可化为一元二次方程的其他方程 - 学生版
人教版数学九年级上学期课时练习-可化为一元二次方程的分式方程专题(人教版)
专题21.28 可化为一元二次方程的分式方程专题(专项练习)一、解答题1.下列哪些是分式方程?哪些是可化为一元二次方程的分式方程? (1)231x =+ (2)131x x =-(3)22x x+(4)2211x x x =--2.解方程:2311x x x =+-.3.解方程: (1)241142x x =--- (2)11222x x x-+=--4.解方程: (1)3222xx x=---; (2)4x 2-8x +1=0.5.解方程(1)21133x xx x =-++ (2)2227361x x x x x x +=+--6.解方程: (1)2430x x --= (2)213111x x x +-=--.7.解方程:(1)x 2+6x =﹣1(配方法) (2)263111x x -=--8.解方程:(1)2420x x --=; (2)53212x x =+-.9.解方程:(1)解方程:x 2-6x +9=(2x -1)2(2)化简:2122(1)x x x --÷.10.解方程(组):(1)28124x x x -=--(2)11232(3)3(2)x xx x -⎧->-⎪⎨⎪->-⎩11.解方程:(1)()()2240x x +-+=;(2)214123x x+=+.12.(1)计算:101|1()(2021)2π--+---(2)解不等式组:3(2)41213x x x x --≥⎧⎪+⎨>-⎪⎩;(3)解方程:322112x x x=---; (4)解方程:x 2﹣4x +4=3x ﹣6.13.解分式方程:224124xx x -=-+-14.解方程:2412x x x x--=-.15.解分式方程:252112x x x +-=3.16.解方程214124x x +=-+-.17.解方程: (1)2x -6x -4=0 (2)x -12x -=+23x +118.解方程: (1)13012x x+=++(2)22440x x +-=19.解方程: (1)2340x x +-=(2)2269(52)x x x -+=-(3)(1)(3)12x x -+= (4)221111x x +=--20.解分式方程21211x x x -=++21.解方程(组):(1)3423x y x y -=-⎧⎨-=-⎩(2)213111x x x --=+-;(3)x (x -7)=8(7-x ).22.解方程: (1)2230x x --=; (2)21124x x x -=--.23.解方程:22321=011x x x x x --+--.24.解方程:1y =25.解方程:2231224x xx --=--.26.解方程(1)21111x x x +=-- (2)x 2+4x -1=027.解方程: (1)225x x +=; (2)14733x x x-+=--.28.解方程: (1)24142x xx x +=-+ (2)22530x x +-=(3)2(2)36x x +=+29.解方程:(1)(x ﹣1)(x +3)=2x +4; (2)2311x x x x-+--=0.30.解方程: (1)31144x x x-+=--; (2)x 2﹣4x +2=0;(3)x (x ﹣1)=2(1﹣x ).31.解方程:(1)2(5)360x --=; (2)230x x +-=.(3)214111x x x +-=---.32.(1)化简:a b a b b a +-- (2)解方程:261393x x x x -=+--33.计算题(1)分解因式:x 3﹣2x 2y +xy 2;(2)解不等式组:()214137136x x x x ⎧++⎪⎨---≤⎪⎩<;(3)解方程:2411x x x =+--1; (4)解方程:x (2x +1)=8x ﹣3.参考答案1.(1)、(2)、(4)是分式方程,(4)是可化为一元二次方程的分式方程. 【分析】按照分式方程的定义:分母中含有未知数的方程叫做分式方程.逐一判断,去分母后再来判断是否能化成一元二次方程.解:(1)231x =+是分式方程,去分母可转化为3x +3=2,不是一元二次方程,(2)131x x =-是分式方程,去分母可转化为3x =x -1,不是一元二次方程, (3)22x x+是分式,不是分式方程,(4)2211x x x =--是分式方程,去分母可转化为x 2+x =2,是可化为一元二次方程的分式方程,∴(1)、(2)、(4)是分式方程,(4)是可化为一元二次方程的分式方程. 【点拨】本题考查了分式方程的定义,分母中含有未知数的方程叫做分式方程;熟练掌握分式方程的定义是解题的关键.2.x 1=-12,x 2=3.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.解:去分母得:2x (x -1)=3(x +1),整理得:2x 2-5x -3=0,即(2x +1)(x -3)=0, 解得:x 1=-12,x 2=3,检验:把x 1=-12,x 2=3代入得:(x +1)(x -1)≠0,∴x 1=-12,x 2=3都是方程的解.【点拨】本题考查了解分式方程,解一元二次方程,利用了转化的思想,解分式方程注意要检验.3.(1)1x =-;(2)无解 【分析】先去分母,把分式方程转化为整式方程,再解整式方程,最后检验即可. 解:(1)去分母,得()()()4222x x x =+-+-,整理,得220x x --=, 解得11x =-,22x =,经检验,11x =-是原方程的根,22x =是增根,故原方程的根为1x =-.(2)去分母,得()1221x x +-=-, 去括号,得1241x x +-=-, 移项,合并同类项,得2x =, 检验:把2x =代入20x -=, 所以此方程无解.【点拨】本题考查了解分式方程,解题关键是熟练运用分式方程的解法进行求解,注意:分式方程要检验.4.(1)73x =(2)x x ==【分析】(1)去分母,合并同类项,即可解出; (2)先配方,再求解(1)解:去分母得,32(2)()x x =---去括号得,334x =- 73x =(2)解:原方程变为,()22810x x -+=()222284410x x -+-+=()22415x -=x =x =x =【点拨】本题考查分式方程和一元二次方程的解法,掌握去分母、配方是本题关键. 5.(1)34x =;(2)37x = 【分析】(1)把分式方程转化为整式方程,即可求解,再验根即可.(2)两边同乘以最简公分母(1)(1)x x x +-,即可把分式方程转化为整式方程,即可求解,再验根即可.解:(1)21133x xx x =-++,()()312131x xx x x +-=++ , ()()()3163131x x xx x +-=++ ,两边同时乘以()31x +得: 633x x x =+- , 43x = , 34x =, 经检验34x =是原方程的根. (2)2227361x x x x x x +=+--, ()()()()73611+11x x x x x x x +=+-- ,两边同乘以(1)(1)x x x -+得:()()()()()()()()71316111111x x x xx x x x x x x x x -++=+-+-+- ,7(1)3(1)6x x x x -++=, 277336x x x x -++= , 271030x x -+= ,()()1730x x --= ,10x -=或730x -=,解得:1231,7x x ==, ∴220,10x x x -≠-≠ , ∴1x ≠ , ∴37x =, 经检验37x =是原方程的根. 【点拨】本题考查求解分式方程,一元二次方程.把分式方程转化为整式方程是解题关键,且需要注意验根.6.(1)1x =22x =x =12【分析】(1)首先把常数项夫-3移项后,在方程左右两边同时加上一次项系数-4的一半的平方,配方完成后,开方求解即可求得答案;(2)首先去分母,将分式方程转化为整式方程,解整式方程,求得答案,再检验即可.(1)解:2430x x --=243x x -=24434x x -+=+2(2)7x -=∴2x -=∴1x =22x =(2)解:213111x x x +-=-- 方程两边同乘以(x +1)(x ﹣1)得:(x +1)2﹣3=(x +1)(x ﹣1),整理得:x 2+2x +1﹣3=x 2﹣1,解得:x =12 ,检验,当x =12时,(x +1)(x ﹣1)=(12+1)(12﹣1)≠0,∴x =12是原方程的解. 【点拨】此题考查了配方法解一元二次方程与分式方程的求解方法.解题的关键是注意配方法的步骤与分式方程需检验.7.(1)x 1=﹣,x 2=﹣3﹣(2)x =﹣4【分析】(1)利用配方法求出解即可;(2)按照解分式方程的步骤进行计算即可解答.(1)解:配方得:x 2+6x +9=8,即(x +3)2=8,开方得:x +3=,所以x 1=﹣,x 2=﹣3﹣; (2)263111x x -=-- 解:方程两边都乘(x +1)(x -1),得6-(x +1)(x -1)=3(x +1),解得:x =-4或x =1,检验:当x =1时,(x +1)(x -1)=0,所以x =1是原方程的增根,当x =-4时,(x +1)(x -1)≠0,所以x =-4是原方程的解,即原方程的解是x =-4.【点拨】此题考查了解一元二次方程-配方法,解分式方程,能把分式方程转化成整式方程是解(2)的关键.8.(1)12x =,22x =;(2)13x =-【分析】(1)按配方法解一元二次方程即可;(2)按照去分母,去括号,移项、合并同类项并系数化为1的步骤解分式方程,并对结果进行检验.解:(1)2420x x --=,24424x x -+=+,2(26)x -=,2x -=∴12x =,22x =;(2)解:53212x x =+-, 去分母,得 ()()52321x x -=+,去括号,得 51063x x -=+,移项、合并同类项并系数化为1,得 13x =-,经检验,13x =-是该方程的解.【点拨】本题主要考查了一元二次方程及分式方程的解法,熟练掌握一元二次方程与分式方程的解题方法和步骤是解题关键.9.(1)143x =,22x =-(2)2x 【分析】 (1)先对方程进行变形,用因式分解法解方程即可;(2)先根据异分母分式相加减对括号中的分式进行运算,然后用分式除法法则进行运算即可.(1)x 2-6x +9=(2x -1)2解:方程可变为:()()22321x x -=-,移项得:()()223210x x ---=,因式分解得:()()3420x x ---=,∴340x -=或20x --=, 解得:143x =,22x =-. (2)2122(1)x x x --÷ ()2211x x x x x -⎛⎫=-÷ ⎪⎝⎭ ()2121x x x x -=⋅- 2x =. 【点拨】本题主要考查了解一元二次方程和分式混合运算,选择合适的方法解一元二次方程是解题的关键.10.(1)1x =-(2)30x -<<【分析】(1)方程两边同时乘以()()22x x +-,然后解整式方程即可,(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.解:(1)28124x x x -=-- 2248x x +-+=220x x -+=()()210x x -+=解得122,1x x ==-经检验,1x =-是原方程的根,2x =是原方程的增根∴方程的解为1x =- (2)11232(3)3(2)x x x x -⎧->-⎪⎨⎪->-⎩①②解不等式∴得:3x >-解不等式∴得:0x <∴不等式的解集为:30x -<<【点拨】本题考查了解分式方程,解一元二次方程,解一元一次不等式组,正确的计算是解题的关键.11.(1)10x =,23x =-(2)113x =-,23x = 【分析】( 1)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可; ( 2)整理后求出24b ac -的值,再代入公式求出答案即可.解:(1)()()2240x x +-+=,24440x x x ++--=,230x x +=,(3)0x x +=, 0x =或30x +=,解得:10x =,23x =-; (2)214123x x +=+, 23386x x +=+,23830x x --=,这里3a =,8b =-,3c =-,()()22484331000b ac -=--⨯⨯-=>,x ∴==解得:113x =-,23x =. 【点拨】本题考查了解一元二次方程,能够选择适当的方法解方程是解此题的关键,注意:解一元二次方程的方法有:直接开平方法,公式法,配方法,因式分解法等.12.(1)4- ;(2)1x ≤;(3)13x =- ;(4)122,5x x == 【分析】(1)先根据绝对值的性质,二次根式的性质,零指数幂,负整数指数幂化简,再合并,即可求解;(2)先分别求出两个不等式,即可求解;(3)先去分母化为整式方程,解出整式方程,然后检验,即可求解;(4)先将方程整理为一般式,再利用因式分解法解答,即可求解.解:(1)101|1()(2021)2π--+---121=----4=- ;(2)3(2)41213①②--≥⎧⎪⎨+>-⎪⎩x x x x 解不等式∴,得:1x ≤ ,解不等式∴,得:4x < ,所以不等式组的解集为1x ≤;(3)322112x x x=--- 两边同时乘以21x - ,得:()2213x x =-+ , 解得:13x =- , 检验:当13x =-时,152121033x ⎛⎫-=⨯--=-≠ ⎪⎝⎭ , 所以原方程的解为13x =-; (4)x 2﹣4x +4=3x ﹣6整理得:27100x x -+= ,所以()()250x x --= ,解得:122,5x x == .【点拨】本题主要考查了解一元二次方程,分式方程,一元一次不等式组,二次根式混合运算等知识,熟练掌握相关运算法则是解题的关键.13.x =4【分析】两边都乘以x 2-4化为整式方程求解,然后验根即可. 解:224124x x x -=-+-, 两边都乘以x 2-4,得2(x -2)-4x =-(x 2-4),x 2-2x -8=0,(x +2)(x -4)=0,x 1=-2,x 2=4,检验:当x =-2时,x 2-4=0,当x =4时,x 2-4≠0,∴x =4是原分式方程的根.【点拨】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出未知数的值后不要忘记检验.14.x =4或x =1.【分析】设y =2x x -,方程变形为:y ﹣2y =1,将分式方程转化为整式方程,再解方程,注意结果要进行检验. 解:2412x x x x--=-, 整理,可得()2212x x x x --=- 设y =2x x -, 方程变形为:y ﹣2y=1, 去分母得:y 2﹣y ﹣2=0,即(y ﹣2)(y +1)=0,解得:y =2或y =﹣1, ∴2x x -=2或2x x -=-1, 解得:x =4或x =1,经检验x =4或x =1都为分式方程的解,∴原分式方程的解为x =4或x =1.【点拨】本题考查解分式方程,因式分解法解一元二次方程,应用换元法解方程,掌握解分式方程的步骤是解题关键,特别注意:分式方程结果要进行检验.15.x 1=56,x 2=18【分析】观察可得最简公分母是12x (2x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解:方程的两边同乘12x (2x ﹣1),得24x 2+5(2x ﹣1)=36x (2x ﹣1),整理,得48x 2﹣46x +5=0,即()()65810x x --=解得x 1=56,x 2=18, 检验:当x =56或18时,x (2x ﹣1)≠0. 即原方程的解为:x 1=56,x 2=18. 【点拨】本题考查了解分式方程,解一元二次方程,正确的计算是解题的关键. 16.1x =【分析】根据解分式方程的步骤,去分母,去括号,移项,合并同类项,因式分解法解一元二次方程,再检验即可. 解:214124x x +=-+-, 去分母,得x -2+4=-x 2+4,移项,合并同类项,得x 2+x -2=0,即(x +2)(x -1)=0,则x 1=-2,x 2=1.经检验,2x =-是原分式方程的增根,1x =是分式方程的解,所以1x =.【点拨】本题主要考查了解分式方程,掌握解分式方程的步骤是解题的关键.注意:解分式方程时要检验.17.(1)13x =23x =x =7【分析】(1)用一元二次方程的求根公式求解即可;(2)去分母、去括号、移项、合并同类项、把系数化为1,即可求得方程的解. 解:(1)∴2(6)41(4)52∆=--⨯⨯-=∴3x =即13x =23x =解:(2)去分母得:63(1)2(2)6x x x --=++去括号得:633246x x x -+=++移项得:632463x x x --=+-合并同类项得:x =7【点拨】本题考查了解一元一次方程及解二元一次方程,解二元一次方程时,要根据方程的特点灵活选取解方程的方法.18.(1)54x =-(2)11x ,21x = 【分析】(1)将分式方程转化为整式方程,然后解方程,注意结果要进行检验;(2)原方程化简后,使用配方法解一元二次方程.解:(1)13012x x+=++ 方程两边都乘以()()12x x ++,得()2310x x +++= 解得54x =-.检验:当54x =-时,()()120x x ++≠ 所以54x =-是原分式方程的解 解:(2)22440x x +-=整理,可得:2220x x +-=222x x +=x 2+2x +1=2+1,()213x +=1x +=11x =,21x =【点拨】本题考查解分式方程,解一元二次方程,掌握解分式方程的步骤,能选择适当的方法解一元二次方程是解此题的关键,注意:解一元二次方程的方法有:直接开平方法、公式法、配方法、因式分解法.19.(1)1241x x =-=,(2)12823x x ==,(3)1253x x =-=,(4)12x x ==【分析】(1)利用因式分解法解方程即可;(2)方程左边利用完全平方公式变形,再直接开平方即得出两个一元一次方程,求解即可;(3)方程整理,再利用因式分解法解方程即可;(4)将分式方程改为整式方程,再根据公式法求一元二次方程的解,最后检验即可.(1)解:2340x x +-=(4)(1)0x x +-=∴1241x x =-=,;(2)解:2269(52)x x x -+=-整理,得:22(3)(52)x x -=-∴352x x -=-或3(52)x x -=-- ∴12823x x ==,; (3)解:(1)(3)12x x -+=整理,得:22150x x +-=(5)(3)0x x +-=∴1253x x =-=,;(4)解:221111x x +=-- 方程两边同时乘21x -,得:22(1)1x x ++=-,整理,得:240x x --=∴12x x ==经检验12x x =是原分式方程的根,∴原方程的解为12x x ==. 