2014届甘肃省武威市凉州区高三第一次诊断考试理科数学试题(含答案解析)
【甘肃兰州、张掖一诊】甘肃省兰州市、张掖市2014届高三第一次诊断考试数学(理)试题Word版含答案
(1)对于命题 p : x R,使得x2 x 1 0 ,则 p : x R ,均有 x2 x 1 0 ;
(2) m 3 是直线 (m 3)x my 2 0 与直线 mx 6 y 5 0 互相垂直的充要条件;
(3)已知回归直线的斜率的估计值为 1.23,样本点的中心为(4,5),则回归直线方程为
D. 2 i
D. 3 3 6
D.b﹤c﹤a
其中正确的命题是 ( )
A.①②
B.②③
7.某校从 8 名教师中选派 4 名教师同时去 4 个边远地区支教(每地 1 人),其中甲和乙不同去,
甲和丙只能同去或同不去,则不同的选派方案共有( )种.
A.150
8.已知双曲线 x2 y2 1 a2 b2
C. x2 y2 1 9 16
(n
D.900
D.5
O An
y
D.①④
D. x2 y2 1 43
Dn Cn
(第 11 题图)
2, n N ) ,记矩形
)
Bn
x
12. 设 f (x) 的定义域为 D ,若 f (x) 满足下面两个条件则称 f (x) 为闭函数:① f (x) 是
1i
A. 2 i
B. ( 0 , 2 )
B.1 2i
C. ( 2 , 3 ) D. ( 2 , 3 )
C.1 2i
3.将函数 y sin(x )(x R) 的图象上所有的点向左平移 个单位长度,再把图象上各
6
点的横坐标扩大到原来的 2 倍,则所得的图象的解析式为( )
第Ⅰ卷
一、选择题:(本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只 有一项是符合题目要求)
2014年甘肃省高考一模数学试卷(理科)【解析版】
2014年甘肃省高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项符合题目要求的.1.(5分)已知集合A={x∈Z||x|<5},B={x|x﹣2≥0},则A∩B等于()A.(2,5)B.[2,5)C.{2,3,4}D.{3,4,5} 2.(5分)复数(i是虚数单位)化简的结果是()A.1B.﹣1C.i D.﹣i3.(5分)某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x的值是()A.2B.C.D.34.(5分)从如图所示的正方形OABC区域内任取一个点M(x,y),则点M取自阴影部分的概率为()A.B.C.D.5.(5分)已知等差数列{a n}的前n项和为S n,若a4=18﹣a5,则S8=()A.72B.68C.54D.906.(5分)阅读如图程序框图,输出的结果i的值为()A.5B.6C.7D.97.(5分)设a=lge,b=(lge)2,c=lg,则()A.a>b>c B.c>a>b C.a>c>b D.c>b>a 8.(5分)已知点P(x,y)满足线性约束条件,点M(3,1),O为坐标原点,则•的最大值为()A.12B.11C.3D.﹣19.(5分)若(x2﹣)n展开式中的所有二项式系数和为512,则该展开式中的常数项为()A.﹣84B.84C.﹣36D.3610.(5分)已知双曲线﹣=1(a>0,b>0)的两条渐近线均与圆C:x2+y2﹣6x+5=0相切,则该双曲线离心率等于()A.B.C.D.11.(5分)定义在R上的偶函数f(x)满足f(x+1)f(x)=﹣2(f(x)≠0),且在区间(2013,2014)上单调递增,已知α,β是锐角三角形的两个内角,则f(sinα)、f(cosβ)的大小关系是()A.f(sinα)<f(cosβ)B.f(sinα)>f(cosβ)C.f(sinα)=f(cosβ)D.以上情况均有可能12.(5分)设f(x)是定义在R上的函数,∀x∈R,都有f(2﹣x)=f(2+x),f(﹣x)=f(x),且当x∈[0,2]时,f(x)=2x﹣2,若函数g(x)=f(x)﹣log a(x+1)(a>0,a≠1)在区间(﹣1,2014]内恰有三个不同零点,则实数a的取值范围是()A.(,)∪(,)B.(0,)∪(,+∞)C.(,1)∪(1,)D.(,)∪(,)二、填空題:本大题共4小题,每小题5分.13.(5分)已知函数,则=.14.(5分)设随机变量ξ服从正态分布N(2,9),若P(ξ>c+1)=P(ξ<c ﹣1),则c=.15.(5分)已知数列{a n}满足a1=100,a n+1﹣a n=2n,则的最小值.16.(5分)若三棱锥S﹣ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA⊥平面ABC,SA=2,AB=1,AC=2,∠BAC=60°,则球O的表面积为.三、解答题:本大题共5小题,共70分.解答应写出说明文字,证明过程或演算步骤.17.(12分)在△ABC中,三个内角A、B、C的对边分别为a,b,c,若a(1+cos C)+c(1+cos A)=3b,(1)求证:a,b,c成等差数列;(2)若∠B=60°,b=4,求△ABC的面积.18.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=∠P AD=90°,侧面P AD⊥底面ABCD.若P A=AB=BC=AD.(Ⅰ)求证:CD⊥PC;(Ⅱ)求二面角A﹣PD﹣C的余弦值.19.(12分)某高中社团进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次是否开通“微博”的调查,若开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查分别得到如下统计表和如图所示各年龄段人数频率分布直方图请完成以下问题:(1)补全频率直方图,并求n,a,p的值(2)从[40,45)岁和[45,50)岁年龄段的“时尚族”中采用分层抽样法抽取18人参加网络时尚达人大赛,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁得人数为X,求X的分布列和数学期望E(X)20.(12分)如图,焦距为2的椭圆E的两个顶点分别为A和B,且与=(,﹣1)共线.(Ⅰ)求椭圆E的标准方程;(Ⅱ)若直线y=kx+m与椭圆E有两个不同的交点P和Q,O为坐标原点,总使•<0,求实数m的取值范围.21.(12分)已知函数f(x)=ln(x+a)﹣x2﹣x在x=0处取得极值.(Ⅰ)求实数a的值;(Ⅱ)若关于x的方程f(x)=﹣x+b在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;(Ⅲ)证明:对任意的正整数n,不等式2+++…+>ln(n+1)都成立.四、请从22、23、24三个小题中任选一题作答,并用2B铅笔在答题卡上将所选题目对应的题号方框涂黑.(选修4-1:几何证明选讲)22.(10分)如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过N点的切线交CA的延长线于P.(Ⅰ)求证:PM2=P A•PC;(Ⅱ)若⊙O的半径为2,OA=OM,求MN的长.选修4-4:坐标系与参数方程23.已知直线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极值为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:,(t是参数).(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,直线l的参数方程化为普通方程;(Ⅱ)若直线l与曲线C相交于A,B两点,且|AB|=,试求实数m的值.选修4-5:不等式选讲24.已知函数f(x)=lg(|x+1|+|x﹣2|+a).(Ⅰ)当a=﹣5时,求函数f(x)的定义域;(Ⅱ)若函数f(x)的定义域为R,求实数a的取值范围.2014年甘肃省高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项符合题目要求的.1.(5分)已知集合A={x∈Z||x|<5},B={x|x﹣2≥0},则A∩B等于()A.(2,5)B.[2,5)C.{2,3,4}D.{3,4,5}【解答】解:A={x∈Z||x|<5}={x∈Z|﹣5<x<5}={﹣4,﹣3,﹣2,﹣1,0,1,2,3,4},B={x|x﹣2≥0},∴A∩B={2,3,4},故选:C.2.(5分)复数(i是虚数单位)化简的结果是()A.1B.﹣1C.i D.﹣i【解答】解:==()2=(﹣i)2=﹣1.故选:B.3.(5分)某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x的值是()A.2B.C.D.3【解答】解:由三视图可知:原几何体是一个四棱锥,其中底面是一个上、下、高分别为1、2、2的直角梯形,一条长为x的侧棱垂直于底面.则体积为=,解得x=.故选:C.4.(5分)从如图所示的正方形OABC区域内任取一个点M(x,y),则点M取自阴影部分的概率为()A.B.C.D.【解答】解:可知此题求解的概率类型为关于面积的几何概型,由图可知基本事件空间所对应的几何度量S(Ω)=1,满足所投的点落在叶形图内部所对应的几何度量:S(A)==.所以P(A)=.故选:B.5.(5分)已知等差数列{a n}的前n项和为S n,若a4=18﹣a5,则S8=()A.72B.68C.54D.90【解答】解:在等差数列{a n}中,∵a4=18﹣a5,∴a4+a5=18,则S8=4(a1+a8)=4(a4+a5)=72故选:A.6.(5分)阅读如图程序框图,输出的结果i的值为()A.5B.6C.7D.9【解答】解:由程序框图可看出:S=1×23×25×…×22n+1=23+5+…+(2n+1)==,由判断框的条件可知:当满足≥100时,应跳出循环结构,此时n2+2n>6,解得n=3,∴i=2n+1=7.故应输出i的值是7.故选:C.7.(5分)设a=lge,b=(lge)2,c=lg,则()A.a>b>c B.c>a>b C.a>c>b D.c>b>a【解答】解:∵1<e<3<,∴0<lge<1,∴lge>lge>(lge)2.∴a>c>b.故选:C.8.(5分)已知点P(x,y)满足线性约束条件,点M(3,1),O为坐标原点,则•的最大值为()A.12B.11C.3D.﹣1【解答】解:设z=•,则z=3x+y,即y=﹣3x+z,作出不等式组对应的平面区域如图:平移直线y=﹣3x+z,由图象可知当直线y=﹣3x+z经过点A时,直线y=﹣3x+z的截距最大,此时z最大,由,解得,即A(3,2),此时z=3x+y=3×3+2=11,故•的最大值为11,故选:B.9.(5分)若(x2﹣)n展开式中的所有二项式系数和为512,则该展开式中的常数项为()A.﹣84B.84C.﹣36D.36【解答】解:展开式中所有二项式系数和为512,即2n=512,则n=9,T r+1=(﹣1)r C9r x18﹣3r令18﹣3r=0,则r=6,所以该展开式中的常数项为84.故选:B.10.(5分)已知双曲线﹣=1(a>0,b>0)的两条渐近线均与圆C:x2+y2﹣6x+5=0相切,则该双曲线离心率等于()A.B.C.D.【解答】解:双曲线﹣=1(a>0,b>0)的渐近线方程为y=±,即bx±ay=0圆C:x2+y2﹣6x+5=0化为标准方程(x﹣3)2+y2=4∴C(3,0),半径为2∵双曲线﹣=1(a>0,b>0)的两条渐近线均和圆C:x2+y2﹣6x+5=0相切∴∴9b2=4b2+4a2∴5b2=4a2∵b2=c2﹣a2∴5(c2﹣a2)=4a2∴9a2=5c2∴=∴双曲线离心率等于故选:D.11.(5分)定义在R上的偶函数f(x)满足f(x+1)f(x)=﹣2(f(x)≠0),且在区间(2013,2014)上单调递增,已知α,β是锐角三角形的两个内角,则f(sinα)、f(cosβ)的大小关系是()A.f(sinα)<f(cosβ)B.f(sinα)>f(cosβ)C.f(sinα)=f(cosβ)D.以上情况均有可能【解答】解:∵定义在R上的偶函数f(x)满足f(x+1)f(x)=﹣2,∴f(x)===f(x+2),∴f(x)是周期为2的偶函数.∵函数f(x)在区间(2013,2014)上单调递增,故函数在(﹣1,0)上单调递增,在(0,1)上单调递减.∵α,β是锐角三角形的两个内角,∴α+β>,∴>α>﹣β>0,∴1>sinα>sin(﹣β)=cosβ>0.则f(sinα)<f(cosβ),故选:A.12.(5分)设f(x)是定义在R上的函数,∀x∈R,都有f(2﹣x)=f(2+x),f(﹣x)=f(x),且当x∈[0,2]时,f(x)=2x﹣2,若函数g(x)=f(x)﹣log a(x+1)(a>0,a≠1)在区间(﹣1,2014]内恰有三个不同零点,则实数a的取值范围是()A.(,)∪(,)B.(0,)∪(,+∞)C.(,1)∪(1,)D.(,)∪(,)【解答】解:由f(2﹣x)=f(2+x),得到函数f(x)关于x=2对称,由f(﹣x)=f(x)得函数f(x)是偶函数,且f(2﹣x)=f(2+x)=f(x﹣2),即f(x+4)=f(x),即函数的周期是4.当x∈[﹣2,0]时,﹣x∈[0,2],此时f(x)=f(﹣x)=2﹣x﹣2,由g(x)=f(x)﹣log a(x+1)=0得f(x)=log a(x+1),(a>0,a≠1)作出函数f(x)的图象如图:①若a>1,当函数g(x)=log a(x+1),经过点A(2,2)时,两个图象有两个交点,此时g(2)=log a3=2,解得a=,当函数g(x)=log a(x+1),经过点B(6,2)时,两个图象有四个交点,此时g(6)=log a7=2,解得a=,此时要使两个函数有3个不同的零点,则,②若0<a<1,当函数g(x)=log a(x+1),经过点C(4,﹣1)时,两个图象有两个交点,此时g(4)=log a5=﹣1,解得a=,当函数g(x)=log a(x+1),经过点D(8,﹣1)时,两个图象有四个交点,此时g(6)=log a9=﹣1解得a=,此时要使两个函数有3个不同的零点,则,综上:实数a的取值范围是(,)∪(,),故选:A.二、填空題:本大题共4小题,每小题5分.13.(5分)已知函数,则=0.【解答】解:∵函数,∴>0且x≠0,解得:﹣1<x<0 或0<x<1.∴定义域为{x|﹣1<x<0 或0<x<1},∴==﹣f(x),∴函数是奇函数,∴==0.故答案为:014.(5分)设随机变量ξ服从正态分布N(2,9),若P(ξ>c+1)=P(ξ<c ﹣1),则c=2.