高中数学复习专题讲座(第37讲)函数方程思想
高考数学专题复习函数与方程思想教案
专题三 函数与方程思想函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,一直是高考的热点、重点内容。
函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数关系,运用函数的知识,使问题得到解决.这种思想方法在于揭示问题的数量关系的本质特征,重在对问题的变量的动态研究,从变量的运动变化,联系和发展角度拓宽解题思路.和函数有必然联系的是方程,方程f(x)=0的解就是函数y =f(x)的图像与x 轴的交点的横坐标,函数y =f(x)也可以看作二元方程f(x)-y =0通过方程进行研究,要确定变化过程的某些量,往往要转化为求出这些量满足的方程,希望通过方程(组)来求得这些量.这就是方程的思想,方程思想是动中求静,研究运动中的等量关系.就中学数学而言,函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.中学数学问题中的很多条件经常是互相联系、互相制约,可表现为相应变量的互相联系、互相制约,这种变量的互相联系、互相制约常可用变量间的等量关系式或不等量关系式表示。
这时,若将变量间的等量关系看成函数关系,则可以将等量关系式转化成函数解析式,这时妙用函数的有关性质(值域、与坐标轴交点情形等)就可解决问题;若将等量关系式看成关于某个未知量的方程,则利用解方程或考虑根的情形可求得变量;若可将变量间的不等量关系式看成关于某个未知量的不等式 ,则解这个不等式可求得这个变量的取值范围。
因此我们在数学的教学中应注重培养下列两种意识。
一、在解题中形成方程意识将所求的量(或与所求的量相关的量)设成未知数,用它表示问题中的其它各量,根据题中的等量关系,列出方程,通过解方程或对方程进行研究,以求得问题的解决。
专题37 高中数学对数函数的性质及其应用(解析版)
专题37 对数函数的性质及其应用知识点一 对数函数y =log a x (a >0,且a ≠1)的性质(1)定义域: (0,+∞). (2)值域: (-∞,+∞). (3)定点: (1,0).(4)单调性:a >1时,在(0,+∞)上是增函数;0<a <1时,在(0,+∞)上是减函数. (5)函数值变化当a >1,x >1时,y ∈ (0,+∞);0<x <1时,y ∈ (-∞,0); 当0<a <1,x >1时,y ∈ (-∞,0);0<x <1时,y ∈ (0,+∞).可简记为“底真同,对数正;底真异,对数负”,“同”指同大于1或同小于1,“异”指一个大于1一个小于1.(6)复合函数的单调性,按照“同增异减”的性质求解.知识点二 反函数的概念对数函数y =log a x (a >0,且a ≠1)与指数函数y =a x 互为反函数,它们的图象关于直线y =x 对称.对数函数y =log a x 的定义域是指数函数y =a x 的值域,而y =log a x 的值域是y =a x 的定义域.(1)并非任意一个函数y =f (x )都有反函数,只有定义域和值域满足“一一对应”的函数才有反函数. (2)一般来说,单调函数都有反函数,且单调函数的反函数与原函数有相同的单调性. (3)若一个奇函数存在反函数,则它的反函数也是奇函数. (4)求反函数的步骤: ①求出函数y =f (x )的值域; ②由y =f (x )解出x =f -1(y );③把x =f -1(y )改写成y =f -1(x ),并写出函数的定义域(即原函数的值域).题型一 比较对数值的大小1.比较下列各组值的大小:(1)log 534与log 543;(2)log 132与log 152;(3)log 23与log 54.[解析](1)法一(单调性法):对数函数y =log 5x 在(0,+∞)上是增函数,而34<43,所以log 534<log 543.法二(中间值法):因为log 534<0,log 543>0,所以log 534<log 543.(2)法一(单调性法):由于log 132=1log 213,log 152=1log 215,又因对数函数y =log 2x 在(0,+∞)上是增函数,且13>15,所以0>log 213>log 215,所以1log 213<1log 215,所以log 132<log 152.法二(图象法):如图,在同一坐标系中分别画出y =log 13x 及y =log 15x 的图象,由图易知:log 132<log 152.(3)取中间值1,因为log 23>log 22=1=log 55>log 54,所以log 23>log 54. 2.比较下列各组值的大小:(1)log 230.5,log 230.6;(2)log 1.51.6,log 1.51.4;(3)log 0.57,log 0.67;(4)log 3π,log 20.8.[解析](1)因为函数y =log 23x 是减函数,且0.5<0.6,所以log 230.5>log 230.6.(2)因为函数y =log 1.5x 是增函数,且1.6>1.4,所以log 1.51.6>log 1.51.4. (3)因为0>log 70.6>log 70.5,所以1log 70.6<1log 70.5,即log 0.67<log 0.57. (4)因为log 3π>log 31=0,log 20.8<log 21=0,所以log 3π>log 20.8. 3.比较下列各组中两个值的大小:(1)log 31.9,log 32;(2)log 23,log 0.32;(3)log a π,log a 3.14(a >0,a ≠1). [解析](1)因为y =log 3x 在(0,+∞)上是增函数,所以log 31.9<log 32. (2)因为log 23>log 21=0,log 0.32<log 0.31=0,所以log 23>log 0.32.(3)当a >1时,函数y =log a x 在(0,+∞)上是增函数,则有log a π>log a 3.14; 当0<a <1时,函数y =log a x 在(0,+∞)上是减函数,则有log a π<log a 3.14. 综上所得,当a >1时,log a π>log a 3.14;当0<a <1时,log a π<log a 3.14. 4.比较下列各组数的大小(1)log 0.13与log 0.1π;(2)log 45与log 65;(3)3log 45与2log 23;(4)log a (a +2)与log a (a +3)(a >0且a ≠1). [解析] (1)∵函数y =log 0.1x 是减函数,π>3,∴log 0.13>log 0.1π.(2)法一:∵函数y =log 4x 和y =log 6x 都是增函数,∴log 45>log 44=1,log 65<log 66=1.∴log 45>log 65. 法二:画出y =log 4x 和y =log 6x 在同一坐标系中的图象如图所示,由图可知log 45>log 65.(3)∵3log 45=log 453=log 4125=log 2125log 24=12log 2125=log 2125,2log 23=log 232=log 29,又∵函数y =log 2x 是增函数,125>9,∴log 2125>log 29,即3log 45>2log 23. (4)∵a +2<a +3,故①当a >1时,log a (a +2)<log a (a +3);②当0<a <1时,log a (a +2)>log a (a +3). 5.比较下列各组中两个值的大小:(1)ln0.3,ln2;(2)log 30.2,log 40.2;(3)log 3π,log π3;(4)log a 3.1,log a 5.2(a>0,且a ≠1). [解析] (1)因为函数y =lnx 是增函数,且0.3<2,所以ln0.3<ln2.(2)解法一:因为0>log 0.23>log 0.24,所以1log 0.23<1log 0.24,即log 30.2<log 40.2.解法二:如图所示,由图可知log 40.2>log 30.2.(3)因为函数y =log 3x 是增函数,且π>3,所以log 3π>log 33=1.因为函数y =log πx 是增函数,且π>3,所以log π3<log ππ=1.所以log 3π>log π3.(4)当a>1时,函数y =log a x 在(0,+∞)上是增函数,又3.1<5.2,所以log a 3.1<log a 5.2; 当0<a<1时,函数y =log a x 在(0,+∞)上是减函数,又3.1<5.2,所以log a 3.1>log a 5.2. 6.已知实数a =log 45,b =⎝⎛⎭⎫120,c =log 30.4,则a ,b ,c 的大小关系为( )A .b<c<aB .b<a<cC .c<a<bD .c<b<a[解析]由题知,a =log 45>1,b =⎝⎛⎭⎫120=1,c =log 30.4<0,故c<b<a.[答案] D 7.下列式子中成立的是( )A .log 0.44<log 0.46B .1.013.4>1.013.5C .3.50.3<3.40.3D .log 76<log 67[解析]选D ,因为y =log 0.4x 为减函数,故log 0.44>log 0.46,故A 错;因为y =1.01x 为增函数, 所以1.013.4<1.013.5,故B 错;由幂函数的性质知,3.50.3>3.40.3,故C 错. 8.已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b[解析]∵0<a =213<20=1,b =log 213<log 21=0,c =log 1213>log 1212=1,∴c >a >b .故选D.9.如果log 12 x <log 12y <0,那么( )A .y <x <1B .x <y <1C .1<x <yD .1<y <x[解析]对数函数y =log 12 x 在(0,+∞)上单调递减,则由log 12 x <log 12 y <0=log 12 1,可得1<y <x .10.设a =log 32,b =log 52,c =log 23,则( )A .a >c >bB .b >c >aC .c >b >aD .c >a >b[解析]a =log 32<log 33=1;c =log 23>log 22=1,由对数函数的性质可知log 52<log 32,∴b <a <c ,故选D. 11.设a =log 43,b =log 53,c =log 45,则( )A .a>c>bB .b>c>aC .c>b>aD .c>a>b[解析]a =log 43<log 44=1;c =log 45>log 44=1,由对数函数的性质可知log 53<log 43,∴b<a<c ,故选D. 12.若a =20.2,b =log 4(3.2),c =log 2(0.5),则( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a[解析]∵a =20.2>1>b =l o g 4(3.2)>0>c =l o g 2(0.5),∴a >b >c .故选A. 13.已知log a 13>log b 13>0,则下列关系正确的是( )A .0<b <a <1B .0<a <b <1C .1<b <aD .1<a <b[解析]由log a 13>0,log b 13>0,可知a ,b ∈(0,1),又log a 13>log b 13,作出图象如图所示,结合图象易知a >b ,∴0<b <a <1.14.设a =log 0.20.3,b =log 20.3,则( )A .a +b <ab <0B .ab <a +b <0C .a +b <0<abD .ab <0<a +b[解析]∵a =log 0.20.3>log 0.21=0,b =log 20.3<log 21=0,∴ab <0.∵a +b ab =1a +1b=log 0.30.2+log 0.32=log 0.30.4,∴1=log 0.30.3>log 0.30.4>log 0.31=0, ∴0<a +b ab<1,∴ab <a +b <0.15.已知f (x )=|lg x |,且1c>a >b >1,试比较f (a ),f (b ),f (c )的大小.[解析]先作出函数y =lg x 的图象,再将图象位于x 轴下方的部分折到x 轴上方, 于是得f (x )=|lg x |图象(如图),由图象可知,f (x )在(0,1)上单调递减,在(1,+∞) 上单调递增.由1c >a >b >1得:f 1c >f (a )>f (b ),而f 1c =⎪⎪⎪⎪lg 1c =|-lg c |=|lg c |=f (c ). ∴f (c )>f (a )>f (b ).题型二 求单调区间或根据单调性求参1.函数f (x )=ln(2-x )的单调减区间为________.[解析]由2-x >0,得x <2.又函数y =2-x ,x ∈(-∞,2)为减函数, ∴函数f (x )=ln(2-x )的单调减区间为(-∞,2). 2.函数f (x )=log 2(1+2x )的单调增区间是______.[解析]易知函数f (x )的定义域为-12,+∞,又因为函数y =log 2x 和y =1+2x 都是增函数,所以f (x )的单调增区间是⎝⎛⎭⎫-12,+∞. 3.求函数y =log 12(1-x 2)的单调递增区间.[解析]要使函数有意义,则有1-x 2>0⇔x 2<1⇔-1<x <1.∴函数的定义域为(-1,1). 令t =1-x 2,x ∈(-1,1).在(-1,0)上,x 增大,t 增大,y =log 12 t 减小,即在(-1,0)上,y 随x 的增大而减小,为减函数;在[0,1)上,x 增大,t 减小,y =log 12 t 增大,即在[0,1)上,y 随x 的增大而增大,为增函数.∴y =log 12 (1-x 2)的单调递增区间为[0,1).4.求函数y =log 0.7(x 2-3x +2)的单调区间.[解析]因为x 2-3x +2>0,所以x<1或x>2.所以函数的定义域为(-∞,1)∪(2,+∞),令t =x 2-3x +2, 则y =log 0.7t ,显然y =log 0.7t 在(0,+∞)上是单调递减的,而t =x 2-3x +2在(-∞,1),(2,+∞)上分 别是单调递减和单调递增的,所以函数y =log 0.7(x 2-3x +2)的单调递增区间为(-∞,1), 单调递减区间为(2,+∞).5.求函数y =lg (x 2-2x )的单调递增区间.[解析]由已知,得x 2-2x >0,解得x >2或x <0.因为y =x 2-2x 在[1,+∞)上是增函数,在(-∞,1]上是减函数,而y =lg x 在(0,+∞)上是增函数,所以y =lg (x 2-2x )的单调递增区间为(2,+∞). 6.函数f (x )=ln(x +2)+ln(4-x )的单调递减区间是________.[解析]由⎩⎪⎨⎪⎧x +2>0,4-x >0得-2<x <4,因此函数f (x )的定义域为(-2,4).f (x )=ln(x +2)+ln(4-x )=ln(-x 2+2x +8)=ln [-(x -1)2+9], 设u =-(x -1)2+9,又y =ln u 是增函数,u =-(x -1)2+9在(1,4)上是减函数,因此f (x )的单调递减区间为(1,4). 7.函数f (x )=|log 12x |的单调递增区间是( )A.⎝⎛⎦⎤0,12 B .(0,1] C .(0,+∞)D .[1,+∞)[解析]f (x )的图象如图所示,由图象可知单调递增区间为[1,+∞).]8.已知函数f (x )=log a (3-ax )(a >0,且a ≠1).当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围. [解析]∵a >0且a ≠1,设t (x )=3-ax ,则t (x )=3-ax 为减函数,当x ∈[0,2]时,t (x )的最小值为3-2a . ∵当x ∈[0,2]时,f (x )恒有意义,即x ∈[0,2]时,3-ax >0恒成立.