【点拨】本题考查解一元二次方程和解分式方程,掌握解一元二次方程和解分式方程的步骤和方法是解题关键.20.x =3【分析】将分式方程去分母化为整式方程,解整式方程求出解并检验即可. 解:21211x x x -=++ 化为整式方程得()2211x x -+=,整理得2230x x --=,解得123,1x x ==-,检验:当x =3时,x +1≠0;当x =-1时,x +1=0,∴原分式方程的解是x =3.【点拨】此题考查了解分式方程,正确掌握解分式方程的法则及步骤是解题的关键.21.(1)11x y =-⎧⎨=⎩(2)x =-12(3)x 1=7,x 2=-8 【分析】(1)根据代入消元法,可得方程组的解;(2)根据等式的性质,化为整式方程,根据解整式方程,可得答案;(3)先移项,再提公因式,再求解即可.(1)3423x y x y -=-⎧⎨-=-⎩①②解:由∴,得y =3x +4∴将∴代入∴,得x -2(3x +4)=-3,解得x =-1,将x =-1代入∴,解得y =1.所以原方程组的解为11x y =-⎧⎨=⎩; (2)213111x x x --=+-; 解:方程两边都乘(x +1)(x -1),得(x -1)2-3=(x +1)(x -1),解得x =-12.经检验,x =-12是原方程的解.(3)x (x -7)=8(7-x ).解:原方程可变形为x (x -7)+8(x -7)=0,(x -7)(x +8)=0.x -7=0,或x +8=0.∴x 1=7,x 2=-8.【点拨】本题考查了解二元一次方程组、分式方程及一元二次方程,利用等式的性质得出整式方程是解题关键,要检验分时方程的根.22.(1)11x =-;23x =(2)32x =- 【分析】(1)利用因式分解法求方程的根.(2)化成整式方程,计算,注意验根.解:(1)2230x x --=,因式分解,得(3)(1)0x x -+=,解得11x =-;23x =,故方程的两个根为11x =-;23x =.解:(2)21124x x x -=--, 去分母,得2(2)14x x x +-=-, 解得32x =-, 经检验,32x =-是原方程的根. 【点拨】本题考查了一元二次方程的解法,分式方程的解法,熟练选择正确的解法是解题的关键.23.x =13- 【分析】观察可得最简公分母是(x +1)(x -1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解:因式分解得:()()()321=0111x x x x x x --++-- 方程的两边同乘(x +1)(x -1),得:()()()32110x x x x -+-+=整理得23210x x --=,因式分解得:(1)(31)0x x -+= 解得1211,3x x ==-.检验:把x =1代入(x +1)(x -1)=0,x =1是增根,把x =13-代入(x +1)(x -1)≠0. ∴原方程的解为:x =13-. 【点拨】本题考查了分式方程的解法:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.24.y =2【分析】利用平方法整理方程,进而再根据因式分解法求一元二次方程的解.解:1y =1y =-两边进行平方,得23(1)y y -=-2321y y y -=-+220y y --=∴(y -2)(y +1)=0解得y 1=2,y 2=-1又3-y ≥0,y -1≥0∴1≤y≤3∴ y =2综上可知∴ y =2【点拨】本题考查了平方法解方程,利用因式分解法求一元二次方程的解,二次根式有意义的条件.25.3x =-【分析】由去分母、去括号、移项合并,求出分式方程的解,然后进行检验,即可得到答案. 解:2231224x xx --=--, 去分母,得:223(2)2(4)x x x -++=-,去括号,得:223228x x x -++=-,移项合并,得:260x x +-=,整理得:(3)(2)0x x +-=,解得:13x =-,22x =; 检验:当22x =时,240x -=,则22x =是增根;当13x =-时,240x -≠;∴原分式方程的解为3x =-.【点拨】本题考查了解分式方程,解题的关键是掌握解分式方程的步骤,正确地进行解题,注意解分式方程需要检验.26.(1)2x =-(2)12x =-22x =-【分析】(1)确定方程最简公分母后,方程两边乘最简公分母,可以把分式方程转化为整式方程求解;(2)利用配方法求解即可.(1)解:(1)方程两边同乘(1)(1)x x +-得:2(1)11x x x ++=-,整理得:2x =-,经检验2x =-是原方程的根;(2)解:2410x x -=+,241x x +=,24414x x ++=+,即2(2)5x +=,2x ∴+=12x ∴=-22x =-【点拨】本题主要考查解分式方程、解一元二次方程的能力,熟练掌握解一元二次方程和分式方程的方法是解题的关键.27.(1)11x =-21x =-2)无解.【分析】(1)利用配方法解一元二次方程即可;(2)去分母将分式方程化为整式方程,解方程,检验即可.解:(1)225x x +=,2(1)6x ∴+=,1∴+=x∴11x =-21x =-(2)去分母得,17(3)(4)x x +-=--,解得3x =,检验:当3x =时,30x -=,∴3x =是方程的增根,所以,原分式方程无解.【点拨】本题考查用配方法解一元二次方程,分式方程的解法,掌握用配方法解一元二次方程,分式方程的解法与步骤是解题关键.28.(1)原方程无解;(2)112x =,23x =-;(3)12x =-,21x =. 【分析】(1) 方程两边都乘以公分母得()2424x x x x +-=-,解方程得2x =-检验分母为零即可;(2)因式分解得()()2310x x +-=分别解每一个一元一次方程即可;(3)先因式分解()()210x x +-=在分别解每一个一元一次方程即可.解:(1)24142x x x x +=-+ , 方程两边都乘以()()22x x +-得()2424x x x x +-=-,整理得24x =-,解得2x =-,当2x =-时,()()()()2222220x x +-=-+--=,∴2x =-时原方程的增根,∴原方程无解;(2)22530x x +-=,因式分解得()()2130x x -+=,当210x -=,解得112x =, 当30x +=,解得23x =-;∴方程的解为112x =,23x =-; (3)2(2)36x x +=+,()2(2)320x x -++=,()()2230x x ++-=,()()210x x +-=,当20x +=,解得12x =-,当10x -=,解得21x =.∴方程的解为12x =-,21x =.【点拨】本题考查可化为一元一次方程的分式方程与一元二次方程的解法,掌握可化为一元一次方程的分式方程与一元二次方程的解法与步骤是解题关键.29.(1)x 1x 2;(2)原分式方程无解【分析】(1)先将方程整理成一般式,再利用直接开平方法求解即可;(2)两边都乘以x (x ﹣1),将分式方程化为整式方程,再进一步求解即可. 解:(1)整理,得:x 2﹣7=0,∴x 2=7,则x =,即x 1x 2(2)两边都乘以x (x ﹣1),得:2x 2﹣4x +3=0,∴Δ=(﹣4)2﹣4×2×3=﹣8<0,∴方程无解,故原分式方程无解.【点拨】此题考查计算能力:解一元二次方程,解分式方程,正确掌握各自的特点及解法是解题的关键.30.(1)3x =;(2)1222x x ==3)121,2x x ==-【分析】(1)根据解分式方程的步骤求解即可;(2)根据配方法解一元二次方程;(3)根据因式分解法解一元二次方程.解:(1)31144x x x-+=-- 两边同乘以最简公分母(4)x -,得:314x x --=-解得:3x =当3x =时,43410x -=-=-≠所以3x =是原方程的解;(2)x 2﹣4x +2=02442x x -+=2(2)2x -=2x -=解得1222x x =+=(3)x (x ﹣1)=2(1﹣x )(1)(2)0x x -+=解得121,2x x ==-.【点拨】本题考查了解分式方程,配方法和因式分解法解一元二次方程,正确的计算是解题的关键.31.(1)1211,1x x ==-;(2)12x x ==;(3)2x =- 【分析】(1)根据直接开平方法解方程;(2)利用配方法解方程;(3)根据分式方程的步骤化简为整式方程,再解一元二次方程.解:(1)2(5)360x --=2(5)36x -=56x -=±解得1211,1x x ==-(2)230x x +-=211344x x ++=+ 2113()24x +=12x +=解得:12x x == (3)214111x x x +-=--- 去分母得:22(1)41x x +-=-220x x +-=21944x x ++= 219()24x += 1322x +=± 解得:121,2x x ==-当1x =时,210x -=当2x =-时,2130x -=≠∴原方程的根为2x =-【点拨】本题考查了解一元二次方程,解分式方程,掌握解方程的方法是解题的关键.32.(1)1;(2)x =1【分析】(1)直接利用分式的性质化简即可得到答案;(2)先利用平方差公式去分母,然后利用因式分解的方法解方程即可.解:(1)a b a b b a +-- a b a b a b =--- a b a b-=- 1=;(2)∴261393x x x x -=+--, ∴()()336133x x x x x +=+-+-, ∴()363x x x -+=+,∴2430x x -+=,∴()()130x x --=,解得1x =或3x =,经检验3x =是方程的增根,故3x =不符合题意;经检验1x =是方程的根,∴1x =.【点拨】本题主要考查了解一元二次方程和解分式方程,解题的关键在于能够熟练掌握相关知识进行求解.33.(1)x (x ﹣y )2;(2)﹣1≤x <2;(3)x =3;(4)x 112=,x 2=3. 【分析】(1)先提公因式x ,再利用完全平方公式分解即可;(2)根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.(3)根据解分式方程的步骤依次计算可得.(4)先将方程整理成一般形式,再运用因式分解法转化为两个一元一次方程求解. 解:(1)原式=x (x 2﹣2xy +y 2)=x (x ﹣y )2; (2)()214137136x x x x ⎧++⎪⎨---≤⎪⎩<①② 解不等式①得:x <2,解不等式②得:x ≥﹣1,∴不等式组的解集为﹣1≤x <2,(3)两边都乘以(x +1)(x ﹣1),得:x (x +1)=4+(x +1)(x ﹣1), 解得:x =3,经检验x =3是分式方程的解.(4)将方程整理,得2x 2-7x +3=0,将方程左边因式分解,得(2x -1)(x ﹣3)=0,所以2x -1=0或x ﹣3=0,所以x 112=,x 2=3. 【点拨】本题主要考查解分式方程、解不等式组、一元二次方程及因式分解,熟练掌握解运算法则是解题的关键.。
一元二次方程大全
一元二次方程一元二次方程,就是只有一个未知数且未知数最高次数为2的整式方程,其一般形式为ax^2+bx+c=0定义只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程( quadratic equation of one variable )。
一元二次方程有四个特点:(1)含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax^2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.里面要有等号,且分母里不含未知数。
(4)将方程化为一般形式:ax^2+bx+c=0时,应满足(a、b、c为常数,a≠0)补充说明1、该部分的知识为初等数学知识,一般在初三就有学习。
(但一般二次函数与反比例函数会涉及到一元二次方程的解法)2、该部分是中考的热点。
3、方程的两根与方程中各数有如下关系:X1+X2= -b/a,X1·X2=c/a(也称韦达定理)4、方程两根为x1,x2时,方程为:x^2-(x1+x2)X+x1x2=0 (根据韦达定理逆推而得)5、在系数a>0的情况下,b^2-4ac>0时有2个不相等的实数根,b^2-4ac=0时有两个相等的实数根,b^2-4ac<0时无实数根。
一般式ax^2+bx+c=0(a、b、c是实数,a≠0)例如:x^2+2x+1=0配方式a(x+b/2a)^2=(b^2-4ac)/4a^2两根式(交点式)a(x-x1)(x-x2)=0一般解法1.分解因式法(可解部分一元二次方程)因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”。
因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。
如 1.解方程:x^2+2x+1=0解:利用完全平方公式因式解得:(x+1﹚^2=0解得:x?= x?=-1 2.解方程x(x+1)-3(x+1)=0解:利用提公因式法解得:(x-3)(x+1)=0即x-3=0 或x+1=0∴x1=3,x2=-1 3.解方程x^2-4=0解:(x+2)(x-2)=0 x+2=0或x-2=0∴x?=-2,x?= 2十字相乘法公式:x^2+(p+q)x+pq=(x+p)(x+q)例: 1. ab+b^2+a-b- 2=ab+a+b^2-b-2 =a(b+1)+(b-2)(b+1)=(b+1)(a+b-2)2.公式法(可解全部一元二次方程)首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根 1.当Δ=b^2-4ac<0时x无实数根(初中) 2.当Δ=b^2-4ac=0时x有两个相同的实数根即x1=x2 3.当Δ=b^2-4ac>0时x有两个不相同的实数根当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a来求得方程的根3.配方法(可解全部一元二次方程)如:解方程:x^2+2x-3=0解:把常数项移项得:x^2+2x=3等式两边同时加1(构成完全平方式)得:x^2+2x+1=4因式分解得:(x+1)^2=4解得:x1=-3,x2=1用配方法解一元二次方程小口诀二次系数化为一常数要往右边移一次系数一半方两边加上最相当4.开方法(可解部分一元二次方程)如:x^2-24=1解:x^2=25x=±5∴x?=5 x?=-55.均值代换法(可解部分一元二次方程)ax^2+bx+c=0同时除以a,得到x^2+bx/a+c/a=0设x1=-b/(2a)+m,x2=-b/(2a)-m (m≥0)根据x1*x2=c/a求得m。
第二十二章 一元二次方程课时作业(学生用)
二十二章一元二次方程的解法一一元二次方程()课时训练一、填空题(每空4分,共32分)1.方程2y2-3=2y,化成一元二次方程的一般形式是,其中二次项系数是,一次项是,常数项是.2.若方程2x2+mx=3x+2中不含x的一次项,则m= .3.已知方程:①2x2-3=0;②1x2-1=1;③12y-13y2+1=0;④ay2+2y+c=0;⑤(x+1)(3-x)=x2+5;⑥x2-x=0,其中是一元二次方程的有.(填序号).4.关于x的方程x2-2x+m=0的一根为0,则m= ;若方程有一根为-1,则m= 。
二、选择题(每小题4分,共24分)5.下列方程中是一元二次方程的为( )A.2x2-1x+1=0 B.2x2-5xy+6y2=0C.x2=x D.x2+x=y6.一元二次方程3x2-5x=7的一次项系数和常数项分别是( ) A.-5,7 B.-5,-7C.-5,0D.3,-57.方程(m-1)x2+mx+1=0是关于x的一元二次方程,则m的值为( ) A.任何实数B.m≠0C.m≠1D.m≠-18.当a为任意实数时,下列方程是一元二次方程的有( ) A.ax2+12x-5=3x2-1B.(a2-1)x2+ax+a=0C.(a2+1)x2+(a+1)x-ax=aD.a2x2-(2a-l)x-5=09.下列x的各组取值是方程(x-1)(x-8)=-12的根是( ) A.x=2或x=3 B.x=3或x=4C.x=4或x=5 D.x=5或,x=6 10.在关于x的方程(m2-4)x3+(m-2)x2-mx+m+1 =0中,要使这个方程为一元二次方程,则m的值为( ) A.任何实数B.±2 C.2 D.-2 三、解答题(11题16分,l2题20分,13题8分,共44分)11.把下列关于x的一元二次方程化为一般式,并写出二次项系数、一次项系数及常数项.(1)(x-5)(2x-1)=3 (2)(x+8)2=4x+(2x-1)2(3)(x-1)2=(2x+31)2(4)(3x-1)2=1.9612.指出下列方程是关于x的一元二次方程的条件(1)2ax(x-1)-5=-3ax(2)mx2+2mx―m―x2=-1(3)(k2+1)x2+3x-2=0(4)x2+3ax+ay-5=013.已知关于x的方程x2+ax-9=0的一根为-2,求a的值,14.(附加题)根据下列题意,列出一元二次方程,并将它化为一般式:(10分)在一块长为30m.宽为20m的矩形土地中间,种植面积为551m2的矩形绿地,在绿地四周铺设宽度相等的鹅卵石道路,求鹅卵石道路的宽?(设鹅卵石道路的宽都为x m)参考答案一、填空题1.答案:2y2-2y-3=02-2-3 2.答案:3 3.答案:①③⑤⑥4.答案:0-3二、选择题5.答案:C 6.答案:B 7.答案:C 8.答案:C 9.答案:C 10.答案:D 三、解答题11.解答:(1)2x2-11x+2=0 2 -11 2(2)解:3x2-16x-63=0 3-16-63(3)6x2+x-2=061-2(4)2x2+(22+1)x+3=0 2 22+1 3 12.解答:(1)原方程化为:2ax2+ax-5=0,a≠0(2)原方程化为:(m-1)x2+2mx-m+1=0.m≠1(3)k为任何数(4)a=013.解答:把x=-2代入x2+ax-9=0,得4-2a-9=0 ∴a=-2.514.解答:(30-2x)(20-2x)=551,化成一般形式为:4x2-100x+49=0二十二章一元二次方程的解法二直接开平方法()课时训练一、填空题(每小题5分,共30分) 1.方程x2=36的解为。
一元二次方程章节复习B(学生版)
15.某商场销售一批名牌衬衫,平均每天可以售出20件,每件盈利40元.为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,如果商场平均每天要盈利l 200元,那么每件衬衫应降价多少元?
