2016年全国高中数学联合竞赛一试解答(B卷)

合集下载

2012年全国高中数学联合竞赛一试试题(B卷)解析

2012年全国高中数学联合竞赛一试试题(B卷)解析

4 9
− −
4a 6a
− −
1 1
⩽ >
0, 0

3

a
<
4.
所以
a
的取值范围是
[3 ,
4
) .
4
3
43
5.

△ABC
中,若
#» #» AB · AC
=
#» #» 7, |AB − AC|
= 6,则
△ABC
面积的最大值为
. 解答 依题意,BC = 6,以 BC 中点为坐标原点,BC 所在直线为 x 轴建立直角坐
2
2p 2p
tan θ = kOA − kOB 1 + kOAkOB
=
− y1 y2
4p2 1+
=
2p(y2 − y1) y1y2 + 4p2
=
− y1
− p
y2

y1y2

2 −
|y1y2| p
=
−2√2,等号成立时
y1
=
−y2
=
√ 2p.
综上,当
m
取得最小值
p2 −
时,tan θ
的最大值是
√ −2 2.
2 1
+ 4 + 42 (1
<3·
+··· )n
(n
+ ∈
4n−1 N∗).
所以
1−4 11
+
3 +···+
3 1
3[ 1
( 1 )T2n
4( 1 )n]
<3 +
+···+

2018年全国高中数学联赛真题(一试和二试)(B卷)试题(教师版)

2018年全国高中数学联赛真题(一试和二试)(B卷)试题(教师版)

2018 年全国高中数学联赛一试答案 (B 卷)一、填空题:本大题共8小题,每小题8分,满分64分.1.设集合A ={2,0,1,8},B ={2a |a ∈A },则AB 的所有元素之和是.解析31.易知B ={4,0,2,16},故AB ={0,1,2,4,8,16}.A B 的所有元素之和是0+1+2+4+8+16=31.2.已知圆锥的顶点为P ,底面半径长为2,高为1.在圆锥底面上取一点Q ,使得直线P Q 与底面所成角不大于45◦,则满足条件的点Q 所构成的区域的面积为.解析3π.圆锥顶点P 在底面上的投影即为底面中心,记之为O .由条件知,OP OQ=tan ∠OQP 1,即OQ 1,故所求的区域面积为π·22−π·12=3π.3.将1,2,3,4,5,6随机排成一行,记为a,b,c,d,e,f,,则abc +def 是奇数的概率为.解析110.当abc +def 为奇数时,abc,def 必为一奇一偶,若abc 为奇数,则a,b,c 为1,3,5的排列,d,e,f 为2,4,6的排列,这样有3!×3!=36种情况.由对称性可知,满足条件的情况数为36×2=72种,从而所求概率为726!=72720=110.4.在平面直角坐标系xOy 中,直线l 通过原点,−→n =(3,1)是l 的一个法向量.已知数列{a n }满足:对任意正整数n ,点(a n +1,a n )均在l 上.若a 2=6,则a 1a 2a 3a 4a 5的值为.解析−32.易知直线l 的方程是3x +y =0.因此对任意正整数n ,有3a n +1+a n =0,即a n +1=−13a n ,故{a n }是以−13为公比的等比数列.于是a 3=−13a 2=−2.由等比数列的性质可得,a 1a 2a 3a 4a 5=a 53=(−2)5=−32.5.设α,β满足tan α+π3 =−3,tan β−π6=5,则tan (α−β)的值为.解析−74.由两角差的正切公式可知tan (α+π3)−(β−π6) =−3−51+(−3)×5=47,即tan α−β+π2 =47,从而tan (α−β)=−cot α−β+π2 =−74.6.设抛物线C :y 2=2x 的准线与x 轴交于点A ,过点B (−1,0)作一直线l 与抛物线C 相切于点K ,过点A 作l 的平行线,与抛物线C 交于点M,N ,则 KMN 的面积为.解析12.设直线l 与MN 的斜率为k ,则l :x =1k y −1,MN :x =1k y −12.将l 与C 联立,得方程y 2−2k y +2=0,由条件知其判别式为零,故k =±√22.将MN 与C 联立,得方程y 2−2k y +1=0,于是|y M −y N |= (y M +y N )2−4y M y N = 4k 2−4=2,结合l 与MN 平行,可知S KMN =S BMN =|S BAM −S BAN |=12·|AB |·|y M −y N |=12·12·2=12.7.设f (x )是定义在R 上的以2为周期的偶函数,在区间[1,2]上严格递减,且满足f (π)=1,f (2π)=0,则不等式组 0 x 10 f (x ) 1的解集为.解析[2π−6,4−π].由f (x )为偶函数及在[1,2]上严格递减知,f (x )在[−2,−1]上严格递增,再结合f (x )以2为周期可知,[0,1]是f (x )的严格递增区间.注意到f (4−π)=f (π−4)=f (π)=1,f (2π−6)=f (2π)=0,所以0 f (x ) 1⇔f (2π−6) f (x ) f (4−π),而0<2π−6<4−π<1,故原不等式组成立当且仅当x ∈[2π−6,4−π].8.已知复数z 1,z 2,z 3满足|z 1|=|z 2|=|z 3|=1,|z 1+z 2+z 3|=r ,其中r 是给定实数,则z 1z 2+z 2z 3+z 3z 1的实数是(用含有r 的式子表示).解析r 2−32.记w =z 1z 2+z 2z 3+z 3z 1.由复数模的性质可知z 1=1z 1,z 2=1z 2,z 3=1z 3,因此w =z 1z 2+z 2z 3+z 3z 1.于是r 2=(z 1+z 2+z 3)(z 1+z 2+z 3)=|z 1|2+|z 2|2+|z 3|2+w +w =3+2Re w ,解得Re w =r 2−32.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.其中第9题满分16分,第10、11题满分20分.9.已知数列{a n }:a 1=7,a n +1a n=a n +2,n =1,2,3,···.求满足a n >42018的最小正整数n .解析12.由a n +1a n=a n +2可知a n +1+1=(a n +1)2.因此a n +1=(a 1+1)2n −1=82n −1=23×2n −1,故a n =23×2n −1−1.显然{a n }单调递增.由于a 11=23072−1<24036=42018,a 12=26144−1>24036=42018,故满足题目条件的n 的最小值是12.10.已知定义在R ∗上的函数f (x )为f (x )= |log 3x −1|,0<x 94−√x,x >9设a,b,c 是三个互不相同的实数,满足f (a )=f (b )=f (c ),求abc 的取值范围.解析(81,144).不妨假设a <b <c ,由于f (x )在(0,3]上严格递减,在[3,9]上严格递增,在[9,+∞)上严格递减,且f (3)=0,f (9)=1,故结合图像可知a ∈(0,3),b ∈(3,9),c ∈(9,+∞),并且f (a )=f (b )=f (c )∈(0,1).由f (a )=f (b )得1−log 3a =log 3b −1,取log 3a +log 3b =2,因此ab =32=9.于是abc =9c .又0<f (c )=4−√c <1,故c ∈(9,16).进而abc =9c ∈(81,144).11.如图所示,在平面直角坐标系xOy 中,A,B 与C,D 分别是椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左右顶点与上下顶点.设P,Q 是Γ上且位于第一象限的两点,满足OQ AP ,M 是线段AP 的中点,射线OM 与椭圆交于点R .证明:线段OQ,OR,BC能构成一个直角三角形.解析设点P 坐标为(x 0,y 0).由于−−→OQ −→AP ,−→AP =−−→OP −−→OA ;−−→OR −−→OM,−−→OM =12(−−→OP +−→OA ),故存在实数λ,µ,使得−−→OQ =λ(−−→OP −−→OA ),−−→OR =µ(−−→OP +−→OA ).此时点Q,R 的坐标可分别表示是(λ(x 0+a ),λy 0),(µ(x 0−a ),µy 0).由于点Q,R 都在椭圆上,所以λ2 (x 0+a )2a 2+y 20b 2 =µ2 (x 0−a )2a 2+y 20b2 =1.结合x 20a 2+y 20b 2=1知,上式可化为λ2(2+2x 0a )=µ2(2−2x 0a )=1,解得λ2=a 2(a +x 0),µ2=a 2(a −x 0).因此|OQ|2+|OR|2=λ2(x0+a)2+y2+µ2(x0−a)2+y20=a2(a+x0)(x0+a)2+y2+a2(a−x0)(x0−a)2+y20=a(a+x0)2+ay22(a+x0)+a(a−x0)2+ay22(a−x0)=a2+ay221a+x0+1a−x0=a2+ay22·2aa2−x20=a2+a2·b21−x2a2a2−x20=a2+b2=|BC|2.从而线段OQ,OR,BC能构成一个直角三角形.2018 年全国高中数学联赛二试答案 (B 卷)一、设a,b 是实数,函数f (x )=ax +b +9x.证明:存在x 0∈[1,9],使得|f (x 0)| 2.解析证法一只需证明存在u,v ∈[1,9],满足|f (u )−f (v )| 4,进而由绝对值不等式得|f (u )|+|f (v )| |f (u )−f (v )| 4,故|f (u )| 2与|f (v )| 2中至少有一个成立.当a ∈(−∞,12] [32,+∞)时,有|f (1)−f (9)|=|(a +b +9)−(9a +b +1)|=8|1−a | 4.当12<a <32时,有3√a ∈[1,9].再分两种情况:若12<a 1,则|f (1)−f (3√a )|=|(a +b +9)−(6√a +b )|=(3−√a )2 4.若1<a <32,则|f (9)−f (3√a )|=|(9a +b +1)−(6√a +b )|=(3√a −1)2 4.综上可知,存在u,v ∈[1,9],满足|f (u )−f (v )| 4,从而命题得证.证法二用反证法.假设对任意x ∈[1,9],均有|f (x )|<2,则|f (1)|<2,|f (3)|<2,|f (9)|<2.易知f (1)=a +b +9,①f (3)=3a +b +3,②f (9)=9a +b +1.③由①,②得,2a −6=f (2)−f (1);又由②,③得,6a −2=f (3)−f (2).由上述两式消去a ,可知f (3)−4f (2)+3f (1)=(6a −2)−3·(2a −6)=16.但f (3)−4f (2)+3f (1)<2+4·2+3·2=16,矛盾!从而命题得证.二、如图所示,在等腰 ABC 中,AB =AC ,边AC 上一点D 及BC 延长线上一点E 满足AD DC =BC 2CE ,以AB 为直径的圆w 与线段DE 交于一点F .证明:B,C,F,D 四点共圆.(答题时请将图画在答卷纸上)解析如图,取BC 中点H ,则由AB =AC 知AH ⊥BC ,故H 在圆w 上.延长F D 至G ,使得AG BC ,结合已知条件得,AG CE =AD DC =BC 2CE ,故AG =12BC =BH =HC ,从而AGBH 为矩形,AGHC 为平行四边形.由AGBH 为矩形知,G 亦在圆w 上.故∠HGF =∠HBF .又AGHC 为平行四边形,由AC GH ,得∠CDF =∠HGF .所以∠CDF =∠HBF =∠CBF ,故B,C,F,D 四点共圆.三、设集合A ={1,2,···,n },X,Y 均为A 的非空子集(允许X =Y ).X 中的最大元与Y 中的最小元分别记为max X,min Y .求满足max X >min Y 的有序集合对(X,Y )的数目.解析先计算满足max X min Y 的有序集合对(X,Y )的数目.对给定的m =max X ,集合X 是集合{1,2,···,m −1}的任意一个子集与{m }的并,故并有2m −1种取法.又min Y M ,故Y 是{m,m +1,···,n }的任意一个非空子集,共有2n +1−m −1种取法.因此,满足max X min Y 的有序集合对(X,Y )的数目是n m =12m −1(2n +1−m −1)=n m =12n −n m =12m −1=n ·2n −2n +1.由于有序集合对(X,Y )有(2n−1)·(2n−1)=(2n−1)2个,于是满足max X>min Y的有序集合对(X,Y)的数目是(2n−1)2−n·2n+2n−1=22n−2n(n+1).四、给定整数a 2.证明:对任意正整数n,存在正整数k,使得连续n个数a k+1,a k+2,···,a k+n均是合数.解析设i1<i2<···<i r是1,2,···,n中与a互素的全体整数,则对1 i n,i∈{i1,i2,···,i r},无论正整数k如何取值,a k+i均与a不互素且大于a,故a k+i为合数.对任意j=1,2,···,r,因a+i j>1,故a+i j有素因子p j.我们有(p j,a)=1(否则,因p j是素数,故p j|a,但p j|a+i j,从而p j|i j,故a,i j 不互素,与i j的取法矛盾).因此,由费马小定理知,a p j−1≡1(mod p j).现取k= (p1−1)(p2−1)···(p r−1)+1.对任意j=1,2,···,r,注意到k≡1(mod p j)−1,故有a k+i j≡a+i j≡0(mod p j).又a k+i j>a+i j p j,故a k+i j为合数.综上所述,当k=(p1−1)(p2−1)···(p r−1)+1时,a k+1,a k+2,···,a k+n均是合数.。

