C1C C C n nn n n ndx xdx x dx x dx++++⎰⎰⎰⎰…12(1)nx dx=+⎰,2310121111111C C C C2223212nnn n n nn+⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭…=11121111113111112112n nnxn n n n+++⎡⎤⎡⎤⎛⎫⎛⎫(+)=+-=-⎢⎥⎪ ⎪⎢⎥++++⎣⎦⎝⎭⎝⎭⎢⎥⎣⎦.三.解答题16.(本小题满分13分)某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为23,中将可以获得2分;方案乙的中奖率为25,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,X Y,求3X…的概率;(2)若小明,小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?【测量目标】古典概型,离散型随机变量的分布列和期望.【考查方式】给出实际的数学模型,利用求解对立事件的概率及离散型随机变量的分布,求解概率及期望. 【难易程度】容易【试题解析】解法一:(1)由已知得小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响. 记“这2人的累计得分X …3”的事件为A , 则事件A 的对立事件为“X =5”,(步骤1)因为P (X =5)=2243515⨯=,所以P (A )=1-P (X =5)=1115, 即这2人的累计得分X …3的概率为1115.(步骤2)(2)设小明、小红都选择方案甲抽奖中奖次数为X 1,都选择方案乙抽奖中奖次数为X 2,则这两人选择方案甲抽奖累计得分的数学期望为E (2X 1),选择方案乙抽奖累计得分的数学期望为E (3X 2).(步骤3)由已知可得,X 1~B 22,3⎛⎫ ⎪⎝⎭,X 2~B 22,5⎛⎫⎪⎝⎭, 所以E (X 1)=24233⨯=,E (X 2)=24255⨯=,从而E (2X 1)=2E (X 1)=83,E (3X 2)=3E (X 2)=125.(步骤4)因为E (2X 1)>E (3X 2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.(步骤5) 解法二:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.(步骤1) 记“这2人的累计得分X …3”的事件为A ,则事件A 包含有“X =0”,“X =2”,“X =3”三个两两互斥的事件,(步骤2)因为P (X =0)=22111355⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭,P (X =2)=2221355⎛⎫⨯-= ⎪⎝⎭,P (X =3)=22213515⎛⎫-⨯= ⎪⎝⎭,(步骤3)所以P (A )=P (X =0)+P (X =2)+P (X =3)=1115,即这2人的累计得分X …3的概率为1115.(步骤4)(2)设小明、小红都选择方案甲所获得的累计得分为X 1,都选择方案乙所获得的累计得分为X 2,则X 1,X 2的分布列如下:(步骤5) 所以E (X 1)=0×19+2×49+4×49=83,E (X 2)=0×925+3×1225+6×425=125. 因为E (X 1)>E (X 2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.(步骤6)17.(本小题满分13分)已知函数()ln ()f x x a x a =-∈R(1)当2a =时,求曲线()y f x =在点(1,(1))A f 处的切线方程; (2)求函数()f x 的极值.【测量目标】导数的几何意义,利用导数求函数的极值.【考查方式】利用导数的几何意义求解曲线的切线方程及函数的极值. 【难易程度】容易【试题解析】函数f (x )的定义域为(0,+∞),()f x '=1-ax.(步骤1) (1)当a =2时,f (x )=x -2ln x ,()f x '=1-2x(x >0), 因而f (1)=1,(1)f '=-1,(步骤2)所以曲线y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1), 即x +y -2=0.(步骤3)(2)由()f x '=1-a x =x a x-,x >0知: ①当a …0时,()f x '>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; ②当a >0时,由()f x '=0,解得x =a .(步骤4)又当x ∈(0,a )时,()f x '<0;当x ∈(a ,+∞)时,()f x '>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.(步骤5) 综上,当a …0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值.(步骤6)18.(本小题满分13分)如图,在正方形OABC 中,O 为坐标原点,点A 的坐标为(10,0),点C 的坐标为(0,10).分别将线段OA 和AB 十等分,分点分别记为129,,A A A …和129,,B B B …,连结i OB ,过iA 做x 轴的垂线与i OB 交于点*(,19)i P i i ∈N 剟.(1)求证:点*(,19)i P i i∈N 剟都在同一条抛物线上,并求该抛物线E 的方程;(2)过点C 做直线与抛物线E 交于不同的两点,M N ,若OCM △与OCN △的面积比为4:1,求直线的方程.第18题图【测量目标】抛物线的标准方程,简单的几何性质,直线与抛物线的位置关系.【考查方式】根据平面几何图形及坐标和三角形的面积关系,求解抛物线和直线方程. 【难易程度】中等【试题解析】解法一:(1)依题意,过A i (i ∈N *,1…i …9)且与x 轴垂直的直线方程为x =i , B i 的坐标为(10,i ),所以直线OB i 的方程为y =10ix .(步骤1) 设P i 的坐标为(x ,y ),由,,10x i i y x =⎧⎪⎨=⎪⎩得y =110x 2,即x 2=10y . 所以点P i (i ∈N *,1…i …9)都在同一条抛物线上,且抛物线E 的方程为x 2=10y .(步骤2)(2)依题意,直线l 的斜率存在,设直线l 的方程为y =kx +10.(步骤3) 由210.10.y kx x y =+⎧⎨=⎩得x 2-10kx -100=0, 此时Δ=100k 2+400>0,直线l 与抛物线E 恒有两个不同的交点M ,N .(步骤4) 设M (x 1,y 1),N (x 2,y 2),则121210,100,x x k x x +=⎧⎨=-⎩ ①②因为S △OCM =4S △OCN ,所以|x 1|=4|x 2|.(步骤5) 又x 1 x 2<0,所以x 1=-4x 2, 分别代入①和②,得222310,4100,x k x -=⎧⎨-=-⎩解得32k =±. 所以直线l 的方程为y =32±x +10,即3x -2y +20=0或3x +2y -20=0.(步骤6)19.(本小题满分13分)如图,在四棱柱1111ABCD A B C D -中,侧棱1AA ABCD ⊥底面,//AB DC ,11AA =,3AB k =,4AD k =,5BC k =,6DC k =(0)k >.(1)求证:11;CD ADD A ⊥平面(2)若直线1AA 与平面1AB C 所成角的正弦值为67,求k 的值; (3)现将与四棱柱1111ABCD A B C D -形状和大小完全相同的两个四棱柱拼接成一个新的棱柱,规定:若拼接成的新的四棱柱形状和大小完全相同,则视为同一种拼接方案.问:共有几种不同的方案?在这些拼接成的新四棱柱中,记其中最小的表面积为()f k ,写出()f k 的表达式(直接写出答案,不必要说明理由)第19题图【测量目标】空间立体几何线面垂直,线面角.【考查方式】给出四棱柱中的线段及线面关系,求解线面关系及线面所成角问题. 【难易程度】中等【试题解析】(1)取CD 的中点E ,连结BE .(步骤1) ∵AB ∥DE ,AB =DE =3k ,∴四边形ABED 为平行四边形,∴BE ∥AD 且BE =AD =4k .(步骤2) 在△BCE 中,∵BE =4k ,CE =3k ,BC =5k ,∴BE 2+CE 2=BC 2, ∴∠BEC =90°,即BE ⊥CD ,(步骤3) 又∵BE ∥AD ,∴CD ⊥AD .∵AA 1⊥平面ABCD ,CD ⊂平面ABCD , ∴AA 1⊥CD .又AA 1∩AD =A , ∴CD ⊥平面ADD 1A 1.(步骤4)第19图(2)以D 为原点,DA ,DC ,1DD的方向为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系,则A (4k,0,0),C (0,6k,0),B 1(4k,3k,1),A 1(4k,0,1),(步骤5)所以AC =(-4k,6k,0),1AB =(0,3k,1),1AA =(0,0,1).设平面AB 1C 的法向量n =(x ,y ,z ),则由10,0,AC AB ⎧=⎪⎨=⎪⎩ n n得460,30.kx ky ky z -+=⎧⎨+=⎩取y =2,得n =(3,2,-6k ).(步骤6) 设AA 1与平面AB 1C 所成角为θ,则sin θ=|cos 〈1AA ,n 〉|=11||||AA AAnn67=, 解得k =1,故所求k 的值为1.(步骤7)第19图(3)共有4种不同的方案.f (k )=2257226,0,1853636,.18k k k k k k ⎧+<⎪⎪⎨⎪+>⎪⎩…(步骤8)20.(本小题满分14分)已知函数()sin()(0,0π)f x x ωϕωϕ=+><<的周期为π,图象的一个对称中心为π(,0)4,将函数()f x 图象上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图象向右平移π2个单位长度后得到函数()g x 的图象. (1)求函数()f x 与()g x 的解析式;(2)是否存在0ππ(,)64x ∈,使得0000(),(),()()f x g x f x g x 按照某种顺序成等差数列?若存在,请确定0x 的个数;若不存在,说明理由.(3)求实数a 与正整数n ,使得()()()F x f x ag x =+在(0,π)n 内恰有2013个零点.【测量目标】三角函数的图象及其变换,同角三角函数的基本关系,等差数列的性质,函数零点的求解与判断.【考查方式】给出三角函数的周期及对称中心,求解函数关系式及变换后的函数关系式;判断在某一区内是否存在0x ,使得三角函数值呈等差数列;判断复合函数零点个数与区间的关系.【难易程度】较难【试题解析】解法一:(1)由函数f (x )=sin(ωx +φ)的周期为π,ω>0,得ω=2πT=2. 又曲线y =f (x )的一个对称中心为π,04⎛⎫⎪⎝⎭,φ∈(0,π), 故ππsin 2044f ϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,得π2ϕ=,所以f (x )=cos 2x .(步骤1) 将函数f (x )图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得y =cos x 的图象,再将y =cos x 的图象向右平移π2个单位长度后得到函数π()=cos 2g x x ⎛⎫- ⎪⎝⎭的图象,所以g (x )=sin x .(步骤2)(2)当x ∈ππ,64⎛⎫ ⎪⎝⎭时,12<sin x 0<cos 2x <12, 所以sin x >cos 2x >sin x cos 2x .(步骤3)问题转化为方程2cos 2x =sin x +sin x cos 2x 在ππ,64⎛⎫⎪⎝⎭内是否有解. 