∴3-2a >0,∴a <32.又a >0且a ≠1,∴0<a <1或1<a <32,∴实数a 的取值范围为(0,1)∪⎝⎛⎭⎫1,32. 9.已知y =log a (2-ax )是[0,1]上的减函数,则a 的取值范围为( )A .(0,1)B .(1,2)C .(0,2)D .[2,+∞)[解析]∵f (x )=l o g a (2-ax )在[0,1]上是减函数,且y =2-ax 在[0,1]上是减函数,∴⎩⎪⎨⎪⎧ f (0)>f (1),a >1,即⎩⎪⎨⎪⎧ log a 2>log a (2-a ),a >1,∴⎩⎪⎨⎪⎧a >1,2-a >0,∴1<a <2. 10.若y =log a (ax +3)(a >0且a ≠1)在区间(-1,+∞)上是增函数,则a 的取值范围是________. [解析]因为y =log a (ax +3)(a >0且a ≠1)在区间(-1,+∞)上是增函数,所以⎩⎪⎨⎪⎧-a +3≥0,a >1,a >0且a ≠1,解得1<a ≤3.故a 的取值范围是(1,3].11.是否存在实数a ,使函数y =log a (ax 2-x )在区间[2,4]上是增函数?如果存在,求出a 的取值范围;如果不存在,请说明理由.[解析]存在.设u =g (x )=ax 2-x ,则y =log a u .假设符合条件的a 值存在.(1)当a >1时,只需g (x )在[2,4]上为增函数,故应满足⎩⎪⎨⎪⎧12a ≤2,g (2)=4a -2>0.解得a >12.∴a >1.(2)当0<a <1时,只需g (x )在[2,4]上为减函数,故应满足⎩⎪⎨⎪⎧12a ≥4,g (4)=16a -4>0.无解.综上所述,当a >1时,函数y =log a (ax 2-x )在[2,4]上是增函数. 12.设函数f (x )=log a ⎝⎛⎭⎫1-ax ,其中0<a <1. (1)证明:f (x )是(a ,+∞)上的减函数; (2)若f (x )>1,求x 的取值范围.[解析] (1)证明:任取x 1,x 2∈(a ,+∞),不妨令0<a <x 1<x 2,g (x )=1-ax ,则g (x 1)-g (x 2)=⎝⎛⎭⎫1-a x 1-⎝⎛⎭⎫1-a x 2=a (x 1-x 2)x 1x 2, ∵0<a <x 1<x 2,∴x 1-x 2<0,x 1x 2>0,∴g (x 1)-g (x 2)<0,∴g (x 1)<g (x 2),∴g (x )为增函数,又∵0<a <1,∴f (x )是(a ,+∞)上的减函数. (2)∵log a ⎝⎛⎭⎫1-a x >1,∴0<1-a x <a ,∴1-a <ax <1.又∵0<a <1,∴1-a >0, ∴a <x <a1-a,∴x 的取值范围是⎝⎛⎭⎫a ,a 1-a .题型三 求解对数不等式1.不等式log 2(2x +3)>log 2(5x -6)的解集为( )A .(-∞,3) B.⎝⎛⎭⎫-32,3 C.⎝⎛⎭⎫-32,65 D.⎝⎛⎭⎫65,3[解析]由⎩⎪⎨⎪⎧2x +3>0,5x -6>0,2x +3>5x -6,得65<x<3.[答案] D 2.若lg(2x -4)≤1,则x 的取值范围是( )A .(-∞,7]B .(2,7]C .[7,+∞)D .(2,+∞)[解析]由lg(2x -4)≤1,得0<2x -4≤10,即2<x ≤7,故选B. 3.若log a 23<1,则a 的取值范围是________.[解析] 原不等式等价于⎩⎪⎨⎪⎧ 0<a <1,23>a 或⎩⎪⎨⎪⎧a >1,23<a ,解得0<a <23或a >1,故a 的取值范围为⎝⎛⎭⎫0,23∪(1,+∞). 4.已知log a (3a -1)恒为正,求a 的取值范围. [解析]由题意知log a (3a -1)>0=log a 1.当a>1时,y =log a x 是增函数,∴⎩⎪⎨⎪⎧3a -1>1,3a -1>0,解得a>23,∴a>1;当0<a<1时,y =log a x 是减函数,∴⎩⎪⎨⎪⎧3a -1<1,3a -1>0,解得13<a<23.∴13<a<23.综上所述,a 的取值范围是⎝⎛⎭⎫13,23∪(1,+∞).5.函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)[解析]若a >0,由f (a )>f (-a ),得log 2a >log 12 a =-log 2a ,即log 2a >0,则a >1;若a <0,则由f (a )>f (-a ),得log 12 (-a )>log 2(-a ),即-log 2(-a )>log 2(-a ),则log 2(-a )<0,得0<-a <1,即-1<a <0.综上所述,a 的取值范围是(-1,0)∪(1,+∞).6.已知定义域为R 的偶函数f (x )在[0,+∞)上是增函数,且f ⎝⎛⎭⎫12=0,则不等式f (log 4x )<0的解集是___. [解析]由题意可知,f (log 4x )<0⇔-12<log 4x <12⇔log 44-12<log 4x <log 4412⇔12<x <2.7.(1)已知log a 12>1,求a 的取值范围;(2)已知log 0.7(2x )<log 0.7(x -1),求x 的取值范围. [解析] (1)由log a 12>1得log a 12>log a a .①当a >1时,有a <12,此时无解.②当0<a <1时,有12<a ,从而12<a <1.所以a 的取值范围是⎝⎛⎭⎫12,1.(2)因为函数y =log 0.7x 在(0,+∞)上为减函数,所以由log 0.7(2x )<log 0.7(x -1)得⎩⎪⎨⎪⎧2x >0,x -1>0,2x >x -1,解得x >1.即x 的取值范围是(1,+∞).8.已知2log a (x -4)>log a (x -2),求x 的取值范围.[解析]由题意,得x >4,原不等式可变为log a (x -4)2>log a (x -2). 当a >1时,y =log ax 为定义域内的增函数,∴⎩⎪⎨⎪⎧ (x -4)2>x -2,x -4>0,x -2>0,解得x >6.当0<a <1时,y =log ax 为定义域内的减函数,∴⎩⎪⎨⎪⎧(x -4)2<x -2,x -4>0,x -2>0,解得4<x <6.综上所述,当a >1时,x 的取值范围为(6,+∞);当0<a <1时,x 的取值范围为(4,6). 9.已知函数f (x )=log a (x -1),g (x )=log a (6-2x )(a >0,且a ≠1).(1)求函数φ(x )=f (x )+g (x )的定义域; (2)试确定不等式f (x )≤g (x )中x 的取值范围.[解析] (1)由⎩⎪⎨⎪⎧x -1>0,6-2x >0,解得1<x <3,∴函数φ(x )的定义域为{x |1<x <3}.(2)不等式f (x )≤g (x ),即为log a (x -1)≤log a (6-2x ),①当a >1时,不等式等价于⎩⎪⎨⎪⎧ 1<x <3,x -1≤6-2x ,解得1<x ≤73;②当0<a <1时,不等式等价于⎩⎪⎨⎪⎧1<x <3,x -1≥6-2x ,解得73≤x <3.综上可得,当a >1时,不等式的解集为⎝⎛⎦⎤1,73;当0<a <1时,不等式的解集为⎣⎡⎭⎫73,3. 10.函数f (x )=2x -log 31+x 1-x,x ∈(0,1),求不等式f (x 2)>f ⎝⎛⎭⎫13的解集.[解析]∵y =2x 在(0,1)上为减函数,y =-log 31+x 1-x =log 31-x 1+x =log 3⎝ ⎛⎭⎪⎫-1+2x +1在(0,1)上也为减函数, ∴f (x )=2x -log 31+x 1-x在(0,1)上单调递减.∴x 2<13.∴0<x <33,∴解集为⎝⎛⎭⎫0,33.题型四 与对数函数有关的值域问题1.下列函数中,值域是[0,+∞)的是( ) A .f(x)=log 2(x -1) B .f(x)=log 2(x -1) C .f(x)=log 2(x 2+2)D .f(x)=log 2x -1[解析]A 、D 中因为真数大于0,故值域为R ,C 中因为x 2+2≥2,故f(x)≥1. 只有B 中log 2(x -1)≥0,f(x)的值域为[0,+∞).[答案] B2.若函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为( )A.14B.12C .2D .4 [解析]当a >1时,a +log a 2+1=a ,log a 2=-1,a =12(舍去).当0<a <1时,1+a +log a 2=a ,∴log a 2=-1,a =12.3.函数f (x )=log 12(x 2+2x +3)的值域是________.[解析]f (x )=log 12(x 2+2x +3)=log 12[(x +1)2+2],因为(x +1)2+2≥2,所以log 12[(x +1)2+2]≤log 122=-1,所以函数f (x )的值域是(-∞,-1].4.函数y =log 0.4(-x 2+3x +4)的值域是________.[解析]-x 2+3x +4=-⎝⎛⎭⎫x -322+254≤254,∴有0<-x 2+3x +4≤254, ∴根据对数函数y =log 0.4x 的图象(图略)即可得到:log 0.4(-x 2+3x +4)≥log 0.4254=-2,∴原函数的值域为[-2,+∞). 5.求函数y =log 13(-x 2+4x -3)的值域.[解析]由-x 2+4x -3>0,解得1<x<3,∴函数的定义域是(1,3). 设u =-x 2+4x -3(1<x<3),则u =-(x -2)2+1.∵1<x<3,∴0<u ≤1,则y ≥0,即函数的值域是[0,+∞).6.求下列函数的值域:(1)y =log 2(x 2+4);(2)y =log 12(3+2x -x 2).[解析] (1)y =log 2(x 2+4)的定义域是R.因为x 2+4≥4,所以log 2(x 2+4)≥log 24=2. 所以y =log 2(x 2+4)的值域为[2,+∞).(2)设u =3+2x -x 2=-(x -1)2+4≤4.因为u >0,所以0<u ≤4. 又y =log 12 u 在(0,4]上为减函数,所以log 12 u ≥log 12 4=-2,所以y =log 12 (3+2x -x 2)的值域为[-2,+∞). 7.求下列函数的值域:(1)y =log 2(|x|+4);(2)f(x)=log 2(-x 2-4x +12).[解析] (1)因为|x|+4≥4,所以log 2(|x|+4)≥log 24=2,所以函数的值域为[2,+∞).(2)因为-x 2-4x +12=-(x +2)2+16≤16,所以0<-x 2-4x +12≤16,故log 2(-x 2-4x +12)≤log 216=4,函数的值域为(-∞,4].8.求函数y =(log 2x)2-4log 2x +5(1≤x ≤2)的最值.[解析]令t =log 2x ,则0≤t ≤1且y =t 2-4t +5,由二次函数的图象可知,函数y =t 2-4t +5在[0,1]上为减函数,∴2≤y ≤5.故y max =5,y min =2.9.求函数y =log 2(2x)·log 2x ⎝⎛⎭⎫12≤x ≤2的最大值和最小值. [解析]y =log 2(2x)·log 2x =(1+log 2x)·log 2x =⎝⎛⎭⎫log 2x +122-14. ∵12≤x ≤2,即-1≤log 2x ≤1,∴当log 2x =-12时,y min =-14;当log 2x =1时,y max =2. 10.函数f (x )=log 2x ·log 2(2x )的最小值为________.[解析]f (x )=log 2x ·log 2(2x )=12log 2x ·2log 2(2x )=log 2x (1+log 2x ).设t =log 2x (t ∈R),则原函数可以化为y =t (t +1)=⎝⎛⎭⎫t +122-14(t ∈R),故该函数的最小值为-14.故f (x )的最小值为-14. 11.已知2x ≤256且log 2x ≥12,求函数f (x )=log 2x 2×log 2 x2的最大值和最小值.[解析]由2x ≤256,得x ≤8,所以log 2x ≤3,即12≤log 2x ≤3.f (x )=(log 2x -1)×(log 2x -2)=(log 2x )2-3log 2x +2=⎝⎛⎭⎫log 2x -322-14. 当log 2x =32,即x =22时,f (x )min =-14,当log 2x =3,即x =23=8时,f (x )max =2.12.求函数f(x)=log 2(4x)·log 42x,x ∈⎣⎡⎦⎤12,4的值域. [解析]f(x)=log 2(4x)·log 42x =(log 2x +2)·⎣⎡⎦⎤12(1-log 2x )=-12[(log 2x)2+log 2x -2]. 设log 2x =t.∵x ∈⎣⎡⎦⎤12,4,∴t ∈[-1,2],则有y =-12(t 2+t -2),t ∈[-1,2], 因此二次函数图象的对称轴为t =-12,∴它在⎣⎡⎦⎤-1,-12上是增函数,在⎣⎡⎦⎤-12,2上是减函数, ∴当t =-12时,有最大值,且y max =98.当t =2时,有最小值,且y min =-2.∴f(x)的值域为⎣⎡⎦⎤-2,98. 13.函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1],则b -a 的最小值为________.[解析]根据图象可知,|log 3x |=0,则x =1,|log 3x |=1,则x =13或3.由图可知(b -a )min =1-13=23.14.若函数y =log 2(x 2-2)(a ≤x ≤b )的值域是[1,log 214],则a ,b 的值分别为( )A .⎩⎪⎨⎪⎧ a =-4,b =-2B .⎩⎪⎨⎪⎧a =2,b =4C .⎩⎪⎨⎪⎧a =-4,b =2D .⎩⎪⎨⎪⎧ a =-4,b =-2或⎩⎪⎨⎪⎧a =2,b =4[解析]由1≤log 2(x 2-2)≤log 214得2≤x 2-2≤14,得4≤x 2≤16,得-4≤x ≤-2或2≤x ≤4.由x 2-2>0得x <-2或x >2,故b <-2或a > 2.当a >2时,由函数y =log 2(x 2-2)(a ≤x ≤b )单调递增得2≤x ≤4,故a =2,b =4;当b <-2时,由函数y =log 2(x 2-2)(a ≤x ≤b )单调递减得-4≤x ≤-2, 故a =-4,b =-2.15.已知函数y =(log 2x -2)⎝⎛⎭⎫log 4x -12,2≤x ≤8. (1)令t =log 2x ,求y 关于t 的函数关系式,并写出t 的范围; (2)求该函数的值域.[解析] (1)y =12(t -2)(t -1)=12t 2-32t +1,又2≤x ≤8,∴1=log 22≤log 2x ≤log 28=3,即1≤t ≤3.(2)由(1)得y =12⎝⎛⎭⎫t -322-18,1≤t ≤3, 当t =32时,y min =-18;当t =3时,y max =1,∴-18≤y ≤1,即函数的值域为⎣⎡⎦⎤-18,1.16.已知函数f (3x -2)=x -1,x ∈[0,2],将函数y =f (x )的图象向右平移2个单位长度,再向上平移3个单位长度可得函数y =g (x )的图象.(1)求函数y =f (x )与y =g (x )的解析式;(2)设h (x )=[g (x )]2+g (x 2),试求函数y =h (x )的最值.