2017年全国高中数学联赛一试(B卷)答案

2017年全国高中数学联赛一试(B卷)答案
x x 9. (本题满分 16 分)设不等式 2 a 5 2 对所有
成立,求实 成立.由于
解:设 t 2 x ,则 t [2, 4] ,于是
对所有
t a 5 t (t a ) 2 (5 t ) 2 (2t a 5)(5 a ) 0 . ………………8 分 对给定实数 a ,设 f (t ) (2t a 5)(5 a ) ,则 f (t ) 是关于 t 的一次函数或常 值函数.注意 t [2, 4] ,因此 f (t ) < 0 等价于 f (2) (1 a )(5 a ) 0, ………………12 分 f (4) (3 a )(5 a ) 0, 解得 3 a 5 . 所以实数 a 的取值范围是 3 a 5 . ………………16 分 10. ( 本 题 满 分 20 分 ) 设 数 列 {an } 是 等 差 数 列 , 数 列 {bn } 满 足 2 , n 1, 2, . bn an1an2 an (1)证明:数列 {bn } 也是等差数列; (2) 设数列 {an } 、 并且存在正整数 s, t , 使得 as bt {bn } 的公差均是 d 0 , 是整数,求 a1 的最小值. 解: (1)设等差数列 {an } 的公差是 d ,则 2 2 bn1 bn ( an2an3 an 1 ) ( an1an2 an ) an2 ( an3 an1 ) ( an1 an )( an1 an ) an2 2d ( an1 an ) d
2017 年全国高中数学联合竞赛一试(B 卷) 参考答案及评分标准
说明: 1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的 评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次. 2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分, 解答题中第 9 小题 4 分为一个档次, 第 10、 11 小题 5 分为一个档次,不得增加其他中间档次. 一、填空题:本大题共 8 小题,每小题 8 分,共 64 分. 1. 在等比数列 {an } 中, a2 2, a3 3 ,则

2015年全国高中数学联合竞赛一试试题(B卷)解析

2015年全国高中数学联合竞赛一试试题(B卷)解析

算步骤.
9. 已知数列 {an} 满足 a1 = 3,且对任意正整数 m, n,均有 am+n = am +an +2mn.
( 1 ) 求数列 {an} 的通项公式;
( 2 ) 如果实数 c 使得 ∑k 1 < c 对所有正整数 k 都成立,求 c 的取值范围.
解答
i=1 ai
(1) 令 m = 1 ⇒ an+1 = an + a1 + 2n ⇒ an+1 − an = 2n + 3,
圆的离心率 e = c 的取值范围. a
解答
依题意,直线 l 的斜率不为 0. 设 l : x = ky + c, b2x2 + a2y2 = a2b2,
A(x1, y1), B(x2, y2),联立 x = ky + c
⇒ (b2k2 + a2)y2 + 2b2kcy − b4 = 0,

y1
+
y2
2
2
2 [√
)
2
所以该椭圆的离心率的取值范围是 5 − 1, 1 .
2
第4页 共4页

#» |OAi
+
#» OAj |

1
的概率是
.
解答
第2页 共4页
如图,A, B, C 将单位圆 O 三等分,设 Ai 与点 A
由重于合,[ 2依01题5 ]意=,6A7j1,应则位于A˜BA˜和B
和 A˜C 上. A˜C 上含有正
2015
3
边形的 671 × 2 个顶点,即 Aj 有 671 × 2 种取法.
比数列,则使得 a1 + a2 + · · · + ak > 100a1 的最小正整数 k 的值是

2012年全国高中数学联合竞赛试题及解答.(B卷)

2012年全国高中数学联合竞赛试题及解答.(B卷)

2012年全国高中数学联合竞赛(B 卷)一试一、填空题:本大题共8个小题,每小题8分,共64分。

2012B1、对于集合{}b x a x ≤≤,我们把a b -称为它的长度。

设集合{}1981+≤≤=a x a x A ,{}b x b x B ≤≤-=1014,且B A ,都是集合{}20120≤≤=x x U 的子集,则集合B A 的长度的最小值是◆答案:983★解析:因为B A ,都是集合{}20120≤≤=x x U 的子集,所以310≤≤a ,20121014≤≤b ,{}19811014|+≤≤-=a x b x B A ,或{}b x a x B A ≤≤=| ,故当2012,0==b a 或者1014,31==b a 时,集合B A 的长度最小,最小为9833110149981981=-=-2012B 2、已知0,0>>y x ,且满足⎪⎩⎪⎨⎧=-=+=+120)sin()sin(1)sin(2)(cos 222y x y x y x ππππ,则有序实数对=),(y x ◆答案:()2,4★解析:由1)sin(2)(cos 2=+y x ππ及0)sin()sin(=+y x ππ得()()[]0sin 2sin =+x x ππ,得()0sin =x π,代入0)sin()sin(=+y x ππ得()0sin =y π可得y x ,都是整数。

由()()1222=-+=-y x y x y x ,y x y x +<-,得⎩⎨⎧=+=-62y x y x ,解得⎩⎨⎧==24y x ,故有序实数对),(y x 即为()2,4。

2012B3、如图,设椭圆12222=+b y a x (0>>b a )的左右焦点分别为21,F F ,过点2F 的直线交椭圆于),(11y x A ,),(22y x B 两点。

若B AF 1∆内切圆的面积为π,且421=-y y ,则椭圆的离心率为◆答案:1★解析:由性质可知B AF 1∆的周长为a 4,内切圆半径为1,则2122114211y y c a S B AF -⨯⨯=⨯⨯=∆,可得c a 2=,即21==a c e 2012B 4、若关于x 的不等式组⎩⎨⎧≤-->--+012033223ax x x x x ,(0>a )的整数解有且只有一个,则a 的取值范围为◆答案:⎪⎭⎫⎢⎣⎡34,43★解析:由03323>--+x x x 解得13-<<-x 或1>x ,所以不等式组的唯一整数解只可能为2-或2。

全国高中数学联合竞赛一试试题及参考答案

全国高中数学联合竞赛一试试题及参考答案

全国高中数学联合竞赛一试试题及参考答案20XX年全国高中数学联合竞赛一试试卷(考试时间:上午8:00―9:40)一、选择题(本题满分36分,每小题6分)1. 如图,在正四棱锥P ABCD中,∠APC=60°,则二面角A PB C的平面角的余弦值为() A. 2. 设实数a使得不等式|2x a|+|3x 2a|≥a2对任意实数x恒成立,则满足条件的a所组成的集合是()A. [ ,] 1 7B. 1 7C. 1 2D. 1 21133B. [ 11,] 22C. [ 11,] 43D. [ 3,3]3. 将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。

甲从袋中摸出一个球,其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b。

则使不等式a 2b+100成立的事件发生的概率等于()A. 52 81B. 59 81C. 60 81D. 61 814. 设函数f(x)=3sinx+2cosx+1。

若实数a、b、c使得af(x)+bf(xc)=1对任意实数x恒成立,bcosc的值等于()a11A. B. 22则C. 1 D. 15. 设圆O1和圆O2是两个定圆,动圆P与这两个定圆都相切,则圆P的圆心轨迹不可能是()6. 已知A与B是集合{1,2,3,…,100}的两个子集,满足:A与B的元素个数相同,且为A∩B空集。

若n∈A时总有2n+2∈B,则集合A∪B的元素个数最多为()A. 62B. 66C. 68D. 74二、填空题(本题满分54分,每小题9分)7. 在平面直角坐标系内,有四个定点A( 3,0),B(1,1),C(0,3),D( 1,3)及一个动点P,则|PA|+|PB|+|PC|+|PD|的最小值为__________。

8. 在△ABC和△AEF中,B是EF的中点,AB=EF=1,BC=6,CA 33,若AB AE AC AF 2,则EF与BC的夹角的余弦值等于________。

2018年全国高中数学联赛试题及答案详解(B卷)

2018年全国高中数学联赛试题及答案详解(B卷)

a1a2a3a4a5 的值为

答案:32 .
解:易知直线 l 的方程是 3x y 0 .因此对任意正整数 n ,有 3an1 an 0 ,
1
1
1
即 an1 3 an ,故{an}是以 3 为公比的等比数列.于是 a3 3 a2 2 .由等
比数列的性质可得, a1a2a3a4a5 a35 (2)5 32 .
…………………16 分
10.(本题满分 20 分)已知定义在 R 上的函数 f (x) 为
解得 Re w r2 3 . 2
二、解答题:本大题共 3 小题,满分 56 分.解答应写出文字说明、证明过
程或演算步骤.
9.(本题满分
16
分)已知数列 {an } : a1
7
, an1 an
an
2,
n
1,2,Βιβλιοθήκη 3,.求 满足 an 42018 的最小正整数 n .
解:由
an1 an
an
2
可知
an1
k
2
将 MN 与 C 联立,得方程 y2 2 y 1 0 ,于是 k
yM yN
( yM yN )2 4 yM yN
4 k2
4
2

结合 l 与 MN 平行,可知
SKMN
SBMN
SBAM SBAN
1 AB 2
yM yN
112 1 . 22 2
7. 设 f (x) 是定义在 R 上的以 2 为周期的偶函数,在区间 [1, 2]上严格递减,
2018 年全国高中数学联合竞赛一试(B 卷) 参考答案及评分标准
说明: 1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的 评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次. 2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分,解答题中第 9 小题 4 分为一个档次,第 10、 11 小题 5 分为一个档次,不得增加其他中间档次.

2019年全国高中数学联合竞赛试题(B卷)

2019年全国高中数学联合竞赛试题(B卷)

2019 年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8 小题,每小题8 分,满分64 分.1. 已知实数集合{1, 2, 3, x} 的最大元素等于该集合的所有元素之和,则x 的值为.2. 若平面向量a = (2m , -1) 与b = (2m -1, 2m+1 ) 垂直,其中m 为实数,则a 的模为.3. 设a, b ∈ (0, p) ,cos a, cos b 是方程5x2 -3x -1= 0 的两根,则sin a s in b 的值为.4. 设三棱锥P - ABC 满足PA = PB = 3, AB = BC = CA = 2 ,则该三棱锥的体积的最大值为.5. 将5 个数2, 0, 1, 9, 2019 按任意次序排成一行,拼成一个8 位数(首位不为0),则产生的不同的8 位数的个数为.6. 设整数n > 4,(1)nx+的展开式中x n-4 与xy 两项的系数相等,则n的值为.7. 在平面直角坐标系中,若以(r +1, 0) 为圆心、r 为半径的圆上存在一点(a, b) 满足b2 ≥ 4a ,则r 的最小值为.8. 设等差数列{an}的各项均为整数,首项a1= 2019 ,且对任意正整数n ,总存在正整数m ,使得a1+ a2++ an= am.这样的数列{an} 的个数为.⎨ n +1 n n +1 n 二、解答题:本大题共 3 小题,满分 56 分.解答应写出文字说明、证明过 程或演算步骤.9.(本题满分 16 分)在椭圆 Γ 中, F 为一个焦点, A , B 为两个顶点.若 FA = 3, FB = 2 ,求 AB 的所有可能值.10. (本题满分 20 分)设 a , b , c 均大于 1,满足⎧⎪lg a + log b c = 3, ⎪⎩lg b + log a c= 4.求 lg a ⋅ lg c 的最大值.11. (本题满分 20 分)设复数数列{z n } 满足: z 1 = 1 ,且对任意正整数 n , 均有 4z 2 + 2z z + z 2 = 0 .证明:对任意正整数m ,均有 z 1 + z 2 ++ z m < . 32019 年全国高中数学联合竞赛加试(B 卷)一、(本题满分 40 分)设正实数 a 1, a 2 , , a 100 满足 a i ≥ a 101-i (i = 1, 2, , 50) . 记 111(1,2,,99)k k nka x k a a a +==⋅⋅⋅++⋅⋅⋅+.证明:29912991x x x ⋅⋅⋅≤.二、(本题满分 40 分)求满足以下条件的所有正整数 n :(1) n 至少有 4 个正约数;(2) 若 d 1 < d 2 < < d k 是 n 的所有正约数,则 d 2 - d 1, d 3 - d 2 , , d k - d k -1 构 成等比数列.三、(本题满分 50 分)如图,点 A , B , C , D , E 在一条直线上顺次排列,满足BC=CD P 在该直线外,满足PB = PD .点K, L 分别在线段PB, PD 上,满足KC 平分∠BKE ,LC 平分∠ALD .证明:A, K, L, E 四点共圆.(答题时请将图画在答卷纸上)四、(本题满分50 分)将一个凸2019 边形的每条边任意染为红、黄、蓝三种颜色之一,每种颜色的边各673 条.证明:可作这个凸2019 边形的2016 条在内部互不相交的对角线将其剖分成2017 个三角形,并将所作的每条对角线也染为红、黄、蓝三种颜色之一,使得每个三角形的三条边或者颜色全部相同,或者颜色互不相同.。

