第六讲抽屉原理初步

合集下载

抽屉原理doc

抽屉原理doc

5数火箭第六讲抽屉原理把3本书分给了2个人,会出现什么现象? 把4根骨头分给3只小狗,会出现什么现象?把8之鸽子放入7只笼子,会出现什么现象?这些简单的道理同学们都能理解,如果把条件中那些被分配的对象都想象成苹果,而把接受它们的对象都想象成抽屉,那么我们就可以象匈牙利的数学家那样,得出一个重要的原理——抽屉原理(鸽笼原理)抽屉原理是众人皆知的一个原理:把N+1个的苹果放进N个抽屉里,那么至少有一个抽屉里有两个或以上的苹果。

抽屉原理解题的一般步骤:①确定将什么看成“苹果”,这是应用抽屉原理的前提;②确定将什么看成“抽屉”,这是应用抽屉原理的关键;③只要苹果多,抽屉少,由抽屉原理就可得到有关结论。

抽屉原理一:苹果:用于分配的对象,抽屉:用于接收分配的对象1、把5支笔放入4个文具盒。

苹果()抽屉()2、把15朵花放入12个花盆苹果()抽屉()3、14个同学过生日苹果()抽屉()4、13个同学的属相苹果()抽屉()如果把N+1个苹果分配给N个抽屉,那么至少有2个苹果放进了同1个抽屉里。

苹果分配给抽屉,N+1和N的关系,至少有2个在一起抽屉原理一:说明题。

例一:1、姐姐有5颗奶糖,把她们分给4个弟弟。

会出现什么情况2、刘大爷把自己家的50头牛送给了全村的49户农民。

会出现什么情况练习一1、证明:13个同学中,至少有2个同学出生在同一个月里.2、证明:把10个乒乓球放入8个盒子,至少有两个乒乓球放入了同一个盒子。

抽屉原理二:(求结论数)例二:把30个苹果放进12个抽屉里,)那么至少有多少个苹果被放进了同一个抽屉?总结:把A个苹果放进B个抽屉里(A> B),那么至少有结论个苹果在同一个抽屉里:A÷B = 商…余数(1)当余数 = 0时,结论=商(2)(2)当余数 > 0时,结论=商+1(跟余数是多少没有关系)练习二1、五年级共有48个人,问至少有几个人在同一月出生.2、19枝铅笔放入4个铅笔盒里,至少有多少支铅笔放入了同一个盒里?3、58个弹珠分给8个同学至少有几个弹珠被分给了同一个同学?4、一班有30个女同学,问至少有几个女孩子出生在同一月?抽屉原理三:(求苹果数)例三: 把一些玩具分给20名小朋友,为了保证有1名小朋友至少得到4件玩具,至少要准备多少玩具?总结:苹果数=抽屉数×(保证数-1)+1练习三:1、把一些苹果放入3抽屉中,为了保证总有1个抽屉存在至少4个苹果。

