高中数学必修三2.1.3分层抽样导学案
广东省惠阳区中山中学高中数学三导学案:2.1.3分层抽样
必修三:§2.1。
3分层抽样【自主学习】先学习课本P60-P62然后开始做导学案,记住知识梳理部分的内容;一、学习目标:1.理解分层抽样的概念;2。
会用分层抽样从总体中抽取样本.二、知识梳理:1.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫做层。
2。
分层抽样的步骤可概括为:(1)分层:将总体按某种特征分成若干部分;(2)确定比例:计算各层的个体数与总体的个体数的比;(3按抽样比确定每层抽取个体的个数(抽样比=错误!);(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.3.不放回抽样和放回抽样:在抽样中,如果每次抽出个体后不放回总体,称这样的抽样为不放回抽样;如果每次抽出个体后放回总体,称这样的抽样为放回抽样.(注意)随机抽样、系统抽样、分层抽样都是不放回抽样三、自我检测:1。
简单随机抽样、系统抽样、分层抽样之间的共同点是( )A.都是从总体中逐个取得B.将总体分成几部分,按事先规定的要求在各部分抽取C。
抽样过程中每个个体被抽到的机会相同D.将总体分成几层,分层进行抽取2。
(1)教育局督学组到学校检查工作,需在学号为0001~1000的高三年级的学生中抽20人参加学校管理的综合座谈会;(2)该校高三年级有1000名学生参加2014年新年晚会,要产生20名“幸运之星”;(3)该校高三年级1000名学生一模考试的数学成绩有240人在120分以上(包括120分),600人在120分以下,90分以上(包括90分),其余在90分以下,现欲从中抽取20人研讨进一步改进数学教与学的座谈会.用如下三种抽样方法选取样本:①简单随机抽样;②系统抽样;③分层抽样.则以上三件事,最合理的抽样方法序号依次为__________3.甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个样本容量为90人的样本,应在这三校分别抽取学生()A.30人,30人,30人B.30人,45人,15人C.20人,30人,10人D.30人,50人,10人4.一批产品中,有一级品100个,二级品60个,三级品40个,请用抽样的方法中的,从这批产品中抽取一个容量为20的样本,各抽取多少?答案:1。
高中数学 2.1.3 分层抽样学案 苏教版必修3-苏教版高中必修3数学学案
2.1.3 分层抽样3.了解三种抽样方法的联系与区别 1.分层抽样的概念一般地,当总体由差异明显的几个部分组成时,为了使样本更客观地反映总体情况,我们常常将总体中的个体按不同的特点分成层次比较分明的几个部分,然后按各个部分在总体中所占的比实施抽样,这种抽样方法叫分层抽样,所分成的各个部分称为“层”.预习交流1分层抽样中要将总体层次分明的几个部分分层按比例抽取,其中“比例”一词如何理解?提示:可从两个方面理解:一是所抽样本中各层个体数之比与总体中各层个体数之比相同;二是每层所抽个体数与该层个体总数之比等于样本容量与总体容量之比.2.分层抽样的步骤(1)将总体按一定标准分层;(2)计算各层的个体数与总体的个体数的比;(3)按各层个体数占总体的个体数的比确定各层应抽取的样本容量;(4)在每一层进行抽样(可用简单随机抽样或系统抽样).注意:若按比例计算所得的个体数不是整数,可作适当的近似处理.预习交流2通过学习分层抽样的步骤,你能否总结分层抽样的特点?提示:(1)适用于总体由差异明显的几个部分组成的情况;(2)更充分地反映了总体的情况;(3)是一种等可能抽样,每个个体被抽到的可能性都相等;(4)是一种不放回抽样.系统抽样时,将总体分成均等的几部分,每部分抽取一个,符合分层抽样的特点,故系统抽样就是一种特殊的分层抽样,这种说法对吗?提示:不对.因为分层抽样是从各层独立地抽取个体,而系统抽样各段上抽取是按事先定好的规则进行的,各层编号有联系,不是独立的.故系统抽样不同于分层抽样.预习交流4(1)某学院有四个不同环境的生化实验室,分别养有18只、24只、54只、48只小白鼠供实验用.某项实验需抽取24只小白鼠.你认为最合适的抽样方法为__________.提示:不同环境下,四组小白鼠有明显的差异,故应用分层抽样选取样本.(2)某地区有300家商店,其中大型商店有30家,中型商店有75家,小型商店有195家.为了掌握各商店的营业情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的中型商店数是________.提示:各层次之比为30∶75∶195=2∶5∶13,所抽取的中型商店数是5.(3)某校有老师200人、男学生1 200人、女学生1 000人,现用分层抽样的方法从所有师生中抽取一个容量为n 的样本.已知女学生抽取的人数为80,则n =__________.提示:由题意知,每个人被抽到的可能性为801 000=225, 故n =(200+1 200+1 000)×225=192.一、分层抽样的概念判断下列对分层抽样的说法是否正确,并说明理由.(1)因为抽样在不同层内进行,所以不同层的个体被抽到的可能性不一样;(2)分层后,为确保公平性,在每层都应用同一抽样方法;(3)所有层用同一抽样比,且是等可能抽样;(4)所有层抽同样多容量的样本,且是等可能抽样.思路分析:判断依据是分层抽样的定义及操作步骤.解:(1)不正确.因为不同层内抽取的样本数是由该层个体数与总体数的比乘以样本容量得到的,所以每层抽取的个体数与该层个体总数比是一样的.所以对总体中每个个体而言,被抽取的可能性是一样的.(2)不正确.在每层可根据不同情况采用不同的抽样方法.(3)正确.(4)不正确.每层抽取的样本数不一定相同,与该层个体数和总体个体数的比有关.1.为了保证分层抽样时,每个个体等可能地被抽取,必须要求:①每层等可能抽样,但各层中的个体被抽取的可能性不同;②每层抽样的个体数相等;③每层抽取的个体可以不一样多,但必须满足抽取n i =n ×N i N(i =1,2,…,k )个个体(其中k 是层数,n 是抽取的样本容量,N i 是第i 层中个体的个数,N 是总体的容量); ④只要抽取的样本容量一定,每层抽取的个体数没有限制.其中正确的序号是__________.答案:③解析:由于每层的容量不一定相等,每层抽同样多的个体数,显然从整个总体来看,各层之间的个体被抽取的可能情况就不一样了,因此②不正确;而对于第i 层的每个个体,它被抽到的可能性与层数l 无关,即对于每个个体来说,被抽取的可能性是相同的,故①不正确,③正确;显然④不正确.2.将一个总体分为A ,B ,C 三层,其个体数之比为5∶3∶2,若用分层抽样方法抽取一个容量为100的样本,则应从C 层中抽取__________个个体.答案:20解析:C 层所占的比例为25+3+2=15,∴从C 层中抽取的个体数为100×15=20. 3.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工做样本.用系统抽样法:将全体职工随机按1~200编号,并按编号顺序平均分成40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________;若用分层抽样方法,则40岁以下年龄段应抽取__________人.答案:37 20解析:由分组可知,抽号的间隔为5.又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.因为40岁以下年龄段的职工人数为200×50%=100,所以应抽出40200×100=20(人).各部分之间有明显的差异是分层抽样的依据,至于各层内用什么方法抽样是灵活的,可采用简单随机抽样,也可采用系统抽样.分层抽样中,无论哪一层的个体,被抽中的机会均等,体现了抽样的公平性.二、分层抽样方案的设计一个单位有职工500人,其中不到35岁的有125人,35岁至50岁的有280人,50岁以上的有95人.为了了解这个单位职工与身体状态有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?思路分析:由本题的条件知需用分层抽样,进而考虑分层抽样的步骤进行抽取. 解:用分层抽样来抽取样本,步骤是:(1)分层:按年龄将500名职工分成三层:不到35岁的职工;35岁至50岁的职工;50岁以上的职工;(2)确定每层抽取个体的个数.抽样比为100500=15,则在不到35岁的职工中抽取125×15=25(人);在35岁至50岁的职工中抽取280×15=56(人); 在50岁以上的职工中抽取95×15=19(人); (3)在各层分别按抽签法或随机数表法抽取样本;(4)综合每层抽样,组成样本.1.(2012天津高考)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取__________所学校,中学中抽取__________所学校.答案:18 9解析:共有学校150+75+25=250所,∴小学中应抽取:30×150250=18所,中学中应抽取:30×75250=9所. 2.某校教职工中有老年人30人,中年人57人,青年人34人,为了调查他们身体状况的某项指标,需从他们中抽取一个容量为40的样本.下列抽样中正确的是__________.①简单随机抽样;②系统抽样;③分层抽样;④先从青年人中剔除1人,再用分层抽样.答案:④解析:由于老年人、中年人、青年人的身体状况存在着明显的差异,所以采用分层抽样较为合适,但由于按40121去分层无法满足,因此先从青年人中剔除1人再用分层抽样. 3.某单位有职工160名,其中管理人员16名,后勤人员24名,其余为业务人员.为了了解职工的某种情况,要从中抽取一个容量为20的样本,应如何抽样?写出抽样过程.解:由题意知,可用分层抽样方法抽取样本,业务人员有160-16-24=120(人). 抽样过程如下:(1)分层:分三层:业务人员、管理人员、后勤人员;(2)计算抽样比:抽样比为20160=18; (3)确定每层抽取的人数:业务人员:120×18=15(人);管理人员:16×18=2(人);后勤人员:24×18=3(人); (4)对各层采用简单随机抽样或系统抽样抽取样本.进行分层抽样时,应注意以下几点:(1)分层抽样中分多少层、如何分层要视具体情况而定,总的原则是,层内样本的差异要小,各层之间的样本差异要大,且互不重叠;(2)为了保证每个个体等可能入样,所有层应采用同一抽样比,等可能抽样;(3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样.三、三种抽样方法的综合应用选择合适的抽样方法,写出抽样过程.(1)高一(1)班有男生27人,女生23人,抽取5人;(2)高一(1)班有学生45人,高一(2)班有学生45人,抽取10人;(3)高一年级有500名学生,抽取10人;(4)高一年级有500名学生,抽取50人.思路分析:选择正确的抽样方法是解决本题的关键,应结合三种抽样方法的特点具体问题具体分析.解:(1)总体容量较小,用抽签法,抽样过程如下:①将50名学生编号,编号为1,2,3, (50)②将以上50个编号分别写在完全一样的小纸条上,揉成团,制成号签;③把号签放入一个不透明的容器中,充分搅匀,依次抽取5个号码,并记录上面的号码; ④找出和所得号码对应的学生即可得到样本.(2)总体由差异明显的两个层次组成,需选用分层抽样,抽样过程如下:①确定抽取个数,因为1090=19,所以高一(1)班应抽取5人,高一(2)班应抽取5人; ②用抽签法分别抽取高一(1)班学生5人,抽取高一(2)班学生5人,这10名学生便组成了我们要抽取的样本;(3)总体容量较大,样本容量较小,用随机数表法,抽样过程如下:①将500名学生用随机方式编号,编号为001,002, (500)②在随机数表中随机确定一个数作为开始,如第8行第29列的数“7”开始,任选一个方向作为读数方向,比如向右读;③从数“7”开始向右读,每次读三位,凡不在001~500中的数跳过去不读,遇到已经读过的数也跳过去不读,依次得到10个号码,这就是所要抽取的10个样本个体的号码.(4)总体容量与样本容量都较大,用系统抽样法,抽样过程如下:①将500名学生用随机方式编号,编号为001,002,…,500,并分成50段,每一段包含50050=10(个)个体;②在第一段001,002,…,010这10个号码中用简单随机抽样抽出一个号码(如003)作为起始号码;③将编号为003,013,023,…,493的个体抽出,即可组成所要抽取的样本.1.下列说法是简单随机抽样、系统抽样、分层抽样三者的共同特点的是__________. ①都是从总体中逐个抽取②将总体分成几部分,按预先设定的规则在各部分抽取③抽样过程中每个个体被抽到的机会相等④将总体分成几层,然后在各层按照比例抽取答案:③解析:抽样必须使样本具有代表性,无论哪种抽样方式每个个体被抽到的机会都相等.2.某高级中学有学生270人,其中一年级学生108人,二、三年级学生各81人.现要抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方法.使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270.