【解答】解:∵N(2,32)⇒,,∴,解得c=2,故答案为:2.15.(5分)已知数列{a n}满足a1=100,a n+1﹣a n=2n,则的最小值19.【解答】解:a2﹣a1=2,a3﹣a2=4,…a n+1﹣a n=2n,这n个式子相加,就有a n+1=100+n(n+1),即a n=n(n﹣1)+100=n2﹣n+100,∴=n+﹣1≥2﹣1=19,当且仅当n=,即n=10时,取最小值19.故答案为:19.16.(5分)若三棱锥S﹣ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA⊥平面ABC,SA=2,AB=1,AC=2,∠BAC=60°,则球O的表面积为16π.【解答】解:如图,三棱锥S﹣ABC的所有顶点都在球O的球面上,∵SA⊥平面ABC,SA=2,AB=1,AC=2,∠BAC=60°,∴BC==,∴∠ABC=90°.∴△ABC截球O所得的圆O′的半径r=AC=1,∴球O的半径R==2,∴球O的表面积S=4πR2=16π.故答案为:16π.三、解答题:本大题共5小题,共70分.解答应写出说明文字,证明过程或演算步骤.17.(12分)在△ABC中,三个内角A、B、C的对边分别为a,b,c,若a(1+cos C)+c(1+cos A)=3b,(1)求证:a,b,c成等差数列;(2)若∠B=60°,b=4,求△ABC的面积.【解答】解:(1)∵a(1+cos C)+c(1+cos A)=3b,由正弦定理得,sin A(1+cos C)+sin C(1+cos A)=3sin B,即sin A+sin C+sin(A+C)=3sin B,∴sin A+sin C=2sin B,由正弦定理得,a+c=2b,则a,b,c成等差数列;(2)∵∠B=60°,b=4,∴由余弦定理b2=a2+c2﹣2ac cos B得4=a2+c2﹣2ac cos60°,即(a+c)2﹣3ac =16,又a+c=2b=8,解得,ac=16(或者解得a=c=4),=ac sin B=4.则S△ABC18.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=∠P AD=90°,侧面P AD⊥底面ABCD.若P A=AB=BC=AD.(Ⅰ)求证:CD⊥PC;(Ⅱ)求二面角A﹣PD﹣C的余弦值.【解答】(Ⅰ)证明:∵∠P AD=90°,∴P A⊥AD,又∵侧面P AD⊥底面ABCD,且侧面P AD∩底面ABCD=AD,∴P A⊥底面ABCD,又∵∠BAD=90°,∴AB、AD、AP两两垂直,分别以AB、AD、AP为x轴,y轴,z轴,建立如图所示的空间直角坐标系,设AD=2,则由题意得A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,1),∴,,∴=0,∴CD⊥PC.(Ⅱ)解:∵AB、AD、AP两两垂直,∴AB⊥平面P AD,∴是平面P AD的一个法向量,设平面PCD的法向量,∵,∴,取x=1,得到=(1,1,2),设二面角A﹣PD﹣C的大小为θ,由图形知θ为锐角,∴cosθ=|cos<>|=||=,∴二面角A﹣PD﹣C的余弦值为.19.(12分)某高中社团进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次是否开通“微博”的调查,若开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查分别得到如下统计表和如图所示各年龄段人数频率分布直方图请完成以下问题:(1)补全频率直方图,并求n,a,p的值(2)从[40,45)岁和[45,50)岁年龄段的“时尚族”中采用分层抽样法抽取18人参加网络时尚达人大赛,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁得人数为X,求X的分布列和数学期望E(X)【解答】解:(1)第二组的频率为1﹣(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以高为=0.06.频率直方图如下:第一组的人数为=200,频率为0.04×5=0.2,所以n==1000,所以第二组的人数为1000×0.3=300,p==0.65,第四组的频率为0.03×5=0.15,第四组的人数为1000×0.15=150,所以a=150×0.4=60.(2)因为[40,45)岁与[45,50)岁年龄段的“时尚族”的比值为60:30=2:1,所以采用分层抽样法抽取18人,[40,45)岁中有12人,[45,50)岁中有6人.随机变量X服从超几何分布.P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==所以随机变量X的分布列为∴数学期望E(X)=0×+1×+2×+3×=220.(12分)如图,焦距为2的椭圆E的两个顶点分别为A和B,且与=(,﹣1)共线.(Ⅰ)求椭圆E的标准方程;(Ⅱ)若直线y=kx+m与椭圆E有两个不同的交点P和Q,O为坐标原点,总使•<0,求实数m的取值范围.【解答】(Ⅰ)解:设椭圆C:=1(a>b>0),则∵A(a,0)、B(0,b),∴=(﹣a,b),∵与=(,﹣1)共线,∴a=b,∵焦距为2,∴c=1,∴a2﹣b2=1,∴a2=2,b2=1,∴椭圆E的标准方程;(Ⅱ)设P(x1,y1),Q(x2,y2),把直线方程y=kx+m代入椭圆方程,消去y可得(2k2+1)x2+4kmx+2m2﹣2=0,∴x1+x2=﹣,x1x2=,△=16k2m2﹣4×(2k2+1)(2m2﹣2)=16k2﹣8m2+8>0(*)∵•<0,∴x1x2+y1y2<0,∵y1y2=(kx1+m)(kx2+m)=,∴+<0,∴m2<,∴m2<且满足(*)故实数m的取值范围是(﹣,).21.(12分)已知函数f(x)=ln(x+a)﹣x2﹣x在x=0处取得极值.(Ⅰ)求实数a的值;(Ⅱ)若关于x的方程f(x)=﹣x+b在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;(Ⅲ)证明:对任意的正整数n,不等式2+++…+>ln(n+1)都成立.【解答】解:(Ⅰ)函数f(x)=ln(x+a)﹣x2﹣xf′(x)=﹣2x﹣1当x=0时,f(x)取得极值,∴f′(0)=0故,解得a=1,经检验a=1符合题意,则实数a的值为1;(Ⅱ)由a=1知f(x)=ln(x+1)﹣x2﹣x由f(x)=﹣x+b,得ln(x+1)﹣x2+x﹣b=0令φ(x)=ln(x+1)﹣x2+x﹣b,则f(x)=﹣x+b在区间[0,2]上恰有两个不同的实数根等价于φ(x)=0在区间[0,2]上恰有两个不同的实数根.φ′(x)=﹣2x+=,当x∈[0,1]时,φ′(x)>0,于是φ(x)在[0,1)上单调递增;当x∈(1,2]时,φ′(x)<0,于是φ(x)在(1,2]上单调递减,依题意有φ(0)=﹣b≤0,φ(1)=ln(1+1)﹣1+﹣b>0,φ(2)=ln(1+2)﹣4+3﹣b≤0解得,ln3﹣1≤b<ln2+,故实数b的取值范围为:[ln3﹣1,ln2+);(Ⅲ)f(x)=ln(x+1)﹣x2﹣x的定义域为{x|x>﹣1},由(1)知f(x)=,令f′(x)=0得,x=0或x=﹣(舍去),∴当﹣1<x<0时,f′(x)>0,f(x)单调递增;当x>0时,f′(x)<0,f(x)单调递减.∴f(0)为f(x)在(﹣1,+∞)上的最大值.∴f(x)≤f(0),故ln(x+1)﹣x2﹣x≤0(当且仅当x=0时,等号成立)对任意正整数n,取x=>0得,ln(+1)<+∴ln()<,故2+++…+>ln2+ln+ln+…+ln=ln(n+1).四、请从22、23、24三个小题中任选一题作答,并用2B铅笔在答题卡上将所选题目对应的题号方框涂黑.(选修4-1:几何证明选讲)22.(10分)如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过N点的切线交CA的延长线于P.(Ⅰ)求证:PM2=P A•PC;(Ⅱ)若⊙O的半径为2,OA=OM,求MN的长.【解答】(Ⅰ)证明:连接ON,因为PN切⊙O于N,∴∠ONP=90°,∴∠ONB+∠BNP=90°∵OB=ON,∴∠OBN=∠ONB因为OB⊥AC于O,∴∠OBN+∠BMO=90°,故∠BNP=∠BMO=∠PMN,PM=PN∴PM2=PN2=P A•PC(Ⅱ)∵OM=2,BO=2,BM=4∵BM•MN=CM•MA=(2+2)(2﹣2)(2﹣2)=8,∴MN=2选修4-4:坐标系与参数方程23.已知直线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极值为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:,(t是参数).(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,直线l的参数方程化为普通方程;(Ⅱ)若直线l与曲线C相交于A,B两点,且|AB|=,试求实数m的值.【解答】解:(Ⅰ)∵ρ=4cosθ,∴ρ2=4ρcosθ,化为直角坐标方程x2+y2=4x.由直线l的参数方程:,(t是参数),消去t可得x﹣y﹣m=0.(Ⅱ)由圆C的方程(x﹣2)2+y2=4可得圆心C(2,0),半径r=2.∴圆心C到直线l的距离d==.∵,|AB|=∴,化为|m﹣2|=1,解得m=1或3.选修4-5:不等式选讲24.已知函数f(x)=lg(|x+1|+|x﹣2|+a).(Ⅰ)当a=﹣5时,求函数f(x)的定义域;(Ⅱ)若函数f(x)的定义域为R,求实数a的取值范围.【解答】解:(Ⅰ)当a=﹣5时,要使函数有意义,则|x+1|+|x﹣2|﹣5>0,即|x+1|+|x ﹣2|>5,在同一坐标系中作出函数y=|x+1|+|x﹣2|与y=5的图象如图:则由图象可知不等式的解为x<﹣2或x>3,即函数f(x)的定义域为{x|x<﹣2或x>3}.(Ⅱ)∵函数f(x)的定义域为R,|x+1|+|x﹣2|+a>0恒成立,即|x+1|+|x﹣2|>﹣a恒成立,由图象可知|x+1|+|x﹣2|≥3,即﹣a<3,解得a>﹣3.。
2014年甘肃省高三第一次诊断考试理科数学(解析版)
甘肃省2014年高考数学一模试卷(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项符合题目要求的.1.(5分)已知集合{5}{20}A x Z x B x xA B =∈=≥⋂<,﹣,则等于( ) A .25(,) B .[25,) C .{}234,, D .{}345,,解析 A={x ∈Z||x|<5}={x ∈Z|﹣5<x <5}={﹣4,﹣3,﹣2,﹣1,0,1,2,3,4},B={x|x ﹣2≥0},∴A ∩B={2,3,4},故选:C .2.(5分)(2014•甘肃一模)复数21()1i i -+(i 是虚数单位)化简的结果是( ) A .1B .1-C .iD .i - 解析==()2=(﹣i )2=﹣1. 故选:B .3.(5分)某几何体的三视图如图所示,且该几何体的体积是32,则正视图中的x 的值是( )A .2B .92C .32D .3 解析 由三视图可知:原几何体是一个四棱锥,其中底面是一个上、下、高分别为1、2、2的直角梯形,一条长为x 的侧棱垂直于底面.则体积为=,解得x=.故选:C .4.(5分)从如图所示的正方形OABC 区域内任取一个点M x y (,),则点M 取自阴影部分的概率为( )A .12 B .13 C .14 D .16解析 可知此题求解的概率类型为关于面积的几何概型,由图可知基本事件空间所对应的几何度量S (Ω)=1,满足所投的点落在叶形图内部所对应的几何度量:S (A )==.所以P (A )=.故选:B .5.(5分)已知等差数列{}n a 的前n 项和为n S ,若4518a a ﹣,则8S =()A .72B .68C .54D .90解析 在等差数列{a n }中,∵a 4=18﹣a 5,∴a 4+a 5=18,则S 8=4(a 1+a 8)=4(a 4+a 5)=72故选:A6.(5分)阅读如图程序框图,输出的结果i 的值为( )A .5B .6C .7D .9解析 由程序框图可看出:S=1×23×25×…×22n+1=23+5+…+(2n+1)==, 由判断框的条件可知:当满足≥100时,应跳出循环结构,此时n 2+2n >6,解得n=3,∴i=2n+1=7.故应输出i 的值是7.故选:C .7.(5分)设lg lg 2a e b e c ===,(), )A .a b c >>B .c a b >>C .a c b >>D .c b a >>解析 ∵1<e <3<, ∴0<lge <1,∴lge >lge >(lge )2.∴a >c >b .故选:C .8.(5分)(2014•甘肃一模)已知点P x y (,)满足线性约束条件21x x y ≤⎧⎪⎨⎪-⎩y +x ≥≤1,点31M O (,),为坐标原点,则OM OP ∙的最大值为( )A .12B .11C .3D .1- 解析 设z=•,则z=3x+y ,即y=﹣3x+z ,作出不等式组对应的平面区域如图:平移直线y=﹣3x+z ,由图象可知当直线y=﹣3x+z 经过点A 时,直线y=﹣3x+z 的截距最大,此时z 最大,由,解得,即A (3,2),此时z=3x+y=3×3+2=11,故•的最大值为11,故选:B .9.(5分)若21()nx x -展开式中的所有二项式系数和为512,则该展开式中的常数项为( )A .84-B .84C .36-D .36 解析 展开式中所有二项式系数和为512,即2n =512,则n=9,T r+1=(﹣1)r C 9r x 18﹣3r 令18﹣3r=0,则r=6,所以该展开式中的常数项为84.故选:B .10.(5分)(2014•西藏一模)已知双曲线22221x y a b-= (0,0)a b >>的两条渐近线均和圆C :22650x y x ++=﹣相切,则该双曲线离心率等于( )A BC .32D 解析 双曲线﹣=1(a >0,b >0)的渐近线方程为y=±,即bx ±ay=0 圆C :x 2+y 2﹣6x+5=0化为标准方程(x ﹣3)2+y 2=4∴C (3,0),半径为2∵双曲线﹣=1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2﹣6x+5=0相切∴∴9b 2=4b 2+4a 2∴5b 2=4a 2∵b 2=c 2﹣a 2∴5(c 2﹣a 2)=4a 2∴9a 2=5c 2∴=∴双曲线离心率等于故选:A .11.