207年八年级数学第3单元综合测试卷(word版,含答案)

合集下载

部编版八年级上册数学第三单元测试卷(带答案)

部编版八年级上册数学第三单元测试卷(带答案)

部编版八年级上册数学第三单元测试卷(带答案)部编版八年级上册数学第三单元测试卷(带答案)一、选择题1. 甲、乙两车同时出发,甲车以每小时60千米的速度向前行,乙车以每小时70千米的速度向前行。

若两车同时出发后,若干小时后两车的距离为180千米,则此时距离两车的相遇还需多少小时?A. 1B. 2C. 3D. 42. 若a、b、c都是过负数,且a > b > c,则以下运算错误的是:A. a - b < a - cB. c - a > b - aC. c + b > c + aD. a - c > b - c3. 若a、b、c都是正数,则a/b < c/b 的条件是:A. a > cB. a < cC. a = cD. a ≠ c二、填空题1. 一本书原价100元,现在打8折出售,则售价为\_____元。

2. 如果三个数的平均数是10,这三个数的和是\_____。

3. 用一根长40cm的铁丝制作一个正方形,这个正方形的面积是\_____平方厘米。

三、解答题1. 求下列各式的值:(1) 18 + 28 + 38(2) 168 ÷ 122. 某地有棵苹果树,每年的果实数量比上一年增加40%,第一年结出100个苹果,请问第三年会结出多少个苹果?四、应用题某店打折出售书,原价85元的书打8折,原价120元的书打75折。

请计算:1. 购买一本85元的书需要支付的钱数是多少?2. 购买一本120元的书需要支付的钱数是多少?3. 如果小明买了一本85元的书和一本120元的书,他需要支付的总金额是多少?答案一、选择题1. C2. B3. A二、填空题1. 802. 303. 400三、解答题1.(1) 84(2) 142. 第三年会结出140个苹果。

四、应用题1. 68元2. 90元3. 总金额为158元。

初中数学八年级上前三章综合测试答案

初中数学八年级上前三章综合测试答案

20XX年11月7日初二上数学前三章综合测试卷一.选择题(共10小题)1.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm2.若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形3.如图,若△ABC≌△DEF,则∠E等于()A.30°B.50°C.60°D.100°4.平面直角坐标系内的点A(﹣1,2)与点B(﹣1,﹣2)关于()A.y轴对称B.x轴对称C.原点对称 D.直线y=x对称5.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或206.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF7.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°8.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°9.如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA 于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于()A.1 B.2 C.4 D.810.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°二.选择题(共6小题)11.如图,镜子中号码的实际号码是.12.如图是汽车牌照在水中的倒影,则该车牌照上的数字是.13.如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=.14.如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于.15.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.16.我们知道:“两边及其中一边的对角分别相等的两个三角形不一定全等”.但是,小亮发现:当这两个三角形都是锐角三角形时,它们会全等,除小亮的发现之外,当这两个三角形都是时,它们也会全等;当这两个三角形其中一个三角形是锐角三角形,另一个是时,它们一定不全等.三.选择题(共6小题)17.如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.18.一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.19.如图,在△ABC中,∠ACB=90゜,BE平分∠ABC,交AC于E,DE垂直平分AB于D,求证:BE+DE=AC.20.如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.21.如图,已知△ABC中,AB=ACBD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.22.如图,在边长为1个单位长度的小正方形组成的网格中,请分别在边AB,AC上找到点E,F,使四边形PEFQ的周长最小.四.选择题(共2小题)23.求证:等腰三角形的两个底角相等(请根据图用符号表示已知和求证,并写出证明过程)已知:求证:证明:24.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.25.如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.20XX年11月7日初二上数学前三章综合测试卷参考答案与试题解析一.选择题(共10小题)1.(2016•岳阳)下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm【分析】依据三角形任意两边之和大于第三边求解即可.【解答】解:A、因为2+3=5,所以不能构成三角形,故A错误;B、因为2+4<6,所以不能构成三角形,故B错误;C、因为3+4<8,所以不能构成三角形,故C错误;D、因为3+3>4,所以能构成三角形,故D正确.故选:D.【点评】本题主要考查的是三角形的三边关系,掌握三角形的三边关系是解题的关键.2.(2016•南通)若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形【分析】根据多边形的内角和公式(n﹣2)•180°与多边形的外角和定理列式进行计算即可得解.【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故这个多边形是四边形.故选B.【点评】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.3.(2004•南山区)如图,若△ABC≌△DEF,则∠E等于()A.30°B.50°C.60°D.100°【分析】由图形可知:∠E应该是个钝角,那么根据△ABC≌△DEF,∠E=∠B=180°﹣50°﹣30°=100°由此解出答案.【解答】解:∵△ABC≌△DEF,∴∠E=∠B=180°﹣50°﹣30°=100°.故选D.【点评】本题考查了全等三角形的性质及三角形内角和定理;要注意全等三角形中所对应的角分别是哪些,不要搞混淆,然后根据三角形内角和来求解.4.(2016•赤峰)平面直角坐标系内的点A(﹣1,2)与点B(﹣1,﹣2)关于()A.y轴对称B.x轴对称C.原点对称 D.直线y=x对称【分析】根据关于x轴对称点的坐标特点:纵坐标互为相反数,横坐标不变可得答案.【解答】解:平面直角坐标系内的点A(﹣1,2)与点B(﹣1,﹣2)关于x轴对称.故选:B.【点评】此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.5.(2016•贺州)一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或20【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选C.【点评】本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.6.(2016•新疆)如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选D.【点评】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.7.(2016•乐山)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°【分析】根据三角形角平分线的性质求出∠ACD,根据三角形外角性质求出∠A即可.【解答】解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B=120°﹣35°=85°,故选:C.【点评】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.8.(2016•德州)如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°【分析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.【解答】解:由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠CAD=65°,故选A.【点评】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.9.(2016•铜仁市)如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于()A.1 B.2 C.4 D.8【分析】作PE⊥OA于E,如图,先利用平行线的性质得∠ECP=∠AOB=30°,则PE=PC=2,然后根据角平分线的性质得到PD的长.【解答】解:作PE⊥OA于E,如图,∵CP∥OB,∴∠ECP=∠AOB=30°,在Rt△EPC中,PE=PC=×4=2,∵P是∠AOB平分线上一点,PE⊥OA,PD⊥OB,∴PD=PE=2.故选B.【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.解决本题的关键是把求P点到OB的距离转化为点P到OA的距离.10.(2015•营口)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°【分析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=DM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故选:B.【点评】本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.二.选择题(共6小题)11.(2009•杭州)如图,镜子中号码的实际号码是3265.【分析】注意镜面反射与特点与实际问题的结合.【解答】解:根据镜面对称的性质,在镜子中的真实数字应该是:3265.故答案为:3265【点评】本题考查了图形的对称变换,学生在解题时可以再借用镜子看一下即可,也可以在卷子的反面看.12.(2010•玉溪)如图是汽车牌照在水中的倒影,则该车牌照上的数字是21678.【分析】关于倒影,相应的数字应看成是关于倒影上边某条水平的线对称.【解答】解:该车牌照上的数字是21678.【点评】本题主要考查镜面对称的知识点,比较简单.13.(2015•常德)如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=70°.【分析】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得∠DAC+∠ACF=(∠B+∠B+∠1+∠2);最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.【解答】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF;又∵∠B=40°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2)=110°(外角定理),∴∠AEC=180°﹣(∠DAC+∠ACF)=70°.故答案为:70°.【点评】此题主要考查了三角形内角和定理以及角平分线的性质,熟练应用角平分线的性质是解题关键.14.(2016•泰州)如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于20°.【分析】过点A作AD∥l1,如图,根据平行线的性质可得∠BAD=∠β.根据平行线的传递性可得AD∥l2,从而得到∠DAC=∠α=40°.再根据等边△ABC可得到∠BAC=60°,就可求出∠DAC,从而解决问题.【解答】解:过点A作AD∥l1,如图,则∠BAD=∠β.∵l1∥l2,∴AD∥l2,∵∠DAC=∠α=40°.∵△ABC是等边三角形,∴∠BAC=60°,∴∠β=∠BAD=∠BAC﹣∠DAC=60°﹣40°=20°.故答案为20°.【点评】本题主要考查了平行线的性质、平行线的传递性、等边三角形的性质等知识,当然也可延长BA与l2交于点E,运用平行线的性质及三角形外角的性质解决问题.15.(2014•随州)将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为75度.【分析】根据三角形三内角之和等于180°求解.【解答】解:如图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.故答案为:75.【点评】考查三角形内角之和等于180°.16.(2016•六盘水)我们知道:“两边及其中一边的对角分别相等的两个三角形不一定全等”.但是,小亮发现:当这两个三角形都是锐角三角形时,它们会全等,除小亮的发现之外,当这两个三角形都是钝角三角形或直角三角形时,它们也会全等;当这两个三角形其中一个三角形是锐角三角形,另一个是钝角三角形时,它们一定不全等.【分析】过B作BD⊥AC于D,过B1作B1D1⊥B1C1于D1,得出∠BDA=∠B1D1A1=∠BDC=∠B1D1C1=90°,根据SAS证△BDC≌△B1D1C1,推出BD=B1D1,根据HL证Rt△BDA≌Rt△B1D1A1,推出∠A=∠A1,根据AAS 推出△ABC≌△A1B1C1即可.【解答】解:已知:△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1C1,∠C=∠C1.求证:△ABC≌△A1B1C1.证明:过B作BD⊥AC于D,过B1作B1D1⊥A1C1于D1,则∠BDA=∠B1D1A1=∠BDC=∠B1D1C1=90°,在△BDC和△B1D1C1中,,∴△BDC≌△B1D1C1,∴BD=B1D1,在Rt△BDA和Rt△B1D1A1中,∴Rt△BDA≌Rt△B1D1A1(HL),∴∠A=∠A1,在△ABC和△A1B1C1中,∴△ABC≌△A1B1C1(AAS).同理可得:当这两个三角形都是钝角三角形或直角三角形时,它们也会全等,如图:△ACD与△ACB中,CD=CB,AC=AC,∠A=∠A,但:△ACD与△ACB不全等.,故当这两个三角形其中一个三角形是锐角三角形,另一个是钝角三角形时,它们一定不全等.故答案为:钝角三角形或直角三角形,钝角三角形.【点评】本题考查了全等三角形像的判定;SSA不能判定的原因是有锐角钝角三角形不能全等,把三角形分类后就能全等了.三.选择题(共6小题)17.(2016•泸州)如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.【分析】由CD∥BE,可证得∠ACD=∠B,然后由C是线段AB的中点,CD=BE,利用SAS即可证得△ACD≌△CBE,继而证得结论.【解答】证明:∵C是线段AB的中点,∴AC=CB,∵CD∥BE,∴∠ACD=∠B,在△ACD和△CBE中,,∴△ACD≌△CBE(SAS),∴∠D=∠E.【点评】此题考查了全等三角形的判定与性质以及平行线的性质.注意证得△ACD≌△CBE是关键.18.(2016春•高密市期末)一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.【分析】多边形的内角和比外角和的4倍多180°,而多边形的外角和是360°,则内角和是1620度.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【解答】解:根据题意,得(n﹣2)•180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.【点评】此题比较简单,只要结合多边形的内角和公式寻求等量关系,构建方程即可求解.19.(2016•历下区一模)如图,在△ABC中,∠ACB=90゜,BE平分∠ABC,交AC于E,DE垂直平分AB于D,求证:BE+DE=AC.【分析】根据角平分线性质得出CE=DE,根据线段垂直平分线性质得出AE=BE,代入AC=AE+CE求出即可.【解答】证明:∵∠ACB=90°,∴AC⊥BC,∵ED⊥AB,BE平分∠ABC,∴CE=DE,∵DE垂直平分AB,∴AE=BE,∵AC=AE+CE,∴BE+DE=AC.【点评】本题考查了角平分线性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.20.(2016•临夏州)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.【分析】(1)直接利用关于x轴对称点的性质得出各对应点位置进而得出答案;(2)直接利用平移的性质得出各对应点位置进而得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,点A2(﹣3,﹣1),B2(0,﹣2),C2(﹣2,﹣4).【点评】此题主要考查了轴对称变换和平移变换,根据题意得出对应点位置是解题关键.21.(2016•常州)如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.【分析】(1)首先根据等腰三角形的性质得到∠ABC=∠ACB,然后利用高线的定义得到∠ECB=∠DBC,从而得证;(2)首先求出∠A的度数,进而求出∠BOC的度数.【解答】(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD、CE是△ABC的两条高线,∴∠DBC=∠ECB,∴OB=OC;(2)∵∠ABC=50°,AB=AC,∴∠A=180°﹣2×50°=80°,∴∠BOC=180°﹣80°=100°.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;关键是掌握等腰三角形等角对等边.22.(2016•景德镇校级二模)如图,在边长为1个单位长度的小正方形组成的网格中,请分别在边AB,AC上找到点E,F,使四边形PEFQ的周长最小.【分析】根据轴对称图形的作法得出对称点,进而解答即可.【解答】解:分别作P关于AB,Q关于AC的对称点P'Q',连接P'Q',交AB于E,交AC于F,则E,F即为所求.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.四.选择题\23.(2016•柳州)求证:等腰三角形的两个底角相等(请根据图用符号表示已知和求证,并写出证明过程)已知:求证:证明:【分析】充分理解题意,利用等腰三角形的性质,要根据题意画图,添加辅助线来证明结论.【解答】解:已知:△ABC中,AB=AC,求证:∠B=∠C;证明:如图,过D作BC⊥AD,垂足为点D,∵AB=AC,AD=AD,在Rt△ABD与Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL)∴∠B=∠C.【点评】本题考查了等腰的三角形的性质;添加辅助线利用三角形全等证明是正确解答本题的关键.24.(2016春•埇桥区期末)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.【分析】(1)由在△ABC中,AB=AC,∠A=40°,根据等腰三角形的性质,可求得∠ABC的度数,又由AB的垂直平分线交AB于点N,交BC的延长线于点M,即可求得答案;(2)由在△ABC中,AB=AC,∠A=70°,根据等腰三角形的性质,可求得∠ABC的度数,又由AB的垂直平分线交AB于点N,交BC的延长线于点M,即可求得答案;(3)由在△ABC中,AB=AC,根据等腰三角形的性质,即可用∠A表示出∠ABC,又由AB的垂直平分线交AB于点N,交BC的延长线于点M,即可求得答案.【解答】解:(1)∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠ACB=70°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=20°;(2)∵在△ABC中,AB=AC,∠A=70°,∴∠ABC=∠ACB=55°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=35°;(3)∠NMB=∠A.理由:∵在△ABC中,AB=AC,∴∠ABC=∠ACB=,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=∠A.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.25.(2015•菏泽)如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.【分析】(1)利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,即可判断三角形的形状;(2)作AF⊥AB于A,使AF=BD,连结DF,CF,利用SAS证明△AFD 和△BDC全等,再利用全等三角形的性质得出FD=DC,∠FDC=90°,即可得出∠FCD=∠APD=45°.【解答】解:(1)△CDF是等腰直角三角形,理由如下:∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,在△FAD与△DBC中,,∴△FAD≌△DBC(SAS),∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形;(2)作AF⊥AB于A,使AF=BD,连结DF,CF,如图,∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,在△FAD与△DBC中,,∴△FAD≌△DBC(SAS),∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形,∴∠FCD=45°,∵AF∥CE,且AF=CE,∴四边形AFCE是平行四边形,∴AE∥CF,∴∠APD=∠FCD=45°.【点评】此题考查了全等三角形的判定与性质的运用,平行四边形的判定及性质的运用,等腰直角三角形的判定及性质的运用.解答时证明三角形全等是关键.。

八上 数学第三、四章 测试卷(含答案)

八上 数学第三、四章 测试卷(含答案)

八上数学第三、四章单元测试卷班级 姓名 得分一、选择题(每小题4分,共40分) 1、下列数据不能确定物体位置的是( )A .4楼8号B .北偏东30°C .希望路25号D .东经118°、北纬40° 2、一次函数y=kx+6,y 随x 的增大而减小,则这个一次函数的图象不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3、下列各图给出了变量y 与x 之间的函数是( )4、下列函数关系式:①x y -=; ②;112+=x y ③12++=x x y ; ④xy 1=.其中一次函数的个数是( )A . 1个B .2个C .3个D .4个 5、下列函数中,自变量x 的取值范围是x≥2的是( )A . yB .C .D .6、已知一次函数随着的增大而减小,且,则在直角坐标系内它的大致图象是( )7、已知三点(3,5),(t ,9),(-4,-9)在同一条直线上,则t 的值应为( )A .3B .4C .5D .68、已知点P 的坐标为,且点P 到两坐标轴的距离相等,则点P 的坐标是( ) A .(3,3) B .(3,-3) C .(6,-6) D .(3,3)或(6,-6) 9、在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数,那么所得的图案与原来图案相比( )A .形状不变,大小扩大到原来的倍B .图案向右平移了个单位长度C .图案向上平移了个单位长度D .图案向右平移了个单位长度,并且向上平移了个单位长度AB D10、如图,甲、乙二人沿相同的路线由A到B匀速行进,A、B两地间的路程为20 km.他们行进的路程s(km)与甲出发后的时间t(h)之间的函数图象如图所示.根据图中的信息,下列说法正确的是( )A.甲的速度是4 km/h B.乙的速度是10 km/hC.乙比甲晚出发l h D.甲比乙晚到B地3 h二、填空题(每小题4分,共32分)11、已知点P在第二象限,且到x到y轴的距离是4,则P点坐标为__________。

八年级数学第三次单元测试题答案

八年级数学第三次单元测试题答案

三角 形,∴∠5=∠F,∴∠2=∠F,∴在△EFA 和△ACE 中∵∠1=∠5,∠2=∠F,
AF=CE,∴△EFA≌△ACE(AAS),∴∠AEC=∠EAF∴AF∥CE∴四边形 ACEF
是平行四边形;(6 分)
(2)当∠B=30°时,四边形 ACEF 是菱形. (7 分)证明如下:∵∠B=30°,
20. 证明:∵AB=BC,BD 平分∠ABC,∴BD⊥AC,AD=CD. (2 分) ∵四边形 ABED 是平行四边形,∴BE∥AD,BE=AD,(4 分) ∴BE=CD,∴四边形 BECD 是平行四边形. (6 分)
∵BD⊥AC,∴∠BDC=90°,∴▱BECD 是矩形. (8 分)
b=-2, 21. 解:(1)∵一次函数 y=kx+b 的图象经过点 A(0,-2),B(3,4),∴3k+b=4,
k=2, (2 分)解得b=-2,∴这个一次函数的解析式为 y=2x-2. (6 分)
(2)把 C(5,m)代入 y=2x-2,得 m=2×5-2=8. (8 分)
22. 解:(1)∵ED 是 BC 的垂直平分线∴EB=EC,ED⊥BC,∴∠3=∠4 (2
分)
∵∠ACB=90°,∴FE∥AC,∴∠1=∠5,∵∠2 与∠4 互余,∠1 与∠3 互余 ∴∠1=∠2,∴AE=CE,(4 分)又∵AF=CE,∴△ACE 和△EFA 都是等腰
∴ 1 2• 2+ 1 • 2• x=4,解得 x=2,此时 D 点坐标为(2,2)…12
2
2