16.某工程队在我市实施棚户区改造过程中承包了一项拆迁工程.原计划每天拆迁1 250 ,因为准备工作不足,第一天少拆迁了20%.从第二天开始,该工程队加快了拆迁速度,第三天拆迁了1 440 .求:
二、综合提高训练
1.当 为何值时,方程 是关于 的一元二次方程?
C. ; D. .
【借题发挥】
1.下列方程中那些是一元二次方程?那些不是一元二次方程?
① ② ;③ ;④ ;⑤ ;⑥ ,( 为已知数);⑦ .
【例2】当 为何值时,关于 的方程 是一元二次方程?
【借题发挥】
1.当 为何值时,关于 的方程 是一元二次方程?
题型二:一元二次方程的解法
【例3】选择适当的方法解下列一元二次方程:
A.根的情况无法确定;B.没有实数根;
C.有两个不相等的实数根;D.有两个相等的实数根.
16.因式分解 ,下列结论中错误的是( )
A. ;B. ;
C. ;D. .
简答题:
17.解方程: .
18.解方程: .
19.用配方法解方程: .
20.用适当的方法解方程: .
解答证明题:
21.当m为何值时,关于 的一元二次方程 有两个不相等的实数.
学科教师辅导讲义
年级:科目:数学课时数:
课题
一元二次方程整章复习B
教学目的
1.理解一元二次方程的概念,掌握一元二次方程的四种解法;
2.熟练掌握一元二次方程根的判别式及性质应用.
秋季05-高一数学拓展版-一元二次不等式-学生版
教师姓名学生姓名年级高一上课时间学科数学课题名称一元二次不等式一元二次不等式一.知识梳理:1.一元二次不等式的解法(1)将不等式的右边化为零,左边化为二次项系数大于零的不等式ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0).(2)求出相应的一元二次方程的根.(3)利用二次函数的图象与x轴的交点确定一元二次不等式的解集.20cx bx a -+>有如下解法:由221100ax bx c a b c x x ⎛⎫⎛⎫-+>⇒-+> ⎪ ⎪⎝⎭⎝⎭,令1y x =,则1,12y ⎛⎫∈ ⎪⎝⎭,所以不等式20cx bx a -+>的解集为1,12⎛⎫⎪⎝⎭,参考上述解法,已知关于x 的不等式0k x b x a x c ++<++的解集为()()2,12,3--⋃,则关于x 的不等式1011kx bx ax cx -+<--”的解集____________1.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥01,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.2.若不等式022>-+ax x 在区间[1,5]上有解,则a 的取值范围是( ) A.⎪⎭⎫ ⎝⎛+∞-,523 B.⎥⎦⎤⎢⎣⎡-1,523C .(1,+∞) D.⎥⎦⎤⎝⎛-∞-523,3.设[x]表示不超过x 的最大整数(例如:[5.5]=5,[一5.5]=﹣6),则不等式[x]2﹣5[x]+6≤0的解集为( )A .(2,3)B .[2,4)C .[2,3]D .(2,3]4.解不等式0453*******≥++--x x x x。
21.3实际问题与一元二次方程(学生版)
21.3 实际问题与一元二次方程同步讲解·新课堂知识点1 传播/传染问题1.传播/传染模型1 最初传播源在以后每一轮仍然传播问题(病毒感染类)方程模型:传播源×(1+每轮传播人数x)2=最终传染人数2.传播/传染模型2 最初传播源在以后每一轮不再传播问题(数值分叉类)方程模型:传播源+传播源×每轮传播人数+传播源×每轮传播人数×每轮传播人数=最终传染人数知识点2 平均增长率(降低率)问题1.平均增长率问题模型1 最后产量是b表示不累计的量方程模型:原数×(1+平均增长率)2=新数即a(1+x)2=b(a表示增长前的原数,b表示增长后的新数,x表示平均增长率)(注意:解方程一般用直接开平方法,注意方程根的取舍问题.)2.平均增长率问题模型2 最后产量是b表示总共累计的量方程模型:原数+原数×(1+平均增长率)+原数×(1+平均增长率)2=新数即a+a(1+x)+a(1+x)2=b(a表示增长前的原数,b表示增长后的新数,x表示平均增长率)3.平均降低率模型原数×(1—平均增长率)2=新数即a(1—x)2=b(a表示增长前的原数,b表示增长后的新数,x表示平均降低率)(注意:1与x的位置不能调换,解方程一般用直接开平方法,注意方程根的取舍问题.)知识点3 比赛/握手/增贺卡/发微信/问题1.单循环比赛/握手模型 方程模型:12=⨯总人数(总人数-)总次数2.双循环比赛/互赠贺卡模型方程模型:()-1⨯=总人数总人数总次数知识点4 营销利润问题(每每型问题)1.方程模型:总利润=(售价-进价)×销售数量题干中已知量为进价a 元,原售价b 元,销量m 件,销量随售价提高(降低)d 元而减少(增加)c 件,获得利润w 元.(1)若设提(降)价x 元,方程模型为: ①提价减销量:(b +x -a )(m -cx d)=w ②降价提销量:(b -x -a )(m +cx d )=w (2)若设售价x 元,方程模型为:①提价减销量:(x -a )[m -c (x b d-)]=w ②降价提销量:(x -a )[m +c (b x d -)]=w (3)题干中已知量为盈利a 元,销量m 件,销量随售价提高(降低)d 元而减少(增加)c 件,获得利润w 元.设提(降)价x 元,方程模型为:(a ±x )(m -+cx d)=w(要注意题设中“在顾客得实惠的前提下”“减少库存压力”等语句,这是进行答案取舍的重要信息.)知识点5 几何图形面积问题(1)阴影部分面积几何模型①(空白部分宽均为x)方程模型:(a-2x)(b-2x)=阴影部分面积几何模型②(阴影部分宽均为x)方程模型:ab-(a-x)(b-x)=阴影部分面积知识点6 篱笆围墙问题1.无缺口型的篱笆围墙问题(设垂直墙面长x)方程模型:(篱笆总长-垂直墙面长×个数)×垂直墙面长=矩形面积2.有缺口型的篱笆围墙问题(设垂直墙面长x)方程模型:(篱笆总长+所有缺口长-垂直墙面长×个数)×垂直墙面长=矩形面积考点梳理·新认知考点1 传染问题例1 有一个人患了流感,经过两轮传染后共有81人患了流感.(1)试求每轮传染中平均一个人传染了几个人?(2)如果按照这样的传染速度,经过三轮传染后共有多少个人会患流感?考点2 树枝分叉问题例2 某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是91,每个支干长出多少小分支?考点3 平均增长率问题(不累计增长量)例3 互联网给生活带来极大的方便据报道,2016底全球支付宝用户数为4.5亿,2018年底达到9亿.(1)求平均每年增长率;(2)据此速度,2020底全球支付宝用户数是否会超过17亿?请说明理由.(参考数据:⎷≈1.414)考点4 平均增长率问题(累计增长量)例4某公司一月份营业额为100万元,第一季度总营业额为331万元,问:该公司二、三月份营业额的平均增长率是多少?考点5 单循环比赛/握手问题例5我校九年级组织一次班际篮球赛,若赛制为单循环形式(每两班之间都赛一场),则需安排45场比赛.问共有多少个班级球队参加比赛?考点6 双循环比赛/互赠贺卡、礼物问题例6新年到了,班上数学兴趣小组的同学互赠新年贺卡,每两个同学都相互赠送一张,小明统计出全组共送了210张贺年卡,那么数学兴趣小组的人数是多少?考点7 营销利润问题例7 商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)设每件商品降价x元,则商场日销售量增加件,每件商品,盈利元(用含x的代数式表);(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?例8 某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆.(1)当售价为22万元/辆时,求平均每周的销售利润.(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价.考点8 旅游花费问题例9为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?考点9 几何图形面积问题例10 如图所示,在长为32m、宽20m的矩形耕地上,修筑同样宽的三条道路,把耕地分成大小不等的六块作试验田,要使试验田面积为570m2,问道路应多宽?例11如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度相同,则人行道宽为多少米?考点10 篱笆围墙问题例12如图,利用一面墙(墙EF最长可利用28米),围成一个矩形花园ABCD.与墙平行的一边BC上要预留2米宽的入口(如图中MN所示,不用砌墙).用砌60米长的墙的材料,当矩形的长AB为多少米时,矩形花园的面积为300平方米.考点11 动态几何问题例13 如图,在△ABC中,∠B=90°,AB=6,BC=8.点P从点A开始沿边AB向点B以1cm/s 的速度移动,与此同时,点Q从点B开始沿边BC向点C以2cm/s的速度移动.设P、Q分别从从A、B同时出发,运动时间为t,当其中一点先到达终点时,另一点也停止运动.解答下列问题:(1)经过几秒,△PBQ的面积等于8cm2?(2)是否存在这样的时刻t,使线段PQ恰好平分△ABC的面积?若存在,求出运动时间t;若不存在,请说明理由.分层巩固·新空间1.永辉超市以每袋25元的成本价收购一批桂圆,当桂圆售价为每袋40元时,一月份销售256袋。
专题11配方法解一元二次方程-重难点题型(学生版)
专题2.3 配方法解一元二次方程-重难点题型将一元二次方程配成(x+m)2=n的形式,再用直接开平方法求解,这种解一元二次方程的方法叫配方法.用配方法解一元二次方程的步骤:①把原方程化为ax2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.【题型1 用配方法解二次项系数为1的一元二次方程】【例1】(2021春•上城区校级期中)用配方法解一元二次方程x2+2x﹣3=0,配方后得到的方程是()A.(x﹣1)2=4B.(x+1)2=4C.(x+2)2=1D.(x﹣2)2=1【变式1-1】(2020秋•隆回县期末)把x2﹣3x+1=0的左边配方后,方程可化为()A.(x−32)2=134B.(x+32)2=134C.(x−32)2=54D.(x+32)2=54【变式1-2】(2020秋•崂山区期末)解方程:x2﹣5x+1=0(配方法).【变式1-3】(2020秋•白银期末)解方程:x2+2=2√2x.【题型2 用配方法解二次项系数不为1的一元二次方程】【例2】(2020秋•陇县期中)用配方法解方程2x2=7x﹣3,方程可变形为()A.(x−72)2=374B.(x−72)2=434C.(x−74)2=116D.(x−74)2=2516【变式2-1】(2020秋•巩义市期中)用配方法解下列方程时,配方有错误的是()A.2m2+m﹣1=0化为(m+14)2=916B.x2﹣6x+4=0化为(x﹣3)2=5C.2t2﹣3t﹣2=0化为(t−32)2=2516D.3y2﹣4y+1=0化为(y−23)2=19【变式2-2】(2020秋•开江县期末)解方程:3x2+1=2√3x.【变式2-3】(2020春•朝阳区校级期中)已知y 1=13x 2+8x ﹣1,y 2=6x +2,当x 取何值时y 1=y 2.【题型3 利用一元二次方程的配方求字母的值】【例3】(2020秋•津南区期中)一元二次方程x 2﹣8x +c =0配方,得(x ﹣m )2=11,则c 和m 的值分别是( )A .c =5,m =4B .c =10,m =6C .c =﹣5,m =﹣4D .c =3,m =8【变式3-1】(2020•镇江校级期中)已知方程x 2﹣6x +q =0配方后是(x ﹣p )2=7,那么方程x 2+6x +q =0配方后是( )A .(x ﹣p )2=5B .(x +p )2=5C .(x ﹣p )2=9D .(x +p )2=7 【变式3-2】(2020秋•内江期末)如果x 2﹣8x +m =0可以通过配方写成(x ﹣n )2=6的形式,那么x 2+8x +m =0可以配方成( )A .(x ﹣n +5)2=1B .(x +n )2=1C .(x ﹣n +5)2=11D .(x +n )2=6 【变式3-3】(2020秋•邓州市期末)若一元二次方程x 2+bx +5=0配方后为(x ﹣4)2=k ,则k 的值为 .【题型4 利用一元二次方程的配方法解新定义问题】【例4】(2020秋•建平县期末)设a 、b 是两个整数,若定义一种运算“△”,a △b =a 2+b 2+ab ,则方程(x +2)△x =1的实数根是( )A .x 1=x 2=1B .x 1=0,x 2=1C .x 1=x 2=﹣1D .x 1=1,x 2=﹣2【变式4-1】(2021秋•北辰区校级月考)在实数范围内定义运算“☆”和“★”,其规则为:a ☆b =a 2+b 2,a ★b =ab 2,则方程3☆x =x ★12的解为 .【变式4-2】(2020秋•福州期中))将4个数a ,b ,c ,d 排成2行、2列,两边各加一条竖直线记成|a c bd |,定义|a c b d |=ad ﹣bc ,上述记号就叫做2阶行列式.若|x +11−x x −1x +1|=8x ,则x = .【变式4-3】(2020秋•市中区期中)阅读理解题:定义:如果一个数的平方等于﹣1,记为i 2=﹣1,这个数i 叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,复数一般表示为a +bi (a ,b 为实数),a 叫这个复数的实部,b 叫做这个复数的虚部,它的加法,减法,乘法运算与整式的加法,减法,乘法运算类似.例如:解方程x 2=﹣1,解得:x 1=i ,x 2=﹣i .同样我们也可以化简√−4=√4×(−1)=√22×i 2=2i ;读完这段文字,请你解答以下问题:(1)填空:i3=,i4=,i6=,i2020=;(2)在复数范围内解方程:(x﹣1)2=﹣1.(3)在复数范围内解方程:x2﹣4x+8=0.【题型5 配方法的应用】【例5】(2021春•常熟市期中)我们知道“a2≥0”,其中a表示任何有理数,也可表示任意代数式.有时我们通过将某些代数式配成完全平方式进行恒等变形来解决符号判断、大小比较等问题,简称“配方法”.例如:x2+2x+2=x2+2x+1+1=(x+1)2+1.∵(x+1)2≥0,∴(x+1)2+1≥1.即:x2+2x+2≥1.试利用“配方法”解决以下问题:(1)填空:x2﹣2x+4=(A)2+B,则代数式A=,常数B=;(2)已知a2+b2=6a﹣4b﹣13,求a b的值;(3)已知代数式M=4x﹣5,N=2x2﹣1,试比较M,N的大小.【变式5-1】(2020秋•石狮市校级月考)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m,n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知△ABC的三边长a,b,c,且满足a2+b2﹣10a﹣12b+61=0,求c的取值范围;(2)已知P=2x2+4y+13,Q=x2﹣y2+6x﹣1,比较P,Q的大小.【变式5-2】(2021春•历城区期中)阅读下列材料:利用完全平方公式,将多项式x2+bx+c变形为(x+m)2+n的形式,例如:x2﹣8x+17=x2﹣2•x•4+42﹣42+17=(x﹣4)2+1.根据以上材料,解答下列问题:(1)填空:将多项式x2﹣2x+3变形为(x+m)2+n的形式,并判断x2﹣2x+3与0的大小关系,∵x2﹣2x+3=(x﹣)2+;所以x2﹣2x+30(填“>”、“<”、“=”);(2)将多项式x2+6x﹣9变形为(x+m)2+n的形式,并求出多项式的最小值;(3)求证:x、y取任何实数时,多项式x2+y2﹣4x+2y+6的值总为正数.【变式5-3】(2021春•南京月考)教科书中这样写道:“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式x2+2x﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1);例如:求代数式2x2+4x﹣6的最小值:2x2+4x﹣6=2(x2+2x﹣3)=2(x+1)2﹣8.可知当x=﹣1时,2x2+4x﹣6有最小值,最小值是﹣8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2﹣6m﹣7.(2)当a,b为何值时,多项式a2+b2﹣4a+6b+20有最小值,并求出这个最小值;(3)当a,b为何值时,多项式a2﹣2ab+2b2﹣2a﹣4b+28有最小值,并求出这个最小值.【题型6 一元二次方程的几何解法】【例6】(2020秋•内江期末)《代数学》中记载,形如x2+10x=39的方程,求正数解的几何方法是:“如图1,先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为52x的矩形,得到大正方形的面积为39+25=64,则该方程的正数解为8﹣5=3.”小聪按此方法解关于x的方程x2+6x+m=0时,构造出如图2所示的图形,已知阴影部分的面积为36,则该方程的正数解为()A.6B.3√5−3C.3√5−2D.3√5−3 2【变式6-1】(2020春•丰台区期末)公元9世纪,阿拉伯数学家花拉子米在他的名著《代数学》中用图解一元二次方程.他把一元二次方程x2+2x﹣35=0写成x2+2x=35的形式,并将方程左边的x2+2x看作是由一个正方形(边长为x)和两个同样的矩形(一边长为x,另一边长为1)构成的矩尺形,它的面积为35,如图所示,于是只要在这个图形上添加一个小正方形,即可得到一个完整的大正方形,这个大正方形的面积可以表示为:x2+2x+=35+,整理,得(x+1)2=36.因为x表示边长,所以x=.【变式6-2】(2020秋•东海县期中)某“优学团”在社团活动时,研究了教材第12页的“数学实验室”他们发现教材阐述的方法其实是配方过程的直观演示.他们查阅资料还发现,这种构图法有阿拉伯数学家阿尔花拉子米和我国古代数学家赵爽两种不同构图方法.该社团以方程x 2+10x ﹣39=0为例,分别进行了展示,请你完成该社团展示中的一些填空.因为x 2+10x ﹣39=0,所以有x (x +10)=39.展示1:阿尔•花拉子米构图法如图1,由方程结构,可以看成是一个长为(x +10),宽为x ,面积为39的矩形若剪去两个相邻的,长、宽都分别为5和x 的小矩形,重新摆放并补上一个合适的小正方形,可以拼成如图2的大正方形.(1)图2中,补上的空白小正方形的边长为 ;通过不同的方式表达大正方形面积,可以将原方程化为(x + )2=39+ ;展示2:赵爽构图法如图3,用4个长都是(x +10),宽都是x 的相同矩形,拼成如图3所示的正方形.(2)图3中,大正方形面积可以表示为( )2(用含x 的代数式表示);另一方面,它又等于4个小矩形的面积加上中间小正方形面积,即等于4×39+ ,故可得原方程的一个正的根为 .(3)请选择上述某一种拼图方法直观地表示方程x 2+2x =3的配方结果(请在相应位置画出图形,需在图中标注出相关线段的长度).【变式6-3】(2020春•杭州期中)如图,在△ABC 中,∠ACB =90°,以点B 为圆心,BC 长为半径画弧,交线段AB 于点D ,连接CD .以点A 为圆心,AC 长为半径画弧,交线段AB 于点E ,连接CE .(1)求∠DCE 的度数.(2)设BC =a ,AC =b .①线段BE 的长是关于x 的方程x 2+2bx ﹣a 2=0的一个根吗?说明理由.②若D 为AE 的中点,求a b 的值.。