(5分)定义在R 上的偶函数f x ()满足120f x f x f x +=≠()()﹣((),且在区间20132014(,)上单调递增,已知αβ,是锐角三角形的两个内角,则sin cos f f αβ()、()的大小关系是( ) A .sin cos f f αβ()<() B .sin cos f f αβ()>()C .sin cos f f αβ=()()D .以上情况均有可能 解析 ∵定义在R 上的偶函数f (x )满足f (x+1)f (x )=﹣2,∴f (x )===f (x+2),∴f (x )是周期为2的偶函数.∵函数f (x )在区间(2013,2014)上单调递增,故函数在(﹣1,0)上单调递增,在(0,1)上单调递减.∵α,β是锐角三角形的两个内角,∴α+β>,∴>α>﹣β>0,∴1>sin α>sin (﹣β)=cos β>0. 则f (sin α)<f (cos β),故选:A .12.(5分)(2014•甘肃一模)设f x ()是定义在R 上的函数,x R ∀∈,都有22f x f x =+(﹣)(),f x f x =(﹣)(),且当[02]x ∈,时,22x f x =()﹣,若函数log 10,1)g x f x a x a a =+≠()()﹣()(>在区间12014](﹣,内恰有三个不同零点,则实数a 的取值范围是( )A .11(,)(3,7)95B .1(0,)(7,)9+∞C .1(,1)(1,3)9D .11(,)(3,7)73解析 由f (2﹣x )=f (2+x ),得到函数f (x )关于x=2对称,由f (﹣x )=f (x )得函数f (x )是偶函数,且f (2﹣x )=f (2+x )=f (x ﹣2),即f (x+4)=f (x ),即函数的周期是4.当x ∈[﹣2,0]时,﹣x ∈[0,2],此时f (x )=f (﹣x )=2﹣x ﹣2,由g (x )=f (x )﹣log a (x+1)=0得f (x )=log a (x+1),(a >0,a ≠1)作出函数f (x )的图象如图:①若a >1,当函数g (x )=log a (x+1),经过点A (2,2)时,两个图象有两个交点,此时g (2)=log a 3=2,解得a=,当函数g (x )=log a (x+1),经过点B (6,2)时,两个图象有四个交点, 此时g (6)=log a 7=2,解得a=,此时要使两个函数有3个不同的零点,则, ②若0<a <1,当函数g (x )=log a (x+1),经过点C (4,﹣1)时,两个图象有两个交点, 此时g (4)=log a 5=﹣1,解得a=,当函数g (x )=log a (x+1),经过点D (8,﹣1)时,两个图象有四个交点, 此时g (6)=log a 9=﹣1解得a=,此时要使两个函数有3个不同的零点,则, 综上:实数a 的取值范围是(,)∪(,), 故选:A .二、填空題:本大题共4小题,每小题5分.13.(5分)已知函数211()log ()1x f x x x -=++,则11()()20142014f f +-= .解析 ∵函数, ∴>0且x ≠0,解得:﹣1<x <0 或 0<x <1.∴定义域为{x|﹣1<x <0 或 0<x <1},∴==﹣f (x ),∴函数是奇函数,∴==0. 故答案为:0 14.(5分)设随机变量ξ服从正态分布29N (,),若(1)(1)P c P c ξξ+=><﹣,则c = . 解析 ∵N (2,32)⇒, ,∴,解得c=2,故答案为:2.15.(5分)已知数列{}n a 满足110012n n a a a n =+=,﹣,则n a n的最小值 . 解析 a 2﹣a 1=2,a 3﹣a 2=4,…a n+1﹣a n =2n ,这n 个式子相加,就有a n+1=100+n (n+1),即a n =n (n ﹣1)+100=n 2﹣n+100,∴=n+﹣1≥2﹣1=19, 当且仅当n=,即n=10时,取最小值19.故答案为:19.16.(5分)若三棱锥SABC ﹣的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA =,12AB AC ==,,60BAC ︒∠=,则球O 的表面积为 .解析 如图,三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,∵SA ⊥平面ABC ,SA=2,AB=1,AC=2,∠BAC=60°, ∴BC==,∴∠ABC=90°.∴△ABC 截球O 所得的圆O ′的半径r=AC=1, ∴球O 的半径R==2, ∴球O 的表面积S=4πR 2=16π.故答案为:16π.三、解答题:本大题共5小题,共70分.解答应写出说明文字,证明过程或演算步骤.17.(12分)在ABC 中,三个内角A B C 、、的对边分别为a b c ,,,若1cos 1cos 3a C c A b +++=()(), (1)求证:a b c ,,成等差数列;(2)若604B b ∠=︒=,,求ABC 的面积.解析 (1)∵a (1+cosC )+c (1+cosA )=3b ,由正弦定理得,sinA (1+cosC )+sinC (1+cosA )=3sinB ,即sinA+sinC+sin (A+C )=3sinB ,∴sinA+sinC=2sinB ,由正弦定理得,a+c=2b ,则a ,b ,c 成等差数列;(2)∵∠B=60°,b=4,∴由余弦定理b 2=a 2+c 2﹣2accosB 得4=a 2+c 2﹣2accos60°,即(a+c )2﹣3ac=16, 又a+c=2b=8,解得,ac=16(或者解得a=c=4),则S △ABC =acsinB=4.18.(12分)如图,在四棱锥PABCD ﹣中,底面ABCD 为直角梯形,且90AD BC ABC PAD ∠=∠=︒,,侧面PAD ABCD ⊥底面.若12PA AB BC AD ===. (Ⅰ)求证:CD PC ⊥; (Ⅱ)求二面角APD C ﹣﹣的余弦值.解析(Ⅰ)证明:∵∠PAD=90°,∴PA⊥AD,又∵侧面PAD⊥底面ABCD,且侧面PAD∩底面ABCD=AD,∴PA⊥底面ABCD,又∵∠BAD=90°,∴AB、AD、AP两两垂直,分别以AB、AD、AP为x轴,y轴,z轴,建立如图所示的空间直角坐标系,设AD=2,则由题意得A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,1),∴,,∴=0,∴CD⊥PC.(Ⅱ)解:∵AB、AD、AP两两垂直,∴AB⊥平面PAD,∴是平面PAD的一个法向量,设平面PCD的法向量,∵,∴,取x=1,得到=(1,1,2),设二面角A﹣PD﹣C的大小为θ,由图形知θ为锐角,∴cosθ=|cos<>|=||=,∴二面角A ﹣PD ﹣C 的余弦值为.19.(12分)某高中社团进行社会实践,对[2555],岁的人群随机抽取n 人进行了一次是否开通“微博”的调查,若开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查分别得到如下统计表和如图所示各年龄段人数频率分布直方图请完成以下问题:(1)补全频率直方图,并求n a p ,,的值(2)从[4045,)岁和[4550,)岁年龄段的“时尚族”中采用分层抽样法抽取18人参加网络时尚达人大赛,其中选取3人作为领队,记选取的3名领队中年龄在[4045,)岁得人数为X ,求X 的分布列和数学期望E X ()解析 (1)第二组的频率为1﹣(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以高为=0.06.频率直方图如下:第一组的人数为=200,频率为0.04×5=0.2,所以n==1000,所以第二组的人数为1000×0.3=300,p==0.65,第四组的频率为0.03×5=0.15,第四组的人数为1000×0.15=150,所以a=150×0.4=60.(2)因为[40,45)岁与[45,50)岁年龄段的“时尚族”的比值为60:30=2:1,所以采用分层抽样法抽取18人,[40,45)岁中有12人,[45,50)岁中有6人.随机变量X服从超几何分布.P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==所以随机变量X的分布列为∴数学期望E(X)=0×+1×+2×+3×=2﹣共线.20.(12分)如图,焦距为2的椭圆E的两个顶点分别为A和B,且AB与n=1)(Ⅰ)求椭圆E 的标准方程;(Ⅱ)若直线y kx m =+与椭圆E 有两个不同的交点P 和Q ,O 为坐标原点,总使0OP OQ ∙<,求实数m 的取值范围.解析 (Ⅰ)解:设椭圆C :=1(a >b >0),则∵A (a ,0)、B (0,b ), ∴=(﹣a ,b ), ∵与=(,﹣1)共线,∴a=b ,∵焦距为2, ∴c=1, ∴a 2﹣b 2=1, ∴a 2=2,b 2=1, ∴椭圆E 的标准方程;(Ⅱ)设P (x 1,y 1),Q (x 2,y 2),把直线方程y=kx+m 代入椭圆方程,消去y 可得(2k 2+1)x 2+4kmx+2m 2﹣2=0, ∴x 1+x 2=﹣,x 1x 2=,△=16k 2m 2﹣4×(2k 2+1)(2m 2﹣2)=16k 2﹣8m 2+8>0(*) ∵•<0,∴x 1x 2+y 1y 2<0,∵y 1y 2=(kx 1+m )(kx 2+m )=,∴+<0,∴m 2<,∴m 2<且满足(*) 故实数m 的取值范围是(﹣,).21.(12分)已知函数2ln f x x a x x =+()()﹣﹣在0x =处取得极值. (Ⅰ)求实数a 的值;(Ⅱ)若关于x 的方程52f x x b =+()﹣在区间[]02,上恰有两个不同的实数根,求实数b 的取值范围;(Ⅲ)证明:对任意的正整数n ,不等式23412ln(1)49n n n++++⋯++>都成立. 解析 (Ⅰ)函数f (x )=ln (x+a )﹣x 2﹣x f ′(x )=﹣2x ﹣1当x=0时,f (x )取得极值,∴f ′(0)=0 故,解得a=1,经检验a=1符合题意, 则实数a 的值为1;(Ⅱ)由a=1知f (x )=ln (x+1)﹣x 2﹣x 由f (x )=﹣x+b ,得ln (x+1)﹣x 2+x ﹣b=0 令φ(x )=ln (x+1)﹣x 2+x ﹣b ,则f (x )=﹣x+b 在区间[0,2]上恰有两个不同的实数根等价于φ(x )=0在区间[0,2]上恰有两个不同的实数根. φ′(x )=﹣2x+=,当x ∈[0,1]时,φ′(x )>0,于是φ(x )在[0,1)上单调递增;当x∈(1,2]时,φ′(x)<0,于是φ(x)在(1,2]上单调递减,依题意有φ(0)=﹣b≤0,φ(1)=ln(1+1)﹣1+﹣b>0,φ(2)=ln(1+2)﹣4+3﹣b≤0解得,ln3﹣1≤b<ln2+,故实数b的取值范围为:[ln3﹣1,ln2+);(Ⅲ)f(x)=ln(x+1)﹣x2﹣x的定义域为{x|x>﹣1},由(1)知f(x)=,令f′(x)=0得,x=0或x=﹣(舍去),∴当﹣1<x<0时,f′(x)>0,f(x)单调递增;当x>0时,f′(x)<0,f(x)单调递减.∴f(0)为f(x)在(﹣1,+∞)上的最大值.∴f(x)≤f(0),故ln(x+1)﹣x2﹣x≤0(当且仅当x=0时,等号成立)对任意正整数n,取x=>0得,ln(+1)<+∴ln()<,故2+++…+>ln2+ln+ln+…+ln=ln(n+1).四、请从22、23、24三个小题中任选一题作答,并用2B铅笔在答题卡上将所选题目对应的题号方框涂黑.(选修4-1:几何证明选讲)22.(10分)如图,O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交O于N,过N点的切线交CA的延长线于P.(Ⅰ)求证:2•=;PM PA PC(Ⅱ)若O的半径为OA=,求MN的长.解析 (Ⅰ)证明:连接ON ,因为PN 切⊙O 于N , ∴∠ONP=90°, ∴∠ONB+∠BNP=90° ∵OB=ON , ∴∠OBN=∠ONB 因为OB ⊥AC 于O , ∴∠OBN+∠BMO=90°,故∠BNP=∠BMO=∠PMN ,PM=PN ∴PM 2=PN 2=PA •PC (Ⅱ)∵OM=2,BO=2,BM=4 ∵BM •MN=CM •MA=(2+2)(2﹣2)(2﹣2)=8,∴MN=2选修4-4:坐标系与参数方程23.已知直线C 的极坐标方程是4cos ρθ=.以极点为平面直角坐标系的原点,极值为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是:x m ty t=+⎧⎨=⎩,(t 是参数).(Ⅰ)将曲线C 的极坐标方程化为直角坐标方程,直线l 的参数方程化为普通方程;(Ⅱ)若直线l 与曲线C 相交于,A B 两点,且|||AB ,试求实数m 的值. 解析 (Ⅰ)∵ρ=4cos θ,∴ρ2=4ρcos θ,化为直角坐标方程x 2+y 2=4x . 由直线l 的参数方程:,(t 是参数),消去t 可得x ﹣y ﹣m=0.(Ⅱ)由圆C 的方程(x ﹣2)2+y 2=4可得圆心C (2,0),半径r=2. ∴圆心C 到直线l 的距离d==.∵,|AB|=∴,化为|m ﹣2|=1,解得m=1或3.选修4-5:不等式选讲24.已知函数()lg(12)f x x x a =+++﹣.(Ⅰ)当5a =﹣时,求函数()f x 的定义域; (Ⅱ)若函数()f x 的定义域为R ,求实数a 的取值范围.解析 (Ⅰ)当a=﹣5时,要使函数有意义,则|x+1|+|x ﹣2|﹣5>0,即|x+1|+|x ﹣2|>5, 在同一坐标系中作出函数y=|x+1|+|x ﹣2|与y=5的图象如图:则由图象可知不等式的解为x <﹣2或x >3,即函数f(x)的定义域为{x|x<﹣2或x>3}.(Ⅱ)∵函数f(x)的定义域为R,|x+1|+|x﹣2|+a>0恒成立,即|x+1|+|x﹣2|>﹣a恒成立,由图象可知|x+1|+|x﹣2|≥3,即﹣a<3,解得a>﹣3.。
【解析版】甘肃省武威市凉州区2014届高三下学期第一次诊断考试数学(文)试题
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U =R ,集合{|21}x M x =>,集合2{|log 1}N x x =>,则下列结论中成立的是( ) A .M N M = B .M N N =C .()U M C N =∅D .()U C M N =∅【答案】D【解析】因为全集U =R ,集合{|21}x M x =>{}|0x x =>,集合2{|log 1}N x x =>{}|2x x =>,则下列结论中成立的是()U C M N =∅ 。