当 x<0 时,∵S△BCD﹣S△ABC=S△ACD,∴ 1 • 2• (-x)- 1 • 2• 2=4,
2
2
解得 x=﹣6,此时 D 点坐标为(﹣6,﹣2)……… 14 分

八年级数学上册第三章试卷

八年级数学上册第三章试卷

一、选择题(每题3分,共30分)1. 下列选项中,不是第三章所学内容的是()A. 平行四边形B. 矩形C. 三角形D. 菱形2. 在平行四边形ABCD中,如果∠A=80°,则∠C的度数是()A. 80°B. 100°C. 140°D. 180°3. 下列图形中,既是矩形又是菱形的是()A. 矩形B. 菱形C. 正方形D. 以上都是4. 在平行四边形ABCD中,如果AD=BC,那么四边形ABCD是()A. 平行四边形B. 矩形C. 菱形D. 正方形5. 如果一个矩形的对角线相等,那么这个矩形一定是()A. 平行四边形B. 矩形C. 菱形D. 正方形6. 下列说法正确的是()A. 所有平行四边形都是矩形B. 所有矩形都是菱形C. 所有菱形都是正方形D. 所有正方形都是矩形7. 在平行四边形ABCD中,如果AB=CD,那么四边形ABCD是()A. 平行四边形B. 矩形C. 菱形D. 正方形8. 下列图形中,对角线互相垂直的是()A. 矩形B. 菱形C. 正方形D. 以上都是9. 如果一个正方形的边长为a,那么它的对角线长为()A. aB. 2aC. √2aD. √3a10. 下列图形中,对角线互相平分的是()A. 矩形B. 菱形C. 正方形D. 以上都是二、填空题(每题5分,共20分)11. 平行四边形的对边长度相等,对角线互相()。

12. 矩形的四个角都是()度。

13. 菱形的四条边都相等,对角线互相()。

14. 正方形的四个角都是()度。

15. 一个平行四边形的面积是8平方厘米,底边长是4厘米,那么高是()厘米。

三、解答题(每题10分,共30分)16. 已知平行四边形ABCD,其中AB=8cm,BC=6cm,求对角线AC的长度。

17. 在矩形EFGH中,E点坐标为(2,3),F点坐标为(6,3),求对角线EH的长度。

18. 一个菱形ABCD,边长为10cm,求对角线BD的长度。

北师大版八年级数学下册第3章测试题及参考答案

北师大版八年级数学下册第3章测试题及参考答案

北师大版八年级数学下册第3章测试题一、选择题1.将长度为5cm的线段向上平移10cm后,所得线段的长度是()A.10cm B.5cm C.0cm D.无法确定2.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A.B.C.D.3.一个图形无论经过平移变换,还是经过旋转变换,下列说法正确的是()①对应线段平行②对应线段相等③图形的形状和大小都没有发生变化④对应角相等.A.①②③B.②③④C.①②④D.①③④4.如图,△ABC和△BDE是等边三角形,点A、B、D在一条直线上,并且AB=BD.由一个三角形变换到另一个三角形()A.仅能由平移得到B.仅能由旋转得到C.既能由平移得到,也能由旋转得到D.既不能由平移得到,也不能由旋转得到5.将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,2)D.(1,﹣2)6.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°7.如图,若△DEF是由△ABC经过平移后得到的,则平移的距离是()A.线段BC的长度B.线段BE的长度C.线段EC的长度D.线段EF的长度8.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30°B.35°C.40°D.50°9.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4)B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)10.如图,O是边长为a的正方形ABCD的中心,将一块半径足够长、圆心为直角的扇形纸板的圆心放在O点处,并将纸板的圆心绕O旋转,则正方形ABCD 被纸板覆盖部分的面积为()A.a2B.a2C.a2D.a11.关于这一图案,下列说法正确的是()A.图案乙是由甲绕BC的中点旋转180°得到的B.图案乙是由甲绕点C旋转108°得到的C.图案乙是由甲沿AB方向平移3个边长的距离得到的D.图案乙是由甲沿直线BC翻转180°得到的12.如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为()A.(﹣1,)B.(﹣1,)或(﹣2,0)C.(,﹣1)或(0,﹣2)D.(,﹣1)二、填空题13.线段AB沿和它垂直的方向平移到A′B′,则线段AB和线段A′B′的位置关系是.14.如图,在四边形ABCD中,AD∥BC,BC>AD,∠B与∠C互余,将AB,CD分别平移到EF和EG的位置,则△EFG为三角形.15.如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=度.16.如图,将面积为5的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,那么图中的四边形ACED的面积为.17.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为.18.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=.三、解答题19.如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.20.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:2线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.21.如图,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一种实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0).得到正方形A′B′C′D′及其内部的点,其中点A、B的对应点分别为A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.答案与解析1.将长度为5cm的线段向上平移10cm后,所得线段的长度是()A.10cm B.5cm C.0cm D.无法确定【考点】Q2:平移的性质.【专题】选择题【分析】根据平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.【解答】解:线段长度不变,还是5cm.故选B.【点评】此题主要考查平移的基本性质,题目比较基础,把握平移的性质即可.2.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形.【专题】选择题【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选B.【点评】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.一个图形无论经过平移变换,还是经过旋转变换,下列说法正确的是()①对应线段平行②对应线段相等③图形的形状和大小都没有发生变化④对应角相等.A.①②③B.②③④C.①②④D.①③④【考点】R2:旋转的性质;Q2:平移的性质.【专题】选择题【分析】根据平移和旋转的性质对各小题分析判断,然后利用排除法求解.【解答】解:①平移后对应线段平行,旋转对应线段不一定平行,故本小题错误;②无论平移还是旋转,对应线段相等,故本小题正确;③无论平移还是旋转,图形的形状和大小都没有发生变化,故本小题正确;④无论平移还是旋转,对应角相等,故本小题正确.综上所述,说法正确的是②③④.故选B.【点评】本题主要考查了旋转的性质,平移的性质,熟记旋转变换,平移变换都只改变图形的位置不改变图形的形状与大小是解题的关键.4.如图,△ABC和△BDE是等边三角形,点A、B、D在一条直线上,并且AB=BD.由一个三角形变换到另一个三角形()A.仅能由平移得到B.仅能由旋转得到C.既能由平移得到,也能由旋转得到D.既不能由平移得到,也不能由旋转得到【考点】RA:几何变换的类型.【专题】选择题【分析】是轴对称图形,这三对全等三角形中的一个都是以其中另一个三角形绕点B旋转90°后得到或对折得到的.【解答】解:∵△ABC和△BDE是等边三角形,点A、B、D在一条直线上,并且AB=BD.∴这三对全等三角形中的一个都是以其中另一个三角形绕点B旋转90°后得到或对折得到的.故选C.【点评】本题考查了几何变换的类型,解题的关键是看清由两个三角形组成的图象是轴对称图形还是中心对称图形.5.将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,2)D.(1,﹣2)【考点】Q3:坐标与图形变化﹣平移;P5:关于x轴、y轴对称的点的坐标.【专题】选择题【分析】先利用平移中点的变化规律求出点A′的坐标,再根据关于y轴对称的点的坐标特征即可求解.【解答】解:∵将点A(3,2)沿x轴向左平移4个单位长度得到点A′,∴点A′的坐标为(﹣1,2),∴点A′关于y轴对称的点的坐标是(1,2).故选:C.【点评】本题考查坐标与图形变化﹣平移及对称的性质;用到的知识点为:两点关于y轴对称,纵坐标不变,横坐标互为相反数;左右平移只改变点的横坐标,右加左减.6.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°【考点】R2:旋转的性质.【专题】选择题【分析】根据直角三角形两锐角互余求出∠BAC,然后求出∠BAB1,再根据旋转的性质对应边的夹角∠BAB1即为旋转角.【解答】解:∵∠B=35°,∠C=90°,∴∠BAC=90°﹣∠B=90°﹣35°=55°,∵点C、A、B1在同一条直线上,∴∠BAB′=180°﹣∠BAC=180°﹣55°=125°,∴旋转角等于125°.故选C.【点评】本题考查了旋转的性质,直角三角形两锐角互余的性质,熟练掌握旋转的性质,明确对应边的夹角即为旋转角是解题的关键.7.如图,若△DEF是由△ABC经过平移后得到的,则平移的距离是()A.线段BC的长度B.线段BE的长度C.线段EC的长度D.线段EF的长度【考点】Q2:平移的性质.【专题】选择题【分析】根据平移的性质,结合图形可直接求解.【解答】解:观察图形可知:△DEF是由△ABC沿BC向右移动BE的长度后得到的,∴平移距离就是线段BE的长度.故选B.【点评】本题利用了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.8.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30°B.35°C.40°D.50°【考点】R2:旋转的性质;JA:平行线的性质.【专题】选择题【分析】首先证明∠ACC′=∠AC′C;然后运用三角形的内角和定理求出∠CAC′=30°即可解决问题.【解答】解:由题意得:AC=AC′,∴∠ACC′=∠AC′C;∵CC′∥AB,且∠BAC=75°,∴∠ACC′=∠AC′C=∠BAC=75°,∴∠CAC′=180°﹣2×75°=30°;由题意知:∠BAB′=∠CAC′=30°,故选A【点评】该命题以三角形为载体,以旋转变换为方法,综合考查了全等三角形的性质及其应用问题;对综合的分析问题解决问题的能力提出了较高的要求.9.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4)B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)【考点】R7:坐标与图形变化﹣旋转.【专题】选择题【分析】如图,把线段OP绕点O逆时针旋转90°到OP′位置看作是把Rt△OPA 绕点O逆时针旋转90°到RtOP′A′,再根据旋转的性质得到OA′、P′A′的长,然后根据第二象限点的坐标特征确定P′点的坐标.【解答】解:如图,OA=3,PA=4,∵线段OP绕点O逆时针旋转90°到OP′位置,∴OA旋转到x轴负半轴OA′的位置,∠P′A′0=∠PAO=90°,P′A′=PA=4,∴P′点的坐标为(﹣3,4).故选C.【点评】本题考查了坐标与图形变化﹣旋转:在直角坐标系中线段的旋转问题转化为直角三角形的旋转,然后利用旋转的性质求出相应的线段长,再根据点的坐标特征确定点的坐标.10.如图,O是边长为a的正方形ABCD的中心,将一块半径足够长、圆心为直角的扇形纸板的圆心放在O点处,并将纸板的圆心绕O旋转,则正方形ABCD 被纸板覆盖部分的面积为()A.a2B.a2C.a2D.a【考点】R2:旋转的性质.【专题】选择题【分析】扇形的半径交AD于E,交CD于F,连结OD,如图,利用正方形的性质得OD=OC,∠COD=90°,∠ODA=∠OCD=45°,再利用等角的余角相=S△OCF,所等得到∠EOD=∠FOC,于是可证明△ODE≌△OCF,得到S△ODE=S正方形ABCD=a2.以S阴影部分=S△DOC【解答】解:扇形的半径交AD于E,交CD于F,连结OD,如图,∵四边形ABCD为正方形,∴OD=OC,∠COD=90°,∠ODA=∠OCD=45°,∵∠EOF=90°,即∠EOD+∠DOF=90°,∠DOF+∠COF=90°,∴∠EOD=∠FOC,在△ODE和△OCF中,,∴△ODE≌△OCF,=S△OCF,∴S△ODE=S正方形ABCD=a2.∴S阴影部分=S△DOC故选B.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.11.关于这一图案,下列说法正确的是()A.图案乙是由甲绕BC的中点旋转180°得到的B.图案乙是由甲绕点C旋转108°得到的C.图案乙是由甲沿AB方向平移3个边长的距离得到的D.图案乙是由甲沿直线BC翻转180°得到的【考点】Q5:利用平移设计图案.【专题】选择题【分析】直接利用旋转的性质得出旋转中心进而得出答案.【解答】解:如图所示:可得图案乙是由甲绕BC的中点旋转180°得到的.故选:A.【点评】此题主要考查了旋转变换,正确得出旋转中心是解题关键.12.如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为()A.(﹣1,)B.(﹣1,)或(﹣2,0)C.(,﹣1)或(0,﹣2)D.(,﹣1)【考点】R7:坐标与图形变化﹣旋转.【专题】选择题【分析】需要分类讨论:在把△ABO绕点O顺时针旋转150°和逆时针旋转150°后得到△A1B1O时点A1的坐标.【解答】解:∵△ABO中,AB⊥OB,OB=,AB=1,∴tan∠AOB==,∴∠AOB=30°.如图1,当△ABO绕点O顺时针旋转150°后得到△A1B1O,则∠A1OC=150°﹣∠AOB﹣∠BOC=150°﹣30°﹣90°=30°,则易求A1(﹣1,﹣);如图2,当△ABO绕点O逆时针旋转150°后得到△A1B1O,则∠A1OC=150°﹣∠AOB﹣∠BOC=150°﹣30°﹣90°=30°,则易求A1(﹣2,0);综上所述,点A1的坐标为(﹣1,﹣)或(﹣2,0);故选B.【点评】本题考查了坐标与图形变化﹣﹣旋转.解题时,注意分类讨论,以防错解.13.线段AB沿和它垂直的方向平移到A′B′,则线段AB和线段A′B′的位置关系是.【考点】Q2:平移的性质.【专题】填空题【分析】根据平移的性质可知,线段AB沿和它垂直的方向平移到A′B′,则线段AB和线段A′B′平行且相等.【解答】解:∵线段AB沿和它垂直的方向平移到A′B′,∴线段AB和线段A′B′的位置关系是平行且相等.故答案为:平行且相等.【点评】本题考查的是平移的性质,①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.14.如图,在四边形ABCD中,AD∥BC,BC>AD,∠B与∠C互余,将AB,CD分别平移到EF和EG的位置,则△EFG为三角形.【考点】Q2:平移的性质.【专题】填空题【分析】利用平移的性质可以知∠B+∠C=∠EFG+∠EGF,然后根据三角形内角和定理在△EFG中求得∠FEG=90°.【解答】解:∵AB,CD分别平移到EF和EG的位置后,∠B的对应角是∠EFG,∠C的对应角是∠EGF,又∵∠B与∠C互余,∴∠EFG与∠EGF互余,∴在△EFG中,∠FEG=90°(三角形内角和定理),∴△EFG为Rt△EFG,故答案是:直角.【点评】本题考查了平移的性质,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等.15.如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=度.【考点】R2:旋转的性质.【专题】填空题【分析】根据旋转的性质可得AB=AB′,∠BAB′=40°,然后根据等腰三角形两底角相等求出∠ABB′,再利用直角三角形两锐角互余列式计算即可得解.【解答】解:∵Rt△ABC绕点A逆时针旋转40°得到Rt△AB′C′,∴AB=AB′,∠BAB′=40°,在△ABB′中,∠ABB′=(180°﹣∠BAB′)=(180°﹣40°)=70°,∵∠AC′B′=∠C=90°,∴B′C′⊥AB,∴∠BB′C′=90°﹣∠ABB′=90°﹣70°=20°.故答案为:20.【点评】本题考查了旋转的性质,等腰三角形的性质,直角三角形的两锐角互余,比较简单,熟记旋转变换只改变图形的位置不改变图形的形状与大小得到等腰三角形是解题的关键.16.如图,将面积为5的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,那么图中的四边形ACED的面积为.【考点】Q2:平移的性质.【专题】填空题【分析】设点A到BC的距离为h,根据平移的性质用BC表示出AD、CE,然后根据三角形的面积公式与梯形的面积公式列式进行计算即可得解.=BC•h=5,【解答】解:设点A到BC的距离为h,则S△ABC∵平移的距离是BC的长的2倍,∴AD=2BC,CE=BC,∴四边形ACED的面积=(AD+CE)•h=(2BC+BC)•h=3×BC•h=3×5=15.故答案为:15.【点评】本题考查了平移的性质,三角形的面积,主要用了对应点间的距离等于平移的距离的性质.17.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为.【考点】R7:坐标与图形变化﹣旋转.【专题】填空题【分析】画出旋转后的图形位置,根据图形求解.【解答】解:AB旋转后位置如图所示.B′(4,2).【点评】本题涉及图形旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心A,旋转方向逆时针,旋转角度90°,通过画图得B′坐标.18.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=.【考点】R2:旋转的性质;LB:矩形的性质.【专题】填空题【分析】根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠3=70°,然后利用互余即可得到∠α的度数.【解答】解:如图,∵四边形ABCD为矩形,∴∠B=∠D=∠BAD=90°,∵矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′,∴∠D′=∠D=90°,∠4=α,∵∠1=∠2=110°,∴∠3=360°﹣90°﹣90°﹣110°=70°,∴∠4=90°﹣70°=20°,∴∠α=20°.故答案为:20°.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的性质.19.如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.【考点】R8:作图﹣旋转变换;Q4:作图﹣平移变换.【专题】解答题【分析】(1)将点A、B、C分别向左平移6个单位长度,得出对应点,即可得出△A1B1C1;(2)将点A、B、C分别绕点O按逆时针方向旋转180°,得出对应点,即可得出△A2B2C2.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.【点评】此题主要考查了图形的平移和旋转,根据已知得出对应点位置是解题关键.20.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:3线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.【考点】KD:全等三角形的判定与性质.【专题】解答题【分析】(1)①根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据等边三角形的性质可得∠ACD=60°,然后根据内错角相等,两直线平行解答;②根据等边三角形的性质可得AC=AD,再根据直角三角形30°角所对的直角边等于斜边的一半求出AC=AB,然后求出AC=BD,再根据等边三角形的性质求出点C到AB的距离等于点D到AC的距离,然后根据等底等高的三角形的面积相等解答;(2)根据旋转的性质可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角边”证明△ACN和△DCM全等,根据全等三角形对应边相等可得AN=DM,然后利用等底等高的三角形的面积相等证明;(3)过点D作DF1∥BE,求出四边形BEDF1是菱形,根据菱形的对边相等可得BE=DF1,然后根据等底等高的三角形的面积相等可知点F1为所求的点,过点D作DF2⊥BD,求出∠F1DF2=60°,从而得到△DF1F2是等边三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“边角边”证明△CDF1和△CDF2全等,根据全等三角形的面积相等可得点F2也是所求的点,然后在等腰△BDE 中求出BE的长,即可得解.【解答】解:(1)①∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;②∵∠B=30°,∠C=90°,∴CD=AC=AB,∴BD=AD=AC,根据等边三角形的性质,△ACD的边AC、AD上的高相等,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;故答案为:DE∥AC;S1=S2;(2)如图,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,=S△BDE;此时S△DCF1过点D作DF2⊥BD,∵∠ABC=60°,F1D∥BE,∴∠F2F1D=∠ABC=60°,∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB=×60°=30°,∴∠CDF1=180°﹣∠BCD=180°﹣30°=150°,∠CDF2=360°﹣150°﹣60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,,∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=×60°=30°,又∵BD=4,∴BE=×4÷cos30°=2÷=,∴BF1=,BF2=BF1+F1F2=+=,故BF的长为或.【点评】本题考查了全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题的关键,(3)要注意符合条件的点F有两个.21.如图,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一种实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0).得到正方形A′B′C′D′及其内部的点,其中点A、B的对应点分别为A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.【考点】9A:二元一次方程组的应用;Q3:坐标与图形变化﹣平移.【专题】解答题【分析】首先根据点A到A′,B到B′的点的坐标可得方程组;,解可得a、m、n的值,设F点的坐标为(x,y),点F′点F重合可列出方程组,再解可得F点坐标.【解答】解:由点A到A′,可得方程组;由B到B′,可得方程组,解得,设F点的坐标为(x,y),点F′点F 重合得到方程组,解得,即F(1,4).【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,根据点的坐标列出方程组.第31页(共31页)。