设G (x )=sin x +sin x cos 2x -2cos 2x ,x ∈ππ,64⎛⎫ ⎪⎝⎭, 则G ′(x )=cos x +cos x cos 2x +2sin 2x (2-sin x ).(步骤4)因为x ∈ππ,64⎛⎫⎪⎝⎭,所以G ′(x )>0,G (x )在ππ,64⎛⎫ ⎪⎝⎭内单调递增.又π1<064G ⎛⎫=- ⎪⎝⎭,π4G ⎛⎫= ⎪⎝⎭, 且函数G (x )的图象连续不断,故可知函数G (x )在ππ,64⎛⎫ ⎪⎝⎭内存在唯一零点x 0, 即存在唯一的x 0∈ππ,64⎛⎫ ⎪⎝⎭满足题意.(步骤5) (3)依题意,F (x )=a sin x +cos 2x ,令F (x )=a sin x +cos 2x =0. 当sin x =0,即x =k π(k ∈Z )时,cos 2x =1,从而x =k π(k ∈Z )不是方程F (x )=0的解,(步骤6)所以方程F (x )=0等价于关于x 的方程cos2sin x a x=-,x ≠k π(k ∈Z ).现研究x ∈(0,π) (π,2π)时方程cos2sin x a x=-的解的情况.(步骤7) 令()cos2sin x h x x =-,x ∈(0,π) (π,2π), 则问题转化为研究直线y =a 与曲线y =h (x ),x ∈(0,π) (π,2π)的交点情况.22cos (2sin 1)()sin x x h x x+'=,令h ′(x )=0,得π2x =或3π2x =.(步骤8) 当x当x >0且x 当x <π且x 趋近于π时,h (x )趋向于-∞,当x >π且x 趋近于π时,h (x )趋向于+∞,当x <2π且x 趋近于2π时,h (x )趋向于+∞.(步骤9)故当a >1时,直线y =a 与曲线y =h (x )在(0,π)内无交点,在(π,2π)内有2个交点;当a <-1时,直线y =a 与曲线y =h (x )在(0,π)内有2个交点,在(π,2π)内无交点;当-1<a <1时,直线y =a 与曲线y =h (x )在(0,π)内有2个交点,在(π,2π)内有2个交点.(步骤10) 由函数h (x )的周期性,可知当a ≠±1时,直线y =a 与曲线y =h (x )在(0,n π)内总有偶数个交点,从而不存在正整数n ,使得直线y =a 与曲线y =h (x )在(0,n π)内恰有2 013个交点;(步骤11)又当a =1或a =-1时,直线y =a 与曲线y =h (x )在(0,π) (π,2π)内有3个交点,由周期性,2 013=3×671,所以依题意得n =671×2=1 342.(步骤12)综上,当a =1,n =1 342或a =-1,n =1 342时,函数F (x )=f (x )+ag (x )在(0,n π)内恰有2 013个零点.(步骤13)解法二:(1)、(2)同解法一.(3)依题意,F (x )=a sin x +cos 2x =-2sin 2x +a sin x +1.现研究函数F (x )在(0,2π]上的零点的情况.设t =sin x ,p (t )=-2t 2+at +1(-1…t …1),则函数p (t )的图象是开口向下的抛物线,(步骤1) 又p (0)=1>0,p (-1)=-a -1,p (1)=a -1.当a >1时,函数p (t )有一个零点t 1∈(-1,0)(另一个零点t 2>1,舍去),F (x )在(0,2π]上有两个零点x 1,x 2,且x 1,x 2∈(π,2π);当a <-1时,函数p (t )有一个零点t 1∈(0,1)(另一个零点t 2<-1,舍去),F (x )在(0,2π]上有两个零点x 1,x 2,且x 1,x 2∈(0,π);当-1<a <1时,函数p (t )有一个零点t 1∈(-1,0),另一个零点t 2∈(0,1),F (x )在(0,π)和(π,2π)分别有两个零点.(步骤2)由正弦函数的周期性,可知当a ≠±1时,函数F (x )在(0,n π)内总有偶数个零点,从而不存在正整数n 满足题意.当a =1时,函数p (t )有一个零点t 1∈(-1,0),另一个零点t 2=1;当a =-1时,函数p (t )有一个零点t 1=-1,另一个零点t 2∈(0,1),(步骤3)从而当a =1或a =-1时,函数F (x )在(0,2π]有3个零点.由正弦函数的周期性,2 013=3×671,所以依题意得n =671×2=1 342.综上,当a =1,n =1 342或a =-1,n =1 342时,函数F (x )=f (x )+ag (x )在(0,n π)内恰有2 013个零点.(步骤4)21.(本题满分14分)(1)(本小题满分7分)矩阵与变换已知直线:1l ax y +=在矩阵1201⎡⎤=⎢⎥⎣⎦A 对应的变换作用下变为直线':1l x by +=. (Ⅰ)求实数,a b 的值;(Ⅱ)若点00(,)p x y 在直线上,且0000x x y y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭A ,求点p 的坐标. 【测量目标】矩阵与行列式初步.【考查方式】根据直线方程在矩阵的变换求未知字母,利用点在直线上和矩阵乘积,求点坐标.【难易程度】容易【试题解析】(I )设直线l :ax +y =1上任意点M (x ,y )在矩阵A 对应的变换作用下的象是M ′(x ′,y ′). 由 1 220 1x x x y y y y '+⎛⎫⎛⎫⎛⎫⎛⎫==⎪ ⎪⎪ ⎪'⎝⎭⎝⎭⎝⎭⎝⎭,得2,.x x y y y '=+⎧⎨'=⎩(步骤1) 又点M ′(x ′,y ′)在l ′上,所以x ′+by ′=1,即x +(b +2)y =1,依题意得=1,2=1,a b ⎧⎨+⎩解得=1,1.a b ⎧⎨=-⎩(步骤2)(II )由0000x x y y ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭A ,得000002,,x x y y y =+⎧⎨=⎩解得y 0=0.(步骤3) 又点P (x 0,y 0)在直线l 上,所以x 0=1.故点P 的坐标为(1,0).(步骤4)(2)(本小题满分7分)坐标系与参数方程:在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A的极坐标为π)4,直线的极坐标方程为πcos()4a ρθ-=,且点A 在直线上.(I )求a 的值及直线的直角坐标方程;(II )圆C 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线与圆的位置关系.【测量目标】坐标系与参数方程.【考查方式】利用极坐标及极坐标方程求直角坐标方程,根据圆的参数方程判断直线与圆的位置关系.【难易程度】中等【试题解析】(I )由点A π4⎫⎪⎭在直线ρπcos 4θ⎛⎫- ⎪⎝⎭=a上,可得a =所以直线l 的方程可化为ρcos θ+ρsin θ=2,从而直线l 的直角坐标方程为x +y -2=0.(步骤1)(II )由已知得圆C 的直角坐标方程为(x -1)2+y 2=1,所以圆C 的圆心为(1,0),半径r =1,(步骤2)因为圆心C 到直线l 的距离d=2<1, 所以直线l 与圆C 相交.(步骤3)(3)(本小题满分7分)不等式选讲:设不等式*2()x a a -∈N <的解集为A ,且32A ∈,12A ∉. (I )求a 的值;(II )求函数()2f x x a x =++-的最小值. 【测量目标】绝对值不等式,基本不等式求最值.【考查方式】根据绝对值不等式的解集判断未知参量的值,利用基本不等式求绝对值函数的最值.【难易程度】中等【试题解析】(I )因为32∈A ,且12∉A ,所以32<2a -,且122a -..., 解得12<a (32).又因为a ∈N *,所以a =1.(步骤1) (II )因为|x +1|+|x -2|…|(x +1)-(x -2)|=3,当且仅当(x +1)(x -2) …0,即-1…x …2时取到等号.所以f (x )的最小值为3.(步骤2)。
2013年高考真题——理科数学(福建卷)解析版1 Word版含答案
2013年普通高等学校招生全国统一考试(福建卷) 数学试题(理工农医类)第Ⅰ卷(选择题 共50分)一.选择题1.已知复数z 的共轭复数12z i =+(i 为虚数单位),则z 在复平面内对应的点位于( ) A . 第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】D【解析】z 的共轭复数12z i =+,则12z i =-,对应点的坐标为(1,2)-,故答案为D . 2.已知集合{}1,A a =,{}1,2,3B =,则“3a =”是“A B ⊆”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】3,a A B =⇒⊆2A B a ⊆⇒=,或3.因此是充分不必要条件.3.双曲线2214x y -=的顶点到其渐近线的距离等于( )A .25 B .45CD【答案】C【解析】 2214x y -=的顶点坐标为(2,0)±,渐近线为2204x y -=,即20x y ±=.带入点到直线距离公式d =. 4.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( ) A .588 B .480C .450D .120【答案】B【解析】由图知道60分以上人员的频率为后4项频率的和,由图知道(0.030.0250.0150.01)*100.8P =+++=故分数在60以上的人数为600*0.8=480人.5.满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A .14B .13C .12D .10 【答案】B【解析】方程220ax x b ++=有实数解,分析讨论①当0a =时,很显然为垂直于x 轴的直线方程,有解.此时b 可以取4个值.故有4种有序数对②当0a ≠时,需要440ab ∆=-≥,即1ab ≤.显然有3个实数对不满足题意,分别为(1,2),(2,1),(2,2).(,)a b 共有4*4=16中实数对,故答案应为16-3=13.6.阅读如图所示的程序框图,若输入的10k =,则该算法的功能是( )A .计算数列{}12n -的前10项和 B .计算数列{}12n -的前9项和 C .计算数列{}21n -的前10项和 D .计算数列{}21n -的前9项和【答案】C【解析】第一循环:1,2S i ==,10i <第二条:3,3,10S i i ==<第三条:7,4,10S i i ==<…..第九循环:921,10,10S i i =-==.第十循环:1021,11,10S i i =-=>,输出S .根据选项,101(12)12S -=-,故为数列12n -的前10项和.故答案A .7.在四边形ABCD 中,(1,2)AC =,(4,2)BD =-,则四边形的面积为( )A B . C .5 D .10【答案】C【解析】由题意,容易得到AC BD ⊥.设对角线交于O 点,则四边形面积等于四个三角形面积之和 即S=11(****)(*)22AO DO AO BO CO DO CO BO AC BD +++=.容易算出,则算出S=5.故答案C8.设函数()f x 的定义域为R ,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是( )A .0,()()x R f x f x ∀∈≤B .0x -是()f x -的极小值点C .0x -是()f x -的极小值点D .0x -是()f x --的极小值点 【答案】D【解析】A .0,()()x R f x f x ∀∈≤,错误.00(0)x x ≠是()f x 的极大值点,并不是最大值点.B .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于y 轴的对称图像,故0x -应是()f x -的极大值点C .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于x 轴的对称图像,故0x 应是()f x -的极小值点.