2.已知i 为虚数单位,则1iiz +=在复平面内对应的点位于 ( )A. 第一象限B.第二象限C.第三象限D.第四象限 【答案】D 【解析】因为1i i z +=1i =-,所以1iiz +=在复平面内对应的点位于第四象限。
3.已知命题x x R x p lg 2,:>-∈∃,命题0,:2>∈∀x R x q ,则 ( )A.命题q p ∨是假命题B.命题q p ∧是真命题C.命题)(q p ⌝∧是真命题D.命题)(q p ⌝∨是假命题 【答案】C【解析】命题x x R x p lg 2,:>-∈∃是真命题,例如x=10时成立;命题0,:2>∈∀x R x q 是假命题,例如x=0时就不成立,所以命题)(q p ⌝∧是真命题,因此选C 。
4.已知sin 3cos 53cos sin αααα+=-,则2sin sin cos ααα-的值是 ( )A .25B .52- C. 2- D .2【答案】A 【解析】因为sin 3cos 53cos sin αααα+=-,所以tan 35,tan 23tan ααα+==-所以,所以222222sin sin cos tan tan 2sin sin cos sin cos tan 15ααααααααααα---===++。
高三数学(理科)试卷及答案
俯视图侧视图正视图2014年1月甘肃省河西五地市普通高中高三第一次联考数学试卷(理科)命题学校:嘉峪关市酒钢三中 命题人:一、选择题:(每小题5分,共60分) 1.下列推断错误的是( )A. 命题“若2320,x x -+=则1x = ”的逆否命题为“若1x ≠则2320x x -+≠”B. 命题p :存在0x R ∈,使得20010x x ++<,则非p :任意x R ∈,都有210x x ++≥ C. 若p 且q 为假命题,则p ,q 均为假命题 D. “1x <”是“2320x x -+>”的充分不必要条件 2. 设i 为虚数单位,则复数ii43-等于( ) A .i 34+B .4-3iC .-4+3iD .-4-3i3.已知(3,2),(1,0)a b =-=-,向量2a b a b λ+-与垂直,则实数λ的值为( )A .17-B.17C.16- D.164.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为( )A.5. 已知F 是双曲线)0,0(12222>>=+b a by a x 的左焦点,E 是该双曲线的右顶点,过点F 且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围为( )A.),1(+∞B.(1,2)C. )21,1(+D. )21,2(+6. 如图,正方体1111ABCD A BC D -的棱长为1,线段11B D 上有两个动点E ,F ,且12EF =,则下列结论中错误的是( ) A.AC BE ⊥ B.//EF ABCD 平面C.三棱锥A BEF -的体积为定值D.AEF BEF ∆∆的面积与的面积相等7.已知等差数列{}n a 的前n 项和为n S ,又知(ln )'ln 1x x x =+,且101ln e S xdx =⎰,2017S =,则30S 为( )A.33B.46C.48D.508. 已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( )A .2214536x y +=B .2213627x y +=C .2212718x y +=D .221189x y +=9.若不等式2229t t a t t+≤≤+在t ∈(0,2]上恒成立,则a 的取值范围是( ) A.⎣⎢⎡⎦⎥⎤16,1 B.⎣⎢⎡⎦⎥⎤213,1 C.⎣⎢⎡⎦⎥⎤16,413 D.⎣⎢⎡⎦⎥⎤16,22 10、一只蚂蚁在三边长分别为3,4,5的三角形内爬行,则此蚂蚁距离三角形三个顶点的距离均超过1的概率为( )A .16π-B.112π-C.6πD.12π11.关于x 的方程2(1)10(0,)x a x a b a a b +++++=≠∈R 、的两实根为12,x x , 若12012x x <<<<,则ba的取值范围是( ) A .4(2,)5--B .34(,)25--C .52(,)43--D .51(,)42--12. 已知函数⎩⎨⎧≥+-<-=,0,46,0|,)lg(|)(3x x x x x x f 若关于x 的函数1)()(2+-=x bf x f y 有8个不同的零点, 则实数b 的取值范围是( )A .),2(+∞B .),2[+∞C .)417,2( D .]417,2( 二、填空题(每小题5分,共20分)13.若n展开式中二项式系数之和为16,则展开式常数项为 .14.一束光线从点A(-1, 1)出发经x 轴反射,到达圆C :222)(3)1x y -+-=(上一点的最短路程是 . 15.如图:程序框图中,若输入6,4n m ==,那么输出的p = .16.已知()f x 是定义在R 上不恒为零的函数,对于任意的x y R ∈、 ,都有()()()f xy xf y yf x =+成立.数列{}n a 满足*(2)(n )n n a f N =∈,且12a =.则数列的通项公式为n a = . 二、解答题(6道大题,共70分)17.已知等差数列{}n a 满足{}3577,26,n a a a a =+=的前n 项和为n S . (1)求n a 及n S ;(2)令*21()1n n b n N a =∈-,求数列{}n b 的前n 项和n T . 18.某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单(1)该同学为了求出y 关于x 的线性回归方程ˆˆybx a =+,根据表中数据已经正确计算出ˆ0.6b=,试求出ˆa 的值,并估计该厂6月份生产的甲胶囊产量数; (2)若某药店现有该制药厂今年二月份生产的甲胶囊4盒和三月份生产的甲胶囊5盒,小红同学从中随机购买了3盒甲胶囊,后经了解发现该制药厂今年二月份生产的所有甲胶囊均存在质量问题.记小红同学所购买的3盒甲胶囊中存在质量问题的盒数为ξ,求ξ的分布列和数学期望. 19.已知函数2()2cos cos()23xf x x ωπω=++(其中)0>ω的最小正周期为π.(1)求ω的值,并求函数)(x f 的单调递减区间;(2)在锐角ABC ∆中,c b a ,,分别是角C B A ,,的对边,若,3,21)(=-=c A fABC ∆的面积为36,求a .20.如图,在长方体1111ABCD A B C D -,中,11,2AD AA AB ===,点E 在棱AB 上移动.(1)证明:11D E A D ⊥;(2)当E 为AB 的中点时,求点E 到面1ACD 的距离; (3)AE 等于何值时,二面角1D EC D --的大小为4π.21已知椭圆1C 的方程为1422=+y x ,双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点. (1)求双曲线2C 的方程;(2)若直线2:+=kx y l 与椭圆1C 及双曲线2C 都恒有两个不同的交点,且l 与2C 的两个交点为A 和B 满足6<⋅(其中O 为原点),求k 的取值范围. 22.已知函数2()2ln ,f x x x =-+ 函数()f x 与()ag x x x=+有相同极值点. (1)求函数()f x 的最大值; (2) 求实数a 的值;(3)若∀x 1,x 2∈⎣⎢⎡⎦⎥⎤1e ,3,不等式12()()1f x g x k --≤1恒成立,求实数k 的取值范围.高三第一次联考数学试卷(理科) 参考答案一、选择题:(每小题5分,共60分)1.C 2. D 3.A 4.B. 5. B 6. D 7.C 8. D 9.B 10.B 11.D. 12. D二、填空题(每小题5分,共20分)13.24 14.4 15.60 16.n ·2n二、解答题(6道大题,共70分)17.解:(1)设等差数列}{n a 的首项为1a ,公差为d , 由26,7753=+=a a a ,解得2,31==d a . 由于2)(,)1(11n n n a a n S d n a a +=-+=,所以n n S n a n n 2,122+=+=. (2)因为12+=n a n ,所以)1(412+=-n n a n ,因此)111(41)1(41+-=+=n n n n b n .故)1(4)111(41)1113121211(4121+=+-=--++-+-=+++=n nn n n b b b T n n ,所以数列}{n b 的前n 项和=n T )1(4+n n.18.解:(1)11(12345)3,(44566)555x y =++++==++++=,因线性回归方程ˆ=+ybx a 过点(,)x y ,∴50.66 3.2a y bx =-=-⨯=, ∴6月份的生产甲胶囊的产量数:ˆ0.66 3.2 6.8y=⨯+= (2)0,1,2,3,ξ=31254533991054010(0),(1),84428421C C C P P C C ξξ======== 213454339930541(2),(3).84148421C C C P P C C ξξ========5105140123 422114213E ξ∴=⨯+⨯+⨯+⨯=19.解析:(1)由已知得213()2cos cos()1cos cos 1cos 123223xf x x x x x x x x ωππωωωωωωω⎛⎫=++=++=+=- ⎪⎝⎭,于是22,ωππω==.()f x ∴的单调递减区间为()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦.20.常规方法(略)向量法:以D 为坐标原点,直线1,,DA DC DD 分别为,,x y z 轴,建立空间直角坐标系,设AE x =,则11(1,0,1),(0,0,1),(1,,0),(1,0,0),(0,2,0)A D E x A C(1)1111,(1,0,1),(1,,1)0,.DA D E x DA D E =-=⊥因为所以 (2)因为E 为AB 的中点,则(1,1,0)E ,从而1(1,1,1),(1,2,0)D E A C =-=-, 1(1,0,1)AD =-,设平面1ACD 的法向量为(,,)n a b c =,则10,0,n AC n AD ⎧⋅=⎪⎨⋅=⎪⎩也即200a b a c -+=⎧⎨-+=⎩,得2a ba c=⎧⎨=⎩,从而(2,1,2)n =,所以点E 到平面1ACD 的距离为1||2121.33||D E n h n ⋅+-=== (3)设平面1D EC 的法向量(,,)n a b c =,∴11(1,2,0),(0,2,1),(0,0,1),CE x D C DD =-=-=由10,20(2)0.0,n D C b c a b x n CE ⎧⋅=-=⎧⎪⇒⎨⎨+-=⋅=⎩⎪⎩ 令1,2,2b c a x =∴==-,∴(2,1,2).n x=- 依题意11||2cos 4||||nDD n DD π⋅===⋅∴12x =(不合,舍去),22x =∴2AE =1D EC D --的大小为4π. 21解:(1)设双曲线C 2的方程为12222=-by a x ,则.1,31422222==+=-=b c b a a 得再由故C 2的方程为.1322=-y x (2)将.0428)41(1422222=+++=++=kx x k y x kx y 得代入由直线l 与椭圆C 1恒有两个不同的交点得,0)14(16)41(16)28(22221>-=+-=∆k k k 即 .412>k ①0926)31(1322222=---=-+=kx x k y x kx y 得代入将.由直线l 与双曲线C 2恒有两个不同的交点A ,B 得.131.0)1(36)31(36)26(,0312222222<≠⎪⎩⎪⎨⎧>-=-+-=∆≠-k k k k k k 且即②)2)(2(,66319,3126),,(),,(22+++=+<+<⋅--=⋅-=+B A B A B A B A B A B A BA B A B B A A kx kx x x y y x x y y x x k x x k k x x y x B y x A 而得由则设222229(1)()2(1)21337.31A B A B k x x x x k k k k -=+++=+⋅-+=-.0131315,613732222>--<-+k k k k 即于是解此不等式得.31151322<>k k 或 ③ 由①、②、③得.11513314122<<<<k k 或 故k 的取值范围为)1,1513()33,21()21,33()1513,1( ----22.解 (1)f ′(x )=-2x +2x=-2(1)(1)x x x-+ (x >0),由'()00f x x ⎧>⎨>⎩得0<x <1;由'()00f x x ⎧<⎨>⎩得x >1. ∴f (x )在(0,1)上为增函数,在(1,+∞)上为减函数.∴函数f (x )的最大值为f (1)=-1.(2)∵g (x )=x +a x ,∴g ′(x )=1-a x2.由(1)知,x =1是函数f (x )的极值点.又∵函数f (x )与g (x )=x +a x有相同极值点, ∴x =1是函数g (x )的极值点.∴g ′(1)=1-a =0,解得a =1. 经检验,当a =1时,函数g (x )取到极小值,符合题意 (3)∵f (1e )=-1e 2-2,f (1)=-1,f (3)=-9+2ln3,∵-9+2ln3<-1e 2-2<-1,即f (3)<f (1e)<f (1),∴∀x 1∈⎝ ⎛⎭⎪⎫1e ,3, f (x 1)min =f (3)=-9+2ln3,f (x 1)max =f (1)=-1. 由①知g (x )=x +1x ,∴g ′(x )=1-1x2.故g (x )在⎣⎢⎡⎭⎪⎫1e ,1时,g ′(x )<0;当x ∈(1,3]时,g ′(x )>0. 故g (x )在⎣⎢⎡⎭⎪⎫1e ,1上为减函数,在(1,3]上为增函数. ∵g (1e )=e +1e ,g (1)=2,g (3)=3+13=103,而2<e +1e <103,∴g (1)<g (1e )<g (3).∴∀x 2∈⎣⎢⎡⎦⎥⎤1e ,e ,g (x 2)min =g (1)=2,g (x 2)max =g (3)=103.当k -1>0,即k >1时,对于∀x 1,x 2∈⎣⎢⎡⎦⎥⎤1e ,e ,不等式12()()1f xg x k --≤1恒成立⇔k -1≥[f (x 1)-g (x 2)]max ⇔k ≥[f (x 1)-g (x 2)]max +1.∵f (x 1)-g (x 2)≤f (1)-g (1)=-1-2=-3,∴k ≥-3+1=-2,又∵k >1,∴k >1.当k -1<0,即k <1时,对于∀x 1,x 2∈⎣⎢⎡⎦⎥⎤1e ,e ,不等式12()()1f xg x k --≤1恒成立 ⇔k -1≤[f (x 1)-g (x 2)]min ⇔k ≤[f (x 1)-g (x 2)]min +1. ∵f (x 1)-g (x 2)≥f (3)-g (3)=-9+2ln3-103=-373+2ln3,∴k ≤-343+2ln3.又∵k <1,∴k ≤-343+2ln3.综上,所求的实数k 的取值范围为⎝⎛⎦⎤-∞,-343+2ln3∪(1,+∞).。