高中数学联赛真题数列B辑(解析版)

高中数学联赛真题数列B辑(解析版)

备战2021年高中数学联赛之历年真题汇编(1981-2020)专题10数列B辑历年联赛真题汇编1.【2020高中数学联赛A卷(第01试)】在等比数列{a n}中, a9=13,a3=1,则log a113的值为.【答案】13【解析】由等比数列的性质知a1a9=(a9a13)2, a1=a93a132=133.所以log a113=13.2.【2019高中数学联赛B卷(第01试)】设等差数列{a n}的各项均为整数,首项a1=2019,且对任意正整数n,总存在正整数m,使得a1+a2+⋯+a n=a m.这样的数列{a n}的个数为.【答案】5【解析】设{a n}的公差为d.由条件知a1+a2=a k(k是某个正整数),则2a1+d=a1+(k−1)d,即(k-2)d=a1,因此必有k≠2,且d=a1k−2.这样就有a n=a1+(n−1)d=a1+n−1k−2a1,而此时对任意正整数n,a1+a2+⋯+a n=a1n+n(n−1)2d=a1+(n−1)a1+n(n−1)2d=a1+((n−1)(k−2)+n(n−1)2)d,确实为{a n}中的一项.因此,仅需考虑使k−2|a1成立的正整数k的个数.注意到2019为两个素数3与673之积,易知k-2可取-1,1,3,673,2019这5个值,对应得到5个满足条件的等差数列.3.【2018高中数学联赛A卷(第01试)】设整数数列a1,a2,⋯,a10满足a10=3a1,a2+a8=2a5,且a i+1∈{1 +a i,2+a i},i=1,2,⋯,9,则这样的数列的个数为.【答案】80【解析】设b i=a i+1−a i∈{1,2}(i=1,2,⋯,9),则有2a1=a10−a1=b1+b2+⋯+b9①b2+b3+b4=a5−a2=a8−a5=b5+b6+b7②用t表示b2,b3,b4中值为2的项数.由②知,t也是b5,b6,b7中值为2的项数,其中t∈{0,1,2,3}.因此b2,b3,⋯,b7的取法数为(C30)2+(C31)2+(C32)2+(C33)2=20.取定b2,b3,⋯,b7后,任意指定b8,b9的值,有22=4种方式.最后由①知,应取b1∈{1,2}使得b1+b2+⋯+b9为偶数,这样的b1的取法是唯一的,并且确定了整数a1的值,进而数列b1,b2,⋯,b9唯一对应一个满足条件的数列a1,a2,⋯,a10.综上可知,满足条件的数列的个数为20×4=80.4.【2018高中数学联赛B卷(第01试)】在平面直角坐标系xOy中,直线l通过原点,n⃑=(3,1)是l的一个法向量.已知数列{a n}满足:对任意正整数n,点(a n+1,a n)均在l上.若a2=6,则a1a2a3a4a5的值为.【答案】−32【解析】易知直线l的方程是3x+y=0.因此对任意正整数n,有3a n+1+a n=0,即a n+1=−13a n,故{a n}是以−13为公比的等比数列于是a3=−13a2=−2.由等比数列的性质可得a1a2a3a4a5=a35=(−2)5=−32.5.【2017高中数学联赛A卷(第01试)】设两个严格递增的正整数数列{a n},{b n}满足:a10=b10<2017,对任意正整数n,有a n+2=a n+1+a n,b n+1=2b n,则a1+b1的所有可能值为.【答案】13、20【解析】由条件可知:a 1,a 2,b 1均为正整数,且a 1<a 2. 由于2017>b 10=29⋅b 1=512b 1,故b 1∈{1,2,3}.反复运用{a n }的递推关系知a 10=a 9+a 8=2a 8+a 7=3a 7+2a 6 =5a 6+3a 5=8a 5+5a 4=13a 4+8a 3=21a 3+13a 2=34a 2+21a 1, 因此21a 1≡a 10=b 10=512b 1≡2b 1( mod 34),而13×21=34×8+1,故有a 1≡13×21a 1≡13×2b 1=26b 1( mod 34) ①另一方面,注意到a 1<a 2,有55a 1<34a 2+21a 1=512b 1,故a 1<51255b 1②当b 1=1时,①、②分别化为a 1≡26( mod 34),a 1<51255,无解当b 1=2时,①、②分别化为a 1≡52( mod 34),a 1<102455,得到唯一的正整数a 1=18,此时a 1+b 1=20.当b 1=3时,①、②分别化为a 1≡78( mod 34),a 1<153655,得到唯一的正整数a 1=10,此时a 1+b 1=13.综上所述,a 1+b 1的所有可能值为13、20.6.【2017高中数学联赛B 卷(第01试)】在等比数列{a n }中,a 2=√2,a 3=√33,则a 1+a2011a 7+a2017的值为.【答案】89【解析】数列{a n }的公比为q =a 3a 2=√33√2,故a 1+a 2011a 7+a 201=a 1+a 2011q 6(a 1+a 2011)=1q 6=89.7.【2016高中数学联赛(第01试)】设a 1,a 2,a 3,a 4是1,2,…,100中的4个互不相同的数,满足(a 12+a 22+a 32)(a 22+a 32+a 42)=(a 1a 2+a 2a 3+a 3a 4)2,则这样的有序数组(a 1,a 2,a 3,a 4)的个数为.【答案】40【解析】由柯西不等式知,(a12+a22+a32)(a22+a32+a42)⩾(a1a2+a2a3+a3a4)2,等号成立的充分必要条件是a1a2=a2a3=a3a4,即a1,a2,a3,a4成等比数列.于是问题等价于计算满足{a1,a2,a3,a4}⊆{1,2,3,⋯,100}的等比数列a1,a2,a3,a4的个数.设等比数列的公比q≠1,且q为有理数.记q=nm,其中m、n为互素的正整数,且m≠n.先考虑n>m的情况:此时a4=a1⋅(nm )3=a1n3m3,注意到m3与n3互素,故l=a1m3为正整数.相应地,a1,a2,a3,a4分别等于m3l,m2nl,mn2l,n3l,它们均为正整数.这表明,对任意给定的q=nm>1,满足条件并以q为公比的等比数列a1,a2,a3,a4的个数,即为满足不等式n3l⩽100的正整数l的个数,即[100n3].由于53>100,故仅需考虑q=2,3,32,4,43,这些情况,相应的等比数列的个数为[100 8]+[10027]+[10027]+[10064]+[10064]=12+3+3+1+1=20.当n<m时,由对称性可知,亦有20个满足条件的等比数列a1,a2,a3,a4,综上可知,共有40个满足条件的有序数组(a1,a2,a3,a4).8.【2014高中数学联赛(第01试)】数列{a n}满足a1=2,a n+1=2(n+2)n+1a n(n∈N∗),则a2014a1+a2+⋯+a2013=.【答案】20152013【解析】由题设a n=2(n+1)n a n−1=2(n+1)n⋅2nn−1a n−2=⋯=2(n+1)n⋅2n n−1⋯⋅⋅2⋅32a 1=2n−1(n +1),记数列{a n }的前n 项和为S n ,则S n =2+2×3+22×4+⋯+2n−1(n +1), 所以2S n =2×2+22×3+23×4+⋯+2n (n +1),将上面两式相减, 得S n =2n (n +1)−(2n−1+2n−2+⋯+2+2)=2n (n +1)−2n =2n n ,故a 2014a 1+a 2+⋯+a 2013=22013×201522013×2013=20152013.9.【2013高中数学联赛(第01试)】已知数列{a n }共有9项,其中a 1=a 9=1,且对每个i ∈{1,2,⋯,8},均有a i+1a i∈{2,1,−12},则这样的数列的个数为.【答案】491【解析】令b i =a i+1a i(1⩽i ⩽8),则对每个符合条件的数列{a n },有∏b i8i=1=∏a i+1a i8i=1=a 9a 1=1,(b i ∈{2,1,−12},1⩽i ⩽8)①反之,由符合条件①的8项数列{b n }可唯一确定一个符合题设条件的9项数列{a n }.记符合条件①的数列{b n }的个数为N .显然b i (1≤i ≤8)中有偶数个−12,即2k 个−12;继而有2k 个2,8-4k 个1.当给定k 时,{b n }的取法有C 82k C 8−2k 2k 种,易知k 的可能值只有0,1,2,所以N =1+C 82C 62+C 84C 44=1+28×15+70×1=491.因此,根据对应原理,符合条件的数列{a n }的个数为491.10.【2011高中数学联赛(第01试)】已知a n =C 200n ⋅(√63)200−n⋅(√2)n(n =1,2,⋯,95),则数列{a n }中整数项的个数为 .【答案】15【解析】由题意知a n =C 200n ⋅3200−n3⋅2400−5n6,要使a n (1≤n ≤95)为整数,必有200−n 3,400−5n 6均为整数,从而6|n +4.当n =2,8,14,20,26,32,38,44,50,56,62,68,74,80时,200−n 3和400−5n6均为非负整数,所以a n 为整数,共有14个.当n =86时,a 86=C 20086⋅338⋅2−5, 在C 20086=200!86!⋅114!中,200!中因数2的个数为[2002]+[20022]+[20023]+[20024]+[20025]+[20026]+[20027]=197,同理可计算得86!中因数2的个数为82,114!中因数2的个数为110,所以C 20086中因数2的个数为197−82−110=5,故a 86是整数.当n =92时a 92=C 20092⋅336⋅2−10,在C 20092=200!92!⋅108!中,同样可求得92!中因数2的个数为88,108!中因数2的个数为105.故C 20086中因数2的个数为197−88−105=4,故a 92不是整数. 因此,整数项的个数为14+1=15.11.【2010高中数学联赛(第01试)】已知{a n }是公差不为0的等差数列,{b n }是等比数列,其中a 1=3,b 1=1,a 2=b 2,3a 5=b 3,且存在常数α,β使得对每一个正整数n 都有a n =log αb n +β,则α+β= .【答案】√33+3【解析】设{a n }的公差为d ,{b n }的公比为q ,则3+d =q①3(3+4d)=q 2②式①代入式②得9+12d =d 2+6d +9,求得d =6,q =9, 从而有3+6(n −1)=log α9n−1+β对一切正整数n 都成立, 即6n −3=(n −1)log α9+β对一切正整数n 都成立. 从而log α9=6,−3=−log α9+β,求得α=√33,β=3,α+β=√33+3.12.【2009高中数学联赛(第01试)】一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩上的两个数之和,最后一行仅有一个数,第一行是前100个正整数按从小到大排成的行,则最后一行的数是(可以用指数表示)【答案】101×298 【解析】易知: (1)该数表共有100行;(2)每一行构成一个等差数列,且公差依次为d 1=1,d 2=2,d 3=22,⋯,d 99=298, (3)a 100为所求.设第n (n ≥2)行的第一个数为a n ,则a n =a n−1+(a n−1+2n−2)=2a n−1+2n−2=2[2a n−2+2n−3]+2n−2=22[2a n−3+2n−4]+2×2n−2=23a n−3+3×2n−2=⋯=2n−1a 1+(n −1)×2n−2=(n +1)2n−2. 故a 100=101×298.13.【2008高中数学联赛(第01试)】设数列{a n }的前n 项和S n 满足:S n +a n =n−1n(n+1),n =1,2,…,则通项an =. 