微分 PPT课件

合集下载

全版微分方程.ppt

全版微分方程.ppt
将 y 和 y 代入原方程得C( x)e P( x)dx Q( x),
积分得 C( x) Q( x) e P( x)dxdx C,
.精品课件.
24
C( x) Q( x) e P( x)dxdx C,
故一阶线性非齐次微分方程的通解为:
y
C(
x)e
P(
x )dx
[ Q( x)e P( x)dxdx C]e P( x)dx
第六章 微 分 方 程
6.1 微分方程的基本概念 6.2 一阶微分方程 6.3 可降阶的二阶微分方程 6.4 二阶线性微分方程 6.5 微分方程的应用举例
.精品课件.
1
6.1 微分方程的基本概念
定义 把联系自变量、未知函数、未知函数的
导数或微分的方程称为微分方程.
例 y xy, y 2 y 3 y e x ,
x
微分方程的解为 sin y ln x C. x
.精品课件.
19
例 4 求解微分方程
x2
dx xy
y2
dy 2y2
xy
.

dy dx
2 y2 xy x2 xy y2
2
y 2
y
1
x y
x y 2
,
x x
令u y , x
即 y xu,
则 dy u x du ,
dx
dx
x
x
定义 形 如 dy f ( y ) 的微分方程称为齐次方程 .
dx
x
.精品课件.
17
解法: 对齐次方程dy f ( y ) , dx x
令 u y x
,
即 y xu, dy u x du ,
dx

《微分方程 》课件

《微分方程 》课件
总结词
需要选择合适的代换变量。
详细描述
在使用变量代换法时,需要选择合适的代换变量,使得微 分方程能够被转化为更简单的形式。这个过程需要一定的 技巧和经验。
积分因子法
总结词
通过寻找积分因子,将微分方程转化为积分方程。
详细描述
积分因子法是通过寻找积分因子,将微分方程转化为积 分方程,从而简化求解过程。这种方法适用于具有特定 形式的一阶非线性微分方程。
总结词
通过引入新的变量代换,简化微分方程的形式。
详细描述
变量代换法是通过引入新的变量代换,将微分方程转化为 更简单的形式,从而简化求解过程。这种方法适用于具有 特定形式的高阶微分方程。
总结词
适用于高阶微分方程。
详细描述
变量代换法主要适用于高阶微分方程,通过引入新的变量 代换,可以将高阶微分方程转化为更简单的形式,从而简 化求解过程。
解法
通常需要使用迭代法、级数法或摄动法等非线性 求解方法。
3
特例
当 p(x,y,y') = 0, q(x,y,y') = a(常数)时,方程 简化为 y'' + ay = f(x),其解法与二阶线性微分 方程类似。
二阶常系数线性微分方程
定义
形如 y'' + ay' + by = f(x) 的微分方程称为二阶常系数线性 微分方程。
《微分方程》PPT课件
目 录
• 微分方程简介 • 一阶微分方程 • 二阶微分方程 • 高阶微分方程 • 微分方程的解法 • 微分方程的应用实例
01
微分方程简介
微分方程的定义
总结词
微分方程是描述数学模型中变量之间 动态关系的方程,通过微分来描述函 数的变化率。

