空间几何体的表面积与体积练习题.及答案
高考数学专题《空间几何体的表面积和体积》习题含答案解析
专题8.2 空间几何体的表面积和体积1.(2021·湖南高一期末)已知圆柱1OO 及其展开图如图所示,则其体积为( )A .πB .2πC .3πD .4π【答案】D【解析】结合展开图求出圆柱的底面半径与高,进而结合体积公式即可求出结果.【详解】设底面半径为r ,高为h ,根据展开图得422h r ππ=⎧⎨=⎩,则41h r =⎧⎨=⎩,所以圆柱的体积为22144r h πππ=⨯⨯=,故选:D.2.(2021·宁夏大学附属中学高一月考)已知圆柱的上、下底面的中心分别为,O O ',过直线OO '的平面截该圆柱所得的面是面积为8的正方形,则该圆柱的表面积为()A.B .12πC.D .10π【答案】B【解析】根据圆柱的轴截面面积求出圆柱的底面半径和母线长,利用圆柱的表面积公式,即可求解.【详解】设圆柱的轴截面的边长为x ,因为过直线OO '的平面截该圆柱所得的面是面积为8的正方形,所以28x =,解得x =即圆柱的底面半径为r =l =,所以圆柱的表面积为222222212S S S r rl πππππ=+=+=⨯+=侧底.故选:B.练基础3.(2021·浙江高二期末)某几何体的三视图如图所示,则该几何体的体积是()A.13B.16C.12D.14【答案】D【解析】首先把三视图转换为几何体的直观图,进一步求出几何体的体积.【详解】解:根据几何体的三视图转换为直观图为:该几何体为底面为直角梯形,高为1的四棱锥体;如图所示:所以:1111(1113224V=⨯⨯+⨯⨯=.故选:D.4.(2021·辽宁高一期末)已知一平面截一球得到直径为,则该球的体积为()3cmA.12πB.36πC.D.108π【答案】B【解析】由球的截面性质求得球半径后可得体积.【详解】由题意截面圆半径为r =,所以球半径为3R ==,体积为334433633V R πππ==⨯=.故选:B .5.(2020·浙江省高考真题)某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )A .73B .143C .3D .6【答案】A【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为:11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭.故选:A6.(2018·全国高考真题(文))已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .B .C .D .【答案】B【解析】根据题意,可得截面是边长为的正方形,的圆,且高为所以其表面积为,故选B.7.(2020·江苏省高考真题)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是____cm.【答案】2π【解析】正六棱柱体积为262⨯1O 2O 12O O 12π10π22212S πππ=+=圆柱体积为21()222ππ⋅=所求几何体体积为2π故答案为:2π-9.(2019·北京高考真题(文))某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40.【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱之后余下的几何体,几何体的体积.10.(2019·全国高考真题(理))中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为1111MPD A NQC B-()3142424402V =-+⨯⨯=长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.【答案】共26个面..【解析】由图可知第一层与第三层各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有个面.如图,设该半正多面体的棱长为,则,延长与交于点,延长交正方体棱于,由半正多面体对称性可知,为等腰直角三角形,,.1.(2021·浙江高一期末)我国古代数学名著《九章算术》中记载“今有羡除,下广六尺,上广一丈,深三尺,1-18826+=x AB BE x ==BC FE G BC H BGE ∆,21)1BG GE CH x GH x x x ∴===∴=+=+=1x ∴==1-练提升末广八尺,无深,袤七尺.问积几何?”这里的“羡除”,是指由三个等腰梯形和两个全等的三角形围成的五面体.在图1所示羡除中,////AB CD EF ,10AB =,8CD =,6EF =,等腰梯形ABCD 和等腰梯形ABFE 的高分别为7和3,且这两个等腰梯形所在的平面互相垂直.按如图2的分割方式进行体积计算,得该“羡除”的体积为( )A .84B .66C .126D .105【答案】A【解析】由图可知,中间部分为棱柱,两侧为两个全等的四棱锥,再由柱体和锥体的体积公式可求得结果.【详解】按照图2中的分割方式,中间为直三棱柱,直三棱柱的底面为直角三角形,两条直角边长分别为7、3,直三棱柱的高为6,所以,直三棱柱的体积为11736632V =⨯⨯⨯=.两侧为两个全等的四棱锥,四棱锥的底面为直角梯形,直角梯形的面积为()1272122S +⨯==,四棱锥的高为3h =,所以,两个四棱锥的体积之和为2121232132V =⨯⨯⨯=,因此,该“羡除”的体积为1284V V V =+=.故选:A.2.(2021·河北巨鹿中学高一月考)蹴鞠(如图所示),又名蹴球、蹴圆、筑球、踢圆等,蹴有用脚蹴、踢的含义,鞠最早系外包皮革、内实米糠的球.因而蹴鞠就是指古人以脚蹴、塌、踢皮球的活动,类似今日的足球.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗传名录.已知某蹴鞠(近似看作球体)的表面上有四个点S 、A 、B 、C ,满足S ABC -为正三棱锥,M 是SC 的中点,且AM SB ⊥,侧棱1SA =,则该蹴鞠的表面积为( )A .3πB .6πC .12πD .16π【答案】A【解析】若ASB θ∠=,N 为BC 中点易得AM MN ⊥,再应用余弦定理、勾股定理求得2πθ=,即S ABC -为直三棱锥,即可求外接球半径,进而求表面积.【详解】如下图,若N 为BC 中点,则//MN SB ,又AM SB ⊥,∴AM MN ⊥,又S ABC -为正三棱锥且侧棱1SA =,∴1,2MN AN AB ==,若ASB θ∠=,则25cos 4AM θ=-,222cos AB θ=-,在Rt AMN △中,222AM MN AN +=,即()33cos 22cos 24θθ-=-,可得cos 0θ=,0θπ<<,∴2πθ=,即S ABC -为直三棱锥,易得外接球半径R ∴该蹴鞠的表面积为243R ππ=.故选:A3.【多选题】(2021·江苏高一期末)已知圆台上、下底面的圆心分别为1O ,2O ,半径为2,4,圆台的母线与下地面所成角的正切值为3,P 为12O O 上一点,则()A .圆台的母线长为6B .当圆锥的1PO 圆锥2PO 的体积相等时,124PO PO =C .圆台的体积为56πD .当圆台上、下底面的圆周都在同一球面上,该球的表面积为80π【答案】BCD【解析】转化求解圆台的母线长判断Q ;利用比例关系判断B ;求解体积判断C ;取得球的表面积判断D .【详解】解:圆台上、下底面的圆心分别为1O ,2O ,半径为2,4,圆台的母线与下底面所成角的正切值为3,P 为12O O 上一点,3(42)6h =⨯-=,母线l =6矛盾,所以A 错误;1212r r =,124PO PO =,B正确;16(416)563V πππ=⨯⨯++=,C 正确;设球心到上底面的距离为x ,则22222(6)4x x +=-+,解得4x =,r =,80S π=,D 正确;故选:BCD .4.(2020·全国高考真题(文))已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM ==,故122S =⨯⨯=△A B C ,设内切圆半径为r,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()13322r =⨯++⨯=解得:r,其体积:343V r π==..5.(2020届浙江省杭州市高三3月模拟)在《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称为“阳马”.现有一“阳马”P ABCD -,PA ⊥底面ABCD ,2PA AB ==,1AD =,则该“阳马”的最长棱长等于______;外接球表面积等于______.【答案】3 9π【解析】如图,PA ⊥底面ABCD ,底面ABCD 为长方形,且2PA AB ==,1AD =,所以PB PD ==3PC ===.最长棱为:3.该几何体可以通过补体得长方体,所以其外接球的半径为1322PC =.则其外接球的表面积为23492ππ⎛⎫⨯= ⎪⎝⎭,故答案为:3;9π.6.(2020·山东省仿真联考3)在三棱锥中,平面,,,,是上的一动点,且直线与平面所成角的最大值为,则________,三棱锥的外接球的表面积为________.【答案】6 P ABC -PA ⊥ABC 23BAC π∠=3AP =AB =Q BC PQ ABC 3πBC =P ABC -57π【解析】设直线与平面所成的角为,三棱锥外接球的球心为,半径为,如图所示,则,所以,则的最小值为,,即点到,所以.因为,所以,所以所以,所以.取的外接圆的圆心为,则圆的半径连接,作于点,则点为的中点,所以,故三棱锥的外接球的表面积.故答案为:6;.7.(广东省汕尾市2020-2021学年高一下学期期末数学试题)已知某圆柱的轴截面是一个正方形,且该圆柱PQ ABC θPABC -O R 30sin PA PQ PQ θ<==≤PQ ≥PQAQ A BC 3BAQ π∠=23BAC π∠=3CAQ π∠=AB AC ==2222222cos23BC AB AC AB AC π=+-⋅⋅=+-⨯1362⎛⎫⨯-= ⎪⎝⎭6BC =ABC V O 'O '1622sin 3r π=⨯=OO 'OM PA ⊥M M PA 2222235724R OA OP ⎛⎫===+= ⎪⎝⎭P ABC -O 2457S R ππ==57π表面积(底面和侧面面积之和)为1S ,其外接球的表面积为2S ,则该圆柱的表面积与其外接球的表面积的比值12S S =________.【答案】34【解析】设圆柱的底面半径为r ,高为h ,则2h r =,上下底面圆圆心连线的中点即为该圆柱外接球的球心,可得外接球的半径R ==,再由圆柱的表面积公式和球的表面积公式分别计算1S 、2S 即可得比值.【详解】设圆柱的底面半径为r ,高为h ,因为圆柱的轴截面是一个正方形,所以2h r =,所以圆柱表面积22212π2π2π2π26πS r r h r r r r =+⋅=+⋅=,其外接球的球心在上下底面圆圆心连线的中点位置,可知球心到上底面圆的距离为12h r =,由勾股定理可得:外接球的半径R ==,所以外接球的表面积)22224π4π8πS R r ===,所以该圆柱的表面积与其外接球的表面积的比值22126ππ348S r r S ==,故答案为:34.8.(2021·重庆市杨家坪中学高一月考)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为在一正三棱柱中挖去一个圆柱后的剩余部分(圆柱的上下两底面圆与三棱柱的底面各边相切),圆柱底面直径为,高为4cm .打印所用原料密度为31g /cm ,不考虑打印损耗,制作该模型所需原料的质量为______g .1.73=,π 3.14=,精确到0.1).【答案】24.6【解析】由正三棱柱的性质,结合已知求其底面面积,再由棱柱的体积公式求其体积V ,并求圆柱的体积为V ',则模型体积为V V '-,即可求制作该模型所需原料的质量.【详解】由题意,正三棱柱底面(等边三角形)如上图有AE OE AD DC =且2AC AE DC ==,AD AC =,OE ==6AC =,故底面面积1662S =⨯⨯=∴正三棱柱的体积462.3V Sh ===≈.而圆柱的体积为21237.7V r h ππ'==≈,∴制作该模型所需原料的质量为()124.6V V '-⨯=克.故答案为:24.69.(2021·上海高二期末)五月五是端午,门插艾,香满堂,吃粽子,蘸白糖,粽子古称“角黍”,是我国南北各地的节令食品,因各地风俗不同,粽子的形状和食材也会不同,有一种各面都是正三角形的正四面体形粽子,若该正四面体粽子的棱长为8cm ,则现有1立方米体积的食材,最多可以包成这种粽子_______个.【答案】16572【解析】根据题意,利用棱锥的体积公式求得正四面体粽子的体积,进而求得答案.【详解】如图所示,正四面体ABCD 的棱长为8cm ,设底面正三角形BCD 的中心为O ,连接AO ,则AO ⊥平面BCD ,连接BO,则23BO ==AO ==所以一个粽子的体积为:31188)32V cm =⨯⨯⨯=,由3311000000m cm =16572.8≈所以1立方米体积的食材,最多可以包成这种粽子16572个.故答案为:16572.10.(2021·浙江高二期末)在四面体ABCD 中,AB BC ⊥,CD BC ⊥,AB CD ⊥,2BC =,若四面体ABCDABCD 的体积的最大值为___________.【答案】83【解析】根据题意可以将此四面体放入一个长方体中,则易求四面体高与底面长的关系,再根据体积公式写出其体积表达式,最后利用基本不等式即可.【详解】如图所示,不妨将四面体ABCD 放入下图中的长方体中,则长方体的宽为2,设长方体的长为a ,高为h .因为四面体ABCD则r =2216a h +=,所以四面体ABCD 的体积22111833323BCD a h V S AB ah +=⋅=≤⋅=△,当且仅当a h ==时等号成立,所以四面体ABCD 的体积最大值为83.故答案为:831.(2021·全国高考真题)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为()A.20+B.C .563D【答案】D【解析】由四棱台的几何特征算出该几何体的高及上下底面面积,再由棱台的体积公式即可得解.【详解】作出图形,连接该正四棱台上下底面的中心,如图,因为该四棱台上下底面边长分别为2,4,侧棱长为2,所以该棱台的高h ==下底面面积116S =,上底面面积24S =,练真题所以该棱台的体积((121116433V h S S =+=+故选:D.2.