实数(3)
湘教版八上数学第三章第三节3.3有效数字
湘教版八上数学第三章第三节3.3有效数字
§3.3实数(3)------近似数与有效数字
学习目标
1、了解近似数与有效数字的概念,体会近似数的意义及在生活中的作用
2、能说出一个近似数的精确度或有几个有效数字,能按照要求用四舍五入的方法取一个数的近似数
【学习重难点】按要求用四舍五入法取一个数的近似数
自主学习
一、情境引入
有10千克苹果,3人平分每人多少?所得的结果是准确数还是近似数?
(是精确数,是近似数)
二、基础知识探究
1、近似数
例如:下列哪些数是精确数?哪些是近似数?
(1)初二(3)班有70名学生;()
(2)月球离地球的距离大约是38万千米;()
(3)中华人民共和国现有31个省级行政区;()
(4)北京市大约有1300万人;()
(5)小月的年龄是14岁;()
生活中许多时候只能用近似数,是因为:(1)做到完全准确有时候是办不到的;(2)往往也没有必要完全准确。
2、取近似值的方法:
取一个数的近似值有多种方法,如:;;;等。
而四舍五入是最常用的一种方法。
用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。
6.关于近似数5
.4 ,下列说法正确的是()
10
80
A.有2个有效数字,精确到十分位 B.有3个有效数字,精确到百分位C.有2个有效数字,精确到万位 D.有3个有效数字,精确到千位7.对于近似数10.08和0.1008,下列说法正确的是()
A.它们的有效数字与精确度都不相同 B.它们的有效数字与精确度都相同C.它们的有效数字相同,精确度不同 D.它们的有效数字不同,精确度相同。
6.3实数(3)
6.3 实数(3)
学习目标
1.我能区分有理数和无理数。
2.我会对有理数无理数的混合运算。
3.在有实数混合计算中我能去绝对值。
学习重点:实数数的混合运算
学习难点:含有绝对值的计算中去绝对值
一、自主学习
1.给实数分类
2.计算
(1) 74872--⎪⎭⎫ ⎝⎛3664 (2)()
322--
二、合作探究
1..计算
(1)322752
1
10⨯--+-+-2)()(π
分析:在上面的计算中含有乘方、绝对值、乘法、加法、减法,有小数、整数、无理数等,这类题是典型的实数混合计算,在这类题的计算中任然遵循有理数的计算法则: 。
解:原式= + + —
=
=
=
注意:在计算中去绝对值时要注意当绝对值里面的数小于0时,去了绝对值要变成它的 ,当绝对值里面的数大于0时,直接把 去掉。
(2)|12||32||34|-+-+-
分析:在本题中是三个绝对值相加的形式,在每个绝对值里面都有无理数存在,这时我们就要对绝对值里面的数进行大小分析然后去绝对值在计算。
解:原式= + + (去绝对值) = = =
(3)3422(75)-÷-⨯-+
(
4) 202341--+-+--)()(||π
三、课堂小结
四、课堂检测
五、课后反思
四、课堂检测 1.20152)1()2
1(25.0-++
2.计算:2a a -π+
-(2a <<π)(精确到0.1)
3.
632162---+-+)21()51(10)1(2004-÷-⨯--
4.若5250x y -++=,求3xy 的值.。
实数的概念和分类 (3)
2.6实数 教学设计第(一)课时教学设计思想本节内容需三课时讲授;本课时是对这段时间以来学过的数作一归纳性的总结,这个总结过程可由学生自己通过对具体的数比较的基础上引入,分清带根号的数不一定是无理数,对提出实数的概念(有理数和无理数的总称)表示接受和理解。
通过议一议,掌握数的分类要遵循的规则,领会分类的思想;在此过程中,通过对上述数的特点的分析,指出实数的绝对值和相反数的意义与在有理数范围内的意义是一样的,设计有针对性的例题和习题巩固对这些概念的认识,会求一个数的绝对值、相反数及倒数。
同时让学生思考,数的绝对值与相反数往往与数轴有密切的联系,进而让学生议一议“有理数能填满整个数轴吗?”,引出实数与数轴的关系,“每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。
即实数和数轴上的点是一一对应的。
”,掌握如何在数轴上画出如:,等数,真切感受实数在数轴上的存在和实际大小,掌握实数大小比较的方法。
教学目标 (一)知识与技能1.能对实数按要求进行分类.2.知道在实数范围内、相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.3.明白实数和数轴上的点是一一对应的并能根据它们在数轴上的位置来比较大小. (二)过程与方法1.通过对实数进行分类,培养学生的分类意识.2.用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的思想.(三)情感、态度与价值观通过对实数进行分类的练习,让学生进一步领会分类的思想.鼓励学生要从不同角度入手,寻求解决问题的多种途径.训练学生的多角度思维,为他们以后更好地工作作准备.教学重点1.实数概念的建立. 2.实数的分类.3.在实数范围内,求相反数、倒数、绝对值. 教学难点1.实数概念的建立. 2.实数的分类.10 3教学方法 指导法. 教具准备 投影片. 教学安排 3课时. 教学过程 Ⅰ.导入新课在前面我们学了有理数和无理数,有理数是有限小数或无限循环小数,无理数是无限不循环小数,如π.在学了平方根和立方根之后,我们知道、这样的数也不是有理数,因为没有哪一个整数或分数的平方为2,立方为3.而且用估算的方法还知道、是无限不循环小数,因此这些数也是无理数.那是不是说带有根号的数就是无理数呢?也不全是.如=2,2是有理数,一般来说开方开不尽的数就是无理数,如等.在小学学了非负数,上初一引入了负数,数的范围扩充到有理数范围,那么引入无理数之后数的范围扩充到什么范围呢?本节课就来研究此问题以及与之有关的问题.Ⅱ.自主学习课本70,73页 1.实数的概念把下列各数分别填入相应的集合内:…有理数和无理数统称为实数(real number ),即实数可以分为有理数和无理数. 2.实数的分类[师]在有理数的分类中可以按正数、负数、零进行分类,也可按整数和分数进行分类,那么在实数范围内是不是也能这样分类呢?下面我们把上面各数填入下面相应的集合内.23323345,73737737773.0,0,94,8,5,520,2,25,,7,41,233---π填完之后大家发现了什么?[生]无理数也有正负之分,0既不能填入正数集合,也不能填入负数集合. [师]因此,从正、负方面来考虑,实数可以分为正实数、零、负实数. 即实数另外从定义也可以进行分类.实数这就是实数的两种分法. 3.在实数范围内的几个概念.在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.(1)相反数:a 与-a 互为相反数,0的相反数是0.(2)倒数:若a≠0,则a 与互为倒数.(3)绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,即|a |=想一想[师]请大家思考并回答:⎪⎩⎪⎨⎧负实数零正实数⎩⎨⎧无理数有理数a 1⎪⎩⎪⎨⎧<-=>)0()0(0)0(a a a a a[生](1)-,;(2)互为倒数;(3)π,0;(4)-a,|a|;(5)4.实数与数轴上的点之间的关系.[师]请大家认真观察图,然后再回答.(1)如图,OA=OB,数轴上A点对应的数是什么?它介于哪两个整数之间?(2)如果将所有有理数都标到数轴上,那么数轴被填满了吗?[生]因为根据勾股定理得OB2=1+1=2,所以OB=,OA=OB,故OA=,A点对应的数是无理数,它介于整数1和2之间.[生]如果把所有有理数都标到数轴上,那么数轴填不满.因为有理数不包括A点.[师]每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数与数轴上的点是一一对应的.在数轴上,右边的点表示的数比左边的点表示的数大.Ⅲ.课堂练习22a12221.判断下列说法是否正确. (1)无限小数都是无理数; (2)无理数都是无限小数; (3)带根号的数都是无理数; (4)无理数都是实数; (5)实数都是无理数.解:(1)错.如1.333…是无限小数但是有理数; (2)是正确的;(3)错误的. 如 -、都是带根号的数,但它们不是无理数;(4)正确;(5)错.如,0,-3等都是实数,但不是无理数.2.求下列各数的相反数、倒数和绝对值.(1); (2); (3).解:(1)的相反数为-,倒数为,绝对值为; (2)=-2的相反数为2,倒数为-,绝对值为2; (3)=7,7的相反数为-7,倒数为;绝对值为7.3.在数轴上作出对应的点.解:如图,点A 所表示的点即为对应的点.432743738-497771738-21497155解:(1)∵(7)2=56.25,而56.25>50 ∴,即7>; (2)-=-3.1428…,-π=-3.1415…∴-π>-;(3)采用平方法∵(2)2=60,(3)2=54而60>54 ∴2>3; (4)∵6+2=5+(1+2)以下采用平方法比较2与1+2的大小.215025.56 21507227221561565565(2)2=24,(1+2)2=1+4+20=21+4,又24=21+3,而3<4∴5+2<6+2.