初二数学三单元试卷及答案

初二数学三单元试卷及答案

一、选择题(每题4分,共40分)1. 已知a=3,b=-2,则a²+b²的值为()A. 7B. 5C. 1D. 02. 下列数中,有理数是()A. √9B. √-9C. πD. 0.1010010001…3. 已知一个长方形的长为6cm,宽为4cm,则其面积为()A. 24cm²B. 30cm²C. 36cm²D. 48cm²4. 已知一个等腰三角形的底边长为8cm,腰长为6cm,则其面积为()A. 24cm²B. 27cm²C. 30cm²D. 32cm²5. 下列函数中,有最小值的是()A. y=x²B. y=x³C. y=2xD. y=|x|6. 已知x+y=5,xy=6,则x²+y²的值为()A. 19B. 17C. 21D. 237. 下列命题中,正确的是()A. 两个正数相乘,其积为负数B. 两个负数相乘,其积为正数C. 一个正数和一个负数相乘,其积为负数D. 两个零相乘,其积为负数8. 已知a、b、c是等差数列,且a+b+c=12,a+c=8,则b的值为()A. 2B. 4C. 6D. 89. 下列数中,属于无理数的是()A. √2B. 2√3C. 0.1010010001…D. √-110. 已知一个等腰直角三角形的斜边长为c,则其直角边长为()A. c/√2B. c√2C. c/2D. c²二、填空题(每题4分,共40分)11. 若a=2,b=-3,则a²-b²的值为______。

12. 已知一个正方形的边长为4cm,则其面积为______cm²。

13. 下列数中,有理数是______。

14. 已知一个等边三角形的边长为a,则其面积为______。

15. 已知一个函数y=2x+3,当x=2时,y的值为______。

初二数学第三单元测评试卷

初二数学第三单元测评试卷

一、选择题(每题3分,共30分)1. 下列各数中,是负数的是()A. -5B. 0C. 3D. -3.142. 在数轴上,点A表示的数是-2,那么点B表示的数是()A. -4B. -2C. 2D. 43. 若a < b,则下列不等式中正确的是()A. a + 3 < b + 3B. a - 3 < b - 3C. a + 3 > b + 3D. a - 3 > b - 34. 下列各数中,有理数是()A. √2B. πC. √-1D. 0.255. 已知x + 2 = 5,那么x = ()A. 3B. 2C. 4D. 16. 若a、b是实数,且a > b,则下列各式中正确的是()A. a - b > 0B. a + b > 0C. a - b < 0D. a + b < 07. 若x² - 5x + 6 = 0,则x的值为()A. 2 或 3B. 1 或 4C. 2 或 -3D. 1 或 -48. 下列各数中,无理数是()A. √9B. √16C. √25D. √-49. 若|a| = 3,那么a的值为()A. ±3B. 3C. -3D. 010. 若x² + 4x + 4 = 0,则x的值为()A. 2B. -2C. 0D. ±2二、填空题(每题3分,共30分)11. 若a = -5,b = 2,那么a + b的值为______。

12. 若a > 0,b < 0,则a - b的值为______。

13. 若|a| = 4,则a的值为______。

14. 若x² - 9 = 0,则x的值为______。

15. 若x² + 2x - 3 = 0,则x的值为______。

16. 若a、b是实数,且a² + b² = 0,则a和b的关系是______。

17. 若x² = 1,则x的值为______。

浙教版八年级数学上册第3章 测试卷附答案

浙教版八年级数学上册第3章 测试卷附答案

第3章 测试卷一、选择题(每题3分,共30分)1.下列各式中,是一元一次不等式的是( ) A .5+4>8B .2x -1C .2x ≤5D.1x -3x ≥02.若x >y ,则下列式子中错误的是( ) A .x -3>y -3 B.x 3>y3C .x +3>y +3D .-3x >-3y3.下列选项中的不等式,其解集是在如图所示的数轴上表示的是( )A .x +1<0B .x -1≤0C .x -1<0D .x -1>04.关于x 的方程4x -2m +1=5x -8的解是负数,则m 的取值范围是( ) A .m >92 B .m <0 C .m <92D .m >05.若不等式组⎩⎨⎧x -a >2,b -2x >0的解集是-1<x <2,则(a +b )2 019=( )A .1B .-1C .2 019D .-2 0196.不等式组⎩⎨⎧x <4,x >m 无解,则m 的取值范围是( )A .m <4B .m >4C .m ≥4D .m ≤47.若关于x 的不等式组⎩⎨⎧x <1,x >m -1恰有两个整数解,则m 的取值范围是( )A .-1≤m <0B .-1<m ≤0C .-1≤m ≤0D .-1<m <08.方程组⎩⎨⎧2x +y =k +1,x +2y =3的解满足0<x +y <1,则k 的取值范围是( )A .-4<k <0B .-1<k <0C .-4<k <-1D .k >-49.一次智力测验,有20道选择题,评分标准:答对1题给5分,答错1题扣2分,不答题不给分也不扣分,小明有两道题未答,他最后的总分不低于60分,则小明至少答对的题数是( )A .14道B .13道C .12道D .11道10.我们定义⎪⎪⎪⎪⎪⎪ab c d =ad -bc ,其中的运算为通常的减法和乘法,例如⎪⎪⎪⎪⎪⎪2 34 5=2×5-3×4=-2,若x 满足-2≤⎪⎪⎪⎪⎪⎪423x <2,则x 的整数值有( ) A .0个 B .1个 C .2个 D .3个 二、填空题(每题3分,共24分)11.x 与23的差的一半是正数,用不等式表示为____________.12.如图是某机器零件的设计图纸(单位:mm ),用不等式表示零件长度的合格尺寸,则合格零件长度l 的取值范围是________________.13.不等式2x +3<-1的解集为________.14.用“>”或“<”填空:若a <b <0,则-a 5________-b 5;1a ________1b ;2a -1________2b -1.15.不等式6-4x ≥3x -8的非负整数解有________个.16.某校规定期中考试成绩的40%与期末考试成绩的60%的和作为学生的学期总成绩.该校李红同学期中考试数学考了86分,她希望自己这学期数学总成绩不低于95分,她在期末考试中数学至少应考多少分?设她在期末考试中数学考x 分,可列不等式为__________________. 17.不等式组⎩⎪⎨⎪⎧3x +4≥0,12x -24≤1的所有整数解的积为________.18.已知实数x ,y 满足2x -3y =4,并且x ≥-1,y <2,现有k =x -y ,则k 的取值范围是____________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.解下列不等式或不等式组,并把它们的解集在数轴上表示出来. (1)5x +15>4x -13; (2)2x -13≤3x -46;(3)⎩⎨⎧x -5>1+2x ,①3x +2<4x ;② (4)⎩⎪⎨⎪⎧x -x -22≤1+4x 3,①1+3x >2(2x -1).②20.若式子5x +46的值不小于78-1-x3的值,求满足条件的x 的最小整数值.21.先阅读,再解题. 解不等式:2x +5x -3>0.解:根据两数相除,同号得正,异号得负,得 ①⎩⎨⎧2x +5>0,x -3>0或②⎩⎨⎧2x +5<0,x -3<0.解不等式组①,得x >3,解不等式组②,得x <-52. 所以原不等式的解集为x >3或x <-52.参照以上解题过程所反映的解题思想方法,试解不等式:2x -31+3x<0.22.若关于x ,y 的方程组⎩⎨⎧x +y =30-k ,3x +y =50+k的解都是非负数.(1)求k 的取值范围;(2)若M =3x +4y ,求M 的取值范围.23.今年某区为绿化行车道,计划购买甲、乙两种树苗共计n棵.设购买甲种树苗x棵,有关甲、乙两种树苗的信息如图所示.(1)当n=500时,①根据信息填表(用含x的式子表示):树苗类型甲种树苗乙种树苗购买树苗数量(单位:棵) x购买树苗的总费用(单位:元)②如果购买甲、乙两种树苗共用去25 600元,那么甲、乙两种树苗各购买了多少棵?(2)要使这批树苗的成活率不低于92%,且使购买这两种树苗的总费用为26 000元,求n的最大值.24.某镇水库的可用水量为12 000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只够维持居民15年的用水量.(1)年降水量为多少万立方米?每人年平均用水量为多少立方米?(2)政府号召节约用水,希望将水库的使用年限提高到25年,则该镇居民人均每年需节约多少立方米水才能实现目标?(3)某企业投入1 000万元购买设备,每天能淡化5 000 m3海水,淡化率为70%.每淡化1 m3海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/m3的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本?(结果精确到个位)答案一、1.C 2.D 3.C4.A 【点拨】方程4x -2m +1=5x -8的解为x =9-2m .由题意得9-2m <0,则m >92. 5.A 6.C7.A 【点拨】不等式组⎩⎨⎧x <1,x >m -1的解集为m -1<x <1.又∵不等式组⎩⎨⎧x <1,x >m -1恰有两个整数解,∴-2≤m -1<-1,解得-1≤m <0.8.C 【点拨】两个方程相加得3x +3y =k +4,∴x +y =k +43,又∵0<x +y <1,∴0<k +43<1,∴-4<k <-1. 9.A10.B 【点拨】根据题意得-2≤4x -6<2,解得1≤x <2,则x 的整数值是1,共1个.故选B. 二、11.12⎝ ⎛⎭⎪⎫x -23>012.39.8 mm≤l ≤40.2 mm 13.x <-2 14.>;>;< 15.3 16.86×40%+60%x ≥95 17.018.1≤k <3 【点拨】由已知条件2x -3y =4,k =x -y 可得x =3k -4,y =2k -4.又∵x ≥-1,y <2,∴⎩⎨⎧3k -4≥-1,2k -4<2,解得⎩⎨⎧k ≥1,k <3.∴k 的取值范围是1≤k <3. 三、19.解:(1)移项,得5x -4x >-13-15,所以x >-28.不等式的解集在数轴上表示如图.(2)去分母,得2(2x -1)≤3x -4,去括号、移项,得4x -3x ≤2-4,所以x ≤-2.不等式的解集在数轴上表示如图.(3)解不等式①,得x <-6;解不等式②,得x >2.不等式①②的解集在数轴上表示如图.所以原不等式组无解.(4)解不等式①,得x ≥45;解不等式②得,x <3.故原不等式组的解集为45≤x <3.不等式组的解集在数轴上表示如图.20.解:由题意得5x +46≥78-1-x 3,解得x ≥-14,故满足条件的x 的最小整数值为0.21.解:根据两数相除,同号得正,异号得负,得①⎩⎨⎧2x -3>0,1+3x <0或②⎩⎨⎧2x -3<0,1+3x >0. 不等式组①无解,解不等式组②,得-13<x <32,所以原不等式的解集为-13<x <32. 22.解:(1)解关于x ,y 的方程组 ⎩⎨⎧x +y =30-k ,3x +y =50+k ,得⎩⎨⎧x =k +10,y =20-2k , ∴⎩⎨⎧k +10≥0,20-2k ≥0,解得-10≤k ≤10. 故k 的取值范围是-10≤k ≤10.(2)M =3x +4y =3(k +10)+4(20-2k )=110-5k ,∴k =110-M 5,∴-10≤110-M 5≤10,解得60≤M ≤160,即M 的取值范围是60≤M ≤160.23.解:(1)①500-x ;50x ;80(500-x ) ②50x +80(500-x )=25 600, 解得x =480,500-x =20.答:甲种树苗购买了480棵,乙种树苗购买了20棵.(2)依题意,得90%x +95%(n -x )≥92%×n ,解得x ≤35n .又50x +80(n -x )=26 000,解得x =8n -2 6003,∴8n -2 6003≤35n ,∴n ≤4191131.∵n 为整数,∴n 的最大值为418.24.解:(1)设年降水量为x 万m 3,每人年平均用水量为y m 3.由题意, 得⎩⎨⎧12 000+20x =16×20y ,12 000+15x =(16+4)×15y ,解得⎩⎨⎧x =200,y =50.答:年降水量为200万m 3,每人年平均用水量为50 m 3. (2)设该镇居民人均每年用水量为z m 3才能实现目标. 由题意,得12 000+25×200=(16+4)×25z ,解得z =34, 50-34=16(m 3).答:该镇居民人均每年需节约16 m 3水才能实现目标.(3)设该企业n 年后能收回成本.由题意,得[3.2×5 000×70%-(1.5-0.3)×5 000]×300n 10 000-40n ≥1 000,解得n ≥81829. 答:该企业至少9年后能收回成本.解题归纳:本题考查了一元一次不等式、二元一次方程组的应用,解答本题的关键是仔细审题,建立等量关系与不等关系.八年级数学上册期中达标测试卷一、选择题(1~10小题各3分,11~16小题各2分,共42分) 1.4的算术平方根是( )A .±2B. 2C .±2D .22.下列分式的值不可能为0的是()A.4x-2B.x-2x+1C.4x-9x-2D.2x+1x3.如图,若△ABC≌△CDA,则下列结论错误的是()A.∠2=∠1 B.∠3=∠4C.∠B=∠D D.BC=DC(第3题)(第5题)4.小亮用天平称得一个鸡蛋的质量为50.47 g,用四舍五入法将50.47精确到0.1为()A.50 B.50.0C.50.4 D.50.55.如图,已知∠1=∠2,AC=AE,添加下列一个条件后仍无法确定△ABC≌△ADE的是()A.∠C=∠E B.BC=DEC.AB=AD D.∠B=∠D6.如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE =10,AC=7,则AD的长为()A.5.5 B.4 C.4.5 D.3(第6题)(第8题)7.化简x2x-1+11-x的结果是()A.x+1 B.1x+1C.x-1 D.xx-18.如图,数轴上有A,B,C,D四点,根据图中各点的位置,所表示的数与5-11最接近的点是()A .AB .BC .CD .D9.某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x 件电子产品,则可列方程为( ) A.300x =200x +30B.300x -30=200x C.300x +30=200x D.300x =200x -3010.如图,这是一个数值转换器,当输入的x 为-512时,输出的y 是( )(第10题)A .-32B.32C .-2D .211.如图,从①BC =EC ;②AC =DC ;③AB =DE ;④∠ACD =∠BCE 中任取三个为条件,余下一个为结论,则可以构成的正确说法的个数是( ) A .1B .2C .3D .4(第11题) (第12题)12.如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ ,已知PQ =5,NQ =9,则MH 的长为( ) A .3B .4C .5D .613.若△÷a 2-1a =1a -1,则“△”是( )A.a +1aB.a a -1C.a a +1D.a -1a14.以下命题的逆命题为真命题的是( )A .对顶角相等B.同位角相等,两直线平行C.若a=b,则a2=b2D.若a>0,b>0,则a2+b2>015.x2+xx2-1÷x2x2-2x+1的值可以是下列选项中的()A.2 B.1 C.0 D.-1 16.定义:对任意实数x,[x]表示不超过x的最大整数,如[3.14]=3,[1]=1,[-1.2]=-2.对65进行如下运算:①[65]=8;②[8]=2;③[2]=1,这样对65运算3次后的结果就为1.像这样,一个正整数总可以经过若干次运算后使结果为1.要使255经过运算后的结果为1,则需要运算的次数是() A.3 B.4 C.5 D.6二、填空题(17小题3分,18,19小题每空2分,共11分)17.如图,要测量河两岸相对的两点A,B间的距离,先在AB的垂线BF上取两点C,D,使BC=CD,再作出BF的垂线DE,使点A,C,E在同一条直线上,可以证明△ABC≌△EDC,从而得到AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是____________.(第17题)18.已知:7.2≈2.683,则720≈______,0.000 72≈__________.19.一艘轮船在静水中的最大航速为30 km/h,它以最大航速沿江顺流航行120 km 所用的时间与以最大航速逆流航行60 km所用的时间相同,如果设江水的流速为x km/h,根据题意可列方程为________________,江水的流速为________km/h.三、解答题(20小题8分,21~23小题各9分,24,25小题各10分,26小题12分,共67分)20.解分式方程.(1)3x-2=2-xx-2;(2)21+2x-31-2x=64x2-1.21.已知(3x+2y-14)2+2x+3y-6=0.求:(1)x+y的平方根;(2)y-x的立方根.22.有这样一道题:“计算x2-2x+1x2-1÷x-1x2+x-x的值,其中x=2 020.”甲同学把“x=2 020”错抄成“x=2 021”,但他的计算结果也是正确的.你说说这是怎么回事?23.如图,AB∥CD,AB=CD,AD,BC相交于点O,BE∥CF,BE,CF分别交AD于点E,F.求证:(1)△ABO≌△DCO;(2)BE=CF.(第23题)24.观察下列算式:①2×4×6×8+16=(2×8)2+16=16+4=20;②4×6×8×10+16=(4×10)2+16=40+4=44;③6×8×10×12+16=(6×12)2+16=72+4=76;④8×10×12×14+16=(8×14)2+16=112+4=116;….(1)根据以上规律计算: 2 016×2 018×2 020×2 022+16;(2)请你猜想2n(2n+2)(2n+4)(2n+6)+16(n为正整数)的结果(用含n的式子表示).25.下面是学习分式方程的应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题:(1)冰冰同学所列方程中的x表示______________________________________,庆庆同学所列方程中的y表示_____________________________________;(2)从两个方程中任选一个,写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.26.如图①,AB=7 cm,AC⊥AB,BD⊥AB,垂足分别为A,B,AC=5 cm.点P 在线段AB上以2 cm/s的速度由点A向点B运动,同时,点Q在射线BD上运动.它们运动的时间为t s(当点P运动至点B时停止运动,同时点Q停止运动).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等?并判断此时线段PC和线段PQ的位置关系,请分别说明理由.(2)如图②,若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,点Q的运动速度为x cm/s,其他条件不变,当点P,Q运动到某处时,有△ACP与△BPQ 全等,求出相应的x,t的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.B 6.D 【点拨】∵AB ∥EF ,∴∠A =∠E .又AB =EF ,∠B =∠F , ∴△ABC ≌△EFD (ASA). ∴AC =DE =7.∴AD =AE -DE =10-7=3. 7.A 8.D 9.C 10.A 11.B 12.B 13.A 【点拨】∵△÷a 2-1a =1a -1,∴△=1a -1·a 2-1a =a +1a .14.B 15.D 16.A二、17.ASA 18.26.83;0.026 83 19.12030+x =6030-x;10 【点拨】根据题意可得 12030+x =6030-x,解得x =10, 经检验,x =10是原方程的解, 所以江水的流速为10 km/h.三、20.解:(1)去分母,得3=2(x -2)-x .去括号,得3=2x -4-x . 移项、合并同类项,得x =7. 经检验,x =7是原方程的解.(2)去分母,得2(1-2x )-3(1+2x )=-6. 去括号,得2-4x -3-6x =-6, 移项、合并同类项,得-10x =-5. 解得x =12.经检验,x =12是原方程的增根, ∴原分式方程无解.21.解:∵(3x +2y -14)2+2x +3y -6=0,(3x +2y -14)2≥0,2x +3y -6≥0,∴3x +2y -14=0,2x +3y -6=0. 解⎩⎨⎧3x +2y -14=0,2x +3y -6=0,得⎩⎨⎧x =6,y =-2. (1)x +y =6+(-2)=4, ∴x +y 的平方根为±4=±2.(2)y -x =-8,∴y -x 的立方根为3-8=-2.22.解:∵x 2-2x +1x 2-1÷x -1x 2+x -x =(x -1)2(x +1)(x -1)·x (x +1)x -1-x =x -x =0,∴该式的结果与x 的值无关,∴把x 的值抄错,计算的结果也是正确的. 23.证明:(1)∵AB ∥CD ,∴∠A =∠D ,∠ABO =∠DCO . 在△ABO 和△DCO 中,⎩⎨⎧∠A =∠D ,AB =CD ,∠ABO =∠DCO ,∴△ABO ≌△DCO (ASA). (2)∵△ABO ≌△DCO , ∴BO =CO . ∵BE ∥CF ,∴∠OBE =∠OCF ,∠OEB =∠OFC . 在△OBE 和△OCF 中,⎩⎨⎧∠OBE =∠OCF ,∠OEB =∠OFC ,OB =OC ,∴△OBE ≌△OCF (AAS),∴BE =CF .24.解:(1) 2 016×2 018×2 020×2 022+16 =(2 016×2 022)2+16=4 076 352+4=4 076 356. (2)2n (2n +2)(2n +4)(2n +6)+16=2n (2n +6)+4=4n 2+12n +4.25.解:(1)小红步行的速度;小红步行的时间(2)冰冰用的等量关系:小红乘公共汽车的时间+小红步行的时间=小红上学路上的时间.庆庆用的等量关系:公共汽车的速度=9×小红步行的速度.(上述等量关系,任选一个就可以)(3)选冰冰的方程:38-29x +2x =1,去分母,得36+18=9x ,解得x =6,经检验,x =6是原分式方程的解.答:小红步行的速度是6 km/h ;选庆庆的方程:38-21-y=9×2y , 去分母,得36y =18(1-y ),解得y =13,经检验,y =13是原分式方程的解, ∴小红步行的速度是2÷13=6(km/h).答:小红步行的速度是6 km/h.(对应(2)中所选方程解答问题即可)26.解:(1)△ACP ≌△BPQ ,PC ⊥PQ .理由如下:∵AC ⊥AB ,BD ⊥AB ,∴∠A =∠B =90°.由题意知AP =BQ =2 cm ,∵AB =7 cm ,∴BP =5 cm ,∴BP =AC .在△ACP 和△BPQ 中,∵⎩⎨⎧AP =BQ ,∠A =∠B ,AC =BP ,∴△ACP ≌△BPQ .∴∠C =∠BPQ .易知∠C +∠APC =90°,∴∠APC +∠BPQ =90°,∴∠CPQ =90°,∴PC ⊥PQ .(2)由题意可知AP =2t cm ,BP =(7-2t )cm ,BQ =xt cm. ①若△ACP ≌△BPQ ,则AC =BP ,AP =BQ ,∴5=7-2t ,2t =xt ,解得x =2,t =1;②若△ACP ≌△BQP ,则AC =BQ ,AP =BP ,∴5=xt ,2t =7-2t ,解得x =207,t =74.综上,当△ACP 与△BPQ 全等时,x =2,t =1或x =207,t =74.。