甘肃省高三数学第一次诊断考试试题 理 新人教A版
甘肃省第一次高考诊断测试 数学(理)试题注意事项:1.本试卷分第1卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2.回答第1卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回. 第Ⅰ卷 (选择题,共60分)一、选择题:本大题共12小题.每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.i 是虚数单位,复数231i i -⎛⎫= ⎪+⎝⎭A .-3-4iB .-3 +4iC .3-4iD .3+4i2.设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)= A .3 B .-1 C .1 D .-3 3.某程序框图如图所示,若输出的S =57,则判断框内为 A .k>4? B .k>5? C .k>6? D .k>7? 4.设sin (4πθ+)=13,sin2θ= A .79-B .19-D .19D .795.将5本不同的书全发给4名同学,每名同学至少有一本书的概率是A .1564B .15128C .24125D .481256.某几何体的三视图如图所示,则它的体积是A .23πB .83π-C .8-23πD .82π-7.(2x )8展开式中不含..x 4项的系数的和为A .-1B .0C .1D .28.已知二次函数y= f (x )的图象如图所示,则它与x 轴所围图形的面积为A .25π B .43C .32D .2π 9.已知点F 是双曲线222x y a b-=1(a>0,b>0)的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A ,B 两点.若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是 A .(1,+∞)B .(1,2)C .(2)D .(2)10.定义平面向量之间的一种运算“⊙”如下:对任意的a=(m ,n ),b=(p ,q ),令a⊙b= mq-np ,下面说法错误的是A .若a 与b 共线,则a⊙b =0B .a⊙b =b⊙aC .对任意的λ∈R ,有(λa )⊙b =λ(a⊙b)D .(a⊙b)2+(a·b)2= |a|2|b|211.已知函数f (x )=sin (2x+ϕ),其中ϕ为实数,若f (x )≤()6f π对x∈R 恒成立,且()()2f f ππ>,则f (x )的单调递增区间是A .,()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ B .,()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦C .2,()63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D .,()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦12.已知函数f (x )=|1|,010,16,10.2gx x x x <≤⎧⎪⎨-+>⎪⎩若a ,b ,c 互不相等,f (a )=f (b )=f (c ),则abc 的取值范围是A . (1,10)B . (5,6)C . (10,12)D . (20,24)第Ⅱ卷 (非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答,第22题~第24题为选考题,考生根据要求做答。
【解析】甘肃省武威市凉州区2014届高三下学期第一次诊断考试数学(理)试题
【解析】甘肃省武威市凉州区2014届高三下学期第一次诊断考试数学(理)试题一.选择题(本大题共12小题,每小题5分,共60分。
每题只有一个正确答案,将正确答案的序号涂在答题卡上.)1.若非空集合A={x|2135a x a +≤≤-},B={x|3≤x ≤22},则能使A ⊆B,成立的实数a 的集合是A.{a|6≤a ≤9} B .{a|1≤a ≤9} C .{a|a ≤9} D .∅【答案】A【 解析】因为非空集合A={x|2135a x a +≤≤-},B={x|3≤x ≤22},则能使A ⊆B,所以21353213522a a a a +≤-⎧⎪≤+⎨⎪-≤⎩,解得69a ≤≤,所以实数a 的集合是{a|6≤a ≤9}。
2.设1z i =+(i 是虚数单位),则22z z+=A .1i --B .1i +C .1i -D .1i -+【答案】B【 解析】因为1z i =+(i 是虚数单位),所以22z z +=()2211211i i i i i++=-+=++. 3.等比数列}{n a 的前n 项和为n S ,6,2105==S S ,则=++++2019181716a a a a a A .54 B .48C .32D .16【答案】D【 解析】因为数列}{n a 为等比数列,所以510515102015,,,S S S S S S S ---成等比数列,又5105152,4,8,16S S S S S S S =-=-=-=所以,即=++++2019181716a a a a a 16.4.已知:b a ,均为正数,241=+ba ,则使cb a ≥+恒成立的c 的取值范围是9.,2A ⎛⎤-∞ ⎥⎝⎦ B .(]1,0 C .(]9,∞- D .(]8,∞-【答案】A 【解析】因为b a ,均为正数,241=+ba ,所以()1141449552222b a a a ba b a b a b a b ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当43,,32b a a b a b ===即时等号成立,所以使c b a ≥+恒成立的c 的取值范围是9,2⎛⎤-∞ ⎥⎝⎦。
甘肃省武威市第六中学高三下学期第一次诊断考试考试数学(理)---精校Word版含答案
武威六中高三年级第一次诊断考试数学试卷(理)一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知M ={x |x >1},N ={x |x 2-2x -8≤0},则N M = ( )A. [-4,2)B. (1,4]C. (1,+∞)D. (4,+∞)2.设i 是虚数单位,z 表示复数z 的共轭复数.若12z i =-,则复数z i z +⋅在复平面内对应的点位于 ( ) A .第一象限B .第二象限C .第三象限D .第四象限3. 下列命题正确的是 ( )A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行4.已知等差数列{}n a 满足:,21=a 且521,,a a a 成等比数列,则数列{}n a 的前n 项和为( )A.n 2B.22nC.222n n 或D.242-n n 或 5.将甲、乙两个篮球队10场比赛的得分数据整理成如图所示的茎叶图,由图可知:( )A. 甲队得分的众数是3B. 甲、乙两队得分在分数段频率相等C. 甲、乙两队得分的极差相等D. 乙队得分的中位数是38.5 6. 已知函数f (x )=cos (2x+),g (x )=sin (2x+),将f (x )的图象经过下列哪种以与g (x )的图象重合 ( )A . 向左平移B . 向右平移C . 向左平移D . 向右平移7. 一个三棱锥的正视图和侧视图如图所示(均为真角三角形),则该三棱锥的体积为( )A. 4B. 8C. 16D. 24 8. 执行右边的程序框图,若输出511256S =,则输入=p ( ) A .6 B .7 C .8 D .99. 已知双曲线221x y -=,1F 、2F 为左右焦点,点P 为双曲线上一点,若123F PF π∠=,则三角形12F PF 的面积为( )A .错误!未找到引用源。
凉州区高三数学试卷及答案
一、选择题(每小题5分,共50分)1. 已知函数f(x) = 2x - 3,那么f(2)的值为:A. 1B. 3C. 5D. 72. 下列各式中,能表示复数z=a+bi(a,b∈R)的是:A. z^2 = a^2 + b^2B. z + z = 2a + 2biC. z - z = 2a + 2biD. z z = a^2 - b^23. 已知数列{an}的前n项和为Sn,若an = 3n - 2,则S5的值为:A. 45B. 50C. 55D. 604. 已知向量a = (2, 3),向量b = (-1, 2),那么向量a + b的坐标为:A. (1, 5)B. (3, 1)C. (1, 1)D. (5, 3)5. 已知函数y = x^2 - 4x + 4,其图像的对称轴为:A. x = 1B. x = 2C. x = 3D. x = 46. 在三角形ABC中,∠A = 60°,∠B = 45°,那么∠C的度数为:A. 75°B. 80°C. 85°D. 90°7. 已知函数f(x) = log2(x - 1),其定义域为:A. (1, +∞)B. (0, +∞)C. (1, 2]D. [1, +∞)8. 下列不等式中,正确的是:A. |x| > 0B. |x| ≤ 0C. x^2 > 0D. x^2 ≤ 09. 已知等差数列{an}的首项为a1,公差为d,若a1 + a4 = 10,a1 + a7 = 20,则数列的通项公式为:A. an = 2n - 3B. an = 3n - 2C. an = 2n + 3D. an = 3n + 210. 已知函数y = e^x + e^(-x),那么y的最小值为:A. 2B. eC. e^2D. e^(-2)二、填空题(每小题5分,共50分)11. 若复数z = a + bi(a,b∈R),则|z| = _______。
甘肃省武威第十八中学高三上学期第一次诊断考试数学试题Word版含答案
一、选择题(每小题5分,共60分)1.设集合{}|A x y ==, {}|1 3 B x x =≤≤,则( ) A. A B = B. A B ⊇ C. A B ⊆ D. A B φ⋂= 2.已知,a R ∈则“01aa ≤-”是“指数函数x y a =在R 上为减函数”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件3.已知函数()2225y x a x =+-+在区间()4,+∞上是增函数,则a 的取值范围是 ( )A. 2a ≤-B. 2a ≥-C. 6a ≤-D. 6a ≥-4.函数()()ln 15xf x =-的定义域是( )A. (),0-∞B. ()0,1C. (),1-∞D. ()0,+∞ 5.若()cos f x x x =,则函数()f x 的导函数()f x '等于( ) A. 1sin x - B. sin x x - C. sin cos x x x - D. cos sin x x x -6.在ABC ∆中,内角,,A B C 的对边分别为,,a b c , 3,2,60a b C ===︒,则边c = ( )2 7.将函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移6π个单位,所得的图象所对应的函数解析式是( )A. sin2y x =B. cos2y x =C. 2sin 23y x π⎛⎫=+⎪⎝⎭ D. sin 26y x π⎛⎫=- ⎪⎝⎭8.在等差数列{}n a 中, 3412a a +=,公差2d =,则9a =( ) A. 14 B. 15 C. 16 D. 179.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于( )cm 3A. 243π+B. 342π+C. 263π+D. 362π+10.若方程220x y x y m +-++=表示圆,则实数m 的取值范围是( )A. 12m <B. 0m <C. 12m >D. 12m ≤ 11.某算法的程序框图如图所示,若输出的12y =,则输入的x 可能为( )A. -1B. 1C. 1或5D. -1或112.已知()f x 是定义R 在上的偶函数,且()()1f x f x +=-,若()f x 在[]1,0-上单调递减,则()f x 在[]1,3上是 ( ) A. 增函数 B. 减函数 C. 先增后减的函数 D. 先减后增的函数 二、填空题(每小题5分,共20分)13.对于命题2:,10P x R x x ∀∈++>,则P 的否定是__________.14.已知函数2(31)32f x x x +=++,则(4)f =________. 15.已知()2,1a =, (),1b m =-,若a b ,则m =__________.16.直线21x t y t =+⎧⎨=--⎩(t 为参数)与曲线33x cos y sin αα=⎧⎨=⎩(α为参数)的交点个数为__________.三、简答题题(17题10分,其余各题12分,共70分)17.设集合{|12},A x x =-<<{|2123}B x a x a =-<<+.若A B ⊆,求a 的取值范围; 18.已知:||3P x a -< (a 为常数);:q()lg 6x -有意义.若p 是q 成立的充分不必要条件,求实数a 的取值范围.19.已知二次函数2()(0)f x ax bx c a =++≠满足(1)()2f x f x x +=+且(0)1f =. (Ⅰ)求()f x 的解析式;(Ⅱ)当[1,1]x ∈-时,不等式:()2f x x m >+恒成立,求实数m 的范围. 20.已知函数32()391()f x x x x x R =--+∈. (1)求函数()f x 的单调区间.(2)若()210f x a -+≥对[2,4]x ∀∈-恒成立,求实数a 的取值范围.21.已知曲线1C 的参数方程为1cos 1sin x y θθ=+⎧⎨=+⎩(为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为1ρ=.(1)把1C 的参数方程式化为普通方程,2C 的极坐标方程式化为直角坐标方程; (2)求1C 与2C 交点的极坐标(,)ρθ(0,02)ρθπ≥≤≤.22.在直角坐标系中,曲线C的参数方程为x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数),直线l 的参数方程为12x t y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数).以原点为极点, x 轴的正半轴为极轴建立极坐标系,点P 的极坐标方程为2π⎫⎪⎭. (1)求点P 的直角坐标,并求曲线C 的普通方程;(2)设直线l 与曲线C 的两个交点为,A B ,求PA PB +的值.参考答案一、选择题二、填空题(李生柱,段希爱)13.14.6 15.-2 16.2 三、简答题17.(杨万庆,王丽丽) 解:根据题意:211232a a -≤-⎧⎨+≥⎩解得:102a -≤≤.; 18.(张秀远,祁成宏) 解:根据题意:3136a a -≥-⎧⎨+≤⎩解得:[]2,3. 19.(杨双喜,潘金)(1)解:利用待定系数法可得:2()1f x x x =-+ ; (2)1m <-20.(丁春年,陈玉栋,) (1)()3(3)(1)f x x x '=-+ 单调增区间单调减区间(2)21.(鲁文霞,李靖利)(Ⅰ);(Ⅱ)与交点的极坐标分别为.22.(王斌莅,安文金)(1) (P ,221515x y +=.(2)6.。