跟0x -没有关系.D .0x -是()f x --的极小值点.正确.()f x --相当于()f x 先关于y 轴的对象,再关于x 轴的对称图像.故D 正确9.已知等比数列{}n a 的公比为q ,记(1)1(1)2(1)...,n m n m n m n m b a a a -+-+-+=+++*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=∙∙∙∈则以下结论一定正确的是( )A .数列{}n b 为等差数列,公差为mq B .数列{}n b 为等比数列,公比为2mq C .数列{}n c 为等比数列,公比为2m q D .数列{}n c 为等比数列,公比为mm q【答案】C【解析】等比数列{}n a 的公比为q,同理可得2222222,m m m mm m m a a a a a a ++++=∙=∙112...m c a a a =∙∙∙,212...,m m m m c a a a +++=∙∙∙321222...,m m m m c a a a +++=∙∙∙2213c c c ∴=∙∴数列{}n c 为等比数列,2221212211212............mm m m m m m m m ma a a a a a q c q q c a a a a a a +++∙∙∙∙∙∙∙====∙∙∙∙∙∙故选C 10.设S ,T ,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈对任意12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( )A .*,A N B N == B .{|13},{|8010}A x x B x x x =-≤≤==-<≤或 C .{|01},A x x B R =<<= D .,A Z B Q == 【答案】D【解析】根据题意可知,令()1f x x =-,则A 选项正确;令55(13)()228(1)x x f x x ⎧+-<≤⎪=⎨⎪-=-⎩,则B 选项正确; 令1()tan ()2f x x π=-,则C 选项正确;故答案为D . 二.填空题11.利用计算机产生0~1之间的均匀随机数a ,则时间“310a ->”发生的概率为________ 【答案】23【解析】13103a a ->∴>a 产生0~1之间的均匀随机数1(,1)3a ∴∈112313p -∴==12.已知某一多面体内接于一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π【解析】由图可知,图形为一个球中间是内接一个棱长为2的正方体,2412R S R ππ∴====球表13.如图ABC ∆中,已知点D 在BC 边上,AD ⊥AC ,sin 3BAC AB AD ∠===则BD 的长为_______________【解析】sin sin()cos 2BAC BAD BAD π∠=∠+=∠=∴根据余弦定理可得222cos 2AB AD BD BAD AB AD +-∠=∙BD ==14.椭圆2222:1(0)x y a b a bΓ+=>>的左.右焦点分别为12,F F ,焦距为2c ,若直线)y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于__________1-【解析】由直线方程)y x c =+⇒直线与x 轴的夹角12233MF F ππ∠=或,且过点1-F (c,0)12212MF F MF F ∠=∠∴122123MF F MF F π∠=∠=即12F M F M ⊥12RT F MF ∴∆在中,12122,,F F c F M c F M ===∴由椭圆的第一定义可得21c a c a =+∴==- 15.当,1x R x ∈<时,有如下表达式:211.......1n x x x x+++++=- 两边同时积分得:1111122222200011.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰从而得到如下等式:23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+ 请根据以下材料所蕴含的数学思想方法,计算:122311111111()()...()_____2223212n n n n n n n C C C C +⨯+⨯+⨯++⨯=+ 【答案】113[()1]12n n +-+【解析】由01221......(1)n nn n n n n C C x C x C x x +++++=+两边同时积分得:11111222222000001......(1).n n n n n n C dx C xdx C x dx C x dx x dx +++++=+⎰⎰⎰⎰⎰从而得到如下等式:122311*********()()...()[()1]222321212n n n n n n nn n C C C C ++⨯+⨯+⨯++⨯=-++ 三.解答题16.(本小题满分13分)某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为23,中将可以获得2分;方案乙的中奖率为25,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,X Y ,求3X ≤的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?本小题主要考查古典概型.离散型随机变量的分布列.数学期望等基础知识,考查数据处理能力.运算求解能力.应用意识,考查必然和或然思想,满分13分. 解:(Ⅰ)由已知得:小明中奖的概率为23,小红中奖的概率为25,两人中奖与否互不影响,记“这2人的累计得分3≤X ”的事件为A ,则A 事件的对立事件为“5=X ”,224(5)3515==⨯=P X ,11()1(5)15∴=-==P A P X ∴这两人的累计得分3≤X 的概率为1115. (Ⅱ)设小明.小红都选择方案甲抽奖中奖的次数为1X ,都选择方案乙抽奖中奖的次数为2X ,则这两人选择方案甲抽奖累计得分的数学期望为1(2)E X ,选择方案乙抽奖累计得分的数学期望为2(3)E X由已知:12~(2,)3X B ,22~(2,)5X B124()233∴=⨯=E X ,224()255=⨯=E X 118(2)2()3∴==E X E X ,2212(3)3()5==E X E X12(2)(3)>E X E X∴他们都在选择方案甲进行抽奖时,累计得分的数学期望最大.17.(本小题满分13分)已知函数()ln ()f x x a x a R =-∈ (1)当2a =时,求曲线()y f x =在点(1,(1))A f 处的切线方程; (2)求函数()f x 的极值.本小题主要考查函数.函数的导数.不等式等基础知识,考查运算求解能力,考查函数与方程思想.分类与整合思想,数形结合思想.化归与转化思想.满分13分. 解:函数()f x 的定义域为(0,)+∞,()1'=-a f x x. (Ⅰ)当2=a 时,()2ln =-f x x x ,2()1(0)'=->f x x x, (1)1,(1)1'∴==-f f ,()∴=y f x 在点(1,(1))A f 处的切线方程为1(1)-=--y x ,即20+-=x y .(Ⅱ)由()1,0-'=-=>a x a f x x x x可知: ①当0≤a 时,()0'>f x ,函数()f x 为(0,)+∞上的增函数,函数()f x 无极值; ②当0>a 时,由()0'=f x ,解得=x a ;(0,)∈x a 时,()0'<f x ,(,)∈+∞x a 时,()0'>f x()∴f x 在=x a 处取得极小值,且极小值为()ln =-f a a a a ,无极大值.综上:当0≤a 时,函数()f x 无极值当0>a 时,函数()f x 在=x a 处取得极小值ln -a a a ,无极大值.18.(本小题满分13分)如图,在正方形OABC 中,O 为坐标原点,点A 的坐标为(10,0),点C 的坐标为(0,10).分别将线段OA 和AB 十等分,分点分别记为129,,....A A A 和129,,....B B B ,连结i OB ,过i A 做x 轴的垂线与i OB 交于点*(,19)i P i N i ∈≤≤.(1)求证:点*(,19)i P i N i ∈≤≤都在同一条抛物线上,并求该抛物线E 的方程;(2)过点C 做直线l 与抛物线E 交于不同的两点,M N ,若OCM ∆与OCN ∆的面积比为4:1,求直线l 的方程.本小题主要考查抛物线的性质.直线与抛物线的位置关系等基础知识,考查运算求解能力.推理论证能力,考查化归与转化思想,数形结合思想.函数与方程思想.满分13分. 解:(Ⅰ)依题意,过*(,19)∈≤≤i A i N i 且与x 轴垂直的直线方程为=x i(10,)i B i ,∴直线i OB 的方程为10=iy x 设i P 坐标为(,)x y ,由10=⎧⎪⎨=⎪⎩x ii y x 得:2110=y x ,即210=x y ,∴*(,19)∈≤≤i P i N i 都在同一条抛物线上,且抛物线E 方程为210=x y(Ⅱ)依题意:直线l 的斜率存在,设直线l 的方程为10=+y kx由21010=+⎧⎨=⎩y kx x y得2101000--=x kx 此时2100+4000∆=>k ,直线l 与抛物线E 恒有两个不同的交点,M N设:1122(,)(,)M x y N x y ,则121210100+=⎧⎨⋅=-⎩x x kx x4∆∆=OCM OCN S S ∴124=x x又120⋅<x x ,∴124=-x x分别带入21010=+⎧⎨=⎩y kx x y,解得32=±k直线l 的方程为3+102=±y x ,即32200-+=x y 或3+2200-=x y19.(本小题满分13分)如图,在四棱柱1111ABCD A B C D -中,侧棱1AA ABCD ⊥底面,//AB DC ,11AA =,3AB k =,4AD k =,5BC k =,6DC k =(0)k >.(1)求证:11;CD ADD A ⊥平面(2)若直线1AA 与平面1AB C 所成角的正弦值为67,求k 的值; (3)现将与四棱柱1111ABCD A B C D -形状和大小完全相同的两个四棱柱拼接成一个新的棱柱,规定:若拼接成的新的四棱柱形状和大小完全相同,则视为同一种拼接方案.问:共有几种不同的方案?在这些拼接成的新四棱柱中,记其中最小的表面积为()f k ,写出()f k 的表达式(直接写出答案,不必要说明理由)本小题主要考查直线与直线.直线与平面的位置关系.柱体的概念及表面积等基础知识,考查空间想象能力.推理论证能力.运算求解能力,考查数形结合思想.分类与整合思想.化归与转化思想,满分13分. 解:(Ⅰ)取CD 中点E ,连接BE//AB DE Q ,3AB DE k == ∴四边形ABED 为平行四边形 //BE AD ∴且4BE AD k ==在BCE V 中,4,3,5BE k CE k BC k ===Q222BE CE BC ∴+=90BEC ∴∠=︒,即BE CD ⊥,又//BE AD Q ,所以CD AD ⊥ 1AA ⊥Q 平面ABCD ,CD ⊂平面ABCD 1AA CD ∴⊥,又1AA AD A =I ,CD ∴⊥平面11ADD A(Ⅱ)以D 为原点,1,,DA DC DD uu u r uuu r uuur的方向为,,x y z 轴的正方向建立如图所示的空间直角坐标系(4,0,0)A k ,(0,6,0)C k ,1(4,3,1)B k k ,1(4,0,1)A k所以(4,6,0)AC k k =-uuu r ,1(0,3,1)AB k =uuu r ,1(0,0,1)AA =uuu r设平面1AB C 的法向量(,,)n x y z =,则由100AC n AB n ⎧⋅=⎪⎨⋅=⎪⎩uuu r uuu r得46030kx ky ky z -+=⎧⎨+=⎩取2y =,得(3,2,6)n k =-设1AA 与平面1AB C 所成角为θ,则111,sin |cos ,|||||AA nAA n AA n θ=〈〉=⋅uuu ruuu r uuu r67==,解得1k =.