(2020·天津高考真题)若棱长为 )A .12πB .24πC .36πD .144π【答案】C【解析】【分析】求出正方体的体对角线的一半,即为球的半径,利用球的表面积公式,即可得解.【详解】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C.3.(2021·全国高考真题(理))已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为( )A B C D 【答案】A【解析】由题可得ABC V 为等腰直角三角形,得出ABC V 外接圆的半径,则可求得O 到平面ABC 的距离,进而求得体积.【详解】,1AC BC AC BC ⊥==,ABC ∴V 为等腰直角三角形,AB ∴=,则ABC V ,又球的半径为1,设O 到平面ABC 的距离为d ,则d ==所以11111332O ABC ABC V S d -=⋅=⨯⨯⨯=V故选:A.4.(2020·全国高考真题(理))埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A B C D 【答案】C【解析】如图,设,CD a PE b ==,则PO ==,由题意212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得b a =.故选:C.5.(2018·全国高考真题(文))设是同一个半径为4的球的球面上四点,为等边三A B C D ,,,ABC △角形且其面积为,则三棱锥体积的最大值为( )A .B .C .D .【答案】B【解析】如图所示,点M 为三角形ABC 的中心,E 为AC 中点,当平面时,三棱锥体积最大此时,,点M 为三角形ABC 的中心中,有故选B.6.(2019·全国高考真题(理))已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .B .C .D【答案】D D ABC -DM ⊥ABC D ABC -OD OB R 4===2ABC S AB ==V AB 6∴= 2BM 3BE ∴==Rt OMB ∴V OM 2==DM OD OM 426∴=+=+=()max 163D ABC V -∴=⨯=【解析】解法一:为边长为2的等边三角形,为正三棱锥,,又,分别为、中点,,,又,平面,平面,,为正方体一部分,,即 ,故选D .解法二:设,分别为中点,,且,为边长为2的等边三角形,又中余弦定理,作于,,,PA PB PC ABC ==∆ P ABC ∴-PB AC ∴⊥E F PA AB //EF PB ∴EF AC ∴⊥EF CE ⊥,CE AC C EF =∴⊥ PAC PB ⊥PAC APB PA PB PC ∴∠=90︒,∴===P ABC ∴-2R ==34433R V R =∴=π==π2PA PB PC x ===,E F ,PA AB //EF PB ∴12EF PB x ==ABC ∆CF ∴=90CEF ∠=︒1,2CE AE PA x ∴===AEC ∆()2243cos 22x x EAC x +--∠=⨯⨯PD AC ⊥D PA PC =为中点,,,,,又,两两垂直,,,故选D.D Q AC 1cos 2AD EAC PA x∠==2243142x xx x+-+∴=2212122x x x ∴+=∴==PA PB PC ∴======2AB BC AC ,,PA PB PC ∴2R ∴==R ∴=34433V R ∴=π==。
高二数学空间几何体的表面积与体积试题答案及解析
高二数学空间几何体的表面积与体积试题答案及解析1.正四棱锥的五个顶点在同一个球面上,若其底面边长为4,侧棱长为,则此球的表面积为()A.B.C.D.【答案】B【解析】设球的半径为,正方形的ABCD的对角线的交点 M,则球心在直线PM上.,由勾股定理得,再由射影定理得即∴此球的表面积为.【考点】球的表面积.2.一个圆柱形的罐子半径是4米,高是9米,将其平放,并在其中注入深2米的水,截面如图所示,水的体积是()平方米.A.B.C.D.【答案】D.【解析】所求几何体的体积为阴影部分的面积与高的乘积,在中,,则,,体积.【考点】组合体的体积.3.一个四棱锥的侧棱长都相等,底面是正方形,其正视图如图所示,则该四棱锥的侧面积是_________.【答案】【解析】由正视图可知四棱锥的底面边长为2,高为2,可求出斜高为,因此四棱锥的侧面积,答案为.【考点】1.几何体的三视图;2.锥体的侧面积计算4.已知球的直径SC=4,A.,B是该球球面上的两点,AB=2,∠ASC=∠BSC=45°,则棱锥S-ABC的体积为_________【答案】【解析】设AB的中点为D,球心为O,连结SD,CD,OD,由SC=4为球的直径知,∠SBC=∠SAC=90o,因为∠ASC=∠BSC=45°,所以SA=BC=SB=AC=,所以SD⊥AB,DC⊥AB,所以AB⊥面SDC,因为AB=2,所以SD=DC==,所以DO= =,所以= ===.考点:球的性质,线面垂直判定,三棱锥的体积公式,转化思想5.如图,一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞,且知,若仍用这个容器盛水,则最多可盛水的体积是原来的 .【答案】【解析】过作截面平行于平面,可得截面下体积为原体积的,若过点F,作截面平行于平面,可得截面上的体积为原体积的,若C为最低点,以平面为水平上面,则体积为原体积的,此时体积最大.【考点】体积相似计算.6.一个半径为1的小球在一个内壁棱长为的正四面体封闭容器内可向各个方向自由运动,则该小球表面永远不可能接触到的容器内壁的面积是.【答案】【解析】如图甲,考虑小球挤在一个角时的情况,记小球半径为,作平面//平面,与小球相切于点,则小球球心为正四面体的中心,,垂足为的中心.因,故,从而.记此时小球与面的切点为,连接,则.考虑小球与正四面体的一个面(不妨取为)相切时的情况,易知小球在面上最靠近边的切点的轨迹仍为正三角形,记为,如图乙.记正四面体的棱长为,过作于.因,有,故小三角形的边长.小球与面不能接触到的部分的面积为(如答图2中阴影部分).又,,所以.由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为.【考点】(1)三棱锥的体积公式;(2)分情况讨论及割补思想的应用。
高三高考数学复习练习82空间几何体的表面积与体积
821.一个球的表面积是16π,那么这个球的体积为( )A.163π B.323π C .16π D .24π【解析】 设球的半径为R ,因为表面积是16π,所以4πR 2=16π,解得R =2,所以体积为43πR 3=32π3. 【答案】 B2.某几何体的三视图如图所示,则其表面积为( )A .πB .2πC .3πD .4π【解析】 由三视图可知,该几何体为半径为r =1的半球体,表面积为底面圆面积加上半球面的面积,所以S =πr 2+12×4πr 2=π×12+12×4π×12=3π.故选C. 【答案】 C3.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3 D .2π【解析】 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C. 【答案】 C4.一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+ 3B .2+ 3C .1+2 2D .2 2 【解析】 由空间几何体的三视图可得该空间几何体的直观图,如图所示,∴该四面体的表面积为S 表=2×12×2×1+2×34×(2)2=2+3,故选B. 【答案】 B5.(2018·太原一模)某几何体的三视图如图所示,则该几何体的表面积为( )A .6π+1B.(24+2)π4+1C.(23+2)π4+12D.(23+2)π4+1 【解析】 由几何体的三视图知,该几何体为一个组合体,其中下部是底面直径为2,高为2的圆柱,上部是底面直径为2,高为1的圆锥的四分之一,所以该几何体的表面积为4π+π+3π4+2π4+1=(23+2)π4+1,故选D. 【答案】 D6.甲几何体(上)与乙几何体(下)的组合体的三视图如图所示,甲、乙几何体的体积分别为V 1,V 2,则V 1∶V 2等于( )A .1∶4B .1∶3C .2∶3D .1∶π【解析】 由三视图知,甲几何体是半径为1的球,乙几何体是底面半径为2,高为3的圆锥,所以球的体积V 1=43π,V 2=13π×22×3=4π,所以V 1∶V 2=1∶3.故选B. 【答案】 B7.(2017·全国Ⅲ卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB.3π4C.π2D.π4【解析】 设圆柱的底面半径为r ,球的半径为R ,且R =1,由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.∴r = 12-⎝⎛⎭⎫122=32.∴圆柱的体积为V =πr 2h =34π×1=3π4. 故选B.【答案】 B8.(2017·襄阳调研)如图是一个空间几何体的三视图,则该几何体的表面积为________.【解析】 由三视图可知,该几何体是一个正四棱柱挖掉一个半球所得的几何体,其中半球的底面就是正四棱柱上底面的内切圆,正四棱柱的底面边长为4,高为2,半球所在球的半径为2.所以该几何体的表面由正四棱柱的表面与半球的表面积之和减去半球的底面构成,故其表面积为(4×4×2+2×4×4)+12×(4π×22)-π×22=64+4π. 【答案】 64+4π9.(2018·乌鲁木齐二诊)已知四面体ABCD 满足AB =CD =6,AC =AD =BC =BD =2,则四面体ABCD 的外接球的表面积是________.【解析】 (图略)在四面体ABCD 中,取线段CD 的中点为E ,连接AE ,BE .∵AC =AD =BC =BD =2,∴AE ⊥CD ,BE ⊥C D.在Rt △AED 中,CD =6,∴AE =102.同理BE =102.取AB 的中点为F ,连接EF .由AE =BE ,得EF ⊥A B.在Rt △EF A 中,∵AF =12AB =62,AE =102,∴EF =1.取EF 的中点为O ,连接OA ,则OF =12.在Rt △OF A 中,OA =72.∵OA =OB =OC =OD ,∴该四面体的外接球的半径是72,∴外接球的表面积是7π. 【答案】 7π10.(2018·贵州适应性考试)已知球O 的表面积是36π,A ,B 是球面上的两点,∠AOB =60°,C 是球面上的动点,则四面体OABC 体积V 的最大值为________.【解析】 设球的半径为R ,由4πR 2=36π,得R =3.显然在四面体OABC 中,△OAB 的面积为定值,S △OAB =12×R ×32R =34R 2=934.要使三棱锥的体积最大,只需球上的点到平面OAB 的距离最大,显然,到平面OAB 距离的最大值为球的半径,所以四面体OABC 的体积的最大值V =13×934×R =934. 【答案】 93411.(2016·全国丙卷)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面P AB ;(2)求四面体N -BCM 的体积.【解析】 (1)证明 由已知得AM =23AD =2. 如图,取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2. 又AD ∥BC ,故TN 綊AM ,所以四边形AMNT 为平行四边形,于是MN ∥AT .因为AT ⊂平面P AB ,MN ⊄平面P AB ,所以MN ∥平面P AB .(2)因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A. 取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5.由AM ∥BC 得M 到BC 的距离为5,故S △BCM =12×4×5=2 5. 所以四面体N -BCM 的体积V N -BCM =13×S △BCM ×P A 2=453. 12.如图所示,在空间几何体ADE -BCF 中,四边形ABCD 是梯形,四边形CDEF 是矩形,且平面ABCD ⊥平面CDEF ,AD ⊥DC ,AB =AD =DE =2,EF =4,M 是线段AE 上的动点.(1)试确定点M 的位置,使AC ∥平面MDF ,并说明理由;(2)在(1)的条件下,平面MDF 将几何体ADE -BCF 分成两部分,求空间几何体M -DEF 与空间几何体ADM -BCF 的体积之比.【解析】(1)当M 是线段AE 的中点时,AC ∥平面MDF .理由如下:连接CE 交DF 于点N ,连接MN .因为M ,N 分别是AE ,CE 的中点,所以MN ∥AC .又因为MN ⊂平面MDF ,AC ⊄平面MDF ,所以AC ∥平面MDF .(2)将几何体ADE -BCF 补成三棱柱ADE -B ′CF ,如图所示,三棱柱ADE -B ′CF 的体积为V =S △ADE ·CD =12×2×2×4=8,则几何体ADE -BCF 的体积V ADE BCF =V ADE B ′CF -V F BB ′C=8-13×⎝⎛⎭⎫12×2×2×2=203. 因为三棱锥M -DEF 的体积V M DEF =13×⎝⎛⎭⎫12×2×4×1=43, 所以V ADM BCF =203-43=163, 所以两几何体的体积之比为43∶163=1∶4.。
空间几何体的表面积与体积习题附答案
空间几何体的表面积与体积习题附答案1.圆柱的侧面积可以通过展开图计算,展开图是一个正方形,边长为2πr,所以侧面积为4πr^2,即4πS,因此选项为A。
2.根据三视图可以看出该几何体由两个同底的半圆锥组成,底面半径为1,高为3,因此体积为2×(1/3)πr^2h=π,因此选项为D。
3.根据三视图可以看出该几何体是一个组合体,由一个底面为等腰直角三角形的直三棱柱和一个底面为等腰直角三角形的三棱锥组成。
直三棱柱的高为2,三棱锥的高为2,因此梯形的高为2,底边为2和4,面积为(2+4)×2/2=6,共有2个梯形,因此梯形的面积之和为12,因此选项为B。
4.根据三视图可以看出该几何体为一个圆柱挖去一个同底的圆锥,圆锥的高为圆柱高的一半,因此圆锥的高为2,圆柱的底面积为π,侧面积为4π,圆锥的侧面积为2π×5/2=5π,因此表面积为π+4π+5π=9π+5π,因此选项为A。