甘肃省武威市高三第一次阶段性过关考试数学(理)试题Word版含答案
武威六中2017-2018学年度高三一轮复习过关考试(一)数 学(理)一、选择题(每小题只有一个正确选项,请将正确答案填在答题卡上.每小题5分,共40分)1. 已知集合{A =,{}1,B m =,若AB A =,则m =( )A. 0B. 1C. 0或3D. 1或3 2. 欧拉公式cos sin ixex i x =+(i为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,2i e 表示的复数在复平面中位于( )A .第一象限B .第二象限C .第三象限D .第四象限 3. 下列四个对应中,哪个对应不是从A 到B 的映射?A. 设{}=A 矩形,{}=B 实数,对应关系f :矩形和它的面积对应. B. A R =,{}0,1B =,对应关系f :1,(0)0,(0)x x y x ≥⎧→=⎨<⎩.C. A N =,B N *=,对应关系f :1x x →-.D. {}3,A x x x N =≥∈,{}0,B a a a Z =≥∈,f :224x a x x →=-+.4.已知()f x 是R 上的奇函数,当0x ≥时,3()=ln(1)f x x x ++,则当0x <时,()f x = ( )A .3ln(1)x x --- B .3+ln(1)x x -- C . 3+ln(1)x x -D .3ln(1)x x --5.已知命题:,20xp x R ∀∈>,命题:1q x >是2x >的充分不必要条件,则下列命题为真命题的是( ).A .p q ∧B .p q ⌝∧⌝C .p q ⌝∧D .p q ∧⌝6.若函数(f x R ,则实数a 的取值范围为 ( ).A .()-2,2B .()()--2+∞∞,2,C .(][)-,22,∞-+∞D .[]-2,27.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的2x =,2n =,依次输入的a 为2,2,5,则输出的s =( )A. 7B. 12C. 17D. 348. 奇函数()f x 的定义域为R ,若(+1)f x 为偶函数,且(1)=2f ,则(4)+(5)f f 的值为( )A.2B.1C.-1D.-29.已知a 是函数12()2log x f x x =-的零点,若00x a <<,则0()f x 的值满足( )A. 0()0f x >B. 0()0f x <C. 0()=0f xD. 0()f x 的符号不确定 10. 函数()(1)ln f x x x =-的图象可能为( ).11.已知函数222,0()=0,0+,0x x x f x x x mx x ⎧-+>⎪=⎨⎪<⎩是奇函数,且在区间[]-12a -,上满足任意的 1212,()x x x x ≠,都有1212()()0f x f x x x ->-,则实数a 的取值范围是( )A. (]1,3B. [)1,3C. ()1,3D. []1,312. 若a 满足lg 4a a +=,b 满足104bb +=,函数2()2,0()2,0x a b x x f x x ⎧+++≤=⎨>⎩,则关于x 的方程()f x x =解的个数是( )A. 1B. 2C. 3D. 4 二、填空题(每小题5分,共20分) 13. 已知1()13x f e x =-,求()f e = . 14. 已知函数2log (0)()3(0)x x x f x x >⎧=⎨≤⎩,则14f f ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦的值是 . 15.若函数1()ln sin 1xf x x x+=+-,则关于a 的不等式2(2)(4)0f a f a -+-<的解集 是 .16.已知函数()y f x =是R 上的偶函数,对x R ∀∈都有(4)()(2)f x f x f +=+成立.当[]0,2x ∈,()y f x =单调递减,给出下列命题:①(2)=0f ;②直线=-4x 是函数()y f x =图象的一条对称轴; ③函数()y f x =在[]-4,4上有四个零点;④区间[]-40,-38是()y f x =的一个单调递增区间. 其中所有正确命题的序号为________. 三、解答题17. 设命题p :关于x 的不等式1x a <的解集是{}0x x <;命题q :2000,40x R ax x a ∃∈++≤.若p q ⌝∨为假命题,求实数a 的取值范围.18. 已知曲线1C 的参数方程为45cos 55sin x t y t =+⎧⎨=+⎩,(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (1)把1C 的参数方程化为极坐标方程;(2)求1C 与2C 交点的极坐标(0,02ρθπ≥≤<).19. 已知函数()2xf x =,1()22x g x =+. (1)求函数()g x 的值域;(2)求满足方程()()0f x g x -=的x 的值.20. 某公司准备将1 000万元资金投入到市环保工程建设中,现有甲、乙两个建设项目选择.若投资甲项目一年后可获得的利润1ξ(万元)的概率分布列如下表所示:且1ξ的期望1()120E ξ=;若投资乙项目一年后可获得的利润2ξ(万元)与该项目建设材料的成本有关,在生产的过程中,公司将根据成本情况决定是否在第二和第三季度进行产品的价格调整,两次调整相互独立且调整的概率分别为(01)p p <<和1p -.若乙项目产品价格一年内调整次数X (次)与2ξ的关系如下表所示:(1)求m ,n 的值;(2)求2ξ的分布列;(3)若12()()E E ξξ<,则选择投资乙项目,求此时p 的取值范围.21. 已知函数21()=(21)2ln ()2f x ax a x x a R -++∈. (1)若曲线()y f x =在=1x 和=3x 处的切线互相平行,求a 的值; (2)求()f x 的单调性.22. 已知函数()23kxf x x k=+()0k >.(1)若()f x m >的解集为{|3,2}x x x <->-或,求不等式25302kmx x ++>的解集;(2)若存在03,x >使得()01f x >成立,求k 的取值范围.武威六中2017-2018学年度高三一轮复习过关考试(一)数学(理)答案二、填空题13. 23- 14. 1915. )2 16. ①②三、解答题 17.解:由p q ⌝∨为假命题,得:命题p 为真命题,命题q 为假命题. 由命题p 为真命题,得,1a >;由命题q 为假命题,得:2:,40q x R ax x a ⌝∀∈++>为真命题,∴ 201640a a >⎧⎨∆=-<⎩,解得:2a >; 因此,所求实数a 的取值范围是2a >.18.解 (1)∵C 1的参数方程为45cos 55sin x ty t =+⎧⎨=+⎩, ∴⎩⎪⎨⎪⎧5cos t =x -4,5sin t =y -5,∴(x -4)2+(y -5)2=25(cos 2t +sin 2t )=25, 即C 1的直角坐标方程为(x -4)2+(y -5)2=25, 把x =ρcos θ,y =ρsin θ代入(x -4)2+(y -5)2=25, 化简得:ρ2-8ρcos θ-10ρsin θ+16=0.(2)方法一: ∵ C 2的直角坐标方程为x 2+y 2=2y ,解方程组⎩⎪⎨⎪⎧ (x -4)2+(y -5)2=25,x 2+y 2=2y ,得⎩⎪⎨⎪⎧ x =1,y =1或⎩⎪⎨⎪⎧x =0,y =2.∴C 1与C 2交点的直角坐标为(1,1),(0,2). ∴C 1与C 2交点的极坐标为.,2,42ππ⎫⎛⎫⎪ ⎪⎭⎝⎭,. 方法二:由(1)知,C 1: ρ2-8ρcos θ-10ρsin θ+16=0. 而C 2: ρ=2sin θ. 将C 1与C 2联立,解得C 1与C 2交点的极坐标为,2,42ππ⎫⎛⎫⎪ ⎪⎭⎝⎭,. 19.解 (1)g (x )=12|x |+2=12x⎛⎫ ⎪⎝⎭+2, 因为|x |≥0,所以0<12x⎛⎫⎪⎝⎭≤1,即2<g (x )≤3, 故g (x )的值域是(2,3]. (2) 由f (x )-g (x )=0,得2x -12|x |-2=0, 当x ≤0时,显然不满足方程, 当x >0时,由2x -12x -2=0,整理得(2x )2-2·2x -1=0,(2x -1)2=2,故2x =1±2,因为2x >0, 所以2x =1+2, 即x =log 2(1+2).20.解: (1)由题意得⎩⎪⎨⎪⎧m +0.4+n =1,110m +120×0.4+170n =120, 解得m =0.5,n =0.1.(2) ξ2的可能取值为41.2,117.6,204, P (ξ2=41.2)=(1-p )[1-(1-p )]=p (1-p ),P (ξ2=117.6)=p [1-(1-p )]+(1-p )(1-p )=p 2+(1-p )2, P (ξ2=204)=p (1-p ), 所以ξ2的分布列为:(3) 由(2)210p 2+10p +117.6,由E (ξ1)<E (ξ2),得120<-10p 2+10p +117.6,解得0.4<p <0.6,因此,当选择投资乙项目时,p 的取值范围是(0.4,0.6). 21.解:'2()(21)(0)f x ax a x x=-++>. (1)题意知''(1)(3)f f =,即2(21)23(21)3a a a -++=-++,解得:2=3a . (2)'(1)(2)()ax x f x x--=(0x >),①当0a ≤时,∵0x >,∴ 10ax -<,∴ 在区间()0,2上,()0f x >';在区间()2+∞,上,()0f x <',故()f x 的单调递增区间是()0,2,单调递减区间是()2+∞,. ②当102a <<时,12a>; ③当1=2a 时,2'(2)()02x f x x -=≥,故()f x 的单调递增区间是()0,+∞.④当12a >时,102a <<,在区间10,a ⎛⎫ ⎪⎝⎭和()+∞2,,()0f x >';在区间12a ⎛⎫⎪⎝⎭,上,()0f x <',故()f x 的单调递增区间是10,a ⎛⎫ ⎪⎝⎭和()+∞2,,单调递减区间是12a ⎛⎫⎪⎝⎭,.综上所述: 略 22.解:(1)220()303kx k f x m m mx kx km x k>∴>⇔>⇔-+<+, 不等式230mx kx km -+<的解集为{|3,2}x x x <->-或,∴3,2--是方程230mx kx km -+=的根,且m<0, 252365k k m m k =⎧⎧=-⎪⎪∴⇒⎨⎨=-⎪⎪=⎩⎩∴223530230122k mx x x x x ++>⇔--<⇔-<<. ∴不等式25302k mx x ++>的解集为31,2⎛⎫- ⎪⎝⎭法二:()22()110303kxf x k x kx k x k>⇔>>⇔-+<+,, 令()()23,3,g x x kx k x =-+∈+∞,存在03,x >使得()01f x >成立,即存在()00g x <成立,即()min 0g x <成立,当06k <≤时,()g x 在()3,+∞上单调递增,∴()()39g x g >=,显然不存在()0g x <; 当6k >时,()g x 在3,2k ⎛⎫ ⎪⎝⎭上单调递减,在,2k ⎛⎫+∞ ⎪⎝⎭上单调递增,()2min 324k k g x g k ⎛⎫==-+ ⎪⎝⎭,由2120k k -+<可得12k > ,综上,()12,k ∈+∞.。
2014年甘肃高考数学解析
2014年甘肃高考数学(理)卷解析 第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1、 设集合M={0,1,2},N={x|x 2-3x+2≦0},则M ∩N=A 、{1}B {2}C 、{0,1}D 、{1、2}【解析】N={x|1≦x ≦2},故M ∩N={1、2}. 选D2、 设复数1Z ,2Z 在复平面内的对应点关于虚轴对称,1Z =2+i,则1Z 2Z = A 、-5 B 、5 C 、-4+i D 、-4-i 【解析】由题意知:22z i =-+,所以12z z =-5,故选A 。