《抽屉原理》(PPT课件

《抽屉原理》(PPT课件
算法分析
在算法分析中,抽屉原理可以用于分析算法的时间复杂度和空间复杂度,以及确 定算法的最坏情况下的性能。
在日常生活中的应用
资源分配
在资源分配问题中,可以将资源视为抽屉,将待分配的物品 或任务视为物体,根据抽屉原理得出最优的分配方案。
排队理论
在排队理论中,抽屉原理可以用于分析排队系统的性能和稳 定性,以及确定最优的排队策略。
有限制的抽屉原理的证明
有限制的抽屉原理是指
如果 n+1 个物体要放入 n 个容器中,且每个容器最多只能容纳 k 个物体(k < n),那么至少有一个容器包含两个或以上的物体。
证明方法
假设 n+1 个物体放入 n 个容器中,且每个容器最多只能容纳 k 个物体(k < n)。如果存在一个容器只包含一个物体,那么我们可以将这个物体放入另一个 容器中,从而证明了至少有一个容器包含两个或以上的物体。
在数论中的应用
质数分布
根据抽屉原理,如果将自然数按 照质数和非质数进行分类,则质 数在自然数中的比例趋近于 $frac{1}{2}$。
同余方程
在解同余方程时,可以将模数视 为抽屉,方程的解为物体,根据 抽屉原理得出解的存在性和个数 。
在计算机科学中的应用
数据结构
在计算机科学中,抽屉原理可以应用于各种数据结构的设计和分析,如数组、链 表、哈希表等。
现代研究
现代数学研究中对抽屉原理进行了深入的探讨和研究,不断拓展其 应用范围和理论体系。
02
抽屉原理的证明特殊形式,其基本思想是
如果 n 个物体要放入 n-1 个容器中,且每个容器至少有一个物体,则至少有一个容器包含两个或以上的物体。
证明方法
假设 n 个物体放入 n-1 个容器中,且每个容器至少有一个物体。如果存在一个容器只包含一个物体,那么我们 可以将这个物体放入另一个容器中,从而证明了至少有一个容器包含两个或以上的物体。

小学五年级奥数第六讲抽屉原理及作业

小学五年级奥数第六讲抽屉原理及作业

第六讲抽屉原理一、一个盒子里有10个红球、8个蓝球、6个绿球、4个白球,如果闭上眼睛,从盒子中摸球,每次只许摸一个球,至少要摸出()个,才能保证摸出的这几个球中至少有两个颜色相同。

二、红星小学五年级(1)班有54个同学,能否有2人在同一星期内过生日?三、参加数学竞赛的有210名同学,能否保证有18名或18名以上的同学在一个月出生,为什么?四、盒子里放着红色、黄色、蓝色、白色、黑色五种手套各6只,如果闭上眼睛,让你在盒子中拿手套,至少拿多少只能可以保证拿到一副颜色相同的手套?五、在1米长的线段上任意点六个点,请证明,这六个点中至少有两个点的距离不大于20厘米。

六、口袋中有16个白球,4个黄球,6个黑球。

请你闭上眼睛从口袋中摸球,至少取出多少个球,才能保证取出的球有黄球?七、袋子里有红、黄、黑、白袜子各10双,要想闭上眼睛摸出颜色相同的4双袜子,至少要摸出几双袜子,才能保证达到目的?八、公交集团有51辆客车,各种座位位数不同,最少的有18座,最多的有60座,那么在这些客车中,至少有几辆的座位数是相同的?九、某袋内装有70只球,其中20只是红球,20只是绿球20只是黄球,其余是黑球和白球,为确保取出的球中至少包含有10只同颜色的球,问:最少必须从袋中取出几只球?十、从1、2、3、……、2004这些自然数中,最多可以取出多少个数,使得每两个数的差不等于4?第六讲抽屉原理作业1、长江小区有367名儿童在2000年出生的,至少有两人在同一天过生日,这是因为把()当作抽屉,有()个,把()当作元素,有()个。