2017年八年级数学第3单元综合测试卷(Word版,含答案)

2017年八年级数学第3单元综合测试卷(Word版,含答案)

第三章位置与坐标单元测试一、单选题(共10题;共30分)1、已知直角坐标系内有一点M(a,b),且ab=0,则点M的位置一定在()A、原点上B、x轴上C、y轴上D、坐标轴上2、已知点A(a,3)和点B(4,b)关于y轴对称,则a+b的值是()A、1B、-1C、7D、-73、已知点P关于x轴的对称点为(a,-2),关于y轴对称点为(1,b),那么点P的坐标为()A、(a, -b)B、(b, -a)C、(-2,1)D、(-1,2)4、已知点P(-2,1),那么点P关于x轴对称的点P′的坐标是()A、(-2,1)B、(-1,2)C、(2,1)D、(-2,-1)5、在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于原点对称,则a+b的值为()A、33B、-33C、-7D、76、已知点P(4,3),则点P到y轴的距离为()A、4B、4C、3D、37、在平面直角坐标系中,等边三角形OAB关于x轴对称的图形是等边三角形OA′B′.若已知点A的坐标为(6,0),则点B′的横坐标是()A、6B、-6C、3D、-38、如图,将一张正六边形纸片的阴影部分剪下,拼成一个四边形,若拼成的四边形的面积为2a,则纸片的剩余部分的面积为()A、5aB、4aC、3aD、2a9、下列各点中位于第四象限的点是()A、(3,4)B、(﹣3,4)C、(3,﹣4)D、(﹣3,﹣4)10、已知点A(m,﹣2),点B(3,m﹣1),且直线AB∥x轴,则m的值为()A、﹣1B、1C、﹣3D、3二、填空题(共8题;共35分)11、点(﹣2,﹣3)关于直线x=﹣1的对称点的坐标为________ .12、已知点A(a,5)与点A′(﹣2,b)关于经过点(3,0)且平行于y轴的直线对称,那么a+b=________ .13、一只蚂蚁由(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是 ________ .14、已知点P在第二象限,点P到x轴的距离是2,到y轴的距离是3,那么点P的坐标是________15、点A(﹣2a,a﹣1)在x轴上,则A点的坐标是________,A点关于y轴的对称点的坐标是________.16、点P(﹣2,)在第________象限.17、已知点A(0,0),B(3,0),点C在y轴上,且△ABC的面积是8,则点C的坐标为________.18、如图,在所给的平面直角坐标系中描出下列各点:①点A在x轴上方,y轴左侧,距离x轴4个单位长度,距离y轴2个单位长度;②点B在x轴下方,y轴右侧,距离x、y轴都是3个单位长度;③点C在y轴上,位于原点下方,距离原点2个单位长度;④点D在x轴上,位于原点右侧,距离原点4个单位长度.填空:点A的坐标为________;点B的坐标为________;点B位于第________象限内;点C的坐标为________;点D的坐标为________;线段CD的长度为________.三、解答题(共6题;共36分)19、已知点P(a , b)在第二象限,且|a|=3,|b|=8,求点P的坐标20、如图,A、B两点的坐标分别是(2,﹣3)、(﹣4,﹣3).(1)请你确定P(4,3)的位置;(2)请你写出点Q的坐标.21、如图,某小区有大米产品加工点3个(M1,M2,M3),大豆产品加工点4个(D1,D2,D3,D4),为了加强食品安全监督,政府要求对食品加工点进行网格化管理,管理员绘制了坐标网格和建立了平面直角坐标系(隐藏),把图中的大米加工点用坐标表示为M1(﹣5,﹣1),M2(4,4),M3(5,﹣4).(1)请你画出管理员所建立的平面直角坐标系;(2)类似地,在所画平面直坐标系内,用坐标表示出大豆产品加工点的位置.22、如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).(3)△ABC的面积为.23、在图中建立适当的直角坐标系表示图中各景点位置.A 狮虎山B 猴山C 珍禽馆D 熊猫馆E 大山F 游乐场G 长廊.24、多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(﹣3,﹣3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?答案解析一、单选题1、【答案】 D【考点】点的坐标【解析】【分析】根据坐标轴上的点的特征:至少一个坐标为0解答.【解答】若ab=0,则a=0,或b=0,或a,b均为0.当a=0,M在y轴上;当b=0,M在x轴上;当a,b均为0,M在原点;即点M在坐标轴上.故选D.【点评】本题主要考查了点在坐标轴上时点的符号特点,注意考虑问题要全面,坐标轴上的点的特点要记清2、【答案】 B【考点】关于x轴、y轴对称的点的坐标【解析】【分析】首先根据平面直角坐标系中两个关于y 轴成轴对称的点的坐标特点,分别求出a、b的值,然后代入计算即可.【解答】∵点A(a,3)和点B(4,b)关于y轴对称,∴a=-4,b=3,∴a+b=-4+3=-1.故选B.【点评】本题主要考查了平面直角坐标系中关于y轴成轴对称的两个点的坐标特点:纵坐标相等,横坐标互为相反数.3、【答案】 D【考点】关于x轴、y轴对称的点的坐标【解析】【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,分别求出点P的坐标的两种形式,依此列出方程(组),求得a、b的值,从而得到点P的坐标.【解答】∵点P关于x轴的对称点为(a,-2),∴点P的坐标为(a,2),∵关于y轴对称点为(1,b),∴点P的坐标为(-1,b),则a=-1,b=2.∴点P的坐标为(-1,2).故选D.【点评】解决本题的关键是掌握好对称点的坐标规律,及根据点P的坐标的两种形式,列出方程(组).4、【答案】 D【考点】关于x轴、y轴对称的点的坐标【解析】【分析】关于x轴对称的点的横坐标相同,纵坐标互为相反数。

北师大版八年级数学下册第三章综合素质评价 附答案 (2)

北师大版八年级数学下册第三章综合素质评价 附答案 (2)

北师大版八年级数学下册第三章综合素质评价一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.数学来源于生活,下列生活中的运动属于旋转的是()A.国旗上升的过程B.球场上滚动的足球C.工作中的风力发电机叶片D.传输带运输的东西2.下列四个图形中,既是轴对称图形,又是中心对称图形的是()3.【2022·汕头澄海区期末】将点P(-3,4)先向右平移4个单位,再向下平移3个单位得到的点的坐标是()A.(-7,1) B.(-7,7) C.(1,7) D.(1,1)4.如图,在正方形网格中,△EFG绕某一点旋转某一角度得到△RPQ,则旋转中心可能是()A.点A B.点B C.点C D.点D5.如图,点A(0,8),△AOB沿x轴向右平移后得到△O′A′B′,点A的对应点A′在直线y=45x上,则△AOB向右平移的长度为()A.241 B.10 C.8 D.66.如图,在△ABC中,∠BAC=138°,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′刚好落在BC边上,且AB′=CB′,则∠C的度数为()A.16°B.15°C.14°D.13°7.如图,将等边三角形OAB放在平面直角坐标系中,A点坐标为(1,0),将△OAB 绕点O逆时针旋转60°,则旋转后点B的对应点B′的坐标为()A.(-12,32) B.(-1,12) C.(-32,32) D.(-32,12)8.如图,在平面直角坐标系中,点A,B的坐标分别为(2,0),(0,1),将线段AB 平移至A′B′,那么a+b的值为()A.2 B.3 C.4 D.59.如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=1,将△ABC绕点C按逆时针方向旋转得到△A′B′C,此时点A′恰好在AB边上,连接BB′,则△A′BB′的周长为()A. 3 B.1+ 3 C.2+ 3 D.3+ 310.如图,矩形ABCD的顶点A,B分别在x轴,y轴上,OA=OB=2,AD=42,将矩形ABCD绕点O顺时针旋转,每次旋转90°,则第2 023次旋转结束时,点C的坐标为()A.(6,4) B.(-6,-4) C.(4,-6) D.(-4,6)二、填空题:本大题共5小题,每小题3分,共15分.11.在平面直角坐标系中,点A的坐标为(m+1,2m-4),将点A向上平移两个单位后刚好落在x轴上,则m的值为______________.12.如图,将△ABC沿CB向左平移3 cm得到△DEF,AB,DF相交于点G,如果△ABC的周长是12 cm,那么四边形ACED的周长为______________.13.如图是一块长方形场地ABCD,长AB=a米,宽AD=b米,A、B两处入口的小路宽都为1米,两小路汇合处路宽为2米,其余部分种植草坪,则草坪面积为______________平方米.14.如图,在平面直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4、…,则△2 023的直角顶点的坐标为______________.15.如图,在△ABC中,∠ACB=50°,将△ABC绕点C逆时针旋转得到△DEC(点D、E分别与点A、B对应),如果∠ACD与∠ACE的度数之比为32,当旋转角大于0°且小于180°时,旋转角的度数为______________.三、解答题(一):本大题共3小题,每小题8分,共24分.16.请你将下面的图形通过平移、旋转或轴对称,设计出一幅图案.17.如图,△ABC绕着顶点A逆时针旋转得到△ADE,∠B=40°,∠E=60°,AB∥DE,求∠DAC的度数.18.如图,四边形ABCD各顶点的坐标分别为A(-3,-4)、B(0,-3)、C(-1,-1),D(-3,-2).画出将四边形ABCD先向右平移3个单位长度,再向上平移3个单位长度得到的四边形A′B′C′D′,并写出点C′的坐标.四、解答题(二):本大题共3小题,每小题9分,共27分.19.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-1,0)、B(-3,3)、C(-4,-1)(每个方格的边长均为1个单位长度).(1)画出△ABC关于原点对称的图形△A1B1C1,并写出点C1的坐标;(2)画出△ABC绕点O逆时针旋转90°后得到的图形△A2B2C2,并写出点B2的坐标;(3)写出△A1B1C1经过怎样的旋转可直接得到△A2B2C2.(请将(1)(2)小问的图都作在所给图中)20.如图,在Rt△ABC中,∠ACB=90°,AC=3,AB=5,将△ABC沿AB边所在直线向右平移3个单位长度,记平移后得到的三角形为△DEF.(1)求DB的长;(2)求此时梯形CAEF的面积.21.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB 边上时,(1)猜想线段DE与AC的位置关系是____________,并加以证明;(2)设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是____________,并加以证明.五、解答题(三):本大题共2小题,每小题12分,共24分.22.数学兴趣小组活动时,提出了如下问题:如图1,在△ABC中,若AB=5,AC =3,求BC边上的中线AD的取值范围.解决方法:延长AD到E,使DE=AD.再连接BE(或将△ACD绕点D逆时针旋转180°得到△EBD).把AB,AC,2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.感悟:解题时,条件中若出现“中点”“中线”的字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.迁移应用:请参考上述解题方法,解答下列问题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF 交AC于点F,连接EF.(1)求证:BE+CF>EF;(2)若∠A=90°,探索线段BE,CF,EF之间的等量关系,并加以证明.23.如图,在△ABC中,∠BAC=90°,AB=AC,边BA绕点B顺时针旋转α得到线段BP,连接P A,PC,过点P作PD⊥AC于点D.(1)如图1,若α=60°,求∠DPC的度数;(2)如图2,若α=30°,求∠DPC的度数;(3)如图3,若α=150°,依题意补全图,并求∠DPC的度数.答案一、1.C2.D3.D4.C5.B6.C7.A8.A9.D点拨:∵∠ACB=90°,∠A=60°,AC=1,∴BC=3AC=3,AB=2AC=2,∵△ABC绕点C按逆时针方向旋转得到△A′B′C,此时点A′恰好在AB边上,∴CA=CA′,CB=CB′,AB=A′B′,∠ACA′=∠BCB′,∵CA=CA′,∠A=60°,∴△CAA′为等边三角形,∴∠ACA′=60°,AA′=AC=1,∴∠BCB′=60°,A′B=AB-AA′=1,∴△CBB′为等边三角形,∴BB′=CB=3,∴△A′BB′的周长为A′B+A′B′+BB′=1+2+3=3+ 3.10.B点拨:如图,过点C作CE⊥y轴于点E,连接OC,∵OA=OB=2,∴∠ABO=∠BAO=45°,∵∠ABC=90°,∴∠CBE=45°,∵BC=AD=42,∴CE=BE=4,∴OE=OB+BE=6,∴C(-4,6),∵矩形ABCD绕点O顺时针旋转,每次旋转90°,则第1次旋转结束时,点C的坐标为(6,4);则第2次旋转结束时,点C的坐标为(4,-6);则第3次旋转结束时,点C的坐标为(-6,-4);则第4次旋转结束时,点C的坐标为(-4,6);….发现规律:旋转4次为一个循环,∵2 023÷4=505……3,则第2 023次旋转结束时,点C的坐标为(-6,-4).二、11.112.18 cm13.(ab-a-2b+2)14.(8 088,0)点拨:∵点A(-3,0),B(0,4),∴AB=32+42=5.由图可知,△OAB每旋转三次为一个循环,一个循环前进的长度为4+5+3=12.∵2 023÷3=674……1,∴△2 023的直角顶点是第675个循环组的第一个三角形的直角顶点,其与第674个循环组的最后一个三角形的直角顶点坐标相同.∵674×12=8 088,∴△2 023的直角顶点的坐标为(8 088,0).15.30°或150°点拨:当旋转角小于50°时,如图,旋转角为∠BCE.∵∠ACB=50°,△ABC绕点C逆时针旋转得到△DEC,∴∠DCE=50°,∵∠ACD与∠ACE的度数之比为3∶2,∴∠ACE=23+2×50°=20°,∴∠BCE=∠ACB-∠ACE=30°;当旋转角大于50°时,如图,∵∠ACD与∠ACE的度数之比为3∶2,∠DCE=∠ACB=50°,∴∠ACE=2∠DCE=100°,∴∠BCE=∠ACB+∠ACE=150°.三、16.解:如图所示.(答案不唯一)17.解:∵△ABC绕着顶点A逆时针旋转得到△ADE,∴△ABC≌△ADE,∴∠BCA=∠E=60°,∠D=∠B=40°,∴∠BAC=180°-40°-60°=80°,∵AB∥DE,∴∠BAD=∠D=40°,∴∠DAC=∠BAC-∠BAD=80°-40°=40°,∴∠DAC的度数为40°.18.解:如图所示,四边形A′B′C′D′即为所求,点C′的坐标为(2,2).四、19.解:(1)如图,△A1B1C1即为所求,点C1的坐标为(4,1);(2)如图,△A2B2C2即为所求,点B2的坐标为(-3,-3);(3)△A1B1C1绕点O顺时针旋转90°后得到△A2B2C2.(答案不唯一) 20.解:(1)∵将△ABC沿AB边所在直线向右平移3个单位长度得到△DEF,∴AD=3,∵AB=5,∴DB=AB-AD=2;(2)如图,作CG⊥AB于点G,在△ACB中,∠ACB=90°,AC=3,AB=5,由勾股定理得BC=AB2-AC2=4,由三角形的面积公式得CG·AB=AC·BC,∴3×4=5×CG,∴CG=12 5,∵将△ABC沿AB边所在直线向右平移3个单位长度得到△DEF,∴CF=BE=3,∴梯形CAEF的面积为12(CF+AE)×CG=12×(3+5+3)×125=665.21.解:(1)DE∥AC(或填平行)证明:∵△DEC绕点C旋转,点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°-∠B=90°-30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;(2)S1=S2证明:∵∠B=30°,∠ACB=90°,∴CD=AC=12AB,由(1)可得∠DCB=30°,∴∠B=∠DCB,∴BD=CD=12AB,∴BD=AD=AC,根据等边三角形的性质可知,△ACD的边AC、AD上的高相等,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2.五、22.(1)证明:如图,延长FD到G,使得DG=DF,连接BG,EG(或把△CFD绕点D逆时针旋转180°得到△BGD).易得△CFD≌△BGD,∴CF=BG,又∵DE⊥DF,∴ED垂直平分GF,∴EF=EG.在△BEG中,BE+BG>EG,即BE+CF>EF;(2)解:BE2+CF2=EF2.证明:∵∠A=90°,∴∠EBC+∠FCB=90°,由(1)知∠FCD=∠DBG,EF=EG,∴∠EBC+∠DBG=90°,即∠EBG=90°,∴在Rt△EBG中,BE2+BG2=EG2,∴BE2+CF2=EF2.23.解:(1)∵边BA绕点B顺时针旋转α得到线段BP,∴BA=BP,∵α=60°,∴△ABP是等边三角形,∴∠BAP=60°,AP=AB=AC,又∵∠BAC=90°,∴∠P AC=30°,∴∠ACP=75°,∵PD⊥AC于点D,∴∠DPC=15°;(2)如图1,过点A作AE⊥BP于点E,∵∠1=30°,∴∠BAE=60°,∵BA=BP,∴∠BAP=∠BP A=12×(180°-∠1)=75°,∴∠2=∠BAP-∠BAE=75°-60°=15°,又∵∠3=∠BAC-∠BAP=90°-75°=15°,PD⊥AC,∴∠APD=75°,∴∠APD=∠APB=75°,∴P A平分∠BPD,又∵BP⊥AE,PD⊥AD,∴AE=AD,又∵在Rt△ABE中,∠1=30°,∴AE=12AB=12AC,∴AD=12AC=DC,∴∠DPC=∠APD=75°;(3)如图2,过点A作AE⊥BP,交PB的延长线于点E. ∴∠AEB=90°,∵∠ABP=150°,∴∠1=30°,∠BAE=60°,又∵BA=BP,∴∠2=∠3=12∠1=15°,∴∠P AE=75°,∵∠BAC=90°,∴∠4=75°,∴∠P AE=∠4,∵PD⊥AC于点D,∴∠AEP=∠ADP=90°,在△APE和△APD中,∵∠AEP=∠ADP,∠P AE=∠4,P A=P A,∴△APE≌△APD,∴AE=AD,在Rt△ABE中,∠1=30°,∴AE=12AB,又∵AB=AC,∴AE=AD=12AB=12AC,∴AD=CD,又∵∠ADP=∠CDP=90°,∴PD垂直平分AC,∴P A=PC,∴∠DCP=∠4=75°,∴∠DPC=15°.。

