高二数学上学期第二次月考试题 文2

合集下载

高二数学上学期第二次月考试卷 文含解析 试题

高二数学上学期第二次月考试卷 文含解析 试题

卜人入州八九几市潮王学校二零二零—二零二壹上学期高二第二次月考文科数学本卷须知:1.2.选择题的答题:每一小题在选出答案以后,需要用2B 铅笔把答题卡上对应题目之答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的答题:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.在在考试完毕之后以后,请将本试题卷和答题卡一并上交。

第一卷一、选择题:本大题一一共12小题,每一小题5分,在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的.1.a ,b ,c ,d ∈R ,以下说法正确的选项是〔〕 A .假设a b >,c d >,那么ac bd > B .假设a b >,那么22ac bc > C .假设0a b <<,那么11a b< D .假设a b >,那么a c b c ->-2.各项为正数的等比数列{}n a 中,21a =,4664a a =,那么公比q =〔〕 A .4B .3C .2D3.实数x ,y 满足36024023120x y x y x y --≤-+≥+-≤⎧⎪⎨⎪⎩,那么z x y =-的最小值是〔〕A .6-B .4-C .25-D .04.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,假设π3C =,c =,3b a =,那么ABC △的面积为〔〕ABCD5.〔〕A .0x ∃∈R ,20013x x +>的否认是:x ∀∈R ,213x x +< B .ABC △中,假设A B >,那么cos cos A B > C .假设p q ∨p q ∧p qD .1ω=是函数()sin cos f x x x ωω=-的最小正周期为2π的充分不必要条件6.假设k ∈R 那么“5k >〞是“方程22152x y k k -=-+表示双曲线〞的〔〕A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.数列{}n a 的通项公式1sin π12n n a n +⎛⎫=+ ⎪⎝⎭,前n 项和n S ,那么2017S =〔〕 A .1232B .3019C .3025D .43218.椭圆()2222:10x y C a b a b +=>>和直线:143x yl +=,假设过C 的左焦点和下顶点的直线与l 平行,那么椭圆C的离心率为〔〕 A .45B .35C .34D .159.设1F ,2F 是双曲线()2222:10,0x y C a b a b-=>>的左右焦点,A 为左顶点,点P 为双曲线C 右支上一点,1210F F =,212PF F F ⊥,2163PF =,O 为坐标原点,那么OA OP ⋅=〔〕 A .293-B .163C .15D .15-10.点()0,2A ,抛物线()2:20C y px p =>的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N,假设FM MN=,那么p 的值等于〔〕 A .18 B .14C .2D .411.双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,过1F 作圆222x y a +=的切线,交双曲线右支于点M ,假设1245F MF ∠=︒,那么双曲线的渐近线方程为〔〕 A.y =B.y =C .y x =±D .2y x =±12.双曲线22221x y a b-=的左右焦点为1F ,2F ,O 为它的中心,P 为双曲线右支上的一点,12PF F △的内切圆圆心为I ,且圆I 与x 轴相切于A 点,过2F 作直线PI 的垂线,垂足为B ,假设双曲线的离心率为e ,那么〔〕 A .OB OA = B .OB e OA = C .OA e OB =D .OB 与OA 关系不确定第二卷二、填空题:本大题一一共4小题,每一小题5分. 13.数列{}n a 满足11a =-,()111n na n a +=∈-*N ,那么100a =_____________. 14.ABC △中,abc ,,分别为内角A B C ,,的对边,且cos cos 3cos a B b A c C +=,那么cos C =______.15.0c >:p 函数xy c =为减函数.:q 当1,22x ⎡⎤∈⎢⎥⎣⎦时,函数()11f x x x c +>=恒成立.假设“p q ∨,“p q ∧c 的取值范围是________.16.直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,12AB =,P 为C 的准线上的一点,那么ABP △的面积为______.三、解答题:本大题一一共6小题,一共70分,解容许写出文字说明、证明过程或者演算步骤.17.〔10分〕:p “曲线222:128x y C m m +=+表示焦点在x :q “x ∀∈R ,20mx x m -+>p q ∨为真,p q ∧为假,求m 的取值范围.18.〔12分〕不等式2260kx x k -+<.〔1〕假设不等式的解集为{}32x x x <->-或,求k 的值; 〔2〕假设不等式的解集为R ,求k 的取值范围.19.〔12分〕数列{}n a 的前n 项和221n S n n =++,n ∈*N .〔1〕求数列{}n a 的通项公式;〔2〕求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T . 20.〔12分〕a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,向量()sin ,sin A B =m ,()cos ,cos B A =n 且sin2C ⋅=m n .〔1〕求角C 的大小;〔2〕假设sin sin 2sin A B C +=,且ABC △面积为c 的长.21.〔12分〕抛物线()2:20G y px p =>,过焦点F 的动直线l 与抛物线交于A ,B 两点,线段AB 的中点为M .〔1〕当直线l 的倾斜角为π4时,16AB =.求抛物线G 的方程; 〔2〕对于〔1〕问中的抛物线G ,设定点()3,0N ,求证:2AB MN -为定值.22.〔12分〕1F ,2F 分别为椭圆()2222:10x y C a b a b+=>>的左、右焦点,点()()001,0P y y >在椭圆上,且2PF x ⊥轴,12PF F △的周长为6. 〔1〕求椭圆的HY 方程;〔2〕E ,F 是椭圆C 上异于点P 的两个动点,假设直线PE 与直线PF 的倾斜角互补,证明:直线EF 的斜率为定值,并求出这个定值.二零二零—二零二壹上学期高二第二次月考 文科数学答案第一卷一、选择题:本大题一一共12小题,每一小题5分,在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的. 1.【答案】D【解析】因为21>,12->-,()()2112-=-,所以A 错; 因为21>,222010⨯=⨯,所以B 错; 因为21-<-,112->-,所以C 错; 由不等式性质得假设a b >,那么a c b c ->-,所以D 对,应选D . 2.【答案】C【解析】246564a a a ==,50a >,58a ∴=,352881a q a ∴===,2q =,应选C . 3.【答案】B 【解析】作出不等式组所满足的平面区域如图阴影局部所示,其中1816,55A ⎛⎫-- ⎪⎝⎭,()6,0B ,()0,4C ,作出直线y x =,平移直线l ,当其经过点C 时,z 有最小值,为4-.故答案为B . 4.【答案】A【解析】由余弦定理得:2271cos 322πa b ab +-==,227a b ab ∴+-=,又3b a =,所以221073a a -=,1a ∴=,3b =,11333sin 132224ABC S ab C ∴==⨯⨯=△A . 5.【答案】D【解析】0x ∃∈R ,20013x x +>的否认是:x ∀∈R ,213x x +≤,故A 错误; ABC △中,假设A B >,那么cos cos A B >在C 中,假设p q ∨p q ∧p 与q故C 错误;在D 中,()πsin cos 24f x x x x ωωω⎛⎫=-=- ⎪⎝⎭,∴1ω=⇒函数()sin cos f x x x ωω=-的最小正周期为2π,函数()sin cos f x x x ωω=-的最小正周期为2π1ω⇒=±.∴1ω=是函数()sin cos f x x x ωω=-的最小正周期为2π的充分不必要条件,故D 正确.应选D . 6.【答案】A【解析】假设5k >,那么50k ->,20k +>,所以方程22152x y k k -=-+表示双曲线,假设方程22152x y k k -=-+表示双曲线,那么()()520k k -+>,所以5k >或者2k <-,综上可知,“5k >〞是“方程22152x y k k -=-+表示双曲线〞的充分不必要条件,所以选A .7.