2、盒子里有红、白两种颜色的贺卡若干张,现在有4个小朋友每人从盒子里任取两张,则必须有两个小朋友取出两张颜色完全相同的贺卡,其中抽屉数为()个,元素()个。

3、一个正方体,给它的每个面涂上颜色,黄色、红色,则至少有两个面颜色相同,其中把()当成抽屉,有()个,把()当作元素,有()个。

4、有30个小朋友同在2月份出生,至少有()个小朋友同一天出生。

第6讲 抽屉原理一-完整版

第6讲  抽屉原理一-完整版

第6讲抽屉原理一内容概述理解抽屉原理的基本含义,并能利用抽屉原理对一些简单问题进行说明,在考虑某些问题时需要利用最不利原则进行分析典型例题兴趣篇1.学校周末要组织4个班的同学去春游,有3个地点可供选择:游乐园、植物园和动物园,如果一个班只能去一个地点,试说明:一定有2个班要去同一个地点.答案:见解析解析:设这4个班分别为一班、二班、三班和四班.先考虑一班、二班、三班,如果他们中有2个班去了相同的地点,那么已经满足题目的要求了.如果这3个班都去了不同的地点,也就是3个地点都有一个班去,那么剩下的四班只能去这3个地点中的一个,必然与前3个班中某一个班去的地点相同.由此可见,一定有2个班要去同一个地点.2.卡莉娅、墨莫和萱萱到小高家玩,小高拿出一些巧克力来招待他们,他们一数,共有19块巧克力.如果把这些巧克力分给他们3人,试说明:一定有人至少拿到7块巧克力,但不一定有人拿到8块.答案:见解析解析:如果每人分6块,那就只分了18块,还剩1块,这块巧克力无论给谁,都会使得这个人的巧克力变为7块,这就说明,一定有人至少拿到7块巧克力.如果让卡莉娅拿7块,墨莫和萱萱各拿6块,那么一共拿了19块.这样一来,每人拿到的巧克力就不到8块,这就说明,不一定有人拿到8块巧克力.3. -次聚会上,大家发现,有40人都是在同一年的10月出生的,试说明:他们中一定有2个人是在同一天出生的,但不一定有3个人在同一天出生.答案:见解析解析:先从40个人里抽出31个人,如果其中有2个人是在同一天出生,那么已经满足题目要求了.如果这31个人分别在10月的1日至31日出生,那么剩下的9个人里再抽出1个人,这个人必定会和之前的31个人中的某一个人在同一天出生,由此可见,他们甲一定有2个人是在同一天出生的.但是,可以是3 1个人分别在1日至31日出生.剩下的9个人分别在1日至9习出生,所以不一定有3个人在同一天出生。

4.任意1830人中,至少有多少人的生日在同一天?答案:5人解析:1830÷366 = 5.所以至少有5人的生日在同一天.5.有红、黄、蓝、绿4种颜色的小珠子放在同一个口袋里,每种颜色的珠子都足够多.一次至少要取几颗珠子,才能保证其中一定有2颗颜色相同?答案:5颗解析:方法一:如果取2颗珠子,它们可以是红色、黄色的珠子各一颗;如果取3颗,它们可以是红色、黄色和蓝色的珠子各1颗;如果取4颗,它们可以是红色、黄色、蓝色、绿色各1颗,而此时再取第5颗的时候就会发现,不管怎么取都会和前4颗珠子中的1颖颜色相同,由此可见,至少要取5颗,才能保证其中一定有2颗颜色相同,’方法二:从最不利的情况考虑——尽量取不同颜色的珠子,看能取几颗,因为只有4种颜色,所以可以取出4颗不同颜色的珠子.这时,再取1颗珠子就会出现2颗同色的珠子.由此可见,至少要取5颗,才能保证其中一定有2颗颜色相同.6.某校的小学生中,年龄最小的6岁,最大的13岁,从这个学校中至少选几个学生,才能保证其中一定有3个学生的年龄相同?答案:17个解析:从6岁到13岁,可能情况有:6岁、7岁、8岁、9岁、10岁、11岁、12岁、13岁共8种不同年龄.如果从最不利的情况考虑,就是尽量不出现3个年龄相同的学生,那么每种年龄的人数最多有2个,这样一来最多能选出2×8 =16个,使得其中没有3个学生的年龄相同,如果再多选1人,那么这个学生必然会与某2个学生的年龄相同.因此,至少要选出16十1=17个学生,才能保证其中有3个学生的年龄相同.7.有红、黄、蓝、绿4种颜色的铅笔各10支,拿的时候不许看铅笔的颜色,那么一次至少要拿多少支,才能保证其中一定有4支是同一种颜色的铅笔?答案:l3支解析:要拿到4支同一颜色的铅笔,最不利的情形应该是红、黄、蓝、绿4种颜色的铅笔都拿,而且每种都已拿3支,一共拿了4×3—12支.如果再多拿1支,那么这支铅笔必然会与之前拿出的某种颜色的3支铅笔同色.因此,至少要拿12+1= 13支铅笔,才能保证一定会拿到4支同色的铅笔.8.口袋里装有红、黄、蓝、绿4种颜色的球,且每种颜色的球都有4个.小华闭着眼睛从口袋里往外摸球,那么他至少要摸出多少个球,才能保证摸出的球中每种颜色的球都有?答案:13个解析:最不利的情猊应该是只剩1种颜色的球没有摸出.而其他3种颜色的球都被摸出来了.如果小华摸出的球中还差1种颜色,不妨假设缺红色,那么小华最多摸出了黄、蓝、绿各4个,一共有3×4=12个.如果再多摸1个球,这1个球必然是第4种颜色,那么小华就有了4种颜色的球。