使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,抽得的号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.下列关于上述样本的结论中,正确的序号是__________.(1)②③都不能为系统抽样(2)②④都不能为分层抽样(3)①④都可能为系统抽样(4)①③都可能为分层抽样答案:(4)解析:∵③能为系统抽样,∴(1)不正确;∵②能为分层抽样,∴(2)不正确;∵④不能为系统抽样,∴(3)不正确;由分层抽样的概念知(4)正确.抽样方法的选取方法:(1)若总体由差异明显的几个层次组成,则选用分层抽样;(2)若总体没有差异明显的层次,则考虑采用简单随机抽样或系统抽样;当总体容量较小时宜用抽签法;当总体容量较大,样本容量较小时宜用随机数表法;当总体容量较大,样本容量也较大时宜用系统抽样;(3)采用系统抽样时,当总体容量N 能被样本容量n 整除时,抽样间隔为k =N n ;当总体容量N 不能被样本容量n 整除时,先用简单随机抽样剔除多余个体,抽样间隔为k =⎣⎢⎡⎦⎥⎤N n .1.有以下两个问题:①某社区有1 000个家庭,其中高收入家庭250户,中等收入家庭560户,低收入家庭190户.为了解社会购买力的某项指标,要从中抽取一个容量为200的样本;②从20人中选6人参加座谈会.给出下列抽样方法:a .简单随机抽样b .系统抽样c .分层抽样其问题与抽样方法正确配对是__________.答案:①c,②a解析:①总体是由差异明显的几部分组成,应采用分层抽样;②总体中个数较少,样本中个体数也较少,应采用简单随机抽样.2.某课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8.若用分层抽样抽取6个城市,则丙组中应抽取的城市数为________.答案:2解析:抽样比为624=14,故在丙组中应抽取的城市数为8×14=2. 3.某超市有普通水果和无公害水果若干千克,现按5%的比例分层抽样,抽取了15千克普通水果,45千克无公害水果进行分析,则该超市共有水果__________千克.答案:1 200解析:该超市共有水果:(15+45)÷5%=1 200(千克).4.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是__________.答案:6解析:总体中共包含100种食品,样本容量为20,所以抽取的比例为20100=15. 所以,应抽取的植物油类食品为10×15=2(种),果蔬类食品为20×15=4(种),共6种. 5.某网站欲调查网民对当前网页的满意程度,在登录的所有网民中,收回有效帖子共50 000500份.为使样本更具有代表性,每类中各应抽取多少份?解:由于网民的态度有明显的差别,所以宜采用分层抽样,才能使意见更具有代表性. 根据条件易知抽取的比例为500∶50 000=1∶100,所以,“很满意”“满意”“一般”“不满意”应该分别抽取的份数为:10 800×1100=108,12 400×1100=124,15 600×1100=156,11 200×1100=112, 即“很满意”“满意”“一般”“不满意”应该分别抽取的份数为108,124,156,112.。
高中数学 第2章 统计 2-1-3 分层抽样学案 新人教A版必修3-新人教A版高一必修3数学学案
2.1.3 分层抽样1.理解分层抽样的基本思想和适用情形.2.掌握分层抽样的实施步骤.3.了解两种抽样方法的区别和联系.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(2)适用范围:当总体是由差异明显的几个部分组成时,往往采用分层抽样.1.分层抽样中的总体有什么特征?[提示]分层抽样中的总体是由差异明显的几部分组成.2.有人说系统抽样时,将总体分成均等的几部分,每部分抽取一个,符合分层抽样的概念,故系统抽样是一种特殊的分层抽样,对吗?[提示]不对.因为分层抽样是从各层独立地抽取个体,而系统抽样各段上抽取时是按事先定好的规则进行的,各层分段有联系,不是独立的,故系统抽样不同于分层抽样.3.判断正误.(正确的打“√”,错误的打“×”)(1)在统计实践中选择哪种抽样方法关键是看总体容量的大小.( )(2)分层抽样有时也需要剔除若干个个体,对这些个体来说是不公平的.( )(3)从全班50名同学中抽取5人调查作业完成情况适合用分层抽样.( )[提示](1)×在统计实践中选择哪种抽样方法除看总体和样本容量大小外,还要依据总体的构成情况.(2)×根据抽样的意义,对每个个体都是公平的.(3)×适合用简单随机抽样.题型一分层抽样概念的理解【典例1】分层抽样又称为类型抽样,即将相似的个体归入一类(层),然后每层各抽若干个个体构成样本,所以分层抽样为保证每个个体等可能入样,必须进行( ) A.每层内等可能抽样B.每层内不等可能抽样C.所有层用同一抽样比D.所有层抽同样多样本容量[解析]由分层抽样的概念知,所有层抽样比相同,且保证等可能入样.[答案] C分层抽样的依据(1)适用于总体由差异明显的几部分组成的情况.(2)样本能更充分地反映总体的情况.(3)等可能抽样,每个个体被抽到的可能性都相等.[针对训练1] 下列问题中,最适合用分层抽样方法抽样的是( )A.某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某乡农田有山地8000亩,丘陵12000亩,平地24000亩,洼地4000亩,现抽取农田480亩估计全乡农田平均产量D.从50个零件中抽取5个做质量检验[解析]A的总体容量较大,宜采用系统抽样方法;B的总体容量较小,用简单随机抽样法比较方便;C总体容量较大,且各类田地的产量差别很大,宜采用分层抽样方法;D与B类似.[答案] C题型二分层抽样的设计【典例2】某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工只能参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%;登山组的职工占参加活动总人数的14,且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取容量为200的样本.试求:(1)游泳组中,青年人、中年人、老年人分别所占的比例;(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.[解] (1)设登山组人数为x ,游泳组中青年人、中年人、老年人所占比例分别为a ,b ,c ,则有x ·40%+3xb 4x =47.5%,x ·10%+3xc 4x=10%, 解得b =50%,c =10%,故a =100%-50%-10%=40%,即游泳组中,青年人、中年人、老年人各占比例为40%,50%,10%.(2)游泳组中,抽取的青年人人数为200×34×40%=60; 抽取的中年人人数为200×34×50%=75; 抽取的老年人人数为200×34×10%=15. 即游泳组中,青年人、中年人、老年人分别应抽取的人数为60,75,15.分层抽样中每层抽取的个体数的确定方法(1)已知总体容量、样本容量及各层的个体数时,首先确定抽样比n N,其中N 为总体容量,n 为样本容量;然后确定每层抽取的个体的个数n i =N i ×n N,其中N i 为第i (i =1,2,…,k )层的个体数,n i 为第i 层应抽取的个体数.(2)已知各层个体数之比为m 1∶m 2∶…∶m k ,样本容量为n 时,每层抽取的个体数为n i =n ×m i m 1+m 2+…+m k (i =1,2,…,k ).[针对训练2] 某校共有学生2000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( )A.24 B[解析]依题意知,二年级的女生有380名,那么三年级学生的人数应该是2000-373-377-380-370=500,故在分层抽样中应在三年级抽取的学生人数为5002000×64=16.[答案] C题型三抽样方法的综合应用【典例3】某学校有职工140人,其中教师91人、教辅行政人员28人、总务后勤人员21人.为了解职工的某种情况,要从中抽取一个容量为20的样本.以下的抽样方法中,与方法1、方法2对应正确的抽样方法是( )方法1:将140人从1~140编号,然后制作出标有1~140的形状、大小相同的号签,并将号签放入同一箱子里均匀搅拌,然后从中抽出20个号签,编号与号签相同的20个人被选出.方法2:按20∶140=1∶7的比例,从教师中抽出13人,从教辅行政人员中抽出4人,从总务后勤人员中抽取3人.从各类人员中抽取所需人员时,均采用随机数表法,可抽到20人.A.分层抽样简单随机抽样B.分层抽样分层抽样C.简单随机抽样分层抽样D.简单随机抽样简单随机抽样[解析]结合简单随机抽样、分层抽样的概念判断,方法1是简单随机抽样,方法2是分层抽样.[答案] C抽样方法的选择第一步,看总体是否由差异明显的几个层次组成.若是,则选用分层抽样;否则,考虑用简单随机抽样.第二步,看总体容量和样本容量的大小.当总体容量较小时,采用抽签法;当总体容量较大、样本容量较小时,采用随机数表法.[针对训练3] ①教育局督学组到校检查工作,临时需在每班各抽调两人参加座谈;②某班数学期中考试有14人在120分以上,35人在90~119分,7人不及格,现从中抽出8人研讨进一步改进教与学;③某班春节聚会,要产生两位“幸运者”.就这三件事,合适的抽样方法分别为( )A .分层抽样,分层抽样,简单随机抽样B .系统抽样,系统抽样,简单随机抽样C .分层抽样,简单随机抽样,简单随机抽样D .系统抽样,分层抽样,简单随机抽样[解析] ①每班各抽两人需用系统抽样.②由于学生分成了差异比较大的几层,应用分层抽样.③由于总体与样本容量较小,应用简单随机抽样.故选D.[答案] D课堂归纳小结1.对于分层抽样中的比值问题,常利用以下关系式求解(1)样本容量n 总体容量N =各层抽取的样本数该层的容量; (2)总体中各层容量之比=对应层抽取的样本数之比.2.选择抽样方法的规律(1)当总体容量较小,样本容量也较小时,制签简单,号签容易搅匀,可采用抽签法.(2)当总体容量较大,样本容量较小时,可采用随机数法.(3)当总体是由差异明显的几部分组成时,可采用分层抽样法.1.简单随机抽样和分层抽样之间的共同点是( )A .都是从总体中逐个抽取的B .抽样过程中每个个体被抽到的机会是相等的C .将总体分成几层,然后各层按照比例抽取D .两者之间没有共同点[解析] 由三种抽样方法的定义可知,在抽样过程中每个个体被抽到的机会相等,所以选B.[答案] B2.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( )A .6B .8C .10D .12[解析] 设在高二年级学生中抽取的人数为x ,则3040=6x,解得x =8. [答案] B3.为了保证分层抽样时每个个体等可能地被抽取,必须要求( )A .每层不等可能抽样B .每层抽取的个体数相等C .每层抽取的个体可以不一样多,但必须满足抽取n i =n N i N (i =1,2,…,k )个个体.(其中k 是层数,n 是抽取的样本容量,N i 是第i 层中个体的个数,N 是总体容量)D .只要抽取的样本容量一定,每层抽取的个体数没有限制[解析] A 不正确.B 中由于每层的容量不一定相等,每层抽同样多的个体数,显然从整个总体来看,各层之间的个体被抽取的可能性就不一样了,因此B 也不正确.C 中对于第i 层的每个个体,它被抽到的可能性与层数无关,即对于每个个体来说,被抽取的可能性是相同的,故C 正确.D 不正确.[答案] C4.某中学有高中生3500人,初中生1500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( )A .100B .150C .200D .250[解析] 抽样比为703500=150,该校总人数为1500+3500=5000,则n 5000=150,故n =100. [答案] A5.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区有10个特大型销售点,要从中抽取7个销售点调查其销售收入和售后服务等情况,记这项调查为②,则完成①②这两项调查宜采用的抽样方法依次为 ( )A .分层抽样法,系统抽样法B .分层抽样法,简单随机抽样法C .系统抽样法,分层抽样法D .简单随机抽样法,分层抽样法[解析] 由调查①可知个体差异明显,故宜用分层抽样;调查②中个体较少,故宜用简单随机抽样.[答案] B课后作业(十二)(时间45分钟)学业水平合格练(时间25分钟)1.某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )A .抽签法B .随机数法C .系统抽样法D .分层抽样法[解析] 由于是调查男、女学生在学习兴趣与业余爱好方面是否存在差异,因此用分层抽样方法.[答案] D2.将A ,B ,C 三种性质的个体按1∶2∶4的比例进行分层抽样调查,若抽取的样本容量为21,则A ,B ,C 三种性质的个体分别抽取( )A .12,6,3B .12,3,6C .3,6,12D .3,12,6[解析] 由分层抽样的概念,知A ,B ,C 三种性质的个体应分别抽取21×17=3, 21×27=6,21×47=12. [答案] C3.