抛物线平移

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抛物线平移、对称变换的规律
一、平移变换 如果二次函数解析式为一般式2y ax bx c =++,应先化成顶点式2()y a x h k =-+,然后按照“左加右减,上加下减”的规律去推导. 例1、(2010 兰州)抛物线2y x bx c =++的图像向右平移2个单位长度,再向
下平移3个单位长度,所得图像的解析式为:223y x x =--,
则b ,c 的值为( ) A . 2b =,2c = B . 2b =, 0c = C . 2b =-,1c =- D .3b =-,2c =
【解析】:采用逆推法,把223y x x =--向左平移2个单位,再向上平移3个单 位可得到2y x bx c =++,把223y x x =--配方得:
222113(1)4
y x x x =-+--=--,根据平移规律得2222(12)43(1)12112y x x x x x x =-+-+=+-=++-=+,故选B
二、对称变换
⑴关于x 轴对称:坐标系内一点(,)P x y 关于x 轴的对称点的坐标为(,)x y -,所以把(,)x y -代入原抛物线2y ax bx c =++后得新解析式为2y ax bx c -=++,整理得 2
y ax bx c =---. ⑵关于y 轴对称:坐标系内一点(,)P x y 关于y 轴的对称点坐标为(,)x y -,把(,)x y -代入原抛物线2
y ax bx c =++后得新解析式为22
()()y a x b x c ax bx c =-+-+=-+. ⑶关于原点对称:坐标系内一点(,)P x y 关于原点的对称点坐标为(,)x y --,把(,)x y --代入原抛物线2y ax bx c =++后得新解析式为2()()y a x b x c -=-+-+,整理得2y ax bx c =-+-.
实战演练:
①(2009 黔东南)二次函数23y x x =--的图像关于原点(0,0)O 对称的图像
的解析式为----------------- (答案:223y x x =--+) ②(2009 重庆)在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴对称变换,再将所得的抛物线关于y 轴做对称变换,那么两次变换后所得到的新抛物线解析式为( )
A . 22y x x =--+
B . 22y x x =-+-
C . 22y x x =-++
D . 22y x x =++
答案:C .。

相关文档
最新文档