【精品奥数】六年级下册数学思维训练讲义-第六讲 抽屉原理(一) 人教版(含答案)

【精品奥数】六年级下册数学思维训练讲义-第六讲 抽屉原理(一)  人教版(含答案)

第六讲抽屉原理(一)第一部分:趣味数学二桃杀三士“二桃杀三士”是中国古代的一个历史故事,最早记载于《晏子春秋》,后来变成成语,比喻用阴谋杀人。

这是怎样的一个故事呢?你肯定很好奇吧?故事是这样的:在春秋时期齐景公的手下有三员大将,他们分别是田开疆、公孙接和古冶子。

他们力大无比,武功超群,为齐景公立下过汗马功劳,但也因此恃功而骄,极其自负,不把别的官员放在眼里,为此得罪了齐国的宰相晏婴。

晏子便私下劝齐景公杀掉他们,并献上一计:先以齐景公的名义赏赐三名男士两个桃子,让他们自己评功,按功劳的大小来分桃吃。

三勇士都认定自己的功劳最大,应该单独吃个桃。

公孙接抢得先机先讲了自己的打虎功,拿了一个桃;田开疆紧接着讲了自己的杀敌功,拿起了剩下的另一桃。

两人正准备吃桃子,古冶子说出了更大的功劳。

另二人都觉得自己的功劳确实没有古冶子的功劳大,一时羞愧难当,赶忙让出桃子并且觉得自已功劳不如人家,却抢着要吃桃子,暴露了自己的贪婪无耻,实在没有脸再活下去,于是都拔剑自刎了。

古冶子见了,后悔不迭,仰天长叹道:“我们本是朋友,可为了一个桃子,我竟然吹捧自己羞辱朋友,真是太不讲义气了!如今他们都为此而死了,我独自活着,算什么勇士!”说罢,古冶子也拔剑自杀了。