故所求k 的值为1 (Ⅲ)共有4种不同的方案2257226,018()53636,18k k k f k k k k ⎧+<≤⎪⎪=⎨⎪+>⎪⎩20.(本小题满分14分)已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的周期为π,图像的一个对称中心为(,0)4π,将函数()f x 图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移2π个单位长度后得到函数()g x 的图像.(1)求函数()f x 与()g x 的解析式; (2)是否存在0(,)64x ππ∈,使得0000(),(),()()f x g x f x g x 按照某种顺序成等差数列?若存在,请确定0x 的个数; 若不存在,说明理由.(3)求实数a 与正整数n ,使得()()()F x f x ag x =+在(0,)n π内恰有2013个零点. 本小题主要考查同角三角函数的基本关系.三角恒等变换.三角函数的图像与性质.函数.函数的导数.函数的零点.不等式等基础知识,考查运算求解能力.抽象概括能力,考查函数与方程思想,数形结合思想,分类与整合思想.化归与转化思想,满分14分. 解:(Ⅰ)由函数()sin()f x x ωϕ=+的周期为π,0ω>,得2ω= 又曲线()y f x =的一个对称中心为(,0)4π,(0,)ϕπ∈故()sin(2)044f ππϕ=⨯+=,得2πϕ=,所以()cos 2f x x =将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得cos y x =的图象,再将cos y x =的图象向右平移2π个单位长度后得到函数()sin g x x =(Ⅱ)当(,)64x ππ∈时,1sin 2x <<10cos 22x << 所以sin cos 2sin cos 2x x x x >>问题转化为方程2cos 2sin sin cos 2x x x x =+在(,)64ππ内是否有解设()sin sin cos 22cos 2G x x x x x =+-,(,)64x ππ∈ 则()cos cos cos 22sin 2(2sin )G x x x x x x '=++- 因为(,)64x ππ∈,所以()0G x '>,()G x 在(,)64ππ内单调递增又1()064G π=-<,()04G π=> 且函数()G x 的图象连续不断,故可知函数()G x 在(,)64ππ内存在唯一零点0x ,即存在唯一的0(,)64x ππ∈满足题意 (Ⅲ)依题意,()sin cos 2F x a x x =+,令()sin cos 20F x a x x =+=当sin 0x =,即()x k k Z π=∈时,cos 21x =,从而()x k k Z π=∈不是方程()0F x =的解,所以方程()0F x =等价于关于x 的方程cos 2sin xa x=-,()x k k Z π≠∈ 现研究(0,)(,2)x πππ∈U 时方程解的情况 令cos 2()sin xh x x=-,(0,)(,2)x πππ∈U 则问题转化为研究直线y a =与曲线()y h x =在(0,)(,2)x πππ∈U 的交点情况22cos (2sin 1)()sin x x h x x +'=,令()0h x '=,得2x π=或32x π= 当x 变化时,()h x 和()h x '变化情况如下表当0x >且x 趋近于0时,()h x 趋向于-∞ 当x π<且x 趋近于π时,()h x 趋向于-∞ 当x π>且x 趋近于π时,()h x 趋向于+∞ 当2x π<且x 趋近于2π时,()h x 趋向于+∞故当1a >时,直线y a =与曲线()y h x =在(0,)π内有无交点,在(,2)ππ内有2个交点; 当1a <-时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内无交点; 当11a -<<时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内有2个交点由函数()h x 的周期性,可知当1a ≠±时,直线y a =与曲线()y h x =在(0,)n π内总有偶数个交点,从而不存在正整数n ,使得直线y a =与曲线()y h x =在(0,)n π内恰有2013个交点;当1a =±时,直线y a =与曲线()y h x =在(0,)(,2)πππU 内有3个交点,由周期性,20133671=⨯,所以67121342n =⨯=综上,当1a =±,1342n =时,函数()()()F x f x ag x =+在(0,)n π内恰有2013个零点 21.(本题满分14分) (1)(本小题满分7分)矩阵与变换已知直线:1l ax y +=在矩阵1201A ⎡⎤=⎢⎥⎣⎦对应的变换作用下变为直线':1l x by +=. (1)求实数,a b 的值;(2)若点00(,)p x y 在直线l 上,且0000x x A y y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,求点p 的坐标.本小题主要考查矩阵.矩阵与变换等基础知识,考查运算求解能力.考查化归与转化思想.满分7分.解:解:(Ⅰ)设直线:1l ax y +=上任意一点(,)M x y 在矩阵A 对应的变换作用下的像是(,)M x y '''由12201x x x y y y y '+⎛⎫⎛⎫⎛⎫⎛⎫==⎪ ⎪⎪ ⎪'⎝⎭⎝⎭⎝⎭⎝⎭,得2x x yy y'=+⎧⎨'=⎩又点(,)M x y '''在l '上,所以1x by ''+=,即(2)1x b y ++=依题意121a b =⎧⎨+=⎩,解得11a b =⎧⎨=-⎩(Ⅱ)由0000x x A y y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,得000002x x y y y =+⎧⎨=⎩解得00y =又点00(,)P x y 在直线l 上,所以01x = 故点P 的坐标为(1,0)(2)(本小题满分7分)坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A 的极坐标为)4π,直线l 的极坐标方程为cos()4a πρθ-=,且点A 在直线l 上. (1)求a 的值及直线l 的直角坐标方程;(2)圆c 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线l 与圆的位置关系.本小题主要考查极坐标与直角坐标的互化.圆的参数方程等基础知识.考查运算求解能力,考查化归与转化思想,满分7分.解:(Ⅰ)由点)4A π在直线cos()4a πρθ-=上,可得a =所以直线l 的方程可化为cos sin 2ρθρθ+= 从而直线l 的直角坐标方程为20x y +-=(Ⅱ)由已知得圆C 的直角坐标方程为22(1)1x y -+= 所以圆心为(1,0),半径1r =以为圆心到直线的距离1d =<,所以直线与圆相交 (3)(本小题满分7分)不等式选讲 设不等式*2()x a a N -<∈的解集为A ,且32A ∈,12A ∉. (1)求a 的值;(2)求函数()2f x x a x =++-的最小值.本小题主要考查绝对猪不等式等基础知识,考查运算求解能力,考查化归与转化思想,满分7分.解:(Ⅰ)因为32A ∈,且12A ∉,所以322a -<,且122a -≥ 解得1322a <≤,又因为*a N ∈,所以1a = (Ⅱ)因为|1||2||(1)(2)|3x x x x ++-≥+--=当且仅当(1)(2)0x x +-≤,即12x -≤≤时取得等号,所以()f x 的最小值为3。
2013年福建省高考数学试卷理科教师版
2013年福建省高考数学试卷(理科)一、选择题:本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项符合题目的要求的.1.(5分)(2013?福建)已知复数z的共轭复数(i为虚数单位),则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】求出复数z,复数z的对应点的坐标,即可得到选项.【解答】解:因为复数z的共轭复数,所以z=1﹣2i,对应的点的坐标为(1,﹣2).z在复平面内对应的点位于第四象限.故选:D.2.(5分)(2013?福建)已知集合A={1,a},B={1,2,3},则“a=3”是“A?B “的()A.充分而不必要条件B.必要而不充分条件D.充分必要条件.既不充分也不必要条件C【分析】先有a=3成立判断是否能推出A?B成立,反之判断“A?B”成立是否能推出a=3成立;利用充要条件的题意得到结论.【解答】解:当a=3时,A={1,3}所以A?B,即a=3能推出A?B;反之当A?B时,所以a=3或a=2,所以A?B成立,推不出a=3故“a=3”是“A?B”的充分不必要条件故选:A.的顶点到渐近线的距离等于()双曲线3.(5分)(2013?福建).C...ABD,利,0),渐近线2的顶点(由对称性可取双曲线【分析】用点到直线的距离公式即可得到顶点到渐近线的距离.,,渐近线02的顶点(,)解:由对称性可取双曲线【解答】.d=则顶点到渐近线的距离故选:C.4.(5分)(2013?福建)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()120D.C.450A.588B.480频率×=60成绩不低于分的频率,然后根据频数【分析】根据频率分布直方图,总数可求出所求.解:根据频率分布直方图,【解答】=0.8.10×(0.005+0.015)成绩不低于60(分)的频率为1﹣可估计该校高一利用样本估计总体的思想,由于该校高一年级共有学生600人,人.0.8=480600×年级模块测试成绩不低于60(分)的人数为.B故选:2b=02x的方程ax++,0,12},且关于x∈分)5.(5(2013?福建)满足a,b{﹣1,)有实数解的有序数对的个数为(10D.C.12A.14B.132a)当有实数根,所以分两种情况:(ax1+2x+b=0【分析】由于关于x的方程,由此即可求出00时,方程为一元二次方程,那么它的判别式大于或等于≠,此时一定有解.b=02x+2)当a=0时,方程为(a的取值范围;,此时一定有解;+b=0)当a=0时,方程为2x【解答】解:(1)四种.2(0,)(,00),0,1,(),﹣;即(,,,﹣此时b=101201,时,方程为一元二次方程,0≠(2)当a4ab≥﹣∴△=40,∴ab≤1.所以a=﹣1,1,2,此时a,b的对数为(﹣1,0),(﹣1,2),(﹣1,﹣1),(﹣1,1),(1,﹣1),(1,0),(1,1),(2,﹣1),(2,0),共9种,2+2x+b=0的方程ax有实数解的有序数对的个数为13种,关于x故选:B.6.(5分)(2013?福建)阅读如图所示的程序框图,若输入的k=10,则该算法的功能是()1n﹣项和的前10}A.计算数列{21n﹣项和的前9{B.计算数列2}n项和101}的前C.计算数列{2﹣n项和91}D.计算数列{2的前﹣从赋值框给出的两个变量的值开始,逐渐分析写出程序运行的每一步,【分析】便可得到程序框图表示的算法的功能.赋值,iS和循环变量【解答】解:框图首先给累加变量;i=1S=0,;+1=20=1,i=1S=1判断i>10不成立,执行+2×;+1=3i=2×1=1+2,S=1i判断>10不成立,执行+22;1=4+22=1212S=110i判断>不成立,执行+×(+)++,i=3…29,i=10+1=112;+…+2判断i>10不成立,执行S=1+2+29.2+…+2+2+判断i>10成立,输出S=1算法结束.n1﹣}的前10故则该算法的功能是计算数列{2项和.