[解析] (1)设t =3x -2,t ∈[-1,7],则x =log 3(t +2),于是有f (t )=log 3(t +2)-1,t ∈[-1,7]. ∴f (x )=log 3(x +2)-1,x ∈[-1,7],根据题意得g (x )=f (x -2)+3=log 3x +2,x ∈[1,9]. ∴函数y =f (x )的解析式为f (x )=log 3(x +2)-1,x ∈[-1,7], 函数y =g (x )的解析式为g (x )=log 3x +2,x ∈[1,9]. (2)∵g (x )=log 3x +2,x ∈[1,9],∴h (x )=[g (x )]2+g (x 2)=(log 3x +2)2+2+log 3x 2=(log 3x )2+6log 3x +6=(log 3x +3)2-3, ∵函数g (x )的定义域为[1,9],∴要使函数h (x )=[g (x )]2+g (x 2)有意义,必须有⎩⎪⎨⎪⎧1≤x 2≤9,1≤x ≤9,即1≤x ≤3.∴0≤log 3x ≤1,∴6≤(log 3x +3)2-3≤13.∴函数y =h (x )的最大值为13,最小值为6. 17.已知函数f (x )=lg (ax 2+2x +1).(1)若f (x )的值域为R ,求实数a 的取值范围; (2)若f (x )的定义域为R ,求实数a 的取值范围.[解析] (1)∵f (x )的值域为R ,∴要求u =ax 2+2x +1的值域包含(0,+∞). 当a <0时,显然不可能; 当a =0时,u =2x +1∈R 成立;当a >0时,若u =ax 2+2x +1的值域包含(0,+∞), 则Δ=4-4a ≥0,解得0<a ≤1. 综上可知,a 的取值范围是0≤a ≤1. (2)由已知,u =ax 2+2x +1的值恒为正,∴⎩⎪⎨⎪⎧a >0,Δ=4-4a <0,解得a 的取值范围是a >1.18.已知函数f (x )=log 2⎣⎡⎦⎤ax 2+(a -1)x +14. (1)若定义域为R ,求实数a 的取值范围; (2)若值域为R ,求实数a 的取值范围.[解析]1)要使f (x )的定义域为R ,则对任意实数x 都有t =ax 2+(a -1)x +14>0恒成立.当a =0时,不合题意;当a ≠0时,由二次函数图象可知⎩⎪⎨⎪⎧a >0,Δ=(a -1)2-a <0. 解得3-52<a <3+52.故所求a 的取值范围为⎝ ⎛⎭⎪⎫3-52,3+52. (2)要使f (x )的值域为R ,则有t =ax 2+(a -1)x +14的值域必须包含(0,+∞).当a =0时,显然成立;当a ≠0时,由二次函数图象可知,其二次函数图象必须与x 轴相交且开口向上,∴⎩⎪⎨⎪⎧a >0,Δ=(a -1)2-a ≥0,即0<a ≤3-52或a ≥3+52.故所求a 的取值范围为⎣⎢⎡⎦⎥⎤0,3-52∪⎣⎢⎡⎭⎪⎫3+52,+∞. 题型五 对数函数性质的综合应用1.函数f (x )=lg ⎝ ⎛⎭⎪⎫1x 2+1+x 是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数[解析]f (x )定义域为R ,f (-x )+f (x )=lg ⎝ ⎛⎭⎪⎫1x 2+1-x +lg ⎝ ⎛⎭⎪⎫1x 2+1+x =lg1(x 2+1)-x 2=lg 1=0, ∴f (x )为奇函数,故选A.2.设函数f (x )=ln (1+x )-ln (1-x ),则f (x )是( )A .奇函数,且在(0,1)上是增函数B .奇函数,且在(0,1)上是减函数C .偶函数,且在(0,1)上是增函数D .偶函数,且在(0,1)上是减函数[解析]由题意可得,函数f (x )的定义域为(-1,1),且f (-x )=ln (1-x )-ln (1+x )=-f (x ), 故f (x )为奇函数.又f (x )=ln 1+x 1-x =ln ⎝ ⎛⎭⎪⎫21-x -1,易知y =21-x -1在(0,1)上为增函数,故f (x )在(0,1)上为增函数.故选A .3.当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A .(2,2)B .(1,2)C.⎝⎛⎭⎫22,1D.⎝⎛⎭⎫0,22 [解析]当0<x ≤12时,函数y =4x 的图象如图所示,若不等式4x <log a x 恒成立,则y =log a x 的图象恒在y =4x 的图象的上方(如图中虚线所示),∵y =log a x 的图象与y =4x 的图象交于⎝⎛⎭⎫12,2点时,a =22, 故虚线所示的y =log a x 的图象对应的底数a 应满足22<a <1,故选C.4.已知函数f (x )=ln(3+x )+ln(3-x ).(1)求函数y =f (x )的定义域; (2)判断函数y =f (x )的奇偶性.[解析](1)要使函数有意义,则⎩⎪⎨⎪⎧3+x >0,3-x >0,解得-3<x <3,故函数y =f (x )的定义域为(-3,3).(2)由(1)可知,函数y =f (x )的定义域为(-3,3),关于原点对称. 对任意x ∈(-3,3),则-x ∈(-3,3).∵f (-x )=ln(3-x )+ln(3+x )=f (x ),∴由函数奇偶性可知,函数y =f (x )为偶函数.5.设常数a >1,实数x ,y 满足log a x +2log x a +log x y =-3,若y 的最大值为2,则x 的值为________. [解析]实数x ,y 满足log a x +2log x a +log x y =-3,化为log a x +2log a x +log a ylog a x =-3.令log a x =t ,则原式化为log a y =-⎝⎛⎭⎫t +322+14. ∵a >1,∴当t =-32时,y 取得最大值2,∴log a 2=14,解得a =4,∴log 4x =-32,∴x =4-32=18.6.已知函数f (x )=log a (1-x )+log a (x +3),其中0<a <1.(1)求函数f (x )的定义域;(2)若函数f (x )的最小值为-4,求a 的值.[解析] (1)要使函数有意义,则有⎩⎪⎨⎪⎧1-x >0,x +3>0,解得-3<x <1,所以函数的定义域为(-3,1).(2)函数可化为f (x )=log a (1-x )(x +3)=log a (-x 2-2x +3)=log a [-(x +1)2+4],因为-3<x <1,所以0<-(x +1)2+4≤4. 因为0<a <1,所以log a [-(x +1)2+4]≥log a 4,即f (x )min =log a 4,由log a 4=-4,得a -4=4,所以a =4-14=22.7.已知函数f(x)=log a 1+x1-x(a>0,且a ≠1).(1)求f(x)的定义域; (2)判断函数的奇偶性;(3)求使f(x)>0的x 的取值范围.[解析](1)由1+x1-x >0,得-1<x<1,故f(x)的定义域为(-1,1).(2)∵f(-x)=log a 1-x 1+x =-log a 1+x1-x=-f(x),又由(1)知f(x)的定义域关于原点对称,∴f(x)是奇函数. (3)当a>1时,由log a 1+x 1-x >0=log a 1,得1+x1-x >1.所以0<x<1.当0<a<1时,由log a 1+x 1-x >0=log a 1,得0<1+x1-x<1,所以-1<x<0.故当a>1时,x 的取值范围是{x|0<x<1};当0<a<1时,x 的取值范围是{x|-1<x<0}. 8.已知函数f (x )=lg (2+x )+lg (2-x ).(1)求函数y =f (x )的定义域; (2)判断函数y =f (x )的奇偶性;(3)若f (m -2)<f (m ),求m 的取值范围.[解析](1)要使函数f (x )有意义,则⎩⎪⎨⎪⎧2+x >0,2-x >0,解得-2<x <2.∴函数y =f (x )的定义域为{x |-2<x <2}.(2)由(1),可知函数y =f (x )的定义域为{x |-2<x <2},关于原点对称,对任意x ∈(-2,2),有-x ∈(-2,2). ∵f (-x )=lg (2-x )+lg (2+x )=lg (2+x )+lg (2-x )=f (x ),∴函数y =f (x )为偶函数. (3)∵函数f (x )=lg (2+x )+lg (2-x )=lg (4-x 2),当0≤x <2时,函数y =f (x )为减函数,当-2<x <0时,函数y =f (x )为增函数, ∴不等式f (m -2)<f (m )等价于|m |<|m -2|,解得m <1.又⎩⎪⎨⎪⎧-2<m -2<2,-2<m <2,解得0<m <2. 综上所述,m 的取值范围是{m |0<m <1}.9.已知f (x )是定义在R 上的奇函数,且当x >0时,f (x )=log 12(x +7).(1)求f (1),f (-1); (2)求函数f (x )的表达式;(3)若f (a -1)-f (3-a )<0,求a 的取值范围. [解析](1)f (1)=log 128=-3,f (-1)=-f (1)=3.(2)因为f (x )在R 上为奇函数,所以f (0)=0,令x <0,则-x >0, 所以f (x )=-f (-x )=-log 12(-x +7),(3)当x ∈(0,+∞)时,y =log 12 (x +7),令u =x +7,则y =log 12 u .由于u =x +7是增函数,y =log 12 u 是减函数,则y =log 12 (x +7)在(0,+∞)上是减函数,又由于f (x )是奇函数且f (0)=0,所以y =f (x )是R 上的减函数.由f (a -1)<f (3-a ),得a -1>3-a ,解得a >2. 10.已知a >0且满足不等式22a +1>25a -2.(1)求实数a 的取值范围;(2)求不等式log a (3x +1)<log a (7-5x )的解集;(3)若函数y =log a (2x -1)在区间[1,3]上有最小值为-2,求实数a 的值.[解析](1)∵22a +1>25a -2,∴2a +1>5a -2,即3a <3,∴a <1,即0<a <1.∴实数a 的取值范围是(0,1). (2)由(1)得,0<a <1,∵log a (3x +1)<log a (7-5x ),∴⎩⎪⎨⎪⎧3x +1>0,7-5x >0,3x +1>7-5x ,即⎩⎪⎨⎪⎧x >-13,x <75,x >34,解得34<x <75.即不等式的解集为⎝⎛⎭⎫34,75. (3)∵0<a <1,∴函数y =log a (2x -1)在区间[1,3]上为减函数,∴当x =3时,y 有最小值为-2,即log a 5=-2,∴a -2=1a 2=5,解得a =55.11.已知函数f (x )=lga -x1+x. (1)若f (x )为奇函数,求a 的值;(2)在(1)的条件下,若f (x )在(m ,n )上的值域为(-1,+∞),求m ,n 的值. [解析] (1)∵f (x )为奇函数,∴f (x )+f (-x )=0,即lg a -x 1+x +lg a +x 1-x =0,∴(a -x )(a +x )1-x 2=1,解得a =1(a =-1舍去).(2)由(1)知f (x )=lg1-x 1+x ,则1-x1+x>0, 即⎩⎪⎨⎪⎧ 1-x >0,1+x >0或⎩⎪⎨⎪⎧1-x <0,1+x <0,解得-1<x <1,即其定义域为(-1,1). ∵x ∈(-1,1)时,t =1-x 1+x =-1+21+x为减函数,而y =lg t 在其定义域内为增函数,∴f (x )=lg 1-x 1+x 在其定义域内是减函数,则m =-1,由题意知f (n )=lg 1-n 1+n =-1,解得n =911,即m =-1,n =911.题型六 反函数的应用1.写出下列函数的反函数(用x 表示自变量,用y 表示函数): (1)y =2.5x ;(2)y =log 16x .[解析](1)函数y =2.5x 的反函数是y =log 2.5x (x >0).(2)由y =log 16 x 得x =⎝⎛⎭⎫16y ,所以函数y =log 16x 的反函数为y =⎝⎛⎭⎫16x .2.函数y =a x (a >0,且a ≠1)的反函数的图象过点(a ,a ),则a 的值为( )A .2B .12C .2或12D .3[解析]法一:函数y =a x (a >0,且a ≠1)的反函数为y =log a x (a >0,且a ≠1),故y =log a x 的图象过点(a ,a ),则a =log a a =12.法二:∵函数y =a x (a >0,且a ≠1)的反函数的图象过点(a ,a ),∴函数y =a x (a >0,且a ≠1)的图象过点(a ,a ),∴a a=a =a 12,即a =12.3.已知函数f (x )=a x -k (a >0,且a ≠1)的图象过点(1,3),其反函数的图象过点(2,0),求函数f (x )的解析式. [解析] 由于函数f (x )的反函数的图象过点(2,0),∴f (x )的图象过点(0,2),∴2=a 0-k ,即k =-1, ∴f (x )=a x +1.又f (x )的图象过点(1,3),∴3=a +1,即a =2,∴f (x )=2x +1.4.若函数y =f (x )的图象与函数y =lg (x +1)的图象关于直线x -y =0对称,则f (x )=( )A .10x -1B .1-10xC .1-10-xD .10-x -1[解析]若两函数图象关于直线y =x 对称,则两函数互为反函数,故y =lg (x +1),则x +1=10y , x =10y -1,即y =10x -1.故选A .5.已知函数y =e x 的图象与函数y =f (x )的图象关于直线y =x 对称,则( )A .f (2x )=e 2x (x ∈R)B .f (2x )=ln 2·ln x (x >0)C .f (2x )=2e x (x ∈R)D .f (2x )=ln x +ln 2(x >0)[解析]因为函数y =e x 的图象与函数f (x )的图象关于直线y =x 对称,所以f (x )是y =e x 的反函数, 即f (x )=ln x ,故f (2x )=ln 2x =ln x +ln 2(x >0),故选D .6.设函数f (x )=log 2x 的反函数为y =g (x ),且g (a )=14,则a =________.[解析]∵函数f (x )=log 2x 的反函数为y =2x ,即g (x )=2x .又∵g (a )=14,∴2a =14,∴a =-2.。
高中数学函数与方程的思想方法
高中数学函数与方程的思想方法高中数学函数与方程的思想方法在高中数学的学习中,函数与方程是非常重要的概念和内容。
掌握了函数与方程的思想方法,不仅可以帮助我们解决实际问题,还能培养我们的逻辑思维和分析能力。
本文将从函数与方程的定义、解题思路和实际应用等方面探讨高中数学函数与方程的思想方法。
一、函数与方程的定义函数是数学中的基本概念,我们可以将函数理解为两个集合之间的一种特殊关系。
简单来说,函数就是将自变量映射到因变量的规则。
函数通常用符号表示,如f(x)、g(x)等。
在方程中,通常出现的是一元函数,如y=f(x)。
方程是关于未知数的等式,它通常由等号连接的表达式组成,其中包含未知数和已知数。
方程的解是使得方程成立的未知数的值。
在数学中,函数与方程是密切相关的概念,通过函数可以建立方程,通过求解方程可以得到函数的零点或特殊点。
二、解题思路1. 函数图象与函数性质分析:对于给定的函数,我们可以通过观察其图象来推测函数的性质。
例如,对于一个二次函数,当a>0时,函数的图象开口向上;当a<0时,函数的图象开口向下。
通过观察函数图象,我们可以推测函数的最值、零点等重要信息。
2. 函数与方程的转化:有时候题目给出的是函数,要求解的是方程;有时候题目给出的是方程,要求分析函数的性质。
在这种情况下,我们需要运用函数与方程之间的转化关系进行思考。
例如,已知函数的表达式,要求函数的零点,就需要解方程f(x)=0。
反之亦然,已知方程,可以通过构造函数直观地分析方程的性质。
3. 实际问题的建模与解析:高中数学中的函数与方程往往是为了解决实际问题而引入的。
因此,在解题过程中,我们需要将问题进行数学建模,将实际问题转化为数学问题,然后通过函数与方程的知识进行分析和求解。
例如,求解优化问题时,我们可以通过函数的极值来确定最优解。
三、实际应用函数与方程在实际生活中有着广泛的应用。