区区两个桃子,顷刻间让三位猛将都倒在血泊之中。

晏子采用借“桃”杀人的办法,不费吹灰之力便达到了事先的目的,汉朝的一位无名氏在一首诗中曾讽刺的写道:“一朝被谗言,二桃杀三士。

谁能为此谋,相国齐晏子!在晏子的权谋之中,包含了一个重要的数学原理—抽屉原理。

你知道是怎么回事吗?第二部分:习题精讲如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。

如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。

如果把3本联练习册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。

这些简单内的例子就是数学中的“抽屉原理”。

基本的抽屉原理有两条:(1)如果把x+k(k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。

(人教新课标)六年级数学下册课件抽屉原理ppt

(人教新课标)六年级数学下册课件抽屉原理ppt

掌握演讲技巧
演讲时,不仅仅要专注于幻 灯片,更要牢掌主持人语言 和节奏,增添场上的气氛与 谐。
善于把握节奏
随着演讲的紧张和氛围的加 强,演讲者往往更容易卡住 某一环节,好的节奏可以有 效地解决这一问题。
利用PPT交互效果
通过PPT支持的交互效果, 如音频视频插入、问答环节 等,可以增加场上氛围和听 众参与度。
字体最好使用常规、斜体、粗体三种常用字体, 如果需要特殊效果可以考虑使用手写字体等装 饰效果。
为文字添加阴影、边框、圆角等效果,能够增 加艺术感,使展示效果更加生动有趣。
字体不宜太小,如果是演讲需要站在较远的地 方也很容易辨认清晰。此外选取字体时要尽量 避免一些过于华丽或夸张的字体,否则很容易 让人产生不适感。
图片排版
图片的排版应该与文本相关 联,有时应该横排有时应该 竖排,另外还要注意间距问 题。
图表的制作和使用
图表是PPT中展示数据和表述分析的重要手段,使用简单的图标就可以清晰地显示数据及其变化, 以下注意点应该掌握。
1
图表的分类
常用的图表有折线图、柱形图、散点图、饼图、雷达图等,不同图表适用于不同的 场景。我们需要根据数据的结构和分布特性来选择合适的图表。
直观说明
鸽巢原理
一定数量的物品放置在抽屉内, 如当物品数量多于抽屉数量时, 抽屉中就必然会有物品重叠。
与鸽子进巢子的数量有关。如 果$n$只鸽子,而巢子只有 $m$个,当$n>m$时,必然有 两只或两只以上鸽子最后进入 了同一个巢子。
实用应用
生活中最常运用的便是找配对, 如果一双袜子即使配对概率只 有1/3,在放10双袜子的抽屉 中就很可能找不到配对的袜子 了。
2 设计图片和图表的样式
不同的图片、表格、图表对展示效果有着很大的影响,我们需要根据数据特点和内容风 格来选择将其分组和组织,以达到更好的视觉效果。

小学五年级奥数第六讲__抽屉原理及作业

小学五年级奥数第六讲__抽屉原理及作业

第六讲抽屉原理一、一个盒子里有10个红球、8个蓝球、6个绿球、4个白球,如果闭上眼睛,从盒子中摸球,每次只许摸一个球,至少要摸出()个,才能保证摸出的这几个球中至少有两个颜色相同。

二、红星小学五年级(1)班有54个同学,能否有2人在同一星期内过生日?三、参加数学竞赛的有210名同学,能否保证有18名或18名以上的同学在一个月出生,为什么?四、盒子里放着红色、黄色、蓝色、白色、黑色五种手套各6只,如果闭上眼睛,让你在盒子中拿手套,至少拿多少只能可以保证拿到一副颜色相同的手套?五、在1米长的线段上任意点六个点,请证明,这六个点中至少有两个点的距离不大于20厘米。

六、口袋中有16个白球,4个黄球,6个黑球。

请你闭上眼睛从口袋中摸球,至少取出多少个球,才能保证取出的球有黄球?七、袋子里有红、黄、黑、白袜子各10双,要想闭上眼睛摸出颜色相同的4双袜子,至少要摸出几双袜子,才能保证达到目的?八、公交集团有51辆客车,各种座位位数不同,最少的有18座,最多的有60座,那么在这些客车中,至少有几辆的座位数是相同的?九、某袋内装有70只球,其中20只是红球,20只是绿球20只是黄球,其余是黑球和白球,为确保取出的球中至少包含有10只同颜色的球,问:最少必须从袋中取出几只球?十、从1、2、3、……、2004这些自然数中,最多可以取出多少个数,使得每两个数的差不等于4?第六讲抽屉原理作业1、长江小区有367名儿童在2000年出生的,至少有两人在同一天过生日,这是因为把()当作抽屉,有()个,把()当作元素,有()个。

2、盒子里有红、白两种颜色的贺卡若干张,现在有4个小朋友每人从盒子里任取两张,则必须有两个小朋友取出两张颜色完全相同的贺卡,其中抽屉数为()个,元素()个。

3、一个正方体,给它的每个面涂上颜色,黄色、红色,则至少有两个面颜色相同,其中把()当成抽屉,有()个,把()当作元素,有()个。

4、有30个小朋友同在2月份出生,至少有()个小朋友同一天出生。

抽屉原理知识点总结抽屉原理复习知识点.docx

抽屉原理知识点总结抽屉原理复习知识点.docx

抽屉原理知识点总结抽屉原理复习知识点抽屉原理是组合数学中一个重要的原理,也是小学数学的一个重点知识。

以下是本人为你整理的抽屉原理知识点总结,希望你喜欢。

抽屉原理知识点总结抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1 或多于 n+1个元素放到 n 个集合中去,其中必定至少有一个集合里至少有两个元素。