说明:被开方数较大的算术平方根较大. Ⅳ.课时小结本节课学了如下内容: 1.实数的概念. 2.实数的两种分类.(1)按大小分为:正实数,0,负实数. (2)按定义分为:有理数和无理数.3.在实数范围内,相反数,倒数,绝对值的意义仍然和在有理数范围内的意义相同. 4.实数和数轴上的点是一一对应的. 5.根据实数在数轴上的位置比较实数的大小. Ⅴ.课后作业 习题2.8 Ⅵ.活动与探究1.写出适合下列条件的数.(1)大于-小于的所有整数; (2)小于的所有自然数; (3)大于-的所有负整数; (4)绝对值小于的所有整数.分析:首先找到满足条件的最大数和最小数,然后再将它们之间的所有满足条件的数都写出来.解:(1)∵-<-<∴大于-且小于的所有整数是:-3,-2,-1,0,1,2.655556513520117134,95135(2)∵∴小于的所有自然数是:4,3,2,1,0. (3)∵-∴大于-的所有负整数是:-3,-2,-1.(4)∵绝对值小于的数x ,满足-<x <,而-<-<∴绝对值小于的所有整数是:-2,-1,0,1,2. 说明:两个负数比较大小,绝对值大的反而小. 2.求满足下列各式的x 的值.(1)|x |= (2)|x 2-5|=4分析:根据绝对值的概念,正实数的绝对值是它本身,负实数的绝对值是它的相反数.所以(1)中的x 既可以是正实数,也可以是负实数.(2)把(x 2-5)视作一个整体,类似于(1).解:(1)∵|x |= ∴x=± (2)∵|x 2-5|=4∴x 2-5=±4 当x 2-5=4时x 2=9∴x=±3 当x 2-5=-4时x 2=1∴x=±1∴满足等式的x 的值为-3,-1,1,3说明:互为相反数的二数的绝对值相等,即|a |=|-a |. 3.已知x 是实数,化简|3x -1|-|2x+1|.分析:设法脱掉绝对值符号,但x 的范围没有具体给定,所以应讨论,具体方法是:252016<<20911-<1177774,477333(1)找零点:令3x -1=,x=,令2x+1=0,x=-;(2)描零点:在数轴上找出零点;(3)分区间:两个零点把实数轴所表示的数分成三个区间:x≤-,-<x≤,x >;(4)作化简:在各个区间上分别去绝对值符号,进行化简.解:(1)当x≤-时,3x -1<0,2x+1≤0原式=(1-3x )+(2x+1)=2-x.(2)当-<x≤时,3x -1≤0,2x+1>0原式=(1-3x )-(2x+1)=-5x.(3)当x >时,3x -1>0,2x+1>0原式=(3x -1)-(2x+1)=x -2.说明:在实数范围内的运算中,去绝对值符号时根据字母的取值范围确定绝对值符号内数的正、负、零,进行变形.否则就要分类讨论,借助于数轴把实数分为若干个区间,在每个区间内根据数的范围分别去掉绝对号,再进行合并同类项即可,这样形象、直观、简明,且可保证不重不漏.板书设计31212121313121213131。
2.5 实数(3)教案
8上数学2.5 实数(3)教学目标:(一)教学知识点1.了解有理数的运算法则在实数范围内仍然适用.2.用类比的方法,引入实数的运算法则、运算律,并能用这些法则,运算律在实数范围内正确计算.3.正确运用公式);0,0(≥≥⋅=⋅b a b a b a )0,0(>≥=b a b ab a.(二)能力训练要求1.让学生根据现有的条件或式子找出它们的共性,进而发现规律,培养学生的钻研精神和创新能力.2.能用类比的方法去解决问题,找规律,用旧知识去探索新知识.(三)情感与价值观要求通过探索规律的过程,培养学生学习的主动性,敢于探索,大胆猜想,和同学积极交流,增强学习数学的兴趣和信心。
教学重点:1.用类比的方法,引入实数的运算法则、运算律,并能在实数范围内正确进行运算.2.发现规律:);0,0(≥≥⋅=⋅b a b a b a )0,0(>≥=b a b ab a.并能用规律进行计算.教学难点:1.类比的学习方法.2.发现规律的过程.教学方法:类比法.教学过程:Ⅰ.新课导入上节课我们学习了实数的定义、实数的两种分类,还有在实数范围内如何求相反数、倒数、绝对值,它们的求法和在有理数范围内的求法相同.那么在有理数范围内的运算法则、运算律等能不能在实数范围内继续用呢?本节课让我们来一起进行探究.Ⅱ.新课讲解1.有理数的运算法则在实数范围内仍然适用.[师]大家先回忆一下我们在有理数范围内学过哪些法则和运算律.[生]加、减、乘、除运算法则,加法交换律,结合律,分配律.[师]好.下面我们就来验证一下这些法则和运算律是否在实数范围内适用.我们知道实数包括有理数和无理数,而有理数不用再考虑,只要对无理数进行验证就可以了. 如:2332⋅=⋅,.252)32(2322,3)212(32123=+=+=⋅⋅=⋅⋅所以说明有理数的运算法则与运算律对实数仍然适用.下面看一些例题. 计算: (1)1313+⋅; (2)77-;(3)(25)2;(4)2)212(+. 2.做一做填空: (1)94⨯=_________,94⨯=_________; (2)916⨯=_________,916⨯=_________;(3)94=_________,94=_________; (4)=2516_________,2516=_________.[师]通过上面计算的结果,大家认真总结找出规律.如果把具体的数字换成字母应怎样表示呢? b a b a ⋅=⋅(a ≥0,b ≥0); b ab a= (a ≥0,b >0)并作一些练习. 化简: (1)326⨯; (2)327⨯-4;(3)(3-1)2;(4)326⨯;(5)546.3.例题讲解[例题]化简: (1)5312-⨯;(2)236⨯;(3)(5+1)2;(4))12)(12(-+.Ⅲ.课堂练习(一)随堂练习化简:(1)2095⨯;(2)8612⨯;(3)(1+3)(2-3);(4)(323-)2.(二)补充练习1.化简: (1)250580⨯-⨯;(2)(1+5)(5-2);(3))82(2+;(4)3721⨯; (5)2)313(-;(6)10405104+2.一个直角三角形的两条直角边长分别为5 cm 和45 cm ,求这个直角三角形的面积. 解:S =45521⨯⨯)cm (5.71521)35(214552122=⨯=⨯⨯=⨯⨯=答:这个三角形的面积为7.5 cm 2.Ⅳ.课时小结本节课主要掌握以下内容.1.在实数范围内,有理数的运算法则、运算律仍然适用,并能正确运用.2.b a b a ⋅=⋅ (a ≥0,b ≥0);b ab a=(a ≥0,b >0)的推导及运用.Ⅴ.课后作业习题2.91.化简: (1)313⨯;(2)23;(3)23222+;(4)850⨯-21.Ⅵ.活动与探究下面的每个式子各等于什么数? 2222222003,2002,2001,,4,3,2 . 由此能得到一般的规律吗?对于一个实数a 、2a 一定等于a 吗? 当a ≥0时,2a=a .当a <0时,有 .20032003)2003(,20022002)2002(,20012001)2001(,416)4(,39)3(,24)2(222222222==-==-==-==-==-==-所以当a <0时,有2a =-a .教学反思:环节,只有让学生多做练习才能熟练。
【教学设计】 实数及其性质(3)
实数及其性质【教学目标】知识与技能:① 了解无理数和实数的概念以及实数的分类;② 知道实数与数轴上的点具有一一对应的关系。
过程与方法:在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数的范围,从而总结出实数的分类,接着把无理数在数轴上表示出来,从而得到实数与数轴上的点是一一对应的关系。
情感态度与价值观:① 通过了解数系扩充体会数系扩充对人类发展的作用;② 敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题。
教学重点:① 了解无理数和实数的概念;② 对实数进行分类。
教学难点:对无理数的认识。
【教学过程】一、复习引入无理数: 利用计算器把下列有理数95,119,847,53,3-写成小数的形式,它们有什么特征?发现上面的有理数都可以写成有限小数或无限循环小数的形式 即:5.095,18.0119,875.5847,6.053,0.33 ===-=-= 归纳:任何一个有理数(整数或分数)都可以写成有限小数或者无限循环小数的形式,反过来,任何有限小数或者无限循环小数也都是有理数。
通过前面的学习,我们知道有很多数的平方根或立方根都是无限不循环小数, 把无限不循环小数叫做无理数。
比如33,5,2-等都是无理数。
14159265.3=π…也是无理数。
二、实数及其分类:1、实数的概念:有理数和无理数统称为实数。