(完整版)一元二次方程的概念及解法(学生版)
一元二次方程的概念及解法知识图谱1、一元二次方程知识精讲一.一元二次方程的概念只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程的一般形式:ax 2c为常数项.bxc0(a0),a为二次项系数,b为一次项系数,判断是一元二次方程的标准:①整式方程②一元方程③二次方程二.一元二次方程的解一元二次方程的解:使方程左、右两边相等的未知数的值叫做方程的解,一元二次方程的解也叫做一元二次方程的根.三点剖析一.考点:一元二次方程的概念,一元二次方程的解.1二.重难点:一元二次方程的一般形式,一元二次方程的解.1.三.易错点:确定方程是否为一元二次方程只需要检验最高次项—--二次项的系数是否为零即可;2.注意对于关于x的方程ax 2,当a0时,方程是一元二次方程;当a0且b0 bxc0时,方程是一元一次方程;一元二次方程的系数一定要化为一般式之后再看.题模精讲题模一:概念例以下方程中是关于x的一元二次方程的是〔〕A.x210B.ax 2x2bxcC.3x22x53x2D.x1x21例方程(m2)x m3mx10是关于x的一元二次方程,那么m______例假设方程m1x2m x1是关于x的一元二次方程,那么m的取值范围是__________.例方程x422x13的二次项系数是______,一次项系数是_______,常数项是_______题模二:解例关于x的一元二次方程 a 1x2x a2 1 0的一个根是0,那么a的值为_________________.例x1是关于x的方程x2mx n 0的一个根,那么m22mn n2的值为_______.随堂练习2随练假设(m2)x m2x 3 0是关于x的一元二次方程,那么m的值为_________。
2随练关于x的方程(m1)x2 (m 1)x 3m 2 0,当m__________时是一元一次方程;当m__________时是一元二次方程随练假设一元二次方程(m2)x23(m215)xm240的常数项为零,那么m的值为_________随练假设关于x的一元二次方程〔a+1〕x2+x﹣a2+1=0有一个根为0,那么a的值等于〔〕A.﹣1B.0C.1D.1或者﹣1随练方程x2m2xn30的两根分别是2、3,那么mn__________随练假设x=1是关于x的一元二次方程x2+3mx+n=0的解,那么6m+2n=____.随练假设关于x的一元二次方程为ax2+bx+5=0〔a≠0〕的解是x=1,那么2021-a-b的值是〔〕A.2021B.2021C.2021D.20212、直接开平方法知识精讲一.直接开平方法假设x2aa0,那么x叫做a的平方根,表示为x a,这种解一元二次方程的方法叫做直接开平方法.二.直接开平方法的根本类型1.x2a(a0)解为:x a2.(x a)2b(b0)解为:x a b3.(ax2c(c0)解为:ax b c b)4.(ax b)2(cx d)2(ac)解为:ax b(cxd)三点剖析一.考点:直接开平方法.二.重难点:直接开平方法.三.易错点:直接开平方法解一元二次方程时注意一般都有两个解,不要漏解,如果是两个相等的解,也要写成x1x2a的形式.3题模精讲题模一:直接开平方法例求下面各式中x的值:〔1〕4x 2;9〔2〕x225.1例求x的值:1(5x1)2303随堂练习随练解以下方程:〔1〕2x280〔2〕2516x202〔3〕1x90随练解关于x的方程:x26x 9 (5 2x)22随练假设方程x 2 a 4有实数根,那么a的取值范围是________.随练解关于x的方程:2(3x1)2853、配方法知识精讲一.配方法4配方法:把方程化成左边是一个含有未知数的完全平方式,右边是一个非负常数,再利用直接开平方法求解的这样一种方法就叫做配方法.二.配方法的一般步骤:2 运用配方法解形如 ax bx c 0(a 0)的一元二次方程的一般步骤是:1.二次项系数化 1;2.常数项右移;3.配方〔两边同时加上一次项系数一半的平方〕;4.化成(x m) 2n的形式;5.假设n 0 ,选用直接开平方法得出方程的解.2 2b x)c0 b 2b2axbxc0(a0) a(x a a(x)a()c0b2b22a2ab2b24aca(x 2a ) 4a c (x 2a )4a 2 .三点剖析一.考点:配方法.二.重难点:配方法解一元二次方程,配方法求解最值或取值范围.三.易错点:在化成直接开平方法求解的时候需要检验方程右边是否是非负的,如果是那么利用直接开平方法求解即可,如果不是,原方程就没有实数解.题模精讲题模一:配方法2例用配方法解方程: x 6x 4例 用配方法解以下方程:〔1〕2x 21 0 8x 〔2〕x 24x2 0〔3〕x 21 x 1 034〕3y 2123y例 用配方法解方程 x 22x10 时,配方后得到的方程为〔〕A .〔x 22221)0 B .〔x1)0 C .〔x1)2 D .〔x1)2例用配方法解关于 x 的方程x 2pxq0〔p ,q 为常数〕5例22,x、y为实数,求x y的值x y4x6y130题模二:最值问题2例试用配方法说明x2x 3的值恒大于0例x、y为实数,求代数式x2y22x 4y 7的最小值例a,b,c是整数,且 a 2b 4,ab c2 1 0,求a b c的值随堂练习随练用配方法解方程:2x23x 10随练假设把代数式x25x 7化为x m2k的形式,其中m、k为常数,那么k m.随练a,b,c均为实数,且ab4,2c2ab43c10,求ab的值.随练用配方法说明2的值恒小于0 10x7x4622随练x ,y为实数,求代数式5x4y8xy2x4的最小值.4、公式法知识精讲一.公式法2 公式法:一元二次方程 ax bx c 0(a 0),用配方法将其变形为: 根的判别式 b 2 4ac ,x 1,x 2是方程的两根,假设 b 2 4ac 0,那么x 1,2二.公式法解一元二次方程的一般步骤1.把方程化为一般形式;2.确定a 、b 、c 的值; 3.计算b 2 4ac 的值;4.假设b 2 4ac 0,那么代入公式求方程的根; 5.假设b 2 4ac 0,那么方程无解.三.判别式与根的关系1. 0 时,原方程有两个不相等的实数解; 2. 0 时,原方程有两个相等的实数解; 3. 0 时,原方程没有实数解.b2b 2 4ac(x 2a )4a 224ac .bb2a三点剖析一.考点:公式法.二.重难点:利用公式法求解一元二次方程,利用判别式判断根的情况.三.易错点:在用公式法求解方程的解时,一定要判断“ 〞的取值范围,只有当0时,一元二次方程才有实数解.题模精讲7题模一:公式法例用公式法解关于x的一元二次方程m 1x22m 1x m 3 0.例解方程:x2+4x﹣1=0.例1解方程x(6x1)4x32(2x)2例用公式法解关于x的一元二次方程m1x22m1x m30.例解方程:xx 3x 20题模二:判别式与根的关系例以下一元二次方程中,有两个不相等实数根的方程是〔〕A.x2+1=0B.x2﹣3x+1=0C.x2﹣2x+1=0D.x2﹣x+1=0例关于x的一元二次方程mx22x10有两个不相等的实数根,那么m的取值范围是〔〕A.m1B.m1C.m1且m0D.m1且m0例关于x的方程〔a-6〕x2-8x+6=0有实数根,那么整数a的最大值是〔〕8A.6B.7C.8D.9随堂练习2随练用公式法解一元二次方程2x3x 10.随练解方程(x5)(x 7)12随练解关于x的方程:xpxq0.随练解关于x的方程x2x10.随练以下一元二次方程中无实数解的方程是〔〕A.x2+2x+1=0B.x2+1=0C.2D.2x=2x-1x-4x-5=0随练假设关于x的一元二次方程kx22x10有两个不相等的实数根,那么k的取值范围是〔〕A.k1B.k1C.k1且k1且k0k0D.随练关于x的一元二次方程〔m-1〕x2+x+1=0有实数根,那么m的取值范围是〔〕A.m≥-5且m≠1B.m≤5且m≠1 44C.m≥5D.m≤-5且m≠0 4495、因式分解法知识精讲一.因式分解法因式分解法:当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解,这种用分解因式解一元二次方程的方法叫做因式分解法.因式分解法解一元二次方程的依据:如果两个因式的积等于0,那么这两个因式至少有一个为0,即:假设ab0,那么a0或b0.三点剖析一.考点:因式分解法解一元二次方程.二.重难点:利用提公因式法、公式法、分组分解法、十字相乘法等方法解一元二次方程.三.易错点:没有化成ab0的形式,例如由2x121从而导致漏解或x1直接得到2x1者直接得到2x10从而导致错解.题模精讲题模一:因式分解法例用因式分解法解方程:2x34xx30例2用因式分解法解方程:3x4x40.22例用因式分解法解方程:9x216x10.10例用因式分解法解方程:x23mx 2m2mn n20,〔m、n为常数〕随堂练习2随练用因式分解法解方程:2x136x.随练用因式分解法解方程:5x210x 5 31 x22随练用因式分解法解方程:6x x 350.222随练x的一元二次方程m1x63m1x7201〕.用因式分解法解关于〔m6、根与系数的关系知识精讲一.韦达定理11如果ax2bx c0(a0)的两根是x1,x2,那么x x b,x1x2c.〔隐含的条件:12a a0〕特别地,当一元二次方程的二次项系数为1时,设x1,x2是方程x2px q0的两个根,那么x1x2p12q.,xx二.韦达定理与根的符号关系在24ac0的条件下,假设x1,x2是ax2bx c0(a0)的两根〔其中x1x2〕我们有b如下结论:1.c0x1x20,假设b0,那么x1x2;假设b0,那么x1x2.a a a2.c0xx20.假设b0,那么x1x20;假设b0,那么x2x10.a1a a更一般的结论是:假设x1,x2是ax2bx c0(a0)的两根〔其中x1x2〕,且m为实数,当0时,一般地:〔1〕(x1m)(x2m)0x1m,x2m〔2〕(x1m)(x2m)0且(x1m)(x2m)0x1m,x2m〔3〕(x1m)(x2m)0且(x1m)(x2m)0x1m,x2m特殊地:当m0时,上述就转化为ax2bxc0(a0)有两异根、两正根、两负根的条件.三点剖析一.考点:韦达定理二.重难点:韦达定理的应用1.方程的一个根,求另一个根以及确定方程参数的值;2.方程,求关于方程的两根的代数式的值;3.方程的两根,求作方程;4.结合根的判别式,讨论根的符号特征;.逆用构造一元二次方程辅助解题:当等式具有相同的结构时,就可以把某两个变元看作某个一元二次方程的两根,以便利用韦达定理.三.易错点:在使用韦达定理的时候没有提前检验0是否成立题模精讲题模一:韦达定理例假设方程x24x c 0的一个根为23,那么方程的另一个根为______,c______.12例设x1、x2是方程x22k1xk220的两个不同的实根,且x11x218,那么k的值是.例如果a,b都是质数,且a213am0,b213bm0,求b a的值.a b随堂练习随练m,n是有理数,并且方程x2mxn0有一个根是52,那么mn_______.随练关于22有两个实数根,并且这两个根的平方和比这x的方程x2(m2)xm50两个根的积大16,求m的值.随练关于x的方程x24x2m80的一个根大于1,另一个根小于1,求m的取值范围.随练如果实数a,b分别满足a22a2,b22b2,求11的值a b13作业1假设|b1|a20,那么以下方程一定是一元二次方程的是〔〕A.ax25xb0B.b21x2a3x50C.a1x2b1x70D.b1x2ax10作业2关于x的方程(xa)2(ax2)2是一元二次方程,求a的取值范围.作业3a b2a、b的值?方程2x xx40是关于x的一元二次方程,求作业4假设n〔n≠0〕是关于x方程x2+mx+2n=0的根,那么 n+m+4的值为〔〕A.1B.2C.-1D.-2作业5关于x的一元二次方程m 2x2x m2 4 0有一根为0,那么m的值为_______.作业62解方程:31x6作业7解关于x的方程:3(x 1)22714作业8 用直接开平方法解以下一元二次方程〔1〕9x 216〔2〕x 2 16 05 〔3〕x23x 251〔4〕42x52293x1作业9解方程:2x 28x 3 0.作业10将方程x 2 4x10化为xm2n 的形式,其中m ,n 是常数,那么mn_____________作业 11 方程 2 6xq0可以配方成xp226xq2可以配成以下x 7的形式,那么 x 的〔 〕A .x 2B .29p5xp29D .xp22C .xp2 5m 2n 21 1作业12mnmn10,那么m n 的值为__________.作业13ab23,bc 23,那么a 2 b 2 c 2 ab bc ac 的值为__________.15作业14实数a ,b ,c 满足a 26b17,b 28c23,c 22a14,那么abc 的值为__________.y 1 z 2作业15 x12322 2设,求代数式xyz的最小值.作业16解方程3x 2 52x 1作业17用公式法解方程:ax 2 bx c0〔a 、b 、c 为常数且a0〕.作业18设方程x 2 2x1 4 0.求满足该方程的所有根之和作业19 一元二次方程 x 2+2x+1=0的根的情况〔〕A .有一个实数根B . 有两个相等的实数根C . 有两个不相等的实数根D . 没有实数根作业20关于x 的一元二次方程 2 2m 的取值范mx+〔2m-1〕x+1=0有两个不相等的实数根,那么围是〔 〕A .k >-1B .m >1且m ≠144 C .m <1且m ≠0 D .m ≥-1且m ≠04416作业21假设关于x 的方程kx 22k1xk10有实数根,求k 的取值范围.作业222xx35x3 的解是〔〕x5B .x32A .x 1522,x23D .xC .5作业23 用因式分解法解方程x 26x 94x 28x 4.作业24解关于x 的方程x 2p 2 q 2x pqpqpq.作业 25方程2x 2mx 2m 4 0的一个解为1,那么另一个解为__________,__________.作业26方程2x 2 mx 30的两根的平方和为 5,那么m=__________.作业27 实数k 为何值时,关于 x 的一元二次方程 x 2(2k 3)x (2k 4)0.1〕有两个正根?2〕两根异号,且正根的绝对值较大?3〕一根大于3,一根小于3?17作业28阅读材料:设一元二次方程ax2bx c0(a 0)的两根是x1、x2,那么根与系数关系为:x1x2b c pq1x1x22p10,1q20,且pq1,求q的值.a,a.pq作业29方程2〔m+1〕x2+4mx+3m=2,根据以下条件之一求m的值.1〕方程有两个相等的实数根;2〕方程有两个相反的实数根;3〕方程的一个根为0.作业30阅读下面的例题,解方程x2﹣|x|﹣2=0解:原方程化为 |x|2﹣|x|﹣2=0.令y=|x|,原方程化成y2﹣y﹣2=0解得:y1=2,y2=﹣1当|x|=2,x=±2;当|x|=﹣1时〔不合题意,舍去〕∴原方程的解是x1=2x2=﹣2请模仿上面的方法解方程:〔x﹣1〕2﹣5|x﹣1|﹣6=0.作业31x2y22x4y0解方程组:y4.2x0作业32观察下表,答复以下问题,第____个图形中“△〞的个数是“○〞的个数的5倍.18作33 察以下方程及其解的特征:1〕x+1=2的解x 1=x 2=1;x 2〕x+1=5的解x 1=2,x 2=1;x 2 2 ( 3〕x+1=10的解x 1=3,x 2=1;x 3 3⋯解答以下:x1〕猜想:方程x+1=26的解____;5( 2〕猜想:关于x 的方程x+1=____的解x 1=a ,x 2=1〔a ≠0〕;x a〔3〕下面以解方程x+1=26例,〔1〕中猜想的正确性.x52解:原方程可化 5x-26x=-5.〔下面大家用配方法写出解此方程的程〕作34三个关于 x 2 2 cxa0,cx2的一元二次方程axbxc 0,bx axb0恰有一个公共数根,a 2b 2c 2的__________bc ca ab19。
3.可化为一元二次方程的分式方程 学生版
第三节 可化为一元二次方程的分式方程一、教学目标:1.使学生掌握可化为一元二次方程的分式方程的解法,能用去分母的方法、换元的方法与拆项的方法求此类方程的解,并会验根;2.通过本节课的教学,向学生渗透“转化”的数学思想方法;二、教学重点与难点:教学重点:可化为一元二次方程的分式方程的解法.教学难点:解分式方程,学生不容易理解为什么必须进行检验.三、知识要点:1.什么叫做分式方程?解可化为一元二次方程的分式方程的方法与步骤是什么?2.解可化为一元二次方程的分式方程为什么要检验?检验的方法是什么?四、例题讲解:222413211(1)1;(2).1324356x x x x x x x x x x x +++-=+=--+-+-+例、解方程112 2.(1)(1)x x x -=--例、解方程22222(1)6(1)43(1)7;(2)2 3.112x x x x x x x x--+=+=----例、解方程解方程2134,.224k x k x x x +=-+-例、关于的方程有增根求的值5,()(/)25,()(/)12010.(1),(2)(1),1,?P x P x Q x Qx==-例、某市城建部门经过长期市场调查发现该市年新建商品房面积万平方米与市场新房均价千元平方米存在函数关系年新房销售面积万平方米与市场新房均价千元平方米的函数关系为如果年新建商品房的面积与新房销售面积相等求市场新房均价和年新房销售总额;在的基础上如果市场新房均价上涨千元那么该市年新房销售总额是增加还是减少变化了多少?五、课堂练习:2232110.11x x x x x --+=--、解方程225260.1(1)x x x x ++=++、解方程2633. 1.11x x -=--用两种不同的方法解方程。
一元二次方程的应用2B(学生版)
学科教师辅导讲义
2.已知三个连续偶数的平方为200,求这三个连续偶数.