故选:A.,则2)=(﹣4,ABCD中,=(1,2),7.(5分)(2013?福建)在四边形)该四边形的面积为(10D.C.A.B.5【分析】通过向量的数量积判断四边形的形状,然后求解四边形的面积即可.,,,,,=0因为在四边形解:ABCD中,【解答】,的对角线互相垂直,又所以四边形ABCD,==5.该四边形的面积:故选:C.8.(5分)(2013?福建)设函数f(x)的定义域为R,x(x≠0)是f(x)的极00大值点,以下结论一定正确的是()A.?x∈R,f(x)≤f(x)0B.﹣x是f(﹣x)的极小值点0C.﹣x是﹣f(x)的极小值点0D.﹣x是﹣f(﹣x)的极小值点0【分析】A项,x(x≠0)是f(x)的极大值点,不一定是最大值点,故不正确;00B项,f(﹣x)是把f(x)的图象关于y轴对称,因此,﹣x是f(﹣x)的极大0值点;C项,﹣f(x)是把f(x)的图象关于x轴对称,因此,x是﹣f(x)的极小值0点;D项,﹣f(﹣x)是把f(x)的图象分别关于x轴、y轴做对称,因此﹣x是﹣f0(﹣x)的极小值点.【解答】解:对于A项,x(x≠0)是f(x)的极大值点,不一定是最大值点,00因此不能满足在整个定义域上值最大,故A错误;对于B项,f(﹣x)是把f(x)的图象关于y轴对称,因此,﹣x是f(﹣x)的0极大值点,故B错误;对于C项,﹣f(x)是把f(x)的图象关于x轴对称,因此,x是﹣f(x)的极0小值点,故C错误;对于D项,﹣f(﹣x)是把f(x)的图象分别关于x轴、y轴做对称,因此﹣x0是﹣f(﹣x)的极小值点,故D正确.故选:D.9.(5分)(2013?福建)已知等比数列{a}的公比为q,记b=a+a m1n1nnnm1)(﹣)+(﹣*),∈N则以下结,(m,n?a+…+a,c=a?…?a m1m12nmnmn1m12nmn1+﹣+﹣()+()++﹣)()(﹣论一定正确的是()m q为等差数列,公差为b}A.数列{n2m q为等比数列,公比为b}B.数列{n}为等比数列,公比为C.数列{c n为等比数列,公比为.数列{c}D n b时,,当q=1=mab①=ma,【分析】nnn1mn1m((+﹣)=ma=b,此时是常数列,可判断A,B两个选项nmn1m1)﹣﹣()+q,利用等比数列的通项公式可得a}的公比为②由于等比数列{n,得出=,即可判断出C,D两个选项.,当q=1时,b=ma,b【解答】解:①=ma m1mnnn1+()﹣=ma=b,此时是常数列,选项A不正确,选项B正确;nn1n1mm)﹣﹣()+(,q当≠1时,=,选项B,此时不正确,,不是常数,故选项A不正确,=﹣又bb nn1+,}a②∵等比数列{的公比为,∴q n,∴=,故∴===C正确D不正确.综上可知:只有C正确.故选:C.10.(5分)(2013?福建)设S,T是R的两个非空子集,如果存在一个从S到T 的函数y=f(x)满足:(i)T={f(x)|x∈S};(ii)对任意x,x∈S,当x<112x时,恒有f(x)<f(x),那么称这两个集合“保序同构”,以下集合对不是212“保序同构”的是()*,B=N.A=NAB.A={x|﹣1≤x≤3},B={x|x=﹣8或0<x≤10}C.A={x|0<x<1},B=RD.A=Z,B=Q【分析】利用题目给出的“保序同构”的概念,对每一个选项中给出的两个集合,利用所学知识,找出能够使两个集合满足题目所给出的条件的函数,即B是函数的值域,且函数为定义域上的增函数.排除掉是“保序同构”的,即可得到要选择的答案.**,满足:(i)B={﹣1,x∈Nf【解答】解:对于A=N,存在函数,B=Nf(x)=x (x)|x∈A};(ii)对任意x,x∈A,当x<x时,恒有f(x)<f(x),所212112以选项A是“保序同构”;对于A={x|﹣1≤x≤3},B={x|x=﹣8或0<x≤10},存在函数,,满足:,<(i)B={f(x)|x∈A};(ii)对任意x,x∈A,当x<x时,恒有f(x)<f(x),221211所以选项B是“保序同构”;对于A={x|0<x<1},B=R,存在函数f(x)=tan(),满足:(i)B={f(x)|x∈A};(ii)对任意x,x∈A,当x<x时,恒有f(x)<f(x),所以选项C是“保序同构”;212211前三个选项中的集合对是“保序同构”,由排除法可知,不是“保序同构”的只有D.故选:D.二、填空题:本大题共5小题,每小题4分,共20分.把答案填写在答题卡的相应位置.11.(4分)(2013?福建)利用计算机产生0~1之间的均匀随机数a,则事件“3a ﹣1>0”发生的概率为.【分析】本题考查的知识点是几何概型的意义,关键是要找出(0,1)上产生随机数a所对应图形的长度,及事件“3a﹣1>0”对应的图形的长度,并将其代入几何概型计算公式,进行求解.【解答】解:3a﹣1>0即a>,.P==1>0”发生的概率为﹣则事件“3a.故答案为:12.(4分)(2013?福建)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、俯视图、均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是12π.,求出球的2【分析】由三视图可知,组合体是球内接正方体,正方体的棱长为半径,然后求出球的表面积即可.,解:由三视图可知,组合体是球内接正方体,正方体的棱长为2【解答】,r=,球的直径就是正方体的体对角线的长,所以2r=2.4πr=12π所以球的表面积为:.故答案为:12πsin,⊥AC在BC边上,AD(4分)(2013?福建)如图,在△ABC中,已知点D13.,则BD的长为AB=3,,∠BAC=AD=3,代入并90°BAC=∠BAD+BAD+∠DAC,∠DAC=90°,得到∠【分析】由∠BAC=∠,ABABD中,由,求出cos∠BAD的值,在三角形利用诱导公式化简sin∠BAC 的长.BD∠BAD的值,利用余弦定理即可求出AD及cos,AC,∴∠DAC=90°AD【解答】解:∵⊥,BAD+90°∠BAD+∠DAC=∠∴∠BAC=,∠BAD=90°(∠BAD+)=cos∴sin∠BAC=sin,,ABD中,AB=3AD=3在△222,24=39∠BDBAD=18=AB++AD﹣﹣2AB?AD?cos根据余弦定理得:.则BD=故答案为:,0)的左右焦点分别为F=1(a>b>414.(分)(2013?福建)椭圆Γ:1∠=2满足∠的一个交点MMFF F,焦距为2c,若直线y=与椭圆Γ212.FMF,则该椭圆的离心率等于12.又直线α=60°可知斜率为,可得直线的倾斜角由直线【分析】,进而MF=2FMFMΓ与椭圆的一个交点满足∠∠,可得F1221..设|MF|=m,|MF|=n,利用勾股定理、椭圆的定义及其边角关系可得12即可.,c,解出a解:如图所示,【解答】.,∴α=60°有关系=tanα可知倾斜角α与斜率由直线.,∴F又椭圆Γ的一个交点满足∠MFF=2∠MF,∴1212.,解得,则设|MF|=m,|MF|=n12.∴该椭圆的离心率e=.故答案为n2…=++…+1时,有如下表达式:1+x+xx∈15.(4分)(2013?福建)当xR,|x|<n2+dx dx+…+dxxdx+xx两边同时积分得:+…=dx132n+…=ln2++×())+×()+…+从而得到如下等式:1××(请根据以上材料所蕴含的数学思想方法,计算:1n23.+)+×()…+×+(×)+=×(nn22n01,两边同时积分整x)=(+xC1x++…C+xC【分析】根据二项式定理得C+nnnn 理后,整理即可得到结论.nnn0122,x)x=(1+【解答】解:二项式定理得C+Cx+Cx+…+C nnnnnn2n210)1x+x+CC对+xC+…C=(+x nnnn两边同时积分得:从式:到如下等而得=.故答案为:三、解答题:本大题共5小题,共80分.解答应写出文字说明、证明过程或演算步骤.16.(13分)(2013?福建)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分;方案乙的中奖率为,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为x,求x≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?【分析】(1)记“他们的累计得分X≤3”的事事件为A,则事件A的对立事件是“X=5”,由题意知,小明中奖的概率为,小红中奖的概率为,且两人抽奖中奖与否互不影响,先根据相互独立事件的乘法公式求出对立事件的概率,再利用对立事件的概率公式即可求出他们的累计得分x≤3的概率.(2)设小明、小红两人都选择甲方案抽奖中奖次数为X,甲小明、小红两人都1选择方案乙抽奖中奖次数为X,则这两人都选择甲方案抽奖累计得分的数学2期望为E(2X),都选择乙方案抽奖累计得分的数学期望为E(3X).根据题21意知X~B(2,),X~B(2,),利用贝努利概率的期望公式计算即可得21出E(2X)>E(3X),从而得出答案.21【解答】解:(1)由题意知,小明中奖的概率为,小红中奖的概率为,且两人抽奖中奖与否互不影响,记“他们的累计得分X≤3”的事件为A,则事件A的对立事件是“X=5”,,∴P(A)=1﹣P(X=5)因为P(X=5)==;即他们的累计得分x≤3的概率为.(2)设小明、小红两人都选择甲方案抽奖中奖次数为X,1小明、小红两人都选择方案乙抽奖中奖次数为X,则这两人都选择甲方案抽奖累2计得分的数学期望为E(2X)1都选择乙方案抽奖累计得分的数学期望为E(3X)2由已知可得,X~B(2,),X~B(2,),21∴E(X)=2×=,E(X)=2×=,21从而E(2X)=2E(X)=,E(3X)=3E(X)=,2211由于E(2X)>E(3X),21∴他们选择甲方案抽奖,累计得分的数学期望较大.17.(13分)(2013?福建)已知函数f(x)=x﹣alnx(a∈R)(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;(2)求函数f(x)的极值.【分析】(1)把a=2代入原函数解析式中,求出函数在x=1时的导数值,直接利用直线方程的点斜式写直线方程;(2)求出函数的导函数,由导函数可知,当a≤0时,f′(x)>0,函数在定义域(0,+∝)上单调递增,函数无极值,当a>0时,求出导函数的零点,由导函数的零点对定义域分段,利用原函数的单调性得到函数的极值..,∞)【解答】解:函数f(x)的定义域为(0,+>,=x﹣2lnx,时,(1)当a=2f(x)因而f(1)=1,f′(1)=﹣1,所以曲线y=f(x)在点A(1,f(1))处的切线方程为y﹣1=﹣(x﹣1),即x+y﹣2=0,x>0(2)由知:)无x(f∞)上的增函数,函数+,0)为(x(f,函数0)>x(f′时,0≤a①当.极值;②当a>0时,由f′(x)=0,解得x=a.又当x∈(0,a)时,f′(x)<0,当x∈(a,+∞)时,f′(x)>0.从而函数f(x)在x=a处取得极小值,且极小值为f(a)=a﹣alna,无极大值.综上,当a≤0时,函数f(x)无极值;当a>0时,函数f(x)在x=a处取得极小值a﹣alna,无极大值.18.(13分)(2013?福建)如图,在正方形OABC中,O为坐标原点,点A的坐标为(10,0),点C的坐标为(0,10),分别将线段OA和AB十等分,分点分别记为A,A,…,A和B,B,…,B,连接OB,过A作x轴的垂线与ii221919,.OB,交于点i,都在同一条抛物线上,并求抛物线E的方1)求证:点(程;(2)过点C作直线l与抛物线E交于不同的两点M,N,若△OCM与△OCN的面积之比为4:1,求直线l的方程.,,轴垂直的直线方程为x=i且与x求出过【分析】(I)由题意,联立方程.,即的方程为即可得到直线的坐标为B(10,i),OB ii满足的方程;可得到P i,与抛物线的方程联立得到一元二次方+10l的方程为y=kx (II)由题意,设直线.即||x,可得S=S|x|=4程,利用根与系数的关系,及利用面积公式2OCNOCM1△△,进而得到直线方程.k.联立即可得到x=﹣4x21,轴垂直的直线方程为x)证明:由题意,过(【解答】I且与x=i,B的坐标为(10,i),i.OB的方程为∴直线i2,解得,即),由x=10y.