2、实数的分类:按照定义分类如下:实数⎪⎩⎪⎨⎧⎩⎨⎧数)无理数(无限不循环小小数)(有限小数或无限循环分数整数有理数按照正负分类如下:实数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负无理数负有理数负实数零负无理数正有理数正实数 3、实数与数轴上点的关系:我们知道每个有理数都可以用数轴上的点来表示。
物理是合乎是否也可以用数轴上的点表示出来吗?活动1:直径为1个单位长度的圆其周长为π,把这个圆放在数轴上,圆从原点沿数轴向右滚动一周,圆上的一点由原点到达另一个点,这个点的坐标就是π,由此我们把无理数π用数轴上的点表示了出来。
实数3
【典型例题】【例1】 求值:(1)32的五次方根 (2)-32的五次方根 (3)16的四次方根(4)64的六次方根 (4)0.000064的六次方根 (6)32243-的五次方根 【分析】 运用乘方运算求方根的值是常用的方法,对于正数的偶次方根有两个,它们互为相反数要充分理解,求n 次方根的值必须考虑指数的奇、偶性,增强分类的意识,学会正确的语言表述是很重要的,给书写也带来简便.【解答】 (1)5232=∴32的五次方根5322==(2)()5232-=-∴-32的五次方根5322=-=-(3)()4216±=∴16的四次方根6642=±=±(4)()6264±= ∴64的六次方根6642=±=±(5)()60.20.000064±=∴0.000064的六次方根60.0000640.2=±=± (6)52323243⎛⎫-=- ⎪⎝⎭ ∴32243-的五次方根53222433=-=-【例2】 选择题:1.下列语句中,正确的是( )(A )正数a 的n 次方根记作n a(B )如果n 是偶数,当且仅当a 是非负实数时,则n a 有意义(C )零的n 次方根无意义(D )任何实数都能开方2.5x -在实数范围内能开偶次方根的条件是( )(A )x 为任意实数 (B )5x ≥ (C )5x ≤ (D )0x ≤【分析】理解立方根和开立方的概念【解答】1.(B )当n 是奇数时,正数a 的n 次方根记作“n a ”, 当n 是偶数时,正数a 的n 次方根记作“n a ±”,故(A )错.当a 为非负实数时,a 有偶次方根,所以n a (n 是偶数)有意义,故(B )对.零的n 次方为零,故(C )错.负数没有偶次方根,任何实数不一定都能开方,故(D )错.2.(C )由被开方数50x -≥解得5x ≤,故选(C ).【例3】求适合下列等式中的x .(1)3910x -= (2)4810x =【分析】理解开n 次方与n 次乘方互为逆运算的关系 【解答】(1)x 是910-的立方根,因为3391010--=(),所以310-是910-的立方根,因此310x -= ,即0.001x =.(2)由已知可知,x 是810的四次方根,由于248(10)10±=,所以210±是810的四次方根,因此210x =±,即100x =±.【基础训练】 1.132-的五次方根是( ) 2.81的四次方根是 ( ) 3. 423⎛⎫- ⎪⎝⎭的四次方根是( ) 4. 5(5)-的五次方根是( )5.如果(0,)n x a a n =≥是偶数,那么x =6.下列式子中,正确的是54444()11()11()(1)1()11A B C D ±=±=±-=---= 7.用符号表示下列各方根,并求出各方根的值. (1) 12-的三次方的三次方根 (2)164的六次方根 (3)—8平方的六次方根8.计算:43343(56)⋅【能力提高】1.下列各式不正确的是4343()82()(6)6()1255()()n n A B C D a a n -=--=--=-=是奇数 2. ()(0)x y zy z z x x y xyz xyz x y z+++++≠= 3.计算:20072007333(21)(421)-++4.已知n 是自然数, a 是实数且()n n nn a a =成立.试讨论n 及a 的取值范围.第3讲实数的运算(1)用数轴上的点表示实数【知识要点】知识点1 用数轴上的点表示无理数方法一:用画图的方法找到数轴上的一个点来表示它.例如:边长为1的正方形,对角线长为2(这在学习了直角三角形中勾股定理后很容易知道,现在暂不作介绍),我们可以在数轴上以一个单位长为边长作一个2-B O2正方形,以原点O为圆心,正方形对角线为半径作弧,与数轴正(2)半轴交于点A就表示无理数2,与数轴负半轴交于点B就表示图1 -.无理数2方法二:用无限不循环小数点的近似值来确定这个点的位置.例如:π可以精确到百分位的近似数3.14来确定数轴上表示π这个点的位置.π-01233.144x1知识点2 数轴上的点和实数成一一对应每一个有理数和无理数都可以用数轴上的一个点来表示,反过来数轴上的每一个点都可以用一个有理数或无理数表示.为有理数和无聊隶属统称为实数,因此,全体实数所对应的点布满了整个数轴,数轴上的点和实数成一一对应.知识点3 实数的相反数和绝对值一个实数在数轴上所对应的点到原点的距离,叫做这个数的绝对值,实数a的绝对值记作a∣∣ ,a当0a>时a=时a∣∣=0当0-当0aa<时绝对值相等,符号相反的两个数叫做互为相反数,零的相反数是零,非零实数a的相反数-.是a知识点4 两个实数大小的比较两个实数可以比较大小,其大小顺序的规定同有理数一样,负数小于零,零小于正数,两个正数,绝对值大的数较大;两个负数,绝对值大的反而小,从数轴上看,右边的点所表示的数总比左边的点索表示的数大.知识点5 同一数轴上,两点间的距离在数轴上,如果点A 、点B 索对应的数分别是a b 、,那么A B 、两点的距离AB a b ∣∣=∣-∣.方法与技能:当有理数系扩展到实数后,有理数的绝对值、相反数、大小比较法则都自然延伸到实数系.有关概念、性质仍然正确,特别是数形结合思想仍然是研究的重要方法.了解了数学系扩大的原则,大大的提高了学习的效率.【学习目标】1.会用数轴上的点表示实数;2.理解在实数范围内绝对值、相反数的概念,会比较实数的大小;【典型例题】【例1】写出下列各数的相反数与绝对值:0.5,12-,7-,0,5π-,37- 【分析】与有理数一样,实数(0)a a ≠的相反数是a -;实数a 的绝对值的为(0)a a ≥或(0)a a -<.【解答】 0.5的相反数是0.5-,绝对值是0.5;12-的相反数是21-,绝对值是21-;7-的相反数是7,绝对值是7;0的相反数是0,绝对值是0;5π-的相反数是5π,绝对值是5π; 37-的相反数是37--,绝对值是37-【例2】比较53-与13-的大小.【分析】 5 2.236,53 2.23630.764≈-≈-≈- 3 1.732,131 1.7320.732≈-≈-≈-∴可以先将无理数用近似的有限小数表示,转化为有理数后再进行比较.【解答】 53 2.23630.764-≈-≈- 131 1.7320.732-≈-≈-0.7640.732-<-5313∴-<-【例3】 如图2,在数轴上,如果点A 、点B 所对应的数分别为6和3-,求A B 、 两点间的距离.B A 3 1- 0 1 26 3 图2【解答】 6(3)6363AB ∣∣=∣--∣=∣+∣=+【注】 也可以这样计算: 3636)[(36)]36AB ∣∣=∣--∣=∣-(+∣=--+=+【例4】 已知a b c 、、在数轴上的位置如图3所示,则22()a a b a c b c -∣+∣+-+∣+∣的值等于( )(A )2c a - (B )2a b -(C )a - (D )bb a 0 c图 3【解答】 如图12-5所示,知b a c -<-<.22,,(),()a a a b a b a c c a b c b c ∴=-∣+∣=---=-∣+∣=-+∴原式a a b c a b c a =-+++---=-.选(C ).【例5】 当1x <-是,2(2)21x x x ---∣-∣=( ) (A )0 (B )44x - (C )44x - (D )44x +【解答】 21,20,(2)2,11,x x x x x x <-∴->-=-∣-∣=- ∴原式22(1)44x x x x =-+--=-,选(B ).。
实数 3
6
作业
1.有如下命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或 负数的立方根与这个数同号;④如果一个数的立方根是这个数本身,那么这个数是1或0, 其中错误的是( A.①②③ ) B.①②④ C.②③④ D.①③④ ) D.原点或原点右侧 D、23
2.若 a2 a ,则实数 a 在数轴上的对应点一定在( A.原点左侧 B.原点右侧 C.原点或原点左侧 3.已知 x+10+ y-13=0,则 x+y 的值是( ) A、13 B 、3 C、-3 4.在数轴上离原点距离是 5 的点表示的数是________ 5. 5 2 的相反数是 6.当 x ≤ 0 时,化简 1 x
3
8
3
12.若 y 3x 2 2 3x 1 ,求 3x+y 的值
8
3 是 9 的平方根,也就是说 9 的平方根是 3 .