5.根据三视图可以看出该几何体为一个直三棱柱削去一个同底的三棱锥,三棱柱的高为5,三棱锥的高为3,三棱锥与三棱柱的底面均为两直角边分别为3和4的直角三角形,因此三棱柱的体积为底面积×高=3×4×5=60,三棱锥的体积为1/3×底面积×高=1/3×3×4×3=4,因此该几何体的体积为60-4=56,因此选项为C。
C1F=4,连接EF,交AD于点G,求三角形AEF和四边形ABCG的面积和长方体ABCD-A1B1C1D1的体积.解:首先可以求出AE=BF=6,EF=8,再根据三角形相似可以求出AG=12,GD=4,因此AD=16,AGD为等腰直角三角形,所以GD=DG=4,因此CG=10,BG=AB-AG =4,所以ABCG为梯形,其面积为(AB+CG)×4=56.三角形AEF的面积为1/2×AE×EF=24.长方体ABCD-A1B1C1D1的体积为16×10×8=1280.题目1:一长方体被平面α分成两个高为10的直棱柱,求平面α把该长方体分成的两部分体积的比值。
高考数学复习空间几何体的表面积与体积专题训练(含答案)
高考数学复习空间几何体的表面积与体积专题训练(含答案)在我们周围存在着各种各样的物体,它们都占据着空间的一局部,下面是空间几何体的外表积与体积专题训练,请考生及时练习。
一、选择题1.棱长为2的正四面体的外表积是().A. B.4 C.4 D.16解析每个面的面积为:22=.正四面体的外表积为:4.答案 C2.把球的外表积扩展到原来的2倍,那么体积扩展到原来的().A.2倍B.2倍C.倍D.倍解析由题意知球的半径扩展到原来的倍,那么体积V=R3,知体积扩展到原来的2倍.答案 B3.一个几何体的三视图如下图,那么此几何体的正面积(单位:cm2)为().A.48B.64C.80D.120解析据三视图知,该几何体是一个正四棱锥(底面边长为8),直观图如图,PE为正面PAB的边AB上的高,且PE=5.此几何体的正面积是S=4SPAB=485=80(cm2).答案 C4.三棱锥S-ABC的一切顶点都在球O的球面上,ABC是边长为1的正三角形,SC为球O的直径,且SC=2,那么此棱锥的体积为().A. B. C. D.解析在直角三角形ASC中,AC=1,SAC=90,SC=2,SA==;同理SB=.过A点作SC的垂线交SC于D点,衔接DB,因SAC≌△SBC,故BDSC,故SC平面ABD,且平面ABD为等腰三角形,因ASC=30,故AD=SA=,那么ABD的面积为1=,那么三棱锥的体积为2=.答案 A.某品牌香水瓶的三视图如下(单位:cm),那么该几何体的外表积为().A 2B 2C 2D 2解析该几何体的上下为长方体,中间为圆柱.S外表积=S下长方体+S上长方体+S圆柱侧-2S圆柱底=244+442+233+431+21-22=94+.答案 C.球的直径SC=4,A,B是该球球面上的两点,AB=,ASC=BSC=30,那么棱锥SABC的体积为().A.3B.2C.D.1解析由题可知AB一定在与直径SC垂直的小圆面上,作过AB的小圆交直径SC于D,设SD=x,那么DC=4-x,此时所求棱锥即联系成两个棱锥SABD和CABD,在SAD和SBD中,由条件可得AD=BD=x,又由于SC为直径,所以SBC=SAC=90,所以DCB=DCA=60,在BDC中,BD=(4-x),所以x=(4-x),所以x=3,AD=BD=,所以三角形ABD为正三角形,所以V=SABD4=.答案 C二、填空题.S、A、B、C是球O外表上的点,SA平面ABC,ABBC,SA=AB=1,BC=,那么球O的外表积等于________.解析将三棱锥S-ABC补构成以SA、AB、BC为棱的长方体,其对角线SC为球O的直径,所以2R=SC=2,R=1,外表积为4.答案 4.如下图,一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,那么该多面体的体积是________.解析由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为,衔接顶点和底面中心即为高,可求得高为,所以体积V=11=.答案9.某几何体的直观图及三视图如下图,三视图的轮廓均为正方形,那么该几何体的外表积为________.解析借助罕见的正方体模型处置.由三视图知,该几何体由正方体沿面AB1D1与面CB1D1截去两个角所得,其外表由两个等边三角形、四个直角三角形和一个正方形组成.计算得其外表积为12+4.答案 12+4.如下图,正方体ABCD-A1B1C1D1的棱长为6,那么以正方体ABCD-A1B1C1D1的中心为顶点,以平面AB1D1截正方体外接球所得的圆为底面的圆锥的片面积为________.解析设O为正方体外接球的球心,那么O也是正方体的中心,O到平面AB1D1的距离是体对角线长的,即为.又球的半径是正方体对角线长的一半,即为3,由勾股定理可知,截面圆的半径为=2,圆锥底面面积为S1=(2)2=24,圆锥的母线即为球的半径3,圆锥的正面积为S2=23=18.因此圆锥的片面积为S=S2+S1=18=(18+24).答案 (18+24)三、解答题.一个几何体的三视图如下图.主视图是底边长为1的平行四边形,左视图是一个长为,宽为1的矩形,仰望图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的外表积S.解 (1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为,所以V=11=.(2)由三视图可知,该平行六面体中,A1D平面ABCD,CD平面BCC1B1,所以AA1=2,正面ABB1A1,CDD1C1均为矩形,S=2(11+1+12)=6+2..在直三棱柱ABC-A1B1C1中,底面为直角三角形,ACB=90,AC=6,BC=CC1=,P是BC1上一动点,如下图,求CP+PA1的最小值.解 PA1在平面A1BC1内,PC在平面BCC1内,将其铺平后转化为平面上的效果处置.铺平平面A1BC1、平面BCC1,如下图.计算A1B=AB1=,BC1=2,又A1C1=6,故A1BC1是A1C1B=90的直角三角形.CP+PA1A1C.在AC1C中,由余弦定理,得A1C===5,故(CP+PA1)min=5..某高速公路收费站入口处的平安标识墩如图1所示,墩的上半局部是正四棱锥PEFGH,下半局部是长方体ABCDEFGH.图2、图3区分是该标识墩的主视图和仰望图.(1)请画出该平安标识墩的左视图;(2)求该平安标识墩的体积.(1)左视图同主视图,如下图:(2)该平安标识墩的体积为V=VPEFGH+VABCDEFGH=40260+40220=64 000(cm3)..如图(a),在直角梯形ABCD中,ADC=90,CDAB,AB=4,AD=CD=2,将ADC沿AC折起,使平面ADC平面ABC,失掉几何体D-ABC,如图(b)所示.(1)求证:BC平面ACD;(2)求几何体D-ABC的体积.(1)证明在图中,可得AC=BC=2,从而AC2+BC2=AB2,故ACBC,又平面ADC平面ABC,平面ADC平面ABC=AC,BC平面ABC,BC平面ACD.(2)解由(1)可知,BC为三棱锥B-ACD的高,BC=2,SACD=2,VB-ACD=SACDBC=22=,由等体积性可知,几何体D-ABC的体积为.空间几何体的外表积与体积专题训练及答案的全部内容就是这些,查字典数学网预祝考生可以取得优秀的效果。
最新空间几何体的表面积与体积练习题.及答案
空间几何体的表面积与体积专题一、选择题1 •棱长为2的正四面体的表面积是(C ).A. 3 B . 4 C . 4 3 D . 16解析 每个面的面积为:2X 2X 2X — •••正四面体的表面积为:4,3. 2. 把球的表面积扩大到原来的2倍,那么体积扩大到原来的(B ). A. 2 倍B . 2 2倍C. 2倍D.32咅解析 由题意知球的半径扩大到原来的 2倍,则体积V =彳冗戌,知体积扩大到原来的2 2倍.3.如图是一个长方体截去一个角后所得多面体的三视图,则该多面体的体积为 142284 BP解析 根据三视图的知识及特点,可画出多面体 的形状,如图所示.这个多面体是由长方体截去 一个正三棱锥而得到的,所以所求多面体的体积 V = V 长方体一V 正三"4X 4X 6—卜!X 2X2 X 2842=亍4 .某几何体的三视图如下,则它的体积是A)A. 8 — 2n B . 8—n n C . 8 — 2n解析由三视图可知该几何体是一个边长为3 1径为1,咼为2的圆锥,所以v = 2 — 3X 2nX 2= 8 —三. 5.已知某几何体的三视图如图,其中正视图中半圆的半径为1,则该几何^3 /Tn体的体积为(A)A . 24 — 2冗 B . 24—§ C . 24— n D . 24—据三视图可得几何体为一长方体内挖去一个半圆柱,其中长方体的棱长分1别为:2,3,4,半圆柱的底面半径为1,母线长为3,故其体积V = 2X 3X 4—2XnX1 X 3= 24—6 .某品牌香水瓶的三视图如图(单位:cm ),则该几何体的表面积为( C ) B ).3C.280140 D.-T2n D 2的正方体内部挖去一个底面半正三角形,所以 V = ^S A ABD X 4=〔 3.二、填空题8. 三棱锥PABC 中, PAL 底面ABC PA = 3,底面ABC 是边长为2的正三角形,则三棱锥PABC 的体 积等于_^3 _______ •解析 依题意有,三棱锥PABC 的体积V = J S A ABC -| PA| = 3X^43X 22X 3=/3.9. 一个圆柱的轴截面是正方形,其侧面积与一个球的表面积相等,那么这个圆柱的体积与这个球 的体积之比为_ 3 : 2 _______ .解析 设圆柱的底面半径是r ,则该圆柱的母线长是2r ,圆柱的侧面积是2n r -2r = 4n r 2,设球的 半径是R,则球的表面积是4n 氏,根据已知4n 4n r 2,所以R = r.所以圆柱的体积是n r 2・2r =2n r 3,球的体积是3n r 3,所以圆柱的体积和球的体积的比是= 3 : 2. 3433n r10. 如图所示,已知一个多面体的平面展开图( 2J n \严-才Cm B. 7二 n \ 2J n 、 94 + — I cmD.7解析这个空间几何体上面是一个四棱柱、中间部分是一个圆柱、,.,. n下面是一个四棱柱.上面四棱柱的表面积为2X 3X 3+ 12X 1 ——n 1=30 ——;中间部分的表面积为 2 n X 2 X 1= n ,下面部分的表面积为2X 4X 4+ 16X 2— n = 64—手.故其表面积是94 +弓.4 4 27. 已知球的直径SC = 4, A , B 是该球球面上的两点,A 吐 3, / AS(=Z BS(= 30°,则棱锥S-ABC 的体积为( C).A. 3 3 B . 2 3 C.3 D . 1解析 由题可知AB —定在与直径SC 垂直的小圆面上,作过 AB 的小圆交直径SC 于D,设SD = x , 则DC = 4 — x ,此时所求棱锥即分割成两个棱锥 S-ABD 和 C-ABD 在厶SAD ffiA SBD 中,由已知条件 可得AD = BC=¥X ,又因为SC 为直径,所以/ SB(=Z SA(= 90°,所以/ DC =Z DCA= 60°,在3 △ BDC 中 , BD= \.?3(4 — x),所以 3 x = _ 3(4 — x),所以 x = 3, AD = BD = 3,所以三角形ABD 为A. C. 2 cm 2 cm圧视閉 値视图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是解析 由题知该多面体为正四棱锥,底面边长为 1,侧棱长为1,斜高为~^,连 接顶点和底面中心即为高,可求得高为才所以体积1x 仆子# 11.如图,半径为R 的球O 中有一内接圆柱.当圆柱的侧面积最大时, 球的表面积与该圆柱的侧面积之差是 ___ 2 n R ____ .解析 由球的半径为R,可知球的表面积为4n 氏.设内接圆柱底面半径为r ,高为 2h ,则h + r 2= R.而圆柱的侧面积为2 n r ・2h = 4n rh <4 n 2 — = 2n R(当且仅当r = h 时等号成立),即内接圆柱的侧面积最大值为2n R 2,此时球的表面积与内 接圆柱的侧面积之差为2n 巨12.如图,已知正三棱柱 ABCBC 的底面边长为2 cm,高为5 cm,则一质点自点 A 出发,沿着三棱柱的侧面绕行两周到达点 A 1的最短路线的长为 13 cm.解析 根据题意,利用分割法将原三棱柱分割为两个相同的三棱柱,然后将其展 开为如图所示的实线部分,贝冋知所求最短路线的长为 52 + 122二13(cm).三、解答题13.某高速公路收费站入口处的安全标识墩如图 1所示,墩的上 半部分是正四棱锥PEFGH 下半部分是长方体 ABCDEFG 图2、图 3分别是该标识墩的正视图和俯视图.(2)求该安全标识墩的体积. 解析⑴侧视图同正视图,如图所示:1 2 2 3V = V P EFG 卄 V KBCDEFG ^ 3 x 40 x 60+ 40 x 20= 64 000(cm ).314 . 一个几何体的三视图如图所示.已知正视图是底边长为 侧视(1)请画出该安全标识墩的侧视图; (2)该安全标识墩的体积为1的正方形拼成 S.俯觇图cnii1的平行四边形,图是一个长为.3,宽为1的矩形,俯视图为两个边长为的矩形.(1)求该几何体的体积V;⑵求该几何体的表面积解析(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为,3,所以V= 1 x 1 x 3= 3.⑵由三视图可知,该平行六面体中,A1DL平面ABCD CDL平面BCC1B,1所以AA1= 2,侧面ABB1A1 CDD1C均为矩形,S= 2X (1 x 1+ 1X 3+ 1X 2)= 6+ 2 3.15. 已知某几何体的俯视图是如右图所示的矩形,正视图(或称主视图)是一个底边长为&高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S.解析由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h1的等腰三角形,左、右侧面均为底边长为6,高为h2的等腰三角形,如右图所示.1 1(1)几何体的体积为:V= 3 • S矩形• h=-X 6X 8X 4= 64.3 3(2)正侧面及相对侧面底边上的高为:h1= ,42+ 32= 5.左、右侧面的底边上的高为:h2= . 42+ 42=1 、4 2.故几何体的侧面面积为:S= 2X ^X 8X5 + 2X 6X 4 2 = 40 + 24,2.1. 一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是()..2解:设展开图的正方形边长为a,圆柱的底面半径为r,则2n=a, ,底面圆的面积是—,2兀4兀2a +g2于是全面积与侧面积的比是三,a222. 在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去与8个顶点相关的8个三棱锥后,剩下的几何体的体积是()•2 .解:正方体的体积为1,过共顶点的三条棱中点的平面截该正方体截得的三棱锥的体积是1 (丄--)」1,于是8个三棱锥的体积是1,剩余部分的体积是-,3 2 2 2 2 48 6 63 .—个直棱柱(侧棱垂直于底面的棱柱)的底面是菱形,对角线长分别是6cm和8cm,高是5cm,则这个直棱柱的全面积是 _____________ 。