【答案】C【解析】当()4n k k =∈Z 时,1sin πsin 122πn +⎛⎫==⎪⎝⎭, 当()41n k k =+∈Z 时,1sin πsin π02n +⎛⎫== ⎪⎝⎭, 当()42n k k =+∈Z 时,13πsin πsin 122n +⎛⎫==-⎪⎝⎭, 当()43n k k =+∈Z 时,1sin πsin 2π02n +⎛⎫==⎪⎝⎭, 由此可得:()()20173π2018π1sin π12sin 13sin 2π12017sin 122S ⎛⎫⎛⎫=⨯++⨯++⨯+++⨯+ ⎪ ⎪⎝⎭⎝⎭()()()21416181201412016120171=⨯-+⨯+⨯-+⨯++⨯-+⨯+⨯⎡⎤⎣⎦()2468102012201420162017=-+-+-++-++100820173025=+=,应选C .8.【答案】A【解析】直线l 的斜率为34-,过C 的左焦点和下顶点的直线与l 平行,所以34b c =,又22222222325416b c a c c a c a ⎛⎫+=⇒+=⇒= ⎪⎝⎭,所以45c e a ==,应选A .9.【答案】D【解析】由题得22225163a b b a+==⎧⎪⎨⎪⎩,3a ∴=,4b =,所以双曲线的方程为221916x y -=,所以点P 的坐标为165,3⎛⎫⎪⎝⎭或者165,3⎛⎫- ⎪⎝⎭,所以()163,05,153OA OP ⎛⎫⋅=-⋅±=- ⎪⎝⎭.故答案为D .10.【答案】C【解析】设,02p F ⎛⎫⎪⎝⎭,MK 是点M 到准线的间隔,点K 是垂足.由抛物线定义可得=MK MF ,因为55FM MN=,所以55MK MN =, 那么:2:1KN KM =,即直线FA 的斜率是2-,所以20202p -=--,解得2p =.应选C . 11.【答案】A 【解析】如图,作1OA F M ⊥于点A ,21F B F M ⊥于点B .因为1F M 与圆222x y a +=相切,1245F MF ∠=︒,所以OA a =,22F B BM a ==,222F M a =,12F B b =.又点M 在双曲线上.所以1222222F M F M a b a a -=+-=.整理得2b a =.所以2ba=.所以双曲线的渐近线方程为2y x =±.应选A . 12.【答案】A【解析】()1,0F c -、()2,0F c ,内切圆与x 轴的切点是点A ,∵122PF PF a =-,及圆的切线长定理知,122AF AF a =-,设内切圆的圆心横坐标为x ,那么|()()2x c c x a +--=,∴x a =,OA a =,在2PCF △中,由题意得,2F B PI ⊥于B ,延长交12F F 于点C ,利用2PCB PF B △≌△,可知2PC PF =, ∴在三角形12F CF 中,有:()()1112111122222OB CF PF PC PF PF a a ====⨯-=-.∴OB OA =.应选A .第二卷二、填空题:本大题一一共4小题,每一小题5分. 13.【答案】1- 【解析】11a =-,211112a a ==-,32121a a ==-,43111a a ==--,,由以上可知,数列{}n a 是一个循环数列,每三个一循环,所以10011a a ==-.14.【答案】13【解析】cos cos 3cos a B b A c C +=,∴利用余弦定理可得2222222223222a c b b c a a b c a b c ac bc ab +-+-+-⨯+⨯=⨯,整理可得:22223ab a b c +-=,∴由余弦定理可得:22221cos 2323a b c ab C ab ab +-===⋅,故答案为13.15.【答案】[)10,1,2⎛⎤+∞ ⎥⎝⎦【解析】:p 函数x y c =为减函数为真,那么01c <<;:q 当1,22x ⎡⎤∈⎢⎥⎣⎦时,函数()11f x x x c +>=恒为真,那么12c >,那么1,2c ⎛⎫∈+∞ ⎪⎝⎭,因为p q ∨p q ∧p ,q 中一真一假,假设p 真q 假时,那么10,2c ⎛⎤∈ ⎥⎝⎦,假设p 假q 真时,那么[)1,c ∈+∞,所以实数c 的取值范围是[)10,1,2⎛⎤+∞ ⎥⎝⎦.16.【答案】36【解析】设抛物线的解析式()220y px p =>,那么焦点为,02p F ⎛⎫⎪⎝⎭,对称轴为x 轴,准线为2px =-,直线l 经过抛物线的焦点,A ,B 是l 与C 的交点, 又AB x ⊥轴,212AB p ∴==,6p ∴=,又点P 在准线上,设过点P 的垂线与AB 交于点D ,622p pDP p ∴=+-==, 116123622ABP S DP AB ∴=⋅⋅=⨯⨯=△.故答案为36.三、解答题:本大题一一共6小题,一共70分,解容许写出文字说明、证明过程或者演算步骤. 17.【答案】()14,2,42⎛⎤-- ⎥⎝⎦. 【解析】p 真2280m m ⇔>+>,解得42m -<<-或者4m >, q 真20140m Δm >⎧⇔⎨=-<⎩,解得12m >. p q ∨为真,p q ∧为假,∴那么p 和q 一真一假,当p 真q 假时,42412m m m -<<⎧-≤⎪>⎪⎨⎩或,解得42m -<<-; 当p 假q 真时,42412m m m ≤--≤>⎪≤⎧⎪⎨⎩或,解得142m <≤, 综上所述,m 的取值范围是()14,2,42⎛⎤-- ⎥⎝⎦.18.【答案】〔1〕25k =-;〔2〕66k <.【解析】〔1〕不等式2260kx x k -+<的解集是{}32x x x <->-或, ∴方程2260kx x k -+=的两个根为3-,2-,()2325k ∴=-+-=-,25k ∴=-. 〔2〕①0k =时,显然不满足题意,②0k ≠时,204240k Δk <⎧∴⎨=-<⎩,解得66k <,综上66k <. 19.【答案】〔1〕见解析;〔2〕()612023n n T n -=+.【解析】〔1〕当1n =时,114a S ==;当2n ≥时,()221121n n n a S S n n n -=-=--=+, 对14a =不成立,所以数列{}n a 的通项公式为41212n n a n n n =⎧=⎨+≥∈⎩*N ,.〔2〕当1n =时,1120T =, 当2n ≥时,()()111111212322123n n a a n n n n +⎛⎫==- ⎪++++⎝⎭, 所以1111111120257792123n T n n ⎛⎫=+-+-++- ⎪++⎝⎭()11612010152023n n n n --=+=++, 又1n =时,1120T =符合上式,所以()()612023n n T n n -=∈+*N . 20.【答案】〔1〕60C =︒;〔2〕6c =.【解析】〔1〕因为()sin cos sin cos sin sin2A B B A A B C ⋅=+=+=m n , 在三角形ABC 中有()sin sin A B C +=, 从而有sin 2sin cos C C C =,即1cos 2C =,那么60C =︒.〔2〕由sin sin 2sin A B C +=,结合正弦定理知2a b c +=,又11sin 22S ab C ab ===36ab =,根据余弦定理可知:()222222cos 34108c a b ab C a b ab c =+-=+-=-,解得6c =. 21.【答案】〔1〕28y x =;〔2〕证明见解析.【解析】〔1〕由题意知,02p F ⎛⎫ ⎪⎝⎭,设直线l 的方程为2p y x =-,()11,A x y ,()22,B x y ,由222y pxp y x ==-⎧⎪⎨⎪⎩得:22304p x px -+=,所以123x x p +=. 又由1216AB x x p =++=,所以4p =,所以抛物线G 的方程为28y x =. 〔2〕由〔1〕抛物线G 的方程为28y x =,此时设:2AB ty x =-, 消去x 得28160y ty --=,设()11,A x y ,()22,B x y ,那么128y y t +=,1216y y =-,所以()()212124881AB x x t y y t =++=++=+, ()2122422M tx y y t =++=+,4M y t =,即()242,4M t t +, 所以()()()222281812416AB MN t t t -=+-=+-+=.22.【答案】〔1〕22143x y +=;〔2〕12. 【解析】〔1〕由题意,()11,0F -,()21,0F ,1c =, 12PF F △的周长为6,122226PF PF c a c ∴++=+=,2a∴=,b =,∴椭圆的HY 方程为22143x y +=.〔2〕由〔1〕知31,2P ⎛⎫⎪⎝⎭,设直线PE 方程:()312y k x =-+,联立22341232x y y kx k +=⎛⎫=+- ⎪⎝⎭⎧⎪⎨⎪⎩,消y 得()()22233443241202k x k k x k ⎛⎫++-+--= ⎪⎝⎭,设(),E E E x y ,(),F F F x y ,点31,2P ⎛⎫⎪⎝⎭在椭圆上,2234122134E k x k ⎛⎫-- ⎪⎝⎭∴⋅=+,22412334E k k x k --∴=+,32E Ey kx k =+-, 又直线PF 的斜率与PE 的斜率互为相反数,在上式中以k -代k ,22412334F k k x k +-∴=+,32F Fy kx k =-++, ()()222862213424234F E F E EFF E F E k k kk x x k y y k k k x x x x k --⋅+-++-+∴====--+,即直线EF 错误!未定义书签。