3、设向量a,b 满足|a+b|=10,|a-b|=6,则b a rr ∙=A 、1B 、2C 、3D 、5【解析】1022222=++=⎪⎭⎫ ⎝⎛+=+b a b a b a b a r r r r r r r r ,622222=-+=⎪⎭⎫ ⎝⎛-=-b a b a b a b a r r r r r r r r ,故1=b a rr 选A4、钝角三角形ABC 的面积是21,AB=1,BC=2,则AC= A 、5 B 、5 C 、2 D 、1【解析】面积公式可知:21sin 221=⨯B ,22sin =B ,由钝角三角形知,故B=43π 再由余弦定理AC=5 选B5、 某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是A 、0.8B 、0.75C 、0.6D 、0.45【解析】设A=“某一天的空气质量为优良”,B=“随后一天的空气质量为优良”,则()0.6(|)0.8()0.75P A B P B A P A ⋂===,选A.6、 如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出 的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积比值为 A 、2717 B 、95 C 、2710 D 、31【解析】画出几何体求得,选C7、执行右面的程序框图,如果输入的x,t 均为2,则输出的S= A 、4 B 、5 C 、6 D 、7【解析】当k=1时,M=2,S=5;当k=2时,S=7, 选D8、 设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a= A 、0 B 、1 C 、2 D 、3 【解析】由11+-='x a y ,切线斜率为a-1=2,故a=3, 选D9、设x,y 满足约束条件⎪⎩⎪⎨⎧≥--≤+-≤-+05301307y x y x y x ,则z=2x-y 的最大值为A 、10B 、8C 、3D 、2【解析】画出平面区域,平移直线y=2x,可得z 的最大值为8 选B10、设F 为抛物线C:y 2=3x 的焦点,过F 且倾斜角为300的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为 A 、433 B 、839 C 、3263 D 、49【解析】直线AB 为⎪⎭⎫ ⎝⎛-=4333x y ,代入y 2=3x 中得0931242=--y y ,设A ()11,y x ,B ()22,y x 则三角形面积为()49443212121=-+⨯⨯y y y y , 选D 11、直三棱柱ABC-111C B A 中,∠BCA=900,M,N 分别是11B A ,11C A 的中点,BC=CA=C 1C ,则BM 与AN 所成角的余弦值为 A 、101 B 、52 C 、1030 D 、22 【解析】以C 为原点,CA 为x 轴,CB 为y 轴,C 1C 为z 轴,设CA=CB=1,则B(0,1,0),M ⎪⎭⎫ ⎝⎛1,0,21,A(1,0,0), ⎪⎭⎫ ⎝⎛-=1,21,21M B r ⎪⎭⎫⎝⎛-=1,0,21N A r ,1030252643,cos =∙=∙∙=NA MB N A M B N A M B r r rr r r ,选C12、设函数F(x)=mxπsin3,若存在f(x)的极值点0x 满足()[]22020m x f x <+,则m 的取值范围是A 、()()+∞⋃-∞-,66,B 、()()+∞⋃-∞-,44,C 、()()+∞⋃-∞-,22,D 、()()+∞⋃-∞-,11,【解析】由题意知:'0()0x f x m m ππ==,所以02m x =,所以22200[()]m x f x >+=24m + 343,34sin32202>+=m m m x π,得()()+∞⋃-∞-,22,,选C 第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。
甘肃省兰州市、张掖市2014届高三数学第一次诊断考试试题 理(含解析)新人教B版
某某市2014高三第一次诊断考试数学(理科)试卷本试卷满分150分,考试时间120分钟.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第II 卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效。
第Ⅰ卷一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求)1. 已知集合}0)3(|{<-=x x x P ,}2|||{<=x x Q ,则=Q P ( ) A .)0,2(- B .)2,0(C .)3,2(D .)3,2(-【答案】B【解析】因为集合{|(3)0}{|03}P x x x x x =-<=<<,{|||2}{|22}Q x x x x =<=-<<,所以=Q P )2,0(。
2.i 是虚数单位,复数31ii--= ( )A .2i +B .12i -C .i 21+D .2i -【答案】A 【解析】31i i --()()()()3132111i i i i i i i -+-===+--+,因此选A 。
3.将函数sin()()6y x x R π=+∈的图象上所有的点向左平移4π个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为( )A .5sin(2)()12y x x R π=+∈ B .5sin()()212x y x R π=+∈C .sin()()212x y x R π=-∈D .5sin()()224x y x R π=+∈ 【答案】B【解析】把函数sin()()6y x x R π=+∈的图象上所有的点向左平移4π个单位长度,得到函数5sin()sin 4612y x x πππ⎛⎫=++=+ ⎪⎝⎭的图像,再把图象上各点的横坐标扩大到原来的2倍,得到函数15sin 212y x π⎛⎫=+⎪⎝⎭的图象。
甘肃省武威市凉州区2014届高三下学期第一次诊断考试理综试题Word版含答案.pdf
A.5.4×10—5B.4.5×10—4C.0.015D.无法计算
化合物A、B、C、D各由两种元素组成,甲、乙、丙是短周期元素的三种单质。这些常见的化合物与单质之间存在如
下关系(已知C是一种有机物),以下结论不正确的( )
.常温下,化合物A、B、C、D均为气体B.上图所示的五个转化关系中,有三个是化合反应
造空间站。如图所示,已关闭发动机的A处航天飞机在月球引力作用下正沿椭圆轨道向月球靠近,并将与空间站在B处对
接。已知空间站绕月轨道(设为圆)离月球表面高度h、周期为T,月球质量为M,万有引力常量为G,下列说法正确的是
.图中航天飞机由A到B的过程速度越来越小.航天飞机在B处由椭圆轨道进入空间站圆轨道时必须点火加速C.根据题中
图象如图1所示,则下列说法正确的是 ( )
A.t1时刻两车相距最远
B.t1时刻乙车追上甲车C.t1时刻两车的速度刚好相等
D.0到t1时间内,乙车的平均速度小于甲车的平均速度
16. 2010年10月1日,我国成功发射“嫦娥”二号探月卫星,不久的将来我国将建立月球基地,并在绕月轨道上建
C.MgO和Al2O3在工业上用于制作耐高温材料,也用于电解法冶炼镁、铝金属
D.糖、油脂、蛋白质在一定条件下均可水解
8.结合乙烯和乙醇的结构与性质,推测丙烯醇(CH2=CH—CH2OH)不能发生的化学反应是( )
A.加成反应B.氧化反应 C.与Na反应D.与Na2CO3溶液反应放出CO2
器材.
A.待测小灯泡(额定功率6W,额定电流0.5A)B.电流表(量程0~0.6A,内阻0.1Ω)
C.电压表V1(量程0~5V,内阻约5kΩ)
D.电压表V2(量程0~15V,内阻约15kΩ)
E.滑动变阻器R1(最大阻值50Ω)
甘肃省十四校高三数学理科第一次联考试卷
甘肃省十四校高三数学理科第一次联考试卷本试卷分第Ⅰ卷和第Ⅱ卷两部分.共150分.考试时间120分钟.参考公式:如果事件A 、B 互斥,那么球的表面积公式P (A +B )=P (A )+P (B ) S =4πR 2如果事件A 、B 相互独立,那么其中R 表示球的半径 P (A ·B )=P (A )·P (B )球的体积公式 如果事件A 在一次试验中发生的概率是P .334R V π= 4那么n 次独立重复试验中恰好发生k 次的概其中R 表示球的半径率kn k k n n P P C k P --=)1()(第 I 卷 (选择题 共60分)一.选择题(下列各题有且仅有一个答案正确,将正确答案的序号填入答题卡上,否则不得分,共12小题,每小题5分,共60分). 1、i 是虚数单位,32ii += ( ) A. 2i -+B. 2i +C. 12i -+D. 12i -2、a ∈R,a <3成立的一个必要不充分条件是 ( ) A. a<3 B. a <2 C. 2a <9 D. 0<a<23、.已知a ,b 是两条不重合的直线,α,β,γ是三个两两不重合的平面,给出下列四个命题:①若a ⊥α,a ⊥β,则βα// ②若βαγβγα//,,则⊥⊥③若b a b a //,,,//则βαβα⊂⊂ ④若b a b a //,,,//则=⋂=⋂γβγαβα 其中正确命题的序号是 ( )A .①②B .①③C .③④D .①④4、在下列表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则zy x ++的值为()A .1B .2C .3D .45、将函数3sin(2)3y x π=+的图象按向量(,1)6a π=--平移后所得函数图象的解析式是A.23sin(2)13y x π=+- B. 23sin(2)13y x π=++ 2 4 1 2 x yzC.3sin 21y x =+D. 3sin(2)12y x π=+-6、若直线)0,0(022>>=+-b a by ax 被圆014222=+-++y x y x 截得的弦长为4,则ba 11+的最小值是 ( ) A . 2 B .4 C .21 D .417、若f (x )=11113-+-+x x 在点x =0处连续,则f (0)等于 ( ) A23B32 C 1D 08、设()()()()12322log 12x ex f x x x -⎧<⎪=⎨-≥⎪⎩,则不等式()2f x >的解集为 ( ) A .(1,2)∪(3,+∞) B .10+∞) C .(1,2)∪10+∞) D .(1,2)9、以椭圆的右焦点2F 为圆心作一个圆,使此圆过椭圆中心并交椭圆于点M ,N ,若过椭圆左焦点1F 的直线MF 1是圆2F 的切线,则椭圆的离心率为 ( )A .13-B .32-C .22D .23 10、某工厂生产A 、B 、C 三种不同型号的产品, 产品数量之比依次为2 : 3 : 5 , 现用分层抽样方法抽出一个容量为n 的样本, 样本中A 种型号产品有16件, 那么此样本的容量n 是 ( )A . 24B . 16C . 40D . 80 11、函数),(,cos sin ππ-∈+=x x x x y 的单调增区间是 ( )A .)2,0()2,(πππ和--B .(-2π,0)和(0,2π)C .),2()2,(ππππ和-- D .(-2π,0)和(2π,π)12、实系数方程220x ax b 的一根大于0且小于1,另一根大于1且小于2,则21b a 的 取值范围是A .1(,1)4B .1(,1)2C 、11(,)24 D .11(,)22第二卷(共90分)二、填空题(将正确答案填在横线上,每小题4分,共16分) 13、若(x 1x)6的展开式中的第五项是215, 设S n = x –1 + x –2 + … + x – n,则∞→n lim S n 等于14、直角坐标系中横坐标、纵坐标均为整数的点称为格点,如果函数f(x)的图象恰好通过k(+∈N k )个格点,则称函数f(x)为k 阶格点函数。
甘肃省张掖市2014届高三数学上学期第一次诊断(期末)考试试题 理 新人教B版
甘肃省张掖市2014届高三数学上学期第一次诊断〔期末〕考试试题理 新人教B 版1. 集合}0)3(|{<-=x x x P ,,如此=Q P 〔 〕 A .)0,2(-B .)2,0(C .)3,2(D .)3,2(-2.i 是虚数单位,复数31ii --= 〔 〕A . 2i +B .12i -C .i 21+D .2i -3.将函数sin()()6y x x R π=+∈的图象上所有的点向左平移4π个单位长度,再把图象上各点的横坐标扩大到原来的2倍,如此所得的图象的解析式为〔 〕A .5sin(2)()12y x x R π=+∈ B .5sin()()212x y x R π=+∈C .sin()()212x y x R π=-∈D .5sin()()224x y x R π=+∈4.如图为一个几何体的三视图,尺寸如下列图,如此该几何体的体积为 ( )A .63π+B .π343+C .π3433+D .633π+5.设3212a=log 2b=log 3c=log 5,,,如此〔 〕A .c ﹤b ﹤aB .a ﹤c ﹤b C. c ﹤a ﹤b . D .b ﹤c ﹤a6. βα,是两个不同的平面,m ,n 是两条不同的直线,给出如下命题:①假设βαβα⊥⊂⊥,则m m ,; ②假设βαββαα//,////,,则,n m n m ⊂⊂; ③如果ααα与是异面直线,那么、n n m n m ,,⊄⊂相交; ④假设.////,//,βαβαβαn n n n m n m 且,则,且⊄⊄=⋂ 其中正确的命题是〔〕A .①②B .②③C .③④D .①④7.某校从8名教师中选派4名教师同时去4个遥远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,如此不同的选派方案共有( )种. A.150 B.300 C.600 D.9008.双曲线22221x y ab -=(0,0)a b >>的左、右焦点分别为12,F F ,以12||F F 为直径的圆与双曲线渐近线的一个交点为(3,4),如此此双曲线的方程为〔 〕A .221169x y -=B .22134x y -=C .221916x y -=D .22143x y -=9.如下五个命题中正确命题的个数是( )〔1〕对于命题2:,10p x R x x ∃∈++<使得,如此:p x R ⌝∀∈,均有210x x ++>;〔2〕3=m 是直线02)3(=-++my x m 与直线056=+-y mx 互相垂直的充要条件; (3)回归直线的斜率的估计值为 1.23,样本点的中心为(4,5),如此回归直线方程为ˆy =1.23x +0.08(4).假设实数[],1,1x y ∈-,如此满足221x y +≥的概率为4π. (5) 曲线2y x =与y x =所围成图形的面积是120()S x x dx=-⎰A.2B.3C.4D.5 10. 执行如下列图的程序框图,那么输出的S 为( )(A)3 (B)43(C)12(D)-211.如图,矩形n n n n D C B A 的一边n n B A 在x 轴上,另外两个顶点n n D C ,在函数())0(1>+=x x x x f 的图象上.假设点n B 的坐标()),2(0,+∈≥N n n n ,记矩形n n n n D C B A 的周长为n a ,如此=+++1032a a a 〔 〕A .208 B.216 C.212 D.22012. 设()f x 的定义域为D ,假设()f x 满足下面两个条件如此称()f x 为闭函数:①()f x 是D 上单调函数;②存在[,]a b D ⊆,使()f x 在[,]a b 上值域为[,]a b . 现()21f x x k=++为闭函数,如此k 的取值范围是〔 〕A .B .1k <C .112k ≤< D .1k >-第2卷 〔90分〕二、填空题: 本大题共4小题,每一小题5分,共20分. 13.在531⎪⎪⎭⎫⎝⎛+x x 的展开式中的常数项为 .14.x ,y 满足约束条件220344,0x x y x y y ≥⎧⎪+≥+⎨⎪≥⎩则的最小值是15.如图,过抛物线22(0)y px p =>的焦点F 的直线l 依次交抛物线与 其准线于点A 、B 、C ,假设|BC|=2|BF|,且|AF|=3,如此抛物线的方程是 。