某商场有四类食品,其中粮食类、植物油类、肉食品类、果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )A .4B .5C .6D .7[解析] 四类食品的比例为4132,则抽取的植物油类的数量为20×110=2,抽取的果蔬类的数量为20×210=4,二者之和为6,故选C.[答案] C4.问题:①有1000个乒乓球分别装在3个箱子内,其中红色箱子内有500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个容量为100的样本;②从20名学生中选出3名参加座谈会.方法:Ⅰ.简单随机抽样;Ⅱ.分层抽样.其中问题与方法能配对的是( )A.①Ⅰ,②Ⅱ B.①Ⅱ,②ⅠC.①Ⅰ,②Ⅰ D.①Ⅱ,②Ⅱ[解析]对于①,由于箱子颜色差异较为明显,可采用分层抽样方法抽取样本;对于②,由于总体容量、样本容量都较小,宜采用简单随机抽样.[答案] B5.共享单车为人们提供了一种新的出行方式,有关部门对使用共享单车人群的年龄分布进行了统计,得到的数据如下表所示:的样本进行调查,那么应抽取20~30岁的人数为( )A.12 B.28 C.69 D.91[解析]由分层抽样的定义得,应抽取20~30岁的人数为200×45.5%=91,故选D.[答案] D6.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.[解析]∵300×44+5+5+6=60,∴取60人.[答案]607.防疫站对学生进行身体健康调查.红星中学共有学生1600名,采用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了10人,则该校的女生人数应是________.[解析] 设该校的女生人数是x ,则男生人数是1600-x ,抽样比是2001600=18,则18x =18(1600-x )-10,解得x =760.[答案] 7608.某校做了一次关于“感恩父母”的问卷调查,从8~10岁,11~12岁,13~14岁,15~16岁四个年龄段回收的问卷依次为:120份,180份,240份,x 份,因调查需要,从回收的问卷中按年龄段分层抽取容量为300的样本,其中在11~12岁学生问卷中抽取60份,则在15~16岁学生中抽取的问卷份数为________.[解析] 由题意可得60180=300120+180+240+x,解得x =360,故在15~16岁学生中抽取的问卷份数为360×60180=120. [答案] 1209.一个地区共有5个乡镇,人口3万人,其中人口比例为32523,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.[解] 因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而应采用分层抽样的方法.具体过程如下:①将3万人分成5层,一个乡镇为一层.②按照各乡镇的人口比例随机抽取各乡镇的样本:300×315=60(人),300×215=40(人), 300×515=100(人),300×215=40(人), 300×315=60(人). 各乡镇分别用分层抽样抽取的人数分别为60,40,100,40,60.③将抽取的这300人组到一起,即得到一个样本.10.为了对某课题进行讨论研究,用分层抽样的方法从三所高校A 、B 、C 的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)高校 相关人数 抽取人数A x1(1)(2)若从高校B 相关的人中选2人作专题发言,应采用什么抽样法,请写出合理的抽样过程.[解] (1)分层抽样是按各层相关人数和抽取人数的比例进行的,所以有:x 54=13⇒x =18,3654=y 3⇒y =2,故x =18,y =2. (2)总体容量和样本容量较小,所以应采用抽签法,过程如下:第一步,将36人随机的编号,号码为1,2,3, (36)第二步,将号码分别写在相同的纸片上,揉成团,制成号签;第三步,将号签放入一个不透明的容器中,充分搅匀,依次抽取2个号码,并记录上面的编号;第四步,把与号码相对应的人抽出,即可得到所要的样本.应试能力等级练(时间20分钟)11.某初级中学共有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人进行某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案.使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为001,002,003,…,270;使用系统抽样时,将学生统一随机编号为001,002,003,…,270,并将整个编号平均分为10段.如果抽得的号码有下列四种情况:①007,034,061,088,115,142,169,196,223,250;②005,009,100,107,111,121,180,195,200,265;③011,038,065,092,119,146,173,200,227,254;④036,062,088,114,140,166,192,218,244,270.关于上述样本的下列结论中,正确的是( )A .②③都不能为系统抽样B .②④都不能为分层抽样C .①④都可能为系统抽样D .①③都可能为分层抽样[解析] 系统抽样又称为“等距抽样”,做到等距的有①③④,但只做到等距还不一定是系统抽样,还应做到10段中每段要抽1个,检查这一点只需看第一个编号是否在001~027范围内,结果发现④不符合,同时,若为系统抽样,则分段间隔k =27010=27,④也不符合这一要求,所以可能是系统抽样的为①③,因此排除A ,C ;若采用分层抽样,一、二、三年级的人数比例为4∶3∶3,由于共抽取10人,所以三个年级应分别抽取4人、3人、3人,即在001~108范围内要有4个编号,在109~189和190~270范围内要分别有3个编号,符合此要求的有①②③,即它们都可能为分层抽样(其中①③在每一层内采用了系统抽样,②在每一层内采用了简单随机抽样),所以排除B.[答案] D12.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本.①采用随机抽样法,将零件编号为00,01,…,99,抽签取出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个; ③采用分层抽样法,从一级品中随机抽取4个,从二级品中随机抽取6个,从三级品中随机抽取10个.对于上述抽样方式,下面说法正确的是( )A .不论哪一种抽样方法,这100个零件中每一个个体被抽到的概率都是15B .①②两种抽样方法中,这100个零件每一个个体被抽到的概率为15,③并非如此 C .①③两种抽样方法中,这100个零件中每一个个体被抽到的概率为15,②并非如此 D .采用不同的抽样方法,这100个零件中每一个个体被抽到的概率是不同的[解析] 虽然三种抽样方式、方法不同,但最终每个个体被抽取的机会是均等的,这正说明了三种抽样方法的科学性和可行性.[答案] A13.古代科举制度始于隋而成于唐,完善于宋、元.明代则处于其发展的鼎盛阶段.其中表现之一为会试分南卷、北卷、中卷,按比例录取,其录取比例为11∶7∶2.若明宣德五年会试录取人数为100,则中卷录取人数为____________.[解析] 由题意知,明宣德五年会试录取人数为100,则中卷录取人数为100×211+7+2=10(人).[答案] 10(人)14.某机关老年、中年、青年的人数分别为18,12,6,现从中抽取一个容量为n 的样本,若采用系统抽样和分层抽样,则不用剔除个体.当样本容量增加1时,若采用系统抽样,需在总体中剔除1个个体,则样本容量n =____________.[解析] 当样本容量为n 时,因为采用系统抽样时不用剔除个体,所以n 是18+12+6=36的约数,n 可能为1,2,3,4,6,9,12,18,36.因为采用分层抽样时不用剔除个体,所以n 36×18=n 2,n 36×12=n 3,n 36×6=n 6均是整数,所以n 可能为6,12,18,36.又因为当样本容量增加1时,需要剔除1个个体,才能用系统抽样,所以n +1是35的约数,而n +1可能为7,13,19,37,所以n +1=7,所以n =6.[答案] 615.为了考察某校的教学水平,将对这个学校高三年级的部分学生的本学年考试成绩进行考察,为了全面地反映实际情况,采取以下三种方式进行抽查:(已知该校高三年级共有20个教学班,并且每个班内的学生已经按随机方式编好了学号,假定该校每班学生人数都相同)①从全年级20个班中任意抽取一个班,再从该班中任意抽取20人,考察他们的学习成绩;②每个班都抽取1人,共计20人,考察这20个学生的成绩;③把学生按成绩分成优秀、良好、普通三个级别,从其中共抽取100名学生进行考察.(已知若按成绩分,该校高三学生中优秀生共150人,良好生共600人,普通生共250人)根据上面的叙述,试回答下列问题.(1)上面三种抽取方式中,其总体、个体、样本分别指什么?每一种抽取方式抽取的样本中,其样本容量分别是多少?(2)上面三种抽取方式中各自采用何种抽取样本的方法?(3)试分别写出上面三种抽取方式各自抽取样本的步骤.[解] (1)这三种抽取方式中,其总体都是指该校高三全体学生本年度的考试成绩,个体都是指高三年级每个学生本年度的考试成绩.其中第一种抽取方式中样本为所抽取的20名学生本年度的考试成绩,样本容量为20;第二种抽取方式中样本为所抽取的20名学生本年度的考试成绩,样本容量为20;第三种抽取方式中样本为所抽取的100名学生本年度的考试成绩,样本容量为100.(2)上面三种抽取方式中,第一种方式采用的方法是简单随机抽样法;第二种方式采用的方法是系统抽样法和简单随机抽样法;第三种方式采用的方法是分层抽样法和简单随机抽样法.(3)第一种方式抽样的步骤如下:第一步,首先在这20个班中用抽签法任意抽取一个班.第二步,然后从这个班中按学号用随机数表法或抽签法抽取20名学生,考察其考试成绩.第二种方式抽样的步骤如下:第一步,首先在第一个班中,用简单随机抽样法任意抽取某一学生,记其学号为a . 第二步,在其余的19个班中,选取学号为a 的学生,共计19人.第三种方式抽样的步骤如下:第一步,分层.因为若按成绩分,其中优秀生共150人,良好生共600人,普通生共250人,所以在抽取样本时,应该把全体学生分成三个层次.第二步,确定各个层次抽取的人数.因为样本容量与总体的个体数比为1001000=110,所以在每个层次抽取的个体数依次为15010,60010,25010,即15,60,25. 第三步,按层次分别抽取:在优秀生中用简单随机抽样法抽取15人;在良好生中用系统抽样法抽取60人;在普通生中用简单随机抽样法抽取25人.。
人教A版高中数学必修三 2.1.3《分层抽样》教案
人教A版高中数学必修三2.1.3《分层抽样》教案人教a版高中数学必修三2.1.3《分层抽样》教案2.1.3分层抽样教学计划【教学目标】1.通过实例了解分层抽样的概念、意义及适用场景2.通过对现实生活中实际问题会用分层抽样的方法从总体中抽出样本,并能写出具体问题的分层抽样的步骤.3.知道在分层抽样的过程中,人口中的每个个体都有相同的被选择的机会4.区分简单随机抽样?系统抽样和分层抽样,并选择适当正确的方法进行抽样.【教学重难点】教学重点:正确理解分层抽样的定义,灵活运用分层抽样进行抽样,正确选择三种抽样方法,解决现实生活中的抽样问题教学难点:应用分层抽样解决实际问题,并恰当的选择三种抽样方法解决现实生活中的抽样问题.[教学过程]我复习复习系统抽样有什么优缺点?它的一般步骤是什么?答:优点是比简单随机抽样更易操,缺点是系统抽样有规律性,样本有可能代表性很差;(1)人口中的n个个体(2)确定分段间隔k,对编号进行分段,当NN(n是样本量)是一个整数,取K=nn;当NN不是整数时,首先从总体中随机移除几个个体,以便对总体中剩余的个体进行采样容量整除.(3)在第一段中,数字L(LWK)通过简单的随机抽样确定起始个体的数量(4)按照一定的规则抽取样本,通常是将起始编号l加上间隔k得到第2个个体编号l+k,再加上k得到第3个个体编号l+2k,这样继续下去,直到获取整个样本.二.创设情境.假设一个地区有2400名高中生、10900名初中生和11000名小学生。
为了了解该地区中小学近视的情况和原因,教育部门应选择该地区1%的中小学生进行调查。
你认为应该如何取样?答:高中生2400Xl%=24人,初中生10900Xl%=109人,小学生11000Xl%=110人,作为样本.这样,如果从学生人数这个角度来看,按照这种抽样方法所获得样本结构与这一地区全体中小学生的结构是基本相同的.三、探索新知识(一)分层抽样的定义.一般来说,在抽样过程中,将种群划分为不相交的层,然后根据一定比例从每个层中独立选择一定数量的个体,并将从每个层中提取的个体组合为样本。
高中数学人教A版必修必修三第二章2-1-3分层抽样学案