平方根的性质:正数有两个平方根,互为相反数;0 的平方根是 0;负数没有平方根
( a )2 a(a 0)
a, a 0 a2 a a, a 0
49 64
(4) 3
2
例题 1.求下列各数的算术平方根 (1)100 (2) (3)0.0025
3
3
a
64
3
1 8
3
27 64
练习 1. 2.
3
8=
3
8 =
3 125 =
;绝对值是 ;立方根等于本身的数是 ; 64 的立方根是________
3
7 的相反数是
3. 立方等于本身的数是 4.
3
64 的平方根是
常见的几种无理数(无限不循环小数) : (1)根号型: 2, 3, 5, 2 等开方不尽的数 (2)构造型:如 0.1010010001„„ (3) 及含 的数:如 , 2 1.有下列说法: (1)无理数就是开方开不尽的数; (2)无理数包括正无理数、零、负无理数; (3)无理数是无限不循环小数; (4)无理数都可以用数轴上的点来表示。 其中正确的说法的个数是( ) A.1 B.2 C.3 D.4 2.下列各数中,不是无理数的是 ( ) A. 7 B. 0.5 C. 2 D. 0.151151115„
人教版数学七年级下册第6章第3课实数实数(教案)
-直观教学:利用数轴模型,将实数与数轴上的点进行对应,通过动画或实物演示,帮助学生建立直观的几何概念。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《实数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过无法用分数表示的数?”(如足球的面积计算)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索实数的奥秘。
课堂上,我尝试了多种教学方法,比如小组讨论和实验操作,让学生们动手动脑,这样可以提高他们的参与度和兴趣。从学生的反馈来看,这种互动式的学习方式效果不错,他们能够更直观地理解实数与数轴的关系。
然而,我也注意到,在实数的运算环节,尤其是涉及无理数的计算时,学生们还是感到有些困惑。我意识到,我需要提供更多的例题和练习,特别是那些能够逐步引导他们理解无理数运算规则的问题。
人教版数学七年级下册第6章第3课实数实数(教案)
一、教学内容
人教版数学七年级下册第6章第3课实数。本节课将涵盖以下内容:
1.实数的定义:有理数和无理数的统称,包括整数、分数以及无理数。
2.无理数的理解:介绍无理数的概念,如π、√2等,并解释其与有理数的区别。
3.实数的性质:探讨实数的封闭性、可比较性、可运算性等。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与实数相关的实际问题,如无理数的近似计算。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用剪刀和直尺制作一个π的近似计算模型。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
实数(3)导学案
收获整理
2 ;⑵ 3 3 2 3 .
四、小结 五、拓展训练
7.已知 2 =1.414, 20 =4.472,则 2000 等于( A.14.14 B.141.4 C.44.72 D.447.2
3 2
8.1- 2 的相反数是______,绝对值是_______. 9.把 2a 写成一个数的平方的形式是_______. 10.若一个数的平方根是 2 m 4 和 2 5m ,则它的立方根是______. 11.计算下列各式的值: (1) 5 3 5 (2) 3 7 15 7
㈠、实数范围内的相反数和绝对值意义 填空: 2 的相反数是 , 2 的相反数是 ,0 的相反数是 , = ,0=
3
三、课堂训练 1.实数分为( , . . )
的相反数是 2 = ,3 2 =
3
A.整数和分数 B.有理数和无理数 C.正数和负数 D.无限循环小数和无限不循环小数 2.与数轴上的点一一对应的是( A.整数 )
例 1 ⑴ 分别写出 6 , 3.14 的相反数; ⑵ 指出 5 , 1 3 各是什么数的相反数; ⑶ 求 64 的绝对值;
3
B.有理数 C.无理数 D.实数 ) C. 2 ) D. 2 或 2
3.在数轴上到原点距离为 2 的点表示的数是( A.±2 B. 2
⑷ 已知一个数的绝对值是 3 ,求这个数.
襄阳市樊城区第
上课时间:
=+中七年级数学学科课堂设计活页
年 月 日 星期:
第
周
第
蹲点领导签字:
课时
备课组长签字:
课题:
实数第三课时
课型:
新授课
设计人:
复备人:
七年级数学上册第3章实数3.2实数说课稿(新版浙教版)
七年级数学上册第3章实数3.2实数说课稿(新版浙教版)一. 教材分析实数是数学中的一个基本概念,它包括有理数和无理数。
本节课的主要内容是让学生了解实数的概念,掌握实数的性质,以及学会实数的运算。
二. 学情分析七年级的学生已经学习过有理数,对于有理数的加减乘除运算已经有一定的掌握。
但是,学生可能对于无理数的概念和性质还不够了解,因此需要在课堂上进行详细的讲解和举例。
三. 说教学目标1.让学生了解实数的概念,掌握实数的性质。
2.让学生学会实数的运算。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 说教学重难点1.实数的概念和性质。
2.实数的运算。
五. 说教学方法与手段本节课采用讲授法、举例法、讨论法等多种教学方法,结合多媒体课件和黑板进行教学。
六. 说教学过程1.导入:通过复习有理数的概念,引出实数的概念。
2.讲解实数的概念:讲解实数的定义,举例说明实数的性质。
3.讲解实数的运算:讲解实数的加减乘除运算规则,举例进行运算。
4.练习:让学生进行实数的运算练习,巩固所学知识。
5.总结:对本节课的内容进行总结,强调实数的概念和性质。
七. 说板书设计板书设计如下:实数的概念与性质1.实数的定义2.实数的性质3.实数的加法4.实数的减法5.实数的乘法6.实数的除法八. 说教学评价通过课堂讲解、练习和作业的完成情况来评价学生的学习效果。
同时,通过学生的课堂表现和参与程度来评价学生的学习态度和积极性。
九. 说教学反思在教学过程中,要注意引导学生理解实数的概念和性质,通过举例和练习让学生更好地掌握实数的运算。
同时,要关注学生的学习情况,及时进行讲解和辅导,提高学生的学习效果。
在教学过程中,还要注重培养学生的逻辑思维能力和解决问题的能力,提高学生的学习兴趣和动力。
知识点儿整理:实数是数学中的一个基本概念,它包括有理数和无理数。
在七年级数学上册第3章中,我们将学习实数的概念、性质以及实数的运算。
以下是本节课的知识点整理:1.实数的概念:实数是数轴上的点,包括有理数和无理数。
初一数学实数(3)
初一数学寒假班(3)——12.1~12.4复习、测试【知识点】1. ________和_________统称有理数.2. ___________________________________叫做无理数.无理数可分为____________和____________. 3. __________和__________统称为实数.4. 如果一个数的平方等于a ,那么这个数叫做a 的_______,即若2x a =(0a ≥),则x=______. 5. _____数有两个平方根,它们互为________;零有_____个平方根,是_______;_______数没有平方根。
6. 正数a 的正的平方根叫a 的______________,记作_______.7. 如果一个数的立方等于a ,那么这个数叫做a 的_______,即若3x a =,则x=______. 8. 正数有____个_____的立方根,负数有____个______的立方根,0的立方根是______. 9. 平方根等于它本身的数是________,立方根等于它本身的数是________. 10. 当a ≥0时,2()a =______, 2()a -=______,即2()a ±=______ 11. 当a ≥0时,2a =______=______;当a ≤0时,2a =______=______.12. 一个正数的偶次方根有_____个,它们互为________;一个数的奇次方根有____个. 【例题分析】例1. 在实数312,0.3180.8010837π-,,,,中,无理数的个数为______个. 例2. (1)无限小数都是无理数. ( ) (2) 无理数都是无限小数. ( )(3)实数分为正实数和负实数.( ) (4) 实数不是有理数就是无理数.( )(5) 不带根号的数都是有理数.( ) (6) 带根号的数都是无理数. ( )例3. (1)23-的相反数是___________,绝对值是___________.(2)235-=()___________.例4. 