”抽屉原理有时也被称为鸽巢原理 ( “如果有五个鸽子笼,养鸽人养了 6 只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有 2 只鸽子” ) 。

它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。

它是组合数学中一个重要的原理。

抽屉原理知识点总结:抽屉原则一如果把 (n+1) 个物体放在n 个抽屉里,那么必有一个抽屉中至少放有 2 个物体。

例:把 4 个物体放在 3 个抽屉里,也就是把 4 分解成三个整数的和,那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有 2 个或多于 2 个物体,也就是说必有一个抽屉中至少放有 2 个物体。

抽屉原理知识点总结:抽屉原则二如果把 n 个物体放在 m个抽屉里,其中 n>m,那么必有一个抽屉至少有:①k=[n/m ]+1个物体:当n 不能被 m整除时。

②k=n/m 个物体:当n 能被 m整除时。

理解知识点: [X] 表示不超过X 的最大整数。

例 [4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉。

也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。

抽屉原理知识点总结:抽屉原理练习1.木箱里装有红色球 3 个、黄色球 5 个、蓝色球 7 个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球 ?解:把 3 种颜色看作 3 个抽屉,要符合题意,则小球的数目必须大于 3,故至少取出 4 个小球才能符合要求。

第6讲 抽屉原理

第6讲 抽屉原理

【第六讲】抽屉原理学前导航:如果将5个苹果放到3个抽屉中去,那么不管怎么放,至少有一个抽屉中放的苹果不少于2个。

道理很简单,如果每个抽屉中放的苹果都少于2个,即放1个或不放,那么3个抽屉中放的苹果的总数将少于或等于3,这与有5个苹果的已知条件相矛盾,因此至少有一个抽屉中放的苹果不少于2个。

同样,有5只鸽子飞进4个鸽笼里,那么一定有一个鸽笼至少飞进了2只鸽子。

以上两个简单的例子所体现的数学原理就是“抽屉原理”,也叫“鸽笼原理”。

例1:袋子里装有一些红球和绿球,每次从袋中取一个球,那么至少取出几个才能保证有两个或两个以上的同色球?练习1.盒子里装着10个苹果和10个梨,一次拿一个水果,至少要拿出多少个,才能保证拿出两个同样的水果?2.袋子里装有一些红球、蓝球和绿球,每次从袋中取一个球,那么,至少取出几个才能保证有两个或两个以上的同色球?例2:“幸福院”养老院买来许多苹果、橘子和梨,每位老人任意选两个,那么,至少应有几位老人才能保证必有两位或两位以上老人所选的水果相同?1.春田花花小学买来了许多作文书、科技书和名著小说,每个同学任意选两本,那么至少应有几个同学才能保证有两个或两个以上同学所选的书相同?2.布袋中有红、黄、橙三种颜色的木块若干块,每个小朋友任意摸两块木块,那么,至少有多少个小朋友才能保证有两个或两个以上小朋友所选的木块相同?例3:一个布袋里装有红、黄、蓝袜子各5只,问一次至少取出多少只才能保证每种颜色至少有一只?练习1.抽屉里放着红、绿、黄三种颜色的球各3只,问一次至少摸出多少只才能保证每种颜色至少有一只?2.书箱里放着4本故事书,3本连环画,2本文艺书,问一次至少取出多少本书才能保证每种书至少有一本?三年级(1)班有42个同学,在学雷锋活动中,每人单独做了些好事,他们共做了好事128件,问是否有人单独做了4件或4件以上的好事?练习1.春田花花幼稚园共有30个小朋友,他们每人自己都有一些玩具,他们共有玩具92件,问是否有人单独有4件或4件以上玩具?2.春田花花小学三年级有6个班,他们在植树节中每班都种了一些树,他们共种了14棵树,问是否有班级种了3棵或3棵以上的树?作业1.至少在多少人中,才能找到两个同一月份出生的人?2.一个袋子里装有红、黄、橙、紫四种颜色的小球,每人任意摸两个球,那么至少有几人才能保证有两个或两个以上的人所选小球相同?3.书箱里混装着3本故事书和5本科技书,要保证一次能拿出两本故事书,至少要拿出多少本书?4.盒子里放着3支绿铅笔,3支红铅笔和5支蓝铅笔,如果闭上眼睛摸一次,必须摸几支才能保证至少有1支蓝铅笔?。