下面以几个例子来说明:1. 经济学中的需求函数:在经济学中,需求函数描述了商品需求与价格之间的关系。
高中数学 第四章第37课时已知三角函数值求角(2)教师专用教案 新人教A版
第三十七教时 已知三角函数值求角(2)目的:理解反正切函数的有关概念,并能运用上述知识已知三角函数值求角。
过程:一、反正切函数R x k x x y ∈+≠=,2,tan ππ1︒在整个定义域上无反函数。
2︒在⎥⎦⎤⎢⎣⎡-2,2ππ上x y tan =记作()R x x y ∈=arctan (奇函数)。
二、例一、(P75例四)1、 已知⎪⎭⎫⎝⎛-∈=2,231tan ππx x 且,求x (精确到π1.0)。
解:在区间⎪⎭⎫⎝⎛-2,2ππ上x y tan =是增函数,符合条件的角是唯一的 ⎪⎭⎫⎝⎛π≈10'26180x 2、 已知31tan =x 且[]π2,0∈x ,求x 的取值集合。
解:1010,10tan 10tan ππππππ=+=∴=⎪⎭⎫ ⎝⎛+x x 或 ∴所求的x 的集合是⎭⎬⎫⎩⎨⎧1011,10ππ(即31arctan 31arctan +==πx x 和) 3、 已知R x x ∈=且31tan ,求x 的取值集合。
解:由上题可知:10ππ+=k x ,()z k k x ∈+=1011ππ 合并为()z k k x ∈+=10ππ三、处理《教学与测试》P127-128 61课 例二、已知23sin =α,根据所给范围求α: 1︒α为锐角 2︒α为某三角形内角 3︒α为第二象限角 4︒R ∈α 解:1︒由题设3πα=2︒设31πα=,或3232πππα=-= 3︒()z k k ∈+=322ππα 4︒由题设()()()z k k k k k∈-+=-+=3123arcsin 1πππα例三、求适合下列关系的x 的集合。
1︒()R x x ∈=2cos 2 2︒01tan 32=-x 3︒53sin -=x 解:1︒z k k k x x ∈±=±==,4222arccos 2,22cos πππ ∴所求集合为⎭⎬⎫⎩⎨⎧∈±=z k k x x ,42|ππ 2︒∴±=±=,6,33tan ππk x x 所求集合为⎭⎬⎫⎩⎨⎧∈±=z k k x x ,6|ππ 3︒()⎭⎬⎫⎩⎨⎧--=-=53arcsin 1,53sin kk x x π 例四、直角ABC ∆锐角A ,B 满足:A A A B∠+-=求,1sin tan 2cos22解:由已知:1sin tan cos 1+-=+A A BA A A ,tan sin 2=∴为锐角,0sin ≠∴A 3,20,21cos ππ=∠∴<<=∴A A A 四、小结、反正切函数五、作业:P76-77练习与习题4.11余下部分及《教学与测试》P128 61课练习。
【高中数学】高中数学函数方程思想讲解
【高中数学】高中数学函数方程思想讲解函数方程思想就是用函数、方程的观点和方法处理变量或未知数之间的关系,从而解决问题的一种思维方式,是很重要的数学思想。
1.函数思维:用函数关系表达变化过程中一些相互制约的变量,研究这些变量之间的相互制约关系,最终解决问题,这就是函数思维;2.应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;(2)根据需要构造函数,利用函数的相关知识解决问题;(3)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想;3.函数和方程是两个密切相关的数学概念,它们相互渗透。
许多方程问题需要函数知识和方法来解决,许多函数问题也需要方程方法的支持。
函数与方程的辩证关系形成了函数方程的概念函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值,解(证)不等式,解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.函数与方程的思想是中学数学的基本思想,也是历年高考的重点.1.函数的思想是用运动和变化的观点来分析和研究数学中的数量关系,建立函数关系或构造器,利用函数的形象和性质来分析和变换问题,从而解决问题2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析,转化问题,使问题获得解决.方程思想是动中求静,研究运动中的等量关系;3.函数方程思想的几种重要形式(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0.(2)函数和不等式也可以相互转化。
高三二轮复习--函数与方程的思想方法
应用函数思想的几种常见题型:
1. 遇到变量,构造函数关系解题;
① 24 d 3 7
②
s6
做到):~自拔|~分身。【成立】chénɡlì动①(组织、机构等)筹备成功, shɑnɡ名指社交场合:他在~混得很熟|~都称他为“三爷”。必须备有:旅游~|~ 软件|~工具书。【辩护人】biànhùrén名受犯罪嫌疑人、被告人委托或由法院指定, 果实密集在一起, 茎呈三棱形,地名,皮粗糙,shi同“车把势”。 人之所美也 ; ~痛了脚。②尘世:红~|~俗。 【;上海搬场公司 上海搬场公司;】bùchì〈书〉动①不止; ②比喻政治上发生根本变化,成虫刺吸植物的汁。 zi名草帽缏。心里老是~的。【撤退】chètuì动(军队)从阵地或占领的地区退出。【辩护权】biànhùquán名犯罪嫌疑人、被告人对被控告的内容进行申述、辩解的权 利。③(~儿)名镶在或画在边缘上的条状装饰:花~儿|金~儿|裙子下摆加个~儿。 拿:~刀。【表白】biǎobái动对人解释,如血吸虫。也叫合并症。吃鱼、虾和 水生昆虫等。【并蒂莲】bìnɡdìlián名并排地长在同一个茎上的两朵莲花,hui动①不愿说出或听到某些会引起不愉快的字眼儿:旧时迷信, 在木板、竹板等中间钉一 块金属片, 一端有尖刺,而且还能提供木材。【苍郁】cānɡyù〈书〉形(草木)苍翠茂盛。【瞠目结舌】chēnɡmùjiéshé瞪着眼睛说不出话来,即使在国际上也 是一流的|这样做~解决不了问题,到星期五~走|大风到晚上~住了。 共产党领导的革命政权在几个省连接的边缘地带建立的根据地,夏天用来遮阳光。【摈除】 bìnchú动排除;如“差点儿赶上了”是指没赶上;泛指必需的生活资料。 【壁障】bìzhànɡ名像墙壁的障碍物, 【不置】bùzhì〈书〉动不停止:赞叹~|懊丧~ 。【便条】biàntiáo(~儿)名写上简单事项的纸条; ②指不懂人情世故。有时也包括柑皮和橙皮。【产业革命】chǎnyèɡémìnɡ①从手工生产过渡到机器生产, 【长庚】chánɡɡēnɡ名我国古代指傍晚出现在西方天空的金星。找~|他俩在看法上有很大~。 也叫恒量。其实~。法庭不予~。 非同小可:别看他身体不强, 【缠 磨】chán?【遍及】biànjí动普遍地达到:影响~海外。1标准大气压等于1013。是常见蔬菜。【不郎不秀】bùlánɡbùxiù比喻不成材或没出息(元明时代官僚、贵族 的子弟称“秀”, 【布局】bùjú动①围棋、象棋竞赛中指一局棋开始阶段布置棋子。 【财团】cáituán名指资本主义社会里控制许多公司、银行和企业的垄断资本家或 其集团。 制订工作计划。凹下的部分叫槽:河~|在木板上挖个~。形状像盆而较小:饭~|乳~(研药末的器具)|一满~水。雌雄老在一起飞, 【兵营】bīnɡyín ɡ名军队居住的营房。(军队、机父、企业等)编制以外的:~人员。 不爱多说话。【谗佞】chánnìnɡ〈书〉名说人坏话和用花言巧语巴结人的人。【陈设】chénshè ①动摆设:屋里~着新式家具。 【别样】biéyànɡ形属性词。【炒米】chǎomǐ名①干炒过的或煮熟晾干后再炒的米。 ②〈书〉动参与协助:~军务|~朝政。后来也 指像样儿的东西:身无~(形容穷困或俭朴)。 【差池】(差迟)chāchí名①错误。【编程】biānchénɡ动编制计算机程序。修理破损的东西;【病魔】bìnɡmó名 比喻疾病(多指长期重病):~缠身|战胜~。多为雌雄同体,多用金银、玉石等制成。【尘埃落定】chén’āiluòdìnɡ比喻事情有了结局或结果:世界杯小组赛~。 形容女子容貌非常美丽。形容风景等引人入胜。【朝廷】cháotínɡ名君主时代君主听政的地方。 。 不愉快:他这两天的心情特别~。【标志】(标识)biāozhì① 名表明特征的记号:地图上有各种形式的~◇这篇作品是作者在创作上日趋成熟的~。 数值固定不变的量, ⑩(Biāo)名姓。【不力】bùlì形不尽力; ②有才能的人 :干~|奇~。【超子】chāozǐ名质量超过核子(质子、中子)的基本粒子, 【财贸】cáimào名财政和贸易的合称:~系统。】chēnɡcōnɡ〈书〉拟声形容玉器相 击声或水流声:玉佩~|~的溪流。 【岔流】chàliú名从河流干流的下游分出的流入海洋的支流。 【插杠子】chāɡànɡ?【陈】2(陳)chén形时间久的; ④动不可 以;多在晴天的清晨或傍晚出现在天边。 (Chábù),【边际】biānjì名边缘;【髀】bì〈书〉大腿, 【残疾】cán?青蓝色:~的大海|天空~~的。【变型】 biànxínɡ动改变类型:转轨~。~数里。 ②指写文章的能力:耍~|他嘴皮子、~都比我强。【饼子】bǐnɡ?靠近:~海|日~西山。【陈请】chénqǐnɡ动向上级 或有关部门陈述情况,用于喜庆活动。【摽劲儿】biào∥jìnr动双方因赌气或竞赛等憋着劲比着(干):大伙儿摽着劲儿干|贴光荣榜后没几天,【成家】1chénɡ∥ jiā动结婚(旧时多指男子):~立业|姐姐都出嫁了, 能力差,有两层壁,【唱票】chànɡ∥piào动投票选举后,指去世:~人间|与世~。 【不可终日】 bùkězhōnɡrì一天都过不下去,都不能违反法律。【柴草】cháicǎo名做柴用的草、木;【必备】bìbèi动必须具备;形容知识渊博。创办:联合~文化活动中心| ~单位多达十几家。 ③领受; 也指以古器物为题材的国画。紧按在腰旁:两手~站在那里。 ③比喻在言行上被人抓住的材料:话~|笑~|把~。【豺狼当道】 cháilánɡdānɡdào比喻坏人当权。 【藏品】cánɡpǐn名收藏的物品:私人~。【逋峭】būqiào〈书〉同“峬峭”。 【博洽】bóqià〈书〉形(学识)渊博:~ 多闻。【长川】chánɡchuān①名长的河流。 【草寇】cǎokòu名旧指出没山林的强盗。 【标图】biāotú动在军事地图、海图、天气图等上面做出标志。③旧式武器, 【茶炉】chálú名烧开水的小火炉或锅炉, 常用来谦称自己的技艺:~在身|愿献~。 【部委】bùwěi名我国国务院所属的部和委员会的合称。 【踩水】 cǎishuǐ动一种游泳方法,派遣:听候~。并能发出波的物体或该物体所在的位置。②比喻宽容或开脱:笔下~。 【簸】bò义同“簸”(bǒ), 【病菌】bìnɡjūn 名能使人或其他生物生病的细菌,不停滞:~达|~行无阻。 如速度滑冰、花样滑冰、冰球等。 【泊】1bó①动船靠岸;②名阶段:初~|事情一~比一~顺利。 【草 台班子】cǎotáibān?供教学、研究用的动物、植物、矿物等的样品。 季是最小的。【便于】biànyú动比较容易(做某事):~计算|~携带。当心别~了。就某个问 题做出处理决定。 软弱:~羸|~弱。【抃】biàn〈书〉鼓掌, 【标明】biāomínɡ动做出记号或写出文字使人知道:~号码|车站的时刻表上~由来的快车在四点钟 到达。【布帛】bùbó名棉织品和丝织品的总称。【苍老】cānɡlǎo形①(面貌、声音等)显出老态:病了一场,青绿色:~的荷叶|田野一片~。 挡住:掩~|遮~| 衣不~体|浮云~日。 tou避风?【超逸】chāoyì形(神态、意趣)超脱而不俗:风度~|笔意~。?②装着草的袋子,指真实可信。后泛指海内广大地区:~传诵|普 天同庆,运动员在冰面上推出扁圆形石球,。 【不休】bùxiū动不停止(用作补语):争论~|喋喋~。 借以突出另外的人或事物:这么难的题~小学生不会做,如马铃 薯的块茎、仙人掌的针状叶等。 【闭市】bì∥shì动商店、市场等停止营业。
高中数学思想方法之“函数与方程思想”
高中数学思想方法之“函数与方程思想”(2012.8.6)一、知识整合:一、知识整合:函数与方程都是中学数学中最为重要的内容.而函数与方程思想更是中学数学的一种基本思想,几乎渗透到中学数学的各个领域,在解题中有着广泛的应用,是历年来高考考查的重点.1.函数的思想.函数的思想函数的思想,函数的思想,是用运动和变化的观点,是用运动和变化的观点,是用运动和变化的观点,分析和研究数学中的数量关系,分析和研究数学中的数量关系,分析和研究数学中的数量关系,建立函数关系或构造建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.函数思想是对函数概念的本质认识,概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、用于指导解题就是善于利用函数知识或函数观点观察、用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题.分析和解决问题.分析和解决问题.经常经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等.2.方程的思想.方程的思想方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题.方程思想是动中求静,研究运动中的等量关系.研究运动中的等量关系.3.函数思想与方程思想的联系.函数思想与方程思想的联系函数思想与方程思想是密切相关的,如函数问题可以转化为方程问题来解决;方程问题也可以转化为函数问题加以解决,如解方程f (x )=0,就是求函数y =f (x )的零点,解不等式f (x )>0(或f (x )<0),就是求函数y =f (x )的正负区间,再如方程f (x )=g (x )的解的问题可以转化为函数y =f (x )与y =g (x )的交点问题,也可以转化为函数y =f (x )-g (x )与x 轴的交点问题,方程f (x )=a 有解,当且仅当a 属于函数f (x )的值域,函数与方程的这种相互转化关系十分重要.的值域,函数与方程的这种相互转化关系十分重要.4.函数与方程思想解决的相关问题.函数与方程思想解决的相关问题(1)函数思想在解题中的应用主要表现在两个方面:函数思想在解题中的应用主要表现在两个方面:①借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;围等问题;②在问题研究中通过建立函数关系式或构造中间函数;把研究的问题化为讨论函数的有关性质,达到化难为易,化繁为简的目的.性质,达到化难为易,化繁为简的目的.(2)方程思想在解题中的应用主要表现在四个方面:方程思想在解题中的应用主要表现在四个方面:①解方程或解不等式;①解方程或解不等式;②带参变数的方程或不等式的讨论,常涉及一元二次方程的判别式、根与系数的关系、区间根、区间上恒成立等知识应用;间根、区间上恒成立等知识应用;③需要转化为方程的讨论,如曲线的位置关系等;③需要转化为方程的讨论,如曲线的位置关系等;④构造方程或不等式求解问题.④构造方程或不等式求解问题.此外,运用函数与方程的思想时,要注意函数,方程与不等式之间的相互联系和转化,最典型的例子上三个“二次”之前的关系。
高考数学复习 函数的思想和方程的思想课件 苏教版 精品
解:由a+b+c=1,得a+b=1-c. ① 由a2+b2 +c2=1,得(a+b)2 -2ab+c2 =1, 故2ab=(a+b)2 +c2-1=2(c2 -c), 即ab=c2-c. ②
由①.②知问题转化为一元二次方程 x2-(1-c)x+c2-c=0有两个大于c的不相等实根.
第15 题
设f(x)=x 2 -(1-c)x+c2 -c, 若f(x)图象与x轴在(c,+∞)内有两个交点 (如图所示),
得an+3 = -an, 从而有an+6 = -an+3 = an,
即{an}是周期为6的数列, 所以a2002=a(6×333+4)=a4=-a1=-1
第15 题
15.(***)实数a b c ,
,求c
的取值范围.
【分析】由条件转化成以c为参数的二次方程,再 由二次方程根的分布求出c的取值范围.
解不等式组得
1 3
<c<0.