必修二-1.3-空间几何体的表面积和体积同步练习和详细答案
必修二 -1.3- 空间几何体的表面积和体积同步练习和详尽答案1.3空间几何体的表面积和体积【知识总结】1.多面体的面积和体积公式名称侧面积 (S全面积侧)(S 全)棱柱直截面周长×l棱S 侧+2S 底柱 直棱ch柱棱锥各侧面积之和棱S 侧+S 底锥 正棱1ch ′锥2体 积(V)S 底 ·h=S 直截面· hS 底 ·h1S 底 ·h3棱台各侧面面积之和S 侧+S 上底1h(S+S棱3 上底下1台 正棱+S 下底底+ S 下底 S 下底)2台(c+c ′)h ′表中 S 表示面积, c ′、 c 分别表示上、下底面周长, h 表斜高, h ′表示斜高, l 表示侧棱长。
2.旋转体的面积和体积公式名圆柱称S侧2πrl2πS全r(l+r)πV r 2h( 即πr 2l)圆锥圆台球πrlπ(r1+r2)lππ(r1+r 2)l+π2 r(l+r)(r 21+r22)4πR1π1πr 2h3 4 πR3223h(r1+r 1r 23+r 2)表中 l、h 分别表示母线、高, r 表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径, R 表示半径。
【知能训练】A:多面体的表面积和体积一.选择题1.如图,在直三棱柱 ABC-A 1B 1C1中,A1A=AB=2 ,BC=1 ,∠ABC=90°,若规定主(正)视方向垂直平面ACC 1A1,则此三棱柱的左视图的面积为()A.B.2C.4D.22.某几何体的俯视图是如下图的矩形,正视图(或称主视图)是一个底边长为8、高为 4 的等腰三角形,侧视图(或称左视图)是一个底边长为 6、高为 4 的等腰三角形,则该几何体的表面积为()A.80B.24+88C.24+40 D. 1183.一个棱锥被平行于底面的平面所截,假如截面面积与底面面积之比为 1:2,则截面把棱锥的一条侧棱分红的两段之比是()A.1:4C. 1:D. 1:B.1:2+1)( -1)(4.正六棱台的两底边长分别为1cm ,2cm ,高是 1cm ,它的侧面积为()A.2.2 C.cm22 cm B 9cm D. 3 cm5.要制作一个容积为 4m 3,高为 1m的无盖长方体容器,已知该容器的底面造价是每平方米20 元,侧面造价是每平方米10 元,则该容器的最低总造价是()A.80 元B.120元C.160元D.240 元6.(文)四棱锥 S-ABCD 的底面是矩形,锥极点在底面的射影是矩形对角线的交点,四棱锥及其三视图如图( AB 平行于主视图投影平面)则四棱锥 S-ABCD 的体积=()A .24B.18C.D.87.某空间组合体的三视图如下图,则该组合体的体积为()A . 48B . 56C . 64D . 728.各棱长均为 a 的三棱锥的表面积为()A .4a2.a2.a2B 3C 2D .a29.已知一个四棱锥的高为 3,其底面用斜二测画法所画出的水平搁置的直观图是一个边长为 1的正方形,则此四棱锥的体积为()A .B .6C .D .210.如图,在三棱柱 A 1B 1C 1-ABC 中, D ,E , F 分别是 AB ,AC ,AA 1 的中点,设三棱锥 F-ADE的体积为 V1,三棱柱 A 1B1C1-ABC 的体积为 V2,则 V1:V2=.11.将边长为 2 的正方形沿对角线 AC 折起,以A,B ,C,D 为极点的三棱锥的体积最大值等于.12.如图,一个三棱柱形容器中盛有水,且侧棱AA 1=8.若 AA 1B1B 水平搁置时,液面恰巧过AC ,BC ,A1C1,B1C1的中点,则当底面 ABC水平搁置时,液面的高为.13.四棱锥 P-ABCD 的底面 ABCD 为正方形,且 PD 垂直于底面 ABCD ,N 为 PB 中点,则三棱锥 P-ANC 与四棱锥 P-ABCD 的体积比为.14.已知某四棱锥,底面是边长为 2 的正方形,且俯视图如下图.若该四棱锥的侧视图为直角三角形,则它的体积为.15.如下图,在三棱柱 ABC-A 1B 1C1中,AB=AC=AA 1=2 ,BC=2 ,且∠ A1AB= ∠A1AC=60°,则该三棱柱的体积是.B:旋转体的表面积和体积1.假如圆锥的底面半径为,高为2,那么它的侧面积是()A.4πB.2πC.2πD.4π2.一圆锥的侧面睁开图是半径为 2 的半圆,则该圆锥的全面积是()A. 5πB.4πC.3πD.2π3.假如圆锥的轴截面是正三角形(此圆锥也称等边圆锥),则此圆锥的侧面积与全面积的比是()A.1:2B.2:3C.1:D. 2:4.圆锥侧面积为全面积的,则圆锥的侧面睁开图圆心角等于()A.πB.πD.以上都C. 2π不对5.圆台的上、下底面半径和高的比为1:4:4,母线长为 10,则圆台的侧面积为()A. 81πB. 100πC. 14πD.169π6.已知球的直径 SC=8 ,A,B 是该球球面上的两点, AB=2,∠ SCA=∠SCB=60° ,则三棱锥 S-ABC 的体积为()A. 2B. 4C. 6D. 87.若圆柱的底面直径和高都与球的直径相等,圆柱、球的表面积分别记为S1、S2,则 S1:S2=()A.1:1B.2:1C.3:2D.4:1 8.若两个球的表面积之比为1:4,则这两个球的体积之比为()A.1:2B.1:4C. 1:8D.1: 169.体积相等的正方体、球、等边圆柱(即底面直径与母线相等的圆柱)的全面积分别为 S1,S2,S3,那么它们的大小关系为()A. S1< S2< S3<S3<S1DB . S1< S3< S2. S2< S1< S3C. S2二.填空题(共 5 小题)10.圆锥和圆柱的底面半径和高都是R,则圆锥的全面积与圆柱的全面积之比为.11.已知一个圆柱的侧面睁开图是一个长和宽分别为 3π和π的矩形,则该圆柱的体积是.12.在如下图的斜截圆柱中,已知圆柱底面的直径为 40cm ,母线长最短 50cm ,最长 80cm ,则斜截圆柱的侧面面积 S=cm 2.13.球的体积与其表面积的数值相等,则球的半径等于.14.已知一圆柱内接于球 O,且圆柱的底面直径与母线长均为 2,则球为 O 的表面积为.15.已知 A,B,C 是球面上三点,且AB=AC=4cm 到平面 ABC 表面积为,∠BAC=90°,若球心 O 的距离为 2,则该球的3cm .11.正三角形 ABC 的边长为 2,将它沿高 AD 翻折,使点 B 与点 C 间的距离为 1,此时四周体 ABCD 外接球表面积为.三.解答题(共 3 小题)16.如图,某种水箱用的“浮球”,是由两个半球和一个圆柱筒构成.已知球的直径是6cm ,圆柱筒长 2cm .3(1)这类“浮球”的体积是多少 cm(结果精准到 0.1)?(2)要在这样 2500 个“浮球”表面涂一层胶质,假如每平方米需要涂胶 100克,共需胶多少?17.(文)如图,球O 的半径长为10.(1)求球 O 的表面积;(2)求球 O 的体积;(3)若球 O 的小圆直径 AB=30 ,求 A、B 两点的球面距离.18.设底面直径和高都是 4 厘米的圆柱的内切球为 O.(1)求球 O 的体积和表面积;(2)与底面距离为 1 的平面和球的截面圆为 M,AB 是圆 M 内的一条弦,其长为 2 ,求 AB 两点间的球面距离.参照答案:A:1、A2、B3、C4、A5、C6、D7、C8、D9、D10、11、12、解:不如令此三棱柱为直三棱柱,如图当侧面 AA1B1B水平搁置时,水的形状为四棱柱形,底面是梯形.设△ABC的面积为 S,则 S梯形ABFE= S,V水= S?AA1=6S.当底面 ABC 水平放置时,水的形状为三棱柱形,设水面高为 h ,则有 V 水 =Sh ,∴6S=Sh ,∴ h=6 .故当底面 ABC水平搁置时,液面高为 6.故答案为:613、1:414、15 、 2B:1、C2、C3、B4、B5、B6、D7、C8、C9、C10、(1+): 411、12、解:将同样的两个几何体,接柱,柱的面睁开,面展开的面 S=[ ( 50+80 )×20 π × 2]/2=2600 π cm2.故答案:2600π13、 314 、8π15 、64π16、解:( 1 )∵ “浮球”的柱筒直径 d=6cm ,∴半球的直径也是 6cm,可得半径 R=3cm ,∴两个半球的体之和V 球=πR3=π ?27=36πcm3⋯(2分)而 V 圆柱=πR 2 ?h =π× 9×2=18πcm3⋯(2分)∴“ 浮球” 的体是:V=V球+V圆柱=36π +18π =54π ≈ 169.6cm3⋯ (4分)(2)依据意,上下两个半球的表面是S 球表= 4πR 2= 4×π×9= 36πcm2⋯(6分)而“浮球”的柱筒面:S圆柱侧=2π Rh=2× π × 3× 2=12π cm2⋯ (8分)∴1 个“浮球”的表面S==m2所以,2500 个“浮球”的表面的和2500 S = 2500×m2⋯(10分)= 12π∵每平方米需要涂胶 100 克,∴共需要胶的量: 100 × 12 π =1200 π(克)⋯( 12分)答:种浮球的体169.6cm 3;供需胶 1200 π克.⋯( 13 分)17 、解:(1)球的表面4 π r 2 =1200 π;⋯(4 分)(2)球的体V =πr = 4000π⋯(8分)3;(3)球心O,在△AOB中,球 O的小直径 AB=30,球 O的半径10 .解得∠AOB=,所以 A、B两点的球面距离π.⋯(15 分)18、解:(1)∵底面直径和高都是 4厘米的圆柱的内切球为 O,∴球 O 的半径为 2cm ,3,表面积 4π ?22=16π ;∴球 O 的体积为π?2=(2)∵AB是圆 M内的一条弦,其长为 2,∴∠AOB= ,∴AB两点间的球面距离为.。
表面积与体积练习题(含答案)
空间几何体的表面积和体积练习(录自新教材完全解读)1、一个证四棱台的两底面边长分别为)(,n m n m >,侧面积等于两个底面积之和,则这个棱台的高位( ) A.n m mn + B. n m mn - C. mn n m + D. mnnm - 2、一个圆柱的侧面展开图示一个正方形,这个圆柱的表面积与侧面积的比是( ) A.ππ221+ B. ππ441+ C. ππ21+ D. ππ241+ 3、在斜三棱柱A BC -A 1B 1C1中,∠BAC=090,0110111190,60,=∠=∠=∠==C BB C AA B AA a AC AB ,侧棱长为b ,求其侧面积。
ab )23(+4、一个三棱锥的底面是正三角形,侧面都是等腰直角三角形,底面边长为a ,求它的表面积。
2)33(41a + 5、已知圆台的上、下底面半径和高的比为1:4:4,母线长为10,求圆台的侧面积。
100π6、若正方体的棱长为2,则以该正方体各个面的中心为顶点的凸多面体的体积为( )A.62B . 32C . 33 D. 327、已知圆台两底面半径分别为)(,n m n m >,求圆台和截得它的圆锥的体积比。
333m n m - 8、直三棱柱(侧棱垂直底面的三棱柱)的高6,底面三角形的边长分别为3、4、5,将棱柱削成圆柱,求削去部分体积的最小值。
)6(6π-9、如图,三棱锥S-ABC 的三条侧棱两两垂直,且6,3,1===SC SA SB ,求该三棱锥的体积。
22 10、若两球表面积之比为4:9,则其体积之比为( )SCBAA.8:27B.16:81 C.64:729 D.2:311、如果三个球的半径之比是1:2:3,那么最大球的体积是其余两个球的体积之和的( ) A .1倍 B.2倍 C.3倍 D.4倍 12、如图所示,半径为R 的半圆内的阴影部分以直径A B所在直线为轴,旋转一周得到一几何体,求该几何体的表面积。
高中数学必修2 空间几何体的表面积与体积最全试题及答案
空间几何体的表面积与体积一.相关知识点1.几何体的表面积(1)棱柱、棱锥、棱台的表面积就是各个面的面积的和。
(2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环。
(3)若圆柱、圆锥的底面半径为r,母线长l,则其表面积为S柱=2πr2+2πrl,S锥=πr2+πrl。
(4)若圆台的上下底面半径为r1,r2,母线长为l,则圆台的表面积为S=π(r21+r22)+π(r1+r2)l。
(5)球的表面积为4πR2(球半径是R)。
2.几何体的体积(1)V柱体=Sh。
(2)V锥体=13Sh。
(3)V台体V圆台=13π(r21+r1r2+r22)h,V球=43πR3(球半径是R)。
一、细品教材1.(必修2P28A组T3改编)如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________。
2.(必修2P36A组T10改编)一直角三角形的三边长分别为6 cm,8 cm,10 cm,绕斜边旋转一周所得几何体的表面积为________。
细品教材答案:1.1∶47; 2.3365π cm2二、基础自测1.(2016·全国卷Ⅱ)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20π B.24πC.28π D.32π2.已知正四棱锥的侧棱与底面的边长都为32,则这个四棱锥的外接球的表面积为()A.12π B.36πC.72π D.108π3.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为__________。
4.(2016·北京高考)某四棱柱的三视图如图所示,则该四棱柱的体积为________。
5.(2016·赤峰模拟)已知三棱柱ABC-A1B1C1的侧棱和底面垂直,且所有棱长都相等,若该三棱柱的各顶点都在球O的表面上,且球O的表面积为7π,则此三棱柱的体积为________。
基础自测答案1.C;2.B;3.2;4.32;5.94三.直击考点考点一空间几何体的表面积【典例1】(1)某几何体的三视图如图所示,则该几何体的表面积等于()A.8+22B.11+22C.14+2 2 D.15(2)(2016·全国卷Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径。