数学-高二年级第二次月考数学试题

数学-高二年级第二次月考数学试题

王淦昌高级中学2022-2023学年第二学期高二年级第二次月考数学试题2023.5(考试时间:120分钟分值:150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设,a b 均为非零实数且a b <,则下列结论正确的是()A .11a b > B .22a b < C .2211a b<D .33a b <2.25()x x -的展开式中含5x 项的系数为 () A . 1-B . 5-C . 1D . 53.命题“2[1,2],0x x a ∀∈-≤”为真命题的一个充分不必要条件是 ( )A . 4a ≥B .4a ≤C . 5a ≥D . 5a ≤4.袁隆平院士是我国的杂交水稻之父,他一生致力于杂交水稻的研究,为解决中国人民的温饱和保障国家粮食安全作出了重大贡献.某杂交水稻研究小组先培育出第一代杂交水稻,再由第一代培育出第二代,带二代培育出第三代,以此类推,且亲代与子代的每穗总粒数之间的关系如下表示:(注:亲代是产生后一代生物的生物,对后代生物来说是亲代,所产生的后一代交子代)通过上面四组数据得到了x 与y 之间的线性回归方程是ˆˆ4.4yx a =+,预测第五代杂交水稻每穗的总粒数为 ( ) A .211 B .212C .213D .2145. 某班50名同学参加体能测试,经统计成绩c 近似服从2(90,)N σ,()90950.3P c ≤≤=,则可估计该班体能测试成绩低于85分的人数为 ( ) A . 5B . 10C . 15D . 306. 某校拟从5名班主任及5名班长(3男2女)中选派1名班主任和3名班长去参加“党史主题活动”, 要求2名女班长中至少有1人参加,则不同的安排方案有( )种. A . 9B . 15C . 60D . 457. 现行排球比赛规则为五局三胜制,前四局每局先得25分者为胜,第五局先得15分者为胜,并且每赢1球得1分,每次得分者发球;当出现24平或14平时,要继续比赛至领先2分才能取胜.在一局比赛中,甲队发球赢球的概率为12,甲队接发球赢球的概率为35,在比分为24∶24平且甲队发球的情况下,甲队以27∶25赢下比赛的概率为( )A .18B .320C .310D .7208. 设函数,(),x xx af x e x x a ⎧≥⎪=⎨⎪<⎩,若函数存在最大值,则实数a 的取值范围是( )A . 1a ≤B . 1a <C . 1a e ≤D . 1a e<二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得2分,有选错的得0分. 9. 已知a ,b ∈R ,0,0a b >>,且2a b +=,则下列说法正确的为 ( ) A .ab 的最小值为1 B .22log log 0a b +≤C . 224a b +≥D . 1222a b+≥10. 甲、乙、丙、丁、戊五人并排站成一排,下列说法正确的是 ( ) A . 如果甲,乙必须相邻,那么不同的排法有24种B . 最左端只能排甲或乙,最右端不能排甲,则不同的排法共有42种C . 甲乙不相邻的排法种数为72种D . 甲乙丙按从左到右的顺序排列的排法有20种11. 某车间加工同一型号零件,第一、二台车床加工的零件分别占总数的40%,60%,各自产品中的次品率分别为6%,5%.记“任取一个零件为第i 台车床加工(1,2)i =”为事件i A ,“任取一个零件是次品”为事件B ,则 ( ) A .()0.054P B = B .()20.03P A B = C .()10.06P B A = D .()259P A B = 12.已知函数()()2ln f x x ax x a R =--∈,则下列说法正确的是( )A .若1a =-,则()f x 是1(0,)2上的减函数 B .若01a ≤≤,则()f x 有两个零点 C .若1a =,则()0f x ≥D .若1a >,则曲线()y f x =上存在相异两点M ,N 处的切线平行 三、填空题:本题共4小题,每小题5分,20分.把答案填在题中的横线上. 13.已知关于x 的一元二次不等式20ax bx c ++<的解集为{}3|1x x <<,则20cx bx a -+>的解集是___________.14.命题“x ∃∈R ,()()22210a x a x +++-≥”为假命题,则实数a 的取值范围为______.15.某学校有一块绿化用地,其形状如图所示.为了让效果更美观,要求在四个区域内种植花卉,且相邻区域颜色不同.现有五种不同颜色的花卉可供选择,则不同的种植方案共有________种.(用数字作答) 16.已知x >1,y <0,且3y (1-x )=x +8,则x -3y 的最小值为 .四、解答题:本大题共6小题,共70分,解答须写出必要的文字说明、证明过程或演算步骤. 17. (本小题满分10分)已知集合{}|132A x m x m =-≤≤-,不等式411x ≥+的解集为B . (1)当3m =时,求AB ;(2)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围.18.(本小题满分12分)已知在n的展开式中,第5项的系数与第3项的系数之比是14:3.(1)求展开式中二项式系数最大的项; (2)求展开式中含5x 的项.19.(本小题满分12分)从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同. (1)若抽取后又放回,抽3次.①分别求恰2次为红球的概率及抽全三种颜色球的概率; ②求抽到红球次数η的数学期望及方差.(2)若抽取后不放回,写出抽完红球所需次数ξ的分布列.20.(本小题满分12分)某校成立了生物兴趣小组,该兴趣小组为了探究一定范围内的温度x 与豇豆种子发芽数y该兴趣小组确定的研究方案是:先从这7组数据中任选5组数据建立y 关于x 的线性回归方程,并用该方程对剩下的2组数据进行检验.(1)若选取的是星期一、二、三、六、日这5天的数据,求出y 关于x 的线性回归方程; (2)若由线性回归方程得到的估计数据与选出的检验数据的误差均不超过2个,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?附:回归直线的斜率和截距的最小二乘估计公式分别为121()()ˆ()niii nii x x yy bx x ==--=-∑∑,ˆˆay b x =-⋅.21.(本小题满分12分)疫情过后,百业复苏,某餐饮店推出了“三红免单”系列促销活动,为了增加活动的趣味性与挑战性,顾客可以从装有3个红球、7个白球的袋子中摸球参与活动,商家提供A 、B 两种活动规则:规则A :顾客一次性从袋子中摸出3个球,如果3个球都是红球,则本次消费免单;如果摸出的3个球中有2个红球,则获得价值200元的优惠券;如果摸出的3个球中有1个红球,则获得价值100元的优惠券;如果摸出的3个球中没有红球,则不享受优惠.规则B :顾客分3次从袋子中摸球,每次摸出1只球记下颜色后放回,按照3次摸出的球的颜色计算中奖,中奖优惠方案和规则A 相同.(1)某顾客计划消费300元,若选择规则A 参与活动,求该顾客参加活动后的消费期望; (2)若顾客计划消费300元,则选择哪种规则参与活动更加划算?试说明理由.22.(本小题满分12分)已知函数2()ln (12)1f x x mx m x =-+-+. (1)若1m =,求()f x 的极值;(2)若对任意0x >,()0f x ≤恒成立,求整数m 的最小值.。