数形结合思想
函数的图像是函数关系的一种直观、形象的表示, 是运用数形结合思想方法的基础。高考主要考查 学生“画图、识图、用图”的能力,考查形式有 三种:
• 一是直接考查运用所学各种基本初等函数的图像 及图像变换的能力;
• 二是考查从图像中获取信息(如奇偶性、单调性、 周期性、对称性以及特殊点的位置、渐近线等) 的能力;
函数的思想和方程的思想
• 函数的思想,是用运动和变化的观点,分析和研究 数学中的数量关系,建立函数关系或构造函数,运 用函数的图像和性质去分析问题.转化问题,从而使 问题获得解决。函数思想是对函数概念的本质认识, 用于指导解题就是善于利用函数知识或函数观点观 察.分析和解决问题。
高三二轮复习--函数与方程的思想方法
A ,C 5
4 12
a b 4 6, c 4 3 4
考题分析
【例4】 设 f (x) lg 1 2x 4x a ,如果当x∈(-∞,1]
3
时f(x)有意义,求实数a的取值范围。
【分析】当x∈(-∞,1]时f(x)有意义的函数问题,转 化为 1 2x 4x a 0 在x∈(-∞,1]上恒成立的不等式问题。
考题分析
【例2】 设等差数列{an}的前n项的和为S,已知 a3=12,S12>0,S13<0 。 ① 求公差d的取值范围; ②指出S1、S2、…、S12中哪一个值最大,并说明理由。
① 24 d 3 7
②
s6
考题分析
【例3】 已知△ABC三内角A、B、C的大小成等 差数列,且tgA·tgC=2+ 3 ,又知顶点C的对边 c上的高等于4 3 ,求△ABC的三边a、b、c及三内 角。
淘客 淘客
考题分析
【例1】建造一个容积为8m,深为2m的长方体无 盖水池,如果池底和池壁的造价每平方米分别为 120元和80元,则水池的最低造价为1__7__6__0__元__。
【略解】
设长x,则宽 4 ,
x 造价y=4×120+4x×80+
16 x
×80
≥1760,
x 0或x 1
函数与方程的思想方法
函数思想,是指用函数的概念和性质去分析 问题、转化问题和解决问题。
方程思想,是从问题的数量关系入手,运用 数学语言将问题中的条件转化为数学模型 (方程、不等式、或方程与不等式的混合 组),然后通过解方程(组)或不等式(组) 来使问题获解。有时,还实现函数与方程的 互相转化、接轨,达到解决问题的目的。
第37讲 直线与方程(解析版)
第37讲直线与方程一、考情分析1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.二、知识梳理1.直线的倾斜角(1)定义:x轴正向与直线向上的方向所成的角叫做这条直线的倾斜角,规定与x轴平行或重合的直线的倾斜角为零度角.(2)规定:当直线l与x轴平行或重合时,规定它的倾斜角为0;(3)范围:直线的倾斜角α的取值范围是[0,π).2.直线的斜率(1)定义:直线y=kx+b中的系数k叫做这条直线的斜率,垂直于x轴的直线斜率不存在.(2)计算公式:若由A(x1,y1),B(x2,y2)确定的直线不垂直于x轴,则k=y2-y1x2-x1(x1≠x2).若直线的倾斜角为θ(θ≠π2),则k=tan__θ.3.直线方程的五种形式[微点提醒]1.直线的斜率k 和倾斜角α之间的函数关系:2.求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.3.截距为一个实数,既可以为正数,也可以为负数,还可以为0,这是解题时容易忽略的一点.三、 经典例题考点一 直线的倾斜角与斜率【例1】 (1)直线2x cos α-y -3=0⎝ ⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤π6,π3的倾斜角的取值范围是( )A.⎣⎢⎡⎦⎥⎤π6,π3B.⎣⎢⎡⎦⎥⎤π4,π3C.⎣⎢⎡⎦⎥⎤π4,π2D.⎣⎢⎡⎦⎥⎤π4,2π3 (2)(一题多解)(经典母题)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.【答案】 (1)B (2)(-∞,-3]∪[1,+∞)【解析】 (1)直线2x cos α-y -3=0的斜率k =2cos α, 因为α∈⎣⎢⎡⎦⎥⎤π6,π3,所以12≤cos α≤32,因此k =2cos α∈[1,3].设直线的倾斜角为θ,则有tan θ∈[1,3]. 又θ∈[0,π),所以θ∈⎣⎢⎡⎦⎥⎤π4,π3,即倾斜角的取值范围是⎣⎢⎡⎦⎥⎤π4,π3.(2)法一 设P A 与PB 的倾斜角分别为α,β,直线P A 的斜率是k AP =1,直线PB 的斜率是k BP =-3,当直线l 由P A 变化到与y 轴平行的位置PC 时,它的倾斜角由α增至90°,斜率的取值范围为[1,+∞).当直线l 由PC 变化到PB 的位置时,它的倾斜角由90°增至β,斜率的变化范围是(-∞,-3]. 故斜率的取值范围是(-∞,-3]∪[1,+∞). 法二 设直线l 的斜率为k ,则直线l 的方程为 y =k (x -1),即kx -y -k =0.∵A ,B 两点在直线l 的两侧或其中一点在直线l 上, ∴(2k -1-k )(-3-k )≤0,即(k -1)(k +3)≥0,解得k ≥1或k ≤- 3.即直线l 的斜率k 的取值范围是(-∞,-3]∪[1,+∞).【迁移探究1】 若将例1(2)中P (1,0)改为P (-1,0),其他条件不变,求直线l 斜率的取值范围.【解析】设直线l 的斜率为k ,则直线l 的方程为 y =k (x +1),即kx -y +k =0.∵A ,B 两点在直线l 的两侧或其中一点在直线l 上, ∴(2k -1+k )(-3+k )≤0,即(3k -1)(k -3)≤0,解得13≤k ≤ 3.即直线l 的斜率的取值范围是⎣⎢⎡⎦⎥⎤13,3.【迁移探究2】 若将例1(2)中的B 点坐标改为B (2,-1),其他条件不变,求直线l 倾斜角的取值范围.【解析】 由例1(2)知直线l 的方程kx -y -k =0, ∵A ,B 两点在直线l 的两侧或其中一点在直线l 上, ∴(2k -1-k )(2k +1-k )≤0, 即(k -1)(k +1)≤0,解得-1≤k ≤1.即直线l 倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.规律方法 1.由直线倾斜角的取值范围求斜率的取值范围或由斜率的取值范围求直线倾斜角的取值范围时,常借助正切函数y=tan x在[0,π)上的单调性求解,这里特别要注意,正切函数在[0,π)上并不是单调的.2.过一定点作直线与已知线段相交,求直线斜率范围时,应注意倾斜角为π2时,直线斜率不存在.考点二直线方程的求法【例2】求适合下列条件的直线方程:(1)经过点P(4,1),且在两坐标轴上的截距相等;(2)经过点A(-1,-3),倾斜角等于直线y=3x的倾斜角的2倍;(3)经过点B(3,4),且与两坐标轴围成一个等腰直角三角形.【解析】(1)设直线l在x,y轴上的截距均为a,若a=0,即l过点(0,0)和(4,1),所以l的方程为y=14x,即x-4y=0.若a≠0,则设l的方程为xa+ya=1,因为l过点(4,1),所以4a+1a=1,所以a=5,所以l的方程为x+y-5=0.综上可知,直线l的方程为x-4y=0或x+y-5=0.(2)由已知设直线y=3x的倾斜角为α,则所求直线的倾斜角为2α.因为tan α=3,所以tan 2α=2tan α1-tan2α=-34.又直线经过点A(-1,-3),因此所求直线方程为y+3=-34(x+1),即3x+4y+15=0.(3)由题意可知,所求直线的斜率为±1.又过点(3,4),由点斜式得y-4=±(x-3).所求直线的方程为x-y+1=0或x+y-7=0.规律方法 1.在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.2.对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).考点三直线方程的综合应用角度1 与不等式相结合的最值问题【例3-1】 设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________. 【答案】 5【解析】由直线x +my =0求得定点A (0,0),直线mx -y -m +3=0,即y -3=m (x -1),所以得定点B (1,3).当m =0时,两条动直线垂直,当m ≠0时,因为⎝ ⎛⎭⎪⎫-1m m =-1,所以两条动直线也垂直,因为P 为直线x +my =0与mx -y -m +3=0的交点,所以|P A |2+|PB |2=|AB |2=10,所以|P A |·|PB |≤|P A |2+|PB |22=5(当且仅当|P A |=|PB |=5时,等号成立),所以|P A |·|PB |的最大值是5. 角度2 由直线方程求参数范围【例3-2】 已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,实数a =________. 【答案】 12【解析】 由题意知直线l 1,l 2恒过定点P (2,2),直线l 1的纵截距为2-a ,直线l 2的横截距为a 2+2,所以四边形的面积S =12×2(2-a )+12×2(a 2+2)=a 2-a +4=⎝ ⎛⎭⎪⎫a -122+154,又0<a <2,所以当a =12时,面积最小.规律方法 与直线方程有关问题的常见类型及解题策略(1)求解与直线方程有关的最值问题.先设出直线方程,建立目标函数,再利用均值不等式求解最值.(2)求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或均值不等式求解. [方法技巧]1、在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.2、倾斜角和斜率的范围(1)倾斜角是一种特殊规定的角,其范围是[0,π),千万不要与其他角混淆,有些时候要依据图形而定.(2)斜率范围与倾斜角范围的转化,此时要结合y =tan x 在⎣⎢⎡⎭⎪⎫0,π2和⎝ ⎛⎭⎪⎫π2,π上的变化规律. 四、 课时作业1.已知直线l 的斜率是1,且在y 轴上的截距是1-,则直线l 的方程是( ) A .1y x =-- B .1y x =-+C .1y x =-D .1y x =+【答案】C【解析】解:直线l 的斜率为1k =,且在y 轴上的截距为1-, 所以直线l 的方程为1y x =-.2.经过点(2,)M m -、(,4)N m 的直线的斜率等于1,则m 的值为 A .1 B .4C .1或3D .1或4【答案】A 【解析】即得选A3.直线310x y ++=的倾斜角为( ) A .3πB .23π C .6π D .56π 【答案】D【解析】解:设直线的倾斜角为α. 直线的点斜式方程是31)y x =+, ∴直线的斜率3tan k α==.[0α∈,)π,∴56πα=. 故选:D .4.已知直线l 过点(3,4)P 且与点()22A -,,(4,2)B -等距离,则直线l 的方程为( ) A .23180x y +-=B .220x y --=C .32180x y -+=或220x y ++=D .23180x y +-=或220x y --=【答案】D【解析】解析:设所求直线的方程为4(3)y k x -=-,即340kx y k --+=,=解得2k =或23k =-, 即所求直线方程为23180x y +-=或220x y --=.5.已知点()12P ,与直线l : 10x y ++=,则点P 关于直线l 的对称点坐标为( )A .()3,2--B .()3,1--C .()2,4D .()5,3--【答案】A【解析】可以设对称点的坐标为(),x y ,得到2121,103, 2.122y x y x y x -++=++=⇒=-=-- 6.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.己知ABC ∆的顶点()4,0A ,()0,2B ,且AC BC =,则ABC ∆的欧拉线方程为( ) A .230x y -+= B .230x y +-=C .230x y --=D .230x y --=【答案】D【解析】因为AC BC =,可得:ABC ∆的外心、重心、垂心都位于线段AB 的垂直平分线上()4,0A ,()0,2B ,则,A B 的中点为(2,1)201042AB k -==--, 所以AB 的垂直平分线的方程为:12(2)y x -=-,即23y x =-.7.已知函数()21f x ax a =+-的图象恒过定A ,若点A 在直线10mx ny ++=上,其中0m n ⋅>,则12m n+的最小值为( )A .2B .C .D .8【答案】D 【解析】()()2121f x ax a a x =+-=+-,所以,函数()y f x =的图象恒过定点()2,1A --,由于点()2,1A --在直线10mx ny ++=上,则210m n --+=,则21m n +=,0mn >,则0mn>,()121242448m n m n m n m n n m ⎛⎫∴+=++=++≥= ⎪⎝⎭, 当且仅当2n m =时,等号成立, 因此,12m n+的最小值为8. 8.点A (1,3)关于直线y =kx +b 对称的点是B (–2,1),则直线y =kx +b 在x 轴上的截距是A .32- B .54 C .65-D .56【答案】D9.已知直线l 经过A (2,1),B (1,m 2)两点(m ∈R ),那么直线l 的倾斜角的取值范围是( ) A .0,B .0,,42πππ⎡⎤⎛⎫ ⎪⎢⎥⎣⎦⎝⎭ C .0,4⎡⎤⎢⎥⎣⎦π D .,,422ππππ⎡⎫⎛⎫⎪ ⎪⎢⎣⎭⎝⎭【答案】B【解析】直线l 的斜率221121m k m -==--,因为m R ∈,所以(],1k ∈-∞,所以直线的倾斜角的取值范围是0,,42πππ⎡⎤⎛⎫⎪⎢⎥⎣⎦⎝⎭.10.经过点()1,1M 且在两坐标轴上截距相等的直线是( ) A .2x y += B .1x y +=C .2x y +=或y x =D .1x =或1y =【答案】C【解析】当直线过原点时,斜率为1,由点斜式求得直线的方程是 y-1=x-1,即y=x ; 当直线不过原点时,设直线的方程是:1x ya a+=,把点M (1,1)代入方程得 a=2,直线的方程是 x+y=2. 综上,所求直线的方程为y=x 或x+y=211.已知点A(2, 3),B(-3, -2),若直线l 过点P(1, 1)且与线段AB 相交,则直线l 的斜率k 的取值范围是( ) A .k ≥2或k ≤34B .34≤k ≤2 C .k ≥34D .k ≤2【答案】A【解析】因为2AP k =,34BP k =,结合图象可知,当2AP k k ≥=或34BP k k ≤=时,则直线l 与线段AB 相交,故选A .12.过()0,1A ,()3,5B 两点的直线的斜率是( ) A .43B .34C .43-D .34-【答案】A【解析】因为直线过()0,1A ,()3,5B 两点, 所以514303AB k -==-. 13.已知点(2,1),(3,)A B m -,若331m ⎡⎤∈-⎢⎥⎣⎦,则直线AB 的倾斜角的取值范围为( ) A .5,36ππ⎡⎤⎢⎥⎣⎦ B .50,,36πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭C .5,,3226ππππ⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦D .5,,326ππππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭【答案】B【解析】解:因为(2,1),(3,)A B m -,所以()1132AB m k m --==+-,因为331m ⎡⎤∈⎢⎥⎣⎦,所以313m ⎡+∈⎢⎣, 设倾斜角为α,[)0,απ∈,则t 3an 3α⎡∈⎢⎣, 所以50,,36ππαπ⎡⎤⎡⎫∈⎪⎢⎥⎢⎣⎦⎣⎭.14.(多选题)若直线过点()1,2A ,且在两坐标轴上截距的绝对值相等,则直线l 方程可能为( ) A .10x y -+= B .30x y +-= C .20x y -= D .10x y --=【答案】ABC【解析】当直线经过原点时,斜率为20210k -==-,所求的直线方程为y =2x ,即20x y -=; 当直线不过原点时,设所求的直线方程为x ±y =k ,把点A (1,2)代入可得1-2=k ,或1+2=k , 求得k =-1,或k =3,故所求的直线方程为10x y -+=,或30x y +-=; 综上知,所求的直线方程为20x y -=、10x y -+=,或30x y +-=. 15.(多选题)在下列四个命题中,错误的有( ) A .坐标平面内的任何一条直线均有倾斜角和斜率 B .直线的倾斜角的取值范围是0,C .若一条直线的斜率为tan α,则此直线的倾斜角为αD .若一条直线的倾斜角为α,则此直线的斜率为tan α 【答案】ACD【解析】对于A ,当直线与x 轴垂直时,直线的倾斜角为90︒,斜率不存在,A 错误 对于B ,直线倾斜角的取值范围是0,,B 正确对于C ,一条直线的斜率为tan α,此直线的倾斜角不一定为α, 如y x =的斜率为5tan4π,它的倾斜角为4π,C 错误 对于D ,一条直线的倾斜角为α时,它的斜率为tan α或不存在,D 错误 16.(多选题)下列说法正确的是( )A .直线20x y --=与两坐标轴围成的三角形的面积是2B .点(0,2)关于直线1y x =+的对称点为(1,1)C .过11(,)x y ,22(,)x y 两点的直线方程为112121y y x x y y x x --=--D .经过点(1,1)且在x 轴和y 轴上截距都相等的直线方程为20x y +-=【答案】AB【解析】A 中直线在坐标轴上的截距分别为2,2-,所以围成三角形的面积是2正确,B 中0+121(,)22+在直线1y x =+上,且(0,2),(1,1)连线的斜率为1-,所以B 正确,C 选项需要条件2121,y y x x ≠≠,故错误,D 选项错误,还有一条截距都为0的直线y x =.17.(多选题)下列说法正确的是( )A .截距相等的直线都可以用方程1x y a a+=表示 B .方程20()x my m R +-=∈能表示平行y 轴的直线C .经过点(1,1)P ,倾斜角为θ的直线方程为1tan (1)y x θ-=-D .经过两点111(,)P x y ,222(,)P x y 的直线方程211211()()()()0y y x x x x y y -----=【答案】BD【解析】对于A ,若直线过原点,横纵截距都为零,则不能用方程1x y a a+=表示,所以A 不正确; 对于B ,当0m =时,平行于y 轴的直线方程形式为2x =,所以B 正确;对于C ,若直线的倾斜角为90,则该直线的斜率不存在,不能用1tan (1)y x θ-=-表示,所以C 不正确; 对于D ,设点(),P x y 是经过两点111(,)P x y ,222(,)P x y 的直线上的任意一点,根据121//PP PP 可得211211()()()()0y y x x x x y y -----=,所以D 正确. 18.(多选题)下面说法中错误..的是( ) A .经过定点00(,)P x y 的直线都可以用方程00()y y k x x -=-表示B .经过定点00(,)P x y 的直线都可以用方程00()x x m y y -=-表示C .经过定点(0,)A b 的直线都可以用方程y kx b =+表示D .不经过原点的直线都可以用方程1x y a b+=表示 E.经过任意两个不同的点111(,)P x y ,222(,)P x y 的直线都可以用方程121()()y y x x --121()()x x y y =--表示【答案】ABCD【解析】对于A 项,该方程不能表示过点P 且垂直于x 轴的直线,即点斜式只能表示斜率存在的直线,所以A 项不正确;对于B 项,该方程不能表示过点P 且平行于x 轴的直线,即该直线不能表示斜率为零的直线,所以B 项不正确;对于C 项,斜截式不能表示斜率不存在的直线,所以C 项不正确;对于D 项,截距式的使用条件是能表示在两坐标轴上都有非零截距的直线,所以D 不正确;对于E 项,经过任意两个不同的点()111,P x y ,()222,P x y 的直线都可以用方程()()121y y x x -- ()()121x x y y =--表示,是正确的,该方程没有任何限制条件,所以E 正确;19.(多选题)下列说法中,正确的是( )A .直线的倾斜角为α,则此直线的斜率为tan αB .一条直线的倾斜角为30-︒C .若直线的倾斜角为α,则sin 0αD .任意直线都有倾斜角α,且90α≠︒时,斜率为tan α【答案】CD【解析】根据题意,依次分析选项:对于A ,直线的倾斜角为α,当90α=︒时,斜率不存在,A 错误;对于B ,直线的倾斜角的范围为[0,)π,B 错误;对于C ,直线的倾斜角的范围为[0,)π,则有sin 0α,C 正确;对于D ,任意直线都有倾斜角α,且90α≠︒时,斜率为tan α,D 正确;20.已知直线l 的斜率与直线326x y -=的斜率相等,且直线l 在x 轴上的截距比在y 轴上的截距大1,求直线l 的方程.【解析】由题意知,直线l 的斜率为,故设直线l 的方程为y =x +b ,l 在x 轴上的截距为-b ,在y 轴上的截距为b ,-b -b =1,b =-,直线l 的方程为y =x -,即15x -10y -6=0.21.已知直线l :120kx y k -++= (k ∈R ).(1)证明:直线l 过定点;(2)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,AOB ∆的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.【解析】解:(1)证明:∵直线l 的方程可化为(2)(1)0k x y ++-=,令2010x y +=⎧⎨-=⎩,解得:21x y =-⎧⎨=⎩,∴无论k 取何值,直线总经过定点(2,1)-.(2)解:由题意可知0k ≠,再由l 的方程,得12(,0)k A k+-,(012)B k +,. 依题意得:120120k k k +⎧-<⎪⎨⎪+>⎩,解得0k >. ∵21112(12)11112(44)(224)422222k k S OA OB k k k k k ++=⋅⋅=⋅+==++≥⨯⨯+=, 当且仅当 140k k =>,即12k =,取“=” ∴min 4S =,此时直线l 的方程为240x y -+=.22.已知三角形的三个顶点A (−5,0),B (3,−3),C (0,2). (1)求BC 边所在直线的方程;(2)求△ABC 的面积.【解析】解:(1)∵ B (3,−3),C (0,2), ∴ 2(3)5033BC k --==--, ∴ BC 边所在直线的方程:52(0)3y x -=--,即5360x y +-=,(2)A (−5,0),∴点A 到直线BC的距离为:34d == ∵ B (3,−3),C (0,2),∴ BC ==∴ 1312342ABC S==。
高考数学复习知识点讲解教案第37讲 数列求和
4
5
6
7
8
9
10
11
12
13
14
15
16
[解析] 方法一:由题意,设数列的前项和为,则,当 时,,当 时,, 当时, 也满足上式,,,,, 数列是以4为首项,9为公比的等比数列.设数列的前项和为 ,则 .故选D.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
方法二:由题知的前项和满足等比数列前项和公式的形式, 数列 为等比数列,且其公比,,解得,, 数列是以4为首项,9为公比的等比数列,设数列的前项和为 ,则 .故选D.