【答案】12n−1n(n+1)【解析】因为a n+1=S n+1−S n =n (n+1)(n+2)−a n+1−n−1n(n+1)+a n ,即2a n+1=n+2−2(n+1)(n+2)−1n+1+1n(n+1)+a n =−2(n+1)(n+2)+a n +1n(n+1),由此得2(a n+1+1(n+1)(n+2))=a n +1n(n+1),令b n =a n +1n(n+1),因此b 1=a 1+12=12(a 1=0),b n+1=12b n ,故b n =12n,可得a n =12n−1n(n+1).14.【2007高中数学联赛(第01试)】已知等差数列{a n }的公差d 不为0,等比数列{b n }的公比q 是小于1的正有理数.若a 1=d,b 1=d 2,且a 12+a 22+a 32b 1+b 2+b 3是正整数,则q 等于 .【答案】12【解析】因为a 12+a 22+a 32b 1+b 2+b 3=a 12+(a 1+d )2+(a 1+2d )2b 1+b 1q+b 1q 2=141+q+q 2,故由已知条件可知:1+q +q 2为14m,其中m 为正整数.令1+q +q 2=14m,则q =−12+√14+14m−1=−12+√56−3m 4m,由于q 是小于1的正有理数,所以1<14m<3,即5⩽m ⩽13且56−3m 4m是某个有理数的平方,由此可知q =12.15.【2005高中数学联赛(第01试)】将关于x 的多项式f(x)=1−x +x 2−x 3+⋯−x 19+x 20表示为关于y 的多项式g(y)=a 0+a 1y +a 2y 2+⋯+a 19y 19+a 20y 20,其中y =x -4.则a 0+a 1+⋯+a 20=.【答案】521+16【解析】由题设知,f (x )和式中的各项构成首项为1,公比为-x 的等比数列,由等比数列的求和公式,得f(x)=(−x)21−1−x−1=x 21+1x+1,令x =y +4,得g(y)=(y+4)21+1y+5,取y =1,有a 0+a 1+a 2+⋯+a 20=g(1)=521+16.16.【2005高中数学联赛(第01试)】如果自然数a 的各位数字之和等于7,那么称a 为“吉祥数”.将所有“吉祥数”从小到大排成一列a 1,a 2,a 3,…,若a n =2005,则a 5n = .【答案】52000【解析】因为方程x 1+x 2+⋯+x k =m 的非负整数解的个数为C m+k−1m,而使x 1⩾1,x i ⩾0 (i ⩾2)的整数解个数为C m+k−2m−1.现取m =7,可知,k 位“吉祥数”的个数为P(k)=C k+56.2005是形如2abc 的数中最小的一个“吉祥数”,且P(1)=C 66=1,P(2)=C 76=7,P(3)=C 86=28,对于四位“吉祥数”1abc ,其个数为满足a +b +c =6的非负整数解个数,即C 6+3−16=28个.因为2005是第1+7+28+28+1=65个“吉祥数”,即a 65=2005.从而n =65,5n =325,又P(4)=C 96=84,P(5)=C 106=210,而∑5k=1P(k)=330,所以从大到小最后6个五位“吉祥数”依次是70000,61000,60100,60010,60001,52000. 故第325个“吉祥数”是52000,即a 5n =52000.17.【2004高中数学联赛(第01试)】已知数列a 0,a 1,a 2,⋯,a n ,⋯满足关系式(3-a n +1)(6+a n )=18,且a 0=3,则∑1a ini=0的值是 .【答案】13(2n+2−n −3)【解析】设b n =1a n(n =0,1,2,⋯),则(3−1b n+1)(6+1b n)=18,即3b n+1−6b n−1=0.所以b n+1=2b n +13,b n+1+13=2(b n +13),故数列{b n +13}是公比为2的等比数列.因此b n +13=2n (b 0+13)=2n (1a 0+13)=13×2n+1,所以b n =13(2n+1−1),则∑1a ini=0=∑b in i=0=∑13ni=0(2i+1−1)=13[2(2n+1−1)2−1−(n +1)]=13(2n+2−n −3).18.【2003高中数学联赛(第01试)】设M n ={(十进制)n 位纯小数0.a 1a 2⋯a n |a i 只取0或1(i =1,2,…,n -1),a n =1},T n 是M n 中元素的个数,S n 是M n 中所有元素的和,则limn→∞S nT n= .【答案】118【解析】因为M n 中的小数的小数点后均有n 位,而除最后一位上的数字必为1外,其余各位上的数字均有两种选择(0或1)方法,故T n =2n−1,又因在这2n−1个数中,小数点后第n 位上的数字全是1,而其余各位上数字是0或1,各有一半.故:S n =12⋅2n−1(110+1102+⋯+110n−1)+2n−1⋅110n =2n−2⋅110(1−110n−1)1−110+2n−1⋅110n=2n−2⋅19(1−110n−1)+2n−1⋅110n,故limS n T n=lim n→∞[118(1−110n−1)+110n]=118.19.【2000高中数学联赛(第01试)】设a n 是(3−√x)n 的展开式中x 项的系数(n =2,3,4,…),则lim n→∞(32a 2+33a 3+⋯+3n a n)= .【答案】18【解析】由题意,由二项式定理有a n =C n 23n−2, 所以3n a n=3n ×2n(n−1)=18(1n−1−1n),所以lim n→∞(32a 2+33a 3+⋯+3n a n)=lim n→∞18(1−12+12− 13+⋯+1n−1−1n)=lim n→∞18(1−1n)=18.20.【2000高中数学联赛(第01试)】等比数列a+log23,a+log43,a+log83的公比是.【答案】13【解析】由题意,不妨设公比为q,可知q=a+log43a+log23=a+log83a+log43,又根据比例的性质,有q=a+log43−(a+log83) a+log23−(a+log43)=log43−log83log23−log43=12log23−13log23log23−12log23=13.21.【1999高中数学联赛(第01试)】已知正整数n不超过2000,并且能表示成不少于60个连续正整数之和,那么,这样的n的个数是.【答案】6【解析】首项为a的连续k个正整数之和为S k=ka+k(k+1)2⩾k(k+1)2,由S k⩽2000可得60⩽k⩽62,当k=60时S k=60a+30×59,由S k⩽2000可得a⩽3,故S k=1830,1890,1950;当k=61时S k=61a+30×61,由S k⩽2000可得a≤2,故S k=1891,1952;当k=62时S k=62a+31×61,由S k⩽2000可得a≤1,故S k=1953.所以题中的n有6个.22.【1998高中数学联赛(第01试)】各项为实数的等差数列的公差为4,其首项的平方与其余各项之和不超过100,这样的数列至多有项.【答案】8【解析】设a1,a2,⋯,a n是公差为4的等差数列,则a12+a2+a3+⋯+a n⩽100,等价于a12+(a1+4)+[a1+4(n−1)]2(n−1)⩽100,等价于a12+(n−1)a1+(2n2−2n−100)⩽0①当且仅当Δ=(n−1)2−4(2n2−2n−100)⩾0时,至少不存在一个实数a1满足不等式①.因为Δ⩾0等价于7n2−6n−401⩽0,等价于n1⩽n⩽n2②其中n1=3−√28167<0,8<n2=3+√28167<9,所以,满足不等式②的自然数n的最大值为8,即满足题设的数列至多有8项.23.【1994高中数学联赛(第01试)】已知95个数a1,a2,a3,⋯,a95,每个数都只能取+1或-1两个值之一,那么它们的两两之积的和a1a2+a1a3+⋯+a94a95的最小值是.【答案】13【解析】记N=a1a2+a1a3+⋯+a94a95①设a1,a2,⋯,a95中有m个+1,n个-1,则m+n=95②式①乘2,加上a12+a22+⋯+a952=95得(a1+a2+⋯+a95)2=2N+95.又a1+a2+⋯+a95=m−n,所以(m−n)2=2N+95.使上式成立的最小自然数N=13,此时(m−n)2=112,即m−n=±11③联立式②与③可求出m=53,n=42或m=42,n=53.据此可构造出N达到最小值的情况,故所求最小正值为13.24.【1992高中数学联赛(第01试)】设x,y,z是实数,3x,4y,5z成等比数列,且1x ,1y,1z成等差数列,则xz+zx的值是.【答案】3415【解析】由题意得{(4y)2=15xz①2y=1x+1z②,由式②得y =2xz x+z,以此代入式①有16(2xz x+z)2=15xz ,即(x+z)2xz=6415,故x z+z x=3415.25.【1992高中数学联赛(第01试)】设数列a 1,a 2,⋯,a n ,⋯满足a 1=a 2=1,a 3=2,且对任何自然数n ,都有a n a n+1a n+2≠1,又a n a n+1a n+2a n+3=a 1+a n+1+a n+2+a n+3,则a 1+a 2+⋯+a 100的值是 .【答案】200【解析】因为a 1=a 2=1,a 3=2,又a 1a 2a 3a 4=a 1+a 2+a 3+a 4,所以a 4=4. 又由条件得a n a n+1a n+2a n+3=a n +a n+1+a n+2+a n+3, a n+1a n+2a n+3a n+4=a n+1+a n+2+a n+3+a n+4.将上述两式相减,得a n+1a n+2a n+3(a n −a n+4)=a n −a n+4, 即(a n −a n+4)(a n+1a n+2a n+3−1)=0. 依已知条件a n+1a n+2a n+3≠1,故a n+4=a n . 从而∑a k 100i=1=1004(a 1+a 2+a 3+a 4)=200.26.【1988高中数学联赛(第01试)】(1)设x ≠y ,且两数列x,a 1,a 2,a 3,y 和b 1,x,b 2,b 3,y,b 4均为等差数列,那么b 4−b 3a 2−a 1= .(2)(√x +2)2n+1的展开式中,x 的整数次幂的各项系数之和为.(3)在△ABC 中,已知∠A =a ,CD ,BE 分别是AB ,AC 上的高,则DE BC= .(4)甲、乙两队各出7名队员按事先排好的顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再与负方2号队员比赛……直到有一方队员全被淘汰为止,另一方获胜,形成一种比赛过程,那么所有可能出现的比赛过程的种数为.【答案】3432【解析】(1)设两个数列的公差分别为d,d',则y−x=4d=3d′,dd′=34.所以b4−b3a2−a1=2d′d=2×43=223.(2)设(√x+2)2n+1=f(x)+√xg(x),其中f(x),g(x)是x的多项式,那么所求的是f(1).而(2+√x)2n+1+(2−√x)2n+1=f(x)+√xg(x)+f(x)−√xg(x),所以f(1)=12[(2+√1)2n+1+(2−√1)2n+1]=12(32n+1+1).(3)因为∠BDC=∠BEC,所以B,D,E,C共圆.∠ADE=∠ACB,△AED∽△ABC,DE2BC2=SΔAEDSΔABC=AD⋅AEAB⋅AC=cos2a.所以DEBC=|cosa|.(4)设甲队队员为a1,a2,⋯,a7,乙队队员为b1,b2,⋯,b7,下标表示事先安排好的出场顺序,比赛过程可表示为这14个字母互相穿插地依次排列,其前后顺序就是先后被淘汰的顺序,但最后一定是胜队中不被淘汰的队员和可能未曾参赛的队员,所以比赛过程表示为14个位置中任取7个位置安排甲队员(当然,其余位置安排乙队队员),比赛过程的总数为C147=3432.优质模拟题强化训练1.一个三角形的三条边成等比数列,那么,公比q的取值范围是__________.【答案】√5−12<q<√5+12【解析】设三边按递增顺序排列为a,aq,aq2,其中a>0,q≥1.则a+aq>aq2,即q2−q−1<0.解得1−√52<q<1+√52.