甘肃省武威市凉州区高三数学下学期第一次诊断考试试题 理(含解析)新人教B版(1)
甘肃省武威市凉州区2014届高三数学下学期第一次诊断考试试题理(含解析)新人教B 版一.选择题:(本大题共12小题,每小题5分,共60分。
每题只有一个正确答案,将正确答案的序号涂在答题卡上.)1.若非空集合A={x|2135a x a +≤≤-},B={x|3≤x ≤22},则能使A ⊆B,成立的实数a 的集合是A.{a|6≤a ≤9} B .{a|1≤a ≤9} C .{a|a ≤9} D .∅【答案】A【解析】因为非空集合A={x|2135a x a +≤≤-},B={x|3≤x ≤22},则能使A ⊆B,所以21353213522a a a a +≤-⎧⎪≤+⎨⎪-≤⎩,解得69a ≤≤,所以实数a 的集合是{a|6≤a ≤9}。
2.设1z i =+(i 是虚数单位), 则22z z+=A .1i --B .1i +C .1i -D .1i -+【答案】B【解析】因为1z i =+(i 是虚数单位),所以22z z +=()2211211i i i i i++=-+=++. 3.等比数列}{n a 的前n 项和为n S ,6,2105==S S ,则=++++2019181716a a a a a A .54 B .48C .32D .16【答案】D【解析】因为数列}{n a 为等比数列,所以510515102015,,,S S S S S S S ---成等比数列,又5105151020152,4,8,16S S S S S S S =-=-=-=所以,即=++++2019181716a a a a a 16.4.已知:b a ,均为正数,241=+ba ,则使cb a ≥+恒成立的c 的取值范围是 9.,2A ⎛⎤-∞ ⎥⎝⎦ B .(]1,0 C .(]9,∞-D .(]8,∞-【答案】A 【解析】因为b a ,均为正数,241=+ba ,所以()1141419552222b a a b a b a b a b ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当43,,32b a a b a b ===即时等号成立,所以使c b a ≥+恒成立的c 的取值范围是9,2⎛⎤-∞ ⎥⎝⎦。
甘肃省武威六中高三上学期第一次月考(数学理).doc
甘肃省武威六中高三上学期第一次月考(数学理)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集U=R ,集合A={x|-2≤x<0},B={x|2x-1<41},则C R (A ∩B )= ( )A .(-∞,-2)∪[-1,+∞]B .(-∞,-2]∪(-1,+∞)C .(-∞,+∞)D .(-2,+∞)2.)(lim )(lim 0x f x f x x x x -+→→=是 f (x )在点x 0连续的( )条件A.充分不必要B.充要C.既不充分也不必要D.必要不充分 3.函数y =sin 3(3x +4π)的导数为 ( ) A .3sin 2(3x +4π)cos(3x +4π) B .9sin 2(3x +4π)cos(3x +4π)C .9sin 2(3x +4π)D .-9sin 2(3x +4π)cos(3x +4π)4.若函数)(x f y =的定义域是[0,2],则函数1)2()(-=x x f x g 的定义域是 ( )A .[0,1]B .[0,1]∪(1,4)C .[0,1)D .(0,1)5.与直线14-=x y 平行的曲线23-+=x x y 的切线方程是( ) A .04=-y xB .044=--y x 或024=--y xC .024=--y xD .04=-y x 或044=--y x6. 已知函数221)1(xx x x f +=-则=)3(f ( ) A .8B .9C .10D .11 7.函数[)⎩⎨⎧+∞∈-∞∈=,1,log )1,(,32x x x y x 的值域为( )A .(0,3)B .[0, 3]C .[)+∞,0D . (]3,∞-8.设a R ∈,函数()x x f x e a e -=+⋅的导函数是'()f x ,且'()f x 是奇函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.选择题:(本大题共12小题,每小题5分,共60分。
每题只有一个正确答案,将正确答案的序号涂在答题卡上.)1.若非空集合A={x|2135a x a +££-},B={x|3£x £22},则能使A ÍB,成立的实数a 的集合是A.{a|6£a £9} B .{a|1£a £9} C .{a|a £9} D .Æ2.设1z i =+(是虚数单位),则22z z+= A .1i --B .1i +C .1i -D .1i -+3.等比数列}{n a 的前n 项和为n S ,6,2105==S S ,则=++++2019181716a a a a a A .54B .48C .32D .164.已知:b a ,均为正数,241=+ba ,则使cb a ³+恒成立的c 的取值范围是9.,2A æù-¥çúèûB .(]1,0C .(]9,¥-D .(]8,¥-5.执行右面的程序框图,那么输出S 的值为A .9B .10C .45D .55 6.若()0210=+òdx mx x,则实数m 的值为A .31-B .32- C .1- D .2- 7.若x ,y 满足10,220,40.x y x x y ìïíïî-+≥-y -≤+-≥则x +2y 的最大值为A .132B .6C .11D .10 8.某几何体的三视图如图所示,则它的侧面积为A .24B .C .D .9、函数)sin()(j w +=x A x f (0,>w A )的图象如右图所示,为了得到x A x g w cos )(-= 的图象,可以将)(x f 的图象 A.向右平移12p 个单位长度 B.向右平移125p个单位长度C.向左平移12p 个单位长度 D.向左平移125p 个单位长度10.下列函数中,在(0,)2p上有零点的函数是A .()sin f x x x =-B .2()sin f x x x p =-C .2()sin f x x x =-D .22()sin f x x x p=-11 .若抛物线y 2=x 上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为A .1(,44±B .1(,84± C .1(,44D .1(,8412.已知双曲线)0,0(12222>>=-b a b y a x 的右焦点为F,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是 A.(1,2]B .(1,2)C .[2,+ ¥)D . (2,+ ¥)第Ⅱ卷(90分)二、填空题:(本大题共4小题,每小题5分,共20分) 13.在等差数列{}n a 中,n S 是其前n 项的和,且12a =,20092007220092007S S -=,则数列1n S ìüíýîþ的前n 项的和是__________。14.已知点O 为ABC D 的外心,24==,则=·BC AO ____________. 15.已知圆C 的圆心与点P(-2,1)关于直线y=x+1对称,直线3x+4y-11=0与圆C 相交于A,B 两点,且|AB|=6,则圆C 的方程为___________.16.直三棱柱ABC -A 1B 1C 1的六个顶点都在球O 的球面上.若AB =BC =2,∠ABC =90°,AA 1=,则球O 的表面积为____________.三、解答题:(本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤.) 17.(本题满分12分)已知函数()R x x x x f Î-+-=,cos 21)322cos()(2p. (1)求函数()f x 的最小正周期及单调递增区间;(2)ABC D 的内角A B C 、、的对边长分别为a b c 、、,若()1,2B f b ==c = 且,a b >试判断ABCD 的形状,并说明理由. 18.(本小题满分12分)为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[)14,13,第二组[)15,14……第五组[]18,17,如右图是按上述分组方法得到的频率分布直方图.(Ⅰ) 设,x y 表示样本中两个学生的百米测试成绩,已知[)[],13,1417,18x y ÎU 求事件“2x y ->”的概率;(Ⅱ) 根据有关规定,成绩小于16秒为达标.如果男女生使用相同的达标标准,则男女生达标情况如附表 :附表:根据附表数据,请通过计算说明能否有99%的把握认为“体育达标与性别有关”? 附:22()()()()()n ad bc K a b c d a c b d -=++++19.(本小题共12分)如图,BCD △是等边三角形, AB AD =,90BAD Ð=°,将BCD △BC D ¢△的位置,使得AD C B ¢^.⑴ 求证:AD AC ¢^;⑵若M ,N 分别是BD ,C B ¢的中点,求二面角N AM B --的余弦值.20.(本小题满分12分)已知圆心为F 1的圆的方程为22(2)32x y ++=,F 2(2,0),C 是圆F 1上的动点,F 2C 的垂直平分线交F 1C 于M . (1)求动点M 的轨迹方程;(2)设N (0,2),过点P (-1,-2)作直线l ,交M 的轨迹于不同于N 的A ,B 两点,直线NA ,NB 的斜率分别为k 1,k 2,证明:k 1+k 2为定值.21. (本小题满分12分)已知函数()1ln f x a x x=+(a 为参数) (1)若1a =,求函数()f x 单调区间; (2)当(]0,x e Î时,求函数()f x 的最小值;DCBA请考生在第22—24三题中任选一题作答,如果多做,则按所做的第一题记分 22.(本小题满分10分)如图,AB 是⊙O 的直径,弦BD 、CA 的延长线相交于点E,EF 垂直BA 的延长线于点F. 求证:(1)DFA DEA Ð=Ð;(2)AB 2=BE •BD-AE •AC.23.已知直线的参数方程为122x y t ì=-+ïïíï=ïî(为参数),曲线C 的极坐标方程是2sin 1sin qr q=-,以极点为原点,极轴为x 轴正方向建立直角坐标系,点(1,0)M -,直线与曲线C 交于A 、B 两点.(1)写出直线的极坐标方程与曲线C 的普通方程;(2) 线段MA ,MB 长度分别记为|MA|,|MB|,求||||MA MB ×的值.24.(本小题满分10分)设关于x 的不等式2log (|||4|)x x a +-> (1)当3a =时,解这个不等式;(2)若不等式解集为R ,求a 的取值范围;凉州区2014届高三年级第一次诊断考试数 学 试 卷(理)答案一、选择题 ABDAD BCCBD BC 二、填空题 13.1+n n 14.6 15.()18122=++y x 16. 16p………………6分∵0πC <<, ∴π3C =或2π3。
当π3C =时,π2A =;当2π3C =时,π6A =(不合题意,舍),所以ABC D 为直角三角形 ………………12分[][],13,1417,18,,,,,.x y aA aB aC bA bB bC 分别在和时有六种情况所以基本事件总数为10,事件“2x y ->”由6个基本事件组成.所以63105P ==.……6分 (Ⅱ)依题意22´的列联表为:2250(241268)32183020K ´´-´=´´´8.333»,由于26.625K >,故有99%的把握认为“体育达标与性别有关”. ……………12分 (19)(共12分)(Ⅰ)证明:因为90BAD Ð=ow 所以AD AB ^,又因为'C B AD ^,且'AB C B B =I ,所以 AD ^平面'C AB ,因为'AC Ì平面'C AB ,所以'AD AC ^. ………4分(Ⅱ)因为△BCD 是等边三角形,AB AD =,90BAD Ð=o, 不防设1AB =,则BC CD BD ==又因为M ,N 分别为BD ,'C B 的中点,又平面ABM 的一个法向量为(0,0,1)=n .所以cos ,×<>===m n m n m n .所以二面角N AM B --的余弦值为3. ………………………………12分21.解:(1)()2211a ax f x x x x-¢=-+=,定义域为()0,+¥ 当1a =时,()21x f x x-¢=,令()0f x ¢=得1x = 所以()f x 的单调递增区间为()1,+¥,单调递减区间为()0,1------------------------4分 (2)()2211a ax f x x x x-¢=-+= ①当0a £时,()0f x ¢<对()0,x Î+¥成立,所以()f x 在区间(]0,e 上单调递减,所以()f x 在区间(]0,e 上的最小值为()11ln f e a e a e e=+=+ ②当100x a a =>Þ>时,;令()10f x x a¢=Þ= (ⅰ)若1e a £,即1a e£时,则()0f x ¢£对(]0,x e Î成立,所以()f x 在区间(]0,e 上单调递减,所以()f x 在区间(]0,e 上的最小值为()11ln f e a e a e e=+=+ (ⅱ)若110e a a e <<Þ>时,()f x 在10,a æöç÷èø单调递减,在1,e a æöç÷èø单调递增,在1x a =处有极小值。