第二章统计§2.1随机抽样2.1.3分层抽样【学习目标】1.正确理解分层抽样的概念.(重点)2.掌握分层抽样的一般步骤.(重点)3.会区分简单随机抽样、系统抽样和分层抽样,并会选择适当正确的方法进行抽样.(难点) 【课前预习】1、分层抽样的概念:一般地,在抽样时,将总体分成____的层,然后按一定的比例,从各层独立地_ __,将各层取出的个体合在一起作为样本,这种抽样的方法叫做_______.2、分层抽样的特点:(1)适用于总体是由有明显差别的几部分组成时的情况;(2)分层抽样对各个个体来说被抽取的可能性_______.3、分层抽样的优点:(1)样本具有较强的代表性;(2)在各层抽样时,可灵活地选用不同的抽样方法.4、分层抽样的步骤:(1)将总体按一定的标准分层;(2)计算各层的个体数与总体的个体数的比;(3)按各层个体数占总体的个体数的比确定各层应抽取的样本容量;(4)在每一层进行抽样(各层可以按简单随机抽样或系统抽样的方法抽取)5、三种抽样方法的比较:,化为简单.分层抽样在简单随机.3.【预习自测】判断:(正确的打“√”,错误的打“×”)(1)因为分层抽样在不同层内进行,所以不同层的个体被抽到的可能性不一样.( )(2)分层抽样中,为确保公平性,在每层都应用同一抽样方法.( )(3)分层抽样所有层抽同样多容量的样本,是等可能抽样.( )【课内探究】类型一分层抽样的基本概念1.如果采用分层抽样,从个体数为N的总体中抽取一个容量为n的样本,那么每个个体被抽到的可能性为2.下列问题中,最适合用分层抽样抽取样本的是( )A.从10名同学中抽取3人参加座谈会B.某社区有500个家庭,其中高收入的家庭125个,中等收入的家庭280个,低收入的家庭95个,为了了解生活购买力的某项指标,要从中抽取一个容量为100的样本C.从1000名工人中,抽取100名调查上班途中所用时间D.从生产流水线上,抽取样本检查产品质量类型二分层抽样各层中样本容量的计算1.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是( )A.12,24,15,9B.9,12,12,7C.8,15,12,5D.8,16,10,62.(2012·四川高考)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为( )A.101B.808C.1 212D.2 012类型三三种抽样的综合应用1.某城区有农民、工人、知识分子家庭共计2 000户,其中农民家庭1 800户,工人家庭100户.现要从中抽取容量为40的样本,以调查家庭收入情况,则在整个抽样过程中,可以用到的抽样方法有( )①简单随机抽样②系统抽样③分层抽样A.②③B.①③C.③D.①②③2.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,下列抽取样本的方法最合理的是.①简单随机抽样; ②系统抽样; ③分层抽样; ④先从老年人中剔除1人再用分层抽样. 【当堂检测】1.下列属于分层抽样特点的是( )A.从总体中逐个抽取B.将总体分成几层,分层进行抽取C.将总体分成几部分,按事先确定的规则在各部分抽取D.将总体随意分成几部分,然后再进行随机抽取2.某地区为了了解居民的家庭生活状况,先把居民按所在的行业分为几类,然后每个行业抽的居民家庭进行调查,这种抽样是( )A.简单随机抽样B.系统抽样C.分层抽样D.分类抽样3.某公司共有1 000名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为50的样本,已知某部门有200名员工,那么从该部门抽取的工人数是( )A.5B.10C.15D.204.某学校共有师生2 400人,现用分层抽样方法,从所有师生中抽取一个容量为160的样本.已知从学生中抽取的人数为150,那么该学校的教师人数是________.。
高中数学 第二章 统计 2.1.3 分层抽样学案 新人教B版必修3-新人教B版高一必修3数学学案
2.1.3 分层抽样1.了解分层抽样的方法.2.理解分层抽样的概念及与简单随机抽样、系统抽样的关系.3.掌握分层抽样的一般步骤.[学生用书P30])1.分层抽样的概念(1)将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样或系统抽样,这种抽样方法叫做分层抽样.(2)当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.2.分层抽样的优点分层抽样的优点是使样本具有较强的代表性,而且在各层抽样时,又可灵活地选用不同的抽样法.1.判断正误.(对的打“√”,错的打“×”)(1)系统抽样时,将总体分成均等的几部分,每部分抽取一个,符合分层抽样,故系统抽样就是一种特殊的分层抽样.( )(2)在分层抽样时,每层可以不等可能抽样.( )(3)在分层抽样的过程中,每个个体被抽到的可能性是相同的,与层数及分层有关.( )解析:(1)因为分层抽样是从各层独立地抽取个体,而系统抽样各段上抽取时是按事先定好的规则进行的,各层编号有联系,不是独立的,故系统抽样不同于分层抽样.(2)分层抽样时,每层仍然要等可能抽样.(3)与层数及分层无关.答案:(1)×(2)×(3)×2.某地区为了解居民家庭生活状况,先把居民按所在行业分为几类,然后每个行业抽取1100的居民家庭进行调查,这种抽样是( ) A .简单随机抽样B .系统抽样C .分层抽样D .分类抽样 解析:选C.符合分层抽样的特点.3.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,且男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样解析:选C.依据题意,了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,且男女生视力情况差异不大,故要了解该地区学生的视力情况,应按学段分层抽样.4.一个班共有54人,其中男同学、女同学比为5∶4,若抽取9人参加教改调查会,则每个男同学被抽取的可能性为________,每个女同学被抽取的可能性为________.解析:男、女每人被抽取的可能是相同的,因为男同学共有54×59=30(人),女同学共有54×49=24(人), 所以每个男同学被抽取的可能性为530=16,每个女同学被抽取的可能性为424=16. 答案:16 16分层抽样的概念[学生用书P31]下列三个抽样:①一个城市有250家百货商店,其中大型商店有30家,中型商店有40家,小型商店有180家.为了掌握各商店的营业情况,要从中抽取一个容量为25的样本;②在某班的50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的10名学生进行作业检查;③某市质量检查人员从一食品生产企业生产的两箱(每箱10件)产品中抽取3件进行质量检查.抽样方法依次为( )A .简单随机抽样;分层抽样;系统抽样B.分层抽样;简单随机抽样;系统抽样C.分层抽样;系统抽样;简单随机抽样D.系统抽样;分层抽样;简单随机抽样【解析】①中商店的规模不同,所以应利用分层抽样;②中抽出的学号具有等距性,所以应是系统抽样;③中总体没有差异,容量较小,样本数量也较小,所以应为简单随机抽样,故选C.【答案】 C判断一个抽样方法是不是分层抽样的条件(1)看它是否具有分层抽样的特点,如总体中个体差异是否明显.(2)是否按照相同比例从各层中抽取.至于各层内用什么方法抽样是灵活的,可采用简单随机抽样,也可采用系统抽样.(3)在分层抽样中,无论哪一层的个体,被抽中的机会都是相等的,体现了抽样的公平性.1.某市有四所重点大学,为了解该市大学生的课外书籍阅读情况,采用下列哪种方法抽取样本最合适(四所大学图书馆的藏书有一定的差距)( ) A.抽签法B.随机数表法C.系统抽样法D.分层抽样法解析:选D. 因为学校图书馆的藏书对学生课外书籍阅读影响比较大,因此采取分层抽样.2.某校高三年级有男生800人,女生600人,为了解该年级学生的身体健康情况,从男生中任意抽取40人,从女生中任意抽取30人进行调查.这种抽样方法是( ) A.系统抽样法B.抽签法C.随机数表法D.分层抽样法解析:选D.总体中个体差异比较明显,且抽取的比例也符合分层抽样.分层抽样的计算[学生用书P32](1)某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍,为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为________.(2)某高中学校为了促进学生个体的全面发展,针对学生发展要求,开设了富有地方特色的“泥塑”与“剪纸”两个社团,已知报名参加这两个社团的学生共有800人,按照要求每人只能参加一个社团,各年级参加社团的人数情况如下表:高一年级 高二年级 高三年级 泥塑a b c 剪纸 x y z其中x ∶y ∶z =5∶3∶2,且“泥塑”社团的人数占两个社团总人数的35,为了了解学生对两个社团活动的满意程度,从中抽取一个50人的样本进行调查,则从高二年级“剪纸”社团的学生中应抽取________人.【解析】 (1)设该单位老年职工人数为x ,由题意得3x =430-160,解得x =90.则样本中的老年职工人数为90×32160=18. (2)法一:因为“泥塑”社团的人数占总人数的35, 故“剪纸”社团的人数占总人数的25, 所以“剪纸”社团的人数为800×25=320; 因为“剪纸”社团中高二年级人数比例为y x +y +z =32+3+5=310, 所以“剪纸”社团中高二年级人数为320×310=96. 由题意知,抽样比为50800=116, 所以从高二年级“剪纸”社团中抽取的人数为96×116=6. 法二:因为“泥塑”社团的人数占总人数的35, 故“剪纸”社团的人数占总人数的25,所以抽取的50人的样本中,“剪纸”社团中的人数为50×25=20. 又“剪纸”社团中高二年级人数比例为y x +y +z =32+3+5=310, 所以从高二年级“剪纸”社团中抽取的人数为20×310=6. 【答案】 (1)18 (2)6分层抽样中有关抽样比的计算方法对于分层抽样中的比值问题,常利用以下关系式巧解:(1)样本容量n 总体容量N =该层抽取的个体数该层的个体数; (2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.对于分层抽样中求某层个体数,或某层要抽取的样本个体数,都可以通过上面两个等量关系求解.1.为了调查城市PM2.5的情况,按地域把48个城市分成大型、中型、小型三组,相应的城市数分别为8,16,24.若用分层抽样的方法抽取12个城市,则应抽取的中型城市数为( )A .3B .4C .5D .6解析:选 B.根据分层抽样的特点可知,抽样比例为1248=14,则应抽取的中型城市数为16×14=4. 2.一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,则应抽取超过45岁的职工________人.解析:抽样比为25∶200=1∶8,而超过45岁的职工有80人,则从中应抽取的个体数为80×18=10. 答案:10分层抽样的设计[学生用书P32]一个地区共有5个乡镇,人口3万人,其人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的抽样方法?并写出具体过程.【解】因为疾病的发病率与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法.具体过程如下:(1)将3万人分为5层,其中一个乡镇为一层.(2)按照样本容量的比例求得各乡镇应抽取的人数分别为60人、40人、100人、40人、60人.(3)按照各层抽取的人数随机抽取各乡镇应抽取的样本.(4)将300人合到一起,即得到一个样本.分层抽样的操作步骤第一步,计算样本容量与总体的个体数之比;第二步,将总体分成互不交叉的层,按比例确定各层要抽取的个体数;第三步,用简单随机抽样或系统抽样在各层中抽取相应数量的个体;第四步,将各层抽取的个体合在一起,就得到所取样本.某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表所示:很喜爱喜爱一般不喜爱2 435 4 5673 926 1 072电视台为了进一步了解观众的具体想法和意见,打算从中再抽取60人进行更为详细的调查,应怎样进行抽样?解:采用分层抽样的方法,抽样比为6012 000=1 200.“很喜爱”的有2 435人,应抽取2 435×1200≈12(人);“喜爱”的有4 567人,应抽取4 567×1200≈23(人);“一般”的有3 926人,应抽取3 926×1200≈20(人); “不喜爱”的有1 072人,应抽取1 072×1200≈5(人). 因此,采用分层抽样的方法在“很喜爱”“喜爱”“一般”“不喜爱”的人中应分别抽取12人、23人、20人、5人.三种抽样方法的综合运用[学生用书P33]某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人进行某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案.使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,3,…,270;使用系统抽样时,将学生统一随机编号为1,2,3,…,270,并将整个编号平均分为10段.