由q≥1 知q的取值范围是1≤q<1+√52.设三边按递减顺序排列为a,aq,aq2,其中a>0,0<q<1.则aq2+aq>a,即q2+q−1>0.解得√5−12<q<1.综上所述,1−√52<q<1+√52.2.在数列{a n}中,a1=2,a n+a n+1=1(n∈N+),设S n为数列{a n}的前n项和,则S2017−2S2018+S2019的值为____________ .【答案】3【解析】当n为偶数时,a1+a2=a3+a4=⋯=a n−1+a n=1,故S n=n2.当n奇数时,a1=2,a2+a3=a4+a5=⋯=a n−1+a n=1,故S n=2+n−12=n+32.故S2017−2S2018+S2019=1010−2018+1011=3.故答案为:3.3.已知集合A ={1,2,3,…,2019},对于集合A 的每一个非空子集的所有元素,计算它们乘积的倒数.则所有这些倒数的和为____________ . 【答案】2019 【解析】集合A 的22019-1个非空子集中,每一个集合的所有元素之积分别为:1,2,…,2019,1×2,1×3…,2018×2019,…,1×2×…×2019,它们的倒数和为1+12+⋯+12019+11×2+11×3+⋯+12018×2019+⋯+11×2×⋯×2019=(1+1)(1+12)⋯(1+12019)−1=2×32×⋯×20202019−1=2019.故答案为:2019.4.已知数列{a n }满足:a n =[(2+√5)n +12n](n ∈N ∗),其中[x ]表示不超过实数x 的最大整数.设C 为实数,且对任意的正整数n ,都有∑1a k a k+2nk=1⩽C ,则C 的最小值是_____ .【答案】1288 【解析】记x 1=2+√5,x 2=2−√5,则a n =[x 1n+12n ]. 记T n =x 1n +x 2n,则T n+2=(x 1+x 2)T n+1−x 1x 2T n =4T n+1+T n ,而T 1=x 1+x 2=4,T 2=x 12+x 22=(x 1+x 2)2−2x 1x 2=18,因此,对任意的正整数n ,T n ∈Z .又注意到−12<2−√5<0,从而|x 2|<12,于是−1+12n ⩽−12n <x 2n<12n .因此,x 1n +x 2n −1<x 1n +12n −1<a n ⩽x 1n +12n =x 1n +(−1+12n )+1<x 1n +x 2n +1. 又注意到x 1n +x 2n −1,a n ,x 1n +x 2n +1均为整数,故a n =x 1n +x 2n. 于是a n+2=4a n+1+a n ,且a 1=4,a 2=18.又1ak a k+2=14⋅4a k+1a k a k+1a k+2=14⋅a k+2−a k a k a k+1a k+2=14(1a k a k+1−1a k+1a k+2),故∑1a k a k+2nk=1=14∑(1a k a k+1−1a k+1a k+2)nk=1=14(1a 1a 2−1a n+1a n+2)=1288−14a n+1a n+2.显然a n >0,于是a n+2>4a n+1,从而a n ⩾4n−2a 2(n ⩾2), 故limn→∞1a n+1a n+2=0.因此,∑1a k a k+2nk=1<1288,且lim n→∞(∑1a k a k+2nk=1)=1288.所以,常数C 的最小值为1288.故答案为:1288.5.等差数列{a n }中,a 2=5,a 6=21,记数列{1a n}的前n 项和为S n ,若S 2n+1−S n ⩽m15对任意的n ∈N +恒成立,则正整数m 的最小值为____________ . 【答案】5 【解析】由题意可得:{a 1+d =5a 1+5d =21,解得a 1=1,d =4,∴1a n=11+4(n−1)=14n−3,∵(S 2n+1−S n )−(S 2n+3−S n+1)=(1a n+1+1a n+2+⋯+1a2n+1)−(1a n+2+1a n+3+⋯+1a2n+3)=1a n+1−1a2n+2−1a2n+3=14n+1−18n+5−18n+9=(18n+2−18n+5)+(18n+2−18n+9)>0,∴数列{S2n+1−S n}(n∈N∗)是递减数列,数列{S2n+1−S n}(n∈N∗)的最大项为S3−S1=15+19=1445,∵1445⩽m15,∴m⩾143,又∵m是正整数,∴m的最小值为5.故答案为:5.6.公差为d,各项皆为正整数的等差数列{a n},若a1=1919,a m=1949,a n=2019,则正整数m+n的最小值是___ _________ .【答案】15【解析】1949=1919+(m−1)d,2019=1919+(n−1)d,显然有m>1,n>1,d=30m−1,以及d=100n−1,得去d得:10m−3n=7,其通解为{m=1+3tn=1+10t,为使m>1,n>1且d为正整数,则正整数t只能在{1,2,5,10}中取值(因(30,100)=10,t取值只能为10的正因数).当t=1时,m=4,n=11为最小,此时m+n=15.故答案为:15.7.数列{a n}满足:a0=√3,a n+1=[a n]+1{a n}(其中[a n]和{a n}分别表示实数a n的整数部分与小数部分),则a2019= ____________ .【答案】3029+√3−12【解析】a0=1+(√3−1),a1=1√3−1=2+√3−12,a2=2√3−1=3+√3=4+(√3−1),a3=4√3−1=5+√3−12,归纳易得,a2k=3k+1+(√3−1),a2k+1=3k+2+√3−12.因此a2019=3029+√3−12.故答案为:3029+√3−12.8.设等差数列{a n}的公差为d(d≠0),前n项和为S n.若数列{√8S n+2n}也是公差为d的等差数列,则数列{a n}的通项a n=________.【答案】4n−94【解析】设a n=a1+(n−1)d=dn+a,这里a=a1-d,于是S n=na1+n(n−1)2d=d2n2+(a1−d2)n=d2n2+(a+d2)n,所以√8S n+2n=√4dn2+(8a+4d+2)n,故√4dn2+(8a+4d+2)n=dn+b,这里b=√8a1+2−d.所以4dn2+(8a+4d+2)n=d2n2+2bdn+b2,于是4d=d2,8a+4d+2=2bd,b2=0,解得d=4,b=0,a=−94,故a n=4n−94.故答案为:4n−94.9.设数列{a n}满足:a1=1,4a n+1−a n+1a n+4a n=9,则a2018=______.【答案】53【解析】由4a n+1−a n+1a n+4a n=9可得(4−a n)(4−a n+1)=7.设b n=4−a n,则有b n b n+1=7.又b1=4−a1=3,故b2=73.一般地,有b2k−1=3,b2k=73,于是a2k−1=4−3=1,a2k=4−73=53,所以a2018=53.10.数列{a n}满足a1=1,a2=3,且a n+2=|a n+1|−a n(n∈N+),记{a n}的前n项和为S n.则S100=_________ _.【答案】89【解析】由已知得a k+9=a k,则S100=a1+11(a1+a2+⋯+a9)=8911.已知数列{a n}前n项和为S n,a1=15,且对任意正整数m、n,均有a m+n=a m a n若S n<a对任意的n∈Z+恒成立,则实数a的最小值为______.【答案】14【解析】由题意,取m =1得a n+1=a 1a n =15a n .又a 1=15,则{a n }是以为首项、为公比的等比数列,即a n =15n (n ∈Z +)故S n =a 1+a 2+⋯+a n =15+152+⋯+15n =15×1−15n 1−15=14(1−15n ) 由对任意的n ∈Z +,均有S n <a 1,知a =14.12.已知数列{a n }满足a 1=0,|a n+1|=|a n −2|.记数列{a n }的前2016项和为S .则S 的最大值为______.【答案】2016【解析】由|a k+1|=|a k −2|⇒a k+12=a k 2−4a k +4(k =1,2,⋅⋅⋅,2016).累加得a 20172=a 12−4S +4×2016≥0.因此,S ≤2016.当k 为奇数时,a k =0;当k 为偶数时,a k =2,此时可取等号. 13.已知数列{a n }满足a n+1=3n+1⋅a n a n +3n+1,a 1=3,则数列{a n }的通项公式是______. 【答案】a n =2⋅3n 3n −1【解析】 由a n+1=3n+1⋅a n an +3n+1可得1a n+1−1a n =13n+1,a 1=3, 则1a 2−1a 1=132,1a 3−1a 2=133,⋅⋅⋅,1a n −1a n−1=13n .以下用累加法得,1a n −1a 1=132+133+⋅⋅⋅+13n . 得到1a n =13+132+⋅⋅⋅+13n =13(1−13n )1−13=12(1−13n ),从而,a n =2⋅3n3n −1.14.在数列{a n }中,若a n 2−a n−12=p(n ≥2,n ∈N ∗,p 为常数),则称{a n }为“等方差数列”.下列是对“等方差数列”的判断:①数列{(−1)n }是等方差数列;②若{a n }是等方差数列,则{a n 2}是等差数列;③若{a n }是等方差数列,则{a kn }(k ∈N ∗,k 为常数)也是等方差数列; ④若{a n }既是等方差数列,又是等差数列,则该数列为常数列.其中正确的命题序号为________.(将所有正确的命题序号填在横线上)【答案】①②③④【解析】①因为[(−1)n ]2−[(−1)n−1]2=0,所以{(−1)n }符合“等方差数列”定义; ②根据定义,显然{a n 2}是等差数列;③a kn 2−a k(n−1)2=a kn 2−a kn−12+a kn−12−a kn−22+⋯+a kn−k+12−a k(n−1)2=kp 符合定义; ④数列{a n }满足a n 2−a n−12=p ,a n −a n−1=d (d 为常数).若d=0,显然{a n }为常数列; 若d≠0,则两式相除得a n +a n−1=p d ,所以a n =d 2+p 2d (常数),即{a n }为常数列.故答案为:①②③④15.设数列{a n }满足a 1=1 ,a n+1=5a n +1 (n =1,2,…),则 ∑2018n=1a n =________.【答案】5201916−807716【解析】由a n+1=5a n +1⇒a n+1+14=5(a n +14)⇒a n =5n 4−14,所以∑2018n=1a n =14(51+52+⋯+52018)−20184=516(52018−1)−20184=5201916−807716.16.已知数列{a n }满足a 1=1,a n+1=na n +2(n+1)2n+2,则数列{a n }的通项公式为__________. 【答案】16n(n +1)(n +2)【解析】由题设得(n +2)a n+1=na n +2(n +1)2⇒(n +1)(n +2)a n+1=n(n +1)a n +2(n +1)3. 令b n =n(n +1)a n ,则b 1=2,b n+1=b n +2(n +1)3.故b n =b 1+∑(b i+1−b i )n−1i=1=2(1+23+33+⋯+n 3)=12n 2(n +1)2.于是,数列{a n }的通项公式为a n =b n n(n+1)=12n(n +1). 因此,前n 项的和为S n =12(∑n k=1k 2+∑n k=1k) =12[n(n+1)(2n+1)6+n(n+1)2]=16n(n +1)(n +2).17.已知2015个正整数a 1,a 2,⋯,a 2015满足a 1=1,a 2=8,a n+1=3a n −2a n−1(n ≥2,且n ∈N).则a 2015−a 2014的所有正因子之和为_________。