【例4】如图,将一块长50厘米,宽40厘米的铁皮剪去四个正方形的角,就可以折成一个长方形的无盖盒子,如果盒子的底面积为600平方厘米,求盒子的高度.
【借题发挥】
如图3-9-5,从一块长80厘米,宽60厘米的铁片中间截去一个小长方形,使剩下的长方框四周的宽度一样,并且小长方形的面积是原来铁片面积的一半,求这个宽度.
11.某机械租赁公司有同一型号的机械设备40套.经过一段时间的经营发现:当每套机械设备的月租金为270
元时,恰好全部租出,在此基础上,当每套设备的月租金每提高10元时,这种设备就少租出一套,且未租出
一套设备每月需要支出费用(维护费、管理费等)20元.
(1)设每套设备的月租金为x(元),用含x的代数式表示未租出的设备数(套)以及所有未租设备(套)的支
出费用.
(2)租赁公司的月收益能否达到11040元?此时应该出租多少套机械设备?每套月租金是多少元?请简要说明理由.
(3)租赁公司的月收益能否在11040基础上再提高?为什么?
12.为了迎接2010年的世博会,让上海城市更美化,通过拆迁旧房,植草,
栽树、修建公同等措施,使城市绿地面积不断增加(如图17 -4-4所示)
(1)根据图中所提供的信息,回答下列问题:2007年底的绿地面积为
___________公顷,比2006年底增加了__________公顷;
(2)为满足城市发展的需要,计划到2009年底使城市绿地总面积达到
72.6公顷,试求今明两年绿地面积的年平均增长率.。
一元二次方程与化简求值专题练习(学生版)
一元二次方程与化简求值专题练习一、选择题1、m 是方程x 2-2x -3=0的一个根,则代数式m -12m 2+4=( ). A. 1.5 B. 2 C. 2.5D. 3 2、已知a 是方程x 2+x -1=0的根,a 3-a 2-3a +1的值是( ).A. 0B. 1C. -1D. -23、已知a 2-5=2a ,代数式(a -2)2+2(a +1)的值为( ).A. -11B. -1C. 1D. 114、已知23x x +-x 2=2+x ,则代数式2x 2+2x 的值是( ) A. 2B. -6C. 2或-6D. -2或6 5、若关于x 的一元二次方程为ax 2+bx +5=0(a ≠0)的解是x =1,则2013-a -b 的值是( ).A. 2018B. 2008C. 2014D. 20126、已知a 2-5a +2=0,则分式424a a +的值为( ). A. 21 B. 121 C. 7 D. 521二、填空题7、已知a 、b 是一元二次方程x 2-x -1=0的两个根,则代数式3a 2+2b 2-3a -2b 的值等于______.8、设m 是方程x 2-3x +1=0的一个实数根,则4221m m m++=______. 9、已知a 是方程x 2-1315x +1=0的某个根,则a 2-1314a +213151a +=______. 10、计算:(1)已知a 是方程x 2+x -1=0的根,则a 3-a 2-3a +1的值为______.(2)已知a 是方程x 2-2x +1=0的根,则a 3+31a的值为______. 11、若(x 2+y 2)2-5(x 2+y 2)-6=0,则x 2+y 2=______.12、已知a 是方程x 2-3x -2=0的根,则a 3-2a 2-5a +4=______.13、已知a 是x 2-x -1=0的一个根,则a 3-2a 2+2019的值是______.14、已知x 为实数,且23x x+-(x 2+x )=2,则x 2+x 的值为______.15、已知:x2-5x=6,请你求出代数式10x-2x2+5的值.16、已知x2-4x-1=0,求代数式(2x-3)2-(x+1)(x-1)的值.17、已知m是方程x2-x-2=0的一个实数根,求代数式(m2-m)(m-2m+1)的值.18、已知x2+x-5=0,求代数式(x-1)2-x(x-3)+(x+2)(x-2)的值.19、已知a是一元二次方程x2-2x-1=0的根,求a3-5a+7的值.(1)已知a 是方程x 2-3x +1=0的根,求2543282521a a a a a -+-+的值. (2)已知m 是一元二次方程x 2-2005x +1=0的根,求代数式m 2-2004m +220051m +的值.21、(1)已知a 是一元二次方程x 2-2x -1=0的根,求下列各式的值: ①a -1a. ②a 2+21a . ③a 2-3a +232a -+5. (2)已知a 是方程x 2-3x +1=0的根,求2543282521a a a a a-+-+的值.。
专题1-3 一元二次方程根的判别式(解析版)
(苏科版)九年级上册数学《第1章 一元二次方程》专题1-3 一元二次方程根的判别式◆1、一般地,式子b 2﹣4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)根的判别式,通常用希腊字母“Δ”表示它,即Δ=b 2﹣4ac .◆2、利用一元二次方程根的判别式判断方程的根的情况.一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2﹣4ac 有如下关系:①当Δ>0时,方程有两个不相等的实数根;②当Δ=0时,方程有两个相等的实数根;③当Δ<0时,方程无实数根.上面的结论反过来也成立.◆3、利用根的判别式判断一元二次方程根的情况的步骤:①把一元二次方程化为一般形式;②确定a ,b ,c 的值;③计算b 2﹣4ac 的值;④根据b 2﹣4ac 的符合判定方程根的情况.◆4、运用根的判别式时的注意事项(1)将方程化成一般形式后才能确定a ,b ,c 的值.(2)确定a ,b ,c的值时不要漏掉符合.【例题1】(2023•淮南一模)下列一元二次方程中,没有实数根的是( )A .x 2+4=2xB .(x +1)2=0C .x 2﹣2023x =0D .x 2+2=3x【分析】求出一元二次方程根的判别式,根据符号即可得到结论.【解答】解:A 、方程x 2+4=2x 可化为x 2﹣2x +4=0,∵Δ=(﹣2)2﹣4×1×4=﹣12<0,∴方程无实数根,故本选项符合题意;B 、∵方程(x +1)2=0,∴x 1=x 2=﹣1,∴方程有两个相等的实数根,故本选项不符合题意;C、方程整理得x2﹣2023x=0,∵Δ=20232﹣4×1×0=20232>0,∴方程有两个不相等的实数根,故本选项不符合题意;D、方程整理得x2﹣3x+2=0,∵Δ=(﹣3)2﹣4×1×2=1>0,∴方程有两个不相等的实数根,故本选项不符合题意.故选:A.【点评】此题考查了根的判别式,熟练掌握一元二次方程根的判别式与方程解的情况之间的关系是解决问题的关键.【变式1-1】(2023春•淮北月考)方程2x2﹣5x+7=0根的情况是( )A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D.无法判断【分析】先计算判别式的值,然后根据判别式的意义进行判断.【解答】解:∵2x2﹣5x+7=0,∴Δ=(﹣5)2﹣4×2×7=﹣31<0,∴方程没有实数根.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.【变式1-2】(2023•新会区二模)下列关于x的一元二次方程中有两个相等的实数根的是( )A.(x﹣3)2=4B.x2=x C.x2+2x+1=0D.x2﹣16=0【分析】通过解方程求得方程的解或根据根的判别式Δ=b2﹣4ac的值的符号判断即可.【解答】解:A、∵(x﹣3)2=4,∴x﹣3=±2,∴x1=1,x2=5,故本选项不符合题意;B、∵x2=x,∴x2﹣x=0,∴x(x﹣1)=0,∴x1=0,x2=1,故本选项不符合题意;C、Δ=22﹣4×1×1=0,该方程有两个相等实数根.故本选项符合题意;D、Δ=02﹣4×1×(﹣16)=64>0,该方程有两个不相等的实数根.故本选项不符合题意;故选:C.【点评】此题主要考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.【变式1-3】(2023•郯城县二模)一元二次方程3x2﹣5x=﹣6的根的情况为( )A.无实数根B.有两个不等的实数根C.有两个相等的实数根D.不能判定【分析】先计算出根的判别式的值得到Δ<0,根据根的判别式的意义对各选项进行判断.【解答】解:一元二次方程3x²﹣5x=﹣6可化为3x²﹣5x+6=0,∵Δ=(﹣5)2﹣4×3×6=﹣47<0,∴方程无实数根.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.【变式1-4】(2023•贵州模拟)已知关于x的一元二次方程x2+6+c+c=0的一个根是x=1,则方程x2+6x﹣c=0的根的情况是( )A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.有一个根是x=1【分析】先把x=1代入方程x2+6x+c=0可得到c=﹣7,则方程x2+6x﹣c=0化为x2+6x+7=0,再计算根的判别式的值得到Δ=8>0,然后根据根的判别式的意义判断方程根的情况即可.【解答】解:把x=1代入方程x2+6x+c=0得1+6+c=0,解得c=﹣7,所以方程x2+6x﹣c=0化为x2+6x+7=0,∵Δ=62﹣4×7=8>0,∴方程x2+6x﹣c=0有两个不相等的实数根.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.也考查了一元二次方程的解.【变式1-5】(2023•内乡县校级三模)已知a,c互为倒数,则关于x的方程ax2﹣x+c=0(a≠0)根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.有一根为1【分析】根据根的判别式得到Δ=1﹣4ac,根据a,c互为倒数,得到ac=1,解之即可.【解答】解:关于x的方程ax2﹣x+c=0(a≠0)根的判别式为Δ=1﹣4ac,∵a,c互为倒数,∴ac=1,∴1﹣4ac<0.∴原方程无实数根,故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.也考查了一元二次方程ax2+bx+c=0(a≠0)的定义.【变式1-6】(2023•扶沟县二模)若|a﹣3|+=0,则关于x的一元二次方程(a﹣1)x2+bx+2=0的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定【分析】先根据非负性求出a和b的值,再计算根的判别式的值得到Δ,然后根据根的判别式的意义进行判断.【解答】解:∵|a﹣3|+=0,∴a﹣3=0,b﹣2=0,∴a=3,b=2,∴关于x的一元二次方程为x2+x+1=0,∵Δ=12﹣4×1×1=1﹣4=﹣3<0,∴方程没有实数根.故选:C.【点评】本题考查了非负数的性质:绝对值,非负数的性质:算术平方根,根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.【例题2】(2023•安徽模拟)关于x的一元二次方程x2﹣kx+k+3=0有两个相等的实数根,则k的值为( )A.﹣2B.﹣2或6C.6D.﹣6或2【分析】根据关于x的一元二次方程x2﹣kx+k+3=0有两个相等的实数根可知Δ=0,故可得出关于k的方程,求出k的值即可.【解答】解:∵关于x的一元二次方程x2﹣kx+k+3=0有两个相等的实数根,∴Δ=0,即Δ=(﹣k)2﹣4(k+3)=0,解得k=6或﹣2.故选:B.【点评】本题考查的是一元二次方程根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac的关系是解题的关键.【变式2-1】(2023•淮阳区校级三模)若关于x的一元二次方程mx2﹣6x+1=0 有两个相等实数根,则m 的值是( )A.﹣1B.1C.﹣9D.9【分析】由方程有两个相等的实数根可得其判别式等于0,可得到关于m的方程,可求得m的值.【解答】解:∵一元二次方程mx2﹣6x+1=0有两个相等实数根,∴Δ=0,即(﹣6)2﹣4m=0,解得m=9.故选:D.【点评】本题主要考查根的判别式,由方程根的情况得到m的方程是解题的关键.【变式2-2】(2023春•乐清市月考)若关于x的方程x2﹣4x+c=0有两个不相等的实数根,则c的值可以是( )A.﹣4B.4C.8D.16【分析】根据方程有两个相等的实数根,计算根的判别式得关于c的方程,求解方程即可.【解答】解:Δ=b2﹣4ac=(﹣4)2﹣4×1×c=16﹣4c,∵方程有两个不相等的实数根,∴Δ>0,∴16﹣4c>0,解得c<4.故选:A.【点评】本题考查了一元二次方程根的判别式,利用一元二次方程根的判别式(Δ=b2﹣4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:①当Δ>0时,方程有两个不相等的实数根;②当Δ=0时,方程有两个相等的实数根;③当Δ<0时,方程无实数根.上面的结论反过来也成立.【变式2-3】(2023•永嘉县二模)若关于x的方程x2+6x+18a=0有两个相等的实数根,则a的值是( )A.―12B.12C.﹣2D.2【分析】利用根的判别式的意义得到Δ=62﹣4×18a=0,然后解方程即可.【解答】解:根据题意得Δ=62﹣4×18a=0,解得a=1 2.故选:B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.【变式2-4】(2023•驻马店二模)若关于x的一元二次方程x2﹣3x+2﹣m=0有两个相等的实数根,则m 的值是.【分析】先计算根的判别式Δ=b2﹣4ac的值.有两个相等实数根的一元二次方程就是判别式的值是0,由此建立关于m的方程解答即可.【解答】解:∵关于x的方程x2﹣3x+2﹣m=0有两个相等的实数根,∴(﹣3)2﹣4×1×(2﹣m)=0,解得:m=―1 4.故答案为:―1 4.【点评】此题考查一元二次方程根的情况与判别式△的关系:(1)当Δ>0则方程有两个不相等的实数根;(2)当Δ=0则方程有两个相等的实数根;(3)当Δ<0则方程没有实数根.【变式2-5】(2023•永嘉县三模)若关于x的一元二次方程x2+bx+16=0,有两个相等的实数根,则正数b的值是.【分析】先根据一元二次方程根的判别式的意义得到Δ=b2﹣4×16=0,然后解关于b的方程即可.【解答】解:根据题意得Δ=b2﹣4×16=0,解得b1=8,b2=﹣8,所以正数b的值为8.故答案为:8.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.【例题3】(2023•聊城)若一元二次方程mx2+2x+1=0有实数解,则m的取值范围是( )A.m≥﹣1B.m≤1C.m≥﹣1且m≠0D.m≤1且m≠0【分析】根据一元二次方程的定义及根的判别式列得不等式并计算即可.【解答】解:∵一元二次方程mx2+2x+1=0有实数解,∴Δ=22﹣4m≥0,且m≠0,解得:m≤1且m≠0,故选:D.【点评】本题考查一元二次方程的定义及根的判别式,特别注意二次项系数不能为0.【变式3-1】(2023•金水区校级三模)若关于x的一元二次方程x2﹣x+2k+1=0有两个不相等的实数根,则k的取值范围是 .【分析】根据判别式的意义得到Δ=(﹣1)2﹣4(2k+1)>0,然后解不等式即可.【解答】解:根据题意得Δ=(﹣1)2﹣4(2k+1)>0,解得k<―3 8.故答案为:k<―3 8.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.【变式3-2】(2023•中牟县二模)若关于x的一元二次方程(m﹣1)x2+2x﹣1=0有两个实数根,则m的取值范围是( )A.m≥0B.m>0C.m≥0且m≠1D.m>0且m≠1【分析】先根据一元二次方程的定义和根的判别式的意义得到m﹣1≠0且Δ=22﹣4(m﹣1)×(﹣1)≥0,然后求出两不等式的公共部分即可.【解答】解:根据题意得m﹣1≠0且Δ=22﹣4(m﹣1)×(﹣1)≥0,解得m≥0且m≠1,即m的取值范围为m≥0且m≠1.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.也考查了一元二次方程的定义.【变式3-3】(2023春•宁明县期中)关于x的一元二次方程(a+1)x2﹣2x+3=0有实数根,则整数a的最大值是( )A.