大学微积分课件

大学微积分课件

定积分应用举例
01
面积计算
利用定积分可以计算平面图形或 立体图形的面积,如曲线围成的 面积、旋转体体积等。
物理应用
02
03
经济应用
在物理学中,定积分可以用来计 算物体的质心、转动惯量等物理 量。
在经济学中,定积分可以用来计 算总收益、总成本等经济指标, 以及进行边际分析和弹性分析。
04
多元函数微积分学
微分概念与性质
阐述微分的概念,包括微分的定义、几何意义及物理意义,探讨微分的性质,如微分与导数的关系、微分的运算法则 等。
微分中值定理及其应用
介绍微分中值定理,包括罗尔定理、拉格朗日中值定理和柯西中值定理,并探讨它们在证明不等式、求 极限等方面的应用。
积分概念及性质
定积分概念与性质
引入定积分的概念,包括定积分的定义、几何意义及物理 意义,探讨定积分的性质,如可积性、积分区间可加性等 。
大学微积分课件
contents
目录
• 微积分基本概念 • 微分学基本原理 • 积分学基本原理 • 多元函数微积分学 • 无穷级数与微分方程初步 • 微积分在实际问题中应用举例
01
微积分基本概念
函数与极限
函数定义与性质
阐述函数的基本概念,包括定义 域、值域、对应关系等,并介绍 函数的性质,如单调性、奇偶性 、周期性等。
根据加速度函数和时间的关系,利用 二次积分可以计算物体在一段时间内 的位移。
03
求解功和能量
在力学中,功是力和位移的乘积,利 用定积分可以计算变力沿直线所做的 功;能量则是功的积累,通过定积分 可以求解物体的势能或动能。
在经济学问题中应用
计算总收益和总成本
在经济学中,总收益和总成本都 是价格或产量的函数,利用定积 分可以计算在一定价格或产量范 围内的总收益或总成本。

微分方程ppt

微分方程ppt
VIP时长期间,下载特权不清零。
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
部分付费文档八折起 VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
赠每的送次VI的发P类共放型享的决文特定档权。下有载效特期权为自1个VI月P,生发效起放每数量月发由放您一购次买,赠 V不 我I送 清 的P生每 零 设效月 。 置起自 随1每5动 时次月续 取共发费 消享放, 。文一前档次往下,我载持的特续账权有号,效-自
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
赠每的送次VI的发P类共放型享的决文特定档权。下有载效特期权为自1个V月IP,生发效放起数每量月由发您放购一买次,赠 V不 我IP送 清的生每 零设效月 。置起1自随每5次动时月共续取发享费消放文,。一档前次下往,载我持特的续权账有,号效自-
分 方 程
z z xy z2 x y
zx 5z4 0
常微分方程
偏微分方程

导数与微分课件

导数与微分课件

导数和微分都与函数的局部性质 有关,它们都可以用来研究函数 的单调性、极值和曲线的形状等

导数与微分的区别
导数主要关注函数在某一点的变化率,而微分则更关注函数在某一点附近的局部变 化趋势。
导数是函数值的增量之比,而微分则是函数值增量的近似值。
导数是一种数学运算,可以通过求导公式或法则进行计算;而微分则是一种近似计 算方法,常常用于近似计算函数的值。
总结词
函数单调性与导数正负相关
详细描述
如果函数在某区间内的导数大于0,则函数在此区间内单调递增;如果导数小于 0,则函数单调递减。导数的正负可以判断函数的增减性。
极值与导数
总结词
导数变化与极值点的关系
详细描述
函数极值点处的一阶导数为0,但一阶导数为0的点不一定是极值点。需要进一步 判断二阶导数的正负来确定是否为极值点。
公式
$f'(x) = lim_{Delta x to 0} frac{Delta y}{Delta x}$
解释
其中$Delta y = f(x + Delta x) - f(x)$,表 示函数在$x$处的变化量,$Delta x$表示 自变量的变化量。
导数的几何意义
总结词
导数的几何意义是切线的斜率, 表示函数图像在该点的切线。
二项式定理
对于多项式函数,可以使 用二项式定理进行近似计 算。
泰勒级数
将函数展开成泰勒级数, 可以用来近似计算函数的 值。
误差估计
导数与误差
导数可以用来估计函数值 的误差大小。
微分中值定理
利用微分中值定理,可以 估计函数在某区间的变化 量。
误差传播
在误差传播过程中,可以 利用微分知识来估计误差 的大小。

第六章微分方程第二节一阶微分方程PPT课件

第六章微分方程第二节一阶微分方程PPT课件

说明由②确定的隐函数 y=(x) 是①的解. 同样,当F(x)
= f (x)≠0 时, 由②确定的隐函数 x=(y) 也是①的解.
称②为方程①的隐式通解, 或通积分.
-4-
第二节 一阶微分方程
例1. 求微分方程
的通解.
解: 分离变量得 dy 3x2 dx 说明: 在求解过程中
y
每一步不一定是同解
第二节 一阶微分方程
第二节 一阶微分方程