写出一个大于2小于3的无理数_________例5. (1) 3的平方根是_______;(2) 若24x =,则x=_______;(3) 81的平方根是______;(4) 16的算数平方根的平方根是______;(5) 27的立方根是______;(6)—8的立方根是_______; (7) 81的四次方根是______;(8) 32的五次方根是______.例6. (1) 64±=_____;(2)16=_____;(3)364-=______;(4)664=_____;(5)2(3)-=____;(6) 23=(-)_____;(7) 40.0016_____=;(8)362=______;(9)3610_____-=.例7. 下列计算正确的是( )(A) 030= (B) 33-=-- (C) 331-=- (D) 39±=例8. 平方根等于它本身的数是_______;立方根等于它本身的数是_______.例9. (1) 7在整数_____与整数_____之间; (2)7整数部分为_____,小数部分为______.(3) 绝对值小于7的整数有__________.54321-1-2(4) 若将三个数11,7,3-表示在数轴上,其中能被如图所示的墨迹覆盖的数是_____.例10. 利用20,0,0a a a ≥≥≥解决问题(1) 已知()22340a b c -+-+-=,求a-b+c 的值.(2) 已知2b -与5a -互为相反数,求ab 的平方根.(3) 已知0)3(12=++-+y y x ,求y x -的值.(4) 已知230x y ++-=,求2010()x y +的值.(5) 已知224250a b a b +--+=,求2ab 的值.例11. (1) 23m m +和+1是同一个数的平方根,求这个数.(3) 已知一个正数的平方根是32x -和56x +,求这个数.例12. (1)已知实数a 在数轴上的位置如图所示,化简:2|1|a a -+(2)如图,求a a b c b a c -+--++的值.12.1——12.4单元测试一、选择题(每题1.下列说法正确的是( )(A) 带根号的数都是无理数 (B) 不带根号的数一定是有理数 (C) 无理数是无限小数 (D) 无限小数是无理数 2.下列表示方法正确的是( )(A)9的平方根是±3,可以表示为93=± (B)3是9的平方根,可以表示为93±= (C) ±3是9的平方根,可以表示为93±=± (D) -3是9的平方根,可以表示为93=- 3. 下列说法正确的是( ) ①实数分为正实数和负实数 ②3π是分数 ③互为相反数的两个数的立方根也互为相反数 ④1的立方根与平方根相同 ⑤一个无理数不是正数就是负数 ⑥一个无理数的平方一定是有理数(A) ①③ (B) ②⑤ (C) ③⑤ (D) ①⑥ 4. 23的整数部分和小数部分分别为( )(A) 4,423- (B) 5,235- (C) 4,234- (D) 以上都不对二、填空题(每题5.________和_________统称有理数。
2021年七年级数学下册第六单元《实数》经典习题(答案解析)(3)
一、选择题1.下列说法:①所有无理数都能用数轴上的点表示;②若一个数的平方根等于它本身,则这个数是0或1;③任何实数都有立方根;4±,其中正确的个数有( )A .0个B .1个C .2个D .3个C 解析:C【分析】分别根据相关的知识点对四个选项进行判断即可.【详解】解:①所有无理数都能用数轴上的点表示,故①正确;②若一个数的平方根等于它本身,则这个数是0,故②错误;③任何实数都有立方根,③说法正确;2±,故④说法错误;故其中正确的个数有:2个.故选:C .【点睛】本题考查的是实数,需要注意掌握实数的概念、平方根以及立方根的相关知识点.2.,则x+y 的值为( )A .-3B .3C .-1D .1D解析:D【分析】先根据绝对值和算术平方根的非负性,求得x 、y 的值,最后求和即可.【详解】解:∵ ∴x-2=0,y+1=0∴x=2,y=-1∴x+y=2-1=1.故答案为D .【点睛】本题主要考查了算术平方根和绝对值的非负性,根据非负性求得x 、y 的值是解答本题的关键.3.下列各组数中,互为相反数的是( )A .B .2-与12-C .()23-与23-D 解析:C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.A 、22-=,则2-与2不是相反数,此项不符题意;B 、2-与12-不是相反数,此项不符题意; C 、()223399,--=-=,则()23-与23-互为相反数,此项符合题意;D 、3382,82-=--=-,则38-与38-不是相反数,此项不符题意;故选:C .【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.4.64的算术平方根是( )A .8B .±8C .22D .22± C解析:C【分析】先化简64,再求算术平方根即可.【详解】64=8, 8的算术平方根是22,即64的算术平方根是22.故选择:C .【点睛】本题考查一个数的算术平方根的算术平方根,掌握求算式的平方根,一定要把算式化简得到结果后再求是解题关键.5.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+ B解析:B【分析】根据是数的运算,A 点表示的数加两个圆周,可得B 点,根据数轴上的点与实数一一对应,可得B 点表示的数.【详解】解:A 点表示的数加两个圆周,可得B 点,所以,21π-,【点睛】本题考查了实数与数轴,直径为1个单位长度的圆从A点沿数轴向右滚动,A点表示的数加两个圆周.6.在下列各数中是无理数的有()-43π,3.1415926,2.010101(相邻两个0之间有1个1),0.11176.0102030405060732A.3个B.4个C.5个D.6个B解析:B【分析】根据无理数是无限不循小数,可得答案.【详解】3π,76.0102030405060732故选:B.【点睛】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.7.和数轴上的点一一对应的数是()A.自然数B.有理数C.无理数D.实数D解析:D【分析】根据实数与数轴上的点是一一对应关系,即可得出.【详解】解:根据实数与数轴上的点是一一对应关系.故选:D.【点睛】本题考查了实数与数轴的对应关系,任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.-的整数部分相8.已知无理数m5π同,则m为()A B C1D.π-解析:C【分析】m的整数部分与小数部分,进而可得答案.【详解】π≈,解:因为23, 3.14-的整数部分为1,2,5π所以无理数m的整数部分是12,所以121m=+=.故选:C.【点睛】m的整数部分与小数部分是解题的关键.9.若1a>,则a,a-,1a的大小关系正确的是()A.1a aa>->B.1a aa>->C.1a aa>>-D.1a aa->> C解析:C 【分析】可以用取特殊值的方法,因为a>1,所以可设a=2,然后分别计算|a|,-a,1a,再比较即可求得它们的关系.【详解】解:设a=2,则|a|=2,-a=-2,112a=,∵2>12>-2,∴|a|>1a>-a;故选:C.【点睛】此类问题运用取特殊值的方法做比较简单.10.已知|x|=2,y2=9,且xy<0,则x+y的值为()A.1或﹣1 B.-5或5 C.11或7 D.-11或﹣7A解析:A【分析】根据题意,利用平方根定义,绝对值的代数意义,以及有理数的乘法法则判断确定出x与y的值即可.【详解】解:∵|x|=2,y2=9,且xy<0,∴x=2或-2,y=3或-3,当x=2,y=-3时,x+y=2-3=-1;当x=-2,y=3时,原式=-2+3=1,故选:A.【点睛】此题考查了有理数的乘方,绝对值,以及有理数的加法,熟练掌握运算法则是解本题的关键.二、填空题11.计算:(12(2)22(2)8x -=(1)1;(2)【分析】(1)实数的混合运算利用算术平方根和立方根的概念逐个进行化简计算;(2)直接用平方根的概念求解【详解】解:(1)===1(2)∴【点睛】本题考查实数的混合运算及利用平方根解方 解析:(1)1;(2)124,0x x ==【分析】(1)实数的混合运算,利用算术平方根和立方根的概念逐个进行化简计算;(2)直接用平方根的概念求解.【详解】解:(12=4(2)23----=4+223--=1(2)22(2)8x -=2(2)4x -=22x -=±22x =±∴124,0x x ==.【点睛】本题考查实数的混合运算及利用平方根解方程,掌握相关概念和性质正确计算是解题关键.12.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯【分析】利用裂项法计算即可【详解】原式【点睛】本题考查了利用裂项法进行分数的加法计算熟练掌握裂项法是解题的关键 解析:10102021【分析】 利用裂项法计算即可.【详解】 原式1111111233520192021⎛⎫=⨯-+-+⋯+- ⎪⎝⎭11122021⎛⎫=⨯- ⎪⎝⎭ 1202022021=⨯ 10102021=. 