﹣2B.﹣1C.0D.1【分析】根据方程有实数根,得到根的判别式的值大于等于0,且二次项系数不为0,即可求出整数a的最大值.【解答】解:根据题意得:Δ=4﹣12(a+1)≥0,且a+1≠0,解得:a≤―23,a≠﹣1,则整数a的最大值为﹣2.故选:A.【点评】此题考查了一元二次方程根的判别式,弄清题意是解本题的关键.【变式3-4】(2023•市北区三模)关于x的一元二次方程(k﹣1)x2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是 .【分析】根据一元二次方程的定义和判别式的意义得到k﹣1≠0且Δ=(﹣2)2+4(k﹣1)>0,再求出两个不等式的公共部分即可得到答案.【解答】解:∵关于x的一元二次方程(k﹣1)x2﹣2x﹣1=0有两个不相等的实数根,∴k﹣1≠0且Δ=(﹣2)2+4(k﹣1)>0,解得:k>0且k≠1.故答案为:k>0且k≠1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根,解题时注意不能忽视二次项系数不为零的条件.【变式3-5】(2023•兰考县一模)如果关于x的一元二次方程kx2+1=0有两个不相等的实数根,那么k的取值范围是( )A.k<13B.k<13且k≠0C.―13≤k<13且k≠0D.―13≤k<1且k≠0【分析】首先根据一元二次方程的定义,确定字母k 的取值范围,然后结合根的判别式以及二次根式的定义继续求解k 的取值范围即可.【解答】解:∵原方程为一元二次方程,∴k ≠0,∵原方程有两个不相等的实数根,∴Δ=(―2―4k >0,解得:k <1,∴3k +1≥0,解得:k ≥―13,∴k 的取值范围是―13≤k <1且k ≠0,故选:D .【点评】本题考查根据一元二次方程根的情况判断参数,理解根的判别式,以及一元二次方程的基本定义和二次根式的定义是解题关键.【变式3-6】(2023•西宁二模)已知关于x 的一元二次方程x 2﹣3x +2a ﹣1=0有两个不相等的实数根.(1)求a 的取值范围;(2)若a 为正整数,求一元二次方程的解.【分析】(1)根据方程根的判别式Δ>0,即可得出关于a 的一元一次不等式,解之即可得出a 的取值范围;(2)由(1)可求得a 的正整数,代入原方程,解之即可求出方程的根.【解答】解:(1)∵关于x 的一元二次方程x 2﹣3x +2a ﹣1=0有两个不相等的实数根,∴Δ=(﹣3)2﹣4(2a ﹣1)>0,解得a <158,∴a 的取值范围为a <158;(2)∵a <158,且a 为正整数,∴a =1.此时,方程为x 2﹣3x +1=0,解得:x1x2∴方程的根为x1x2【点评】本题主要考查了根的判别式以及解一元二次方程,解题的关键是:(1)熟记“当Δ>0时,方程有两个不相等的实数根”;(2)熟练掌握一元二次的解法—公式法.【例题4】(2023•兰州)关于x的一元二次方程x2+bx+c=0有两个相等的实数根,则b2﹣2(1+2c)=( )A.﹣2B.2C.﹣4D.4【分析】由一元二次方程有有两个相等的实数根得Δ=b2﹣4ac=0,得到b2﹣4c=0,再将其代入所求式子中计算即可求解.【解答】解:∵关于x的一元二次方程x2+bx+c=0有两个相等的实数根,∴Δ=b2﹣4c=0,∴b2=4c,∴b2﹣2(1+2c)=b2﹣4c﹣2=0﹣2=﹣2.故选:A.【点评】本题主要考查一元二次方程根与系数的关系,熟知一元二次方程的根与Δ=b2﹣4ac的关系是解题关键.一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:①当Δ>0时,方程有两个不相等的两个实数根;②当Δ=0时,方程有两个相等的两个实数根;③当Δ<0时,方程无实数根.【变式4-1】若关于x的方程x2﹣mx+m=0有两个相等实数根,则代数式2m2﹣8m+1的值为 .【分析】根据方程的系数结合根的判别式即可得出Δ=m2﹣4m=0,将其代入2m2﹣8m+1中即可得出结论.【解答】解:∵关于x的方程x2﹣mx+m=0有两个相等实数根,∴Δ=(﹣m)2﹣4m=m2﹣4m=0,∴2m2﹣8m+1=2(m2﹣4m)+1=1.故答案为:1.【点评】本题考查了根的判别式,熟练掌握“当Δ=0时,方程有两个相等的两个实数根”是解题的关键.【变式4-2】(2023•曹妃甸区模拟)关于x的一元二次方程x2﹣mx+(m+1)=0有两个相等的实数根,则代数式8m﹣2m2+10的值为( )A.18B.10C.4D.2【分析】先根据根的判别式得到:Δ=(﹣m)2﹣4×(m+1)=0,则m2﹣4m=4,再将代数式8m﹣2m2+10变形后把m2﹣4m=4代入计算即可.【解答】解:根据题意,得Δ=(﹣m)2﹣4×(m+1)=0,整理,得m2﹣4m=4,所以原式=﹣2(m2﹣4m)+10=﹣2×4+10=2,故选:D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.【变式4-3】关于x的一元二次方程(a+1)x2+bx+1=0有两个相等的实数根,则代数式8a﹣2b2+6的值是 .【分析】先根据一元二次方程的定义以及根的判别式得到a+1≠0且Δ=b2﹣4×(a+1)=0,则b2﹣4a=4,再将代数式8a﹣2b2+6变形后把b2﹣4a=4代入计算即可.【解答】解:根据题意得a+1≠0且Δ=b2﹣4×(a+1)=0,即b2﹣4a﹣4=0,∴b2﹣4a=4,所以原式=﹣2(b2﹣4a)+6=﹣2×4+6=﹣2,故答案为﹣2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.也考查了一元二次方程的定义.【变式4-4】若关于x的一元二次方程12x2﹣2kx+1﹣4k=0有两个相等的实数根,则代数式(k﹣2)2+2k (1﹣k)的值为( )A.3B.﹣3C.―72D.72【分析】利用判别式的意义得到Δ=(2k)2﹣4×12×(1﹣4k)=0,则k2+2k=12,然后利用代入的方法计算代数式的值.【解答】解:根据题意得Δ=(2k)2﹣4×12×(1﹣4k)=0,∴k2+2k=1 2,∴(k﹣2)2+2k(1﹣k)=k2﹣4k+4+2k﹣2k2=﹣k2﹣2k+4=﹣(k2+2k)+4=―12+4=7 2.故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的两个实数根;当Δ=0时,方程有两个相等的两个实数根;当Δ<0时,方程无实数根.上面的结论反过来也成立.【变式4-5】(2022•江夏区模拟)已知关于x的一元二次方程(3a﹣1)x2﹣ax+14=0有两个相等的实数根,则代数式a2﹣2a+1+1a的值( )A.﹣3B.3C.2D.﹣2【分析】先根据一元二次方程的定义以及根的判别式得到3a﹣1≠0且Δ=a2﹣4×(3a﹣1)×14=0,则a2﹣3a+1=0,再将a2=3a﹣1代入代数式得到a+1a,通分后得到a21a,再代入a2+1=3a计算即可.【解答】解:根据题意得3a﹣1≠0且Δ=a2﹣4×(3a﹣1)×14=0,即a2﹣3a+1=0,∴a2=3a﹣1,所以原式=3a﹣1﹣2a+1+1a=a+1a=a21a=3aa=3.故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.也考查了一元二次方程的定义.【变式4-6】若关于x的一元二次方程12x2﹣2bx﹣4b+1=0有两个相等的实数根,则代数式(3b﹣1)2﹣5b(2b―45)的值为 .【分析】化简代数式得﹣(b2+2b)+1,根据一元二次方程根的判别式,求得b2+2b=12,代入即可.【解答】解:∵一元二次方程12x2﹣2bx﹣4b+1=0有两个相等的实数根,∴(﹣2b)2﹣4×12×(﹣4b+1)=4b2+8b﹣2=0,∴b2+2b=1 2,∴(3b﹣1)2﹣5b(2b―45)=﹣b2﹣2b+1=﹣(b2+2b)+1=―12+1=12,故答案为:1 2.【点评】本题主要考查了一元二次方程根的判别式,多项式乘法,熟练掌握整体代入方法是解决问题的关键.【例题5】(2023•丰台区二模)已知关于x的一元二次方程x2﹣2mx+m2﹣4=0.(1)求证:该方程总有两个不相等的实数根;(2)选择一个m的值,使得方程至少有一个正整数根,并求出此时方程的根.【分析】(1)先计算根的判别式的值得到Δ>0,从而利用根的判别式的意义得到结论;(2)m可以取0,然后利用直接开平方法解方程.【解答】(1)证明:∵Δ=(﹣2m)2﹣4(m2﹣4)=16>0,∴该方程总有两个不相等的实数根;(2)解:当m=0时,方程化为x2﹣4=0,解得x1=2,x2=﹣2.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.【变式5-1】(2023•门头沟区二模)已知关于x的一元二次方程x2﹣2kx+k2﹣1=0.(1)求证:方程有两个不相等的实数根;(2)如果此方程的一个根为1,求k的值.【分析】(1)通过计算根的判别式进行推理证明;(2)将x=1代入该方程,通过求解关于k的一元二次方程进行求解.【解答】(1)证明:∵a=1,b=﹣2k,c=k2﹣1,∴b2﹣4ac=(﹣2k)2﹣4×1×(k2﹣1)=4k2﹣4k2+4=4>0,∴方程有两个不相等的实数根;(2)由题意得12﹣2k×1+k2﹣1=0,整理,得k2﹣2k=0,解得k1=0,k2=2,∴k的值为0或2.【点评】此题考查了一元二次方程的求解和根的判别式的应用能力,关键是能准确理解并运用以上知识进行正确地求解.【变式5-2】(2023•工业园区一模)已知关于x的一元二次方程x2﹣2mx+2m﹣1=0.(1)若该方程有一个根是x=2,求m的值;(2)求证:无论m取什么值,该方程总有两个实数根.【分析】(1)直接把x=2代入到原方程中得到关于m的方程,解方程即可得到答案;(2)根据一元二次方程根的判别式进行求解即可.【解答】解:(1)∵关于x的一元二次方程x2﹣2mx+2m﹣1=0的一个根为x=2,∴22﹣4m+2m﹣1=0,∴m=3 2;(2)证明:由题意得,Δ=b2﹣4ac=(﹣2m)2﹣4(2m﹣1)=4m2﹣8m+4=4(m﹣1)2≥0,∴无论m取什么值,该方程总有两个实数根.【点评】本题主要考查了一元二次方程的解和根的判别式,对于一元二次方程ax2+bx+c=0(a≠0),若Δ=b2﹣4ac>0,则方程有两个不相等的实数根,若Δ=b2﹣4ac=0,则方程有两个相等的实数根,若Δ=b2﹣4ac<0,则方程没有实数根;一元二次方程的解是使方程左右两边相等的未知数的值.【变式5-3】(2023•大兴区二模)已知关于x的方程x2﹣(m+4)x+4m=0.(1)求证:该方程总有两个实数根;(2)若该方程有一个根小于1,求m的取值范围.【分析】(1)证明Δ≥0即可;(2)先求出方程的解,再根据题意得出答案即可.【解答】(1)证明:∵Δ=b2﹣4ac=[﹣(m+4)]2﹣4×4m=m2﹣8m+16=(m﹣4)2≥0,∴此方程总有两个实数根.(2)解:用因式分解法解此方程x2﹣(m+4)x+4m=0,可得(x﹣4)(x﹣m)=0,解得x1=4,x2=m,若该方程有一个根小于1,则m<1.【点评】本题考查了一元二次方程ax2+bx+c=0根的判别式,用到的知识点:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.【变式5-4】(2023•顺义区二模)已知关于x的方程x2﹣bx+2b﹣4=0.(1)求证:方程总有两个实数根;(2)若b为正整数,且方程有一个根为负数,求b的值.【分析】(1)证明Δ≥0即可;(2)先求出方程的解,再根据题意得出答案即可.【解答】(1)证明:∵Δ=(﹣b)2﹣4×(2b﹣4)=b2﹣8b+16=(b﹣4)2.∵(b﹣4)2≥0,∴方程总有两个实数根.(2)解:用因式分解法解此方程x2﹣bx+2b﹣4=0,可得(x﹣2)(x﹣b+2)=0,解得x1=2,x2=b﹣2,若方程有一个根为负数,则b﹣2<0,故b<2,∵b为正整数,∴b=1.【点评】本题考查了一元二次方程ax2+bx+c=0根的判别式,用到的知识点:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.【变式5-5】(2022春•通州区期末)已知关于x的一元二次方程(a﹣1)x2+(2a+1)x+2=0.(1)求证:此方程一定有两个不相等的实数根;(2)如果这个方程根的判别式的值等于9,求a的值.【分析】(1)表示出根的判别式,判断其值大于0即可得证;(2)表示出根的判别式,让其值为9求出a的值即可.【解答】(1)证明:∵Δ=(2a+1)2﹣8(a﹣1)=4a2+4a+1﹣8a+8=4a2﹣4a+1+8=(2a﹣1)2+8,∵(2a﹣1)2≥0,∴Δ=(2a﹣1)2+8>0,∴此方程一定有两个不相等的实数根;(2)解:∵Δ=(2a﹣1)2+8=9,∴(2a﹣1)2=1,解得:a1=0,a2=1,∵a≠1,∴a=0.【点评】此题考查了根的判别式,以及一元二次方程的定义,熟练掌握根的判别式与根的情况之间的关系是解本题的关键.【例题6】(2023•新乡三模)对于实数a,b定义运算“※”为a※b=b2﹣ab,例如3※2=22﹣3×2=﹣2.若关于x的方程3※x=﹣m没有实数根,则m的值可以是( )A.3B.2C.1D.0【分析】直接利用已知运算公式得出一元二次方程,再利用根的判别式得出m的取值范围,进而得出答案.【解答】解:3※x=﹣m,则x2﹣3x=﹣m,故x2﹣3x+m=0,∵关于x的方程3※x=﹣m没有实数根,∴Δ=b2﹣4ac=9﹣4m<0,解得:m>9 4,∴m的值可以是3.故选:A.【点评】此题主要考查了根的判别式,正确得出m的取值范围是解题关键.【变式6-1】(2023•内乡县三模)定义运算:a※b=a2+ab,例如,2※2=22+2×2=8,若方程x※3=﹣m 有两个不相等的实数根,则m的值可以为( )A.2B.3C.4D.5【分析】先根据新定义得到x2+3x=﹣m,再把方程化为一般式得到x2+3x+m=0,接着根据根的判别式的意义得到Δ=32﹣4m>0,然后解不等式得到m的取值范围,从而可对各选项进行判断.【解答】解:∵x※3=﹣m,∴x2+3x=﹣m,即x2+3x+m=0,∵方程有两个不相等的实数根,∴Δ=32﹣4m>0,解得m<9 4,∴m的值可以为2.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.也考查了实数的运算.【变式6-2】(2023•枣庄二模)定义新运算a*b,对于任意实数a,b满足a*b=(a+b)(a﹣b)﹣1,其中等式右边是通常的加法、减法、乘法运算,例如4*3=(4+3)(4﹣3)﹣1=7﹣1=6,若x*k=x(k为实数)是关于x的方程,则它的根的情况是( )A.有一个实根B.有两个不相等的实数根C.有两个相等的实数根D.没有实数根【分析】先根据新定义得到(x+k)(x﹣k)﹣1=x,再把方程化为一般式,接着计算根的判别式的值得到Δ=4k2+5>0,然后根据根的判别式的意义对各选项进行判断.【解答】解:根据题意得(x+k)(x﹣k)﹣1=x,整理得x2﹣x﹣k2﹣1=0,∵Δ=(﹣1)2﹣4×1×(﹣k2﹣1)=4k2+5>0,∴方程有两个不相等的实数根.故选:B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.【变式6-3】(2023•平顶山二模)定义运算:a※b=a2b+ab﹣1,例如:2※3=22×3+2×3﹣1=17,则方程x※1=0的根的情况为( )A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根【分析】利用新定义得到x2+x﹣1=0,然后利用Δ>0可判断方程根的情况.【解答】解:由新定义得:x2+x﹣1=0,∵Δ=12﹣4×1×(﹣1)=5>0,∴方程有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.【变式6-4】(2023•息县一模)定义新运算:a◎b=ab﹣b2,例如1◎2=1×2﹣22=2﹣4=﹣2,则方程2◎x=5的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.只有一个实数根【分析】先根据定义得到关于x的一元二次方程,然后计算一元二次方程的判别式即可得解.