第 十 二 章

分 方


可分离变量方程 一阶线性方程
三 全微分方程
-1-
第二节 一阶微分方程
一阶微分方程的一般形式 yf(x,y)
也可表示为
第 十
P ( x ,y ) d Q x ( x ,y ) d 0 y

章 一阶微分方程初始值问题
微 分
y f (x, y)

ab
二 章
定常数),
则 d x d X ,d y d Y ,原方程化为

ahbkc
分 方
a1hb1kc1


, 解出 h , k
(齐次方程)
- 13 -
第二节
求出其解后,
一阶微分方程
即得原方
程的解.
2)当 . a1b1时,原方程可化为
ab
第 十 二 章 微
d dxy(aaxxbbyy )cc1 (b0)
第 十
两边积分

lnC|
C1
|
变形, 减解.
因此可能增、



lnyx3C1

分 方


令CeC1

《高数课件24全微分》课件

《高数课件24全微分》课件
定义法
通过定义全微分的基本形式,即dz = (Δz - Δy) / Δx * dx + (Δz - Δx) / Δy * dy来计算全 微分。其中Δx和Δy分别为x和y的增量。
多重链式法则
对于复合函数z = g(h(x, y), u(x, y)),其全微分为dz = (∂g/∂h * ∂h/∂x + ∂g/∂u * ∂u/∂x) * dx + (∂g/∂h * ∂h/∂y + ∂g/∂u * ∂u/∂y) * dy。
解答
计算下列函数的全微分:
全微分:$df = 2xdx + 2ydy$
解答
$g(x,y) = sin(x) + cos(y)$
$h(x,y)
=
frac{x^{2}}{y} +
frac{y^{2}}{x}$全微 Nhomakorabea:$dg
=
cos(x)dx
-
sin(y)dy$
解答
全微分:$dh = frac{2x}{y}dx - frac{x^{2}}{y^{2}}dy + frac{2y}{x}dy - frac{y^{2}}{x^{2}}dx$
导数公式
基本初等函数的导数公式,如常数、幂函数、指数函 数、三角函数等。
导数法则
导数的四则运算法则和复合函数的导数法则,如乘积 法则、商的导数法则、链式法则等。
极值的判断
极值定义
函数在某点的值大于或小于其邻近点的值,称 为该点的极值。
极值条件
一阶导数等于零的点可能是极值点,但需要进 一步判断二阶导数的符号。
极值判定
通过一阶导数和二阶导数的符号变化,判断极值点的类型(极大值或极小值) 。

多元函数微分学(共184张PPT)

多元函数微分学(共184张PPT)

z
sin
x2
1 y2
1
• 在 点圆 都周 是x2间 断y2 点1,是上一没条有曲定线义,. 所以该圆周上各
• 性质1(最大值和最小值定理) 在有界闭区域 D上的多元连续函数,在D上一定有最大值和最小
值.
• 在D上至少有一点 及一点 ,使得 为最大 值而 为最小值,P 即1 对于一切P 2 P∈D,有f ( P1 )

P
于E的点,也有不属于E的点,

E
则称P为E的边界点(图8-2).

设D是开集.如果对于D内的
• 图 8-1 任何两点,都可用折线连结起
上一页 下一页 返 回

来,而且该折线上的点都属于D,

P 则称开集D是连通的.

连通的开集称为区域或开区域.

E
开区域连同它的边界一起,称

为闭区域.
• 图 8-2
f( x x ,y ) f( x ,y ) A x ( x )
• 上式两边各除以 x ,再令 x 0而极限,就得
limf(xx,y)f(x,y)A • 从而 ,x 偏0导数 z 存 在x,而且等于A.同样可证
• =B.所以三式 x 成立.证毕.
z y
上一页 下一页 返 回
• 定理2(充分条件) 如果z=f(x,y)的偏导数
• 3.n维空间
• 设n为取定的一个自然数,我们称有序n元数组

的全体为n维空间,而每个有序n元数
(x1组,x2, ,xn) 称为n维空间中的一个点,数 称
(x1,x2, ,xn)
xi
上一页 下一页 返 回
• 为该点的第i个坐标,n维空间记为 .n