北师大版八年级数学上册第三章综合素质评价试卷 附答案 (1)

北师大版八年级数学上册第三章综合素质评价试卷 附答案 (1)

北师大版八年级数学上册第三章综合素质评价一、选择题(每题3分,共30分)1.云南是一个神奇美丽的地方,这里有美丽的边疆、美丽的城市、美丽的村庄、美丽的风情,云南的省会城市昆明更有着四季如春的美誉,下列表示昆明市地理位置最合理的是( )A.在中国西南地区B.在云贵高原的中部C.距离北京2 600千米D.东经102°、北纬24°2.如图,科考队探测到目标位于图中阴影区域内,则目标的坐标可能是( ) A.(20,30)B.(15,-28)C.(-40,-10)D.(-35,19)例题】某镇初级中学在镇政府的南偏西60°方向上,且距离镇3.【母题:教材P54政府1 500 m,则如图所示的表示法正确的是( )4.【2023·济宁任城区校级月考】已知点A(m-1,3)与点B(2,n-1)关于x轴对称,则m+n的值为( )A.0 B.1 C.-1 D.3 5.【2023·天津中学月考】已知点A(-1,-4),B(-1,3),则( ) A.点A,B关于x轴对称B.点A,B关于y轴对称C.直线AB平行于y轴D.直线AB垂直于y轴6.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为( ) A.2 B.-4 C.-1 D.37.若点P(1,a)与点Q(b,2)关于x轴对称,则代数式(a+b)2 023的值为( ) A.-1 B.1 C.-2 D.28.【2023·常州实验中学月考】如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E 的坐标是( )A.(2,-3)B.(2,3)C.(3,2)D.(3,-2)9.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是( )A.(3,3) B.(3,-3)C.(6,-6) D.(3,3)或(6,-6)10.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2,…,第n次移动到点A n,则点A2 024的坐标是( )A.(1 011,0) B.(1 011,1) C.(1 012,0) D.(1 012,1) 二、填空题(每题3分,共24分)11.点(0,-2)在________轴上.12.点(4,5)关于x轴对称的点的坐标为__________.13.一个英文单词的字母顺序分别对应如图中的有序数对:(5,3),(6,3),(7,3),(4,1),(4,4),则这个英文单词翻译成中文为__________.14.已知点A,B,C的坐标分别为(2,4),(6,0),(8,0),则△ABC的面积是________.15.【母题:教材P71复习题T1(3)】若点P到x轴的距离为4,到y轴的距离为5,且点P在y轴的左侧,则点P的坐标为________________.16.已知点N的坐标为(a,a-1),则点N一定不在第________象限.17.【2023·苏州一中月考】如图,一束光线从点A(3,3)出发,经过y轴上的点C 反射后经过点B(1,0),则光线从点A到点B经过的路径长为________.18.【规律探索题】【2022·毕节】如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位长度,再向右平移1个单位长度,得到点A1(1,1);把点A1向上平移2个单位长度,再向左平移2个单位长度,得到点A2(-1,3);把点A2向下平移3个单位长度,再向左平移3个单位长度,得到点A3(-4,0);把点A3向下平移4个单位长度,再向右平移4个单位长度,得到点A4(0,-4),…;按此做法进行下去,则点A10的坐标为________.三、解答题(19,23,24题每题12分,其余每题10分,共66分)19.【母题:教材P60随堂练习】2023年亚运会将在杭州举行,如图是杭州李华同学家附近的一些地方.(1)根据图中所建立的平面直角坐标系,写出学校、邮局的坐标.(2)某星期日早晨,李华同学从家里出发,沿着(-2,-1)→(-1,-2)→(1,-2)→(2,-1)→(1,-1)→(1,3)→(-1,0)→(0,-1)→(-2,-1)的路线转了一圈,依次写出他路上经过的地方.(3)连接(2)中各点,所形成的路线构成了什么图形?20.已知点P (2m -6,m +2).(1)若点P 在y 轴上,则点P 的坐标为__________; (2)若点P 的纵坐标比横坐标大6,则点P 在第几象限?21.若点P ,Q 的坐标分别是(x 1,y 1),(x 2,y 2),则线段PQ 的中点坐标为⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22.如图,已知点A ,B ,C 的坐标分别为(-5,0),(3,0),(1,4),利用上述结论分别求出线段AC ,BC 的中点D ,E 的坐标,并判断DE 与AB 的位置关系.22.【2023·吉林一中月考】已知点P (2x ,3x -1)是平面直角坐标系内的点. (1)若点P 在第三象限,且到两坐标轴的距离和为11,求x 的值;(2)已知点A (3,-1),点B (-5,-1),点P 在直线AB 的上方,且到直线AB 的距离为5,求x 的值.23.如图,在平面直角坐标系中,AB∥CD∥x轴,BC∥DE∥y轴,且AB=CD=4,OA=5,DE=2,动点P从点A出发,沿A→B→C的路线运动到点C停止;动点Q从点O出发,沿O→E→D的路线运动到点D停止.若P,Q两点同时出发,且P,Q运动的速度均为每秒一个单位长度.(1)直接写出B,C,D三个点的坐标;(2)当P,Q两点出发6 s时,试求三角形POQ的面积.24.【存在性问题】已知A(-3,0),C(0,4),点B在x轴上,且AB=4.(1)求点B的坐标.(2)在y轴上是否存在点P,使得以A,C,P为顶点的三角形的面积为9?若存在,求出点P的坐标;若不存在,请说明理由.(3)在y轴上是否存在点Q,使得△ACQ是等腰三角形?若存在,请画出点Q的位置,并直接写出点Q的坐标;若不存在,请说明理由.答案一、1.D 【提示】表示昆明市地理位置最合理的是东经102°、北纬24°. 2.D 【提示】图中阴影区域在第二象限,故选D.3.A 【提示】A.镇初级中学在镇政府的南偏西60°方向上,且距离镇政府1 500 m,故本选项符合题意;B.镇初级中学在镇政府的南偏西30°方向上,且距离镇政府1 500 m,故本选项不符合题意;C.镇政府在镇初级中学的南偏西60°方向上,且距离镇初级中学1 500 m,故本选项不符合题意;D.镇政府在镇初级中学的南偏西30°方向上,且距离镇初级中学1 500 m,故本选项不符合题意.故选A.4.B 【提示】因为点A(m-1,3)与点B(2,n-1)关于x轴对称,所以m-1=2,n-1=-3,解得m=3,n=-2,所以m+n=1.5.C 【提示】把A(-1,-4),B(-1,3)在平面直角坐标系中画出,并连接AB,可知AB平行于y轴.6.C 【提示】因为直线AB∥x轴,所以A、B两点的纵坐标相等,所以-2=m -1,解得m=-1.7.A 【提示】因为P(1,a)与Q(b,2)关于x轴对称,所以b=1,a=-2,所以(a+b)2 023=(-2+1)2 023=-1.8.C 【提示】因为点A的坐标为(0,a),所以点A在该平面直角坐标系的y轴上.因为点C,D的坐标分别为(b,m),(c,m),所以点C,D关于y轴对称.因为正五边形ABCDE是轴对称图形,所以该平面直角坐标系经过点A的y轴是正五边形ABCDE的一条对称轴,所以点B,E也关于y轴对称.因为点B的坐标为(-3,2),所以点E的坐标为(3,2).9.D 【提示】因为点P到两坐标轴的距离相等,所以|2-a|=|3a+6|,所以2-a=3a+6或2-a=-(3a+6),解得a=-1或a=-4,所以点P 的坐标为 (3,3)或(6,-6).10.C 【提示】A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),A7(3,0),A8(4,0),…,2 024÷4=506,所以A2 024的坐标为(506×2,0),则A2 024的坐标是(1 012,0).二、11.y【提示】横坐标为0,所以点(0,-2)在y轴上.12.(4,-5) 【提示】因为关于x轴对称的点横坐标变,纵坐标互为相反数,所以点(4,5)关于x轴对称的点的坐标为(4,-5).13.学习【提示】根据有序数对对应的字母即可求解.14.4 【提示】把点A,B,C在平面直角坐标系中标出来,可知BC=2,△ABC的边BC上的高为4,所以△ABC的面积为12×4×2=4.15.(-5,4)或(-5,-4) 【提示】由点P到两坐标轴的距离可知,点P有4个.因为点P在y轴的左侧,所以点P的坐标为(-5,4)或(-5,-4).16.二【提示】当a>1时,a-1是正数,所以点P在第一象限,当a<1时,a-1为负数,所以点P在第三象限或第四象限.故点N一定不在第二象限.17.5 【提示】作点A关于y轴的对称点A′(-3,3),过A′作垂直于x轴于点D,连接A′,D,B构成△A′DB,所以A′D=3,DB=4,所以A′B=A′D2+BD2=5,即光线从点A到点B经过的路径长为5.18.(-1,11) 【提示】由题图可知A5(5,1);将点A5向上平移6个单位长度,再向左平移6个单位长度,可得A6(-1,7);将点A6向下平移7个单位长度,再向左平移7个单位长度,可得A7(-8,0);将点A7向下平移8个单位长度,再向右平移8个单位长度,可得A8(0,-8);将点A8向上平移9个单位长度,再向右平移9个单位长度,可得A9(9,1);将点A9向上平移10个单位长度,再向左平移10个单位长度,可得A10(-1,11).三、19.【解】(1)学校的坐标为(1,3),邮局的坐标为(0,-1).(2)商店、公园、汽车站、水果店、学校、娱乐城、邮局.(3)图略,所形成的路线构成了一条帆船图形.20.【解】(1)(0,5)(2)根据题意,得2m -6+6=m +2,解得m =2. 所以点P 的坐标为(-2,4). 所以点P 在第二象限.21.【解】由题中所给结论及点A ,B ,C 的坐标分别为(-5,0),(3,0),(1,4),得点D (-2,2),E (2,2).因为点D ,E 的纵坐标相等,且不为0, 所以DE ∥x 轴. 又因为AB 在x 轴上, 所以DE ∥AB .22.【解】(1)因为点P 在第三象限,所以点P 到x 轴的距离为1-3x ,到y 轴的距离为-2x .因为点P 到两坐标轴的距离和为11, 所以1-3x -2x =11,解得x =-2. (2)易知直线AB ∥x 轴.由点P 在直线AB 的上方且到直线AB 的距离为5,得3x -1-(-1)=5,解得x =53. 23.【解】(1)B (4,5),C (4,2),D (8,2).(2)当P ,Q 两点出发6 s 时,P 点的坐标为(4,3),Q 点的坐标为(6,0), 所以S 三角形POQ =12×6×3=9.24.【解】(1)因为点B 在x 轴上,所以设点B 的坐标为(x ,0).因为A (-3,0),AB =4, 所以|x -(-3)|=4, 解得x =-7或x =1.所以点B 的坐标为(-7,0)或(1,0).(2)在y 轴上存在点P ,使得以A ,C ,P 为顶点的三角形的面积为9.设点P 的坐标为(0,y ),当点P 在点C 的上方时,S △ACP =(y -4)×|-3|2=9,解得y =10;当点P 在点C 的下方时,S △ACP =(4-y )×|-3|2=9,解得y =-2.综上所述,点P 的坐标为(0,10)或(0,-2). (3)在y 轴上存在点Q ,使得△ACQ 是等腰三角形.如图,点Q 的坐标为(0,9)或(0,-4)或⎝⎛⎭⎪⎫0,78或(0,-1).。

部编版八年级下册数学 第三单元检测卷及答案

部编版八年级下册数学 第三单元检测卷及答案

部编版八年级下册数学第三单元检测卷及答案一、选择题(每小题3分,共30分)1. 解 $4x + 2 = 10$ 得:A. $x=2$B. $x=-2$C. $x=\dfrac{1}{2}$D. $x=-\dfrac{1}{2}$2. 下列哪个三角形一定是等腰三角形?A. $\triangle ABC$,$AB = BC$,$\angle ABC=60^{\circ}$B. $\triangle DEF$,$DE = 2DF$,$\angle DEF=45^{\circ}$C. $\triangle GHI$,$GH=HI$,$\angle GHI=120^{\circ}$D. $\triangle JKL$,$JK =3KL$,$\angle JSK=30^{\circ}$3. 若 $x>0$,则 $\left( \dfrac{1}{2} \right) \, \log_{10}x=\,\_\_\_\_$A. $\log_{10} \sqrt{x}$B. $\log_{10} \dfrac{1}{\sqrt{x}}$C. $\log_{10} 2 + \log_{10} x$D. $\log_{10} 2 - \log_{10} x$4. 已知 $a$,$b$ 同号,且 $\dfrac{a}{b}<1$,则下列说法正确的是:A. $a$,$b$ 都小于 $0$。