高中高二数学上学期第二次月考试卷 文(含解析)-人教版高二全册数学试题

高中高二数学上学期第二次月考试卷 文(含解析)-人教版高二全册数学试题

2014-2015学年某某省某某市安吉县上墅私立高中高二(上)第二次月考数学试卷(文科)一、选择题:(本大题共10小题,每小题3分,共30分.)1.在△ABC中,“A=”是“cosA=”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件2.已知命题p:∃x∈R,x﹣2>0,命题q:∀x∈R,>x,则下列说法中正确的是() A.命题p∨q是假命题 B.命题p∧q是真命题C.命题p∨(¬q)是假命题 D.命题p∧(¬q)是真命题3.直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为()A. B. C. D.4.若直线(m+2)x+3y+3=0与直线x+(2m﹣1)y+m=0平行,则实数m=() A.﹣或1 B. 1 C. 1或2 D.﹣5.直线2x+3y+1=0与直线4x+my+7=0平行,则它们之间的距离为() A. 4 B. C. D.6.设l,m是不同的直线,α,β,γ是不同的平面()A.若l⊥α,l⊥m,则m∥α B.若l⊂α,m⊂β,α∥β,则l∥mC.若l∥α,m⊥α,则l⊥m D.若α∩β=l,l⊥γ,m⊥β,则m∥γ7.过P(2,0)的直线被圆(x﹣2)2+(y﹣3)2=9截得的线段长为2时,直线l的斜率为()A. B. C.±1 D.8.若双曲线的离心率为,则其渐近线方程为()A. y=±2x B. C. D.9.直线l:x+y﹣4=0与圆C:x2+y2=4的位置关系是()A.相交过圆心 B.相交不过圆心 C.相切 D.相离10.下列结论正确的是()A.命题“若a>b>0,则a2>b2”的逆命题是假命题B.若函数f(x)=sinx,则函数f(x)为周期函数的逆命题是真命题C.向量,的夹角为钝角的充要条件是•<0D.“x2>2”是“x2﹣3x+2≥0”的充分不必要条件二、填空题:(本大题共7小题,每小题3分,共21分.)11.由命题“存在x∈R,使x2+2x+m≤0”是假命题,则实数m的取值X围为.12.已知命题p:m<0,命题q:∀x∈R,x2+mx+1>0成立,若“p∧q”为真命题,则实数m 的取值X围是.13.两直线l1:ax+2y﹣1=0,l2:(a﹣1)x+ay+1=0垂直,则a=.14.两圆x2+y2﹣4x+6y=0和x2+y2﹣6x=0的连心线方程为.15.已知动圆M与圆C1:(x+3)2+y2=9外切且与圆C2:(x﹣3)2+y2=1内切,则动圆圆心M的轨迹方程是.16.一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.17.下列四个命题:①“∃x∈R,x2﹣x+1≤0”的否定;②“若x2+x﹣6≥0,则x>2”的否命题;③在△ABC中,“A>30°”是“sinA>”的充分不必要条件④“函数f(x)=tan(x+φ)为奇函数”的充要条件是“φ=kπ.(k∈Z)”,其中真命题的序号是.三、解答题:(本大题共5小题,共49分.)18.设p:实数x满足x2+2ax﹣3a2<0(a>0),q:实数x满足x2+2x﹣8<0,且q是p的必要不充分条件,求a的取值X围.19.求满足下列条件的椭圆方程:(1)长轴在x轴上,长轴长等于12,离心率等于;(2)椭圆经过点(﹣6,0)和(0,8);(3)椭圆的一个焦点到长轴两端点的距离分别为10和4.20.如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC.(1)求证:AM⊥平面EBC;(2)求直线AB与平面EBC所成角的大小.21.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D(2,0).(1)求该椭圆的标准方程;(2)设点,若P是椭圆上的动点,求线段PA的中点M的轨迹方程.22.已知圆C:x2+y2=4和直线l:3x+4y+12=0,点P是圆C上的一动点,直线与坐标轴的交点分别为点A、B,(1)求与圆C相切且平行直线l的直线方程;(2)求△PAB面积的最大值.2014-2015学年某某省某某市安吉县上墅私立高中高二(上)第二次月考数学试卷(文科)参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分.)1.在△ABC中,“A=”是“cosA=”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据充分必要条件的定义结合三角形的性质,分别证明充分性和必要性,从而得到答案.解答:解:在△ABC中,若A=,则cosA=,是充分条件,在△ABC中,若cosA=,则A=或A=,不是必要条件,故选:A.点评:本题考查了充分必要条件,考查了三角形中的三角函数值问题,是一道基础题.2.已知命题p:∃x∈R,x﹣2>0,命题q:∀x∈R,>x,则下列说法中正确的是() A.命题p∨q是假命题 B.命题p∧q是真命题C.命题p∨(¬q)是假命题 D.命题p∧(¬q)是真命题考点:复合命题的真假.专题:简易逻辑.分析:容易判断命题p是真命题,q是假命题,所以根据p∨q,p∧q,¬q的真假和p,q的关系即可找出正确选项.解答:解:∃x∈R,x﹣2>0,即不等式x﹣2>0有解,∴命题p是真命题;x<0时,无解,∴命题q是假命题;∴p∨q为真命题,p∧q是假命题,¬q是真命题,p∨(¬q)是真命题,p∧(¬q)是真命题;∴D正确.故选D.点评:考查真命题,假命题的概念,以及p∨q,p∧q,¬q的真假和p,q真假的关系.3.直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为()A. B. C. D.考点:椭圆的简单性质.专题:计算题.分析:直线x﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),依题意得.解答:直线x﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点;故.故选A.点评:本题考查了椭圆的基本性质,只需根据已知条件求出a,b,c即可,属于基础题型.4.若直线(m+2)x+3y+3=0与直线x+(2m﹣1)y+m=0平行,则实数m=() A.﹣或1 B. 1 C. 1或2 D.﹣考点:直线的一般式方程与直线的平行关系.专题:直线与圆.分析:由直线的平行可得m的方程,解得m代回验证可得.解答:解:∵直线(m+2)x+3y+3=0与直线x+(2m﹣1)y+m=0平行,∴(m+2)(2m﹣1)﹣3×1=0,解得m=﹣或1经验证当m=1时,两直线重合,应舍去,故选:D点评:本题考查直线的一般式方程和平行关系,属基础题.5.直线2x+3y+1=0与直线4x+my+7=0平行,则它们之间的距离为() A. 4 B. C. D.考点:两条平行直线间的距离.专题:直线与圆.分析:通过直线的平行求出m,然后利用平行线之间的距离求解即可.解答:解:直线2x+3y+1=0与直线4x+my+7=0平行,所以m=6,直线4x+my+7=0化为直线4x+6y+7=0即2x+3y+3.5=0,它们之间的距离为:d==.故选:C.点评:本题考查两条平行线之间是距离的求法,基本知识的考查.6.设l,m是不同的直线,α,β,γ是不同的平面()A.若l⊥α,l⊥m,则m∥α B.若l⊂α,m⊂β,α∥β,则l∥mC.若l∥α,m⊥α,则l⊥m D.