设P(x,y i2,x的方程为都在同一条抛物线上,抛物线E=10y∴点.(II)由题意,设直线l的方程为y=kx+10,2消去y得到联立x﹣10kx﹣100=0,此时△>0,直线与抛物线恒有两个不同的交点,设为M(x,y),N(x,y),则x+x=10k,xx=﹣100,21212112∵S=4S,∴|x|=4|x|.∴x=﹣4x.221OCMOCN1△△,解得联立..即为3x+2y﹣20=0或3x﹣2y+20=0.∴直线l的方程为19.(13分)(2013?福建)如图,在四棱柱ABCD﹣ABCD中,侧棱AA⊥底面11111ABCD,AB∥DC,AA=1,AB=3k,AD=4k,BC=5k,DC=6k,(k>0)1(1)求证:CD⊥平面ADDA11(2)若直线AA与平面ABC所成角的正弦值为,求k的值11(3)现将与四棱柱ABCD﹣ABCD形状和大小完全相同的两个四棱柱拼成一个1111新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为f(k),写出f(k)的解析式.(直接写出答案,不必说明理由)是平行四边形,再ABED,可证明四边形BE,连接E得中点DC)取1(【分析】.利用勾股定理的逆定理可得BE⊥CD,即CD⊥AD,又侧棱AA⊥底面ABCD,1可得AA⊥DC,利用线面垂直的判定定理即可证明.(2)通过建立空间直角1坐标系,求出平面的法向量与斜线的方向向量的夹角即可得出;(3)由题意可与左右平面ADDA,BCCB,上或下面ABCD,ABCD拼接得到方案11111111新四棱柱共有此4种不同方案.写出每一方案下的表面积,通过比较即可得出f(k).【解答】(1)证明:取DC的中点E,连接BE,∵AB∥ED,AB=ED=3k,∴四边形ABED是平行四边形,222222,∴∠=BCBEC=90°,3k)=(BE5k+EC)=(4k)+(∴∴BE∥AD,且BE=AD=4k,∴BE⊥CD,又∵BE∥AD,∴CD⊥AD.∵侧棱AA⊥底面ABCD,∴AA⊥CD,11∵AA∩AD=A,∴CD⊥平面ADDA.111轴的正方向建立空z的方向为x,y,2)解:以D为坐标原点,、、(间直角坐标系,(则A4k,11,,,,,,.,,(0,6k,0),B(4k,.0,1)13k,),A(4k,C0,0),∴,z),则取y=2,=设平面ABC的一个法向量为(x,y,1,,..∴x=3﹣6k,z=则平面ABC所成角为θ,设AA与则11<,>===,解得k=1,故所求k=1.(3)由题意可与左右平面ADDA,BCCB,上或下面ABCD,ABCD拼接得到11111111方案新四棱柱共有此4种不同方案.,<写出每一方案下的表面积,通过比较即可得出f(k)=,>)的π<φ<0,0>w()φ+wx(=sin)x(f福建)已知函数2013?(分)14(.20.周期为π,图象的一个对称中心为(,0),将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度后得到函数g(x)的图象.(1)求函数f(x)与g(x)的解析式,)按照某种顺g(x,f(x))),使得f(x,g(x)(2)是否存在x∈(00000的个数,若不存在,说明理由;x序成等差数列?若存在,请确定02013)在(0,nπ)内恰有x)=f(x)+ag(x,使得(3)求实数a与正整数nF(个零点.)利用三角函数的图象变换可求得g(x,【分析】(1)依题意,可求得ω=2,φ==sinx;?sinx>cos2x>sinxcos2x,<时,<sinx<,0<cosx∈(2)依题意,当x(,)问题转化为方程2cos2x=sinx+sinxcos2x在(,)内是否有解.通过G′(x)>0,可知G(x)在(,)内单调递增,而G()<0,G()>0,从而可得答案;(3)依题意,F(x)=asinx+cos2x,令F(x)=asinx+cos2x=0,方程F(x)=0等,x≠kπ(k∈Z)价于关于x的方程a=﹣.问题转化为研究直线y=a与曲线y=h(x),x∈(0,π)∪(π,2π)的交点情况.通过其导数,列表分析即可求得答案.【解答】解:(1)∵函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期为π,∴ω==2,,,φ∈(0,π),又曲线y=f(x)的一个对称中心为.=cos2x(x))=0,得φ=,所以fφ(f故()=sin2×+将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得y=cosx的图象,的图象,﹣)x=cosxg的图象向右平移再将y=cosx个单位长度后得到函数()(∴g(x)=sinx.,<0<cos2x∈(,)时,<sinx<,(2)当x,>sinxcos2x∴sinx>cos2x)内是否有解.在(,问题转化为方程2cos2x=sinx+sinxcos2x,)﹣2cos2x,x∈(,设G(x)=sinx+sinxcos2x则G′(x)=cosx+cosxcos2x+2sin2x(2﹣sinx),∵x∈(,),∴G′(x)>0,G(x)在(,)内单调递增,又G()=﹣<0,G()=>0,且G(x)的图象连续不断,故可知函数G(x)在(,)内存在唯一零点x,即存在唯一零点x∈(,)满足题00意.(3)依题意,F(x)=asinx+cos2x,令F(x)=asinx+cos2x=0,当sinx=0,即x=kπ(k∈Z)时,cos2x=1,从而x=kπ(k∈Z)不是方程F(x)=0的解,.)k∈Z﹣,x≠kπ(的方程∴方程F(x)=0等价于关于xa=的解的情况.)时方程a=﹣π)∪(π,2π现研究x∈(0,,2π),π)∪(π,h(x)=﹣,x∈(0令)的交点情2ππ)∪(π,xy=h(x),∈(0,则问题转化为研究直线y=a与曲线况.,或x=)=0,得x==h′(x),令h′(x当x>0且x趋近于0时,h(x)趋向于﹣∞,当x<π且x趋近于π时,h(x)趋向于﹣∞,当x>π且x趋近于π时,h(x)趋向于+∞,当x<2π且x趋近于2π时,h(x)趋向于+∞,故当a>1时,直线y=a与曲线y=h(x)在(0,π)内无交点,在(π,2π)内有2个交点;当a<﹣1时,直线y=a与曲线y=h(x)在(0,π)内有2个交点,在(π,2π)内无交点;当﹣1<a<1时,直线y=a与曲线y=h(x)在(0,π)内有2个交点,在(π,2π)内有2个交点;由函数h(x)的周期性,可知当a≠±1时,直线y=a与曲线y=h(x)在(0,n π)内总有偶数个交点,从而不存在正整数n,使得直线y=a与曲线y=h(x)在(0,nπ)内恰有2013个零点;又当a=1或a=﹣1时,直线y=a与曲线y=h(x)在(0,π)∪(π,2π)内有3个交点,由周期性,2013=3×671,∴依题意得n=671×2=1342.综上,当a=1,n=1342,或a=﹣1,n=1342时,函数F(x)=f(x)+ag(x)在(0,nπ)内恰有2013个零点.本题设有(21)、(22)、(23)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.21.(7分)(2013?福建)选修4﹣2:矩阵与变换对应的变换作用下变为直线l′:x+by=1y=1在矩阵+已知直线l:ax(I)求实数a,b的值,求点P的坐标.)在直线l上,且y((II)若点Px,00【分析】(I)任取直线l:ax+y=1上一点M(x,y),经矩阵A变换后点为M′(x′,y′),利用矩阵乘法得出坐标之间的关系,求出直线l′的方程,从而建立关于a,b的方程,即可求得实数a,b的值;得,从而解得y的值,又点P(x(II)由,y)在000直线l上,即可求出点P的坐标.【解答】解:(I)任取直线l:ax+y=1上一点M(x,y),,=,则有)x′,y′A经矩阵变换后点为M′(可得,又点M′(x′,y′)在直线l′上,∴x+(b+2)y=1,,解得可得得,从而y(II)由=0,0又点P(x,y)在直线l上,∴x=1,000∴点P的坐标为(1,0).22.(7分)(2013?福建)选修4﹣4:坐标系与参数方程在直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已,直线l的极坐标方程为,且点A,的极坐标为知点A在直线l上.(Ⅰ)求a的值及直线l的直角坐标方程;为参数,试判断直线l与圆C的位置的参数方程为C(Ⅱ)圆关系.【分析】(Ⅰ)根据点A在直线l上,将点的极坐标代入直线的极坐标方程即可得出a值,再利用极坐标转化成直角坐标的转换公式求出直线l的直角坐标方程;(Ⅱ)欲判断直线l和圆C的位置关系,只需求圆心到直线的距离与半径进行比较即可,根据点到线的距离公式求出圆心到直线的距离然后与半径比较.在直线l上,得,∴a=,,A(Ⅰ)点【解答】解:故直线l的方程可化为:ρsinθ+ρcosθ=2,得直线l的直角坐标方程为x+y﹣2=0;22=1y1)+﹣,得圆(Ⅱ)消去参数αC的普通方程为(x,<1d=lC圆心到直线的距离所以直线l和⊙C相交.*,,且(a∈NA)的解集为(23.2013?福建)设不等式|x﹣2|<a(Ⅰ)求a的值(Ⅱ)求函数f(x)=|x+a|+|x﹣2|的最小值.,,推出关于a的绝对值不等式,结合a为整数(Ⅰ)利用【分析】直接求a的值.(Ⅱ)利用a的值化简函数f(x),利用绝对值三角不等式求出|x+1|+|x﹣2|的最小值.,,(Ⅰ)因为解:【解答】<且,所以<解得,*,所以a的值为1a∈N.因为(Ⅱ)由(Ⅰ)可知函数f(x)=|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3,当且仅当(x+1)(x﹣2)≥0,即x≥2或x≤﹣1时取等,所以函数f(x)的最小值为3.。
高考理科数学试卷及答案解析(文字版)
普通高等学校招生全国统一考试数学(理工农医类)(福建卷及详解)一.选择题:本小题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数()sin cos f x x x =最小值是A .-1 B.12-C.12D.12.已知全集U=R ,集合2{|20}A x x x =->,则C U A 等于A .{x ∣0≤x ≤2}B {x ∣0<x<2}C .{x ∣x<0或x>2}D {x ∣x ≤0或x ≤2}3.等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4,则公差d 等于A .1B53C.-2D 34.22(1cos )x dx ππ-+⎰等于A .π B.2C.π-2D.π+25.下列函数()f x 中,满足“对任意1x ,2x ∈(0,+∞),当1x <2x 时,都有1()f x >2()f x 的是A .()f x =1xB.()f x =2(1)x -C .()f x =xe D()ln(1)f x x =+6.阅读右图所示的程序框图,运行相应的程序,输出的结果是A .2B .4C.8D .167.设m ,n 是平面α内的两条不同直线,1l ,2l 是平面β内的两条相交直线,则α//β的一个充分而不必要条件是A.m //β且l //α B.m //l 且n //l 2C.m//β且n //βD.m//β且n //l 28.已知某运动员每次投篮命中的概率低于40%。
现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果。