【解答】解:方程2◎x=5化为2x﹣x2=5,一元二次方程化为一般式为x2﹣2x+5=0,∵Δ=(﹣2)2﹣4×1×5=﹣16<0,∴方程没有实数根.故选:C.【点评】本题考查新定义下的方程应用,熟练掌握所给定义的应用、一元二次方程根的判别式的计算及应用是解题关键.【变式6-5】定义新运算:对于任意实数,a、b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5(1)求x⊕(﹣4)=6,求x的值;(2)若3⊕a的值小于10,请判断方程:2x2﹣bx﹣a=0的根的情况.【分析】(1)根据新定义运算以及一元二次方程的解法即可求出答案.(2)先求出a的范围,然后根据判别式即可求出答案.【解答】解:(1)∵x⊕(﹣4)=6,∴x[x﹣(﹣4)]+1=6,∴x2+4x﹣5=0,解得:x=1或x=﹣5.(2)∵3⊕a<10,∴3(3﹣a)+1<10∴10﹣3a<10∴a>0,∴Δ=(﹣b)2+8a=b2+8a>0,所以该方程有两个不相等的实数根.【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.【变式6-6】(2022•石家庄模拟)定义新运算:对于任意实数m、n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3☆2=(﹣3)2×2+2=20.根据以上知识解决问题:(1)x☆4=20,求x;(2)若2☆a的值小于0,请判断方程:2x2﹣bx+a=0的根的情况.【分析】(1)根据已知公式得出4x2+4=20,解之可得答案;(2)由2☆a的值小于0知22a+a=5a<0,解之求得a<0.再在方程2x2﹣bx+a=0中由Δ=(﹣b)2﹣8a≥﹣8a>0可得答案.【解答】解:(1)∵x☆4=20,∴4x2+4=20,即4x2=16,解得:x1=2,x2=﹣2;(2)∵2☆a的值小于0,∴22a+a=5a<0,解得:a<0.在方程2x2﹣bx+a=0中,Δ=(﹣b)2﹣8a≥﹣8a>0,∴方程2x2﹣bx+a=0有两个不相等的实数根.【点评】本题主要考查根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:①当Δ>0时,方程有两个不相等的两个实数根;②当Δ=0时,方程有两个相等的两个实数根;③当Δ<0时,方程无实数根.【例题7】(2023•宁南县模拟)已知等腰三角形ABC的一边长a=6,另外两边的长b,c恰好是关于x的一元二次方程x2﹣(3k+3)x+9k=0的两个根,则△ABC的周长为 .【分析】分a=6为腰和a=6为底边两种情况分类讨论即可确定三角形的周长,注意运用三边关系进行验证.【解答】解:若a=6为腰,则b、c中还有一腰,即6是方程x2﹣(3k+3)x+9k=0的一个根,∴36﹣6(3k+3)+9k=0,∴k =2,这时方程为x 2﹣9x +18=0,其根为3、6,∴△ABC 的周长为6+6+3=15;若a =6为底,则b =c ,即方程x 2﹣(3k +3)x +9k =0有两个相等的实根,∴Δ=[﹣(3k +3)]2﹣4×9k =0,解得:k =1,这时方程为x 2﹣6x +9=0,∴x 1=x 2=3,但3+3=6不能围成三角形,综上可得:△ABC 的周长为15.故答案为:15.【点评】本题考查的是一元二次方程根的判别式及三角形的三边关系,在解答(2)时要注意分类讨论,不要漏解.【变式7-1】(2022春•双流区期末)已知等腰△ABC 的底边长为3,两腰长恰好是关于x 的一元二次方程14kx 2―(k 3)x 2+3=0的两根,则△ABC 的周长为 .【分析】由题意知方程14kx 2―(k 3)x 2+3=0有两个相等的实数根,据此得出k 的值,再利用三角形的周长公式可得答案.【解答】解:由题意知方程14kx 2―(k 3)x 2+3=0有两个相等的实数根,∴Δ=(―k 32)2﹣4×14k ×3=0,。
可化为一元二次方程的分式方程
(x 1)(x-1) x 1
出现增根 x 1,求k的值
验根方法: 在保证解对方程的前提下,将根
直接代入最简公分母(即去分母时两 边同乘的代数式)。
使最简公分母值为0的根是增根,要舍去。 使最简公分母值不为0的根是原方程的根。
解方程: x 2 6 ;
x 1 x 3
解可化为一元二次方程的分式方程的一般步骤是: (1)去分母(同乘最简公分母); (2)解整式方程; (3)检验(代入最简公分母;结合实际意义); (4)写出原方程的根.
可化为一元二次方程 的分式方程
二、新课学习
复习概念:
如果方程中只含分式和整式,且分母中 含有未知数,那么这个方程叫做分式方程.
解分式方程的基本思想:转化 分式方程 转化 整式方程
练习1: 下列方程中哪些是分式方程? 哪些是可化为一元二次方程的分式方程?
(1) 2 3, x 1
(3) x 2 , 2x
(2) 1 3 , x x 1
(4)
பைடு நூலகம்
x x 1
2 x2 1
答: (1),(2),(4)是分式方程, (3)是分式,不是方程. (4)是可化为一元二次方程的分式方程.
解方程: 2 3 x 1
问1:为什么要检验? 问2:如何检验? 问3:解可化为一元一次方程的分式 方程的一般步骤为:
1、去分母,将分式方程化为整式方程; 2、解整式方程; 3、检验所得解是否为原方程的根; 4、写出原方程的根.
分析:原定人均捐款(元) — 实际人均捐款(元)=30(元)
解:设实际共有x人参加捐款,则原定(x-2)人参加
依题意得方程: 1200 — 1200 30
x2
x
方程两边同乘 x(x - 2)
小学一元二次解方程10题
小学一元二次解方程10题
以下是10道适合小学生解答的一元二次方程题目:
1.解方程:x2−4x+4=0。
2.解方程:2x2−5x−3=0。
3.解方程:x2−6x+9=0。
4.解方程:3x2−4x−4=0。
5.解方程:x2+2x−8=0。
6.解方程:4x2−4x+1=0。
7.解方程:x2−8x+16=0。
8.解方程:x2+6x+9=0。
9.解方程:x2−10x+25=0。
10.解方程:2x2+3x−2=0。
这些题目都是一元二次方程的标准形式ax2+bx+c=0,其中a,b,c是常数,
且a=0。
学生需要首先识别出a,b,c的值,然后计算判别式Δ=b2−4ac,最后使用求根公式x=2a−b±Δ来求解方程。
这些题目旨在帮助学生熟悉一元二次方程的解法,并培养他们的代数运算和问题解决能力。
通过练习这些题目,学生可以逐渐掌握一元二次方程的解法,并为后续学习更复杂的数学知识打下基础。
专题 一元二次方程的应用(2)(学生版)
专题06一元二次方程的应用(2)题型一结合几何图形1.工人师傅给一幅长为120cm,宽为40cm的矩形书法作品装裱,作品的四周需要留白如图所示,已知左、右留白部分的宽度一样,上、下留白部分的宽度也一样,而且左侧留白部分的宽度是上面留白部分的宽度的2倍,使得装裱后整个挂图的面积为7000cm2,设上面留白部分的宽度为xcm,可列得方程为.2.如图,要设计一幅宽20cm,长30cm的图案,其中有两横两竖的彩条,各彩条的宽度相等,如果要使彩条所占面积是图案面积的六分之一.设彩条的宽为xcm,根据题意可列方程()A.(20﹣2x)(30﹣2x)=20×30×B.(20﹣2x)(30﹣2x)=20×30×(1﹣)C.(20﹣x)(30﹣x)=20×30×D.(20﹣x)(30﹣x)=20×30×(1﹣)3.如图,从一块矩形铁片中间截去一个小矩形,使剩下部分四周的宽度都等于x,且小矩形的面积是原来矩形面积的一半,则x的值为.4.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为m.5.用54m长的竹栅栏围一个矩形菜园,菜园的一边靠长为am的墙,另三边用竹栅栏围成,且在与墙平行的一边开两扇门,宽度都是1m,设与墙垂直的一边长为xm.(1)当a=41时,矩形菜园面积是320m2,求x;(2)当a足够大时,问矩形菜园的面积能否达到400m2?(3)若矩形菜园的面积是320m2,x的值只能取一个,试写出a的取值范围.6.如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某点时刻,使得△PCQ的面积等于△ABC的面积的一半?若存在,求出运动的时间;若不存在,说明理由.7.△ABC中,∠B=90°,AB=5cm,BC=6cm,点P从点A开始沿边AB向终点B以1cm/s的速度移动,与此同时,点Q从点B开始沿边BC向终点C以2cm/s的速度移动.如果P、Q分别从A、B同时出发,当点Q 运动到点C时,两点停止运动.设运动时间为t秒.(1)填空:BQ=,PB=(用含t的代数式表示);(2)当t为何值时,PQ的长度等于5cm?(3)是否存在t的值,使得△PBQ的面积等于4cm2?若存在,请求出此时t的值;若不存在,请说明理由.8.如图:在RT△ABC中,∠C=90°,AC=6cm,BC=8cm,(1)点P、Q同时由A、B两点出发,分别沿AC、BC的方向匀速运动,当点P到达点C则停止运动,它们的速度都是每秒1cm.求几秒后△PCQ的面积等于△ABC面积的一半?(2)点P由A出发,沿AC方向匀速运动,当点P到达点C则停止运动,点Q同时由C出发,沿CB方向匀速运动,它们的速度都是每秒1cm.求几秒后△PCQ的面积等于△ABC面积的?9.如图所示,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m),另外三边利用学校现有总长38m的铁栏围成.(1)若围成的面积为180m2,试求出自行车车棚的长和宽;(2)能围成的面积为200m2自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.10.如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,同时点Q从点B开始沿BC这向点C以2cm/s的速度移动.当一个点到达终点时另一点也随之停止运动,运动时间为x秒(x>0)(1)求几秒后,PQ的长度等于5cm;(2)运动过程中,△PQB的面积能否等于8cm2?说明理由.11.双流空港花田需要绿化的面积为52000米2,施工队在绿化了28000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中,如图有长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC上用其他材料造了宽为1米的两个小门,此时花圃的面积刚好为45米2,求此时花圃的长和宽.12.如图,在长方形ABCD中,AB=10厘米,BC=6厘米,点P沿AB边从点A开始向点B以3厘米/秒的速度移动;点Q沿DA边从点D开始向点A以2厘米/秒的速度移动,如果P、Q同时出发,用t(秒)表示移动的时间,那么:(1)如图1,用含t的代数式表示AP=,AQ=,并求出当t为何值时线段AP=AQ.(2)如图2,在不考虑点P的情况下,连接QB,问:当t为何值时△QAB的面积等于长方形面积的.题型二销售利润问题13.某餐厅主营盒饭业务,每份盒饭的成本为12元.若每份盒饭的售价为16元,每天可卖出360份.市场调查反映:如调整价格,每涨价1元,每天要少卖出40份.若该餐厅想让每天盒饭业务的利润达到1680元,设每份盒饭涨价x元,则符合题意的方程是()A.(16+x﹣12)(360﹣40x)=1680B.(x﹣12)(360﹣40x)=1680C.(x﹣12)[360﹣40(x﹣16)]=1680D.(16+x﹣12)[360﹣40(x﹣16)]=168014.某商品进价为每件40元,现售价为每件60元,每星期可卖出300件,经市场调查反映,每次涨价1元,每星期可少卖10件.(1)在一个星期内要想获利6090元的利润,尽量减少库存,该商品应涨价多少元;(2)在一个星期内能否获利7000元,若能,请求出商品的定价,若不能,请说明理由.15.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?16.3月20号上午,2021合肥蜀山区桃花文化节在小庙镇结义桃园景区开幕,开幕的当天吸引了大批市民前来赏花、踏青、摄影,感受大自然的魅力.一花卉商户购进了一批单价为50元的盆景,如果按每盆60元出售,可销售800盆,如果每盆提价0.5元出售,其销售量就减少10盆,现在要获利12000元,且销售成本不超过24000元,问这种盆景销售单价确定多少?这时应进多少盆盆景?17.2020年1月底,武汉爆发“新冠”疫情后,口罩成为家庭必需品,某口罩经销商批发了一批口罩,进货单价为每盒50元,若按每盒60元出售,则可销售80盒.现准备提价销售,经市场调研发现:每盒每提价1元,销量就会减少2盒,为保护消费者利益,物价部门规定,销售利润不能超过50%,设该口罩售价为每盒x(x>60)元.(1)用含x的代数式表示提价后平均每天的销售量为盒;(2)现在预算要获得1200元利润,应按每盒多少元销售?18.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若销售单价降低5元,那么平均每天销售数量为多少件?(2)若该商店每天销售利润为1200元,问每件商品可降价多少元?19.直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.(1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?(2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售?20.列方程(组)解应用题端午节期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:小王:该水果的进价是每千克22元;小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低3元,每天的销售量将增加120千克.根据他们的对话,解决下面所给问题:超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果的销售价为每千克多少元?21.超市销售某种儿童玩具,经市场调查发现,每件利润为40元时,每天可售出50件;销售单价每增加2元,每天销售量会减少1件.物价管理部门规定,该种玩具每件利润不得超过60元.设销售单价增加x元,每天可售出y件.(1)写出y与x之间的函数关系式:(不要求写出自变量取值范围);(2)当x取何值时,超市每天销售这种玩具可获得利润2250元?此时每天可销售多少件?22.某农科所研究出一种新型的花生摘果设备,一期研发成本为每台6万元,该摘果机的销售量y(台)与售价x(万元/台)之间存在函数关系:y=﹣x+24.(1)设这种摘果机一期销售的利润为W1(万元),问一期销售时,在抢占市场份额(提示:销量尽可能大)的前提下利润达到32万元,此时售价为多少?(2)由于环保局要求该机器必须增加除尘设备,科研所投入了7万元研究经费,使得环保达标且机器的研发成本每台降低了1万元,若科研所的销售战略保持不变,请问在二期销售中利润达到63万元时,该机器单台的售价为多少?23.某商店销售一款工艺品,每件的成本是30元,为了合理定价,投放市场进行试销:据市场调查,销售单价是40元时,每天的销售量是80件,而销售单价每提高1元,每天就少售出2件,但要求销售单价不得超过55元.(1)若销售单价为每件45元,求每天的销售利润;(2)要使每天销售这种工艺品盈利1200元,那么每件工艺品售价应为多少元?24.某工厂设计了一款成本为20元/件的工艺品投放市场进行试销,经过调查,得到如下数据:销售单价x(元∕件)…30405060…每天销售量y(件)…500400300200…(1)研究发现,每天销售量y与单价x满足一次函数关系,求出y与x的关系式;(2)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润8000元?11。
02一元二次方程的应用-学生版