【点睛】 本题考查了利用裂项法进行分数的加法计算,熟练掌握裂项法是解题的关键. 13.解答下列各题.(1)已知2x +3与x -18是某数的平方根,求x 的值及这个数.(2)已知20c d -=,求d +c 的平方根.(1)x=5169或;(2)±3【分析】(1)根据题意这两个式子互为相反数列方程求出x 的值然后算出这个数;(2)根据绝对值和算术平方根的非负性求出c 和d 的值再算出结果【详解】(1)解:①这个数是②这解析:(1)x =5,169或21x =-,1521;(2)±3【分析】(1)根据题意,这两个式子互为相反数,列方程求出x 的值,然后算出这个数; (2)根据绝对值和算术平方根的非负性求出c 和d 的值,再算出结果.【详解】(1)解:①23180x x ++-=,315x =,5x =,这个数是()2253169⨯+=,②2318x x +=-,21x =-,这个数是()221181521--=;(2)解:由题意得:2c -d =0,2360d -=,解得:d =±6,c =±3.∵当d =-6,c =-3时,d +c =-9(舍),∴d +c 的平方根为.【点睛】本题考查平方根和算术平方根,解题的关键是掌握平方根和算术平方根的性质. 14.把下列各数填入相应的集合里:﹣3,|﹣5|,+(13-),﹣3.14,0,﹣1.2121121112…,﹣(﹣2.5),34,﹣|45-|,3π 正数集合:{_____________…};整数集合:{_____________…};负分数集合:{_____________…};无理数集合:{_____________…}.|﹣5|﹣(﹣25)3π﹣3|﹣5|0+()﹣314﹣||﹣12121121112…3π【分析】先根据绝对值的定义及化简符号的法则去掉绝对值的符号及多重符号再根据正数整数负分数无理数的定义求解即可【解析:|﹣5|,﹣(﹣2.5),34,3π ﹣3,|﹣5|,0 +(13-),﹣3.14,﹣|45-| ﹣1.2121121112 (3)【分析】先根据绝对值的定义及化简符号的法则去掉绝对值的符号及多重符号,再根据正数、整数、负分数、无理数的定义求解即可.【详解】解:|﹣5|=5,+(13-)13=-,﹣(﹣2.5)=2.5,﹣|45-|45=-, 15.计算:(1)﹣12﹣(﹣2)(21)+2|(1)﹣9;(2)5【分析】(1)先计算立方根和算术平方根再进行加减运算即可;(2)先计算乘法和绝对值再相加即可【详解】解:(1)原式=﹣12+(﹣3)+2×3=﹣12﹣3+6=﹣9;(2)原式=3 解析:(1)﹣9;(2)5.【分析】(1)先计算立方根和算术平方根,再进行加减运算即可;(2)先计算乘法和绝对值,再相加即可.【详解】解:(1)原式=﹣12+(﹣3)+2×3=﹣12﹣3+6=﹣9;(2)原式=32=5.【点睛】本题考查了实数的运算,掌握立方根和算术平方根的性质是解题关键.16.求下列各式中的x 的值(1)21(1)82x +=;(2)3(21)270x -+=(1)或;(2)【分析】(1)适当变形后利用平方根的定义即可解方程;(2)适当变形后利用立方根的定义即可解方程【详解】解:(1)两边乘以2得开平方得即或∴或;(2)移项得开立方得解得【点睛】本题考查解析:(1)3x =或5x =-;(2)1x =-.【分析】(1)适当变形后,利用平方根的定义即可解方程;(2)适当变形后,利用立方根的定义即可解方程.【详解】解:(1)21(1)82x += 两边乘以2得,2(1)16x +=,开平方得,14x +=±,即14x +=或14x +=-,∴3x =或5x =-;(2)3(21)270x -+=移项得,3(21)27x -=-,开立方得,213x -=-,解得,1x =-.【点睛】本题考查的是利用平方根,立方根的含义解方程,掌握平方根与立方根的定义和等式的性质是解题的关键.17.比较大小:12-___________12<【分析】利用作差法比较两个数的大小【详解】解:∵1<3<4∴1<<2∴1-1<-1<2-1∴0<-1<1∴<故答案为:<【点睛】本题考查了实数的大小比较此题的难点是利用夹逼法推知的取值范围 解析:<【分析】利用作差法比较两个数的大小.【详解】解:∵1<3<4∴1<2∴1-1<2-1∴0<1∴<12. 故答案为:<.【点睛】本题考查了实数的大小比较,此题的难点是利用“夹逼法” 18.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.或【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可【详解】解:4※(-2)=;(-1)※1=(-1)※1※m=2※m=36当时原式可化为解得:;解析:6m =-或38m =.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:42>-∴4※(-2)=()42=16-;11-<∴(-1)※1=()11=2--∴[(-1)※1]※m=2※m=36当2m ≥时,原式可化为236m =解得:6m =±6m ∴=-;当2m <时,原式可化为:236m -=解得:38m =;综上所述,m 的值为:6m =-或38m =;故答案为:16;6m =-或38m =.【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键.19.比较大小:3-(用“>”,“<”或“=”填空).>【分析】正实数都大于0负实数都小于0正实数大于一切负实数两个负实数绝对值大的反而小据此判断即可【详解】解:因为<<所以2<<3所以-3<-<-2故答案为:>【点睛】此题主要考查了实数大小比较的方法解析:>【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】所以2<3所以,-3<-2故答案为:>【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.20.若()22110a c --=,则a b c ++=__________.【分析】先根据绝对值算术平方根偶次方的非负性求出abc 的值再代入即可得【详解】由题意得:解得则故答案为:【点睛】本题考查了绝对值算术平方根偶次方的非负性的应用等知识点熟练掌握绝对值算术平方根偶次方的 解析:12- 【分析】先根据绝对值、算术平方根、偶次方的非负性求出a 、b 、c 的值,再代入即可得.【详解】由题意得:2102010a b c -=⎧⎪+=⎨⎪-=⎩,解得1221a b c ⎧=⎪⎪=-⎨⎪=⎪⎩, 则()112122a b c ++=+-+=-, 故答案为:12-. 【点睛】本题考查了绝对值、算术平方根、偶次方的非负性的应用等知识点,熟练掌握绝对值、算术平方根、偶次方的非负性是解题关键. 三、解答题21.计算:2(3)2--解析:1【分析】先计算乘方、算术平方根,然后计算乘法和减法,即可得到答案.【详解】解:2(3)2--924=-⨯98=-1=.【点睛】本题考查了算术平方根、乘方、有理数的加减乘除混合运算,解题的关键是掌握运算法则进行计算.22.计算(1)121|24|234⎛⎫-+-⨯- ⎪⎝⎭(2)1110623⎛⎫÷-⨯⎪⎝⎭ (3)41(1)(54)3⎛⎫---÷- ⎪⎝⎭(4+解析:(1)-2;(2)360;(3)4;(4)143. 【分析】(1)先去括号和绝对值,再进行混合运算即可.(2)先将括号内通分运算,再将除法改为乘法,最后计算即可.(3)先去括号,再将除法改为乘法,最后计算即可.(4)分别计算出根式的值,在进行加法运算即可.【详解】(1)121|24|234⎛⎫-+-⨯- ⎪⎝⎭ 121242424234=-⨯+⨯-⨯ 12166=-+-2=-(2)1110623⎛⎫÷-⨯ ⎪⎝⎭ 61061=÷⨯ 1066=⨯⨯360=(3)41(1)(54)3⎛⎫---÷- ⎪⎝⎭11(3)=-⨯-13=+4=(4+=153=-143= 【点睛】本题考查实数的混合运算.掌握其运算法则是解答本题的关键.23.计算:(1)36 1.754⎛⎫--+ ⎪⎝⎭; (2)()()232524-⨯--÷;(3)()225--.解析:(1)182;(2)22;(3-1 【分析】(1)先去括号,同时将小数化为分数,再计算加减法;(2)先计算乘方,再计算乘除法,最后计算加减法;(3)先计算乘方和绝对值,再计算加减法.【详解】 (1)36 1.754⎛⎫--+ ⎪⎝⎭=336144++ =182; (2)()()232524-⨯--÷=()4584⨯--÷=20+2=22;(3)()225--=4-()=【点睛】此题考查运算能力,掌握有理数的加减法计算法则,乘方的计算法则,实数的绝对值化简,有理数的混合运算法则是解题的关键.24.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时, ;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算, .