抽屉原理讲义

抽屉原理讲义

鸽巢原理讲义教学重难点重点:掌握抽屉原理的两种基本形式。

难点:能够将实际问题转化成抽屉原理所反映的典型形式。

掌握抽屉的设计,苹果的设计以及苹果的放法。

教学内容知识纵横:“ 抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,这一原理在解决实际问题中有着广泛的应用。

“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

下面我们应用这一原理解决问题。

三个苹果放进两个抽屉,总有某个抽屉的苹果数不止一个,这个结论是很明显的,但这当中蕴含着一个有趣的数学现象被称为抽屉原理。

抽屉原理一般有两种基本形式:一、将n+1个苹果放入n个抽屉中,则必有一个抽屉中至少有2个苹果;二、将m×n+1个苹果放入n个抽屉中,则必须有一个抽屉中至少有(m+1)个苹果应用抽屉原理解题的一般步骤是:1.分析题意,将实际问题转化成抽屉原理所反映的典型形式,即指出“抽屉”和“苹果”;2.设计“抽屉”的具体形式,构造“苹果”;3.运用原理,得出在某个抽屉中“苹果”的个数,最终回归到原理的结论上。

其中,抽屉的设计,苹果的设计及苹果的放法是应用抽屉原理解决问题的关键。

例题讲解例1:某班有42名同学,至少有多少名同学在同一个月出生?[分析]把42名同学的出生月份看做42个元素,把一年12个月看成12个抽屉,因为42=12×3+6。

所以依据抽屉原理二,至少在一个月里有3+1=4(名)同学出生。

【举一反三】五年级有128名同学,其中至少有多少个同学在同一周过生日?例2:一副扑克牌有4种花色,每种花色有13张,从中任意抽牌,问最少要抽多少张牌才能保证是同一花色的?【举一反三】一个口袋里分别有红、黄、黑球4,7,8个,为使取出的球中保证能有六个同色,则至少要去小球多少个?例3:学校组织2006名同学去春游,现有解放公园、野生动物园、水族公园三个景点,规定每人至少去一处,最多去两处游览,那么至少有多少个同学游览的地方相同?【分析】先分类求出每人去一处或两处的种数,再根据抽屉原理,把种数设为“抽屉”,把2006名学生作为“苹果”。

抽屉原理知识点总结 抽屉原理复习知识点

抽屉原理知识点总结 抽屉原理复习知识点

抽屉原理知识点总结抽屉原理复习知识点抽屉原理是组合数学中一个重要的原理,也是小学数学的一个重点知识。

以下是本人为你整理的抽屉原理知识点总结,希望你喜欢。

抽屉原理知识点总结抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里至少有两个元素。

”抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。

它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。

它是组合数学中一个重要的原理。

抽屉原理知识点总结:抽屉原则一如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

抽屉原理知识点总结:抽屉原则二如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:①k=[n/m ]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

理解知识点:[X]表示不超过X的最大整数。

例[4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉。

也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。

抽屉原理知识点总结:抽屉原理练习1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?解:把3种颜色看作3个抽屉,要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。