几何体的表面积及体积习题及答案
空间几何体的表面积与体积(时间:45分钟 满分:100分)一、选择题(每小题7分,共35分)1.正六棱柱的高为6,底面边长为4,则它的全面积为 ( )A.48(3+3)B.48(3+23)C.24(6+2)2.如图(1)所示,一只装了水的密封瓶子可以看成是由半径为1 cm 和半径为3 cm 的两个圆柱组成的几何体.当这个几何体如图(2)水平放置时,液面高度为20 cm ,当这个几何体如图(3)水平放置时,液面高度为28 cm ,则这个几何体的总高度为 ( )A.29 cmB.30 cmC.32 cmD.48 cm3.(2010·浙江)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是 ( )A.3523 cm 3B.3203cm 3 C.2243 cm 3 D.1603cm 34.如图所示,已知三棱柱ABC —A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1—ABC 1的体积为 ( )A.312 B.34 C.612 D.645.(2010·辽宁)已知S,A,B,C是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,BC=2,则球O的表面积等于()二、填空题(每小题6分,共24分)6.(2010·天津)一个几何体的三视图如图所示,则这个几何体的体积为.7.(2011·湖州模拟)如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是.8.(2010·抚顺六校第二次模拟)把边长为1的正方形ABCD沿对角线BD折起形成三棱锥C—ABD,其正视图与俯视图如图所示,则其侧视图的面积为.9.(2011·南京第一次调研)如图,已知正三棱柱ABC—A1B1C1的底面边长为2 cm,高为5 cm,则一质点自点A出发,沿着三棱柱的侧面绕行两周到达点A1的最短路线的长为cm.三、解答题(共41分)10.(13分)已知正方体AC 1的棱长为a ,E ,F 分别为棱AA 1与CC 1的中点,求四棱锥A 1—EBFD 1的体积.11.(14分)如图,已知某几何体的三视图如下(单位:cm).(1)画出这个几何体的直观图(不要求写画法);(2)求这个几何体的表面积及体积.12.(14分)(2011·广州调研)如图1,在直角梯形ABCD 中,∠ADC =90°,CD ∥AB ,AB =4,AD =CD =2,将△ADC 沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体D —ABC ,如图2所示.图1 图2(1)求证:BC ⊥平面ACD ;(2)求几何体D —ABC 的体积.答案7.26 8.1410. 解 因为EB =BF =FD 1=D 1E =a 2+⎝⎛⎭⎫a 22=52a , 所以四棱锥A 1—EBFD 1的底面是菱形,连接EF ,则△EFB ≌△EFD 1,由于三棱锥A 1—EFB 与三棱锥A 1—EFD 1等底同高,所以111122A EBFD A EFB F EBA V V V ---===2·13·1EBA S ∆·a =16a 3. 11. 解 (1)这个几何体的直观图如图所示.(2)这个几何体可看成是正方体AC 1及直三棱柱B 1C 1Q —A 1D 1P 的组合体.由P A 1=PD 1=2,A 1D 1=AD =2,可得P A 1⊥PD 1.故所求几何体的表面积S =5×22+2×2×2+2×12×(2)2=22+42(cm 2),体积V =23+12×(2)2×2=10 (cm 3).12. (1)证明 在图中,可得AC =BC =22,从而AC 2+BC 2=AB 2,故AC ⊥BC ,取AC 的中点O ,连接DO ,则DO ⊥AC ,又平面ADC ⊥平面ABC ,平面ADC ∩平面ABC =AC ,DO ⊂平面ADC ,从而DO ⊥平面ABC ,∴DO ⊥BC ,又AC ⊥BC ,AC ∩DO =O ,∴BC ⊥平面ACD .(2)解 由(1)可知BC 为三棱锥B —ACD 的高,BC =22,S △ACD =2,∴V B —ACD =13S △ACD ·BC =13×2×22=423,由等体积性可知,几何体D —ABC 的体积为423.几何作图(作业)1.如图,按要求作图:(1)连接CE ;(2)延长CE 到点D ,使ED =CE ;(3)作直线AD ,作射线DB .B2.如图,已知线段AB,按要求作图:(1)分别以点A和点B为圆心、以AB的长为半径作弧,两弧相交于点C和点D;(2)作直线CD,交线段AB于点E.A3.如图,一辆汽车在公路上由A向B行驶,M、N分别为位于AB两侧的学校.(1)汽车在公路上行驶时会对学校的教学造成影响,当汽车行驶到点P的位置时对学校M的影响最大,行驶到点Q的位置时对学校N的影响最大.请在图中分别作出点P,Q的位置.(2)当汽车从A向B行驶,哪一段上对两个学校的影响越来越大?哪一段上对学校M的影响逐渐减小,而对学校N的影响逐渐增大?NMB A4.(1)如图1,在一条笔直的公路两侧,分别有A ,B 两个村庄,现在要在公路l 上建一座火力发电厂,向A ,B 两个村庄供电,为使所用电线最短,请问发电厂P 应建在何处?简要说明理由.(2)如图2,若要向4个村庄A ,B ,C ,D 供电,发电厂Q 应该建在何处使发电厂到四个村庄的距离之和最小?l A BDC B A图1 图25.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行所在的直线;③从A 地到B 地,架设电线,总是尽可能沿着线段AB 架设;④把弯曲的公路改直就能缩短路程.其中可用定理“两点之间,线段最短”来解释的现象有______(填序号).6.在直线l 上任取一点A ,截取AB =10cm ,再截取AC =6cm ,则线段BC 的长为__________.B A B A7.在直线l 上任取一点A ,截取AB =20cm ,再截取AC=50cm ,则AB 的中点D 与AC 的中点E 之间的距离为__________.B A B A8.已知线段AB =15cm ,C 点在直线AB 上,BC =2AB ,则AC 的长为__________.B A B A9.从O 点出发的三条射线OA ,OB ,OC ,若∠AOB =60°,∠AOC =40°,则∠BOC 的度数为__________.O B A 60° O B A60°10.已知∠AOB 为直角,∠BOC =40°,OM 平分∠AOB ,ON 平分∠BOC ,则∠MON 的度数为__________.B O A B OA【参考答案】1.(1)作图略;(2)作图略;(3)作图略;2.作图略;3.(1)作图略(提示:过点M作AB的垂线,垂足即为所求的点P,过点N作AB的垂线,垂足即为Q 点);(2)AP段,PQ段;4.(1)作图略(连接AB交直线l的交点即为P点);(2)作图略(提示:连接AD,BC,AD与BC的交点即为Q点)5.③④;6.4 cm或16 cm;7.15 cm或35 cm;8.15cm或45cm;9.20°或100°;10.20°或100°;11.25°或65°.。
高二数学空间几何体的表面积与体积试题答案及解析
高二数学空间几何体的表面积与体积试题答案及解析1.正四棱锥的五个顶点在同一个球面上,若其底面边长为4,侧棱长为,则此球的表面积为()A.B.C.D.【答案】B【解析】设球的半径为,正方形的ABCD的对角线的交点 M,则球心在直线PM上.,由勾股定理得,再由射影定理得即∴此球的表面积为.【考点】球的表面积.2.正四面体的所有棱长都为2,则它的体积为________.【答案】.【解析】试题分析:过作,则是的中心,连接,则,,在中,,所以.【考点】多面体的体积.3.一个圆柱形的罐子半径是4米,高是9米,将其平放,并在其中注入深2米的水,截面如图所示,水的体积是()平方米.A.B.C.D.【答案】D.【解析】所求几何体的体积为阴影部分的面积与高的乘积,在中,,则,,体积.【考点】组合体的体积.4. 设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则,类比这个结论可知:四面体S ﹣ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球半径为r ,四面体S ﹣ABC 的体积为V ,则r=( ) A . B . C .D .【答案】C. 【解析】根据平面与空间之间的类比推理,由点类比点或直线,由直线类比直线或平面,由内切圆类比到内切球,由平面图形面积类比立体图形的体积,即设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,所以四面体的体积等于以O 为顶点,分别以四面为底面的4个三棱锥体积的和,则四面体的体积为,故,因此选C.【考点】类比推理.5. 如图,四棱锥的底面为一直角梯形,侧面PAD 是等边三角形,其中,,平面底面,是的中点.(1)求证://平面; (2)求证:; (3)求三棱锥的体积.【答案】(1)祥见解析;(2)祥见解析;(3).【解析】(1)证BE ∥平面PAD ,可先取CD 的中点为M ,构建平面EBM ,证明平面EBM ∥平面APD ,由面面平行,得到线面平行;(2)取PD 的中点F ,连接FE ,根据线面垂直的判定及性质,及等腰三角形性质,结合线面垂直的判定定理可得AF ⊥平面PDC ,又由BE ∥AF ,可得BE ⊥平面PDC ; (3)利用等体积法,由V P-ACD =V C-PAD ,即可求三棱锥P-ACD 的体积V . 试题解析:(1)证明:如图,取PD 的中点F ,连接EF 、AF ,则在三角形PDC 中 ∴EF ∥CD 且,AB ∥CD 且;∴EF ∥AB 且,∴四边形ABEF 是平行四边形, 2分 ∴BE ∥AF ,而BE 平面PAD ,而AF ⊂平面PAD ,∴BE∥平面PAD; 4分(2)证明:在直角梯形中,平面底面,平面底面=AD∴CD⊥平面PAD,,∴CD⊥AF由(1)BE∥AF,∴CD⊥BE 10分(3)解:由(2)知∴CD⊥平面PAD,△PAD是边长为1的等边三角形∴三棱锥的体积= 14分【考点】1.直线与平面平行的判定;2.直线与平面垂直的判定;3.棱柱、棱锥、棱台的体积.6.如图,为圆的直径,为圆周上异于、的一点,垂直于圆所在的平面,于点,于点.(1)求证:平面;(2)若,,求四面体的体积.【答案】(1)证明见解析;(2).【解析】(1)利用线面垂直的判断定理证明线面垂直,条件齐全,证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高,中线和顶角的角平分线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形等等;(2)利用棱锥的体积公式求体积.(3)证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化.(4)在求三棱柱体积时,选择适当的底作为底面,这样体积容易计算.试题解析:(1)证明:∵BC为圆O的直径∴CD⊥BD∵AB⊥圆O所在的平面∴AB⊥CD 且AB BD=B∴CD⊥平面ABD又∵BF平面ABD ∴CD⊥BF又∵BF⊥AD 且AD CD="D"∴BF⊥平面ACD 6分(2)法一:∵AB=BC=,∠CBD="45°" ∴BD=CD=∵BE⊥AC ∴E为AC中点又∵CD⊥平面ABD∴E到平面BDF的距离为在Rt△ABD中,由于BF⊥AD 得∴∴ 13分法二:∵AB=BC=,∠CBD="45°" ∴BD=CD=∵BE⊥AC ∴E为AC中点∴E到边AD的距离为在Rt△ABD中,由于BF⊥AD,得,由(1)知BF⊥平面DEF∴ 13分【考点】(1)直线与平面垂直的判定;(2)求四面体的体积.7.将函数的图象绕轴旋转一周所形成的几何体的体积为__________.【答案】【解析】首先函数的图象为以原点为圆心,为半径的圆在轴上方的半圆,它绕轴旋转一周所形成的几何体是以原点为球心,为半径的球,故体积为.【考点】球及球的体积计算.8.如图,一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞,且知,若仍用这个容器盛水,则最多可盛水的体积是原来的 .【答案】【解析】过作截面平行于平面,可得截面下体积为原体积的,若过点F,作截面平行于平面,可得截面上的体积为原体积的,若C为最低点,以平面为水平上面,则体积为原体积的,此时体积最大.【考点】体积相似计算.9.一个空间几何体的三视图如右图所示,其中主视图和侧视图都是半径为的圆,且这个几何体是实心球体的一部分,则这个几何体的体积为.【答案】.【解析】由三视图可知,原几何体是球体沿其直径切去四分之一部分,所以其体积是四分之三球体积,即,其中【考点】由已知三视图还原为原几何体,球的体积公式.10.两球的体积之比为8:1,则它们的表面积之比为()A.8:1B.4:1C.:1D.2:1【答案】B.【解析】由两个球的体积之比为及球的体积公式、知,,再由其表面公式、得,即为所求.【考点】球的体积与表面积.11.一个半径为1的小球在一个内壁棱长为的正四面体封闭容器内可向各个方向自由运动,则该小球表面永远不可能接触到的容器内壁的面积是.【答案】【解析】如图甲,考虑小球挤在一个角时的情况,记小球半径为,作平面//平面,与小球相切于点,则小球球心为正四面体的中心,,垂足为的中心.因,故,从而.记此时小球与面的切点为,连接,则.考虑小球与正四面体的一个面(不妨取为)相切时的情况,易知小球在面上最靠近边的切点的轨迹仍为正三角形,记为,如图乙.记正四面体的棱长为,过作于.因,有,故小三角形的边长.小球与面不能接触到的部分的面积为(如答图2中阴影部分).又,,所以.由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为.【考点】(1)三棱锥的体积公式;(2)分情况讨论及割补思想的应用。
高三数学空间几何体的表面积与体积试题