2019年全国高中数学联赛试题及答案详解(B卷)

2019年全国高中数学联赛试题及答案详解(B卷)

2019年全国高中数学联合竞赛一试(B 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 已知实数集合{1,2,3,}x 的最大元素等于该集合的所有元素之和,则x 的值为 .答案:3-.解:条件等价于1,2,3,x 中除最大数以外的另三个数之和为0.显然0x <,从而120x ++=,得3x =-.2. 若平面向量(2,1)m a =-与1(21,2)m m b +=-垂直,其中m 为实数,则a 的模为 .答案解:令2m t =,则0t >.条件等价于(1)(1)20t t t ⋅-+-⋅=,解得3t =.因此a=.3. 设,(0,)a b p Î,cos ,cos a b 是方程25310x x --=的两根,则sin sin a b 的值为 .答案:5. 解:由条件知31cos cos ,cos cos 55a b a b +==-,从而222(sin sin )(1cos )(1cos )a b a b =--22221cos cos cos cos a b a b=--+2222437(1cos cos )(cos cos )5525a b a b æöæö÷çç=+-+=-=÷çç÷ççèøè.又由,(0,)a b p Î知sin sin 0a b >,从而sin sin 5a b =. 4. 设三棱锥P ABC -满足3,2PA PB AB BC CA =====,则该三棱锥的体积的最大值为 .答案:3. 解:设三棱锥P ABC -的高为h .取M 为棱AB 的中点,则h PM £==.当平面PAB 垂直于平面ABC 时,h 取到最大值.此时三棱锥P ABC -的体积取到最大值11333ABC S D ⋅==.5. 将5个数2,0,1,9,2019按任意次序排成一行,拼成一个8位数(首位不为0),则产生的不同的8位数的个数为 .答案:95. 解:易知2,0,1,9,2019的所有不以0为开头的排列共有44!96´=个.其中,除了(2,0,1,9,2019)和(2019,2,0,1,9)这两种排列对应同一个数20192019,其余的数互不相等.因此满足条件的8位数的个数为96195-=.6. 设整数4n >,(1)n x +的展开式中4n x -与xy 两项的系数相等,则n 的值为 .答案:51.解:注意到0(1)C 1)nnr n r r nr x x -=+=å.其中4n x -项仅出现在求和指标4r =时的展开式444C 1)n n x-中,其4n x -项系数为44(1)(2)(3)(1)C 24n n n n n ----=.而xy 项仅出现在求和指标1r n =-时的展开式11C 1)n n nx --⋅中,其xy 项系数为12331C C 4(1)(1)2(1)(2)n n n n n n n n ----⋅-=---. 因此有3(1)(2)(3)(1)2(1)(2)24n n n n n n n n ----=---.注意到4n >,化简得33(1)48n n --=-,故只能是n 为奇数且348n -=.解得51n =.7. 在平面直角坐标系中,若以(1,0)r +为圆心、r 为半径的圆上存在一点(,)a b 满足24b a ³,则r 的最小值为 .答案:4.解:由条件知222(1)a r b r --+=,故22224(1)2(1)(1)a b r a r r a a £=---=---.即22(1)210a r a r --++£.上述关于a 的一元二次不等式有解,故判别式2(2(1))4(21)4(4)0r r r r --+=-³,解得4r ³.经检验,当4r =时,(,)(3,a b =满足条件.因此r 的最小值为4.8. 设等差数列{}n a 的各项均为整数,首项12019a =,且对任意正整数n ,总存在正整数m ,使得12n m a a a a +++=.这样的数列{}n a 的个数为 .答案:5.解:设{}n a 的公差为d .由条件知12k a a a +=(k 是某个正整数),则 112(1)a d a k d +=+-,即1(2)k d a -=,因此必有2k ¹,且12ad k =-.这样就有1111(1)2n n a a n d a a k -=+-=+-,而此时对任意正整数n ,12111(1)(1)(1)22n n n n n a a a a n d a n a d --+++=+=+-+ 1(1)(1)(2)2n n a n k d æö-÷ç=+--+÷ç÷çèø, 确实为{}n a 中的一项.因此,仅需考虑使12|k a -成立的正整数k 的个数.注意到2019为两个素数3与673之积,易知2k -可取1,1,3,673,2019-这5个值,对应得到5个满足条件的等差数列.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)在椭圆G 中,F 为一个焦点,,A B 为两个顶点.若3,2FA FB ==,求AB 的所有可能值.解:不妨设平面直角坐标系中椭圆G 的标准方程为22221(0)x y a b a b+=>>,并记c =F 为G 的右焦点.易知F 到G 的左顶点的距离为a c +,到右顶点的距离为a c -,到上、下顶点的距离均为a .分以下情况讨论:(1) ,A B 分别为左、右顶点.此时3,2a c a c +=-=,故25AB a ==(相应地,2()()6b a c a c =+-=,G 的方程为2241256x y +=). …………………4分(2) A 为左顶点,B 为上顶点或下顶点.此时3,2a c a +==,故1c =,进而2223b a c =-=,所以AB ==G 的方程为22143x y +=). …………………8分 (3) A 为上顶点或下顶点,B 为右顶点.此时3,2a a c =-=,故1c =,进而2228b a c =-=,所以AB ==G 的方程为22198x y +=).…………………12分 综上可知,AB的所有可能值为5,. …………………16分10. (本题满分20分)设,,a b c 均大于1,满足lg log 3,lg log 4.b a a c b c ì+=ïïíï+=ïî求lg lg a c ⋅的最大值.解:设lg ,lg ,lg a x b y c z ===,由,,1a b c >可知,,0x y z >.由条件及换底公式知3,4z zx y y x+=+=,即34xy z y x +==.…………………5分由此,令3,4(0)x t y t t ==>,则241212z x xy t t =-=-.其中由0z >可知(0,1)t Î. …………………10分因此,结合三元平均值不等式得2lg lg 312(1)18(22)a c xz t t t t t ==⋅-=⋅-33(22)2161818333t t t æöæö++-÷çç£⋅=⋅=÷çç÷ççèèø. 当22t t =-,即23t =(相应的,,a b c 分别为8833100,10,10)时,lg lg a c 取到最大值163. …………………20分11. (本题满分20分)设复数数列{}n z 满足:11z =,且对任意正整数n ,均有2211420n n n n z z z z ++++=.证明:对任意正整数m ,均有123m z z z +++<. 证明:归纳地可知*0()n z n N ¹Î.由条件得2*114210()n n n n z z n z z N ++æöæö÷çç÷++=Îçç÷çç÷èøèø,解得*11()4N n n z n z +-=Î. …………………5分因此1112n n nnz z z z ++===,故*11111()22N n n n z z n --=⋅=Î. ①进而有*11111()22N n n n n n n n z z z z n z ++-+=⋅+==Î. ②…………………10分当m 为偶数时,设*2()N m s s =Î.利用②可得122122122111123sm k k k k k k k k z z z z z z z ¥¥---===+++£+<+==ååå. …………………15分 当m 为奇数时,设21()N m s s =+Î.由①、②可知21212221211112322s k k s s k k s k s z z z ¥¥+---=+=+=<==+⋅åå, 故1221221212113s m k k s k k k k z z z z z z z z ¥-+-==æö÷ç+++£++<+=÷ç÷çèøåå. 综上,结论获证. …………………20分2019年全国高中数学联合竞赛加试(B 卷)参考答案及评分标准说明:1. 评阅试卷时,请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一、(本题满分40分)设正实数12100,,,a a a 满足101(1,2,,50)i i a a i -³=.记112(1,2,,99)k k kka x k a a a +==+++.证明:29912991x x x £.证明:注意到12100,,,0a a a >.对1,2,,99k =,由平均值不等式知121210kk k k a a a a a a æöç<£çç+++èø, ……………10分 从而有9999299112991111212kk k k k k k k ka k x x x a a a a a a a ++==æö÷ç÷=£ç÷÷ç+++èø . ①………………20分记①的右端为T ,则对任意1,2,,100i =,i a 在T 的分子中的次数为1i -,在T 的分母中的次数为100i -.从而10121005050210121012(101)101101101111ii i i i i i i i i i ia T a a a a -------===æö÷ç÷===ç÷ç÷èø .………………30分又1010(1,2,,50)i i a a i -<£=,故1T £,结合①得29912991x x x T ££. ………………40分二、(本题满分40分)求满足以下条件的所有正整数n :(1) n 至少有4个正约数;(2) 若12k d d d <<< 是n 的所有正约数,则21321,,,k k d d d d d d ---- 构成等比数列.解:由条件可知4k ≥,且3212112kk k k d d d d d d d d -----=--. ………………10分 易知112231,,,k k k n nd d n d d d d --====,代入上式得3222231n n d d d n n d d d --=--, 化简得223223()(1)d d d d -=-. ………………20分由此可知3d 是完全平方数.由于2d p =是n 的最小素因子,3d 是平方数,故只能23d p =. ………………30分从而序列21321,,,k k d d d d d d ---- 为23212,1,,,k k p p p p p p p ------ ,即123,,,,k d d d d 为21,1,,,k p p p - ,而此时相应的n 为1k p -.综上可知,满足条件的n 为所有形如a p 的数,其中p 是素数,整数3a ≥. ………………40分三、(本题满分50分)如图,点,,,,A B C D E在一条直线上顺次排列,满足BC CD ==,点P 在该直线外,满足PB PD =.点,K L 分别在线段,PB PD 上,满足KC 平分BKE ,LC 平分ALD .证明:,,,A K L E 四点共圆.(答题时请将图画在答卷纸上)证明:令1,(0)AB BC CD t ===>,由条件知2DE t =.注意到180BKE ABK PDE DEK < = < - ,可在CB 延长线上取一点A ¢,使得A KE ABK A BK ¢¢ = = . ………………10分此时有A BK A KE ∽¢¢D D ,故A B A K BKA K A E KE¢¢==¢¢. ………………20分 又KC 平分BKE ,故211BK BC t KE CE t t t===++.于是有 22112A B A B A K BK AB A E A K A E KE t t AEæö¢¢¢÷ç=⋅===÷ç÷碢¢èø++. …………30分 由上式两端减1,得BE BEA E AE=¢,从而A A ¢=.因此AKE A KE ABK ¢ = = . 同理可得ALE EDL = .而ABK EDL = ,所以AKE ALE = .因此,,,A K L E 四点共圆. ………………50分四、(本题满分50分)将一个凸2019边形的每条边任意染为红、黄、蓝三种颜色之一,每种颜色的边各673条.证明:可作这个凸2019边形的2016条在内部互不相交的对角线将其剖分成2017个三角形,并将所作的每条对角线也染AA (为红、黄、蓝三种颜色之一,使得每个三角形的三条边或者颜色全部相同,或者颜色互不相同.证明:我们对5n ≥归纳证明加强的命题:如果将凸n 边形的边染为三种颜色,,a b c ,并且三种颜色的边均至少有一条,那么可作满足要求的三角形剖分. ………………10分当5n =时,若三种颜色的边数为1,1,3,由对称性,只需考虑如下两种情形,分别可作图中所示的三角形剖分.若三种颜色的边数为1,2,2,由对称性,只需考虑如下三种情形,分别可作图中所示的三角形剖分.………………20分假设结论对(5)n n ≥成立,考虑1n +的情形,将凸1n +边形记为121n A A A + . 情形1:有两种颜色的边各只有一条.不妨设,a b 色边各只有一条.由于16n +≥,故存在连续两条边均为c 色,不妨设是111,n n n A A A A ++.作对角线1n A A ,并将1n A A 染为c 色,则三角形11n n A A A +的三边全部同色.此时凸n 边形12n A A A 的三种颜色的边均至少有一条,由归纳假设,可对其作符合要求的三角形剖分.………………30分 情形2:某种颜色的边只有一条,其余颜色的边均至少两条.不妨设a 色边只有一条,于是可以选择两条相邻边均不是a 色,不妨设111,n n n A A A A ++均不是a 色,作对角线1n A A ,则1n A A 有唯一的染色方式,使得三角形11n n A A A +的三边全部同色或互不同色.此时凸n 边形12n A A A 的三种颜色的边均至少有一条,由归纳假设,可对其作符合要求的三角形剖分. ………………40分情形3:每种颜色的边均至少两条.作对角线1n A A ,则1n A A 有唯一的染色方式,使得三角形11n n A A A +的三边全部同色或互不同色.此时凸n 边形12n A A A 的三种颜色的边均至少有一条,由归纳假设,可对其作符合要求的三角形剖分.综合以上3种情形,可知1n +的情形下结论也成立.由数学归纳法,结论获证. ………………50分。

历年全国高中数学竞赛试卷及答案(77套)

历年全国高中数学竞赛试卷及答案(77套)
A.M P NB.M N PC.P N MD.A、B、C都不成立
4.已知三个平面α、β、γ,每两个之间的夹角都是θ,且α∩β=a,β∩γ=b,γ∩α=c.若有
命题甲:θ> ;
命题乙:a、b、c相交于一点.

A.甲是乙的充分条件但不必要B.甲是乙的必要条件但不充分
C.甲是乙的充分必要条件D.A、B、C都不对
化简得, ①
与抛物线方程联立,得
即 ②
此时,方程②有两个相等的根:
代入①,得
所以直线DE与此抛物线有且只有一个公共点 ……10分
(2) ……15分
设直线DE与x轴交于点G,令
解得
于是
所以 ……20分
16.解:取
(1)先证:
因为
……5分
(2)再证:
综上可知,α的最大值是3,β的最小值是3 ……20分
1988年全国高中数学联赛试题
(2)设直线DE与此抛物线的公共点F,记△BCF与△ADE的面积分别为 ,求 的值.
16.设 为实数,若对任意的实数 恒成立,其中
求 的最大值和 的最小值
2017年全国高中数学联赛(四川初赛)试题
草考答案及评分标准
一,选择题(本大题共6个小题,每小题5分,共30分)
1.A 2.B 3.C 4.C 5.B 6.A
5.在坐标平面上,纵横坐标都是整数的点叫做整点,我们用I表示所有直线的集合,M表示恰好通过1个整点的集合,N表示不通过任何整点的直线的集合,P表示通过无穷多个整点的直线的集合.那么表达式 ⑴M∪N∪P=I; ⑵N≠Ø. ⑶M≠Ø. ⑷P≠Ø中,正确的表达式的个数是
A.1B.2C.3D.4
解:均正确,选D.
⑴ 点(1,1)∈ln,(n=1,2,3,……);