经随机模拟产生了20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为A .0.35B 0.25C 0.20D 0.159.设a ,b ,c 为同一平面内具有相同起点的任意三个非零向量,且满足a 与b 不共线,若a ⊥c 且∣a∣=∣c∣,则∣b •c∣的值一定等于A .以a ,b 为两边的三角形面积B 以b ,c 为两边的三角形面积C .以a ,b 为邻边的平行四边形的面积D 以b ,c 为邻边的平行四边形的面积10.函数()(0)f x ax bx c a =++≠的图象关于直线2bx a=-对称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年福建省高考数学试卷及解析(理工农医类)一.选择题1.已知复数z 的共轭复数12z i =+(i 为虚数单位),则z 在复平面内对应的点位于( ) A . 第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】D【解析】z 的共轭复数12z i =+,则12z i =-,对应点的坐标为(1,2)-,故答案为D . 2.已知集合{}1,A a =,{}1,2,3B =,则“3a =”是“A B ⊆”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】3,a A B =⇒⊆2A B a ⊆⇒=,或3.因此是充分不必要条件.3.双曲线2214x y -=的顶点到其渐近线的距离等于( ) A .25 B .45 CD【答案】C【解析】 2214x y -=的顶点坐标为(2,0)±,渐近线为2204x y -=,即20x y ±=.带入点到直线距离公式d ==. 4.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( ) A .588 B .480 C .450 D .120【答案】B【解析】由图知道60分以上人员的频率为后4项频率的和,由图知道(0.030.0250.0150.01)*100.8P =+++=故分数在60以上的人数为600*0.8=480人.5.满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A .14B .13C .12D .10 【答案】B【解析】方程220ax x b ++=有实数解,分析讨论①当0a =时,很显然为垂直于x 轴的直线方程,有解.此时b 可以取4个值.故有4种有序数对②当0a ≠时,需要440ab ∆=-≥,即1ab ≤.显然有3个实数对不满足题意,分别为(1,2),(2,1),(2,2).(,)a b 共有4*4=16中实数对,故答案应为16-3=13.6.阅读如图所示的程序框图,若输入的10k =,则该算法的功能是( )A .计算数列{}12n -的前10项和 B .计算数列{}12n -的前9项和C .计算数列{}21n -的前10项和D .计算数列{}21n-的前9项和【答案】C【解析】第一循环:1,2S i ==,10i <第二条:3,3,10S i i ==<第三条:7,4,10S i i ==<…..第九循环:921,10,10S i i =-==.第十循环:1021,11,10S i i =-=>,输出S .根据选项,101(12)12S -=-,故为数列12n -的前10项和.故答案A .7.在四边形ABCD 中,(1,2)AC =,(4,2)BD =-,则四边形的面积为( )A B . C .5 D .10【答案】C【解析】由题意,容易得到AC BD ⊥.设对角线交于O 点,则四边形面积等于四个三角形面积之和 即S=11(****)(*)22AO DO AO BO CO DO CO BO AC BD +++=.容易算出AC BD ==,则算出S=5.故答案C8.设函数()f x 的定义域为R ,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是( )A .0,()()x R f x f x ∀∈≤B .0x -是()f x -的极小值点C .0x -是()f x -的极小值点D .0x -是()f x --的极小值点 【答案】D【解析】A .0,()()x R f x f x ∀∈≤,错误.00(0)x x ≠是()f x 的极大值点,并不是最大值点.B .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于y 轴的对称图像,故0x -应是()f x -的极大值点C .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于x 轴的对称图像,故0x 应是()f x -的极小值点.跟0x -没有关系.D .0x -是()f x --的极小值点.正确.()f x --相当于()f x 先关于y 轴的对象,再关于x 轴的对称图像.故D 正确9.已知等比数列{}n a 的公比为q ,记(1)1(1)2(1)...,n m n m n m n m b a a a -+-+-+=+++*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=∙∙∙∈则以下结论一定正确的是( )A .数列{}n b 为等差数列,公差为mq B .数列{}n b 为等比数列,公比为2mq C .数列{}n c 为等比数列,公比为2m q D .数列{}n c 为等比数列,公比为mm q【答案】C【解析】等比数列{}n a 的公比为q,同理可得2222222,m m m mm m m a a a a a a ++++=∙=∙112...m c a a a =∙∙∙,212...,m m m m c a a a +++=∙∙∙321222...,m m m m c a a a +++=∙∙∙2213c c c ∴=∙∴数列{}n c 为等比数列,2221212211212............m m m m m m m m m ma a a a a a q c q q c a a a a a a +++∙∙∙∙∙∙∙====∙∙∙∙∙∙故选C10.设S ,T ,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈对任意12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( )A .*,A NB N == B .{|13},{|8010}A x x B x x x =-≤≤==-<≤或C .{|01},A x x B R =<<=D .,A Z B Q == 【答案】D【解析】根据题意可知,令()1f x x =-,则A 选项正确;令55(13)()228(1)x x f x x ⎧+-<≤⎪=⎨⎪-=-⎩,则B 选项正确; 令1()tan ()2f x x π=-,则C 选项正确;故答案为D .二.填空题11.利用计算机产生0~1之间的均匀随机数a ,则时间“310a ->”发生的概率为________ 【答案】23【解析】13103a a ->∴>a 产生0~1之间的均匀随机数1(,1)3a ∴∈112313p -∴==12.已知某一多面体内接于一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π【解析】由图可知,图形为一个球中间是内接一个棱长为2的正方体,24122R S R ππ∴====球表13.如图ABC ∆中,已知点D 在BC 边上,AD ⊥AC,sin 33BAC AB AD ∠===则BD 的长为_______________【解析】sin sin()cos 23BAC BAD BAD π∠=∠+=∠=∴根据余弦定理可得222cos 2AB AD BD BAD AB AD+-∠=∙BD ==14.椭圆2222:1(0)x y a b a bΓ+=>>的左.右焦点分别为12,F F ,焦距为2c ,若直线)y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于__________1【解析】由直线方程)y x c +⇒直线与x 轴的夹角12233MF F ππ∠=或,且过点1-F (c,0)12212MF F MF F ∠=∠∴122123MF F MF F π∠=∠=即12F M F M ⊥12RT F MF ∴∆在中,12122,,F F c FM c F M ===∴由椭圆的第一定义可得21c a c a =∴== 15.当,1x R x ∈<时,有如下表达式:211.......1nx x x x+++++=- 两边同时积分得:1111122222200011.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰从而得到如下等式:23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+ 请根据以下材料所蕴含的数学思想方法,计算:122311111111()()...()_____2223212nn n n n n n C C C C +⨯+⨯+⨯++⨯=+ 【答案】113[()1]12n n +-+【解析】由01221......(1)n nn n n n n C C x C x C x x +++++=+两边同时积分得:111112222220001......(1).nn n n n n C dx C xdx C x dx C x dx x dx +++++=+⎰⎰⎰⎰⎰从而得到如下等式:122311*********()()...()[()1]222321212n n n n n n n n n C C C C ++⨯+⨯+⨯++⨯=-++ 三.解答题 16.(本小题满分13分)某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为23,中将可以获得2分;方案乙的中奖率为25,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,X Y ,求3X ≤的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?本小题主要考查古典概型.离散型随机变量的分布列.数学期望等基础知识,考查数据处理能力.运算求解能力.应用意识,考查必然和或然思想,满分13分. 解:(Ⅰ)由已知得:小明中奖的概率为23,小红中奖的概率为25,两人中奖与否互不影响,记“这2人的累计得分3≤X ”的事件为A ,则A 事件的对立事件为“5=X ”,224(5)3515==⨯=P X ,11()1(5)15∴=-==P A P X∴这两人的累计得分3≤X 的概率为1115. (Ⅱ)设小明.小红都选择方案甲抽奖中奖的次数为1X ,都选择方案乙抽奖中奖的次数为2X ,则这两人选择方案甲抽奖累计得分的数学期望为1(2)E X ,选择方案乙抽奖累计得分的数学期望为2(3)E X由已知:12~(2,)3X B ,22~(2,)5X B124()233∴=⨯=E X ,224()255=⨯=E X118(2)2()3∴==E X E X ,2212(3)3()5==E X E X12(2)(3)>E X E X∴他们都在选择方案甲进行抽奖时,累计得分的数学期望最大.17.(本小题满分13分)已知函数()ln ()f x x a x a R =-∈ (1)当2a =时,求曲线()y f x =在点(1,(1))A f 处的切线方程; (2)求函数()f x 的极值.本小题主要考查函数.函数的导数.不等式等基础知识,考查运算求解能力,考查函数与方程思想.分类与整合思想,数形结合思想.化归与转化思想.满分13分. 解:函数()f x 的定义域为(0,)+∞,()1'=-a f x x. (Ⅰ)当2=a 时,()2ln =-f x x x ,2()1(0)'=->f x x x, (1)1,(1)1'∴==-f f ,()∴=y f x 在点(1,(1))A f 处的切线方程为1(1)-=--y x ,即20+-=x y .(Ⅱ)由()1,0-'=-=>a x af x x x x可知: ①当0≤a 时,()0'>f x ,函数()f x 为(0,)+∞上的增函数,函数()f x 无极值; ②当0>a 时,由()0'=f x ,解得=x a ;(0,)∈x a 时,()0'<f x ,(,)∈+∞x a 时,()0'>f x()∴f x 在=x a 处取得极小值,且极小值为()ln =-f a a a a ,无极大值.综上:当0≤a 时,函数()f x 无极值当0>a 时,函数()f x 在=x a 处取得极小值ln -a a a ,无极大值.18.