若α∩β=l,l⊥γ,m⊥β,则m∥γ考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:利用空间中线线、线面、面面间的位置关系求解.解答:解:若l⊥α,l⊥m,则m∥α或m⊂α,故A错误;若l⊂α,m⊂β,α∥β,则l与m平行或异面,故B错误;若l∥α,m⊥α,则由直线与平面平行的性质得l⊥m,故C正确;若α∩β=l,l⊥γ,m⊥β,则m∥γ或m⊂γ,故D错误.故选:C.点评:本题考查命题真假的判断,是基础题,解题时要注意空间思维能力的培养.7.过P(2,0)的直线被圆(x﹣2)2+(y﹣3)2=9截得的线段长为2时,直线l的斜率为() A. B. C.±1 D.考点:直线与圆的位置关系.专题:直线与圆.分析:设直线l的方程为:y=kx﹣2k,由已知条件结合圆的性质和点到直线的距离公式推导出=2,由此能求出直线的斜率.解答:解:设直线l的斜率为k,则直线l的方程为:y=kx﹣2k,(x﹣2)2+(y﹣3)2=9的圆心C(2,3),半径r=3,∵过P(2,0)的直线被圆(x﹣2)2+(y﹣3)2=9截得的线段长为2,∴圆心C(2,3)到直线AB的距离d==2,∵点C(2,3)到直线y=kx﹣2k的距离d==2,∴•2=3,解得k=±.故选:A.点评:本题考查直线的斜率的求法,是中档题,解题时要认真审题,注意点到直线的距离公式的合理运用.8.若双曲线的离心率为,则其渐近线方程为()A. y=±2x B. C. D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:通过双曲线的离心率,推出a、b关系,然后直接求出双曲线的渐近线方程.解答:解:由双曲线的离心率,可知c=a,又a2+b2=c2,所以b=a,所以双曲线的渐近线方程为:y==±x.故选B.点评:本题考查双曲线的基本性质,渐近线方程的求法,考查计算能力.9.直线l:x+y﹣4=0与圆C:x2+y2=4的位置关系是()A.相交过圆心 B.相交不过圆心 C.相切 D.相离考点:直线与圆的位置关系.专题:直线与圆.分析:求出圆心(0,0)到直线l:x+y﹣4=0的距离d正好等于半径,可得直线和圆相切.解答:解:由于圆心(0,0)到直线l:x+y﹣4=0的距离为d==2=r(半径),故直线和圆相切,故选:C.点评:本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.10.下列结论正确的是()A.命题“若a>b>0,则a2>b2”的逆命题是假命题B.若函数f(x)=sinx,则函数f(x)为周期函数的逆命题是真命题C.向量,的夹角为钝角的充要条件是•<0D.“x2>2”是“x2﹣3x+2≥0”的充分不必要条件考点:命题的真假判断与应用.专题:简易逻辑.分析: A.“若a>b>0,则a2>b2”的逆命题为“若a2>b2,则a>b>0”是假命题;B.函数f(x)=sinx,则函数f(x)为周期函数的逆命题为“函数f(x)为周期函数,则f (x)=sinx”,显然不正确;C.向量,的夹角为钝角⇒•<0,反之不成立,由于非零向量反向共线时,满足<0;D.“x2>2”⇒或x,而x2﹣3x+2=﹣≥﹣,反之也不成立.解答:解:A.“若a>b>0,则a2>b2”的逆命题为“若a2>b2,则a>b>0”是假命题,正确;B.函数f(x)=sinx,则函数f(x)为周期函数的逆命题为“函数f(x)为周期函数,则f (x)=sinx”是假命题,不正确;C.向量,的夹角为钝角⇒•<0,反之不成立,由于向量反向共线时,其<0,因此不正确;D.“x2>2”⇒或x,此时x2﹣3x+2=﹣≥﹣,反之也不成立,因此“x2>2”是“x2﹣3x+2≥0”的既不充分也不必要条件,不正确.综上可得:只有A.故选:A.点评:本题考查了函数的性质、简易逻辑的判定、向量的数量积及其夹角公式,考查了推理能力,属于基础题.二、填空题:(本大题共7小题,每小题3分,共21分.)11.由命题“存在x∈R,使x2+2x+m≤0”是假命题,则实数m的取值X围为(1,+∞).考点:特称命题.专题:计算题.分析:原命题为假命题,则其否命题为真命题,得出∀x∈R,都有x2+2x+m>0,再由△<0,求得m.解答:解:∵“存在x∈R,使x2+2x+m≤0”,∴其否命题为真命题,即是说“∀x∈R,都有x2+2x+m>0”,∴△=4﹣4m<0,解得m>1.∴m的取值X围为(1,+∞).故答案为:(1,+∞)点评:本题考查了存在命题的否定,不等式恒成立问题.考查转化、计算能力.12.已知命题p:m<0,命题q:∀x∈R,x2+mx+1>0成立,若“p∧q”为真命题,则实数m 的取值X围是﹣2<m<0 .考点:复合命题的真假.专题:简易逻辑.分析:根据复合命题的真假性判断出命题p、q都是真命题,再逐一求出m的X围,最后求它们的交集.解答:解:因为“p∧q”为真命题,所以命题p、q都是真命题,若命题q是真命题,则∀x∈R,x2+mx+1>0横成立,所以△=m2﹣4<0,解得﹣2<m<2,又命题p:m<0,也是真命题,所以实数m的取值X围是:﹣2<m<0,故答案为:﹣2<m<0.点评:本题考查了复合命题的真假性,以及二次函数的性质,属于基础题.13.两直线l1:ax+2y﹣1=0,l2:(a﹣1)x+ay+1=0垂直,则a= 0或﹣1 .考点:直线的一般式方程与直线的垂直关系.专题:直线与圆.分析:由已知得a(a﹣1)+2a=0,由此能求出a.解答:解:∵两直线l1:ax+2y﹣1=0,l2:(a﹣1)x+ay+1=0垂直,∴a(a﹣1)+2a=0,解得a=0或a=﹣1.故答案为:0或﹣1.点评:本题考查实数值的求法,是基础题,解题时要认真审题,注意直线与直线垂直的性质的合理运用.14.两圆x2+y2﹣4x+6y=0和x2+y2﹣6x=0的连心线方程为3x﹣y﹣9=0 .考点:圆与圆的位置关系及其判定.专题:计算题;直线与圆.分析:求出圆心坐标,利用点斜式,可得方程.解答:解:两圆x2+y2﹣4x+6y=0和x2+y2﹣6x=0的圆心坐标分别为(2,﹣3),(3,0),∴连心线方程为y﹣0=(x﹣3),即3x﹣y﹣9=0.故答案为:3x﹣y﹣9=0.点评:本题考查圆与圆的位置关系及其判定,考查直线方程,比较基础.15.已知动圆M与圆C1:(x+3)2+y2=9外切且与圆C2:(x﹣3)2+y2=1内切,则动圆圆心M的轨迹方程是﹣=1(x≥2).考点:直线与圆的位置关系.专题:直线与圆.分析:找出两圆圆心坐标与半径,设设动圆圆心M(x,y),半径为r,根据动圆M与圆C1外切且与圆C2内切,即可确定出M轨迹方程.解答:解:由圆C1:(x+3)2+y2=9,圆心C1(﹣3,0),半径r1=3,圆C2:(x﹣3)2+y2=1,圆心C2(3,0),r2=1,设动圆圆心M(x,y),半径为r,根据题意得:,整理得:|MC1|﹣|MC2|=4,则动点M轨迹为双曲线,a=2,b=,c=3,其方程为﹣=1(x≥2).故答案为:﹣=1(x≥2)点评:此题考查了直线与圆的位置关系,以及动点轨迹方程,熟练掌握双曲线定义是解本题的关键.16.一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.考点:由三视图求面积、体积.专题:立体几何.分析:几何体是圆锥与圆柱的组合体,判断圆柱与圆锥的高及底面半径,代入圆锥与圆柱的体积公式计算.解答:解:由三视图知:几何体是圆锥与圆柱的组合体,其中圆柱的高为4,底面直径为2,圆锥的高为2,底面直径为4,∴几何体的体积V=π×12×4+×π×22×2=4π+π=π.故答案为:.点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.17.