2016年全国高中数学联赛(B卷)试题及答案

2016年全国高中数学联赛(B卷)试题及答案

2016年全国高中数学联赛(B卷)试题及答案2016年全国高中数学联赛(B 卷)试题及答案一试一、选择题:(每小题8分,共64分) 1.等比数列{}n a 的各项均为正数,且213263236,a a a a a ++=则24aa +的值为.答案:6. 解:由于()2222132632424243622,a a a a a a a a a a a =++=++=+且240,a a +>故24 6.aa +=另解:设等比数列的公比为q ,则52611.a a a q a q +=+又因()()()()()22252132********2223331111112436222,a a a a a a a q a q a q a q a q a q a qa q a q a q aa =++=⋅+⋅+=+⋅⋅+=+=+而24a a+>,从而24 6.aa +=2.设{}|12A a a =-≤≤,则平面点集(){},|,,0B x y x y A x y =∈+≥的面积为 . 答案:7.解:点集B 如图中阴影部分所示,其面积为133227.2MRSMNPQS S -=⨯-⨯⨯=正方形3.已知复数z 满足22z z z z+=≠(z 表示z 的共轭复数),则z 的所有可能值的积为 .答案:3.解:设()i ,.z a b a b R =+∈由22z z z +=知, 222i 22i i,a b ab a b a b -+++=-比较虚、实部得220,230.a b a ab b -+=+=又由z z ≠知0b ≠,从而有230,a +=即32a =-,进而23b a a =+=于是,满足条件的复数z 的积为3333 3.22⎛⎫⎛⎫-+--= ⎪⎪ ⎪⎪⎝⎭⎝⎭4.已知()(),f x g x 均为定义在R 上的函数,()f x 的图像关于直线1x =对称,()g x 的图像关于点()1,2-中心对称,且()()391xf xg x x +=++,则()()22f g 的值为 .答案:2016. 解:由条件知()()002,f g += ①()()22818190.f g +=++= ②由()(),f x g x 图像的对称性,可得()()()()02,024,f f g g =+=-结合①知,()()()()22400 2.f g f g --=+= ③由②、③解得()()248,242,f g ==从而()()2248422016.f g =⨯= 另解:因为()()391x f x g x x +=++, ①所以()()2290.f g += ②因为()f x 的图像关于直线1x =对称,所以()()2.f x f x =- ③又因为()g x 的图像关于点()1,2-中心对称,所以函数()()12h x g x =++是奇函数,()()h x h x -=-,()()1212g x g x ⎡⎤-++=-++⎣⎦,从而()()2 4.g x g x =--- ④将③、④代入①,再移项,得()()3229 5.x f x g x x ---=++ ⑤在⑤式中令0x =,得()()22 6.f g -= ⑥由②、⑥解得()()248,246.f g ==于是()()222016.f g = 5.将红、黄、蓝3个球随机放入5个不同的盒子,,,,A B C D E 中,恰有两个球放在同一盒子的概率为 . 解:样本空间中有35125=个元素.而满足恰有两个球放在同一盒子的元素个数为223560.C P ⨯=过所求的概率为6012.12525p == 6.在平面直角坐标系xOy 中,圆221:0C xy a +-=关于直线l 对称的圆为222:2230,C xy x ay ++-+=则直线l 的方程为 .答案:2450.x y -+=解:12,C C 的标准方程分别为 ()()2222212:1,:1 2.C x y C x y a a +=++-=-由于两圆关于直线l 对称,所以它们的半径相等.因此220,a a=->解得 2.a =故12,C C 的圆心分别是()()120,0,1,2.O O -直线l 就是线段12O O 的垂直平分线,它通过12O O 的中点1,12M ⎛⎫- ⎪⎝⎭,由此可得直线l 的方程是2450.x y -+=7.已知正四棱锥V -ABCD 的高等于AB 长度的一半,M 是侧棱VB 的中点,N 是侧棱VD 上点,满足2DN VN=,则异面直线,AM BN所成角的余弦值为 .解:如图,以底面ABCD 的中心O 为坐标原点,,,AB BC OVu u u r u u u r u u u r 的方向为,,x y z 轴的正向,V DN yxOzMCBA建立空间直角坐标系.不妨设2,AB =此时高1,VO =从而()()()()1,1,0,1,1,0,1,1,0,0,0,1.A B D V ----由条件知111112,,,,,222333M N ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,因此 311442,,,,,.222333AM BN ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭u u u u r u u u r设异面直线,AM BN 所成的角为θ,则111cos 112AM BN AM BNθ⋅-===⋅⨯u u u u r u u u r u u u u r u u u r8.设正整数n 满足2016n ≤,且324612n n n n ⎧⎫⎧⎫⎧⎫⎧⎫+++=⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭.这样的n 的个数为 .这里{}[]x x x =-,其中[]x 表示不超过x 的最大整数. 解:由于对任意整数n ,有 135113,2461224612n n n n ⎧⎫⎧⎫⎧⎫⎧⎫+++≤+++=⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭ 等号成立的充分必要条件是()1mod12n ≡-,结合12016n ≤≤知,满足条件的所有正整数为()1211,2,,168,n k k =-=L 共有168个.另解:首先注意到,若m 为正整数,则对任意整数,x y ,若()mod x y m ≡,则.x y m m ⎧⎫⎧⎫=⎨⎬⎨⎬⎩⎭⎩⎭这是因为,当()mod x y m ≡时,x y mt =+,这里t 是一个整数,故.x x x y mt y mt y y y y y t t m m m m m m m m m m ++⎧⎫⎡⎤⎡⎤⎡⎤⎡⎤⎧⎫=-=-=+-+=-=⎨⎬⎨⎬⎢⎥⎢⎥⎢⎥⎢⎥⎩⎭⎣⎦⎣⎦⎣⎦⎣⎦⎩⎭因此,当整数12,n n 满足()12mod12n n ≡时,11112222.2461224612n n n n n n n n ⎧⎫⎧⎫⎧⎫⎧⎫⎧⎫⎧⎫⎧⎫⎧⎫+++=+++⎨⎬⎨⎬⎨⎬⎨⎬⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭⎩⎭⎩⎭⎩⎭⎩⎭容易验证,当正整数满足112n ≤≤时,只有当11n =时,等式324612n n n n ⎧⎫⎧⎫⎧⎫⎧⎫+++=⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭才成立.而201612168=⨯,故当12016n ≤≤时,满足324612n n n n ⎧⎫⎧⎫⎧⎫⎧⎫+++=⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭正整数n 的个数为168.二、解答题:(共3小题,共56分) 9.(16分)已知{}na 是各项均为正数的等比数列,且5051,a a 是方程 ()2100lg lg 100x x =的两个不同的解,求12100a a a L 的值.解 对50,51k =,有()2100lg lg 1002lg ,k k k a a a ==+即()2100lg lg 20.kka a --=因此,5051lg ,lg aa 是一元二次方程210020tt --=的两个不同实根,从而()505150511lg lg lg ,100a a a a =+=即1100505110.aa =由等比数列的性质知,()501501001210050511010.a a aa a ⎛⎫=== ⎪⎝⎭L 10.(20分)在ABC中,已知23.AB AC BA BC CA CB ⋅+⋅=⋅u u u r u u u r u u u r u u u r u u u r u u u r(1)将,,BC CA AB 的长分别记为,,a b c ,证明:22223a b c +=;(2)求cos C 的最小值.解 (1)由数量积的定义及余弦定理知,222cos .2b c a AB AC cb A +-⋅==u u u r u u u r 同理得,222222,.22a cb a bc BA BC CA CB +-+-⋅=⋅=u u u r u u u r u u u r u u u r 故已知条件化为()()22222222223,b c a a c b a b c +-++-=+-即22223.ab c +=(2)由余弦定理及基本不等式,得()2222222123cos 2223636a b a b a b c C ab ab a b a b b a b a +-++-===+≥⋅等号成立当且仅当::36 5.a b c =因此cos C 的最小值211.(20分)在平面直角坐标系xOy 中,双曲线C的方程为221xy -=.求符合以下要求的所有大于1的实数a :过点(),0a 任意作两条互相垂直的直线1l与2l ,若1l 与双曲线C 交于,P Q 两点,2l 与C 交于,R S 两点,则总有PQ RS =成立.解 过点(),0a 作两条互相垂直的直线1:l x a =与2:0.l y =易知,1l 与C 交于点((22001,,1P a a Q a a ---(注意这里1a >),2l 与C交于点()()001,0,1,0,R S -由条件知20000212a PQ R S -===,解得 2.a =这意味着符合条件的a 2.下面验证2a事实上,当12,l l 中有某条直线斜率不存在时,则可设12:,:0l x a l y ==,就是前面所讨论的12,l l 的情况,这时有.PQ RS =若12,l l 的斜率都存在,不妨设((()121:2,:20,l y k x l y x k k==-≠ 注意这里1k ≠±(否则1l 将与C 的渐近线平行,从而1l与C 只有一个交点). 联立1l 与C 的方程知,(222210,x k x ---=即()2222122210,k x k x k ----=这是一个二次方程式,其判别式为2440k∆=+>.故1l与C 有两个不同的交点,P Q .同样,2l 与C 也有两个不同的交点,.R S 由弦长公式知,2222244112.11k k PQ k k k ++=+=⋅--用1k-代替k ,同理可得()()22221122.11k k RS k k --+-+=⋅=---于是.PQ RS =综上所述,2a =加试一、(40分)非负实数122016,,,x x x L 和实数122016,,,y y yL 满足:(1)221,1,2,,2016kk xy k +==L ;(2)122016y yy +++L 是奇数.求122016x xx +++L 的最小值.解:由已知条件(1)可得:1,1,1,2,,2016,kk xy k ≤≤=L 于是(注意0ix ≥)()2016201620162016201622211111120162016.kkkkk k k k k k x xy yy =====≥=-=-≥-∑∑∑∑∑ ① 不妨设112016,,0,,,0,02016,mm y yy y m +>≤≤≤L L 则201611,2016.mkk k k m ym y m ==+≤-≤-∑∑若11m kk ym =>-∑,并且201612015,kk m ym =+->-∑令 2016111,2015,mkk k k m ym a y m b ==+=-+-=-+∑∑则0,1,a b <<于是()201620161111201522016,m kkk k k k m y yy m a m b m a b ===+=+=-+--+=-+-∑∑∑由条件(2)知,20161kk y =∑是奇数,所以a b -是奇数,这与0,1a b <<矛盾. 因此必有11m kk ym =≤-∑,或者201612015,kk m ym =+-≤-∑则201620161112015.m kk k k k k m yy y ===+=-≤∑∑∑于是结合①得201611.kk x=≥∑又当122015201612201520160,1,1,0x xx x y y y y ==========L L 时满足题设条件,且使得不等式等号成立,所以122016x x x +++L 的最小值为1.二、(40分)设,n k 是正整数,且n 是奇数.已知2n 的不超过k 的正约数的个数为奇数,证明:2n 有一个约数d ,满足2.k d k <≤ 证明:记{}||2,0,A d d n d k d =<≤是奇数,{}||2,0,B d d n d k d =<≤是偶数,则,2A B n =∅I 的不超过k 的正约数的集合是.A B U 若结论不成立,我们证明.A B =对d A ∈,因为d 是奇数,故2|2d n ,又22d k ≤,而2n 没有在区间(],2k k 中的约数,故2d k ≤,即2d B ∈,故.A B ≤反过来,对d B ∈,设2d d '=,则|d n ',d '是奇数,又2k d k '≤<,故,d A '∈从而.B A ≤ 所以.A B =故2n 的不超过k 的正约数的个数为偶数,与已知矛盾.从而结论成立.三、(50分)如图所示,ABCD 是平行四边形,G 是ABD 的重心,点,P Q 在直线BD 上,使得,.GP PC GQ QC ⊥⊥证明:AG 平分.PAQ ∠Q GPDBA 解:连接AC ,与BD 交于点.M 由平行四边形的性质,点M 是,AC BD 的中点.因此,GM Q PODB A点G 在线段AC 上.由于90GPC GQC ∠=∠=o,所以,,,P G Q C 四点共圆,并且其外接圆是以GC 为直径的圆.由相交弦定理知 .PM MQ GM MC ⋅=⋅ ①取GC 的中点.O 注意到::2:1:3,AG GM MC =故有1,2OC GC AG == 因此,G O 关于点M 对称.于是.GM MC AM MO ⋅=⋅ ②结合①、②,有PM MQ AM MO ⋅=⋅,因此,,,A P O Q 四点共圆.又1,2OP OQ GC ==所以PAO QAO ∠=∠,即AG 平分.PAQ ∠ 四、(50分)设A 是任意一个11元实数集合.令集合{}|,,.B uv u v A u v =∈≠求B 的元素个数的最小值.解:先证明17.B ≥考虑到将A 中的所有元素均变为原来的相反数时,集合B 不变,故不妨设A 中正数个数不少于负数个数.下面分类讨论:情况一:A 中没有负数.设1211a a a <<<L 是A 中的全部元素,这里120,0,a a ≥>于是1223242113111011,a a a a a a a a a a a a <<<<<<<L L 上式从小到大共有19818++=个数,它们均是B 的元素,这表明18.B ≥情况二:A 中至少有一个负数.设12,,,k b b b L 是A 中的全部非负元素,12,,,lc c c L 是A 中的全部负元素.不妨设110,l kc c b b <<<≤<<L L 其中,k l 为正整数,11k l +=,而k l ≥,故 6.k ≥于是有 111212,k k l kc b c b c b c b c b >>>>>>L L 它们是B 中的110k l +-=个元素,且非正数;又有 23242526364656,b b b b b b b b b b b b b b <<<<<< 它们是B 中的7个元素,且为正数.故10717.B ≥+= 由此可知,17.B ≥另一方面,令{}2340,1,2,2,2,2,A =±±±±±则{}236780,1,2,2,2,,2,2,2B =-±±±±±-L 是个17元集合.综上所述,B 的元素个数的最小值为17.。

2019年全国高中数学联赛试题及答案详解(B卷)

2019年全国高中数学联赛试题及答案详解(B卷)

3 22 s-1
=
¥ k=s+1
3 22k-1
¥
=
k=s+1
z2k-1 + z2k


å å z1 + z2 ++ zm
£
æçççè
k
s =1
z2k-1 + z2k ÷ö÷÷ø+
z2 s+1
¥
<
k =1
z2k-1 + z2k
=
2
3 3

综上,结论获证.
…………………20 分
2019 年全国高中数学联合竞赛加试(B 卷) 参考答案及评分标准
3. 设 a, b Î (0, p) ,cosa, cosb 是方程 5x2 -3x -1= 0 的两根,则 sin asin b 的
值为

答案:
7 5

解:由条件知 cosa + cosb = 3 , cosa cos b = -1 ,从而
5
5
(sin a sin b)2 = (1-cos2a)(1- cos2 b) = 1- cos2a - cos2 b + cos2a cos2 b
=
(-1)n-32n(n -1)(n
- 2)

因此有
n(n
-1)(n 24
2)(n
-
3)
=
(-1)n-3
2n(n
-1)(n
-
2)
.注意到
n
>
4
,化简得
n -3 = (-1)n-3 48 ,故只能是 n 为奇数且 n - 3 = 48 .解得 n = 51.