微分方程ppt课件

微分方程ppt课件
❖ 这里a和N为正参数,a为x较小时的总量增长 率,而N代表一种“理想”总量或“承载 量”。 验证: 当x较小时, ax(1-x/N) ≈1,即x΄=ax。 当x>N时,则有x΄<0,满足假设。
注意:满足假设的方程有很多,这里只是选取 了最简单的。
8
假设N=1,即选取单位舍得承载量为1的总量, x(t)则代表了在t时刻的总量占理想总量的比例。
❖ 方程简化为x΄= f(a x)=ax(1-x) 此方程称为一阶、自治、非线性微分方程。 一阶: x΄ 自治:右端只与x有关,与t无关。 非线性:f(a x)是x的非线性函数。
问:x΄=ax是什么方程? (一阶、自治、线性微分方程)
9
解微分方程x΄=ax(1-x)。t=0时x=x(0)。

微分方程的通解为
4
❖ 在方程x΄=ax中,a看做参数,当a变化时, 方程也变化,其解随之改变。
1)若a>0,当k>0时,lim keat = ;当k<0 时,lim keat =- 。 t
t
2)若a=0,keat 是常数。
3)若a<0,lim keat =0 t
1)当a>0时,所有非零解都随t的增加而远离 平衡点; 2)当a<0时,所有非零解都随t的增加而趋于 平衡点;
从图上看,所有对应于x(0)>0的解都趋于 x(t) ≡1,与假设吻合,当x(0)<0 时,解将趋 于-∞。
11
从 f(a x)=ax(1-x) 的图像上认识:
❖ 该图像与x轴交与x=0与x=1两点,对应于两个 平衡点。
❖ 当0<x<1,f(a x)>0。从而在满足0<x<1的(t,x) 处,斜率为正数,从而解在这个区域将增加, 而在x>0或x>1时,f(a x)<0,故解将减小。

《微分的定义》课件

《微分的定义》课件
《微分的定义》PPT课件
微分是微积分的重要概念之一,在数学和科学中有着广泛的应用。本课件将 带您深入了解微分的定义、公式和应用,以及高阶导数的含义和推导。
微分的定义和意义
微分的定义
微分描述了函数在某点处的变化率,是函数瞬时变化的近似值。
微分的意义
微分帮助我们理解函数的局部行为和变化趋势,是解决许多数学和科学问题的关键。

高阶导数的定义和含义
高阶导数描述了函数变化的 更高级别,是函数变化率的 变化率。
高阶导数公式的推导
我们将讨论如何推导高阶导 数的公式,以及这些公式在 函数图像上的应用。
高阶导数的应用
高阶导数可以帮助我们更深 入地理解函数的变化特征, 解决更复杂的数学和科学问 题。
总结
微分的重要性和应用广泛性
微分是数学中的基础概念,在各 个领域都有广泛的实际应用。
微分的公式
1
对比导数和微分
导数描述了函数的整体变化率,而微分描述了函数的局部变化率。
2
微分公式的推导和应用
我们将讨论微分公式的推导过程,以及在实际问题中如何应用这些公式。
3
微分的应用
微分可以用于求函数的极值和最大值、最小值,求曲线的切线和法线方程,以及 分析函数的增减性和凸凹性。
微分中的高阶导数
学习微分需要的关键技和 知识点
学习微分需要掌握求导、函数分 析和极限等数学基础,并具备抽 象思维和问题解决能力。
建议的学习方法和实践过程
建议通过理论学习、实际问题探 索和实践运用的方式学习微分, 并与他人进行讨论和分享经验。