下列四个命题:①“∃x∈R,x2﹣x+1≤0”的否定;②“若x2+x﹣6≥0,则x>2”的否命题;③在△ABC中,“A>30°”是“sinA>”的充分不必要条件④“函数f(x)=tan(x+φ)为奇函数”的充要条件是“φ=kπ.(k∈Z)”,其中真命题的序号是①②.考点:命题的真假判断与应用.专题:简易逻辑.分析:①按照特称命题的否定要求改写,然后判断真假;②先写出原命题,然后再按照否条件、否结论进行改写;③双向推理,然后进行判断,此例可以举反例;④结合奇函数的性质进行推导,从左推右,然后反推化简.解答:解:①原命题的否定是:∀x∈R,x2﹣x+1>0;因为,故①为真命题;②原命题的否命题是:若x2+x﹣6<0,则x≤2.由x2+x﹣6<0,得(x+3)(x﹣2)<0,所以﹣3<x<2,故②为真命题;③当A=150°时,.所以故在△ABC中,“A>30°”是“sinA>”的不充分条件.故③是假命题;④若函数f(x)为奇函数,则f(0)=tanφ=0,或y轴为图象的渐近线,所以φ=kπ(k∈Z);或tanφ不存在,则φ=,(k∈Z)所以前者是后者的不充分条件.故④为假命题.故答案为:①,②点评:本题以简易逻辑为载体,考查了命题的否定及否命题的写法以及真假判断,充分必要性的判断方法,属于基础题,难度不大.三、解答题:(本大题共5小题,共49分.)18.设p:实数x满足x2+2ax﹣3a2<0(a>0),q:实数x满足x2+2x﹣8<0,且q是p的必要不充分条件,求a的取值X围.考点:必要条件、充分条件与充要条件的判断.专题:不等式的解法及应用.分析:先分别化简两个不等式,再利用q是p的必要不充分条件,转化为,然后某某数a的取值X围.解答:解:由x2+2ax﹣3a2<0得(x+3a)(x﹣a)<0,又a>0,所以﹣3a<x<a,(2分)x2+2x﹣8<0,∴﹣4<x<2,p为真时,实数x的取值X围是:﹣3a<x<a;q为真时,实数x的取值X围是:﹣4<x<2(6分)因为q是p的必要不充分条件,所以有(10分)所以实数a的取值X围是≤a≤2.(14分)点评:本题考查一元二次不等式的解法,必要条件、充分条件与充要条件的判断,考查计算能力,转化思想,是中档题.19.求满足下列条件的椭圆方程:(1)长轴在x轴上,长轴长等于12,离心率等于;(2)椭圆经过点(﹣6,0)和(0,8);(3)椭圆的一个焦点到长轴两端点的距离分别为10和4.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(1)设椭圆方程为+=1(a>b>0),运用离心率公式和a,b,c的关系,解得a,b,即可得到椭圆方程;(2)设椭圆方程为mx2+ny2=1,(m,n>0),由题意代入点(﹣6,0)和(0,8),解方程即可得到椭圆方程;(3)讨论椭圆的焦点的位置,由题意可得a﹣c=4,a+c=10,解方程可得a,c,再由a,b,c 的关系解得b,即可得到椭圆方程.解答:解:(1)设椭圆方程为+=1(a>b>0),由题意可得,2a=12,e=,即有a=6,=,即有c=4,b===2,即有椭圆方程为+=1;(2)设椭圆方程为mx2+ny2=1,(m,n>0),由题意代入点(﹣6,0)和(0,8),可得36m+0=1,且0+64n=1,解得m=,n=,即有椭圆方程为+=1;(3)当焦点在x轴上时,可设椭圆方程为+=1(a>b>0),由题意可得a﹣c=4,a+c=10,解得a=7,c=3,b==2,即有椭圆方程为+=1;同理,当焦点在y轴上时,可得椭圆方程为+=1.即有椭圆方程为+=1或+=1.点评:本题考查椭圆的方程和性质,主要考查椭圆的方程的求法,注意运用椭圆的方程的正确设法,以及椭圆性质的运用,属于基础题.20.如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC.(1)求证:AM⊥平面EBC;(2)求直线AB与平面EBC所成角的大小.考点:直线与平面所成的角;平面与平面垂直的判定.专题:空间位置关系与距离;空间角;空间向量及应用.分析:(1)建立空间直角坐标,利用向量法证明线面垂直.(2)利用向量法求线面角的大小.解答:解:∵四边形ACDE是正方形,所以EA⊥AC,AM⊥EC,∵平面ACDE⊥平ABC,∴EA⊥平面ABC,∴可以以点A为原点,以过A点平行于BC的直线为x轴,分别以直线AC和AE为y轴和z轴,建立如图所示的空间直角坐标系A﹣xyz.设EA=AC=BC=2,则A(0,0,0),B(2,2,0),C(0,2,0),E(0,0,2),∵M是正方形ACDE的对角线的交点,∴M(0,1,1) (3)=(0,1,1),=(0,2,0)﹣(0,0,2)=(0,2,﹣2),=(2,2,0)﹣(0,2,0)=(2,0,0),∴,,∴AM⊥EC,AM⊥CB,∴AM⊥平面EBC.…(5分)(2)∵AM⊥平面EBC,∴为平面EBC的一个法向量,∵=(0,1,1),=(2,2,0),∴cos.∴=60°.∴直线AB与平面EBC所成的角为30°.…(12分)点评:本题主要考查向量法证明线面垂直以及利用向量法求线面角的大小,运算量较大.21.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D(2,0).(1)求该椭圆的标准方程;(2)设点,若P是椭圆上的动点,求线段PA的中点M的轨迹方程.考点:轨迹方程;椭圆的标准方程.专题:计算题;圆锥曲线的定义、性质与方程.分析:(1)设椭圆方程为,根据题意可得a=2且c=,从而b==1,得到椭圆的标准方程;(2)设点P(x0,y0),线段PA的中点为M(x,y),根据中点坐标公式将x0、y0表示成关于x、y的式子,将P(x0,y0)关于x、y的坐标形式代入已知椭圆的方程,化简整理即可得到线段PA的中点M的轨迹方程.解答:解:(1)由题意知椭圆的焦点在x轴上,设椭圆的标准方程是∵椭圆经过点D(2,0),左焦点为,∴a=2,,可得b==1因此,椭圆的标准方程为.(2)设点P的坐标是(x0,y0),线段PA的中点为M(x,y),由根据中点坐标公式,可得,整理得,∵点P(x0,y0)在椭圆上,∴可得,化简整理得,由此可得线段PA中点M的轨迹方程是.点评:本题给出椭圆满足的条件,求椭圆方程并求与之有关的一个轨迹方程,着重考查了椭圆的标准方程、简单几何性质和轨迹方程的求法等知识点,属于中档题.22.已知圆C:x2+y2=4和直线l:3x+4y+12=0,点P是圆C上的一动点,直线与坐标轴的交点分别为点A、B,(1)求与圆C相切且平行直线l的直线方程;(2)求△PAB面积的最大值.考点:直线和圆的方程的应用.专题:直线与圆.分析:(1)根据题意设所求方程为3x+4y+a=0,根据直线与圆相切时,圆心到直线的距离d=r求出a的值,即可确定出所求直线方程;(2)当直线与AB平行,且与圆相切时,△PAB面积的最大值,如图所示,求出|AB|与|MN|的长,即可确定出△PAB面积的最大值.解答:解:(1)设所求直线方程为3x+4y+a=0,由题意得:圆心(0,0)到直线的距离d=r,即=2,解得:a=±10,则所求直线方程为3x+4y±10=0;(2)当直线与AB平行,且与圆相切时,△PAB面积的最大值,此时直线方程为3x+4y﹣10=0,∵点C到直线AB的距离||=,CM=2,∴|MN|=+2=,∵A(﹣4,0),B(0,3),即OA=4,OB=3,∴|AB|=5,则△PAB面积最大值为×5×=11.点评:此题考查了直线与圆的方程的应用,涉及的知识有:点到直线的距离公式,两直线平行时斜率的关系,以及直线与圆相切的性质,熟练掌握公式及性质是解本题的关键.。