教学辅导教案1.用适当的方法解方程:(1)2(x+2)2﹣8=0;(2)x(x﹣3)=x;(3)x2=6x﹣;(4)(x+3)2+3(x+3)﹣4=0.2.已知关于x的方程(a2﹣1)x2+(1﹣a)x+a﹣2=0(1)当a为何值时,该方程为一元二次方程?(2)当a为何值时,该方程为一元一次方程?3.解方程,有一位同学解答如下:解:这里a=,b=,c=∴b2﹣4ac=(﹣∴=∴第1页共14页请你分析以上解答有无错误,如有错误,指出错误的地方,并写出正确的结果.1.新苑小区的物业管理部门为了美化环境在小区靠墙的一侧设计了一块长方形花圃(如图所示),墙长25,花圃三边外围用篱笆围起,栽上花,共用篱笆40.(1)花圃的面积能达到200 m2吗?(2)花圃的面积能达到250 m2吗?(3)你能根据所学的知识求出花圃的最大面积吗?此时,篱笆该怎样围?2.如图,某中学为方便师生活动,准备在长30m、宽20m的矩形草坪上修筑两横两纵四条小路,横、纵路的宽度之比为3:2,若要使余下的草坪面积是原来草坪面积的,则路宽分别为多少?3.有﹣块长32cm,宽14cm的矩形铁皮.(1)如图1,如果在铁皮的四个角裁去四个边长一样的正方形后,将其折成底面积为280cm2的无盖长方体盒子,求裁去的正方形的边长.(2)由于需要,计划制作一个有盖的长方体盒子,为了合理利用材料,某学生设计了如图2的裁剪方案,阴影部分为裁剪下来的边角料,其中左侧的两个阴影部分为正方形,问能否折出底面积为180的有盖盒子?如果能,请求出盒于的体积;如果不能,请说明理由.4.如图所示,在菱形ABCD中,AC,BD交于点O,AB=15,AO=12,P从A出发,Q从O出发,分别以2cm/s和1cm/s的速度各自向O,B点运动,当运动时间为多少秒时,四边形BQP A的面积是∴POQ面积的8倍.8.某旅游团结束时,其中一个游客建议大家互相握手言别,细心的小明发现,每两个参加旅游的人互握一次手,共握了66次手,问这次旅游的游客人数是多少?【几何方面应用】1.有一块长为a,宽为b的长方形铝片,四角各截去一个相同的边长m的正方形,折合成一个没有盖的盒子,则此盒子的容积v的表达式应该为()A.v=m2(a﹣m)(b﹣m)B.v=m(a﹣m)(b﹣m)C.v=m(a﹣2m)(b﹣2m)D.v=m(a﹣2m)(b﹣2m)2.从一块长30cm,宽12cm的长方形薄铁皮的四个角上,截去四个相同的小正方形,余下部分的面积为296cm2,则截去小正方形的边长为()A.1cm B.2cm C.3cm D.4cm3.三角形一边的长是该边上高的2倍,且面积是32,则该边的长是()A.8B.4C.4D.84.某工厂计划在长24米、宽20米的空地中间划出一块32平方米的长方形建一住房,并且四周剩余空地一样宽,那么这宽度应是()A.14米B.8米C.14米或8米D.以上都不对5.如图所示,把底面直径为60mm米,高为200mm的圆柱形钢材,锻压成底面为正方形,高为157mm的长方体零件毛坯,那么零件毛坯的底面正方形的边长为()(π取3.14)A.30mm B.40mm C.50mm D.60mm6.如图所示,使用墙的一边,再用13m的竹篱笆围三边,围成一个面积为20m2矩形,设墙的对边长为xm,可得长,宽分别为()A.5m,4m B.5m,4m或8m,mC.m,8m D.m,5m7.一块面积为600平方米的长方形土地,它的长比宽多10米,求长方形的长与宽,若设长方形的长为x米,则它的宽为米,根据题意的方程为.8.如图,在Rt∴ABC中,∴C=90°,点P以1cm/s的速度由点A向终点C运动,点Q以2cm/s的速度由点C向终点B运动,当其中一点到达自己的终点时,另一点随之停止运动.现已知AC=12cm,BC=9cm,设运动了t秒时,S∴PQC=S∴ABC,则t的值为.9.如图所示,要用防护网围成长方形花坛,其中一面利用现有的一段墙,且在与墙平行的一边开一个2米宽的门,现有防护网的长度为91米,花坛的面积需要1080平方米,若墙长50米,求花坛的长和宽.(1)一变:若墙长46米,求花坛的长和宽;(2)二变:若墙长40米,求花坛的长和宽;(3)通过对上面三题的讨论,你觉得墙长对题目有何影响?10.如图,在梯形ABCD中,AD∴BC,∴C=∴D=90°,BC=16,CD=12,AD=21.动点P从点D出发,沿线段DA的方向以每秒2个单位长度的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长度的速度向点B运动.点P,Q分别从点D,C同时出发,当点P运动到点A时,点Q随之停止运动.设运动时间为t(s),当t 为何值时,以B,P,Q三点为顶点的三角形为等腰三角形?【代数方面应用】1.某种商品经过两次降价,由每件100元降低了19元,则平均每次降价的百分率为()A.9%B.9.5%C.8.5%D.10%2.某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元.为了促进销售,增加盈利,尽量减少库存,商场决定适当地降价,若每件衬衫每降价1元,商场平均每天 多销售出2件,若商场平均每天要盈利1200元,每件衬衫应降价( )元.A .10B .20C .10或20D .无法确定3.某种商品经过两次降价后,由原来价格10元降到现在价格8.1元,则这种商品平均每次降价的百分率为( )A .10%B .25%C .80%D .90%4.某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克).现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量的增长率的.则新品种花生亩产量的增长率为( )A .20%B .30%C .50%D .120%5.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x 人参加这次聚会,则列出方程正确的是( )A.x (x ﹣1)=10B.102)1(=-x xC.x (x +1)=10 D .102)1(=+x x 6.在一次篮球联赛中,每个小组的各队都要与同组的其他队比赛两场,然后决定小组出线的球队。
一元二次方程的四种形式
一元二次方程是数学中的重要概念,它常常让我们头疼不已。
但是,不要害怕!今天我要教你如何轻松地解决一元二次方程。
而我们首先需要了解的是一元二次方程的四种形式。
形式一:标准形式这种形式的方程长得像这样:ax^2 + bx + c = 0。
其中a、b、c是常数,而x 则是未知数。
这个方程长得比蚯蚓还要细,但是它也有它的好处。
比如,如果你知道了a、b、c的值,那么你就可以直接套用公式求解,得到方程的根。
举个例子,如果你想解决方程x^2+4x-5=0,你可以使用配方法,把它变成(x+5)(x-1)=0,从而得到x=-5和x=1形式二:顶点形式这种形式的方程长得像这样:a(x - h)^2 + k = 0。
其中a、h、k是常数,而x 仍然是未知数。
这个方程看起来和标准形式有点像,但是它告诉我们方程的顶点坐标(h, k),这样我们就可以直观地了解方程的性质。
比如说,如果你有一个方程2(x-3)^2+4=0,它的顶点就是(3,4),并且它的对称轴是x=3。
解这个方程,我们得到x=3。
形式三:交点形式这种形式的方程长得像这样:(x - p)(x - q) = 0。
其中p、q是常数,而x仍然是未知数。
这个方程告诉我们方程的两个根p、q,但是我们并不知道这两个根具体是多少。
不过没关系,我们可以用因式分解法来求解。
比如说,如果你有一个方程3(x-2)(x+1)=0,我们可以通过因式分解得到x=2和x=-1。
形式四:一般形式这种形式的方程长得像这样:y = ax^2 + bx + c。
其中a、b、c是常数,而y、x仍然是未知数。
这个方程看起来和标准形式有点像,但是它告诉我们方程的解并不一定是实数,可能是负数。
所以,如果你遇到了一般形式的方程,就要注意方程的解是否符合要求。
例如,如果你有一个方程(x-4)^2=9,你就可以得到x=1和x=7。
那么,以上四种形式的一元二次方程,我们都可以通过不同的方法来解决它们。
对于一般形式的方程,我们可以使用配方法来解决它们。
一元二次方程及其应用(学生版)
一元二次方程及其应用(学生版)7.(房山) 抛物线22y x x m =-+与x 轴有两个交点,则m 的取值范围为A .1m >B .=1mC . 1m <D .4m <22.(门头沟)如果抛物线2224y x x k =++-与x 轴有两个不同的公共点.(1)求k 的取值范围;(2)如果k 为正整数,且该抛物线与x 轴的公共点的横坐标都是整数,求k 的值. 6.(平谷)若二次函数y =kx 2﹣4x +1的图象与x 轴有交点,则k 的取值范围是 (A )k ≤4 (B )k ≥4 (C )k >4且k ≠0 (D )k ≤4且k ≠016.(平谷)右图是,二次函数24y x x =-+的图象,若关于x 的一元二次方程240x x t -+-= (t 为实数)在1<x <5的范围内有解,则t 的取值范围是 .26256x m x m --+-+().(1)求证:该抛物线与x 轴总有交点;(2)若该抛物线与x 轴有一个交点的横坐标大于3且小于5,求m 的取值范围;(3)设抛物线256y x m x m =--+-+()与y 轴交于点M ,若抛物线与x 轴的一个交点关 于直线y x =-的对称点恰好是点M ,求m 的值.6.(昌平)若函数22y x x m =++的图象与x 轴没有交点,则m 的取值范围是(A )m >1 (B )m <1 (C )m ≤1 (D ) m =125. (通州)在平面直角坐标系xOy 中,抛物线()240y ax ax m a =-+≠与x 轴的交点为A 、B ,(点A 在点B 的左侧),且AB =2.(1)求抛物线的对称轴及m 的值(用含字母a 的代数式表示);(2)若抛物线()240y ax ax m a =-+≠与y 轴的交点在(0,-1)和(0,0)之间,求a的取值范围;(3)横、纵坐标都是整数的点叫做整点.若抛物线在点A ,B 之间的部分与线段AB 所围成的区域内(包括边界)恰有5个整点,结合函数的图象,直接写出a 的取值范围.3.(海淀)方程230x x -+=的根的情况是A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根19.(海淀)已知x n =是关于x 的一元二次方程2450m x x --=的一个根,若246mn n m -+=,求m 的值.10.(朝阳)若一元二次方程22(1)310k x x k -++-=有一个解为0x =,则k =_____.20.(朝阳)已知:关于x 的方程 22(21)10x k x k +++-=有两个不相等的实数根.(1)求实数k 的取值范围;(2)若k 为负整数,求此时方程的根.24.(朝阳)可以用如下方法估计方程22100x x +-=的解:当x =2时,2210x x +-=-2<0,当x =-5时,2210x x +-=5>0,所以方程有一个根在-5和2之间.(1)参考上面的方法,找到方程22100x x +-=的另一个根在哪两个连续整数之间;(2)若方程220x x c ++=有一个根在0和1之间,求c 的取值范围.13.(西城)如图,抛物线2y ax bx =+与直线y mx n =+相交于 点A (3-,6-),B (1,2-) ,则关于x 的方程2ax bx mx n +=+的解为 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
+
+
x x −
+
−
x
=
(2)
(x +) x +
+
(x x
+ ) +
=
2
模块三、可化为一元二次方程的绝对值方程
在遇到这种可转化为一元二次方程的绝对值方程时,通常有两种转化方法. 1.分类讨论法:遇到绝对值方程时,可以先去绝对值,而去绝对值,就意味着要分类讨论. 第一步,找出分段点,考虑当绝对值符号内的式子等于 0 时,x 的取值,由此划分 x 取值. 第二步,根据 x 取值讨论去绝对值,得到相应转化的一元二次方程. 第三步,用合适的方法求解,但是解得的解应该在讨论的 x 取值内. 第四步,依次写出满足绝对值方程的所有根. 2.整体换元法:在遇到一个特定的方程时,如果分类讨论,虽然可行但较为繁琐,可以考虑用整体换元法. 注意:在绝对值方程中,要记着考虑绝对值的非负性.
【针对训练 1】解方程: (1) x + x + x =
(2) (x − x − ) = x − x −
(3) ( − x) + (x −)=
1
模块二、可转化为一元二次方程的分式方程
在遇到这类可转化为一元二次方程的分式方程时,通常有两种转化方法.
1.去分母法:
在遇到分式方程时,往往先去分母,即通分然后求解.
诸葛亮听了非常高兴地说:“翼德要去的话,先帮我做一件事。”说着,写出一个方程 x(3x + 2) − 6(3x + 2) = 0 ,然后,问 张飞:“你会解这个方程吗?”张飞只扫了一眼,便兴冲冲的说:“小 case。”边说边开始写:移项,得 x(3x + 2) = 6(3x + 2) , 方程两边都除以 (3x + 2) ,得 x = 6 。写完后很得意的看着诸葛亮。诸葛亮微笑着摇摇头,说,:“这是一个一元二次方程,应 当有两个解,可另一个解跑哪里去了?”张飞顿时傻了眼,话说不出来,诸葛亮接着说:“对方程所进行的变形必须是恒等 变形,所得的解才能与原方程相适应,且不增不漏。你在方程两边除以含有未知数的代数式 (3x + 2) 时,无形中默认了 3x + 2 不等于 0,但实质上 3x + 2 有可能等于 0。
“哦,”张飞听完后一拍脑袋,恍然大悟,不好意思对诸葛亮说:“还是军师厉害啊。”这时,诸葛亮严肃的对张飞说: “子龙攻取桂阳时,是立下军令状的,为了防止你这次攻取武陵时再粗心大意,也必须先立下军令状,才能带兵去攻取”。
于是,张飞便立下军令状,领了三千将士离开了。
6
2.整体换元法:
在一个分式方程中,如果有的式子含有某种特殊的关系如倒数、几倍、差值为常数、或者和为常数的时候可以
考虑整体换元法,实现化简的目的.
注意:在分式方程中,不管用什么方法解出来,最后一定要验根,因为要使得分式方程有意义,分母不为 0,
在这个过程中可能产生增根.
【针对训练 2】解分式方程:
(1)
【针对训练 4-1】解方程:
(1) x + − x + =
(2) x + + x − = x
(3) x − − =
x−
【针对训练 4-2】解方程: x + x + + x − x + = x
4
1.解方程: (x + x +)(x + x) =
【课后作业】
2.(1)
x x
+ −x
−
x
=
x+ x −
(2)
−
x
−
=
x − x − x
3.(1)
x
x +
+
x
x +
+
=
(2)
(x x
+ x) −
+
(x −) x + x
=
(3)
x
−
x
+ x
=
x
−
4.解方程: (1) x − x + x − x + =
(2) x − 2x + 2x +2x − 29x+ = 5
5.解方程: x | x | −| x | + =
6.解方程:(1) x − + x + =
(2) + + x − = x x+
知
识
链
接
话说赵子龙计取桂阳之后,刘备重赏了赵云,这时,一边的张飞早以耐不住了,大叫道:“子龙立下了战功,我也不能做没用 之人啊。只要给我三千将士,让我去攻取武陵,定能把太守活捉回来。”
【针对训练 3】 (1)解方程 (x −) − | x −| + = .
(2)解方程:(1) x − | x −| − =
(2) (x − )(x + ) = + x
3
模块四、可转化为一元二次方程的根式方程
在遇到这类可转化为一元二次方程的根式方程时,通常有两种转化方法. 1.两边平方法:等式的两边同时平方,然后化简得到相应的一元二次方程. 2.整体换元法:在含根式方程的一个方程中,如果几个式子存在特殊的关系,可以考虑整体换元法. 特别注意:在根式中解的时候,解一定要使得根号下非负;在整体换元的时候要考虑到换的元的取值范围内, 在取值范围内的解才有意义,最后也要像分式方程那样进行验根.
重难点突破:可化为一元二次方程的其他方程
模块一、可化为一元二次方程的高次方程
在遇到这类可转化为一元二次方程的高次方程时,通常有两种转化方法. 1.因式分解法: 如果所遇到的高次方程可以因式分解成两个或者多个一元二次式或一元一次式的乘积的形式,可以用因式分解 法. 2.整体换元法: 在一个式子中要善于观察几个式子的关系,有某种特殊的关系如倒数、几倍、差值为常数、或者和为常数的, 可以用整体换元法,实现降次的目的.