B. $a$ 大于 $0$,$b$ 小于 $0$。

C. $a$ 小于 $0$,$b$ 大于 $0$。

D. $a$,$b$ 都大于 $0$。

5. 若 $a\times 2^x \times 5^y = \dfrac{1}{100}$,且 $x+y=3$,则 $a=$A. $\dfrac{1}{5}$B. $\dfrac{1}{10}$C. $- \dfrac{1}{10}$D. $- \dfrac{1}{5}$6. 如果 $\triangle ABC$ 的三个顶点 $A(-2,5)$,$B(4,3)$,$C(-1,0)$,则角 $B$ 对应的是哪个顶点?A. $A$B. $B$C. $C$7. 下列哪条直线不过点 $(1,3)$?A. $5x-3y=12$B. $-3x-2y=-9$C. $2y=-5-x$D. $y=\dfrac{1}{2}x+ \dfrac{5}{2}$8. 将 $\dfrac{1}{10}$ 变成百分数,结果是A. $0.1 \%$B. $1 \%$C. $10 \%$D. $100 \%$9. 作一条直线,使其上有且仅有两个点与直线 $y=2x-1$ 的距离相等,且这两个点的横坐标之差为 $6$,那么这条直线的解析式是A. $y=-2x+5$B. $y=\dfrac{1}{2}x-1$C. $y=2x-7$D. $y=\dfrac{1}{2}x+1$10. 设 $a$,$b$ 是互质的正整数,$a>b,a+b<10$,则 $a$ 和$b$ 的可能取值个数是A. $2$B. $3$C. $4$D. $5$二、填空题(每小题4分,共40分)11. 方程的解是 $\dfrac{2}{3}$,那么方程 $3x\, - \, 2 \, = \, 0$ 的解是\underline{\hspace{1cm}}.12. 锐角三角函数 $\sin$ 的值域是\underline{\hspace{1cm}}.13. 把 $3ab-5a^2b^2$ 化成 $a$,$b$ 的和或差的形式得\underline{\hspace{1cm}}.14. 能够用三线测量法测得的物体高度有\underline{\hspace{1cm}}.15. 若 $\log_{10}3=0.4771$,$\log_{10}5=0.6989$,则$\log_{5}3=$\underline{\hspace{1cm}}.16. 计算:$1+\dfrac{1}{3}+\dfrac{1}{5}+\cdots+\dfrac{1}{31}$=\underline{\hsp ace{1cm}}.17. 一架直升机在$150$ 米高空飞行时,发现正在下降的石头,在石头掉落前 $7$ 秒直升机经过了石头,求石头从何处落下,假设石头从自由落体运动,取 $g=10m/s^2$,答案保留 $1$ 位小数,单位:米\underline{\hspace{1cm}}.18. 如图,在平面直角坐标系 xy 面内,点 $O$ 是两条互相垂直的坐标轴的交点,$OABC$ 为一单位正方形,$D$,$E$,$F$ 分别是线段 $OA$,$OC$,$BC$ 上的点,则 $\triangle DEF$ 的面积为\underline{\hspace{1cm}}.19. 边长为 $2$ 的正方形三角纸,两直角边 $b$ 和 $c$ 之差为$1.5$,则其斜边长为\underline{\hspace{1cm}}.20. 设等差数列 $\{a_n\}$ 的前 $n$ 项和为 $S_n$,则当$n=4$ 时,此数列的通项公式为 $a_n=$\underline{\hspace{1cm}},$S_7=$\underline{\hspace{1cm}}.三、解答题(每空格2分,小题共20分)21. 解不等式 $2x-5 \leq 3x+2<4-2x$.22. 解直角三角形 $\triangle ABC$,已知 $\sin AB=\dfrac{3}{5}$,$\tan A= \dfrac{3}{4}$,求 $\cos BC$.23. 根据图形,用三线测量法测得物体高度为 $h$,测量时两三角仪分别丈量角度为 $10^{\circ}$ 和 $70^{\circ}$,请给出这幅图中所有的长度.24. 把 $6\dfrac{1}{3} \%$ 写成最简分数,与 $18\%$ 和$0.12$ 比较,写出从小到大排列的结果.25. 数列 $\{a_n\}$ 是等差数列,$a_5=14$,$a_9=26$,求$a_{10}$.参考答案:1. A2. A3. B4. B5. B6. B7. A8. B9. D 10. C11. $\dfrac{2}{3}$ 12. $[-1,1]$ 13. $a(3-5ab)$ 14. $3$ 15. $0.4307$16. $\dfrac{2251}{5796}$ 17. $127.5$ 18. $\dfrac{1}{2}$ 19. $\sqrt{5}$ 20. $7$,$28$21. $-3 \leq x<\dfrac{5}{3}$22. $\dfrac{4}{5}$23. $A C=\dfrac{h}{\tan 10^{\circ}}, B F=\dfrac{h}{\tan70^{\circ}}, A B=\dfrac{h}{\sin 10^{\circ}}, E F=\dfrac{h}{\sin80^{\circ}}$24. $\dfrac{19}{300}, 0.12, 0.18$25. $28$。

(苏科版)初中数学八年级上册 第3章综合测试试卷03及答案

(苏科版)初中数学八年级上册 第3章综合测试试卷03及答案

第3章综合测试一、选择题(共10小题)1.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是( )A .75°B .60°C .45°D .30°2.如图,ABC △中,90ACB Ð=°,沿CD 折叠CBD △,使点B 恰好落在AC 边上的点E 处,若25A Ð=°,则BDC Ð等于( )A .44°B .60°C .67°D .70°3.直角三角形的边长分别为a ,b ,c ,若29a =,216b =,那么2c 的值是( )A .5B .7C .25D .25或74.在Rt ABC △中,90B Ð=°,1BC =,2AC =,则AB 的长是( )A .1B C .2D 5.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是()A .72B .52C .80D .766.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a ,较短直角边为b ,则ab 的值是()A .4B .6C .8D .107.若ABC △的三边a 、b 、c 满足22220a b a b c -++-=(),则ABC △是()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形8.在下列长度的各组线段中,不能构成直角三角形的是( )A .3,4,5B .7,24,25C .1,1D 9.下列各组数中能够作为直角三角形的三边长的是( )A .1,2,3B .2,3,4C .3,4,5D .4,5,610.下列四组数据中,不能作为直角三角形的三边长是( )A .6,8,10B .7,24,25C .2,5,7D .9,12,15二、填空题(共8小题)11.若直角三角形的一个锐角为50°,则另一个锐角的度数是________度.12.直角三角形两锐角平分线相交所成的钝角的度数是________.13.直角三角形两直角边长分别为3和4,则它斜边上的高为________.14.一个直角三角形的两条直角边长为6和8,则它的斜边上的高是________.15.我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD 的边长为14,正方形IJKL 的边长为2,且IJ AB ∥,则正方形EFGH 的边长为________.16.如图1,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图2,其中四边形ABCD 和四边形EFGH 都是正方形,ABF △、BCG △、CDH △、DAE △是四个全等的直角三角形.若2EF =,8DE =,则AB 的长为________.17.三角形的三边长为a 、b 、c ,且满足等式222a b c ab +-=(),则此三角形是________三角形(直角、锐角、钝角).18.若ABC △的三边长分别为5、13、12,则ABC △的形状是________.三、解答题(共8小题)19.如图,在平面直角坐标系中,AOB △是直角三角形,90AOB Ð=°,斜边AB 与y 轴交于点C .(1)若A AOC Ð=Ð,求证:B BOC Ð=Ð;(2)延长AB 交x 轴于点E ,过O 作OD AB ^,且DOB EOB Ð=Ð,OAE OEA Ð=Ð,求A Ð度数;(3)如图,OF 平分AOM Ð,BCO Ð的平分线交FO 的延长线于点P ,当ABO △绕O 点旋转时(斜边AB 与y 轴正半轴始终相交于点C ),在(2)的条件下,试问P Ð的度数是否发生改变?若不变,请求其度数;若改变,请说明理由.20.如图,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P ,PH OA ^,垂足为H ,OPH △的重心为G .(1)当点P 在AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度;(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域;(3)如果PGH △是等腰三角形,试求出线段PH 的长.21.如图,ABC △中,90ACB Ð=°, 5 cm AB =, 3 cm BC =,若点P 从点A 出发,以每秒2 cm 的速度沿折线A C B A ---运动,设运动时间为t 秒(0t >).(1)若点P 在AC 上,且满足PA PB =时,求出此时t 的值;(2)若点P 恰好在BAC Ð的角平分线上,求t 的值;(3)在运动过程中,直接写出当t 为何值时,BCP △为等腰三角形.22.如图是单位长度为1的正方形网格.(1)在图1的线段AB ;(2)在图2中画出一个以格点为顶点,面积为5的正方形.23.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中90DAB Ð=°,求证:222a b c +=.证明:连结DB ,过点D 作BC 边上的高DF ,则DF EC b a ==-,21122ACD ABC ADCB S S S b ab =+=+Q △△四边形.又21122ADB DCB ADCB S S S c a b a =+=+-Q △△四边形(),2211112222b abc a b a \+=+-(),222a b c \+=.请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中90DAB Ð=°.求证:222a b c +=.24.一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法.如图2.火柴盒的一个侧面ABCD 倒下到AEFG 的位置,连接CF ,AB a =,BC b =,AC c =.(1)请你结合图1用文字和符号语言分别叙述勾股定理.(2)请利用直角梯形BCFG 的面积证明勾股定理:222a b c +=.25.在一次“构造勾股数”的探究性学习中,老师给出了下表:m 2334…n 1123…a2212+3212+3222+4232+…b 461224…c2212-3212-3222-4232-…其中m 、n 为正整数,且m n >.(1)观察表格,当2m =,1n =时,此时对应的a 、b 、c 的值能否为直角三角形三边的长?说明你的理由.(2)探究a ,b ,c 与m 、n 之间的关系并用含m 、n 的代数式表示:a =________,b =________,c =________.(3)以a ,b ,c 为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.26.如图,已知 6 m CD =,8 m AD =,90ADC Ð=°,24 m BC =,26 m AB =;求图中阴影部分的面积.第3章综合测试答案解析一、1.【答案】D【解析】解:Q 在一个直角三角形中,有一个锐角等于60°,\另一个锐角的度数是906030°-°=°.故选:D .【考点】直角三角形两锐角互余的性质2.【答案】D【解析】解:ABC Q △中,90ACB Ð=°,25A Ð=°,9065B A \Ð=°-Ð=°,由折叠的性质可得:65CED B Ð=Ð=°,BDC EDC Ð=Ð,40ADE CED A \Ð=Ð-Ð=°,()1180702BDC ADE \Ð=-Ð=o o .故选:D .【考点】折叠的性质,三角形内角和定理,三角形外角的性质3.【答案】D【解析】解:当b 为直角边时,22225c a b =+=,当b 为斜边时,2227c b a =-=,故选:D .【考点】勾股定理4.【答案】B【解析】解:在Rt ABC △中,90B Ð=°,1BC =,2AC =,AB \==,故选:B .【考点】勾股定理5.【答案】D【解析】解:依题意,设“数学风车”中的四个直角三角形的斜边长为x ,则212252169x =+=,所以13x =,所以“数学风车”的周长是:136476+´=().故选:D .6.【答案】A【解析】解:由题意得:大正方形的面积是9a ,较短直角边为b ,即229a b +=,1a b -=,解得a =,b =,则4ab =.解法2,4个三角形的面积和为918-=;每个三角形的面积为2;则122ab =;所以4ab =故选:A .【考点】勾股定理在直角三角形中的灵活运用,正方形面积的计算7.【答案】C【解析】解:22220a b a b c -++-=Q(),0a b \-=,2220a b c +-=,解得:a b =,222a b c +=,ABC \△的形状为等腰直角三角形;故选:C .【考点】勾股定理逆定理以及非负数的性质8.【答案】D【解析】解:A 、222345+=Q ,\能构成直角三角形;B 、22272425+=Q ,\能构成直角三角形;C 、22211+=Q ,\能构成直角三角形.D 、222+¹Q ,\不能构成直角三角形;故选:D .【考点】勾股定理的逆定理9.【答案】C【解析】解:A 、222123+¹,不能构成直角三角形,故此选项错误;B 、22223=4+,不能构成直角三角形,故此选项错误;C 、22234=5+,能构成直角三角形,故此选项正确;D 、22245=6+,不能构成直角三角形,故此选项错误.故选:C .【考点】勾股定理逆定理10.【答案】C【解析】解:A 、22268=10+,符合勾股定理的逆定理,故能作为直角三角形的三边长;B 、222724=25+,符合勾股定理的逆定理,故能作为直角三角形的三边长;C 、22252=7+,符合勾股定理的逆定理,故不能作为直角三角形的三边长;D 、222129=15+,符合勾股定理的逆定理,故能作为直角三角形的三边长.故选:C .【考点】勾股定理的逆定理二、11.【答案】40°【解析】解:Q 一个锐角为50°,\另一个锐角的度数905040=°-°=°.故答案为:40°.12.【答案】135°【解析】解:如图:AE Q 、BD 是直角三角形中两锐角平分线,90245OAB OBA \Ð+Ð=°¸=°,两角平分线组成的角有两个:BOE Ð与EOD Ð这两个交互补,根据三角形外角和定理,45BOE OAB OBA Ð=Ð+Ð=°,18045135EOD \Ð=°-°=°,故答案为:135°.【考点】直角三角形内角的性质,三角形内角和13.【答案】125【解析】解:设斜边长为c ,高为h .由勾股定理可得:22234c =+,则5c =,直角三角形面积113422S c h =´´=´´可得125h =,故答案为:125.【考点】勾股定理求直角三角形的边长,面积法求直角三角形的高14.【答案】4.8【解析】解:Q 直角三角形的两直角边长为6和8,斜边长为:10=,三角形的面积168242=´´=,设斜边上的高为x ,则110242x ×=,解得 4.8x =.故答案为:4.8.【考点】勾股定理,三角形的面积公式15.【答案】10【解析】解: 141422819648192824´-´¸=-¸=¸=()(), 24422964100´+´=+=10=.答:正方形EFGH 的边长为10.故答案为:10.【考点】勾股定理的证明16.【答案】10【解析】解:依题意知,8BG AF DE ===,2EF FG ==,6BF BG BF \=-=,\直角ABF △中,利用勾股定理得:10AB ===.故答案是:10.【考点】勾股定理的证明17.【答案】直角【解析】解:222a b c ab +-=Q(),22222a ab b c ab \++-=,222a b c \+=,\三角形是直角三角形.故答案为直角.【考点】勾股定理的逆定理,完全平方公式18.【答案】直角三角形【解析】解:22251213+=Q ,即222a b c +=,ABC \△是直角三角形.故答案为:直角三角形.【考点】勾股定理的逆定理三、19.【答案】(1)AOB Q △是直角三角形,90A B \Ð+Ð=°,90AOC BOC Ð+Ð=°.A AOC Ð=ÐQ ,B BOC \Ð=Ð.(2)90A ABO Ð+Ð=°Q ,90DOB ABO Ð+Ð=°,A DOB \Ð=Ð,即DOB EOB OAE OEA Ð=Ð=Ð=Ð.90DOB EOB OEA Ð+Ð+Ð=°Q ,30DOB \Ð=°,30A \Ð=°.(3)P Ð的度数不变,30P Ð=°,90AOM AOC Ð=°-ÐQ ,BCO A AOC Ð=Ð+Ð,OF Q 平分AOM Ð,CP 平分BCO Ð,1119045222FOM AOM AOC AOC \Ð=Ð=°-Ð=°-Ð(),11112222PCO BCO A AOC A AOC Ð=Ð=Ð+Ð=Ð+Ð().11809045302P PCO FOM A \Ð=°-Ð+Ð+°=°-Ð=°().【解析】(1)易证B Ð与BOC Ð分别是A Ð与AOC Ð的余角,等角的余角相等,就可以证出.(2)易证90DOB EOB OEA Ð+Ð+Ð=°,且DOB EOB OEA Ð=Ð=Ð就可以得到.(3)18090P PCO FOM Ð=°-Ð+Ð+°()根据角平分线的定义,就可以求出.【考点】角平分线的定义,直角三角形的性质20.【答案】(1)当然是GH 不变.延长HG 交OP 于点E ,G Q 是OPH △的重心,23GH EH \=,PO Q 是半径,它是直角三角形OPH 的斜边,它的中线等于它的一半;12EH OP \=,2121(6)23232GH OP æö\=´=´´=ç÷èø.(2)延长PG 交OA 于C ,则23y PC =´.我们令OC a CH ==,在Rt PHC △中,PC =,则23y =Rt PHO △中,有22222636OP x a =+==(),则2294x a =-,将其代入23y =得26)3y x ==<<.(3)如果PG GH =,则2y GH ==,解方程:0x =,那GP 不等于GH ,则不合意义;如果,2PH GH ==则可以解得:2x =;如果,PH PG =,则x y =代入可以求得:x =PH 或2.【解析】(1)由题意可知:重心是三角形中线交点,它把中线分为1:2的比例,如果中线长度不变,题中的三线段长度也不变.在直角三角形OHP 中PO 是直角三角形OPH 的斜边,也是半径是保持不变的所以线段GH 保持不变;则根据直角三角形中斜边的中线是斜边的一半可以求得OP 中线的长度,进而求得GH 的长度.(2)延长PG 交OA 于C ,则23y PC =´;分别再直角三角形OPH 和直角三角形PHC 中运用两次勾股定理即可以求出y 关于x 的函数解析式.(3)分别讨论GH PG =,GH PH =,PH PG =这三种情况,根据(2)中的解析式可以分别求得x 的值.【考点】重心的概念,直角三角形与等腰三角形的性质21.【答案】(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,在Rt PCB △中,222PC CB PB +=,即:2224232t t -+=()(),解得:2516t =,\当2516t =时,PA PB =.(2)当点P 在BAC Ð的平分线上时,如图1,过点P 作PE AB ^于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,在Rt BEP △中,222PE BE BP +=,即:22224172t t -+=-()(),解得:83t =,当6t =时,点P 与A 重合,也符合条件,\当83t =或6时,P 在ABC △的角平分线上.(3)在Rt ABC △中, 5 cm AB =Q , 3 cm BC =, 4 cm AC \=,根据题意得:2AP t =,当P 在AC 上时,BCP △为等腰三角形,PC BC \=,即423t -=,12t \=,当P 在AB 上时,BCP △为等腰三角形,①CP PB =,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ^于E ,1322BE BC \==,12PB AB \=,即52342t --=,解得:194t =.②PB BC =,即2343t --=,解得:5t =.③PC BC =,如图3,过C 作CF AB ^于F ,∴BF=BP ,90ACB Ð=°Q ,由射影定理得;2BC BF AB =×,即223432t --=,解得:5310t =,\当12t =,5,5310,194时,BCP △为等腰三角形.【解析】(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,根据勾股定理列方程即可得到结论.(2)当点P 在CAB Ð的平分线上时,如图1,过点P 作PE AB ^于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,根据勾股定理列方程即可得到结论.(3)在Rt ABC △中,根据勾股定理得到 4 cm AC =,根据题意得:2AP t =,当P 在AC 上时,BCP △为等腰三角形,得到PC BC =,即423t -=,求得12t =,当P 在AB 上时,BCP △为等腰三角形,若CP PB =,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ^于E ,求得194t =,若PB BC =,即2343t --=,解得E ,③PC BC =,如图3,过C 作CF ⊥AB 于F ,由射影定理得;2BC BF AB =×,列方程2343252t --=´,即可得到结论.【考点】等腰三角形的判定,三角形的面积22.【答案】(1)(2)【解析】(1)根据勾股定理作出以1和3直角边的三角形的斜边即可.(2.【考点】勾股定理23.【答案】证明:连结BD ,过点B 作DE 边上的高BF ,则BF b a =-,1112222ACB ABE ADE ACBED S S S S ab b ab =++=++Q △△△五边形,又2111()222ACB ABD BDE ACBED S S S S ab c a b a =++=++-Q △△△五边形,22111111()222222ab b ab ab c a b a \++=++-,222a b c \+=.【解析】首先连结BD ,过点B 作DE 边上的高BF ,则BF b a =-,表示出ACBED S 五边形,两者相等,整理即可得证.【考点】勾股定理的证明24.【答案】(1)直角三角形两直角边的平方和等于斜边的平方. Rt ABC △中,90B Ð=°,AB a =,BC b =,AC c =,则有222b c a +=.(2)2211112222B AFG AFC AC BCFG S S S S ab ab c ab c =++=++=+Q △△△梯形,221111()()()2222BCFG S FG BC BG a b a b a ab b =×+×=++=++梯形,222111222ab c a ab b \+=++,整理得:222a b c +=.【解析】(1)直角三角形两直角边的平方和等于斜边的平方.(2)用两种方法求出梯形BCFG 的面积,列出等式,即可证明.【考点】勾股定理25.【答案】(1)当2m =,1n =时,5a =、4b =、3c =,222345+=Q ,a \、b 、c 的值能为直角三角形三边的长.(2)观察得,22a m n =+,2b mn =,22c m n =-.(3)以a ,b ,c 为边长的三角形一定为直角三角形,222242242a m n m m n n =+=++Q (),224224224224242b c m m n n m n m m n n +=-++=++,222a b c \=+,\以a ,b ,c 为边长的三角形一定为直角三角形.【解析】(1)计算出a 、b 、b 的值,根据勾股定理的逆定理判断即可.(2)根据给出的数据总结即可.(3)分别计算出2a 、2b 、2c ,根据勾股定理的逆定理进行判断.【考点】勾股定理的逆定理26.【答案】解:在Rt ADC △中, 6 CD =Q 米,8 AD =米,24 BC =米,26 AB =米,2222286100AC AD CD \=+=+=,10AC \=米(取正值).在ABC △中,22221024676AC BC +=+=Q ,2226676AB ==.222AC BC AB \+=,ACB \△为直角三角形,90ACB Ð=°.2111110248696()2222S AC BC AD CD \=´-´=´´-´´=阴影米.答:图中阴影部分的面积为296 米.【解析】先根据勾股定理求出AC 的长,再根据勾股定理的逆定理判断出ACB △为直角三角形,再根据1122S AC BC AD CD =´-´阴影即可得出结论.【考点】勾股定理的运用,勾股定理的逆定理运用。