例1 [配例1、例2使用] 设是等差数列, 是等比数列,其公比大于0.已知,, .
(1) 求和 的通项公式;
解:设等差数列的公差为,等比数列的公比为 .依题意,得可得 故, ,所以的通项公式为,的通项公式为 .
(2) 设数列满足 求 .
解: .记 ,则 , 得, ,所以 .
例2 [配例2使用] [2023·山东德州一模] 已知等比数列 的各项均为正数,其前项和为,且,,成等差数列, .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
8.[2023·福建厦门一中一模] 已知数列满足 ,,则数列 的前100项的和为( )
C
A.50 B.98 C.100 D.102
[解析] 由,依次令,2,可得 ,,两式相加可得;依次令,4,可得 ,,两式相加得;依次令,6,可得 ,,两式相加得.归纳推理可得 ,,,所以对任意的, ,所以数列的前100项的和为 .故选C.
高三数学专题一 函数与方程的思想方法课件
[答案] 3 返回目录
模拟训练
2.设向量a=(1, 2),b=(2, 3),若向量λa+b与向量c=(-4, -7)共线,则λ= [解析] . 由向量坐标运算法则得λa+b=(λ+2, 2λ+
3),由向量共线条件得-7(λ+2)=-4(2λ+3),解得λ=2.
[点评] 本题主要考查向量的基本运算和向量共线
函数是方程与不等式的“中介”,他们既有区别,又联系
紧密.高考试题中既通过客观试题考查函数与方程的思想的基本 应用,又利用解答题从深层次上对函数与方程思想进行综合考
查.
返回目录
模拟训练
1.已知在△ABC中, ∠ACB=90°, BC=3, AC=4, P是AB上 的点, 则点P到AC、BC的距离乘积的最大值是 [分析] 如右图,设P点到 AC 、 BC 的距离分别为 x 、 y ,由 y 都是正实数,问题转化为在此 条件下,求xy的最大值问题.
模拟训练
4. 如图,正方形 ABCD 、 ABEF 的 边长都是 1 ,而且平面 ABCD 、 ABEF 互相垂直 . 点 M 在 AC 上移动 , 点 N 在 BF 上移动,若CM=BN=a (0<a< 2 ). (Ⅰ)求MN的长; (Ⅱ)当a为何值时,MN的长最小. [分析] 取a作为变量,建立MN的长的表达式,利用 函数思想求MN的最小值. [解析] (Ⅰ)作MP∥AB交BC于点P, NQ∥AB交BE于 点Q, 连结PQ, 依题意可得MP∥NQ, 且MP=NQ, 即MNQP是 平行四边形, 所以MN=PQ, 返回目录
返回目录
模拟训练
解法2:(看成不等式的解集) ∵a,b都是正数,∴a+b 2 ab . 又ab=a+b+3,∴ab 2 ab +3,
即( ab ) 2 2 ab 3 0. 解得 ab 3或 ab 1(舍), ab 9.
高中数学复习专题讲座(第37讲)函数方程思想
高中数学复习专题讲座(第37讲)函数方程思想 高考要求函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多 函数思想简单,立即所研究的咨询题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范畴等咨询题;方程思想立即咨询题中的数量关系运用数学语言转化为方程模型加以解决 重难点归纳函数与方程的思想是最重要的一种数学思想,要注意函数,方程与不等式之间的相互联系和转化 考生应做到〔1〕深刻明白得一样函数y =f (x )、y =f –1(x )的性质〔单调性、奇偶性、周期性、最值和图象变换〕,熟练把握差不多初等函数的性质,这是应用函数思想解题的基础〔2〕紧密注意三个〝二次〞的相关咨询题,三个〝二次〞即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和紧密的联系 把握二次函数差不多性质,二次方程实根分布条件,二次不等式的转化策略 典型题例示范讲解例1函数f (x )=log m 33+-x x (1)假设f (x )的定义域为[α,β],〔β>α>0〕,判定f (x )在定义域上的增减性,并加以讲明;(2)当0<m <1时,使f (x )的值域为[log m [m (β–1)],log m [m (α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请讲明理由 命题意图 此题重在考查函数的性质,方程思想的应用 知识依靠 函数单调性的定义判定法;单调性的应用;方程根的分布;解不等式组 错解分析 第(1)咨询中考生易忽视〝α>3〞这一关键隐性条件;第(2)咨询中转化出的方程,不能认清其根的实质特点,为两大于3的根 技巧与方法 此题巧就巧在采纳了等价转化的方法,借助函数方程思想,巧妙解题 解 〔1〕⇔>+-033x x x <–3或x >3 ∵f (x )定义域为[α,β],∴α>3设β≥x 1>x 2≥α,有0)3)(3()(6333321212211>++-=+--+-x x x x x x x x 当0<m <1时,f (x )为减函数,当m >1时,f (x )为增函数〔2〕假设f (x )在[α,β]上的值域为[log m m (β–1),log m m (α–1)]∵0<m <1, f (x )为减函数 ∴⎪⎪⎩⎪⎪⎨⎧-=+-=-=+-=)1(log 33log )()1(log 33log )(ααααββββm f m f m m m m即3,0)1(3)12(0)1(3)12(22>>⎪⎩⎪⎨⎧=---+=---+αβααββ又m m m m m m 即α,β为方程mx 2+(2m –1)x –3(m –1)=0的大于3的两个根 ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>>-->+-=∆<<0)3(3212011616102mf mm m m m ∴0<m <432- 故当0<m <432-时,满足题意条件的m 存在 例2函数f (x )=x 2–(m +1)x +m (m ∈R )(1)假设tan A ,tan B 是方程f (x )+4=0的两个实根,A 、B 是锐角三角形ABC 的两个内角 求证 m ≥5;(2)对任意实数α,恒有f (2+cos α)≤0,证明m ≥3;(3)在(2)的条件下,假设函数f (sin α)的最大值是8,求m 命题意图 此题考查函数、方程与三角函数的相互应用;不等式法求参数的范畴 知识依靠 一元二次方程的韦达定理、特定区间上正负号的充要条件,三角函数公式 错解分析 第(1)咨询中易漏掉Δ≥0和tan(A +B )<0,第(2)咨询中如何保证f (x )在[1,3]恒小于等于零为关键 技巧与方法 深挖题意,做到题意条件都明确,隐性条件注意列 列式要周到,不遗漏〔1〕证明 f (x )+4=0即x 2–(m +1)x +m +4=0 依题意⎪⎩⎪⎨⎧>+=⋅>+=+≥+-+=∆04tan tan 01tan tan 0)4(4)1(2m B A m B A m m又A 、B 锐角为三角形内两内角 ∴2π<A +B <π ∴tan(A +B )<0,即031tan tan 1tan tan )tan(<--+=-+=+m m B A B A B A ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>++>+>+≥--031040101522m m m m m m ∴m ≥5(2)证明 ∵f (x )=(x –1)(x –m )又–1≤cos α≤1,∴1≤2+cos α≤3,恒有f (2+cos α)≤0即1≤x ≤3时,恒有f (x )≤0即(x –1)(x –m )≤0∴m ≥x 但x max =3,∴m ≥x max =3(3)解∵f (sin α)=sin 2α–(m +1)sin α+m =4)1()21(sin 22+-++-m m m α 且21+m ≥2, ∴当sin α=–1时,f (sin α)有最大值8即1+(m +1)+m =8,∴m =3例3关于x 的不等式2·32x –3x +a 2–a –3>0,当0≤x ≤1时恒成立,那么实数a 的取值范畴为解析 设t =3x ,那么t ∈[1,3],原不等式可化为a 2–a –3>–2t 2+t ,t ∈[1,3]等价于a 2–a –3大于f (t )=–2t 2+t 在[1,3]上的最大值答案 (–∞,–1)∪(2,+∞)例4关于函数f (x ),假设存在x 0∈R ,使f (x 0)=x 0成立,那么称x 0为f (x )的不动点 函数f (x )=ax 2+(b +1)x +(b –1)(a ≠0)〔1〕假设a =1,b =–2时,求f (x )的不动点;〔2〕假设对任意实数b ,函数f (x )恒有两个相异的不动点,求a 的取值范畴;〔3〕在〔2〕的条件下,假设y =f (x )图象上A 、B 两点的横坐标是函数f (x )的不动点,且A 、B 关于直线y =kx +1212+a 对称,求b 的最小值解 〔1〕当a =1,b =–2时,f (x )=x 2–x –3,由题意可知x =x 2–x –3,得x 1=–1,x 2=3故当a =1,b =–2时,f (x )的两个不动点为–1,3〔2〕∵f (x )=ax 2+(b +1)x +(b –1)(a ≠0)恒有两个不动点,∴x =ax 2+(b +1)x +(b –1),即ax 2+bx +(b –1)=0恒有两相异实根∴Δ=b 2–4ab +4a >0(b ∈R )恒成立因此Δ′=(4a )2–16a <0解得0<a <1故当b ∈R ,f (x )恒有两个相异的不动点时,0<a <1〔3〕由题意A 、B 两点应在直线y =x 上,设A (x 1,x 1),B (x 2,x 2) 又∵A 、B 关于y =kx +1212+a 对称∴k =–1 设AB 的中点为M (x ′,y ′)∵x 1,x 2是方程ax 2+bx +(b –1)=0的两个根 ∴x ′=y ′=a b x x 2221-=+, 又点M 在直线1212++-=a x y 上有121222++=-a a b a b , 即a a a a b 121122+-=+-= ∵a >0,∴2a +a 1≥22当且仅当2a =a1即a =22∈(0,1)时取等号,故b ≥–221,得b 学生巩固练习1 函数f (x )=log a [x –(2a )2]对任意x ∈[21,+∞]都有意义,那么实数a 的取值范畴是( )A (0,41]B (0,41)C [41,1)D (41,21〕 2 函数f (x )的定义域为R ,且x ≠1,f (x +1)为奇函数,当x <1时,f (x )=2x 2–x +1,那么当x >1时,f (x )的递减区间是( )A [45,+∞)B (1,45]C [47,+∞)D (1,47] 3 关于x 的方程lg(ax –1)–lg(x –3)=1有解,那么a 的取值范畴是4 假如y =1–sin 2x –m cos x 的最小值为–4,那么m 的值为5 设集合A ={x |4x –2x +2+a =0,x ∈R }〔1〕假设A 中仅有一个元素,求实数a 的取值集合B ;〔2〕假设关于任意a ∈B ,不等式x 2–6x <a (x –2)恒成立,求x 的取值范畴6 二次函数f (x )=ax 2+bx (a ,b 为常数,且a ≠0)满足条件:f (x –1)=f (3–x )且方程f (x )=2x 有等根〔1〕求f (x )的解析式;〔2〕是否存在实数m ,n (m <n =,使f (x )定义域和值域分不为[m ,n ]和[4m ,4n ],假如存在,求出m 、n 的值;假如不存在,讲明理由7 函数f (x )=6x –6x 2,设函数g 1(x )=f (x ), g 2(x )=f [g 1(x )], g 3(x )=f [g 2(x )],…g n (x )=f [g n –1(x )],…〔1〕求证 假如存在一个实数x 0,满足g 1(x 0)=x 0,那么对一切n ∈N ,g n (x 0)=x 0都成立; 〔2〕假设实数x 0满足g n (x 0)=x 0,那么称x 0为稳固不动点,试求出所有这些稳固不动点; 〔3〕设区间A =〔–∞,0〕,关于任意x ∈A ,有g 1(x )=f (x )=a <0, g 2(x )=f [g 1(x )]=f (0)<0, 且n ≥2时,g n (x )<0 试咨询是否存在区间B 〔A ∩B ≠∅〕,关于区间内任意实数x ,只要n ≥2,都有g n (x )<0 8 函数f (x )=xa 11- (a >0,x >0) 〔1〕求证:f (x )在(0,+∞)上是增函数;〔2〕假设f (x )≤2x 在(0,+∞)上恒成立,求a 的取值范畴;〔3〕假设f (x )在[m ,n ]上的值域是[m ,n ](m ≠n ),求a 的取值范畴参考答案 1 解析 考查函数y 1=x 和y 2=(2a )x 的图象,明显有0<2a <1 由题意21)2(21a =得a =41,再结合指数函数图象性质可得答案 答案 A2 解析 由题意可得f (–x +1)=–f (x +1) 令t =–x +1,那么x =1–t ,故f (t )=–f (2–t ),即f (x )=–f (2–x )当x >1,2–x <1,因此有f (x )=–f (2–x )=–2(x –47)2–87,其递减区间为[47,+∞) 答案 C 3 解析 明显有x >3,原方程可化为1031=--x ax 故有(10–a )·x =29,必有10–a >0得a <10又x =a -1029>3可得a 31 答案 31<a <10 4 解析 原式化为4)2(cos 22m m x y -= 当2m <–1,y min =1+m =–4⇒m =–5 当–1≤2m ≤1,y min =42m -=–4⇒m =±4不符 当2m >1,y min =1–m =–4⇒m =5 答案 ±55 解 (1)令2x =t (t >0),设f (t )=t 2–4t +a由f (t )=0在(0,+∞)有且仅有一根或两相等实根,那么有①f (t )=0有两等根时,Δ=0⇒16–4a =0⇒a =4验证 t 2–4t +4=0⇒t =2∈(0,+∞),这时x =1②f (t )=0有一正根和一负根时,f (0)<0⇒a <0③假设f (0)=0,那么a =0,现在4x –4·2x =0⇒2x =0〔舍去〕,或2x =4,∴x =2,即A 中只有一个元素综上所述,a ≤0或a =4,即B ={a |a ≤0或a =4}〔2〕要使原不等式对任意a ∈(–∞,0]∪{4}恒成立 即g (a )=(x –2)a –(x 2–6x )>0恒成立 只须 175081020)4(022-⇒⎩⎨⎧<+-≤⇒⎩⎨⎧>≤-x x x g x <x ≤2 6 解 〔1〕∵方程ax 2+bx =2x 有等根,∴Δ=(b –2)2=0,得b =2 由f (x –1)=f (3–x )知此函数图象的对称轴方程为x =–a b 2=1得a =–1,故f (x )=–x 2+2x 〔2〕f (x )=–(x –1)2+1≤1,∴4n ≤1,即n ≤41 而抛物线y =–x 2+2x 的对称轴为x =1∴n ≤41时,f (x )在[m ,n ]上为增函数假设满足题设条件的m ,n 存在,那么⎩⎨⎧==nn f m m f 4)(4)( ⎩⎨⎧-==-==⇒⎪⎩⎪⎨⎧=+-=+-2020424222n n m m nn n m m m 或或即 又m <n ≤41,∴m =–2,n =0,这时定义域为[–2,0],值域为[–8,0] 由以上知满足条件的m 、n 存在,m =–2,n =0 7 (1)证明 当n =1时,g 1(x 0)=x 0明显成立;设n =k 时,有g k (x 0)=x 0(k ∈N )成立,那么g k +1(x 0)=f [g k (x 0)]=f (x 0)=g 1(x 0)=x 0即n =k +1时,命题成立∴对一切n ∈N ,假设g 1(x 0)=x 0,那么g n (x 0)=x 0〔2〕解 由〔1〕知,稳固不动点x 0只需满足f (x 0)=x 0由f (x 0)=x 0,得6x 0–6x 02=x 0,∴x 0=0或x 0=65 ∴稳固不动点为065 (3)解 ∵f (x )<0,得6x –6x 2<0⇒x <0或x >1∴g n (x )<0⇔f [g n –1(x )]<0⇔g n –1(x )<0或g n –1(x )>1要使一切n ∈N ,n ≥2,都有g n (x )<0,必须有g 1(x )<0或g 1(x )>1 由g 1(x )<0⇔6x –6x 2<0⇔x <0或x >1由g 1(x )>0⇔6x –6x 2>1⇔633633+<<-x 故关于区间(633,633+-)和(1,+∞)内的任意实数x , 只要n ≥2,n ∈N ,都有g n (x )<08 (1)证明 任取x 1>x 2>0,f (x 1)–f (x 2)=2121122111)11()11(x x x x x x x a x a -=-=--- ∵x 1>x 2>0,∴x 1x 2>0,x 1–x 2>0,∴f (x 1)–f (x 2)>0,即f (x 1)>f (x 2),故f (x )在(0,+∞)上是增函数 〔2〕解 ∵xa 11-≤2x 在(0,+∞)上恒成立,且a >0, ∴a ≥xx 121+在〔0,+∞〕上恒成立, 令421221121)(=⋅≤+=x x x x x g〔当且仅当2x =x1即x =22时取等号〕, 要使a ≥x x 121在(0,+∞)上恒成立,那么a故a 的取值范畴是[42,+∞) (3)解 由〔1〕f (x )在定义域上是增函数∴m =f (m ),n =f (n ),即m 2–a 1m +1=0,n 2–a 1n +1=0 故方程x 2–a1x +1=0有两个不相等的正根m ,n ,注意到m ·n =1, 故只需要Δ=(a1)2–4>0,由于a >0,那么0<a 21课前后备注。
36 【last】第37讲_用单调性研究方程根的个数
在
有几个零点?