第三章 导数与微分 《经济数学》PPT课件

第三章 导数与微分 《经济数学》PPT课件
CHAPTER
03
第3章 导数与 微分
PART
03
3.1
导数
导数是数学中的一个分支——微积分的两个基本概念之一,它
表示一个函数的因变量相对于自变量的变化的快慢程度,即因变 量关于自变量的变化率.事物总是在不断地运动和变化的,而描述 这种运动和变化离不开变化率,导数就是对现实生活中各种各样 的变化率的一种统一的数学抽象.导数是微积分以及实际生活中 应用极其广泛的概念,其应用范围包括函数性态的描述、曲线的 描绘、最优化问题的讨论以及变化率的分析等.
,
即函数在点x=0处的右导数不存在,所以函数f(x)在点x=0处的导
数不存在.
3. 1. 5
高阶导数
在本小节中,我们将讨论一个量的变化率的变化率.这样的变化率 有很多种,例如,汽车的加速度是它的速度关于时间的变化率,而 速度本身又是路程关于时间的变化率.如果路程的单位是千米,时 间的单位是小时,那么速度(路程关于时间的变化率)的单位是千 米/小时,而加速度(速度的变化率)的单位则是千米/小时2.
上述有关变化率的变化率的问题,在经济上是常用的.例如,在通 货膨胀时期,你可以听到经济部门的报告指出,“尽管通货膨胀率 在增长,但其增长速度在减缓”,就是指物价在上涨,但已经不比 以前那样增长得快了.
3. 1. 5
高阶导数
1) 高阶导数的概念 ➢ 设函数y=f(x)关于x的变化率由其导函数f '(x)给出.类似地,函数f
3.2 1 微分的定义
关于微分定义的几点说明: ➢ (1)函数的微分dy是Δx的一次函数,它不仅与Δx有关,而且与x也
有关.函数的微分dy与Δy只差一个比Δx高阶的无穷小,它是Δy的 主要部分,所以也称微分dy是函数改变量Δy的线性主部. ➢ (2)若函数y=f(x)在x处的改变量Δy可以表示成Δx的线性函数 k(x)Δx与一个比Δx高阶的无穷小之和Δy=k(x)Δx+o(Δx),则称 函数y=f(x)在点x处可微. ➢ (3)由于自变量x的微分dx=(x)'Δx=Δx,故dx可理解为自变量x的 改变量Δx.于是dy=f '(x)Δx=f '(x)dx,即函数的微分等于函数的 导数乘上自变量的微分.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.复合函数的微分及微分形式不变性 性质3.9 设y f(u),u g(x)可微,则y f[g(x)]关于x可微, 且df[g(x)] f [g(x)] g(x)dx
微分形式的不变性
设函数 y f ( x)有导数 f ( x),
(1) 若x是自变量时, dy f ( x)dx;
(2) 若x是中间变量时, 即另一变量t的可 微函数x g(t), 则 dy f (x)g(t)dt
证 (1) 必要性 f ( x)在点x0可微,
y A x o(x),
y A o(x) ,
x
x
则 lim y A lim o(x) A.
x0 x
x0 x
即函数 f ( x)在点 x0可导, 且A f ( x0 ).
(2) 充分性 函数f ( x)在点x0可导,
y lim
x0 x
微分 dy叫做函数增量y的线性主部.
y A x o(x) dy o(x)(其中A与x无关)
y与dy的关系 (1) y dy o(x);(dy为y的线性主部) (2) 当A 0时,y ~ dy; (3) 当x很小时,y dy .
3.可微的条件
性质3.7 函数f (x)在点x0可微 f (x)在点x0处可导, 且 A f (x0 ).
d(secx) _s_e_c_x_ta_n__x__dx d(cscx) _-c_s_c_x_c_o_t_x_dx
d(_a_x_) ax lnadx 1
d(loga x) _x__ln__a1dx
d(_e_x_) exdx
1
d(l_n_x_) 1 dx,
x
d(lnx1) _x___dx
x 0.02
x 0.02
4.微分的几何意义
tan f (x) PQ x
PQ f (x)x dy y NQ ,dy PQ NP o(x)
y
T
N
P
o(x)
M
dy y
y f (x)
x Q