高二数学上学期第二次月考试题文

高二数学上学期第二次月考试题文

辽宁省瓦房店市2017-2018学年高二数学上学期第二次月考试题 文第I 卷(选择题)一、选择题(每题5分,共60分) 1.若函数()f x =的定义域为实数集R ,则实数a 的取值范围为( )A. 22(﹣,)B. 22∞∞⋃+(﹣,﹣)(,)C. ][22∞∞⋃+(﹣,﹣,)D. []22﹣,2.数列{}n a 满足11a =,且对于任意的*n N ∈都有11n n a a a n +=++,则122017111···a a a +++等于( ) A.20162017 B. 40322017 C. 20172018 D. 403420183.抛物线22y x =在第一象限内图象上一点()2,2i i a a 处的切线与x 轴交点的横坐标记为1i a +,其中*i N ∈,若216a =,则246a a a ++等于( ) A. 16 B. 21 C. 32 D. 42 4.设命题1:012x P x-<-;命题2:(21)(1)0q x a x a a -+++≤.若p 是非q 的必要不充分条件,则实数a 的取值范围是( ) A.B.C.D.5.设命题p : 0,ln 0x x x ∀>->,则p ⌝为( ) A. 0,ln 0x x x ∀>-≤ B. 0,ln 0x x x ∀>-< C. 0000,ln 0x x x ∃≤-≤ D. 0000,ln 0x x x ∃>-≤6.如果0a b >>且22a b >,那么以下不等式中正确的个数是( ) ①23a b b <;②110a b>>;③32a ab < A. 0 B. 1 C. 2 D. 3 7.当x>3时,不等式11x a x +≥-恒成立,则实数a 的取值范围是( ) A.B.C.D.8.已知函数()f x 是偶函数,当0x >时, ()()21ln f x x x =-,则曲线()y f x =在点()()1,1f --处的切线斜率为( )A. B. C. D.9.等差数列{a n }中,若等差数列{}n a 中,若159371139,27a a a a a a ++=++=,则数列{}n a 前11项的和为A. 121B. 120C. 110D. 13210.已知数列{a n }为等比数列,S n 是它的前n 项和.若a 2·a 3=2a 1, 且a 4与2a 7的等差中项为54,则S 5=( ) A. 35 B. 33 C. 31 D. 2911.若m 是2和8的等比中项,则圆锥曲线221y x m+=的离心率是( )12.已知点p 在曲线41xy e =+上,α为曲线在点p 处的切线的倾斜角,则α的取值范围是( ) A. 0,)4π⎡⎢⎣ B. ,)42ππ⎡⎢⎣ C. 3(,24ππ⎤⎥⎦ D. 3,)4ππ⎡⎢⎣第II 卷(非选择题)二、填空题:(每题5分,共20分)13.已知x ,y 满足约束条件0{2 0x y x y y -≥+≤≥,若z =ax +y 的最大值为4,则a =________.14.已知是抛物线24x y =上一点,F 为其焦点,点A 在圆22:(1)(5)1C x y ++-=上,则MA MF +的最小值是____________15.已知函数'2()ln (1)34f x x f x x =--+-,则 16.若双曲线C 的渐近线方程为2y x =±,且经过点,则C 的标准方程为____________三、解答题 17.(10分)已知等差数列{}n a 满足()()()()12231......21n n a a a a a a n n +++++++=+. (1)求数列{}n a 的通项公式;(2)设 11.n n n b a a +=,求{}n b 的前n 项和nS 18.(12分).已知等差数列{}n a 满足()()()()12231......21n n a a a a a a n n +++++++=+. (1)求数列{}n a 的通项公式; (2)设11.n n n b a a +=,求{}n b 的前n 项和nS19.(12分)已知关于x 的一元二次不等式()210ax a x b -++<的解集为12x x ⎧<-⎨⎩或}1x >.(Ⅰ)求,a b 的值;(Ⅱ)若不等式()2230bx m a x m +++-≥对任意实数[]0,4m ∈恒成立,求实数x 的取值范围.20.(12分)已知P 是椭圆2214x y +=上的一点, 12,F F 是椭圆上的两个焦点, (1)当01260F PF ∠=时,求12FPF 的面积 (2)当12F PF ∠为钝角时,求点P 横坐标的取值范围21.(12分)已知椭圆C : 22221x y a b+=(0a b >>)的左右焦点分别为1F , 2F ,过1F 的直线l 与椭圆C 交于A,B 两点.113AF F B = (Ⅰ)若AB =4,2ABF ∆的周长为16,求2AF(Ⅱ)若23cos 5AF B ∠=,求椭圆C 的离心率。