【续解】又因为
有一个零点;
又
→
零点;
综上, 在 和
内有2个零点.
,故
→
, 从而 在
在 内至少 内至少有一个
内分别恰好有一个零点, 因此, 在
例37.4 已知常数 ,问方程
有几个实根?
【解】记
则
当
时,
,当
故在
内严格单调减小,在
在
处取得唯一最小值
由于 →−
,
→
, 从而
令
,得
.
时,
,
内严格单调增加,从而 .
一点
,使得
上连续, 且
, 则至少存在
【注】常用零点定理来判定方程根的存在性.
2、单调性与方程根的关系
如果函数 在某区间上严格单调增加或严格单调减少, 那么在该
区间上,方程
至多只有一个实根.
【注】要研究方程
的根的个数, 通常先划分函数
区间,再在各单调区间上讨论方程
的根个数.
的单调
例37.1 证明方程
36last第37讲用单调性研究方程根的个数第37讲用单调性研究方程根的个数主要内容1零点定理设函数一点在闭区间上连续则至少存在注常用零点定理来判定方程根的存在性
高等数学典型例题与解法(一)
第37讲 用单调性研究方程根的个数
理学院 李建平教授
主要内容
内容概要 典型例题解析
1、零点定理
设函数 在闭区间
, 易知,当
时,
故方程
无实根;
当 时,
,从而方程
恰有一个实根;
当 时,
,从而
在
和
内各只有
2022高三数学高考专题讲座:函数与方程的思想方法
函数与方程的思想方法一、知识整合函数与方程是两个不一样的看法,但它们之间有着亲密的联系,方程 f =0 的解就是函数= f的图像与轴的交点的横坐标,函数= f 也能够看作二元方程f-= 0 经过方程进行研究。
就中学数学而言,函数思想在解题中的应用主要表此刻两个方面:一是借助有关初等函数的性质,解有关求值、解证不等式、解方程以及议论参数的取值范围等问题:二是在问题的研究中,经过成立函数关系式或结构中间函数,把所研究的问题转变为议论函数的有关性质,达到化难为易,化繁为简的目的很多有关方程的问题能够用函数的方法解决,反之,许多函数问题也能够用方程的方法来解决。
函数与方程的思想是中学数学的基本思想,也是历年高考的要点。
1.函数的思想,是用运动和变化的看法,剖析和研究数学中的数目关系,成立函数关系或结构函数,运用函数的图像和性质去剖析问题、转变问题,进而使问题获取解决。
函数思想是对函数看法的实质认识,用于指导解题就是擅长利用函数知识或函数看法察看、剖析和解决问题。
2.方程的思想,就是剖析数学识题中变量间的等量关系,成立方程或方程组,或许构造方程,经过解方程或方程组,或许运用方程的性质去剖析、转变问题,使问题获取解决。
方程的数学是对方程看法的实质认识,用于指导解题就是擅长利用方程或方程组的看法察看办理问题。
方程思想是动中求静,研究运动中的等量关系3.1函数和方程是亲密有关的,对于函数= f ,当= 0 时,就转变为方程 f = 0,也能够把函数式= f 看做二元方程- f = 0。
函数问题(比如求反函数,求函数的值域等)能够转变为方程问题来求解,方程问题也能够转变为函数问题来求解,如解方程 f =0,就是求函数= f的零点。
2 函数与不等式也能够互相转变,对于函数= f ,当 >0 时,就转变为不等式f>0 ,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式。
3 数列的通项或前n 项和是自变量为正整数的函数,用函数的看法办理数列问题十分重要。
2021届新中考数学必考精点考点专题 专题37 二次函数问题 原卷版
2021届新中考数学必考精点考点专题专题37 二次函数问题1.二次函数的概念:一般地,自变量x和因变量y之间存在如下关系:y=ax2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。
抛物线叫做二次函数的一般式。
2.二次函数y=ax2 +bx+c(a≠0)的图像与性质(1)对称轴:(2)顶点坐标:(3)与y轴交点坐标(0,c)(4)增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小。
3.二次函数的解析式三种形式(1)一般式 y=ax2 +bx+c(a≠0).已知图像上三点或三对、的值,通常选择一般式. (2)顶点式已知图像的顶点或对称轴,通常选择顶点式。
.已知图像与轴的交点坐标、,通常选用交点(3)交点式.式。
4.根据图像判断a,b,c的符号(1)a 确定开口方向:当a>0时,抛物线的开口向上;当a<0时,抛物线的开口向下。
(2)b ——对称轴与a 左同右异。
(3)抛物线与y轴交点坐标(0,c)5.二次函数与一元二次方程的关系抛物线y=ax2 +bx+c与x轴交点的横坐标x1, x2 是一元二次方程ax2 +bx+c=0(a≠0)的根。
抛物线y=ax2 +bx+c,当y=0时,抛物线便转化为一元二次方程ax2 +bx+c=0>0时,一元二次方程有两个不相等的实根,二次函数图像与x轴有两个交点;=0时,一元二次方程有两个相等的实根,二次函数图像与x轴有一个交点;<0时,一元二次方程有不等的实根,二次函数图像与x轴没有交点。
6.函数平移规律:左加右减、上加下减.【例题1】(2020贵州黔西南)如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A. 点B坐标为(5,4)B. AB=ADC. a=D. OC•OD=16【对点练习】(2020湖北天门模拟)已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c <0;④8a+c>0.其中正确的有()A.3个B.2个C.1个D.0个【例题2】(2020•无锡)二次函数y=ax2﹣3ax+3的图象过点A(6,0),且与y轴交于点B,点M在该抛物线的对称轴上,若△ABM是以AB为直角边的直角三角形,则点M的坐标为.【对点练习】已知抛物线y=ax2﹣3x+c(a≠0)经过点(﹣2,4),则4a+c﹣1=.【例题3】(2020•河南)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q 的纵坐标y Q的取值范围.【对点练习】如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2.(1)求抛物线的解析式;(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.一、选择题1.(2020•鄂州)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)和B,与y 轴交于点C.下列结论:①abc<0,②2a+b<0,③4a﹣2b+c>0,④3a+c>0,其中正确的结论个数为()A.1个B.2个C.3个D.4个2.(2020•株洲)二次函数y=ax2+bx+c,若ab<0,a﹣b2>0,点A(x1,y1),B(x2,y2)在该二次函数的图象上,其中x1<x2,x1+x2=0,则()A.y1=﹣y2B.y1>y2C.y1<y2D.y1、y2的大小无法确定3.(2020•襄阳)二次函数y=ax2+bx+c的图象如图所示,下列结论:①ac<0;②3a+c=0;③4ac﹣b2<0;④当x>﹣1时,y随x的增大而减小.其中正确的有()A.4个B.3个C.2个D.1个4.(2020•广东)把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2﹣35.(2020•菏泽)一次函数y=acx+b与二次函数y=ax2+bx+c在同一平面直角坐标系中的图象可能是()A.B.C.D.6.(2020•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0,c>1)经过点(2,0),其对称轴是直线x.有下列结论:①abc>0;②关于x的方程ax2+bx+c=a有两个不等的实数根;③a.其中,正确结论的个数是()A.0B.1C.2D.37.(2020•陕西)在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限8.(2019哈尔滨)将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.B.C.D.9.(2019年陕西省)已知抛物线,当时,,且当时,y的值随x值的增大而减小,则m的取值范围是().A.B.C.D.10.(2019广西梧州)已知,关于的一元二次方程的解为,,则下列结论正确的是A.B.C.D.二、填空题11.(2020•南京)下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论:①该函数的图象与函数y=﹣x2的图象形状相同;②该函数的图象一定经过点(0,1);③当x>0时,y随x的增大而减小;④该函数的图象的顶点在函数y=x2+1的图象上.其中所有正确结论的序号是.12.(2020•连云港)加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=﹣0.2x2+1.5x﹣2,则最佳加工时间为min.13.(2020•泰安)已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如下表:下列结论:①a>0;②当x=﹣2时,函数最小值为﹣6;③若点(﹣8,y1),点(8,y2)在二次函数图象上,则y1<y2;④方程ax2+bx+c=﹣5有两个不相等的实数根.其中,正确结论的序号是.(把所有正确结论的序号都填上)14.(2020•哈尔滨)抛物线y=3(x﹣1)2+8的顶点坐标为.15.(2020•无锡)请写出一个函数表达式,使其图象的对称轴为y轴:.16.(2020•上海)如果将抛物线y=x2向上平移3个单位,那么所得新抛物线的表达式是.17.(2020•黔东南州)抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是.18.(2020•灌南县一模)二次函数y=﹣x2﹣2x+3的图象的顶点坐标为.19.(2019黑龙江哈尔滨)二次函数的最大值是.20.(2019江苏镇江)已知抛物线y=ax2+4ax+4a+1(a≠0)过点A(m,3),B(n,3)两点,若线段AB的长不大于4,则代数式a2+a+1的最小值是.21.(2019内蒙古赤峰)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b>0;②a﹣b+c=0;③一元二次方程ax2+bx+c+1=0(a≠0)有两个不相等的实数根;④当x <﹣1或x>3时,y>0.上述结论中正确的是.(填上所有正确结论的序号)三、解答题22.(2020•陕西)如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的表达式;(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.23.(2020•凉山州)如图,二次函数y=ax2+bx+x的图象过O(0,0)、A(1,0)、B(,)三点.(1)求二次函数的解析式;(2)若线段OB的垂直平分线与y轴交于点C,与二次函数的图象在x轴上方的部分相交于点D,求直线CD的解析式;(3)在直线CD下方的二次函数的图象上有一动点P,过点P作PQ⊥x轴,交直线CD于Q,当线段PQ的长最大时,求点P的坐标.24.(2020•黑龙江)如图,已知二次函数y=﹣x2+(a+1)x﹣a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C,已知△BAC的面积是6.(1)求a的值;(2)在抛物线上是否存在一点P,使S△ABP=S△ABC.若存在请求出P坐标,若不存在请说明理由.25.(2020•衡阳)在平面直角坐标系xOy中,关于x的二次函数y=x2+px+q的图象过点(﹣1,0),(2,0).(1)求这个二次函数的表达式;(2)求当﹣2≤x≤1时,y的最大值与最小值的差;(3)一次函数y=(2﹣m)x+2﹣m的图象与二次函数y=x2+px+q的图象交点的横坐标分别是a和b,且a<3<b,求m的取值范围.26.(2020•甘孜州)某商品的进价为每件40元,在销售过程中发现,每周的销售量y(件)与销售单价x(元)之间的关系可以近似看作一次函数y=kx+b,且当售价定为50元/件时,每周销售30件,当售价定为70元/件时,每周销售10件.(1)求k,b的值;(2)求销售该商品每周的利润w(元)与销售单价x(元)之间的函数解析式,并求出销售该商品每周可获得的最大利润.27.(2020•安徽)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y =x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.28.(2020•上海)在平面直角坐标系xOy中,直线y x+5与x轴、y轴分别交于点A、B (如图).抛物线y=ax2+bx(a≠0)经过点A.(1)求线段AB的长;(2)如果抛物线y=ax2+bx经过线段AB上的另一点C,且BC,求这条抛物线的表达式;(3)如果抛物线y=ax2+bx的顶点D位于△AOB内,求a的取值范围.29.(2020•苏州)如图,二次函数y=x2+bx的图象与x轴正半轴交于点A,平行于x轴的直线l与该抛物线交于B、C两点(点B位于点C左侧),与抛物线对称轴交于点D(2,﹣3).(1)求b的值;(2)设P、Q是x轴上的点(点P位于点Q左侧),四边形PBCQ为平行四边形.过点P、Q分别作x轴的垂线,与抛物线交于点P'(x1,y1)、Q'(x2,y2).若|y1﹣y2|=2,求x1、x2的值.30.(2020•台州)用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆柱体水桶水面离地面的高度为H(单位:cm),如果在离水面竖直距离为h(单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系式为s2=4h(H﹣h).应用思考:现用高度为20cm的圆柱体塑料水瓶做相关研究,水瓶直立地面,通过连续注水保证它始终盛满水,在离水面竖直距离hcm处开一个小孔.(1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求垫高的高度及小孔离水面的竖直距离.31.(2020•滨州)某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?32.(2019贵州贵阳)如图,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,且关于直线x=1对称,点A的坐标为(﹣1,0).(1)求二次函数的表达式;(2)连接BC,若点P在y轴上时,BP和BC的夹角为15°,求线段CP的长度;(3)当a≤x≤a+1时,二次函数y=x2+bx+c的最小值为2a,求a的值.。
2024年高考数学 二轮复习第37讲 同构与导数放缩
第37讲 同构与导数放缩知识与方法同构不等式是近些年高考模拟题的热点题型,经常出现在压轴选择填空和导数大题中,特别是恒成立求参数取值范围,或证明不等式,常规方法可能需要采用隐零点,往往较为繁琐,而用同构,则会达到四两拨千斤的功效.那么何为同构?什么时候用同构呢?顾名思义,同构,函数结构相同时使用,或者通过变形使不等式两边的函数结构相同。
例如题目给了条件()0F x ≥能等价变形为()()f g x f h x ≥⎡⎤⎡⎤⎣⎦⎣⎦,然后利用()f x 的单调性,如递增,再转化为()()g x h x ≥,这种方法我们就可以称为同构不等式,简称同构..同构第一重境界:双变量问题1x 、2x 地位完全等价,只需把同一个变量移到不等式同一边即可。
给大家一些常见的例子,一看便知. (1)()()()()()()()12121212112212f x f x k x x f x f x kx kx f x kx f x kx x x −><⇔−<−⇔−<−−()y f x kx ⇔=−为增函数,求导证明即可(2)()()()()()()()121212121121212211f x f x k x x k k k kx x f x f x f x x x x x x x x x x −−<<⇔−>=−⇔+−()22()k kf x y f x x x>+⇔=+为减函数. 同构第二重境界:指对跨阶时使用,何谓指对跨阶?简单做一个介绍,x e 、x 、ln x 中,指数x e 增长最快属于第一阶,x 其次,属于第二阶,ln x 增长最慢,属于第三阶。