如果抽得的号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④36,62,88,114,140,166,192,218,244,270.关于上述样本的下列结论中,正确的是( )A .②③都不能为系统抽样B .②④都不能为分层抽样C .①④都可能为系统抽样D .①③都可能为分层抽样【解析】 系统抽样又名“等距抽样”,做到等距的有①③④,但只做到等距还不一定是系统抽样,还应做到10段中每段要抽1个,检查这一点只需看第一个元素是否在1~27范围内,结果发现④不符合,同时,若为系统抽样,则分段间隔k =27010=27,④也不符合这一要求,所以可能是系统抽样的为①③,因此排除A ,C ;若采用分层抽样,一、二、三年级的人数比例为4∶3∶3,由于共抽取10人,所以三个年级应分别抽取4人、3人、3人,即在1~108范围内要有4个编号,在109~189和190~270范围内要分别有3个编号,符合此要求的有①②③,即它们都可能为分层抽样(其中①③在每一层内采用了系统抽样,②在每一层内采用了简单随机抽样),所以排除B.【答案】 D选择抽样方法的思路(1)判断总体是否由差异明显的几部分组成,若是,则选用分层抽样;否则,考虑用简单随机抽样或系统抽样;(2)判断总体容量和样本容量的大小.当总体容量较小时,采用抽签法;当总体容量较大、样本容量较小时,采用随机数表法;当总体容量较大、样本容量也较大时,采用系统抽样.某单位有2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各岗位中的人数情况如下表所示:管理技术开发营销生产合计老年40404080200 中年80120160240600 青年40160280720 1 200 合计160320480 1 040 2 000(1)若要抽取40人调查身体状况,则应怎样抽样?(2)若要开一个有25人参与的讨论单位发展与薪金调整方案的座谈会,则应怎样抽选出席人?(3)若要抽20人调查对某运动会筹备情况的了解程度,则应怎样抽样?解:(1)用分层抽样法,并按老年职工4人,中年职工12人,青年职工24人抽取.(2)用分层抽样法,并按管理岗位2人,技术开发岗位4人,营销岗位6人,生产岗位13人抽取.(3)用系统抽样法,对全部2 000人随机编号,号码为0001~2000,每100号分为一组,从第一组中用简单随机抽样抽取一个号码,然后将这个号码分别加100,200,…,1 900,所得到的号码对应的20人即为要抽取的样本.1.分层抽样的特点(1)适用于总体由有明显差别的几部分组成的情况.(2)抽取的样本更好地反映了总体的情况.(3)是等可能性抽样,每个个体被抽到的可能性都是n N . 2.分层抽样的公平性如果总体中个体的总数是N ,样本容量为n ,第i 层中个数为N i ,则第i 层中要抽取的个体数为n i =n ·N i N .每一个个体被抽取的可能性是n i N i =1N i ·n ·N i N =n N,与层数无关.所以对所有个体来说,被抽取的可能性是一样的,与层数及分层无关,所以分层抽样是公平的.分层抽样需注意的问题1.分层抽样中分多少层、如何分层要视具体情况而定,总的原则是每层内样本的差异要小,不同层之间的样本差异要大,且互不重叠.2.抽取比例由每层个体占总体的比例确定.3.各层抽样按简单随机抽样或系统抽样进行.1.某镇有四所中学,为了解该镇中学生视力情况,用什么方法抽取人数(四所中学视力有一定的差距)( )A .抽签法B .随机数表法C .系统抽样法D .分层抽样法解析:选D.由于每所中学的情况不同,应采用分层抽样.2.某单位的老年人、中年人、青年人依次有25人、35人、40人,用分层抽样的方法抽取40人,则老、中、青年人中应抽取的人数依次为( )A .8,14,18B .9,13,18C .10,14,16D .9,14,17解析:选C.由已知得样本容量和总体容量之比为40100=25,即抽样比例为25,所以在老年人中应抽取25×25=10(人),在中年人中应抽取35×25=14(人),在青年人中应抽取40×25=16(人).3.调查某班学生的平均身高,从50名学生中抽取5名,应采取的抽样方法是________;如果男、女生身高有显著不同(男生30人,女生20人),应采取的抽样方法:________.解析:总体及样本容量较少且无差异可用简单随机抽样.当总体有明显差异,用分层抽样.答案:简单随机抽样 分层抽样4.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2∶3∶5,现用分层抽样方法抽取一个容量为n 的样本,样本中A 种型号产品有16件,那么此样本容量n =________.解析:n ×210=16,n =80. 答案:80, [学生用书P99(单独成册)])[A 基础达标]1.某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户.为了调查社会购买力的某项指标,要从中抽取1个容量为100的样本,记作①;某学校高一年级有12名女排运动员,要从中选出3名调查学习负担情况,记作②.那么完成上述两项调查应采用的抽样方法是( )A .①用简单随机抽样法;②用系统抽样法B .①用分层抽样法;②用简单随机抽样法C .①用系统抽样法;②用分层抽样法D .①用分层抽样法;②用系统抽样法解析:选B.对于①,总体由高收入家庭、中等收入家庭和低收入家庭差异明显的3部分组成,而所调查的指标与收入情况密切相关,所以应采用分层抽样法.对于②,总体中的个体数较少,而且所调查内容对12名调查对象是“平等”的,所以应采用简单随机抽样法.2.某商场出售三种品牌电脑,现库存量分别是60台、36台和24台,用分层抽样的方法从中抽取10台进行检测,则这三种品牌的电脑依次应抽取的台数是( )A .6,3,1B .5,3,2C .5,4,1D .4,3,3解析:选B.抽样比为1060+36+24=112,则三种品牌的电脑依次应抽取的台数是60×112=5,36×112=3,24×112=2.故选B. 3.采用分层抽样的方法从某学校三个年级的全体学生中抽取一个容量为45的样本,高一年级被抽取20人,高三年级被抽取10人,高二年级共有300人,则这个学校共有高中学生( )A .1 350人B .675人C .900人D .450人解析:选C.高二年级被抽取的人数为45-20-10=15,则抽样比为15∶300=1∶20,所以45÷120=900,即这个学校共有高中学生900人. 4.某班有男生36人,女生18人,用分层抽样的方法从该班全体学生中抽取一个容量为9的样本,则抽取的女生人数为( )A .6B .4C .3D .2解析:选C.据分层抽样,得抽取的女生人数为936+18×18=3,选C. 5.某中学有高中生3 500人,初中生1 500人.为了了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( )A .100B .150C .200D .250解析:选A.抽样比为703 500=150,该校总人数为1 500+3 500=5 000,则n 5 000=150,故n =100.6.从总体容量为N 的一批零件中用分层抽样抽取一个容量为30的样本,若每个零件被抽取的可能性为0.25,则N 等于________.解析:分层抽样是等可能抽样,故总体容量为30÷0.25=120.答案:1207.某校初选了98名大学生作为某项活动的志愿者,其中男生有56名.现按男女比例用分层抽样的方法,从已选的98名大学生中抽出28名志愿者,那么应抽取的女生人数是________. 解析:本题考查分层抽样,男女生人数比例为5698-56=43,则应抽取的女生人数为28×34+3=12. 答案:128.最新高考改革方案已在上海和浙江实施,某教育机构为了解我省广大师生对新高考改革方案的看法,对某市部分学校500名师生进行调查,统计结果如下表:赞成改革 不赞成改革 无所谓 教师120 20 40 学生 150 40 130现从500名师生中用分层抽样的方法抽取50名进行问卷调查,则应抽取“不赞成改革”的教师和学生人数分别为________.解析:由题意知,抽样比为50500=110, 则应抽取“不赞成改革”的教师人数为110×20=2,学生人数为110×40=4. 答案:2,49.某单位200名职工的年龄分布情况如图所示,现要从中抽取40名职工作为样本,用系统抽样法将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).(1)若第5组抽出的号码为22,则第8组抽出的号码应是多少?(2)若用分层抽样法,则应从40岁以下年龄段的职工中抽取多少名?解:(1)由分组可知,分段的间隔为5.又第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.(2)由题意知,40岁以下年龄段的职工人数为200×50%=100.若用分层抽样法,则应从40岁以下年龄段的职工中抽取40200×100=20(名).10.某校高一年级500名学生中,血型为O型的有200人,A型的有125人,B型的有125人,AB型的有50人.为了研究血型与色弱的关系,要从中抽取一个容量为40的样本,应如何抽样?写出抽取血型为AB型的学生的过程.解:因为总体由差异明显的四部分组成,故采用分层抽样法.因为40÷500=225,所以血型为O型的应抽取200×225=16(人),血型为A型的应抽取125×225=10(人),血型为B型的应抽取125×225=10(人),血型为AB型的应抽取50×225=4(人).AB型的4人可以这样抽取:第一步,将血型为AB型的50人随机编号,编号为1,2, (50)第二步,把以上50个编号分别写在50张小纸条上,并揉成小球,制成号签;第三步,把得到的号签放入一个不透明的袋子中,充分搅匀;第四步,从袋子中不放回地逐个抽取4个号签,并记录上面的编号;第五步,根据得到的编号找出对应的4人,即得到AB血型的样本.[B 能力提升]11.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )A.4 B.5C.6 D.7解析:选C.四类食品的种数比为4∶1∶3∶2,则抽取的植物油类的种数为20×110=2,抽取的果蔬类的种数为20×210=4,二者之和为6种,故选C.12.将参加数学竞赛决赛的500名学生编号为001,002,…,500,采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003,这500名学生分别在三个考点考试,从001到200在第一考点,从201到355在第二考点,从356到500在第三考点,则第三考点被抽中的人数为________.解析:系统抽样的样本间隔为50050=10,第一个号码为003,按照系统抽样的规则,抽到的号码依次为003,013,023,033,043,053,…,493,第三考点抽到的第一个号码为363,最后一个号码为493,所以493=363+(n -1)×10,解得n =14.答案:1413.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的14,且该组中青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本.试确定:(1)游泳组中,青年人、中年人、老年人分别所占的比例;(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.解:(1)设登山组人数为x ,游泳组中,青年人、中年人、老年人所占比例分别为a 、b 、c ,则有x ×40%+3xb 4x =47.5%,x ×10%+3xc 4x=10%, 解得b =50%,c =10%,故a =100%-50%-10%=40%,即游泳组中,青年人、中年人、老年人所占比例分别为40%、50%、10%.(2)游泳组中,抽取的青年人人数为200×34×40%=60(人); 抽取的中年人人数为200×34×50%=75(人); 抽取的老年人人数为200×34×10%=15(人).即游泳组中,青年人、中年人、老年人分别应抽取的人数为60人,75人,15人.14.(选做题)为了对某课题进行讨论研究,用分层抽样的方法从三所高校A ,B ,C 的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人).(1)求x ,y ; (2)若从高校B 相关人数中选2人作专题发言,应采用什么抽样法,请写出合理的抽样过程.解:(1)分层抽样是按各层相关人数和抽取人数的比例进行的,所以有x 54=13⇒x =18,3654=y 3⇒y =2.故x =18,y =2. (2)总体容量和样本容量较小,所以应采用抽签法,过程如下:第一步,将36人随机编号,号码为1,2,3, (36)第二步,将号码分别写在相同的纸片上,揉成团,制成号签;第三步,将号签放入一个不透明的容器中,充分搅匀,依次不放回地抽取2个号码,并记录上面的编号;第四步,把与号码相对应的人抽出,即可得到所要的样本.。
高中人教版数学必修3精品导学案《分层抽样》
授课
时间
第周星期第节
课型
新授课
主备课人
学习
目标
1.正确理解分层抽样;
2.掌握分层抽样的一般步骤;
3.正确理解分层抽样、系统抽样、简单随机抽样的区别和联系,并且选择适当正确的方法进行抽样.