(北师大版)初中数学八年级上册第三章综合测试03含答案解析

(北师大版)初中数学八年级上册第三章综合测试03含答案解析

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!第三章综合测试一、单选题1.下列数据不能确定目标的位置是( )A .教室内的3排2列B .东经100︒北纬45︒C .永林大道12号D .南偏西40︒2.如图,是岑溪市几个地方的大致位置的示意图,如果用()0,0表示孔庙的位置,用()1,5表示东山公园的位置,那么体育场的位置可表示为( )A .()1,1−−B .()0,1C .()1,1D .()1,1−3.已知点()2,24P m m +−在y 轴上,则点P 的坐标是( )A .()8,0B .()0,8−C .()8,0−D .()0,84.已知点()2,1A ,过点A 作x 轴的垂线,垂足为C ,则点C 的坐标为( )A .()1,2B .()1,0C .()0,1D .()2,05.已知点()12,5P a −−关于x 轴的对称点和点()3,Q b 关于y 轴的对称点相同,则(),A a b 关于x 轴对称的点的坐标为( )A .()1,5−B .()1,5C .()1,5−D .()1,5−−6.如图,如果四角星的顶点A 的位置用()5,8表示,那么顶点B 的位置可以表示为( )A .()2,5B .()5,2C .()3,5D .()5,3二、填空题7.课间操时,小华、小军、小刚的位置如图所示,小军对小华说:如果我的位置用()0,2−表示,小刚的位置用()2,0表示,那么你的位置可以表示为________.8.若点P 在y 轴正半轴上且到x 轴的距离是3,则P 点的坐标________.9.在直角坐标系中,点A 在x 轴上,且到原点的距离为5,则A 点的坐标为________;过点()3,4−且平行于x 轴的直线与y 轴的交点坐标为________.10.已知点P 关于x 轴的对称点为(),1a −,关于y 轴的对称点为()2,b −,那么点P 的坐标是________.三、解答题11.阅读与理解:如图,一只甲虫在55⨯的方格(每个方格边长均为1)上沿着网格线爬行.若我们规定:在如图网格中,向上(或向右)爬行记为“+”,向下(或向左)爬行记为“−”,并且第一个数表示左右方向,第二个数表示上下方向.例如:从A 到B 记为:()1,4A B →++,从D 到C 记为:()1,2D C →−+.思考与应用:(1)图中A C →(________,________);B C →(________,________);D A →(________,________).(2)若甲虫从A 到P 的行走路线依次为:()()()3,21,31,2++→++→+−,请在图中标出P 的位置.(3)若甲虫的行走路线为()()()()1,42,01,24,2A →++→+→+−−−−,请计算该甲虫走过的总路程.四、作图题12.下图是某市的部分简图,为了确定各建筑物的位置:(1)请你以火车站为原点建立平面直角坐标系(2)分别写出市场、超市、体育场的坐标(小正方形网格的单位长度为1).13.2019年10月1日上午,庆祝中华人民共和国成立70周年大会在北京天安门隆重举行,以盛大的阅兵仪式和群众游行欢庆伟大祖国的这一盛大节日.如图是利用平面直角坐标系画出的天安门广场周围的景点分布示意图,如果这个坐标系分别以正东、正北方向为轴、y 轴的正方向,以天安门为坐标原点建立平面直角坐标系.(1)请根据题意画出平面直角坐标系;(2)写出天安门、故宫、王府井、人民大会堂、中国国家博物馆这五个景点位置的坐标.14.在直角坐标系中描出下列各组点,并将各组内点用线段依次连接起来:①()6,5−,()10,3−,()9,3−,()3,3−,()2,3−,()6,5−②()9,3−,()9,0−,()3,0−,()3,3−观察所得的图形,你觉得它像什么?15.如图.将ABC △向右平移4个单位得到A B C '''△.(1)写出A ,B ,C 的坐标;(2)画出A B C '''△;(3)求ABC △的面积.第三章综合测试答案解析一、1.【答案】D【解析】A 、教室内的3排2列,能确定目标的位置,故本选项不合题意;B 、东经100︒北纬45︒,能确定目标的位置,故本选项不合题意;C 、永林大道12号,能确定目标的位置,故本选项不合题意;D 、南偏西40︒,不能确定目标的位置,故本选项符合题意.故答案为:D.根据坐标确定位置需要两个数据对各选项分析判断利用排除法求解.【考点】用坐标表示地理位置2.【答案】A【解析】由题意可建立如下图所示的平面直角坐标系:平面直角坐标系中,原点O 表示孔庙的位置,点A 表示东山公园的位置,点B 表示体育场的位置,则点B 的坐标为()1,1−−故答案为:A.根据孔庙和东山公园的位置,可知坐标轴的原点、单位长度、坐标轴的正方向,据此建立平面直角坐标系,从而可得体育场的位置.【考点】用坐标表示地理位置3.【答案】B【解析】横坐标为0,20m +=,2m =−;把2m =−代入24m −,得()2248⨯−−=−;故点P 的坐标为(0,)8−;故答案为:B.根据点在坐标轴上的性质,在y 轴上的点横坐标为0,20m +=可以求出m ,再代入纵坐标24m −,可以求出P 点坐标。

八年级数学上册第3章试卷含答案

八年级数学上册第3章试卷含答案

第3章自我评价一、选择题(每小题2分,共20分)1.下列数值中,不是不等式5x ≥2x +9的解的是(D )A . 5B . 4C . 3D . 22.若a>b ,则下列不等式中,不成立的是(B )A .a -3>b -3B .-3a >-3bC .a 3>b 3D .-a <-b 3.不等式-2x>12的解是(A )A . x <-14B . x <-1C . x >-14D . x >-14.不等式3(x -1)≤5-x 的非负整数解有(C )A . 1个B . 2个C . 3个D . 4个5.在等腰三角形ABC 中,AB =AC ,其周长为20 cm ,则AB 边的取值范围是(B )A .1 cm <AB <4 cm B .5 cm <AB <10 cmC .4 cm <AB <8 cmD .4 cm <AB <10 cm【解】 设AB =x (cm),则AC =x (cm),BC =(20-2x ) cm .根据三角形的三边关系,得⎩⎨⎧x +x >20-2x >0,20-2x +x >x ,解得5<x <10. ∴5 cm <AB <10 cm .6.不等式组⎩⎪⎨⎪⎧x>a ,x<3的整数解有3个,则a 的取值范围是(A )A .-1≤a <0B .-1<a ≤0C .-1≤a <1D .-1<a <0【解】 不等式组⎩⎪⎨⎪⎧x >a ,x <3的解为a <x <3,由不等式组的整数解有三个,即0,1,2,得到-1≤a <0.7.若三个连续正整数的和小于39,则这样的正整数中,最大的一组数的和是(B )A . 39B . 36C . 35D . 34【解】 设这三个正整数分别为x -1,x ,x +1,则(x -1)+x +(x +1)<39,∴x <13.∵x 为正整数,∴当x =12时,三个连续正整数的和最大,三个连续正整数的和为11+12+13=36.8.若关于x 的不等式3x +1<m 的正整数解是1,2,3,则整数m 的最大值是(D )A .10B .11C .12D .13【解】 解3x +1<m ,得x <m -13.∵原不等式的正整数解是x =1,2,3,∴3<m -13≤4,解得10<m ≤13.∴整数m 的最大值是13.9.若关于x 的不等式组⎩⎨⎧5-3x ≥0,x -m ≥0有实数解,则实数m 的取值范围是(A ) A .m ≤53 B .m <53C .m >53D .m ≥53【解】 解不等式组⎩⎨⎧5-3x ≥0,x -m ≥0,得⎩⎪⎨⎪⎧x ≤53,x ≥m .∵不等式组有实数解,∴m ≤53.10.某市某化工厂现有A 种原料52 kg ,B 种原料64 kg ,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A 种原料3 kg ,B 种原料2 kg ;生产1件乙种产品需要A 种原料2 kg ,B 种原料4 kg ,则生产方案的种数为(B )A . 4B . 5C . 6D . 6【解】 设生产甲产品x 件,则生产乙产品(20-x )件,由题意,得⎩⎨⎧3x +2(20-x )≤52,2x +4(20-x )≤64, 解得8≤x ≤12.∵x 为整数,∴x =8,9,10,11,12,∴共有5种生产方案.二、填空题(每小题2分,共20分)11.不等式3x +1<-2的解是x<-1.12.已知x <a 的最大整数解为x =3,则a 的取值范围是3<a ≤4.13.不等式组⎩⎪⎨⎪⎧x -1<2-2x ,23x>x -12的解是-3<x <1. 14.若关于x 的不等式组⎩⎨⎧2x +1>3,a -x >1的解为1<x <3,则a 的值为__4__.(第15题)15.若关于x的不等式组⎩⎪⎨⎪⎧x>a ,x>b 的解如图所示,则关于x 的不等式组⎩⎨⎧x<a ,x ≤b的解是x<a .16.已知“x 的3倍大于5,且x 的一半与1的差不大于2”,则x 的取值范围是53<x ≤6.【解】 由题意,得⎩⎪⎨⎪⎧3x>5,12x -1≤2,解得53<x ≤6. 17.已知关于x 的方程2x =m 的解满足⎩⎨⎧x -y =3-n ,x +2y =5n(0<n<3),若y>1,则m 的取值范围是25<m<23.【解】 解方程组,得⎩⎨⎧x =n +2,y =2n -1.∵y>1,∴2n -1>1,即n>1.又∵0<n<3,∴1<n<3.∵m =2x ,x =n +2,∴n =2m -2,∴1<2m -2<3,解得25<m<23.18.已知x ,y 满足2x ·4y =8.当0≤x ≤1时,y 的取值范围是1≤y ≤32.【解】 ∵2x ·4y =8,∴2x ·22y =23,∴x +2y =3,∴x =3-2y .∵0≤x ≤1,∴0≤3-2y ≤1,∴1≤y ≤32.19.某班有48名学生会下象棋或围棋,会下象棋的人数比会下围棋的人数的2倍少3人,两种棋都会下的至多有9人,但不少于5人,则会下围棋的有19或20人.【解】 设会下围棋的有x 人,则会下象棋的有(2x -3)人.由题意,得5≤x +(2x -3)-48≤9,解得563≤x ≤20.∵x 为正整数,∴x =19或20.20.输入一个数,按如图所示的程序进行运算.(第20题)规定:程序运行到“判断结果是否大于35”为一次运算.若运算进行了5次才停止,则x 的取值范围是4<x ≤5.【解】 第1次运算的结果是2x -3;第2次运算的结果是2×(2x -3)-3=4x -9;第3次运算的结果是2×(4x -9)-3=8x -21;第4次运算的结果是2×(8x -21)-3=16x -45;第5次运算的结果是2×(16x -45)-3=32x -93,∴⎩⎨⎧32x -93>35,16x -45≤35,解得4<x ≤5.三、解答题(共60分)21.(12分)解下列不等式或不等式组:(1)3(x +2)-1≤11-2(x -2)(在数轴上表示它的解).【解】 去括号,得3x +6-1≤11-2x +4.移项,合并同类项,得5x ≤10,解得x ≤2.在数轴上表示如解图所示.(第21题解)(2)x 2-1≤7-x 3.【解】 去分母,得3x -6≤2(7-x).去括号,得3x -6≤14-2x .移项,得3x +2x ≤14+6.合并同类项,得5x ≤20.解得x ≤4.(3)⎩⎨⎧2(x -1)≤-1,2x +3>1.【解】 解2(x -1)≤-1,得x ≤12.解2x +3>1,得x >-1.∴不等式组的解为-1<x ≤12.(4)⎩⎪⎨⎪⎧2x -6<3x ,x +25-x -14≥0.【解】 解2x -6<3x ,得x >-6.解x +25-x -14≥0,得x ≤13.∴不等式组的解为-6<x ≤13.22.(6分)(1)解不等式:8-5(x -2)<4(x -1)+13.(2)若(1)中的不等式的最小整数解是方程2x -ax =3的解,求a 的值.【解】 (1)去括号,得8-5x +10<4x -4+13,移项、合并同类项,得-9x<-9,两边都除以-9,得x>1.(2)由(1)知,不等式的最小整数解是x =2.把x =2代入方程2x -ax =3,得2×2-2a =3,解得a =0.5.23.(6分)试确定实数a 的取值范围,使不等式组⎩⎪⎨⎪⎧x 2+x +13>0,x +5a +43>43(x +1)+a 恰好有两个整数解.【解】 解不等式x 2+x +13>0,得x >-25. 解不等式x +5a +43>43(x +1)+a ,得x <2a .∴原不等式组的解为-25<x<2a .∵该不等式组恰好有两个整数解,∴整数解为0和1,∴1<2a ≤2,∴12<a ≤1. 24.(6分)我们用[a]表示不大于a 的最大整数,例如:[2.5]=2,[3]=3,[-2.5]=-3;用〈a 〉表示大于a 的最小整数,例如:〈2.5〉=3,〈4〉=5,〈-1.5〉=-1.解决下列问题:(1)[-4.5]=__-5__,〈3.5〉=__4__.(2)若[x]=2,则x 的取值范围是2≤x<3;若〈y 〉=-1,则y 的取值范围是-2≤y<-1.(3)已知x ,y 满足方程组⎩⎨⎧3[x]+2〈y 〉=3,3[x]-〈y 〉=-6,求x ,y 的取值范围.【解】 (3)⎩⎨⎧3[x]+2〈y 〉=3,3[x]-〈y 〉=-6,解得⎩⎨⎧[x]=-1,〈y 〉=3, ∴-1≤x<0,2≤y<3.25.(8分)某学校为丰富学生的校园生活,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买1个足球和2个篮球共需210元.购买2个足球和6个篮球共需580元.(1)问:购买一个足球和一个篮球各需多少元?(2)根据学校的实际情况,需从该体育用品商店一次性购买足球和篮球共100个.要求购买足球和篮球的总费用不超过6000元,则这所学校最多可以购买多少个篮球?【解】 (1)设一个足球需x 元,一个篮球需y 元,由题意,得⎩⎨⎧x +2y =210,2x +6y =580,解得⎩⎨⎧x =50,y =80. 答:一个足球需50元,一个篮球需80元.(2)设可买篮球m 个,则买足球(100-m)个.由题意,得80m +50(100-m)≤6000,解得m ≤3313,∵m 为整数,∴m 最大可取33.答:这所学校最多可以购买33个篮球.26.(10分)已知关于x ,y 的二元一次方程组⎩⎨⎧x +y =-7-a ,x -y =1+3a的解中,x 为非正数,y 为负数.(1)求a 的取值范围.(2)化简:|a -3|+|a +2|.(3)在a 的取值范围中,当a 为何整数时,不等式2ax +x <2a +1的解为x >1?【解】 (1)解⎩⎨⎧x +y =-7-a ,x -y =1+3a ,得⎩⎨⎧x =a -3,y =-2a -4.∵x 为非正数,y 为负数,∴⎩⎨⎧x ≤0,y <0,即⎩⎨⎧a -3≤0,-2a -4<0,解得⎩⎨⎧a ≤3,a>-2. ∴a 的取值范围是-2<a ≤3.(2)∵-2<a ≤3,∴a -3≤0,a +2>0,∴|a -3|+|a +2|=3-a +a +2=5.(3)不等式2ax +x <2a +1可化简为(2a +1)x <2a +1.∵不等式的解为x >1,∴2a +1<0,∴a <-12.又∵-2<a ≤3,∴-2<a <-12. ∵a 为整数,∴a =-1.27.(12分)某汽车销售公司经销某品牌A 款汽车,随着汽车的普及,其价格也在不断下降.去年5月份A 款汽车的售价比前年同期每辆降价1万元,如果卖出相同数量的A 款汽车,前年销售额为100万元,去年销售额只有90万元.(1)去年5月份A 款汽车每辆售价是多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B 款汽车,已知A 款汽车每辆进价为7.5万元,B 款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,则该汽车销售公司共有几种进货方案?(3)如果B 款汽车每辆售价为8万元,为打开B 款汽车的销路,公司决定每售出一辆B 款汽车,返还顾客现金a 万元.若要使(2)中所有的方案获利相同,则a 的值应是多少?此时哪种方案对公司更有利?【解】 (1)设去年5月份A 款汽车每辆售价是m 万元,则90m =100m +1,解得m =9. 经检验,m =9是原方程的解,且符合题意.答:去年5月份A 款汽车每辆售价是9万元.(2)设购进A 款汽车x 辆,则购进B 款汽车(15-x)辆.由题意,得99≤7.5x +6(15-x)≤105,解得6≤x ≤10.∵x 为自然数,∴x =6或7或8或9或10,∴该汽车销售公司共有5种进货方案.(3)设总获利为W元,则W=(9-7.5)x+(8-6-a)(15-x)=(a-0.5)x+30-15a.当a=0.5时,(2)中所有方案获利相同.此时总成本=7.5x+(6+a)(15-x)=(x+97.5)万元,故当x取6时,总成本最少.故购买A款汽车6辆,B款汽车9辆对公司更有利.。