(本小题满分13分)如图,在正方形OABC 中,O 为坐标原点,点A 的坐标为(10,0),点C 的坐标为(0,10).分别将线段OA 和AB 十等分,分点分别记为129,,....A A A 和129,,....B B B ,连结i OB ,过i A 做x 轴的垂线与i OB 交于点*(,19)i P i N i ∈≤≤. (1)求证:点*(,19)iP i N i ∈≤≤都在同一条抛物线上,并求该抛物线E 的方程; (2)过点C 做直线l 与抛物线E 交于不同的两点,M N ,若OCM ∆与OCN ∆的面积比为4:1,求直线l 的方程.本小题主要考查抛物线的性质.直线与抛物线的位置关系等基础知识,考查运算求解能力.推理论证能力,考查化归与转化思想,数形结合思想.函数与方程思想.满分13分.解:(Ⅰ)依题意,过*(,19)∈≤≤i A i N i 且与x 轴垂直的直线方程为=x i(10,)i B i ,∴直线i OB 的方程为10=iy x 设i P 坐标为(,)x y ,由10=⎧⎪⎨=⎪⎩x iiy x 得:2110=y x ,即210=x y , ∴*(,19)∈≤≤i P i N i 都在同一条抛物线上,且抛物线E 方程为210=x y(Ⅱ)依题意:直线l 的斜率存在,设直线l 的方程为10=+y kx由21010=+⎧⎨=⎩y kx x y得2101000--=x kx 此时2100+4000∆=>k ,直线l 与抛物线E 恒有两个不同的交点,M N 设:1122(,)(,)M x y N x y ,则121210100+=⎧⎨⋅=-⎩x x kx x4∆∆=OCM OCN S S ∴124=x x又120⋅<x x ,∴124=-x x分别带入21010=+⎧⎨=⎩y kx x y,解得32=±k 直线l 的方程为3+102=±y x ,即32200-+=x y 或3+2200-=x y 19.(本小题满分13分)如图,在四棱柱1111ABCD A B C D -中,侧棱1AA ABCD ⊥底面,//AB DC ,11AA =,3AB k =,4AD k =,5BC k =,6DC k =(0)k >.(1)求证:11;CD ADD A ⊥平面(2)若直线1AA 与平面1AB C 所成角的正弦值为67,求k 的值; (3)现将与四棱柱1111ABCD A B C D -形状和大小完全相同的两个四棱柱拼接成一个新的棱柱,规定:若拼接成的新的四棱柱形状和大小完全相同,则视为同一种拼接方案.问:共有几种不同的方案?在这些拼接成的新四棱柱中,记其中最小的表面积为()f k ,写出()f k 的表达式(直接写出答案,不必要说明理由)本小题主要考查直线与直线.直线与平面的位置关系.柱体的概念及表面积等基础知识,考查空间想象能力.推理论证能力.运算求解能力,考查数形结合思想.分类与整合思想.化归与转化思想,满分13分. 解:(Ⅰ)取CD 中点E ,连接BE//AB DE Q ,3AB DE k == ∴四边形ABED 为平行四边形//BE AD ∴且4BE AD k ==在BCE V 中,4,3,5BE k CE k BC k ===Q222BE CE BC ∴+=90BEC ∴∠=︒,即BE CD ⊥,又//BE AD Q ,所以CD AD ⊥1AA ⊥Q 平面ABCD ,CD ⊂平面ABCD 1AA CD ∴⊥,又1AA AD A =I ,CD ∴⊥平面11ADD A(Ⅱ)以D 为原点,1,,DA DC DD u u u r u u u r u u u r的方向为,,x y z 轴的正方向建立如图所示的空间直角坐标系(4,0,0)A k ,(0,6,0)C k ,1(4,3,1)B k k ,1(4,0,1)A k所以(4,6,0)AC k k =-u u u r ,1(0,3,1)AB k =u u u r ,1(0,0,1)AA =u u u r设平面1AB C 的法向量(,,)n x y z =,则由10AC n AB n ⎧⋅=⎪⎨⋅=⎪⎩uuu r uuu r得46030kx ky ky z -+=⎧⎨+=⎩取2y =,得(3,2,6)n k =-设1AA 与平面1AB C 所成角为θ,则111,sin |cos ,|||||AA nAA n AA n θ=〈〉=⋅uuu ruuu r uuu r67==,解得1k =.故所求k 的值为1 (Ⅲ)共有4种不同的方案2257226,018()53636,18k k k f k k k k ⎧+<≤⎪⎪=⎨⎪+>⎪⎩20.(本小题满分14分)已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的周期为π,图像的一个对称中心为(,0)4π,将函数()f x 图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移2π个单位长度后得到函数()g x 的图像. (1)求函数()f x 与()g x 的解析式; (2)是否存在0(,)64x ππ∈,使得0000(),(),()()f x g x f x g x 按照某种顺序成等差数列?若存在,请确定0x 的个数; 若不存在,说明理由.(3)求实数a 与正整数n ,使得()()()F x f x ag x =+在(0,)n π内恰有2013个零点. 本小题主要考查同角三角函数的基本关系.三角恒等变换.三角函数的图像与性质.函数.函数的导数.函数的零点.不等式等基础知识,考查运算求解能力.抽象概括能力,考查函数与方程思想,数形结合思想,分类与整合思想.化归与转化思想,满分14分. 解:(Ⅰ)由函数()sin()f x x ωϕ=+的周期为π,0ω>,得2ω= 又曲线()y f x =的一个对称中心为(,0)4π,(0,)ϕπ∈故()sin(2)044f ππϕ=⨯+=,得2πϕ=,所以()cos 2f x x =将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得cos y x =的图象,再将cos y x =的图象向右平移2π个单位长度后得到函数()sin g x x =(Ⅱ)当(,)64x ππ∈时,1sin 2x <<,10cos 22x << 所以sin cos 2sin cos 2x x x x >>问题转化为方程2cos 2sin sin cos 2x x x x =+在(,)64ππ内是否有解 设()sin sin cos 22cos 2G x x x x x =+-,(,)64x ππ∈则()cos cos cos 22sin 2(2sin )G x x x x x x '=++- 因为(,)64x ππ∈,所以()0G x '>,()G x 在(,)64ππ内单调递增又1()064G π=-<,()04G π=> 且函数()G x 的图象连续不断,故可知函数()G x 在(,)64ππ内存在唯一零点0x , 即存在唯一的0(,)64x ππ∈满足题意 (Ⅲ)依题意,()sin cos 2F x a x x =+,令()sin cos 20F x a x x =+=当sin 0x =,即()x k k Z π=∈时,cos 21x =,从而()x k k Z π=∈不是方程()0F x =的解,所以方程()0F x =等价于关于x 的方程cos 2sin xa x=-,()x k k Z π≠∈ 现研究(0,)(,2)x πππ∈U 时方程解的情况 令cos 2()sin xh x x=-,(0,)(,2)x πππ∈U 则问题转化为研究直线y a =与曲线()y h x =在(0,)(,2)x πππ∈U 的交点情况22cos (2sin 1)()sin x x h x x+'=,令()0h x '=,得2x π=或32x π= 当x 变化时,()h x 和()h x '变化情况如下表当0x >且x 趋近于0时,()h x 趋向于-∞ 当x π<且x 趋近于π时,()h x 趋向于-∞ 当x π>且x 趋近于π时,()h x 趋向于+∞ 当2x π<且x 趋近于2π时,()h x 趋向于+∞故当1a >时,直线y a =与曲线()y h x =在(0,)π内有无交点,在(,2)ππ内有2个交点; 当1a <-时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内无交点; 当11a -<<时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内有2个交点由函数()h x 的周期性,可知当1a ≠±时,直线y a =与曲线()y h x =在(0,)n π内总有偶数个交点,从而不存在正整数n ,使得直线y a =与曲线()y h x =在(0,)n π内恰有2013个交点;当1a =±时,直线y a =与曲线()y h x =在(0,)(,2)πππU 内有3个交点,由周期性,20133671=⨯,所以67121342n =⨯=综上,当1a =±,1342n =时,函数()()()F x f x ag x =+在(0,)n π内恰有2013个零点 21.(本题满分14分) (1)(本小题满分7分)矩阵与变换已知直线:1l ax y +=在矩阵1201A ⎡⎤=⎢⎥⎣⎦对应的变换作用下变为直线':1l x by +=. (1)求实数,a b 的值;(2)若点00(,)p x y 在直线l 上,且0000x x A y y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,求点p 的坐标.本小题主要考查矩阵.矩阵与变换等基础知识,考查运算求解能力.考查化归与转化思想.满分7分.解:解:(Ⅰ)设直线:1l ax y +=上任意一点(,)M x y 在矩阵A 对应的变换作用下的像是(,)M x y '''由12201x x x y y y y '+⎛⎫⎛⎫⎛⎫⎛⎫==⎪ ⎪⎪ ⎪'⎝⎭⎝⎭⎝⎭⎝⎭,得2x x y y y '=+⎧⎨'=⎩ 又点(,)M x y '''在l '上,所以1x by ''+=,即(2)1x b y ++=依题意121a b =⎧⎨+=⎩,解得11a b =⎧⎨=-⎩(Ⅱ)由0000x x A y y ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,得000002x x y y y =+⎧⎨=⎩解得00y = 又点00(,)P x y 在直线l 上,所以01x = 故点P 的坐标为(1,0)(2)(本小题满分7分)坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A 的极坐标为)4π,直线l 的极坐标方程为cos()4a πρθ-=,且点A 在直线l 上. (1)求a 的值及直线l 的直角坐标方程;(2)圆c 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线l 与圆的位置关系.本小题主要考查极坐标与直角坐标的互化.圆的参数方程等基础知识.考查运算求解能力,考查化归与转化思想,满分7分.解:(Ⅰ)由点)4A π在直线cos()4a πρθ-=上,可得a =所以直线l 的方程可化为cos sin 2ρθρθ+= 从而直线l 的直角坐标方程为20x y +-=(Ⅱ)由已知得圆C 的直角坐标方程为22(1)1x y -+= 所以圆心为(1,0),半径1r =以为圆心到直线的距离12d =<,所以直线与圆相交 (3)(本小题满分7分)不等式选讲 设不等式*2()x a a N -<∈的解集为A ,且32A ∈,12A ∉. (1)求a 的值;(2)求函数()2f x x a x =++-的最小值.本小题主要考查绝对猪不等式等基础知识,考查运算求解能力,考查化归与转化思想,满分7分. 解:(Ⅰ)因为32A ∈,且12A ∉,所以322a -<,且122a -≥解得1322a <≤,又因为*a N ∈,所以1a = (Ⅱ)因为|1||2||(1)(2)|3x x x x ++-≥+--=当且仅当(1)(2)0x x +-≤,即12x -≤≤时取得等号,所以()f x 的最小值为3。