高三数学空间几何体的表面积与体积试题1.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S.【答案】(1)64 (2)40+24【解析】解:本题考查由三视图求几何体的侧面积和体积,由正视图和侧视图的三角形结合俯视图可知该几何体是一个底面为矩形,高为4,顶点在底面的射影是矩形中心的四棱锥,如图.(1)V=×(8×6)×4=64.(2)四棱锥的两个侧面VAD、VBC是全等的等腰三角形,取BC的中点E,连接OE,VE,则△VOE为直角三角形,VE为△VBC边上的高,VE==4.同理侧面VAB、VCD也是全等的等腰三角形,AB边上的高h==5.∴S=2×(×6×4+×8×5)=40+24.侧2.一个圆柱和一个圆锥的底面直径和它们的高都与某一个球的直径相等,这时圆柱、圆锥、球的体积之比为 .【答案】【解析】设底面半径为,则它们的高,,,,所以.【考点】旋转体的体积.3.如图,在四棱柱中,底面ABCD和侧面都是矩形,E是CD的中点,,.(1)求证:;(2)若,求三棱锥的体积.【答案】(1)证明过程详见解析;(2).【解析】本题主要考查线线垂直、线面垂直、面面垂直、三棱锥的体积等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,由已知得,,所以利用线面平行的判定得平面,再利用线面垂直的性质,得;第二问,利用和中的边长和角的关系,得到,由于,所以平面,所以利用线面垂直的性质得,利用线面垂直的判定得平面,由于平面平行平面,所以得到平面,所以是三棱锥的高,最后利用三棱锥的体积公式计算. (1)证明:∵底面和侧面是矩形,∴,又∵∴平面 3分∵平面∴. 6分(2)解法一:,,∴△为等腰直角三角形,∴连结,则,且由(1)平面,∴平面∴∴平面∴平面 9分∴. 12分解法二:∵,且∴在△中,,,得 9分∴三棱锥的体积:. 12分【考点】线线垂直、线面垂直、面面垂直、三棱锥的体积.4.已知三棱锥中,,,直线与底面所成角为,则此时三棱锥外接球的表面积为()A.B.C.D.【答案】B【解析】如下图所示,取的中点,连接、,易证,所以,易证,,且,、平面,平面,过点在平面内作,由于平面,,由于,,、平面,平面因此,为直线与平面所成的角,所以,由于,所以为等边三角形,,,且,由勾股定理得,易知,所以为三棱锥外接球的球心,其半径为,所以其外接球的表面积为,故选B.【考点】1.直线与平面垂直;2.外接球5.正四棱锥的五个顶点在同一球面上,若该正四棱锥的底面边长为2,侧棱长为,则这个球的表面积为_________.【答案】【解析】如图是正四棱锥外接球的球心,是底面中心,,,设球半径为,在中,,解得,所以.【考点】正棱锥的外接球.6.如图,在四棱锥中,底面为直角梯形,且,,平面底面,为的中点,是棱的中点,.(1)求证:平面;(2)求三棱锥的体积.【答案】(1)见解析(2)【解析】(1)由题意知四边形BCDE为平行四边形,故连结CE交BD于O,知O是EC的中点,又M是PC的中点,根据中位线定理知MO∥PE,根据线面平行判定定理可得PE∥面BDM;(2)三棱锥P-MBD就是三棱锥P-BCD割去一个三棱锥M-BCD,故三棱锥P-MBD体积就是三棱锥P-BCD体积减去一个三棱锥M-BCD的体积,由PA=PD=AD=2及为的中点知,PE垂直AD,由面面垂直的性质定理知PE⊥面ABCD,故PE是三棱锥P-BCD的高,由M是PC的中点知三棱锥M-BCD的高为PE的一半,故三棱锥P-MBD体积为三棱锥P-BCD体积的一半,易求出三棱锥P-BCD即可求出三棱锥P-MBD体积.试题解析:(1)连接,因为,,所以四边形为平行四边形,连接交于,连接,则,又平面,平面,所以平面.(2),由于平面底面,底面所以是三棱锥的高,且由(1)知是三棱锥的高,,,所以,则.【考点】1.线面平行的判定;2.简单几何体体积计算;3.逻辑推理能力;4.空间想象能力.7.如图,四棱锥P ABCD中,PA⊥底面ABCD,PA=2,BC="CD=2," ∠ACB=∠ACD=.(1)求证:BD⊥平面PAC;(2)若侧棱PC上的点F满足PF=7FC,求三棱锥P BDF的体积.【答案】(1)见解析 (2)【解析】(1)证明:因为BC=CD,所以△BCD为等腰三角形,又∠ACB=∠ACD,故BD⊥AC.因为PA⊥底面ABCD,所以PA⊥BD.从而BD与平面PAC内两条相交直线PA,AC都垂直,所以BD⊥平面PAC.(2)解:三棱锥P BCD的底面BCD的面积S△BCD=BC·CD·sin∠BCD=×2×2×sin =. 由PA⊥底面ABCD,得=·S△BCD·PA=××2=2.由PF=7FC,得三棱锥F BCD的高为PA,故=·S△BCD·PA=×××2=,所以=-=2-=.8.如图所示,三棱柱ABC A1B1C1中,AA1⊥平面ABC,D、E分别为A1B1、AA1的中点,点F在棱AB上,且AF=AB.(1)求证:EF∥平面BC1D;(2)在棱AC上是否存在一个点G,使得平面EFG将三棱柱分割成的两部分体积之比为1∶15,若存在,指出点G的位置;若不存在,说明理由.【答案】(1)见解析 (2) 不存在.理由见解析【解析】(1)证明:取AB的中点M,∵AF=AB,∴F为AM的中点,又∵E为AA1的中点,∴EF∥A1M.在三棱柱ABC A1B1C1中,D、M分别为A1B1、AB的中点,∴A1D∥BM,A1D=BM,∴四边形A1DBM为平行四边形,∴A1M∥BD,∴EF∥BD,∵BD⊆平面BC1D,EF⊄平面BC1D,∴EF∥平面BC1D.(2)解:设AC上存在一点G,使得平面EFG将三棱柱分割成两部分的体积之比为1∶15, 则∶=1∶16,∵==×××=·.∴·=,∴=,∴AG=AC>AC.所以符合要求的点G不存在.9.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,AA1=AB=2,BC=3.(1)求证:AB1∥平面BC1D;(2)求四棱锥B-AA1C1D的体积.【答案】(1)见解析(2)3【解析】(1)证明:如图,连接B1C,设B1C与BC1相交于点O,连接OD,∵四边形BCC1B1是平行四边形,∴点O为B1C的中点.∵D为AC的中点,∴OD为△AB1C的中位线,∴OD∥AB1,∵OD⊂平面BC1D,AB1⊄平面BC1D,∴AB1∥平面BC1D.(2)∵AA1⊥平面ABC,AA1⊂平面AA1C1C,∴平面ABC⊥平面AA1C1 C,作BE⊥AC,垂足为E,则BE⊥平面AA1C1 C.在Rt△ABC中,AC=,BE==,∴四棱锥B-AA1C1D的体积V=× (A1C1+AD)·AA1·BE=××2×=3.10.某几何体的三视图如图所示,则该几何体的表面积为()A.180B.200C.220D.240【答案】D【解析】几何体为直四棱柱,其高为10,底面是上底为2,下底为8,高为4,腰为5的等腰梯形,故两个底面面积的和为×(2+8)×4×2=40,四个侧面面积的和为(2+8+5×2)×10=200,所以直四棱柱的表面积为S=40+200=240,故选D.11.如图,在棱长为2的正方体ABCD -A1B1C1D1中,E,F分别是棱AB,BC中点,则三棱锥B-B1EF的体积为________.【答案】【解析】VB-B1EF=VE-B1FB=S△B1BF·EB=××2×1×1=.12.已知棱长为的正方体,则以该正方体各个面的中心为顶点的多面体的体积为________.【答案】【解析】以正方体各个面的中心为顶点的多面体是两个全等的正四棱锥的组合体,如图,一个正四棱锥的高是正方体的高的一半,故所求的多面体的体积为2××××=.13. 在等腰梯形ABCD 中,AB ∥CD ,AB =BC =AD =2,CD =4,E 为边DC 的中点,如图1.将△ADE 沿AE 折起到△AEP 位置,连PB 、PC ,点Q 是棱AE 的中点,点M 在棱PC 上,如图2.(1)若PA ∥平面MQB ,求PM ∶MC ;(2)若平面AEP ⊥平面ABCE ,点M 是PC 的中点,求三棱锥A -MQB 的体积. 【答案】(1)1∶2(2)【解析】(1)连AC 、BQ ,设AC ∩BQ =F ,连MF .则平面PAC ∩平面MQB =MF ,因为PA ∥平面MQB ,PA ⊂平面PAC ,所以PA ∥MF .(2分) 在等腰梯形ABCD 中,E 为边DC 的中点,所以由题设,AB =EC =2. 所以四边形ABCE 为平行四边形,则AE ∥BC .(4分) 从而△AFQ ∽△CFB ,AF ∶FC =AQ ∶CB =1∶2.又PA ∥MF ,所以△FMC ∽△APC ,所以PM ∶MC =AF ∶FC =1∶2.(7分) (2)由(1)知,△AED 是边长为2的正三角形,从而PQ ⊥AE .因为平面AEP ⊥平面ABCE ,交线为AE ,所以PQ ⊥平面ABCE ,PQ ⊥QB ,且PQ =. 因为PQ ⊂平面PQC ,所以平面PQC ⊥平面ABCE ,交线为QC .(9分) 过点M 作MN ⊥QC 于N ,则MN ⊥平面ABCE ,所以MN 是三棱锥M -ABQ 的高.因为PQ ⊥平面ABCE ,MN ⊥平面ABCE ,所以PQ ∥MN . 因为点M 是PC 的中点,所以MN =PQ =.(11分)由(1)知,△ABE 为正三角形,且边长为2.所以,S △ABQ =.三棱锥A -MQB 的体积V A -MQB =V M -ABQ =××=.(14分)14. 将某个圆锥沿着母线和底面圆周剪开后展开,所得的平面图是一个圆和扇形,己知该扇形的半径为24cm ,圆心角为,则圆锥的体积是________.【答案】【解析】本题考查圆锥的侧面展开图问题,我们知道圆锥侧面展开图的半径就是圆锥的母线,扇形的弧长就是圆锥底面周长,因此有,故,那么圆锥的高为,所以体积为.【考点】圆锥侧面展开图与圆锥体积.15. 如图1,一个密闭圆柱体容器的底部镶嵌了同底的圆锥实心装饰块,容器内盛有升水.平放在地面,则水面正好过圆锥的顶点,若将容器倒置如图2,水面也恰过点.以下命题正确的是( ).A.圆锥的高等于圆柱高的;B.圆锥的高等于圆柱高的;C.将容器一条母线贴地,水面也恰过点;D.将容器任意摆放,当水面静止时都过点.【答案】C【解析】本题考查体积公式与空间想象能力,设圆锥的高为,圆柱的高为,则利用倒置前后水的体积不变这个性质知,化简得,均错,现在水的容积正好是圆柱内部空间的一半,因此把圆柱的母线贴地,则水面过点,但过点的平面不可能总是平分圆柱内部除去圆锥的那部分,故错误.【考点】体积公式.16.如图,在三棱锥中,,,D为AC的中点,.(1)求证:平面平面;(2)如果三棱锥的体积为3,求.【答案】(1)证明过程详见解析;(2).【解析】本题主要以三棱锥为几何背景考查线线垂直、平行的判定,线面垂直,面面垂直的判定以及用空间向量法求二面角的余弦值,考查空间想象能力和计算能力.第一问,根据已知条件,取中点,连结,得出,再利用,根据线面垂直的判定证出平面,从而得到垂直平面内的线,再利用为中位线,得出平面,最后利用面面垂直的判定证明平面垂直平面;第二问,根据已知进行等体积转换,利用三棱锥的体积公式列出等式,解出的值.试题解析:(Ⅰ)取中点为,连结,.因为,所以.又,,所以平面,因为平面,所以. 3分由已知,,又,所以,因为,所以平面.又平面,所以平面⊥平面. 5分(Ⅱ)由(Ⅰ)知,平面.设,因为为的中点,所以, 10分由解得,即. 12分【考点】1.线面垂直的判定和性质;2.面面垂直的判定;3.锥体的体积公式.17.如图,在三棱柱中,侧棱底面,,为的中点,.(Ⅰ)求证://平面;(Ⅱ)设,求四棱锥的体积.【答案】(Ⅰ)详见解析;(Ⅱ)体积为3.【解析】(Ⅰ)为了证明//平面,需要在平面内找一条与平行的直线,而要找这条直线一般通过作过且与平面相交的平面来找.在本题中联系到为中点,故连结,这样便得一平面,接下来只需证与平面和平面的交线平行即可.(Ⅱ)底面为一直角梯形,故易得其面积,本题的关键是求出点B到平面的距离.由于平面,所以易得平面平面.平面平面.根据两平面垂直的性质定理知,只需过B作交线AC的垂线即可得点B到平面的距离,从而求出体积.试题解析:(Ⅰ)连接,设与相交于点,连接,∵四边形是平行四边形,∴点为的中点.∵为的中点,∴为△的中位线,∴.∵平面,平面,∴平面. 6分(Ⅱ)∵平面,平面,∴平面平面,且平面平面.作,垂足为,则平面,∵,,在Rt△中,,,∴四棱锥的体积12分【考点】1、直线与平面的位置关系;2、多面体的体积.18.如图,四棱锥的底面是正方形,底面,,,点、分别为棱、的中点.(1)求证:平面;(2)求证:平面平面;(3)求三棱锥的体积.【答案】(1)详见解析;(2)详见解析;(3)三棱锥的体积为.【解析】(1)取的中点,连接、,证明四边形为平行四边形,得到,再利用直线平面平行的判定定理得到平面;(2)先证明平面,利用(1)中的条件得到平面,再利用平面与平面垂直的判定定理证明平面平面,在证明平面的过程中,在等腰三角形中利用三线合一得到,通过证明平面得到,然后利用直线与平面垂直的判定定理即可证明平面;(3)利用题中的条件平面,在计算三棱锥的体积中,选择以点为顶点,所在平面为底面的三棱锥来计算其体积,则该三棱锥的高为,最后利用锥体的体积计算公式即可. 试题解析:(1)取的中点,连结、,∴为的中位线,,∵四边形为矩形,为的中点,∴,,∴四边形是平行四边形,,又平面,平面,∴平面;(2)底面,,,又,,平面,又平面,,直角三角形中,,为等腰直角三角形,,是的中点,,又,平面,,平面,又平面,平面平面;(3)三棱锥即为三棱锥,是三棱锥的高,中,,,三棱锥的体积,.【考点】1.直线与平面平行;2.平面与平面垂直;3.等体积法求三棱锥的体积19.如图所示是一个几何体的三视图,则该几何体的体积为( )A.B.C.D.【答案】B【解析】由图可知该几何体是由两个相同的半圆柱与一个长方体拼接而成,因此. 故选B.【考点】三视图.20.一个棱长都为的直三棱柱的六个顶点全部在同一个球面上,则该球的表面积为( ) A.B.C.D.【答案】A【解析】如图:设、为棱柱两底面的中心,球心为的中点. 又直三棱柱的棱长为,可知,,所以,因此该直三棱柱外接球的表面积为,故选A.【考点】球与球的内接几何体中基本量的关系,球表面积公式21.一个直角梯形的上底比下底短,该梯形绕它的上底旋转一周所得旋转体的体积为,该梯形绕它的下底旋转一周所得旋转体的体积为,该梯形绕它的直角腰旋转一周所得旋转体的体积为,则该梯形的周长为__________【答案】【解析】先设梯形的上底、下底和高,然后利用圆柱和圆锥的体积公式求出以这三边旋转得到的几何体的体积,联立得到的式子可解出上底、下底和高,结合勾股定理,另一腰也可求出,故梯形的周长可以得到。
空间几何体的表面积与体积计算综合练习题
空间几何体的表面积与体积计算综合练习题在几何学中,我们经常需要计算空间几何体的表面积与体积。
下面将给出一些综合练习题,以帮助读者更好地理解和应用这些概念。
1. 圆柱体假设有一个圆柱体,底面半径为r,高为h。
请计算其表面积和体积。
解答:圆柱体的表面积由两个圆的面积以及一个矩形的面积组成。
圆的面积为πr^2,矩形的面积为2πrh。
因此,圆柱体的表面积为2πr^2 + 2πrh。
圆柱体的体积为底面积乘以高,即πr^2h。
2. 球体给定一个球体,半径为r,请计算其表面积和体积。