o
x0 x0 x
x
几何意义: dy f (x)x就是在f (x)在x处切线纵坐标的改变量.
f ( x0 ),

y x
f
(x0 )
o(1),
从而 y f (x0 ) x o(1) (x),
f ( x0 ) x o(x),
函数 f ( x)在点 x0可微, 且 f ( x0 ) A.
可导 可微. A f ( x0 ). 函数 y f ( x)在任意点x的微分, 称为函数的 微分, 记作 dy或df ( x), 即 dy f ( x)x.
四 函数的微分
(一) 、微分的定义 (二) 、微分的计算 (三) 、微分在近似计算中的应用
(一) 、微分的定义
1.引例 2.微分的定义 3.可微的条件 4.微分的几何意义
1.引例
实例:正方形金属薄片受热后面积的改变量.
设边长由x0变到x0 x,
正方形面积 s x02,
s (x0 x)2 x02 2x0 x (x)2 .
当y=x时, dy=dx dy f ( x)dx.
dy f ( x). dx 即函数的微分dy与自变量的微分dx之商等于
该函数的导数. 导数也叫"微商".
例1 求函数 y x3 当 x 2, x 0.02时的微分.
解 dy ( x3 )x 3x2x.
dy x2 3 x 2x x2 0.24.
x0
x0x
x (x)2
x
A x02
x0x x0
(1)
(2)
(1) : x的线性函数,且为s的主部;
(2) : x的高阶无穷小,当x 很小时可忽略.
2.微分的定义
定义 设函数 y f (x)在x0的某一邻域内有定义, 当x在x0处取增量x时, 如果y可写成 y f (x0 x) f (x0 ) A x o(x)(其中A与x无关), 则称 y f (x)在点x0可微, A x称为y f (x)在点x0的微分, 记作dy xx0 或df (x0 ), 即dy xx0 A x.
例9 证当x很小时,ex 1 x
d(f (x)g(x)) g(x)df (x) f (x)dg(x)
d(f (x)) g(x)
g(x)df
(x) f (x)dg(x) g(x)2
例2 设 y ln( x e x2 ), 求dy. 例3 设 y e13x cosx, 求dy及dy(0). 例4 y f(e-x ),求dy 例5 :由x y2 exy确定y f (x),求dy
解 (1) costdt d(sint),
cos tdt 1 cos td(t) 1 d(sin t) d( 1 sin t);
d( 1 sin t C ) cos tdt.
(2) d(sin x 2 ) 2x cos x 2dx
d( x)
1 dx
4x
x cos x 2 ,
2x
d(sin x 2 ) (4x x cos x 2 )d( x).
g(t)dt dx,
dy f ( x)dx.
结论:无论 x是自变量还是中间变量, 函数 y f ( x)的微分形式总是 dy f ( x)dx
微分形式的不变性
例5 设 y sin( 2x 1), 求dy. 解 y sin u, u 2x 1. dy cos udu cos(2x 1)d(2x 1)
d(arcsinx) __1___x_2dx
d(_a_r_c_ta_n__x_)
11Leabharlann x2dxd(arccosx) _1___x_2_dx d(arccot x) _1__1_x__2 dx
2. 函数和、差、积、商的微分法则
d(f (x) g(x)) df (x) dg(x)
d(Cf (x)) Cdf (x)
(三) 、微分在近似计算中的应用 计算公式
(1)当x很小时, y dy f (x0 )x (2)当x很小时,f (x0 x) f (x0 ) f (x0 )x 取 | x | 1 (3)当x很小时,f (x) f (0) f (0)x
例8 正方体的棱长x0 10cm,若棱长增加0.1cm,求正方体 体积增加的近似值,精确值.
(二) 、微分的计算
dy f ( x)dx
求法: 计算函数的导数, 乘以自变量的微分.
1.基本初等函数的微分公式
d(C) __0_
d(x ) _x___1_dx
d(sin x) _c_o_s_x_dx
d(cosx) _-s_i_n_x_dx
d(tanx) _s_e_c_2_x____dx d(cot x) ___c_sc_2_x___dx
cos(2x 1) 2dx 2cos(2x 1)dx.
例6 在下列等式左端的括号中填入适当的函数,使 等式成立.
(1) d( ) cos tdt; (2) d(sin x2 ) ( )d( x).
例6 在下列等式左端的括号中填入适当的函数,使 等式成立.
(1) d( ) cos tdt; (2) d(sin x2 ) ( )d( x).
相关文档
最新文档