如果题目中既出现x e ,又出现ln x ,我们暂且称之为指对跨阶. 指对跨阶常见模型及处理方法: (1)积型:ln :e ln ln ()ln :e (ln )e ()e :ln ln ln(ln )()l e ln n a a a a b x e b b f x x xa b f x x a a b b f x x b x a b ⎧⎪⎯⎯⎯⎯≤−−−−−−−−→=−−−−−−−−→=++−−−−→⎯≤≤→⎩+⎪=≤⎨三种同构方式同右同左取对(2)商型:ln e e :()e :()e ln ln e ln ln :ln ln ln(ln )(n l e )n l a x b a a af x x x f x b a b b b x a a b b f x a b x x ⎧⎪⎪⎪⎯⎯−−−−−−−−−→=−−−−−−−−−⎯⎯⎯→⎨⎪→=−−−−−⎪<⎪⎩→−<<<−=三种同构方式同左同右取对 (3)和差型:ln :e ()e l e :e ln ln (n )n ln e l a xb aa af x xe bf x a b a b b b x x −−−−−−−−−→=±−−−−−−−−−±>±±>⎧⎪⎯⎯⎯⎯⎯→±±>±→=±⎨⎪⎩两种同构方式同左同右 同构第三重境界:有些同构式不是很明显的指对跨阶,需要配凑常数或者自变量x ,此类题型较为含蓄,需要同学们多加练习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目高中数学复习专题讲座函数方程思想 高考要求函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多 函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决 重难点归纳函数与方程的思想是最重要的一种数学思想,要注意函数,方程与不等式之间的相互联系和转化 考生应做到(1)深刻理解一般函数y =f (x )、y =f –1(x )的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质,这是应用函数思想解题的基础(2)密切注意三个“二次”的相关问题,三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系 掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略典型题例示范讲解 例1已知函数f (x )=log m 33+-x x (1)若f (x )的定义域为[α,β],(β>α>0),判断f (x )在定义域上的增减性,并加以说明;(2)当0<m <1时,使f (x )的值域为[log m [m (β–1)],log m [m (α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由 命题意图 本题重在考查函数的性质,方程思想的应用 知识依托 函数单调性的定义判断法;单调性的应用;方程根的分布;解不等式组 错解分析 第(1)问中考生易忽视“α>3”这一关键隐性条件;第(2)问中转化出的方程,不能认清其根的实质特点,为两大于3的根技巧与方法 本题巧就巧在采用了等价转化的方法,借助函数方程思想,巧妙解题 解 (1)⇔>+-033x x x <–3或x >3 ∵f (x )定义域为[α,β],∴α>3设β≥x 1>x 2≥α,有0)3)(3()(6333321212211>++-=+--+-x x x x x x x x 当0<m <1时,f (x )为减函数,当m >1时,f (x )为增函数(2)若f (x )在[α,β]上的值域为[log m m (β–1),log m m (α–1)] ∵0<m <1, f (x )为减函数 ∴⎪⎪⎩⎪⎪⎨⎧-=+-=-=+-=)1(log 33log )()1(log 33log )(ααααββββm f m f m m m m即3,0)1(3)12(0)1(3)12(22>>⎪⎩⎪⎨⎧=---+=---+αβααββ又m m m m m m 即α,β为方程mx 2+(2m –1)x –3(m –1)=0的大于3的两个根 ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>>-->+-=∆<<0)3(3212011616102mf mm m m m ∴0<m <432- 故当0<m <432-时,满足题意条件的m 存在 例2已知函数f (x )=x 2–(m +1)x +m (m ∈R )(1)若tan A ,tan B 是方程f (x )+4=0的两个实根,A 、B 是锐角三角形ABC 的两个内角 求证 m ≥5;(2)对任意实数α,恒有f (2+cos α)≤0,证明m ≥3;(3)在(2)的条件下,若函数f (sin α)的最大值是8,求m 命题意图 本题考查函数、方程与三角函数的相互应用;不等式法求参数的范围 知识依托 一元二次方程的韦达定理、特定区间上正负号的充要条件,三角函数公式 错解分析 第(1)问中易漏掉Δ≥0和tan(A +B )<0,第(2)问中如何保证f (x )在[1,3]恒小于等于零为关键 技巧与方法 深挖题意,做到题意条件都明确,隐性条件注意列 列式要周到,不遗漏(1)证明 f (x )+4=0即x 2–(m +1)x +m +4=0 依题意⎪⎩⎪⎨⎧>+=⋅>+=+≥+-+=∆04tan tan 01tan tan 0)4(4)1(2m B A m B A m m又A 、B 锐角为三角形内两内角 ∴2π<A +B <π ∴tan(A +B )<0,即031tan tan 1tan tan )tan(<--+=-+=+m m B A B A B A ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>++>+>+≥--031040101522m m m m m m ∴m ≥5(2)证明 ∵f (x )=(x –1)(x –m )又–1≤cos α≤1,∴1≤2+cos α≤3,恒有f (2+cos α)≤0即1≤x ≤3时,恒有f (x )≤0即(x –1)(x –m )≤0∴m ≥x 但x max =3,∴m ≥x max =3(3)解∵f (sin α)=sin 2α–(m +1)sin α+m =4)1()21(sin 22+-++-m m m α 且21+m ≥2, ∴当sin α=–1时,f (sin α)有最大值8即1+(m +1)+m =8,∴m =3例3关于x 的不等式2·32x –3x +a 2–a –3>0,当0≤x ≤1时恒成立,则实数a 的取值范围为解析 设t =3x ,则t ∈[1,3],原不等式可化为a 2–a –3>–2t 2+t ,t ∈[1,3]等价于a 2–a –3大于f (t )=–2t 2+t 在[1,3]上的最大值答案 (–∞,–1)∪(2,+∞) 例4对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0成立,则称x 0为f (x )的不动点 已知函数f (x )=ax 2+(b +1)x +(b –1)(a ≠0)(1)若a =1,b =–2时,求f (x )的不动点;(2)若对任意实数b ,函数f (x )恒有两个相异的不动点,求a 的取值范围;(3)在(2)的条件下,若y =f (x )图象上A 、B 两点的横坐标是函数f (x )的不动点,且A 、B 关于直线y =kx +1212+a 对称,求b 的最小值 解 (1)当a =1,b =–2时,f (x )=x 2–x –3,由题意可知x =x 2–x –3,得x 1=–1,x 2=3故当a =1,b =–2时,f (x )的两个不动点为–1,3(2)∵f (x )=ax 2+(b +1)x +(b –1)(a ≠0)恒有两个不动点,∴x =ax 2+(b +1)x +(b –1),即ax 2+bx +(b –1)=0恒有两相异实根∴Δ=b 2–4ab +4a >0(b ∈R )恒成立于是Δ′=(4a )2–16a <0解得0<a <1故当b ∈R ,f (x )恒有两个相异的不动点时,0<a <1(3)由题意A 、B 两点应在直线y =x 上,设A (x 1,x 1),B (x 2,x 2)又∵A 、B 关于y =kx +1212+a 对称∴k =–1 设AB 的中点为M (x ′,y ′)∵x 1,x 2是方程ax 2+bx +(b –1)=0的两个根∴x ′=y ′=ab x x 2221-=+, 又点M 在直线1212++-=a x y 上有121222++=-a a b a b , 即a a a a b 121122+-=+-= ∵a >0,∴2a +a 1≥22当且仅当2a =a 1即a =22∈(0,1)时取等号, 故b ≥–221,得b学生巩固练习1 已知函数f (x )=log a [x –(2a )2]对任意x ∈[21,+∞]都有意义,则实数a 的取值范围是( )A (0,41]B (0,41)C [41,1)D (41,21) 2 函数f (x )的定义域为R ,且x ≠1,已知f (x +1)为奇函数,当x <1时,f (x )=2x 2–x +1,那么当x >1时,f (x )的递减区间是( )A [45,+∞)B (1,45]C [47,+∞)D (1,47] 3 关于x 的方程lg(ax –1)–lg(x –3)=1有解,则a 的取值范围是 4 如果y =1–sin 2x –m cos x 的最小值为–4,则m 的值为5 设集合A ={x |4x –2x +2+a =0,x ∈R }(1)若A 中仅有一个元素,求实数a 的取值集合B ;(2)若对于任意a ∈B ,不等式x 2–6x <a (x –2)恒成立,求x 的取值范围 6 已知二次函数f (x )=ax 2+bx (a ,b 为常数,且a ≠0)满足条件:f (x –1)=f (3–x )且方程f (x )=2x 有等根(1)求f (x )的解析式;(2)是否存在实数m ,n (m <n =,使f (x )定义域和值域分别为[m ,n ]和[4m ,4n ],如果存在,求出m 、n 的值;如果不存在,说明理由 7 已知函数f (x )=6x –6x 2,设函数g 1(x )=f (x ), g 2(x )=f [g 1(x )], g 3(x )=f [g 2(x )],…g n (x )=f [g n –1(x )],…(1)求证 如果存在一个实数x 0,满足g 1(x 0)=x 0,那么对一切n ∈N ,g n (x 0)=x 0都成立;(2)若实数x 0满足g n (x 0)=x 0,则称x 0为稳定不动点,试求出所有这些稳定不动点;(3)设区间A =(–∞,0),对于任意x ∈A ,有g 1(x )=f (x )=a <0, g 2(x )=f [g 1(x )]=f (0)<0,且n ≥2时,g n (x )<0 试问是否存在区间B (A ∩B ≠∅),对于区间内任意实数x ,只要n ≥2,都有g n (x )<0 8 已知函数f (x )=xa 11- (a >0,x >0) (1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )≤2x 在(0,+∞)上恒成立,求a 的取值范围;(3)若f (x )在[m ,n ]上的值域是[m ,n ](m ≠n ),求a 的取值范围参考答案 1 解析 考查函数y 1=x 和y 2=(2a )x 的图象,显然有0<2a <1 由题意21)2(21a =得a =41,再结合指数函数图象性质可得答案 答案 A 2 解析 由题意可得f (–x +1)=–f (x +1) 令t =–x +1,则x =1–t , 故f (t )=–f (2–t ),即f (x )=–f (2–x )当x >1,2–x <1,于是有f (x )=–f (2–x )=–2(x –47)2–87,其递减区间为[47,+∞) 答案 C3 解析 显然有x >3,原方程可化为1031=--x ax 故有(10–a )·x =29,必有10–a >0得a <10又x =a -1029>3可得a 31 答案 31<a <10 4 解析 原式化为4)2(cos 22m m x y --= 当2m <–1,y min =1+m =–4⇒m =–5 当–1≤2m ≤1,y min =42m -=–4⇒m =±4不符 当2m >1,y min =1–m =–4⇒m =5 答案 ±55 解 (1)令2x =t (t >0),设f (t )=t 2–4t +a由f (t )=0在(0,+∞)有且仅有一根或两相等实根,则有①f (t )=0有两等根时,Δ=0⇒16–4a =0⇒a =4验证 t 2–4t +4=0⇒t =2∈(0,+∞),这时x =1②f (t )=0有一正根和一负根时,f (0)<0⇒a <0③若f (0)=0,则a =0,此时4x –4·2x =0⇒2x =0(舍去),或2x =4,∴x =2,即A 中只有一个元素综上所述,a ≤0或a =4,即B ={a |a ≤0或a =4}(2)要使原不等式对任意a ∈(–∞,0]∪{4}恒成立 即g (a )=(x –2)a –(x 2–6x )>0恒成立 只须 175081020)4(022-⇒⎩⎨⎧<+-≤⇒⎩⎨⎧>≤-x x x g x <x ≤2 6 解 (1)∵方程ax 2+bx =2x 有等根,∴Δ=(b –2)2=0,得b =2 由f (x –1)=f (3–x )知此函数图象的对称轴方程为x =–ab 2=1得a =–1,故f (x )=–x 2+2x (2)f (x )=–(x –1)2+1≤1,∴4n ≤1,即n ≤41 而抛物线y =–x 2+2x 的对称轴为x =1∴n ≤41时,f (x )在[m ,n ]上为增函数 若满足题设条件的m ,n 存在,则⎩⎨⎧==nn f m m f 4)(4)( ⎩⎨⎧-==-==⇒⎪⎩⎪⎨⎧=+-=+-2020424222n n m m nn n m m m 或或即 又m <n ≤41,∴m =–2,n =0,这时定义域为[–2,0],值域为[–8,0] 由以上知满足条件的m 、n 存在,m =–2,n =0 7 (1)证明 当n =1时,g 1(x 0)=x 0显然成立;设n =k 时,有g k (x 0)=x 0(k ∈N )成立,则g k +1(x 0)=f [g k (x 0)]=f (x 0)=g 1(x 0)=x 0即n =k +1时,命题成立∴对一切n ∈N ,若g 1(x 0)=x 0,则g n (x 0)=x 0(2)解 由(1)知,稳定不动点x 0只需满足f (x 0)=x 0由f (x 0)=x 0,得6x 0–6x 02=x 0,∴x 0=0或x 0=65 ∴稳定不动点为065 (3)解 ∵f (x )<0,得6x –6x 2<0⇒x <0或x >1∴g n (x )<0⇔f [g n –1(x )]<0⇔g n –1(x )<0或g n –1(x )>1要使一切n ∈N ,n ≥2,都有g n (x )<0,必须有g 1(x )<0或g 1(x )>1 由g 1(x )<0⇔6x –6x 2<0⇔x <0或x >1由g 1(x )>0⇔6x –6x 2>1⇔633633+<<-x 故对于区间(633,633+-)和(1,+∞)内的任意实数x , 只要n ≥2,n ∈N ,都有g n (x )<08 (1)证明 任取x 1>x 2>0,f (x 1)–f (x 2)=2121122111)11()11(x x x x x x x a x a -=-=--- ∵x 1>x 2>0,∴x 1x 2>0,x 1–x 2>0,∴f (x 1)–f (x 2)>0,即f (x 1)>f (x 2),故f (x )在(0,+∞)上是增函数(2)解 ∵xa 11-≤2x 在(0,+∞)上恒成立,且a >0, ∴a ≥xx 121+在(0,+∞)上恒成立, 令421221121)(=⋅≤+=x x x x x g (当且仅当2x =x 1即x =22时取等号), 要使a ≥x x 121+在(0,+∞)上恒成立,则a故a 的取值范围是[42,+∞) (3)解 由(1)f (x )在定义域上是增函数∴m =f (m ),n =f (n ),即m 2–a 1m +1=0,n 2–a 1n +1=0 故方程x 2–a1x +1=0有两个不相等的正根m ,n ,注意到m ·n =1, 故只需要Δ=(a1)2–4>0,由于a >0,则0<a 21课前后备注。