(2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]; (3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.解析:(1)同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)﹣17;(3)适用,举例验证见解析【分析】(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加.特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值; (2)根据⊗运算的运算法则进行计算即可;(3)举例即可做出结论.【详解】解:(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加; 特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值. 故答案为:同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]=(﹣5)⊗(+12)=﹣17;(3)结合律仍然适用.例如[(﹣3)⊗(﹣5)]⊗(+4)=(+8)⊗(+4)=+12,(﹣3)⊗[(﹣5)⊗(+4)]=(﹣3)⊗(﹣9)=+12,所以[(﹣3)⊗(﹣5)]⊗(+4)=12=(﹣3)⊗[(﹣5)⊗(+4).故结合律仍然适用.【点睛】本题考查了新定义下的有理数的加减运算,正确理解新定义运算法则是解题的关键. 25.求满足条件的x 值:(1)()23112x -=(2)235x -=解析:(1)13x =,21x =-;(2)1x =2x =-【分析】(1)方程两边同除以3,再运用直接开平方法求解即可;(2)方程移项后,再运用直接开平方法求解即可.【详解】解:(1)()23112x -= ()214x -=12x -=±解得,13x =,21x =-;(2)235x -=28x =∴x =±∴1x =2x =-【点睛】本题考查了平方根的应用,解决本题的关键是熟记平方根的定义.26)10152-⎛⎫-+︒ ⎪⎝⎭解析:32【分析】 根据平方根定义、负指数幂、零指数幂、特殊角的三角函数值计算即可;【详解】解:原式33421421222=-+-=-+-=. 【点睛】本题主要考查了实数的运算,结合负整数指数幂、零指数幂、特殊角的三角函数值计算是解题的关键. 27.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯ 解析:10102021【分析】 利用裂项法计算即可.【详解】 原式1111111233520192021⎛⎫=⨯-+-+⋯+- ⎪⎝⎭ 11122021⎛⎫=⨯- ⎪⎝⎭ 1202022021=⨯ 10102021=. 【点睛】 本题考查了利用裂项法进行分数的加法计算,熟练掌握裂项法是解题的关键. 28.计算:(1(2)0(0)|2|π--(3)解方程:4x 2﹣9=0.解析:(1)-8;(2)13)x =±32. 【分析】(1)利用算数平方根、立方根及二次根式性质计算即可;(2)利用零指数幂、立方根及绝对值的代数意义进行化简即可; (3)方程变形后,利用开方运算即可求解.【详解】解:(1)原式=()935358÷--=--=-;(2)原式=1221-+-=(3)方程变形得:294x =,开方得:32x =±. 【点睛】本题考察实数的运算,熟练掌握运算法则是解题的关键.。
6.3实数 (3)
6.3实数教学目标1、了解无理数及实数的概念,并会对实数进行分类.2、知道实数与数轴上的点具有一一对应关系.3、学会使用计算器探求将有理数化为小数形式的规律.4、学会使用计算器估算无理数的近似值.5、学会使用计算器计算实数的值.1、通过计算器探求将有理数化为小数形式的规律,使学生经历观察、猜想、实验等数学活动过程,培养学生数学探究能力和归纳表达能力.2、在使用计算器估算和探究的过程中,使学生学会用计算器探究数学问题的方法.3、经历从有理数逐步扩充到实数,了解到人类对数的认识是不断发展的.4、经历对实数进行分类,发展学生的分类意识.解决问题1、通过无理数的引入,使学生对数的认识由有理数扩充到实数.2、通过计算器对无理数近似值的估算和对实数计算,使学生发展实践能力.3、在交流中学会与人合作,并能与他人交流自己思维的过程和结果.情感态度1、通过计算器探求将有理数化为小数形式的规律,激发学生的求知欲,使学生感受数学活动充满了探索性与创造性,体验发现的快乐,获取成功的体验.2、通过了解数系扩充体会数系扩充对人类发展的作用.3、敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.重点了解无理数和实数的概念,以及实数的分类;会用计算器计算实数.难点对无理数的认识.教学流程安排活动流程图活动内容和目的活动1 通过对有理数探究,激发进一步学习的欲望.通过用计算器计算有理数和研究有理数的规律,得出对数的进一步研究的重要性,引出本节课要研究的课题.活动2 通过对数的归纳辨析,引出无理数和实数的概念,并对实数进行分类. 使学生了解无理数和实数的概念,学会对实数的分类,活动3 通过教师演示和学生活动,建立实数与数轴上的点的一一对应. 通过在数轴上找到表示的点,认识无理数可以用数轴上的点表示,理解实数与数轴上的点建立一一对应的关系.教学过程设计问题与情境师生行为设计意图[活动[活动1]通过对有理数探究,激发进一步学习的欲望.问题:(1)利用计算器,把下列有理数3,- , , , , 转换成小数的形式,你有什么发现?(2)我们所学过的数是否都具有问题(1)中数的特征,即是否都是有限小数和无限循环小数? 教师提出问题(1).教师引导学生观察计算结果,得出任何一个整数或整数比即有理数都可以写成有限小数或无限循环小数的形式.教师提出问题(2).学生回顾思考,通过学生对有理数的再认识,师生共同归纳无理数是无限不循环小数,从而得出无理数既不是整数也不是分数的结论.活动1中,教师应关注:(1)学生通过实际计算实现有理数到小数的转化,激发进一步学习无理数的欲望;(2)学生了解无理数的主要特征. 计算器是将有理数转化为小数的主要计算工具,通过组织学生的计算活动,发现规律,并与学过的无限不循环小数作对比,为学习无理数概念作准备.通过让学生参与无理数的概念的建立和发现数系扩充必要性的过程,促进学生对数学学习的兴趣,培养学生初步的发现能力.注重新旧知识的连贯性,使学生体会到学习的内容是融会贯通的。
人教版数学七年级下册6.3《实数》教学设计3
人教版数学七年级下册6.3《实数》教学设计3一. 教材分析人教版数学七年级下册 6.3《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统地认识和理解。
本节课的主要内容是实数的分类,实数与数轴的关系,以及实数的运算性质。
教材通过丰富的例题和练习题,帮助学生掌握实数的概念,提高学生的数学思维能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数和无理数有了初步的认识。
但是,对于实数的系统理解和运用,还存在一定的困难。
因此,在教学过程中,教师需要从学生的实际出发,循序渐进地引导学生理解和掌握实数的概念和性质。
三. 教学目标1.了解实数的概念,掌握实数的分类和实数与数轴的关系。
2.掌握实数的运算性质,能够熟练地进行实数的运算。
3.培养学生的数学思维能力,提高学生解决问题的能力。
四. 教学重难点1.实数的分类和实数与数轴的关系。
2.实数的运算性质。
五. 教学方法1.采用问题驱动法,引导学生主动探究实数的概念和性质。
2.利用数轴辅助教学,帮助学生直观地理解实数与数轴的关系。
3.运用例题和练习题,巩固学生对实数的理解和运用。
六. 教学准备1.教学课件:制作课件,包括实数的分类、实数与数轴的关系、实数的运算性质等内容。
2.练习题:准备一些有关实数的练习题,用于巩固学生的学习成果。
3.数轴:准备数轴教具,用于辅助教学。
七. 教学过程1.导入(5分钟)利用数轴教具,引导学生回顾有理数和无理数的概念,引出实数的概念。
2.呈现(15分钟)呈现实数的分类,讲解实数与数轴的关系,以及实数的运算性质。
通过例题和练习题,让学生直观地理解实数的概念和性质。
3.操练(15分钟)让学生在课堂上进行实数的运算练习,巩固学生对实数的理解和运用。
4.巩固(10分钟)通过练习题,巩固学生对实数的理解和运用。
教师巡回指导,解答学生的疑问。
5.拓展(10分钟)引导学生运用实数的概念和性质解决实际问题,提高学生解决问题的能力。
实数 课件 3
2、写出大于 17 且小于 11 的所有整数。 3、 5 2 的相反数是 ;绝对值是 。 4、在数轴上表示 13 的点与表示 13 1 的距离是? 5、写出下列各数的整数部分和小数部分
9 、7、 25、 4 33
1、 2
5
2
1 2
6、 2 3与 3 2的大小 7、化简: 6 2 2 1 3 6 = .