2018年全国高中数学联赛试题与解析B卷

2018年全国高中数学联赛试题与解析B卷
2
o 二二 f(x ) 三1 仲 !( 却一6)三 f(x )三/(4-的,
(用含有r的式子表示〉.
z, =一,Z2 =一,Z3 =-,
因此 W= Z1 �2 +毛毛+勾引·于是
2
Z1
Z2
Z3
r = (z1 十Z2 + Z3 )(王+三十三) =lz.1 十lzJ + lz3 l + w十二=3+2Rew,
2 2
解得Rew=三三 2 二、解答题:本大题共3小题,满分56分.解答应写出立字说明、证明过 程或演算步骤. 9. (本题满分16分)己知数列{a,,}:α, =7, 满足 a. >4
川 生土L =
的最小正整数 n.
2
α
a,,十2 , n = 1, 2, 3, · · · .求
故。”=2 3烛
解:由生土L = α,,+2可知 G川 +1=(α,,+ 1) .因此 α,2 时 ”I 3x2"-1, α,,+l=(a1 +1)2 =82 = 2
AD BC ,以 AB 为直径的圆 与线段 DE 交于一点 F. DC 2CE
A
证明:B,C,F,D 四点共圆(答题时请将图画在答卷纸上)
D
F
B
C
E
三、 (本题满分 50 分)设集合 A {1, 2,
, n} ,X,Y 均为 A 的非空设空子集(允许 X = Y) .X
中的最大元与 Y 中的最小元分别记为 maxX,minY 求满足 maxX > minY 的有序集合对(X , Y) 的数目.
四、 (本题满分 50 分)给定整数 a 2 . 证明:对任意正整数 n,存在正整数 k,使得连续 n 个 数 ak 1, ak 2 , , a k n 均是合数.

2016年高中数学联赛试题答案

2016年高中数学联赛试题答案
2 2
2
2
3. 正实数 u , v, w 均不等于 1,若 log u vw log v w 5 , log v u log w v 3 ,则 . log w u 的值为 4 答案: . 5 解:令 log u v a, log v w b ,则 1 1 log v u , log w v , log u vw log u v log u v log v w a ab , a b 1 1 5 条 件 化 为 a ab b 5, 3 , 由 此 可 得 ab . 因 此 a b 4 1 4 log w u log w v log v u . ab 5 4. 袋子 A 中装有 2 张 10 元纸币和 3 张 1 元纸币,袋子 B 中装有 4 张 5 元纸币 和 3 张 1 元纸币.现随机从两个袋子中各取出两张纸币,则 A 中剩下的纸币面值
M 为 AP 的中点.若 AB 1, AC 2, AP 2 ,则二面角 M BC A 的大小 为 . 2 答案: arctan . 3 解:由 ABC 90 知, AC 为底面圆的直径. 设 底 面 中 心 为 O , 则 PO 平 面 ABC . 易 知 1 AO AC 1 ,进而 PO AP 2 AO 2 1 . 2 设 H 为 M 在底面上的射影,则 H 为 AO 的中 点.在底面中作 HK BC 于点 K ,则由三垂线定理 知 MK BC ,从而 MKH 为二面角 M BC A 的平面角. 3 1 HK HC 3 因 MH AH ,结合 HK 与 AB 平行知, ,即 HK , 4 2 AB AC 4 MH 2 2 这样 tan MKH .故二面角 M BC A 的大小为 arctan . 3 HK 3 kx kx 6. 设函数 f ( x) sin 4 cos 4 ,其中 k 是一个正整数.若对任意实数 a , 10 10 均有 f ( x) a x a 1 f ( x) x R ,则 k 的最小值为 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C2 : x 2 y 2 2 x 2ay 3 0 ,则直线 l 的方程为 答案: 2 x 4 y 5 0 . 解: C1 , C2 的标准方程分别为

C1 : x 2 y 2 a , C2 : ( x 1) 2 ( y a ) 2 a 2 2 .
答案:
2
有正整数为 n 12k 1 (k 1, 2, , 168) ,共有 168 个. 二、解答题:本大题共 3 小题,共 56 分.解答应写出文字说明、证明过程 或演算步骤. 9.(本题满分 16 分)已知 {an } 是各项均为正数的等比数列,且 a50 , a51 是方 程
100 lg 2 x lg(100 x) 的两个不同的解.求 a1a2 a100 的值.
1
5. 将红、黄、蓝 3 个球随机放入 5 个不同的盒子 A, B, C , D, E 中,恰有两个 球放在同一个盒子的概率为 . 12 答案: . 25 解:样本空间中有 53 125 个元素.而满足恰有两个球放在同一个盒子的元 60 12 2 素个数为 C3 . P52 60 .故所求概率为 p 125 25 6. 在平面直角坐标系 xOy 中,圆 C1 : x 2 y 2 a 0 关于直线 l 对称的圆为
3 3 . 2a 3 0 ,即 a ,进而 b a 2 a 2 2 3 3 3 3 于是,满足条件的复数 z 值的积为 3. i i 2 2 2 2 4. 已知 f ( x), g ( x) 均为定义在 R 上的函数, f ( x) 的图像关于直线 x 1 对 称, 且 f ( x) g ( x) 9 x x3 1 , 则 f (2) g (2) g ( x) 的图像关于点 (1, 2) 中心对称, 的值为 . 答案: 2016 . 解:由条件知 f (0) g (0) 2 , ① ② f (2) g (2) 81 8 1 90 . 由 f ( x), g ( x) 图像的对称性,可得 f (0) f (2), g (0) g (2) 4 ,结合①知, f (2) g (2) 4 f (0) g (0) 2 . ③ 由②、③解得 f (2) 48, g (2) 42 ,从而 f (2) g (2) 48 42 2016 .
11 . 11 z 解:如图,以底面 ABCD 的中心 O 为坐标原点, AB, BC , OV 的方向为 x, y, z 轴的正向,建立空间直角 V y 坐标系.不妨设 AB 2 ,此时高 VO 1 ,从而 N M A(1, 1, 0), B(1, 1, 0), D(1, 1, 0), V (0, 0, 1) . D C O x 1 1 1 1 1 2 A 由条件知 M ,因此 , , , N , , B 2 3 3 3 2 2 3 1 1 4 4 2 , , AM , , , BN . 2 2 2 3 3 3 设异面直线 AM , BN 所成角为 ,则 AM BN 1 11 . cos 11 11 AM BN 2 2 n n n n 8. 设正整数 n 满足 n 2016 ,且 3 .这样的 n 的个 2 4 6 12 数为 .这里 {x} x [ x] ,其中 [ x] 表示不超过 x 的最大整数. 答案: 168 . 解:由于对任意整数 n ,有 n n n n 1 3 5 11 3, 2 4 6 12 2 4 6 12 等号成立的充分必要条件是 n 1 (mod12) .结合 1 n 2016 知,满足条件的所
3. 已知复数 z 满足 z 2 2 z z z ( z 表示 z 的共轭复数) ,则 z 的所有可能 值的积为 . 答案: 3 . 解:设 z a b i (a, b R ) .由 z 2 2 z z 知,
a 2 b 2 2ab i 2a 2b i a b i , 比 较 虚 、 实 部 得 a 2 b 2 a 0, 2aБайду номын сангаас 3b 0 . 又 由 z z 知 b 0 , 从 而 有
50 50
1
………………8 分
1 10100 = 10 . 由等比数列的性质知, a1a2 a100 (a50 a51 )
…………………16 分 10.(本题满分 20 分)在 ABC 中,已知 AB AC 2 BA BC 3CA CB . (1) 将 BC , CA, AB 的长分别记为 a, b, c ,证明: a 2 2b 2 3c 2 ; (2) 求 cos C 的最小值.
1 l1 : y k ( x 2) , l2 : y ( x 2) ( k 0) , k 注意这里 k 1 (否则 l1 将与 C 的渐近线平行,从而 l1 与 C 只有一个交点) .
联立 l1 与 C 的方程知, x 2 k 2 ( x 2) 2 1 0 ,即 (1 k 2 ) x 2 2 2k 2 x 2k 2 1 0 , 这是一个二次方程式,其判别式为 4k 2 4 0 .故 l1 与 C 有两个不同的交点 P, Q .同样, l2 与 C 也有两个不同的交点 R, S .由弦长公式知,
解 对 k 50, 51 ,有 100 lg 2 ak lg(100ak ) 2 lg ak ,即
100 (lg ak ) 2 lg ak 2 0 .
因此, lg a50 , lg a51 是一元二次方程 100 t 2 t 2 0 的两个不同实根,从而
lg (a50 a51 ) lg a50 lg a51 1 ,即 a50 a51 10100 . 100
b2 c2 a 2 解 (1) 由数量积的定义及余弦定理知, AB AC cb cos A . 2 a 2 b2 c2 a 2 c2 b2 , CA CB .故已知条件化为 同理得, BA BC 2 2 b 2 c 2 a 2 2(a 2 c 2 b 2 ) 3(a 2 b 2 c 2 ) , 即 a 2 2b 2 3c 2 . …………………10 分 (2) 由余弦定理及基本不等式,得 1 a 2 b 2 (a 2 2b 2 ) 2 2 2 a b c a b 3 cos C 2ab 2ab 3b 6a a b 2 . …………………15 分 2 3b 6a 3 2 等号成立当且仅当 a : b : c 3 : 6 : 5 .因此 cos C 的最小值是 . 3 …………………20 分 11. (本题满分 20 分)在平面直角坐标系 xOy 中,双曲线 C 的方程为 2 x y 2 1 .求符合以下要求的所有大于 1 的实数 a :过点 (a, 0) 任意作两条互相 垂直的直线 l1 与 l2 ,若 l1 与双曲线 C 交于 P, Q 两点, l2 与 C 交于 R, S 两点,则总
由于两圆关于直线 l 对称,所以它们的半径相等.因此 a a 2 2 0 ,解得 a 2 .故 C1 , C2 的圆心分别是 O1 (0, 0), O2 (1, 2) .直线 l 就是线段 O1O2 的垂直 1 , 1 平分线, 它通过 O1O2 的中点 M , 由此可得直线 l 的方程是 2 x 4 y 5 0 . 2 7. 已知正四棱锥 V ABCD 的高等于 AB 长度的一半,M 是侧棱 VB 的中点, N 是侧棱 VD 上的点,满足 DN 2VN ,则异面直线 AM , BN 所成角的余弦值 为 .
PQ 1 k 2
4k 2 4 1 k 2 . 2 1 k 2 1 k 2
1 (k )2 k 2 1 1 2 用 代替 k ,同理可得 RS 2 .于是 PQ RS . 1 (k )2 k 2 1 k 综上所述, a 2 为符合条件的值. ……………20 分
2016 年全国高中数学联合竞赛一试(B 卷) 参考答案及评分标准
说明: 1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的 评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次. 2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分,解答题中第 9 小题 4 分为一个档次,第 10、 11 小题 5 分为一个档次,不要增加其他中间档次. 一、填空题:本大题共 8 小题,每小题 8 分,共 64 分. 2 36 ,则 a2 a4 的值 1. 等比数列 {an } 的各项均为正数,且 a1a3 a2 a6 2a3 为 . 答案: 6 . 2 2 2 解:由于 36 a1a3 a2 a6 2a3 a2 a4 2a2 a4 (a2 a4 ) 2 ,且 a2 a4 0 , 故 a2 a4 6 . 则平面点集 B ( x, y ) x, y A, x y 0 的面积 2. 设 A {a | 1 a 2} , 为 . 答案: 7 . 解:点集 B 如图中阴影部分所示,其面积为 1 S MNPQ SMRS 33 2 2 7 . 2
有 PQ RS 成立. 解 过点 (a, 0) 作两条相互垂直的直线 l1 : x a 与 l2 : y 0 . 易知,l1 与 C 交于点 P0 (a, a 2 1), Q0 (a, a 2 1)(注意这里 a 1 ) ,l2 与 C
3
交于点 R0 (1, 0), S0 (1, 0) ,由条件知 2 a 2 1 P0Q0 R0 S0 2 ,解得 a 2 . 这意味着符合条件的 a 只可能为 2 . ……………10 分 下面验证 a 2 符合条件. 事实上,当 l1 , l2 中有某条直线斜率不存在时,则可设 l1 : x a , l2 : y 0 , 就是前面所讨论的 l1 , l2 的情况,这时有 PQ RS .若 l1 , l2 的斜率都存在,不 妨设
相关文档
最新文档