重点难点
1.掌握分层抽样的特点和一般步骤;
2.根据实际情况选择正确的抽样方法.
学习
过程
与方
法
自主学习
(A)抽签法(B)系统抽样
(C)分层抽样(D)随机数表法
3.某班有50名学生,(其中有30名男生,20名女生)现调查平均身高,准备抽取10%,问应如何抽样?如果已知男女身高有显著不同,又应如何抽样?
作业
布置
完成资料习题
学习小结/教学
反思
【解】
达标训练
1.某公司生产三种型号的轿车,产量分别为1200辆、6000辆、2000辆。为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车应分别抽取______、______和_____辆。
2.某商场想通过检查发票及销售记录的2%来快速估计每月的销售总额,采取如下方法:从某本50张的发票存根中随机抽取一张,如15号,然后按顺序往后将65号、115号、165号、…发票上的销售额组成一个调查样本。这种抽取样本的方法是( )
问题:某校高一、高二和高三年级分别有学生1000,800和700名,为了了解全校学生的视力情况,欲从中抽取容量为100的样本,怎样抽样较为合理.
【分析】如果在2500名学生中随机抽取100名学生作为样本,或者在三个年级中平均抽取学生组成样本,这样的样本是否合理?能否反映总体情况?
1.分层抽样
分层抽样的概念:将总体按其分成若干类型,然后在每个类型中随机抽取一定的样本.这样的抽样方法称为分层抽样
苏教版必修3高中数学2.1.3分层抽样word导学案
课题:分层抽样第学习小组班级:姓名:学号:【学习目标】1、理解分层抽样的必需性和重要性;2、学会用分层抽样的方法从整体中抽取样本.【课前预习】1.某校高一、高二和高三年级分别有学生1000 , 800 和 700 名,为了认识全校学生的视力状况,从中抽取容量为 100的样本,如何抽样较为合理?2. ___________________________________叫分层抽样.3.分层抽样的步骤是:(1)(2)(3)(4)说明:若按比率计算所得的个体数不是整数,可作适合的近似办理.4.用随机数表法抽取样本的步骤是:(1)(2)(3)(4)5.三种抽样方法的特色及合用范围可概括以下:类型特色互相联系合用范围共同点简单随机抽样系统抽样分层抽样【讲堂商讨】例 1、某电视台在因特网上就观众对某一节目的喜欢程度进行检查,参加检查的总人数为 12000人,此中持各样态度的人数如表中所示:很喜欢喜欢一般不喜欢2435456739261072电视台为进一步认识观众的详细想法和建议,打算从中抽取60 人进行更加详尽的检查,应如何进行抽样?例 2、以下问题中,采纳如何的抽样方法较为合理?(1)从10台冰箱中抽取3台进行质量检查;(2)某电影院有32排座位,每排有40个座位,座位号为 1 40 . 有一次报告会坐满了听众,报告会结束此后为听取建议,需留下32名听众进行会谈;(3)某学校有160名教员工,此中教师120名,行政人员16名,后勤人员24名 .为了认识教员工对学校在校务公然方面的建议,拟抽取一个容量为20的样本.【学后反省】课题:分层抽样检测案班级:姓名: 学号: 第 学习小组【讲堂检测】1.分层抽样中,在每一层进行抽样可用_____________________ .2.某养鸡场有蛋鸡、 肉鸡和草鸡三种鸡, 此中蛋鸡 1500只,肉鸡 3000只,草鸡 900只.估产时, 应采纳何种抽样方法?试给出一种抽取样本容量为54 的样本的方案3.某单位有员工 160 名,此中业务人员 96名,管理人员 40 名,后勤服务人员 24 名 . 为了认识员工的某种状况, 要从中抽取一个容量为 20 的样本. 试用多种抽样方法达成抽样.【课后稳固】1.①.教育局督学组到学校检查工作,暂时在每个班各抽调84 2 人参加会谈;②.某班期中考试有15人在 85分以上, 40人在 601分, 人不及格.现欲从中抽出 8 人商讨进一步改良教和学;③.某班元旦聚会,要产生两名“好运者”对这三件事,适合的抽样方法为A.分层抽样,分层抽样,简单随机抽样;B. 系统抽样,系统抽样,简单随机抽样;C. 分层抽样,简单随机抽样,简单随机抽样;D. 系统抽样,分层抽样,简单随机抽样..()2.在某年有奖明信片销售活动中,规定每100万张为一个开奖组,经过随机抽取的方式确立号码的后 4 位数是 2709的为三等奖.这样确立获奖号码的抽样方法是_______.3.某企业生产 3 种型号的轿车,产量分别为 1200辆、 6000 辆和 2000 辆.为查验该企业的产质量量,现用分层抽样的方法抽取46 辆进行查验,这类型号的轿车应分别抽取 ________辆、 ________辆和 ________辆.4.以下抽样中,不是系统抽样的是().A.从号码为1~15的15个球中任选3 个作为样本,先在 1~ 5 号球顶用抽签抽出l 号,再将号码为l 5 , l10 的球也抽出;B.工厂生产的产品,用传递带将产品送入包装车间的过程中,查验人员从传递带上每隔 5 min 抽一件产品进行查验;C.某项市场检查,规定在商铺门口随机地咨询一个人,直至达到预先规定的检查人数为止;D.电影院检查观众的某一指标,邀请每排(每排人数相等)座位号为14的观众留下来会谈 .5.一个田径队有男运动员56 人,女运动员 42 人,请用分层抽样的方法从全队中抽取28 名运动员.。
2.1.3分层抽样
2.1.3.分层抽样(导学案)一、问题引入中央电视台希望在春晚播出一周后获得当年春晚的收视率。
下面是三名同学为电视台设计的调查方案。
同学A:我把调查表放在互联网上,只要上网登陆该网址的人都可以看到这张表,他们的填表信息可以很快反馈到我的电脑上;同学B:我给居民小区的每一家住户发放调查表,只要一两天就可以统计出结果;同学C:我在电话本上随机选出一定数量的电话号码,逐个打电话调查,可以足不出户就得到调查结果。
请问:上述三名同学设计的调查方案能够获得比较准确的收视率吗?为什么?二、新知探究(一)理论探究为了预估我校高二某文科班全体同学(60人,男生18人,女生42人)的平均身高,我打算从班级学生中抽取容量为10的样本进行调查。
现给出以下三种抽样方案:方案一:用简单随机抽样从60人中抽10人;方案二:从男生中随机抽5人,女生中随机抽5人;方案三:从男生中随机抽3人,女生中随机抽7人。
(二)实验探究实验目的:分别采用方案一、二、三进行实验利用随机数表法抽取十个数据作为样本编号,找到编号对应的身高数据并计算出平均值,每种方案进行十次实验,并将实验数据通过excel绘制出折线图,以全班真实身高为参照,观察哪个方案更接近真实值。
(由于时间关系,方案一二的实验已在课前完成,课堂仅展示方案三的实验过程)实验步骤:1.采用方案三,两人一组,一人通过随机数表(课本P103-105)抽取3名男生7名女生的编号,即从01-18中抽取3个数字,19-60中抽取7个数字,并填入表一中“编号”一栏;2.在表二中找到编号所对应的身高数据,填入表一中“身高”一栏;3.另一人根据填好的10个身高数据,算出身高平均值(保留一位小数)。
表一:实验数据表二:某文科班全班身高数据(表格说明:编号1-18为男生身高数据,19-60为女生身高数据)将实验结果输入excel文档,绘制出折线图,观察发现方案更接近真实平均值。
综上,从理论探究和实验探究可以看出,方案最好,因为三、概念提出(课本60)假设某地区有高中生2400人,初中生10900人,小学生11000人,本地教育部门为了了解本地区中小学生的近视情况及其形成原因,要从本地区的中小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?分层抽样概念:一般地,在抽样时,将总体分成的层,然后按照,从各层抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样。
高中数学 213分层抽样导学案 苏教版必修3.doc
2. 1. 3《分层抽样》导学案学习目标:(1)结合实际问题情景,理解分层抽样的必要性和重要性;(2)学会用分层抽样的方法从总体中抽取样本;(3)并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.学习重点、难点:分层抽样的概念的理解,及三种抽样方法的比较。
学习过程:一、问题情境情境1:为什么一个单位老职工多,其投医疗保险的积极性就高,而老年职工少的单位其投医疗保险的积极性低?一个单位的职工500人,其中不到35岁的有125人,35到49岁的有280人,50岁以上的有95人。
为了了解这个单位职工与身体状况有关的某项指标,要从中抽取一个容量为100的样本。
由于职工年龄与这项指标有关,试问:应用什么方法抽取?能在.500人中任意取100个吗?能将100个份额均分到这三部分中吗?情境2.某校高一、高二和高三年级分别有学.生1000, 800和700名,为了了解全校学生的视力情况,从中抽取容量为100的样本,怎样抽样较为合理?•二、学生活动三、建构数学1.分层抽样概念:2.分层标准: _____________________________________________________________________3.分层抽样的步骤是:______________________________________ ______________________③_______________________________________________________________④_______________________________________________________________4.分层的比例问题:四、数学运用1.例题例1、(1)分层抽样中,在每一层进行抽样可用_______________________________ .(2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;某班期中考试有15人在85分以上,40人在60-84分,1人不及格。
山东省禹城市综合高中高中数学必修3导学案:2-1-3分层
§2.1.3分层抽样(1)正确理解分层抽样的概念;(2)掌握分层抽样的一般步骤;(3)区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法进行抽样。
正确理解分层抽样的定义,灵活应用分层抽样抽取样本,并恰当的选择三种抽样方法解决现实生活中的抽样问题。
通过对现实生活中实际问题进行分层抽样,感知应用数学知识解决实际问题的方法。
简单随机抽样、系统抽样常用方法及其操作步骤。
一、情景设置:假设某地区有高中生2400人,初中生10900人,小学生11000人,此地教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?二、探究新知:知识探究(一):分层抽样的基本思想问题:某地区有高中生2400人,初中生10800人,小学生11100人.当地教育部门为了了解本地区中小学生的近视率及其形成原因,要从本地区的中小学生中抽取1%的学生进行调查. 思考1:从5件产品中任意抽取一件,则每一件产品被抽到的概率是多少?一般地,从N个个体中任意抽取一个,则每一个个体被抽到的概率是多少?思考2:从6件产品中随机抽取一个容量为3的样本,可以分三次进行,每次从中随机抽取一件,抽取的产品不放回,这叫做逐个不放回抽取.在这个抽样中,某一件产品被抽到的概率是多少?思考3:具体在三类学生中抽取样本时(如在10800名初中生中抽取108人),可以用哪种抽样方法进行抽样?思考4:在上述抽样过程中,每个学生被抽到的概率相等吗?思考5:上述抽样方法不仅保证了抽样的公平性,而且抽取的样本具有较好的代表性,从而是一种科学、合理的抽样方法,这种抽样方法称为分层抽样.一般地,分层抽样的基本思想是什么?思考6:若用分层抽样从该地区抽取81名学生调查身体发育状况,那么高中生、初中生和小学生应分别抽取多少人?知识探究(二):分层抽样的操作步骤:某单位有职工500人,其中35岁以下的有125人,35岁~49岁的有280人,50岁以上的有95人.为了调查职工的身体状况,要从中抽取一个容量为100的样本。