解答:球体的表面积由整个球的表面积组成,即4πr^2。
球体的体积为4/3πr^3。
3. 锥体假设有一个锥体,底面半径为r,高为h。
请计算其表面积和体积。
解答:锥体的表面积由底圆的面积和锥侧面积组成。
底圆的面积为πr^2,锥侧面积为πrl,其中l为锥体的斜高。
根据勾股定理,可以得到l = √(r^2 + h^2)。
因此,锥体的表面积为πr^2 + πr√(r^2 + h^2)。
锥体的体积为1/3底面积乘以高,即1/3πr^2h。
4. 正方体给定一个正方体,边长为a,请计算其表面积和体积。
解答:正方体的表面积由六个正方形的面积组成,即6a^2。
正方体的体积为边长的立方,即a^3。
5. 长方体假设有一个长方体,长为l,宽为w,高为h。
请计算其表面积和体积。
解答:长方体的表面积由两个长方形的面积以及两个矩形的面积组成。
两个长方形的面积为2lw,两个矩形的面积为2lh和2wh。
因此,长方体的表面积为2lw + 2lh + 2wh。
长方体的体积为长乘以宽乘以高,即lwh。
通过以上练习题的解答,我们可以更好地理解和应用表面积与体积的计算方法。
这些概念在日常生活和工作中有着广泛的应用,例如建筑物的设计与施工、物体的包装和运输等。
在实际问题中,我们需要根据给定的几何体形状和尺寸,利用相应的公式进行计算。
掌握了这些计算方法,我们可以更加准确地评估和解决各种与空间几何体相关的问题。
空间几何体的表面积与体积综合练习题
空间几何体的表面积与体积综合练习题在几何学中,空间几何体的表面积与体积是非常重要的概念。
理解和计算空间几何体的表面积与体积对于解决很多实际问题是至关重要的。
本文将为读者提供一些综合练习题,帮助读者巩固对空间几何体的表面积与体积的理解。
一、长方体1. 一个长方体的长、宽和高分别为12 cm、8 cm和6 cm,求它的表面积和体积。
解析:长方体的表面积公式为S = 2(lw + lh + wh),其中l、w和h分别代表长方体的长、宽和高。
代入已知数据,可得表面积S = 2(12*8 + 12*6 + 8*6) = 2(96 + 72 + 48) = 2*216 = 432 cm²。
长方体的体积公式为V = lwh,代入已知数据可得体积V = 12 * 8 * 6 = 576 cm³。
2. 一个长方体的表面积为180 cm²,已知它的长和高的比为3:2,求它的长、宽和高。
解析:设长方体的长为3x,宽为x,高为2x。
根据表面积公式S =2(lw + lh + wh),代入已知数据得到180 = 2(3x*x + 3x*2x + 2x*x) =2(6x² + 6x² + 2x²) = 2*14x² = 28x²。
解得x² = 180/28 = 6.4286,即x≈2.54。
代入x的值可以得到长方体的长约为3*2.54≈7.62 cm,宽约为2.54 cm,高约为2*2.54≈5.08 cm。
二、正方体3. 一个正方体的棱长为10 cm,求它的表面积和体积。
解析:正方体的表面积公式为S = 6a²,其中a代表正方体的棱长。
代入已知数据可得表面积S = 6 * 10² = 600 cm²。
正方体的体积公式为V = a³,代入已知数据可得体积V = 10³ = 1000 cm³。
(完整版)空间几何体的表面积与体积练习题.及答案
For personal use only in study and research; not forcommercial use空间几何体的表面积与体积专题一、选择题1.棱长为2的正四面体的表面积是( C ).A. 3 B .4 C .4 3 D .16解析 每个面的面积为:12×2×2×32= 3.∴正四面体的表面积为:4 3.2.把球的表面积扩大到原来的2倍,那么体积扩大到原来的 ( B ). A .2倍 B .22倍 C.2倍 D.32倍解析 由题意知球的半径扩大到原来的2倍,则体积V =43πR 3,知体积扩大到原来的22倍.3.如图是一个长方体截去一个角后所得多面体的三视图,则该多面体的体积为( B ). A.1423 B.2843 C.2803D.1403解析 根据三视图的知识及特点,可画出多面体 的形状,如图所示.这个多面体是由长方体截去 一个正三棱锥而得到的,所以所求多面体的体积 V =V 长方体-V 正三棱锥=4×4×6-13×⎝ ⎛⎭⎪⎫12×2×2×2=2843. 4.某几何体的三视图如下,则它的体积是( A) A .8-2π3 B .8-π3C .8-2π D.2π3解析 由三视图可知该几何体是一个边长为2的正方体内部挖去一个底面半径为1,高为2的圆锥,所以V =23-13×π×2=8-2π3.5.已知某几何体的三视图如图,其中正视图中半圆的半径为1,则该几何体的体积为( A)A .24-32π B .24-π3 C .24-π D .24-π2据三视图可得几何体为一长方体内挖去一个半圆柱,其中长方体的棱长分别为:2,3,4,半圆柱的底面半径为1,母线长为3,故其体积V =2×3×4-12×π×12×3=24-3π2.6.某品牌香水瓶的三视图如图 (单位:cm),则该几何体的表面积为( C )A.⎝ ⎛⎭⎪⎫95-π2 cm 2B.⎝ ⎛⎭⎪⎫94-π2 cm 2C.⎝ ⎛⎭⎪⎫94+π2 cm 2D.⎝⎛⎭⎪⎫95+π2 cm 2解析 这个空间几何体上面是一个四棱柱、中间部分是一个圆柱、下面是一个四棱柱.上面四棱柱的表面积为2×3×3+12×1-π4=30-π4;中间部分的表面积为2π×12×1=π,下面部分的表面积为2×4×4+16×2-π4=64-π4.故其表面积是94+π2.7.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S-ABC 的体积为( C).A .3 3B .2 3 C. 3 D .1解析 由题可知AB 一定在与直径SC 垂直的小圆面上,作过AB 的小圆交直径SC 于D ,设SD =x ,则DC =4-x ,此时所求棱锥即分割成两个棱锥S-ABD 和C-ABD ,在△SAD 和△SBD 中,由已知条件可得AD =BD =33x ,又因为SC 为直径,所以∠SBC =∠SAC =90°,所以∠DCB =∠DCA =60°,在△BDC 中 ,BD =3(4-x ),所以33x =3(4-x ),所以x =3,AD =BD =3,所以三角形ABD 为正三角形,所以V =13S △ABD ×4= 3.二、填空题8.三棱锥PABC 中,PA ⊥底面ABC ,PA =3,底面ABC 是边长为2的正三角形,则三棱锥PABC 的体积等于__3______.解析 依题意有,三棱锥PABC 的体积V =13S △ABC ·|PA |=13×34×22×3= 3.9.一个圆柱的轴截面是正方形,其侧面积与一个球的表面积相等,那么这个圆柱的体积与这个球的体积之比为_ 3∶2_______.解析 设圆柱的底面半径是r ,则该圆柱的母线长是2r ,圆柱的侧面积是2πr ·2r =4πr 2,设球的半径是R ,则球的表面积是4πR 2,根据已知4πR 2=4πr 2,所以R =r .所以圆柱的体积是πr 2·2r=2πr 3,球的体积是43πr 3,所以圆柱的体积和球的体积的比是2πr 343πr 3=3∶2.10.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是___26_____. 解析 由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为32,连接顶点和底面中心即为高,可求得高为22,所以体积V =13×1×1×22=26. 11.如图,半径为R 的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是____2πR 2____.解析 由球的半径为R ,可知球的表面积为4πR 2.设内接圆柱底面半径为r ,高为2h ,则h 2+r 2=R 2.而圆柱的侧面积为2πr ·2h =4πrh ≤4πr 2+h 22=2πR 2(当且仅当r =h 时等号成立),即内接圆柱的侧面积最大值为2πR 2,此时球的表面积与内接圆柱的侧面积之差为2πR 2.12.如图,已知正三棱柱ABCA 1B 1C 1的底面边长为2 cm ,高为5 cm ,则一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点A 1的最短路线的长为___13_____cm. 解析 根据题意,利用分割法将原三棱柱分割为两个相同的三棱柱,然后将其展开为如图所示的实线部分,则可知所求最短路线的长为52+122=13 (cm). 三、解答题13.某高速公路收费站入口处的安全标识墩如图1所示,墩的上半部分是正四棱锥PEFGH ,下半部分是长方体ABCDEFGH .图2、图3分别是该标识墩的正视图和俯视图. (1)请画出该安全标识墩的侧视图; (2)求该安全标识墩的体积.解析 (1)侧视图同正视图,如图所示:(2)该安全标识墩的体积为V =V PEFGH +V ABCDEFGH =13×402×60+402×20=64 000(cm 3).14 .一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为3,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V ;(2)求该几何体的表面积S.解析 (1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为3,所以V =1×1×3= 3.(2)由三视图可知,该平行六面体中,A1D ⊥平面ABCD ,CD ⊥平面BCC1B1, 所以AA1=2,侧面ABB1A1,CDD1C1均为矩形, S =2×(1×1+1×3+1×2)=6+2 3.15.已知某几何体的俯视图是如右图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V ;(2)求该几何体的侧面积S .解析 由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h 1的等腰三角形,左、 右侧面均为底边长为6,高为h 2的等腰三角形,如右图所示. (1)几何体的体积为:V =13·S 矩形·h =13×6×8×4=64.(2)正侧面及相对侧面底边上的高为:h 1=42+32=5.左、右侧面的底边上的高为:h 2=42+42=4 2.故几何体的侧面面积为:S =2×⎝ ⎛⎭⎪⎫12×8×5+12×6×42=40+24 2. 1.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ). .解:设展开图的正方形边长为a ,圆柱的底面半径为r ,则2πr =a ,2ar π=,底面圆的面积是24a π,于是全面积与侧面积的比是2221222a a a πππ++=, 2.在棱长为 1 的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去与8个顶点相关的8个三棱锥后 ,剩下的几何体的体积是( ).2.解:正方体的体积为1,过共顶点的三条棱中点的平面截该正方体截得的三棱锥的体积是111111()3222248⨯⨯⨯⨯=,于是8个三棱锥的体积是61,剩余部分的体积是65, 3.一个直棱柱(侧棱垂直于底面的棱柱)的底面是菱形,对角线长分别是6cm 和8cm ,高是5cm ,则这个直棱柱的全面积是 。
高三数学空间几何体的表面积与体积试题答案及解析
高三数学空间几何体的表面积与体积试题答案及解析1.(本题满分12分)底面边长为2的正三棱锥,其表面展开图是三角形,如图,求△的各边长及此三棱锥的体积.【答案】边长为4,体积为.【解析】由于展开图是,分别是所在边的中点,根据三角形的性质,是正三角形,其边长为4,原三棱锥的侧棱也是2,要求棱锥的体积需要求出棱锥的高,由于是正棱锥,顶点在底面上的射影是底面的中心,由相应的直角三角形可求得高,得到体积.试题解析:由题意中,,,所以是的中位线,因此是正三角形,且边长为4.即,三棱锥是边长为2的正四面体∴如右图所示作图,设顶点在底面内的投影为,连接,并延长交于∴为中点,为的重心,底面∴,,【考点】图象的翻折,几何体的体积.2.设甲,乙两个圆柱的底面面积分别为,体积为,若它们的侧面积相等且,则的值是 .【答案】【解析】设甲、乙两个圆柱的底面和高分别为,,则,,又,所以,则.【考点】圆柱的侧面积与体积.3.正三棱柱的底面边长为,侧棱长为,为中点,则三棱锥的体积为A.B.C.D.【答案】C【解析】如下图所示,连接,因为是正三角形,且为中点,则,又因为面,故,且,所以面,所以是三棱锥的高,所以.【考点】1、直线和平面垂直的判断和性质;2、三棱锥体积.4.如图,在三棱锥中,,,°,平面平面,,分别为,中点.(1)求证:∥平面;(2)求证:;(3)求三棱锥的体积.【答案】(1)证明过程详见解析;(2)证明过程详见解析;(3).【解析】本题主要考查线线平行、线面平行、线线垂直、线面垂直、面面垂直、三棱锥的体积等基础知识,考查学生的空间想象能力、逻辑推理能力.第一问,由于D、E分别为AB、AC中点,所以利用三角形的中位线得出∥,再利用线面平行的判定直接得到结论;第二问,由,而∥得,而D为AB中点,PA=PB,得,所以利用线面垂直的判定得平面,再利用线面垂直的性质得;第三问,由于,利用面面垂直的性质得平面,所以PD是三棱锥的高,而,所以.(1)因为,分别为,中点,所以∥,又平面,平面,所以∥平面. 4分(2)连结,因为∥,又°,所以.又,为中点,所以.所以平面,所以. 9分(3)因为平面平面,有,所以平面,所以. 14分【考点】线线平行、线面平行、线线垂直、线面垂直、面面垂直、三棱锥的体积.5.如图,四棱锥P-ABCD中,底面ABCD为正方形,DA⊥面ABP,AB=1,PA=2,∠PAB=60°.(1)求证:平面PBC⊥面PDC(2)设E为PC上一点,若二面角B-EA-P的余弦值为-,求三棱锥E-PAB的体积.【答案】(1)见解析(2)【解析】(1)∵AB=1,PA=2,∠PAB=60°,∴在△PAB中,由余弦定理得PB2=PA2+AB2-2AB·PAcos600=4+1-2×1×2×=3∴PA2=PB2+AB2,即AB⊥PB∵DA⊥面ABP,CB∥DA∴CB⊥面ABP CB⊥AB ,∴AB⊥面PBC又DC∥AB,∴DC∥面PBC∵DC面PDC,∴平面PBC⊥面PDC(2)如图建立空间直角坐标系则A(0,1,0),P(,0,0),C(0,0,1)设E(x,y,z),= (0<<1)则(-,0,1)=(x-,y,z)x=(1-),y=0,z=设面ABE的法向量为n=(a,b,c),则令c=n=(,0,)同理可求平面PAE的法向量为m=(1,,)∵cos<n,m>====∴=或=1(舍去)∴E(,0,)为PC的中点,其竖坐标即为点E到底面PAB的距离∴V=××1××=E-PAB6.某圆锥体的侧面展开图是半圆,当侧面积是时,则该圆锥体的体积是 .【答案】【解析】设圆锥的母线长为,底面半径为,则,,,,所以圆锥的高为,体积为.【考点】圆锥的侧面展开图与体积.7.如图,在三棱锥中,,,平面平面,为中点,点分别为线段上的动点(不含端点),且,则三棱锥体积的最大值为________.【答案】【解析】因为且为中点,所以,因为平面平面,由面面垂直的性质定理可得,即。