2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。

《抽屉原理》教学课件

《抽屉原理》教学课件

鸽巢原理的变种
VS
应用在概率论中的抽屉原理是指将抽屉原理与概率论相结合,以解决概率论中的一些问题。
详细描述
在概率论中,抽屉原理可以应用于解决一些概率分布的问题。例如,可以将抽屉原理应用于计算概率密度函数或者概率分布函数的性质。通过将抽屉原理与概率论相结合,可以更好地理解概率分布的性质和特点,并解决一些概率论中的难题。
整数划分问题
应用抽屉原理解析
总结词
整数划分问题是指将一个正整数拆分成若干个正整数之和。抽屉原理在这个问题中发挥了关键作用,通过巧妙地将各个整数视为“抽屉”,而将划分方式视为“物品”,利用抽屉原理证明了某些特定划分的不可能性。
详细描述
04
CHAPTER
抽屉原理的变种与推广
总结词
有限制的鸽巢原理的推广是指将有限制的鸽巢原理应用到更广泛的场景中,以解决更为复杂的问题。
抽屉原理的定义
19世纪中叶,德国数学家鲁布里奇正式提出了抽屉原理这一名称,并进行了系统的研究和发展。
随着组合数学的发展,抽屉原理在数学、计算机科学、信息科学等领域得到了广泛的应用和推广。
抽屉原理的起源可以追溯到古希腊数学家欧几里得,他在《几何原本》中提出了类似的原理。
抽屉原理的起源与发展
实例分析
提供多种形式的练习题,让学生通过变式训练加深对抽屉原理的理解和应用。
变式训练
组织小组讨论,让学生互相交流思路和方法,拓展解决问题的思路和途径。
小组讨论
如何引导学生应用抽屉原理解决问题
THANKS
感谢您的观看。
总结词
应用在概率论中的抽屉原理
05
CHAPTER
抽屉原理的教学建议
通过日常生活中的实例,如“四个苹果放入三个抽屉,至少有一个抽屉有两个苹果”来引入抽屉原理的概念。

课件《抽屉原理》

课件《抽屉原理》

5÷2=2……1
(2+1=3)
把7本书进2个抽屉中,不管怎么放,总有一个抽屉 至少放进多少本书?为什么?
7÷2=3……1
(3+1=4)
把9本书进2个抽屉中,不管怎么放,总有一个抽屉 至少放进多少本书?为什么?
9÷2=4……1
(4+1=5)
5÷2=2……1 (2+1=3) 7÷2=3……1 (3+1=4) 9÷2=4……1 (4+1=5)
这就是“抽屉原理”。
物体数÷抽屉数 = 商……余数 至少数 = 商 + 1
抽屉原理简介
“抽屉原理”最先是由19世纪的 德国数学家狄里克雷(Dirichlet)运用 于解决数学问题的,所以又称“狄里 克雷原理”,也称为“鸽巢原理”。 “抽屉原理”的应用却是千变万化的, 用它可以解决许多有趣的问题,并且 常常能得到一些令人惊异的结果。 “抽屉原理”在数论、集合论、组合 论中都得到了广泛的应用。
从刚才的几个例子中,你们发现了什么?
算式的特点: 余数都是 至少数怎么求?
都是 物体数÷抽屉数
1
都是商+1
即:物体数÷抽屉数=商……1 至少数=商+1
那么,如果余数大于1,应该怎样求至少数呢?
8只鸽子飞回3个鸽舍,至少有( 要飞进同一个鸽舍。为什么?
3 )只鸽子
我们先让一个鸽舍里飞进2只鸽子,3个鸽舍最多可飞进 6只鸽子,还剩下2只鸽子,所以无论怎么飞,至少有3只 鸽子要飞进同一个笼子里。
8÷3=2……2
你还能举什么例子呢?
计算绝招
9÷2=4……1 8÷3=2……2 (4+1=5) (2+1=3)
要把a个物体放进n个抽屉,如果 a÷n=b……c(c不等于0),那么一定 有一个抽屉至少放(b+1)个物体
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档