初二数学单元三测试卷答案

初二数学单元三测试卷答案

一、选择题(每题2分,共20分)1. 下列数中,有理数是()A. √9B. √16C. √-4D. √0答案:A解析:有理数是可以表示为两个整数之比的数。

A选项√9=3,可以表示为3/1,是有理数。

B选项√16=4,可以表示为4/1,是有理数。

C选项√-4是虚数,不是有理数。

D选项√0=0,可以表示为0/1,是有理数。

但题目要求选择“是”有理数的选项,故选A。

2. 已知x^2 - 5x + 6 = 0,则x的值为()A. 2,3B. 1,6C. 1,-6D. 2,-3答案:A解析:这是一个一元二次方程,可以通过因式分解或使用求根公式求解。

因式分解得:(x - 2)(x - 3) = 0,所以x = 2或x = 3。

故选A。

3. 在直角坐标系中,点P(-2, 3)关于原点的对称点是()A. (2, -3)B. (-2, -3)C. (2, 3)D. (-2, 3)答案:A解析:点P(-2, 3)关于原点的对称点的坐标是(-x, -y),即(2, -3)。

故选A。

4. 下列各数中,正数是()A. -5B. 0C. 1/2D. -1/2答案:C解析:正数是大于0的数。

A选项-5是负数,B选项0既不是正数也不是负数,D 选项-1/2是负数。

只有C选项1/2是正数。

故选C。

5. 一个长方形的长是8cm,宽是5cm,那么这个长方形的周长是()A. 18cmB. 20cmC. 24cmD. 32cm答案:C解析:长方形的周长公式是C = 2(a + b),其中a是长,b是宽。

将长8cm和宽5cm代入公式得:C = 2(8 + 5) = 2 13 = 26cm。

故选C。

二、填空题(每题3分,共15分)6. -8的相反数是______。

答案:8解析:一个数的相反数是指与这个数相加等于0的数。

所以-8的相反数是8。

7. 已知a = 3,b = -2,那么a - b的值是______。

答案:5解析:将a和b的值代入得:a - b = 3 - (-2) = 3 + 2 = 5。

初二数学三单元试卷

初二数学三单元试卷

一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 12. 下列函数中,是二次函数的是()A. y = x^2 + 2x + 1B. y = x^3 + 2x + 1C. y = x^2 + 2x - 1D. y = x^2 + 2x3. 下列各数中,能被3整除的是()A. 6B. 7C. 8D. 94. 下列各式中,有理数a满足a^2 - 4 = 0的是()A. a = 2B. a = -2C. a = 4D. a = -45. 下列各式中,二次根式化简正确的是()A. √(16x^2) = 4xB. √(9x^2) = 3xC. √(25x^2) = 5xD. √(36x^2) = 6x6. 下列各式中,完全平方公式展开正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^27. 下列各式中,二次函数的顶点坐标是()A. (1, 2)B. (2, 1)C. (3, 4)D. (4, 3)8. 下列各式中,分式有意义的条件是()A. 分子为0,分母不为0B. 分子不为0,分母为0C. 分子为0,分母为0D. 分子不为0,分母不为09. 下列各式中,分式约分正确的是()A. 2x / (x + 1) = 2B. 3x / (x - 1) = 3C. 4x / (x + 2) = 4D. 5x / (x - 3) = 510. 下列各式中,二次方程的解是()A. x = 2B. x = -2C. x = 0D. x = 1二、填空题(每题3分,共30分)11. 已知二次函数y = ax^2 + bx + c的图象经过点(1,2),则a + b + c =_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章位置与坐标单元测试一、单选题(共10题;共30分)1、已知直角坐标系内有一点M(a,b),且ab=0,则点M的位置一定在()A、原点上B、x轴上C、y轴上D、坐标轴上2、已知点A(a,3)和点B(4,b)关于y轴对称,则a+b的值是()A、1B、-1C、7D、-73、已知点P关于x轴的对称点为(a,-2),关于y轴对称点为(1,b),那么点P的坐标为()A、(a, -b)B、(b, -a)C、(-2,1)D、(-1,2)4、已知点P(-2,1),那么点P关于x轴对称的点P′的坐标是()A、(-2,1)B、(-1,2)C、(2,1)D、(-2,-1)5、在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于原点对称,则a+b的值为()A、33B、-33C、-7D、76、已知点P(4,3),则点P到y轴的距离为()A、4B、4C、3D、37、在平面直角坐标系中,等边三角形OAB关于x轴对称的图形是等边三角形OA′B′.若已知点A的坐标为(6,0),则点B′的横坐标是()A、6B、-6C、3D、-38、如图,将一张正六边形纸片的阴影部分剪下,拼成一个四边形,若拼成的四边形的面积为2a,则纸片的剩余部分的面积为()A、5aB、4aC、3aD、2a9、下列各点中位于第四象限的点是()A、(3,4)B、(﹣3,4)C、(3,﹣4)D、(﹣3,﹣4)10、已知点A(m,﹣2),点B(3,m﹣1),且直线AB∥x轴,则m的值为()A、﹣1B、1C、﹣3D、3二、填空题(共8题;共35分)11、点(﹣2,﹣3)关于直线x=﹣1的对称点的坐标为________ .12、已知点A(a,5)与点A′(﹣2,b)关于经过点(3,0)且平行于y轴的直线对称,那么a+b=________ .13、一只蚂蚁由(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是________ .14、已知点P在第二象限,点P到x轴的距离是2,到y轴的距离是3,那么点P的坐标是________15、点A(﹣2a,a﹣1)在x轴上,则A点的坐标是________,A点关于y轴的对称点的坐标是________.16、点P(﹣2,)在第________象限.17、已知点A(0,0),B(3,0),点C在y轴上,且△ABC的面积是8,则点C的坐标为________.18、如图,在所给的平面直角坐标系中描出下列各点:①点A在x轴上方,y轴左侧,距离x轴4个单位长度,距离y轴2个单位长度;②点B在x轴下方,y轴右侧,距离x、y轴都是3个单位长度;③点C在y轴上,位于原点下方,距离原点2个单位长度;④点D在x轴上,位于原点右侧,距离原点4个单位长度.填空:点A的坐标为________;点B的坐标为________;点B位于第________象限内;点C的坐标为________;点D的坐标为________;线段CD的长度为________.三、解答题(共6题;共36分)19、已知点P(a , b)在第二象限,且|a|=3,|b|=8,求点P的坐标20、如图,A、B两点的坐标分别是(2,﹣3)、(﹣4,﹣3).(1)请你确定P(4,3)的位置;(2)请你写出点Q的坐标.21、如图,某小区有大米产品加工点3个(M1, M2, M3),大豆产品加工点4个(D1, D2, D3, D4),为了加强食品安全监督,政府要求对食品加工点进行网格化管理,管理员绘制了坐标网格和建立了平面直角坐标系(隐藏),把图中的大米加工点用坐标表示为M1(﹣5,﹣1),M2(4,4),M3(5,﹣4).(1)请你画出管理员所建立的平面直角坐标系;(2)类似地,在所画平面直坐标系内,用坐标表示出大豆产品加工点的位置.22、如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).(3)△ABC的面积为.23、在图中建立适当的直角坐标系表示图中各景点位置.A 狮虎山B 猴山C 珍禽馆D 熊猫馆E 大山F 游乐场G 长廊.24、多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(﹣3,﹣3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?答案解析一、单选题1、【答案】 D【考点】点的坐标【解析】【分析】根据坐标轴上的点的特征:至少一个坐标为0解答.【解答】若ab=0,则a=0,或b=0,或a,b均为0.当a=0,M在y轴上;当b=0,M在x轴上;当a,b均为0,M在原点;即点M在坐标轴上.故选D.【点评】本题主要考查了点在坐标轴上时点的符号特点,注意考虑问题要全面,坐标轴上的点的特点要记清2、【答案】 B【考点】关于x轴、y轴对称的点的坐标【解析】【分析】首先根据平面直角坐标系中两个关于y 轴成轴对称的点的坐标特点,分别求出a、b的值,然后代入计算即可.【解答】∵点A(a,3)和点B(4,b)关于y轴对称,∴a=-4,b=3,∴a+b=-4+3=-1.故选B.【点评】本题主要考查了平面直角坐标系中关于y轴成轴对称的两个点的坐标特点:纵坐标相等,横坐标互为相反数.3、【答案】 D【考点】关于x轴、y轴对称的点的坐标【解析】【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,分别求出点P的坐标的两种形式,依此列出方程(组),求得a、b的值,从而得到点P的坐标.【解答】∵点P关于x轴的对称点为(a,-2),∴点P的坐标为(a,2),∵关于y轴对称点为(1,b),∴点P的坐标为(-1,b),则a=-1,b=2.∴点P的坐标为(-1,2).故选D.【点评】解决本题的关键是掌握好对称点的坐标规律,及根据点P的坐标的两种形式,列出方程(组).4、【答案】 D【考点】关于x轴、y轴对称的点的坐标【解析】【分析】关于x轴对称的点的横坐标相同,纵坐标互为相反数。

点P(-2,1)关于x轴对称的点P′的坐标是(-2,-1),故选D. 【点评】本题属于基础应用题,只需学生熟知关于x轴对称的点的坐标,即可完成。

5、【答案】 D【考点】关于原点对称的点的坐标【解析】【分析】首先根据关于原点对称的点的坐标特点可得a、b的值,然后在计算a+b的值.【解答】∵点P(-20,a)与点Q(b,13)关于原点对称,∴b=20,a=-13,∴a+b=20-13=7,故答案为:D.【点评】此题主要考查了关于原点对称的点的坐标特点,关键是掌握两个点关于原点对称时,它们的坐标符号相反6、【答案】 A【考点】点的坐标【解析】【分析】点到x轴的距离是点的纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值.【解答】∵点P(4,3)∴点P到y轴的距离为4故选A.7、【答案】 C【考点】坐标与图形变化-对称【解析】【解答】如图所示,∵等边△OAB关于x轴对称的图形是等边△OA′B′,∴点A′的坐标为(6,0),∴点B′的横坐标是3.故选C .【分析】根据轴对称的作出△OAB和△OA′B′,然后根据等腰三角形三线合一的性质求出点B′的横坐标即可.8、【答案】B【考点】坐标与图形变化-对称【解析】【解答】解:如图所示:将正六边形可分为6个全等的三角形,∵阴影部分的面积为2a,∴每一个三角形的面积为a,∵剩余部分可分割为4个三角形,∴剩余部分的面积为4a.故选:B.【分析】如图所示可将正六边形分为6个全等的三角形,阴影部分由两个三角形组成,剩余部分由4个三角形组成,故此可求得剩余部分的面积.9、【答案】 C【考点】点的坐标【解析】【解答】解:第四象限的点的坐标的符号特点为(+,﹣),观察各选项只有C符合条件,故选C.【分析】应先判断点在第四象限内点的坐标的符号特点,进而找相应坐标.10、【答案】 A【考点】坐标与图形性质【解析】【解答】解:∵点A(m,﹣2),B(3,m﹣1),直线AB∥x轴,∴m﹣1=﹣2,解得m=﹣1.故选A.【分析】根据平行于x轴的直线上的点的纵坐标相同,列出方程求解即可.二、填空题11、【答案】(0,﹣3)【考点】坐标与图形变化-对称【解析】【解答】解:所求点的纵坐标为﹣3,横坐标为﹣2﹣(﹣2)=0,∴点(﹣2,﹣3)关于直线x=﹣1的对称点的坐标为(0,﹣3).故答案为:(0,﹣3).【分析】易得两点的纵坐标相等,横坐标在﹣1的右边,为﹣2﹣(﹣2).12、【答案】 13【考点】坐标与图形变化-对称【解析】【解答】解:如图所示:∵点A(a,5)与点A′(﹣2,b)关于经过点(3,0)且平行于y轴的直线对称,∴A′(﹣2,5),由图可知A′距离x=3这条直线有5个单位,∴A距离x=3这条直线也有5个单位,∴A(8,5),∴a=8,b=5,∴a+b=13,故答案为:13.【分析】首先根据题意画出图形,可得到A′点坐标,再根据关于经过点(3,0)且平行于y轴的直线对称可得到A点坐标,进而得到答案.13、【答案】(3,2)【考点】坐标确定位置【解析】【解答】解:先向上爬4个单位长度,得(0,4);再向右爬3个单位长度,得(3,4);再向下爬2个单位长度后,得(3,2).故答案为:(3,2).【分析】此题可按照蚂蚁爬行的方向来确定点的坐标,具体方法是“右加左减,上加下减”.14、【答案】(﹣3,2)【考点】点的坐标【解析】【解答】解:∵点P在第二象限,点P到x轴的距离是2,到y轴的距离是3,∴点P的横坐标是﹣3,纵坐标是2,∴点P的坐标为(﹣3,2).故答案为:(﹣3,2).【分析】根据第二象限内点的坐标特征和点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.15、【答案】(﹣2,0);(2,0)【考点】点的坐标,关于x轴、y轴对称的点的坐标【解析】【解答】解:∵点A(﹣2a,a﹣1)在x轴上,∴a﹣1=0,解得:a=1,∴A(﹣2,0),∴A点关于y轴的对称点的坐标(2,0),故答案为:(﹣2,0)、(2,0).【分析】根据x轴上的坐标特点:纵坐标为0可得a﹣1=0,解出a的值,进而可得A点坐标,再根据关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.16、【答案】二【考点】点的坐标【解析】【解答】解:点P(﹣2,)在第二象限.故答案为:二.【分析】根据四个象限内点的坐标符号可判定P点所在象限.17、【答案】(0,)或(0,﹣)【考点】坐标与图形性质【解析】【解答】解:设点C的坐标为:(0,t),由题意得,3×|t|=8,则|t|= ,解得,t=±,则点C的坐标为:(0,)或(0,﹣).故答案为:(0,)或(0,﹣).【分析】设点C的坐标为:(0,t),根据三角形的面积公式计算即可.18、【答案】(﹣2,4);(3,﹣3);四;(0,﹣2);(4,0);2【考点】坐标与图形性质【解析】【解答】解:①点A在x轴上方,y轴左侧,距离x轴4个单位长度,距离y轴2个单位长度,∴点A 的坐标为(﹣2,4);②点B在x轴下方,y轴右侧,距离x、y轴都是3个单位长度,∴点B的坐标为(3,﹣3);点B位于第四象限内;③点C在y轴上,位于原点下方,距离原点2个单位长度;∴点C的坐标为(0,﹣2);④点D在x轴上,位于原点右侧,距离原点4个单位长度点D的坐标为(4,0);线段CD的长度= =2 ,故答案为:(﹣2,4),(3,﹣3),四,(0,﹣2),(4,0),2.【分析】根据题意即可得到结论.三、解答题19、【答案】解答:由第二象限内的点的横坐标小于零,得a=-3.由第二象限内点的纵坐标大于零,得b=8,故P点坐标是(-3,8)【考点】点的坐标【解析】【分析】根据第二象限内的点的横坐标小于零,可得a的值,根据第二象限内点的纵坐标大于零,可得b的值20、【答案】解:(1)根据A、B两点的坐标可知:x轴平行于A、B两点所在的直线,且距离是3;y轴在距A 点2(距B点4)位置处,如图建立直角坐标系,则点P (4,3)的位置,即如图所示的点P;(2)点Q 的坐标是(﹣2,2).【考点】坐标确定位置【解析】【分析】(1)根据点A、B两点的坐标先确定坐标原点,再求得P(4,3)的位置;(2)根据平面直角坐标系得出Q的坐标.21、【答案】解:因为M1(﹣5,﹣1),M2(4,4),M3(5,﹣4),可得坐标系如图:(2)由坐标系可得:D1(﹣3,3),D2(0,﹣3),D3(3,0),D4(8,1)【考点】坐标确定位置【解析】【分析】(1)根据M1(﹣5,﹣1),M2(4,4),M3(5,﹣4)确定原点,画出坐标系即可;(2)根据坐标系得出各点坐标即可.22、【答案】解:(1)写出点A、B的坐标:A(2,﹣1)、B(4,3)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(0,0)、B′(2,4)、C′(﹣1,3).(3)△ABC 的面积=3×4﹣2××1×3﹣×2×4=5.【考点】坐标与图形变化-对称【解析】【分析】(1)A在第四象限,横坐标为正,纵坐标为负;B的第一象限,横纵坐标均为正;(2)让三个点的横坐标减2,纵坐标加1即为平移后的坐标;(3)△ABC的面积等于边长为3,4的长方形的面积减去2个边长为1,3和一个边长为2,4的直角三角形的面积,把相关数值代入即可求解.23、【答案】解:如图以C为原点建立平面直角坐标系,A(﹣6,4),B(﹣7,﹣2),E(﹣7,﹣5),F(1,2),C(0,0),D(0,﹣3),G(﹣2,﹣5).【考点】坐标确定位置【解析】【分析】根据原点的位置,可得平面直角坐标系,根据点在坐标系中的位置,可得答案.24、【答案】解:建立坐标系如图:∴南门(0,0),狮子(﹣4,5),飞禽(3,4)两栖动物(4,1).【考点】坐标确定位置【解析】【分析】根据马场的坐标为(﹣3,﹣3),建立直角坐标系,找到原点和x轴、y轴.再找到其他各景点的坐标.。

相关文档
最新文档