高中数学 213分层抽样导学案(无答案)新人教版必修3 学案
2.1.3 分层抽样【学习目标】1.正确理解分层抽样的概念;2.掌握分层抽样的一般步骤;3.区分简单随机抽样、系统抽样和分层抽样,并选择适当的方法进行抽样.【学法指导】通过对现实生活中的实际问题进行分层抽样,感知应用数学知识解决实际问题的方法;通过对统计学知识的研究,感知数学知识中“估计”与“精确”性的矛盾统一,培养辩证唯物主义的世界观与价值观.1.分层抽样的概念在抽样时,将总体分成的层,然后按照 ,从各层地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持与的一致性,这对提高样本的代表性非常重要.当总体是由的几个部分组成时,往往选用分层抽样的方法.[问题情境] 中国共产党第十八次代表大会2 270名代表是从40个单位中产生的,这40个单位分别是:1─31为省(自治区、直辖市)、32中央直属机关、33中央国家机关、34全国台联、35解放军、36武警部队、37中央金融系统、38中央企业系统、39中央香港工委、40中央澳门工委.代表的选举原则上是按各选举单位的党组织数、党员人数进行分配的.这种产生代表的方法与我们今天要学的分层抽样很相似.探究点一分层抽样的基本思想导引某地区有高中生2 400人,初中生10 900人,小学生11 000人.当地教育部门为了了解本地区中小学生的近视率及其形成原因,要从本地区的中小学生抽取1%的学生进行调查,你认为应当怎样抽取样本?问题1 为了抽样方便,能不能只从小学生或初中生或高中生中抽取中小学生总数的1%?为什么?问题2 在高中,初中和小学三部分学生中都按1%的比例抽取,那么各抽取多少人?问题3 具体在三类学生中抽取样本时(如在10 800名初中生中抽取108人),可以用哪种抽样方法进行抽样?问题4 上述抽样方法保证了抽样的公平性,并且样本具有较好的代表性,从而是一种科学、合理的抽样方法,这种抽样方法称为分层抽样.你能归纳出分层抽样的概念吗?问题5 适合用分层抽样的方法抽取样本的问题有什么特点?例1某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是 ( )A.4B.5C.6D.7 探究点二分层抽样的一般步骤导引某单位有职工500人,其中35岁以下的有125人,35岁~49岁的有280人,50岁以上的有95人.为了调查职工的身体状况,要从中抽取一个容量为100的样本,如何进行抽取?问题1 该项调查应采用哪种抽样方法进行?问题2 不同年龄段的职工中,按什么比例抽取人数?问题3按比例,三个年龄层次的职工分别抽取多少人?问题4 在分层抽样中,如果总体的个体数为N,样本容量为n,第i层的个体数为k,则在第i层应抽取的个体数如何算?问题5 在各年龄段具体如何抽样?怎样获得所需样本?问题6 一般地,分层抽样的操作步骤如何?问题7 样本容量与总体的个体数之比是分层抽样的比例常数,按这个比例可以确定各层应抽取的个体数,如果各层应抽取的个体数不都是整数该如何处理?例2 写出导引中的解题步骤.探究点三三种抽样方法的比较问题简单随机抽样、系统抽样和分层抽样既有其共性,又有其个性,根据下表,你能对三种抽样方法作一个比较吗?例3 某高级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是( )A.②③都不能为系统抽样B.②④都不能为分层抽样C.①④都可能为系统抽样D.①③都可能为分层抽样达标训练:1.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为( )A.7B.15C.25D.352.某林场有树苗30 000棵,其中松树苗4 000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为 ( )A.30B.25C.20D.153.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________.课堂小结:1.用分层抽样从个体为N的总体中抽取一个容量为n的样本时,在整个抽样过程中每个个体被抽到的机会相等.2.分层抽样是建立在简单随机抽样或系统抽样基础上的,由于它充分利用了已知信息,考虑了保持样本结构与总体结构的一致性,因此它获取的样本更具代表性,在实用中更为广泛.3.简单随机抽样是基础,系统抽样与分层抽样是补充和发展,三者相辅相成,对立统一.2.1.3 分层抽样练习题一、基础过关1.某城市有学校700所,其中大学20所,中学200所,小学480所.现用分层抽样方法从中抽取一个容量为70的样本,进行某项调查,则应抽取中学数为 ( )A.70 B.20 C.48 D.22.具有A、B、C三种性质的总体,其容量为63,将A、B、C三种性质的个体按1∶2∶4的比例进行分层抽样调查,如果抽取的样本容量为21,则A、B、C三种元素分别抽取 ( )A.12、6、3 B.12、3、6 C.3、6、12 D. 3、12、63.甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个容量为90人的样本,应在这三校分别抽取学生 ( )A.30人,30人,30人B.30人,45人,15人C.20人,30人,10人D.30人,50人,10人4.某城区有农民、工人、知识分子家庭共计2 000家,其中农民家庭1 800户,工人家庭100户.现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,可以用到下列抽样方法( )①简单随机抽样;②系统抽样;③分层抽样.A.②③B.①③C.③D.①②③5.某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.6.某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.7.某学校高一年级有x个学生,高二年级有y个学生,高三年级有z个学生,采用分层抽样抽取一个容量为45人的样本,高一年级被抽取20人,高三年级被抽取10人,高二年级共有300人,则此学校共有高中学生多少人?8.某工厂有3条生产同一产品的流水线,每天生产的产品件数分别是3 000件,4 000件,8 000件.若要用分层抽样的方法从中抽取一个容量为150件产品的样本,应该如何抽样?二、能力提升9.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽样本的方法是 ( )A.简单随机抽样 B.系统抽样C.先从中年人中剔除1人,再用分层抽样 D.先从老年人中剔除1人,再用分层抽样10.某工厂生产A、B、C、D四种不同型号的产品,产品数量之比依次为2∶3∶5∶1.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号有16件,那么此样本的容量n为________.11.一批产品有一级品100个,二级品60个,三级品40个,分别采用系统抽样和分层抽样,从这批产品中抽取一个容量为20的样本.三、探究与拓展12.某单位有技师18人,技术员12人,工程师6人,需要从这些人中抽取一个容量为n的样本,如果采用系统抽样和分层抽样方法抽取,都不用剔除个体;如果样本容量增加1,则在采用系统抽样时,需要在总体中剔除1个个体,求样本容量n .跟踪训练1 某校有学生2 000人,其中高三学生500人.为了解学生的身体素质情况,采用按年级分层抽样的方法,从该校学生中抽取一个200人的样本,则样本中高三学生的人数为_______.跟踪训练2 某市的3个区共有高中学生20 000人,且3个区的高中学生人数之比为2∶3∶5,现要从所有学生中抽取一个容量为200的样本,调查该市高中学生的视力情况,试写出抽样过程.跟踪训练3 一个总体中的80个个体编号为0,1,2,…,79,并依次将其分为8个组,组号为0,1,…,7,要用下述抽样方法抽取一个容量为8的样本:即在第0组先随机抽取一个号码i ,则第k 组抽取的号码为10k +j ,其中j =⎩⎪⎨⎪⎧i +k i +k <10i +k -10i +k ≥10,若先在0组抽取的号码为6,则所抽到的8个号码依次为____________________.。
人教版高中数学必修三学案:2.1.3分层抽样
2.1.3分层抽样1、知识与技能:理解并掌握分层抽样方法2、过程与方法:会用分层抽样从总体中抽取样本重点与难点:正确理解分层抽样的概念,分层抽样的具体操作方法一. 自主学习:1分层抽样的概念:2分层抽样的特点:3.分层抽样的步骤:例1:某高中共有900 人,其中高一年级300 人,高二年级200人,高三年级400 人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为()A.15,5,25B.15,15,15C.10,5,30D.15,10,20例2:某单位有职工160人,其中业务员有104人,管理人员32人,后勤24人,现用分层抽样从中抽取一容量为20的样本,则抽取管理人员()人A、3B、4C、7D、12例3.某校共有师生1600人,其中教师100人,现用分层抽样的方法,从所有1师生中抽取一个容量为80的样本,则抽取的学生数为___________________ 。
例4.某学校有老师200人,男学生1200人,女学生1000人,先用分层抽样的方法从全体师生中抽取一个容量为n的样本,已知女学生一共抽取了80人,则n的值为_____________例5.已知某校的初中学生人数、高中学生人数、教师人数之比为20:15:2,现在用分层抽样的方法从所有师生中抽取一个容量为N的样本进行调查,若应从高中学生中抽取60人,则N=_____________三.小试牛刀:1、下列问题中,采用怎样的抽样方法比较合理:①从10台冰箱中抽取3台进行质量检查;②某电影院有32排座位,每排有40个座位,座位号为1~40。
有一次报告会③某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名。
为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本。
坐满了听众,会议结束后为听取意见,留下座位号为18的32名听众进行座谈;2、某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和销后服务等情况,记这项调查为②.则完成①、②这两项调查采用的抽样方法依次是( )A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽档法,分层抽样法3. 一批灯泡400只,其中20 W、40 W、60 W的数目之比为4∶3∶1,现用分层抽样的方法产生一个容量为40的样本,三种灯泡依次抽取的个数为______________.4.从总体为.的一批零件中用分层抽样抽取一个容量为30的样本,若每个零件被抽取的机率为0.25,则N等于()A.150B.200C.120D.1005.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样的方法抽出一个容量为n的样本,样本中A种型号产品有16件,那么此样本的容量n= 。
2.1.3 分层抽样