若 102.01 10.1 ,则± 1.0201 =
。
10201
0.010201
1020100
已知x,y为实数,求: ( x y 1)2 2x y 3 的最小值 u 和取得最小值时x,y的值。
2、实数:
①无理数:无限不循环小数 ②无理数的常见形式: 开方开不尽的数;圆周率 ,以及含有 的数; 有规律但不循环的无限小数 ③无理数的绝对值、相反数以及运算法则与有理数 相似 ④无理数在数轴上的近似表示和大小比较 ⑤实数的分类:有理数和无理数统称为实数 ⑥实数与数轴上的点一一对应
实数的运算法则:先算乘方和开方,再算乘和除,最 后算加和减,有括号的先算括号பைடு நூலகம்的。
巩固练习:
1、判断: (1) 7
(2)2
3
3 1 2
3
73 1 2 1 2
42
2 (3) (-3) 3
(4)( 11 2 11 )
3 3 (5) (-7) 7
提高自我
如图,数轴上表示1、 2 的对应点分别为A、B,点B关 于点A的对称点为C,则点C所表示的数是( )
2、计算: 3 125
3
3
27 8
湘教版八年级数学第3章《实数》知识清单
实数知识点总结3.1平方根知识点1 平方根及其性质1、定义如果有一个数x,使得x²=a,那么我们把x叫作a的一个平方根,或者二次方根.这就是说,若x²=a,则x是a的一个平方根。
表示方法:一个非负数a的平方根记作±√a,读作“正、负根号a”,其中a叫作被开方数。
例:49的平方根是±7,表示方法:±√49 = ±7 .2.平方根的性质:(1)一个正数有两个平方根,它们互为相反数;(2)0的平方根是0;(3)负数没有平方根。
3.开平方:求一个非负数的平方根的运算,叫作开平方。
常用平方数(熟记)12=1 22=4 32=9 42=16 52=2562=36 72=49 82=64 92=81 102=100112=121 122=144 132=169 142=196 152=225162=256 172=289 182=324 192=361 202=400 302=900 402=1600 502=2500 602=3600 702=4900 802=6400 152=225 252=625 352=1225 452=2025 552=3025 652=4225 752=5625 852=7225 952=9025知识点2 算术平方根及其性质1.定义:正数a的正平方根叫作a的算术平方根.规定:0的算术平方根是0.表示方法:非负数a的算术平方根记作√a,读作“根号a”.特别解读:√a(1)算术平方根√a具有双重非负性:①根号内的数a是非负数,即a≥0;②算术平方根√a是非负数,即√a≥0(2)算术平方根是它本身的数只有0和1 .2.性质:(1)正数的算术平方根是一个正数;(2)0的算术平方根是0;(3)负数没有算术平方根.(4)根号内的数越大,对应的算术平方根也越大.提分必记特别提醒◆求一个正数的算术平方根与求一个正数的平方刚好是互逆的两个运算.◆任何一个数的平方都是非负数,所以求算术平方根时,根号内的数必须是非负数.3.平方根与算术平方根的区别与联系:总结:根号求根一定坑,先算根号是关键.算术平方根与平方根区别:数量和符号.知识点3无理数定义:无限不循环小数叫作无理数判断标准:小数位数无限,小数部分的数字不循环2.三种常见形式(1)开方开不尽的数,如√3, √5,…;(2)含有π的一类数,如2π,π+1,…;3.无理数与有理数的区别;(1)有理数是有限小数或无限循环小数,而无理数是无限不循环小数;2)所有的有理数都可以写成分数的形式(整数可以看成分母为1的分数),而无理数不能写成分数的形式。
完整版)新浙教版七年级上册数学第三章《实数》知识点及典型例题
完整版)新浙教版七年级上册数学第三章《实数》知识点及典型例题实数是数学中一个重要的概念,它包括有理数和无理数两种。
其中,一个数的平方等于a时,这个数就叫做a的平方根。
一个正数有正、负两个平方根,它们互为相反数。
需要注意的是,零的平方根是零,而负数没有平方根。
另外,一个正数a的平方根表示成±a(读做“正、负根号a”),其中a叫做被开方数。
例如,3的平方根是±3,4的平方根是±2.类似地,一个数a的立方等于a时,这个数就叫做a的立方根。
一个正数有一个正的立方根,一个负数有一个负的立方根,它们互为相反数。
需要注意的是,立方根等于它本身的数是1和-1.一个数a的立方根表示成3a,其中a叫做被开方数。
例如,3的立方根是33,-8的立方根是-2.实数可以分为有理数和无理数两种。
有理数包括正有理数、负有理数和零,它们可以用分数表示,而无理数则不能用分数表示。
有限小数或无限循环小数都是有理数,而无限不循环小数是无理数。
实数的相反数、绝对值、倒数的意义与有理数一样,有理数的运算法则、运算律在实数范围内仍然适用。
最后需要注意的是,在求一个数的平方根时,我们可以使用开平方运算,它可以用平方运算来计算。
例如,一个数的正平方根称为算术平方根,它可以表示为M/N的形式(M、N 均为整数,且N≠0)。
81的平方根是±9.1的立方根是±1.1=±1.-5是5的平方根的相反数。
一个自然数的算术平方根为a,则与之相邻的前一个自然数是a-1.考点三、计算类型题1、设26=a,则下列结论正确的是()A.4.5<a<5.0B.5.0<a<5.5C.5.5<a<6.0D.6.0<a<6.5答案:B4、对于有理数x,2013-x+(3π-9)^2/4=(3π-10)/2,求x的值。
答案:x=2014-3π考点四、数形结合1.点A在数轴上表示的数为35,点B在数轴上表示的数为-5,则A,B两点的距离为40.2、如图,数轴上表示1,2的对应点分别为A,B,点B 关于点A的对称点为C,则点C表示的数是()A.2-1 B.1-2C.2-2D.2-2答案:B考点五、实数绝对值的应用1、|3-22|+|3+2|-|2-3|=2考点六、实数非负性的应用1.已知:x²-2x-3≥0,求x的取值范围。
实数运算公式(3)
实数运算公式(3) 编号
方框内的数字叫做开方开得尽的数,请熟记!
一、尝试学习
1. 如图,设大正方形的边长为a ,小正方形的边长为b ,请分别求出a 和b 的值。
2. 由图可得,a 与b 之间的数量关系是: a=
b 即8 3.
8是怎样化成22? 请写出推导过程
小结:实数的运算法则:(1) (a ≥0,b ≥0)
(2) (a ≥0,b >0)
4. 有一道题目:化简48,小明和小黄分别给出了不同的解法。
小明: 解:48=124⨯ 小黄:解:48=316⨯ =122 =34 你觉得谁的答案才是对的?请谈谈你有什么收获?
5. 请使用法则化简
面积8 面积2
________=⋅b a ________=b a
(1)27
(2)45
6. 21化简的结果是22,小明不理解结果是怎么得来的,你能利用公式b
a b
a 推导得到吗?
7. 你总结出来什么规律了吗?这个规律,你能自创一个公式写下来吗?请试试。
8. 化简:
31 7
2
小结:带有根号的实数最简形式的标准: (1)被开方数不含_________________
, (2)被开方数不含_________________
. 二、课堂小测
9. 化简(1)75
(2)32
(3)101 (4)53
三、课外作业
10. 化简(1)50
(2)18
(3)72 (4)53
请加其他勾股定理、有无理数的区分、平方根和算术平方根立方根等题目作为作业。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、实数 327,0,-π, 16, 3
1,0.1010010001…(相邻两个1之间依次多一个0),其中无理数是( )个.
A .1
B .2
C .3
D .4
2、下列说法中,正确的是( )
A.任何实数的平方都是正数
B.正数的倒数必小于这个正数
C.绝对值等于它本身的数必是非负数
D.零除以任何一个实数都等于零
3、下列命题中正确的是( )
A.有限小数不是有理数
B.无限小数是无理数
C.数轴上的点与有理数一一对应
D.数轴上的点与实数一一对应
4、下列说法中正确的是( )
A .实数包括有理数、无理数和零
B .有理数就是有限小数和整数
C .无限不循环小数和无限循环小数都是无理数
D .无论是有理数还是无理数都是实数
5、实数a 、b 在数轴上的位置如图3所示,则a 与b 的大小关系是( )
(A )b a < (B )b a = (C )b a > (D )无法确定
6、负数a 与它的相反数的差的绝对值为( ) A.2a B.0 C.-2a D.a
a 1-
7.-6的相反数是______,绝对值等于______.
8、如图,数轴上表示数的点是 .
9、在实数中绝对值最小的数是________,在负整数中绝对值最小的数是________.
10、已知一个数的相反数小于它本身,那么这个数是________.
11.设实数a ≠0,则a 与它的倒数、相反数三个数的和等于____________,三个数的积等于_____________.
12.任何一个实数在数轴上都有一个__________与它对应,数轴上任何一个点都对应着一个___________.
13.绝对值等于它本身的数是________,平方后等于它本身的数是________.
14.实数a ,b 在数轴上所对应的点的位置如图所示,则2a ___________0,a +b__________0,-|b -a |________0,
15、已知a 是3+b 是小数部分,试求a 和b 。
16.364
1-的相反数是______,-23的倒数是______. 17.若无理数a 满足:1<a<4,请写出两个你熟悉的无理数:•_____,•______.
18.
_________.
19.比较大小
16
,
3
20.大于
的所有整数的和_______.
21.设a 是最小的自然数数,b 是最大负整数,c 是绝对值最小的实数,则a+b+c=______.
22、计算:
||4+⎝ ⎛⎭
⎪⎫12-1-(3-1)0-8cos45°.
23、试一试,在数轴上找出表示5的点,
,
24、把下列各数分别填在相应的集合中:
-1112
4
π,..0.23,3.14
有理数集合
无理数集合。