高二数学空间几何体的表面积与体积试题答案及解析
高二数学空间几何体的表面积与体积试题答案及解析1.正四棱锥的五个顶点在同一个球面上,若其底面边长为4,侧棱长为,则此球的表面积为()A.B.C.D.【答案】B【解析】设球的半径为,正方形的ABCD的对角线的交点 M,则球心在直线PM上.,由勾股定理得,再由射影定理得即∴此球的表面积为.【考点】球的表面积.2.已知圆锥的高与底面半径相等,则它的侧面积与底面积的比为________.【答案】.【解析】设圆锥的底面半径和高为,则其母线长;所以圆锥的侧面积,底面面积,则它的侧面积与底面积的比为.【考点】圆锥的侧面积公式.3.如图1,直角梯形中,,分别为边和上的点,且,.将四边形沿折起成如图2的位置,使.(1)求证:平面;(2)求四棱锥的体积.【答案】(1)见解析;(2)【解析】(1)此题是个折叠图形题,平面和立体的互化,分析可知面面;(2)求体积,抓住地面和底面上的高,显然平面面,这个证明很重要,可以确定底面和底面上的高.试题解析:(1)证:面面又面所以平面(2)取的中点,连接平面又平面面所以四棱锥的体积【考点】线面平行的判定,线面垂直的判定.4.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,以BD的中点O为球心、BD为直径的球面交PD于点M.(1)求证:平面ABM平面PCD;(2)求三棱锥M-ABD的体积.【答案】(1)见解析(2)【解析】(1)由PA⊥平面ABCD知,PA⊥AB,由ABCD为矩形知,AB⊥AD,由线面垂直判定定理知,AB⊥PAD,所以PB⊥AB,由以BD为直径的球与PB的交点为M知,BM⊥DM,由线面垂直判定知PD⊥面ABM,由面面垂直判定定理知面PCD⊥面ABM;(2)由(1)知,PD⊥面ABM,所以PD⊥AM,因为PA=AD=4,所以M是PD的中点,取AD的中点为N,则NM平行PA,因为PA⊥平面ABCD,所以MN⊥ABCD,MN==2,即MN是三棱锥M-ABD的高,用棱锥的体积公式即可求出其体积.试题解析:(1)又由题意得,又 6分(2)由(1)知,PD⊥面ABM,所以PD⊥AM,因为PA=AD=4,所以M是PD的中点,取AD的中点为N,则NM平行PA,因为PA⊥平面ABCD,所以MN⊥ABCD,MN==2,所以===. 12分考点:球的性质,线面垂直的判定与性质,面面垂直判定定理,棱锥的体积公式,逻辑推论证能力.5.四面体ABCD中,已知AB=CD=,AC=BD=,AD=BC=,则四面体ABCD的外接球的表面()A.25p B.45p C.50p D.100p【答案】C【解析】作长方体,AB=CD=,AC=BD=,AD=BC=,该长方体和四面体有共同的外接球,长方体的对角线长为直径长,,表面积【考点】四面体的外接球的体积.6.如图,已知球的面上有四点,平面,,,则球的表面积为.【答案】【解析】把几何体看成长方体一部分,由于,,因此为球的直径半径,因此球的表面积【考点】球的表面积公式的应用.7.已知空间4个球,它们的半径分别为2, 2, 3, 3,每个球都与其他三个球外切,另有一个小球与这4个球都外切,则这个小球的半径为()A.B.C.D.【答案】B【解析】设半径为的两个球的球心为,半径为2的两个球的球心为,与这4个球都外切的小球的球心为,半径为,连接,得到四棱锥,则,,连接,取的中点分别为,连接,在中,,同理,为等腰三角形,,同理可证,是异面直线的公垂线,又分别是的中点,在线段上,在中,,同理得,在中,,又,由此可得,解得,负值舍去。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间几何体的表面积与体积专题一、选择题1.棱长为2的正四面体的表面积是( C ).A. B .4 C .4 D .1633解析 每个面的面积为:×2×2×=.∴正四面体的表面积为:4.1232332.把球的表面积扩大到原来的2倍,那么体积扩大到原来的 ( B ).A .2倍B .2倍 C.倍 D.倍2232解析 由题意知球的半径扩大到原来的倍,则体积V =πR 3,知体积扩大到原来的2倍.24323.如图是一个长方体截去一个角后所得多面体的三视图,则该多面体的体积为( B ).A.B.C.142328432803 D.1403解析 根据三视图的知识及特点,可画出多面体的形状,如图所示.这个多面体是由长方体截去一个正三棱锥而得到的,所以所求多面体的体积V =V 长方体-V 正三棱锥=4×4×6-××2=13(12×2×2).28434.某几何体的三视图如下,则它的体积是( A)A .8-B .8-C .8-2πD.2π3π32π3解析 由三视图可知该几何体是一个边长为2的正方体内部挖去一个底面半径为1,高为2的圆锥,所以V =23-×π×2=8-.132π35.已知某几何体的三视图如图,其中正视图中半圆的半径为1,则该几何体的体积为( A)A .24-π B .24- C .24-π D .24-32π3π2据三视图可得几何体为一长方体内挖去一个半圆柱,其中长方体的棱长分别为:2,3,4,半圆柱的底面半径为1,母线长为3,故其体积V =2×3×4-×π×12×3=24-.123π26.某品牌香水瓶的三视图如图 (单位:cm),则该几何体的表面积为( C )od A. cm 2 B. cm 2(95-π2)(94-π2)C.cm 2 D. cm 2(94+π2)(95+π2)解析 下面是一个四棱柱.上面四棱柱的表面积为2×3×3+12×1-=30-;中间部分的表面积为π4π42π××1=π,下面部分的表面积为122×4×4+16×2-=64-.故其表面积是94+.π4π4π27.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =,∠ASC =∠BSC =30°,则棱锥S-3ABC 的体积为( C).A .3B .2 C. D .1333解析 由题可知AB 一定在与直径SC 垂直的小圆面上,作过AB 的小圆交直径SC 于D ,设SD =x ,则DC =4-x ,此时所求棱锥即分割成两个棱锥S-ABD 和C-ABD ,在△SAD 和△SBD 中,由已知条件可得AD =BD =x ,又因为SC 为直径,所以∠SBC =∠SAC =90°,所以∠DCB =∠DCA =60°,在33△BDC 中 ,BD =(4-x ),所以x =(4-x ),所以x =3,AD =BD =,所以三角形ABD 为正33333三角形,所以V =S △ABD ×4=.133二、填空题8.三棱锥PABC 中,PA ⊥底面ABC ,PA =3,底面ABC 是边长为2的正三角形,则三棱锥PABC 的体积等于________.解析 依题意有,三棱锥PABC 的体积V =S △ABC ·|PA |=××22×3=3131334.39.一个圆柱的轴截面是正方形,其侧面积与一个球的表面积相等,那么这个圆柱的体积与这个球的体积之比为_ 3∶2_______.解析 设圆柱的底面半径是r ,则该圆柱的母线长是2r ,圆柱的侧面积是2πr ·2r =4πr 2,设球的半径是R ,则球的表面积是4πR 2,根据已知4πR 2=4πr 2,所以R =r .所以圆柱的体积是πr 2·2r =2πr 3,球的体积是πr 3,所以圆柱的体积和球的体积的比是=3∶2.432πr 343πr 310.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.26解析 由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为,连32接顶点和底面中心即为高,可求得高为,所以体积V =×1×1×=.2213222611.如图,半径为R 的球O中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是____2πR2____.解析 由球的半径为R ,可知球的表面积为4πR 2.设内接圆柱底面半径为r ,高为2h ,则h 2+r 2=R 2.而圆柱的侧面积为2πr ·2h =4πrh ≤4π=2πR 2(当且仅当r =h 时等号成立),即内接圆柱r 2+h 22的侧面积最大值为2πR 2,此时球的表面积与内接圆柱的侧面积之差为2πR 2.12.如图,已知正三棱柱ABCA 1B 1C 1的底面边长为2 cm ,高为5 cm ,则一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点A 1的最短路线的长为___13_____cm.解析 根据题意,利用分割法将原三棱柱分割为两个相同的三棱柱,然后将其展开为如图所示的实线部分,则可知所求最短路线的长为=13 (cm).52+122三、解答题13.某高速公路收费站入口处的安全标识墩如图1所示,墩的上半部分是正四棱锥PEFGH ,下半部分是长方体ABCDEFGH .图2、图3分别是该标识墩的正视图和俯视图.(1)请画出该安全标识墩的侧视图;(2)求该安全标识墩的体积.解析 (1)侧视图同正视图,如图所示:(2)该安全标识墩的体积为V =V PEFGH +V ABCDEFGH =×402×60+402×20=64 000(cm 3).1314 .一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为,宽为1的矩形,俯视图为两个边长为1的正方形拼3成的矩形.(1)求该几何体的体积V ;(2)求该几何体的表面积S.解析 (1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为,所以V =1×1×=.333(2)由三视图可知,该平行六面体中,A1D⊥平面ABCD ,CD⊥平面BCC1B1,所以AA1=2,侧面ABB1A1,CDD1C1均为矩形,S =2×(1×1+1×+1×2)=6+2.3315.已知某几何体的俯视图是如右图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V ;(2)求该几何体的侧面积S .解析 由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h 1的等腰三角形,左、右侧面均为底边长为6,高为h 2的等腰三角形,如右图所示.(1)几何体的体积为:V =·S 矩形·h =×6×8×4=64.1313(2)正侧面及相对侧面底边上的高为:h 1==5.左、右侧面的底边上的高为:42+32h 2==4.故几何体的侧面面积为:S =2×=40+24.42+422(12×8×5+12×6×42)21.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是(). .解:设展开图的正方形边长为a ,圆柱的底面半径为r ,则2πr =a ,,底面圆的面积是,2ar π=24a π于是全面积与侧面积的比是,2221222a a a πππ++=2.在棱长为 1 的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去与8个顶点相关的8个三棱锥后 ,剩下的几何体的体积是( ).2.解:正方体的体积为1,过共顶点的三条棱中点的平面截该正方体截得的三棱锥的体积是,于是8个三棱锥的体积是,剩余部分的体积是, 111111()3222248⨯⨯⨯⨯=61653.一个直棱柱(侧棱垂直于底面的棱柱)的底面是菱形,对角线长分别是6cm 和8cm ,高是5cm ,则这个直棱柱的全面积是 。
3.答案:148 cm 2解:底面菱形中,对角线长分别是6cm 和8cm ,所以底面边长是5cm ,侧面面积是4×5×5=100cm 2,两个底面面积是48cm 2,所以棱柱的全面积是148cm 2.4.已知两个母线长相等的圆锥的侧面展开图恰能拼成一个圆,且它们的侧面积之比为1:2,则它们的高之比为 。
4.答案:2:25解:设圆柱的母线长为l ,因为两个圆锥的侧面展开图恰能拼成一个圆,且它们的侧面积之比为1:2,所以它们的展开图即扇形的圆心角分别是和,2π4πh i nb 由圆锥侧面展开图扇形的圆心角的计算公式,得,,2r l πθ=13l r =223lr ==5.已知三棱锥的三条侧棱两两互相垂直,且长度分别为1cm ,2cm ,3cm ,则此棱锥的体积_________5.答案:1cm 3解:转换一个角度来认识这个三棱锥,即把它的两条侧棱(如长度为1cm ,2cm 的两条)确定的侧面看作底面,另一条侧棱作为高,则此三棱锥的底面面积是1,高为3,则它的体积是×1×3=1cm 3.316.矩形两邻边的长为a 、b ,当它分别绕边a 、b 旋转一周时, 所形成的几何体的体积之比为6.答案:ba解:矩形绕a 边旋转,所得几何体的体积是V 1=πb 2a ,矩形绕b 边旋转,所得几何体的体积是V 2=πa 2b ,所以两个几何体的体积的比是2122Vb a b V a b aππ==16.四面体的六条棱中,有五条棱长都等于a .(1)求该四面体的体积的最大值;(2)当四面体的体积最大时,求其表面积.解析 (1)如图,在四面体ABCD 中,设AB =BC =CD =AC =BD =a ,AD =x ,取AD 的中点为P ,BC 的中点为E ,连接BP 、EP 、CP .得到AD ⊥平面BPC ,∴V A-BCD =V A-BPC +V D-BPC=·S △BPC ·AP +S △BPC ·PD =·S △BPC ·AD =··a·x =1313131312a 2-x 24-a 24a 12 3a 2-x 2 x 2≤·=a 3(当且仅当x =a 时取等号).∴该四面体的体积的最大值为a 3.a123a 22186218(2)由(1)知,△ABC 和△BCD 都是边长为a 的正三角形,△ABD 和△ACD 是全等的等腰三角形,其腰长为a ,底边长为a ,∴S 表=2×a 2+2××a ×62341262a 2-(64a )2=a 2+a ×=a 2+=a 2.326210a43215a 2423+154。