2.1.3分层抽样导学案【自主预习】1.分层抽样的概念在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.简单随机抽样、系统抽样、分层抽样的联系和区别人,上级部门为了了解该机关对政府机构改革的意见,要从中抽取20人,用下列哪种方法最合适() A.系统抽样法B.简单随机抽样法C.分层抽样法D.随机数法(2)分层抽样又称类型抽样,即将相似的个体归入一类(层),然后每类抽取若干个个体构成样本,所以分层抽样为保证每个个体等可能抽样,必须进行()A.每层等可能抽样B.每层可以不等可能抽样C.所有层按同一抽样比等可能抽样D.所有层抽个体数量相同[活学活用]下列问题中,最适合用分层抽样抽取样本的是()A.从10名同学中抽取3人参加座谈会B.某社区有500个家庭,其中高收入的家庭125个,中等收入的家庭280个,低收入的家庭95个,为了了解生活购买力的某项指标,要从中抽取一个容量为100的样本C.从1 000名工人中,抽取100名调查上班途中所用时间D.从生产流水线上,抽取样本检查产品质量[例2](1)将一个总体分为A,B,C三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为100的样本,则应从C中抽取________个个体.(2)一个地区共有5个乡镇,人口3万人,其人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.[活学活用]某单位有职工100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁以上(包括50岁)的人,用分层抽样的方法从中抽20人,各年龄段分别抽取的人数为()A.7,5,8 B.9,5,6C.7,5,9 D.8,5,7[例3]某中学举行了为期3天的新世纪体育运动会,同时进行全校精神文明擂台赛.为了了解这次活动在全校师生中产生的影响,分别在全校500名教职员工、3 000名初中生、4 000名高中生中做问卷调查,如果要在所有答卷中抽出120份用于评估.(1)应如何抽取才能得到比较客观的评价结论?(2)要从3 000份初中生的答卷中抽取一个容量为48的样本,如果采用简单随机抽样,应如何操作?(3)为了从4 000份高中生的答卷中抽取一个容量为64的样本,如何使用系统抽样抽取到所需的样本?。
人教版高中必修3(B版)2.1.3分层抽样课程设计 (2)
人教版高中必修3(B版)2.1.3 分层抽样课程设计一、前言以分层抽样为基础的概率统计方法是应用最广泛的一种方法,思路清晰明确,操作方便。
而人教版高中必修3(B版)2.1.3 分层抽样是本课程的重中之重。
本文档主要介绍了分层抽样的概念、特点、方法及其在社会调查中的应用。
同时,本文档还结合人教版高中必修3(B版)2.1.3 分层抽样的相关内容,以实例的方式进行详细的讲解,旨在帮助学生深入理解课本内容,提高其应用分层抽样的能力。
二、分层抽样的概念、特点及方法2.1 分层抽样的概念分层抽样是指在进行随机抽样时,首先根据需要,将总体划分为若干个层次,然后从每一层中抽取样本,以获得更加精确的统计结果的随机抽样方法。
2.2 分层抽样的特点•可以使总体分层后,各个层次之间有明确的差异,从而更加精确地抽样。
•可以减少样本误差,更加准确地反映样本的特点。
•抽样过程中,可以充分考虑各个层次的特点,避免不必要的随机误差,获得更加精确的结果。
2.3 分层抽样的方法分层抽样主要有以下几种方法:•比例分层抽样•等级分层抽样•分类分层抽样•多阶段分层抽样不同的分层抽样方法适用于不同的情况,应根据具体的调查目的和条件选择合适的抽样方法。
在分层抽样方法的选择时要注意合规合理。
2.4 分层抽样的应用分层抽样广泛应用于社会调查、市场调查等领域中。
在社会调查中,对于人口、地理、经济等差异明显的层次,可以采用分层抽样的方法进行抽样,获得更加可靠的数据。
三、人教版高中必修3(B版)2.1.3 分层抽样课程设计3.1 课程目标通过本课程的学习,使学生:•理解分层抽样的基本概念、特点、方法;•能够应用分层抽样的方法进行调查,并分析数据;•培养学生综合运用数学知识的能力,并逐步培养学生的创新思维和实践能力。
3.2 课程内容3.2.1 分层抽样的基本概念和特点 - 分层抽样的定义和应用场景- 分层抽样的特点及优势3.2.2 分层抽样的方法 - 比例分层抽样 - 等级分层抽样 - 分类分层抽样 - 多阶段分层抽样3.2.3 分层抽样的实例分析 - 分层抽样的实际应用 - 分层抽样在社会调查中的应用 - 分层抽样方法的实际操作技巧3.3 课程设计本课程设计采用“理论结合实际”的方式进行,旨在帮助学生更加深入地理解分层抽样的相关知识,并在实际操作中进行巩固和拓展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修三2.1.3分层抽样导学案
1.3分层抽样
【学习目标】
了解分层抽样的概念,比较三种抽样方法.
利用分层抽样从总体中抽取样本.
【新知自学】
知识回顾:
简单随机抽样、系统抽样
阅读教材第60-61页内容,然后回答问题
新知梳理:
分层抽样的概念
定义:
步骤:
分层抽样的适用条
分层抽样尽量利用事先所掌握的各种信息,并充分考虑了保持与的一致性,这对提高样本的非常重要.当总体是由的几部分组成时,往往选用分层抽样的方法.
对点练习:
分层抽样又称类型抽样,即将相似的个体归入一类,然后每层抽取若干个体成样本,所以分层抽样为保证每个个体等可能被抽到,必须进行
A.每层等可能抽样
B.每层不等可能抽样
c.所有层按同一抽样比等可能抽样
D.所有层抽同样多样本容量,等可能抽样
如果采用分层抽样,从个体数为N的总体中抽取一个容量为n的样本,那么每个个体被抽到的可能性为
A.B.c.D.
下列说法不正确的是
简单随机抽样是从个体数较少的总体中逐个随机抽取个体
系统抽样是从个体数较多的总体中,将总体均分,再按事确定的规划在各部分抽
取
系统抽样是将差异明显的总体均分成几部分,再进行抽取
分层抽样是将由差异明显的几部分组成的总体分成几层,分层进行抽取
【合作探究】
典例精析
例题1.一个地区共有5个乡镇,人口3万人,其中人口比例为3:2:5:2:3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及
水土有关,问应采取什么样的方法?并写出具体过程.
变式训练1.某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为
A.15,5,25
B.15,15,15
c.10,5,30D15,10,20
例2.某初级中学有学生人,其中一年级人,二、三年级各人,现要利用抽样方法抽取人参加某项调查,考虑选用简单随机抽样,分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为;使用系统抽样时,将学生统一随机编号,并将整个编号依次分为段.如果抽得号码有下列四种情况:
①
②
③
④.
关于上述样本的下列结论中,正确的是
②、③都不能为系统抽样
②、④都不能为分层抽样
①、④都可能为系统抽样
①、③都可能为分层抽样
变式训练2.选择合适的抽样方法抽样,写出抽样过程.
有甲厂生产的两箱篮球,其中一箱21个,另一箱9个,抽取3个;
有30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个;
有甲厂生产的300个篮球,抽取10个;
有甲厂生产的篮球300个,抽取30个.
【课堂小结】
简单随机抽样、系统抽样、分层抽样的比较
类别共同点各自
特点联系适用
范围
简单
随机
抽样抽样过程中每个个体被抽到的可能性
每次抽出个体后不再将它,即
从总体中
抽取总体个数
将总体
几部分,按预先制定的规则在各部分抽取在起始部分采用
总体个数
系统
抽样
将总体分成,分层进行抽取分层抽样时每层采用
总体由
的几部分组成
分层
抽样
【当堂达标】
某地区有家商店,其中大型商店有家,中型商店有家,小型商店家,为了掌握各商店的营业情况,要从中抽取一个容量为的样本,若采取分层抽样的方法,抽取的中型商店数是
为了解某社区居民有无收看“北京奥运会开幕式”,某记者分别从某社区岁,岁,岁的三个年龄段中的人,人,人中,采取分层抽样的方法共抽查了人进行调查,若在岁这个年龄段中抽查了人,那么这次调查中某社区岁年龄段中的人数为.
.某超市有普通水果和无公害水果若干千克,现按的比例分层抽样,抽取了千克普通水果和千克无公害水果进行分析,则该超市共有水果千克.
【课时作业】
下面的抽样方法是分层抽样的是
A.对100万张明信片进行开奖,通过随机抽取的方法确定号码后4位是2709的为三等奖
B.在车间的自动传送带上每隔30分钟抽一包产品,检查产品是否合格
c.某学校分别从行政;教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见
D.用抽签方法从10件产品中选取3件进行质量检验
一个单位职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人,为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是.
A.12,24,15,9B.9,12,12,7
c.8,15,12,5D.8,16,10,6
某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体情况,需从他们中抽取一个容量为36的样本,则适合的抽取方法是
A.简单随机抽样B.系统抽样
c.分层抽样
D.先从老人中剔除1人,然后再分层抽样
简单随即抽样、系统抽样、分层抽样之间的共同点是
都是从总体中逐个抽样
将总体分成几部分,按实现制定的规则在各部分抽取
抽样过程中,每个个体被抽取的可能性相等
将总体分成几层,分层进行抽取
已知某单位有职工人,男职工人,线采用分层抽样抽取一个样本,若已知样本中有名男职工,则样本容量为无法确定
某校高三年级有男生人,女生人,为了解该年级学生的健康情况,从男生中任意抽取人,从女生中任意抽取人进行调查,这种抽样方法是
简单随即抽样法抽签法
随机数法分层抽样法
问题:①有个乒乓球分别装在个箱子内,其中红色箱子内有个,蓝色箱子内有个,黄色箱子内有个,现从中抽取一个容量为的样本;②从名学生中选出参加座谈会.方法:I.随机抽样法II.系统抽样法III.分层抽样法.
其中问题与方法能配对的是
①I,②II①III,②I
①II,②III①III,②II
某学校高一、高二、高三三个年级共有学生人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多人,现在按的抽样比用分层抽样的方法抽取样本,则应抽取
高一学生数为
.某林场有树苗棵,其中松树苗棵,为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为的样本,则样本中松树苗的数量为
0.某单位200名职工的年龄分布情况如图所示,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组.若第5组抽出的号码为22,则第8组抽出的号码应是_____.若用分层抽样方法,则40岁以下年龄段应抽取________人.
1.某中学高一年级有学生600人,高二年级有学生450人,高三年级有学生750人,每个学生被抽到的可能性均为0.2,若该校取一个容量为n的样本,则n=。
某学校在校学生XX人,为了迎接“XX年广州亚运会”,学校举行了“迎亚运”跑步和登山比赛活动,每人都参加而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:
高一年级高二年级高三年级
跑步人数abc
登山人数xyz
其中a:b:c=2:5:3,全校参与登山的人数占总人数的14.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则高三年级参与跑步的学生中应抽
取
A.15人B.30人
c.40人D.45人
3.某工厂生产了某种产品件,她们来自甲、乙、丙条生产线.为检查这批产品的质量,决定采用分层抽样的方法进行抽样.若从甲、乙、丙三条生产线抽取的个体数分别为,且使得则乙生产线生产了件产品.。