福建省龙岩第一中学2022-2023学年高二上学期第二次月考数学试题(含答案)

福建省龙岩第一中学2022-2023学年高二上学期第二次月考数学试题(含答案)

龙岩一中2022-2023学年第一学期高二第二次月考数学试题(考试时间:120分钟 满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1()320y m m --=∈R 的倾斜角为A .120B .60C .30D .1502.已知n S 是等差数列{}n a 的前n 项和,若378a a +=,则9S = A .24B .36C .48D .723.直线250x y ++=与直线20kx y +=互相垂直,则它们的交点坐标为 A .(1,3)--B .(2,1)--C .1,12⎛⎫-- ⎪⎝⎭D .(1,2)--4.数列1,12+,2122++,⋯ ,23112222n -+++++,的前n 项和为A .21n n --B .122n n +--C .2nD .12n n +-5.直线20x y +-=分别与x 轴,y 轴交于,A B 两点,点P 在圆22420x y x +++=,则PAB △面积的取值范围是A .B .C .[2,6]D .[4,12]6.数列122022n ⎧⎫⎨⎬-⎩⎭A .既有最大项,又有最小项B .有最大项,无最小项C .无最大项,有最小项D .既无最大项,又无最小项7.几何学史上有一个著名的米勒问题:“设点M ,N 是锐角AQB ∠的一边QA 上的两点,试在QB 边上找一点P ,使得MPN ∠最大.”如图,其结论是:点P 为过M ,N 两点且和射线QB 相切的圆与射线QB 的切点.根据以上结论解决以下问题:在平面直角坐标系xOy 中,给定两点M (-1,2),N (1,4),点P 在x 轴上移动,当MPN ∠取最大值时,点P 的横坐标是 A .1B .-7C .1或-1D .2或-78.已知数列{}n a 满足12a =,26a =,且2122n n n a a a ++-+=,若[]x 表示不超过x 的最大整数(例如[]1.61=,[]1.62-=-).则222122020232021a a a ⎡⎤⎡⎤⎡⎤++⋅⋅⋅+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A .2018B .2019C .2020D .2021二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.若两平行线分别经过点A (5,0),B (0,12),则它们之间的距离d 可能等于 A .14B .5C .12D .1310.等差数列{}n a 中,10a >,公差0d <,n S 为其前n 项和,对任意正整数n ,若点(),n n S 在以下4条曲线中的某一条上,则这条曲线不可能是A .B .C .D .11.下列说法正确的是A .过点()1,2P 且在x 、y 轴截距相等的直线方程为30x y +-=B .过点()1,2-且垂直于直线230x y -+=的直线方程为20x y +=C .圆的一般方程为D .直线()24y k x =-+与曲线1y =k 的取值范围12220x y Dx Ey F ++++=53,124⎛⎤⎥⎝⎦.某县位于沙漠边缘,当地居民与风沙进行着艰苦的斗争,到2020年底全县的绿地占全县总面积的70%.从2021年起,市政府决定加大植树造林、开辟绿地的力度,预计每年能将前一年沙漠的18%变成绿地,同时,前一年绿地的2%又被侵蚀变成沙漠.则下列说法正确的是A .2021年底,该县的绿地面积占全县总面积的74%B .2023年底,该县的绿地面积将超过全县总面积的80%C .在这种政策之下,将来的任意一年,全县绿地面积都不能超过90%D .在这种政策之下,将来的某一年,绿地面积将达到100%全覆盖三、填空题:本题共4小题,每小题5分,共20分.13.数列{}n a 中,1111,,21n n n a a a a --==+则n a =_____________.14.设是公差为的等差数列,是公比为的等比数列.已知数列的前项和,则的值是_______.15.在直角坐标系xOy 中,已知直线:cos sin 1l x y θθ⋅+⋅=,当θ变化时,动直线始终没有经过点P ,定点Q 的坐标()2,0-,则PQ 的取值范围为 . 16.已知动点(,)P m n 在圆22 1O x y +=:上,则31n m --的取值范围是____________,若点1,02A ⎛⎫- ⎪⎝⎭,点,则2||||PA PB +的最小值为____________. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知等比数列 的首项,公比,数列. (1)证明:数列 为等差数列;(2)设数列{}n b 前n 项和为n S ,求使 的所有正整数 的值的和. 18. (12分)已知圆C 的方程为:2224690()x y mx y m m R +--+-=∈. (1)试求m 的值,使圆C 的周长最小;{}n a d {}n b q {}n n a b +n 2*21()nn S n n n N =-+-∈d q +()1,1B 181a =19q =3log n n b a ={}n a {}n b n 36n S >-(2)求与满足(1)中条件的圆C 相切,且过点()1,2-的直线方程. 19.(12分)记为数列的前项和,已知是公差为的等差数列.(1)求的通项公式;(2)记,试判断与2的大小并证明. 20. (12分)已知圆()22:15C x y +-=,直线:10l mx y m -+-=. (1)求证:对m R ∈ ,直线l 与圆C 总有两个不同的交点;(2)若直线l 与圆C 交于,A B 两点,当AB =l 的倾斜角. 21.(12分)已知数列{}n a 满足11a =,()*1121n n a a n N n +⎛⎫=+∈ ⎪⎝⎭.(1)求证:数列n a n ⎧⎫⎨⎬⎩⎭是等比数列,并求数列{}n a 的通项公式;(2)记数列{}n a 的前n 项中最大值为n M ,最小值为n m ,令2n nn M m b +=,称数列{}n b 是数列{}n a 的“中程数数列”.(i )求“中程数数列”{}n b 的前n 项和n S ; (ii )若m k b a =(*,m k N ∈且m k >),求所有满足条件的实数对(),m k .22.(12分)平面直角坐标系中,圆M 经过点A ,(0,4)B ,(2,2)C -. (1)求圆M 的标准方程;(2)设(0,1)D ,过点D 作直线1l ,交圆M 于PQ 两点,PQ 不在y 轴上.(i )过点D 作与直线1l 垂直的直线2l ,交圆M 于EF 两点,记四边形EPFQ 的面积为S ,求S 的最大值;(ii )设直线OP ,BQ 相交于点N ,试讨论点N 是否在定直线上,若是,求出该直线方程;若不是,说明理由.n S {}n a n 11,n n S a a ⎧⎫=⎨⎬⎩⎭13{}n a n T 12111n nT a a a =+++龙岩一中2022-2023学年第一学期高二第二次月考数学试题参考答案13.121n - 14.4 15.()1,3 16.4,3⎡⎫+∞⎪⎢⎣⎭17.(1)证明:因为等比数列{}n a 的首项181a =,公比19q =, 所以1162118139n n n n a a q---⎛⎫==⨯= ⎪⎝⎭,...................2分所以6233log log 362n n n n b a -==-=,............................3分 所以()()1621622n n n b n b +--+-=-=-,14b =,所以{}n b 是首项为4,公差为2-的等差数列;.................5分 (2)解:由(1)可得62n b n =-,所以()()46252n n nn n S +-==-,....................6分令36nS >-,解得49n -<<,........................8分又N*n ∈,所以1n =、2、3、4、5、6、7、8,.........................9分 ∴1+2+3+4+5+6+7+8=36∴所有正整数n 的值的和为36..............................10分 18.(1)2224690x y mx y m +--+-=,配方得:222()(2)(3)4x m y m -+-=-+,................2分 当3m =时,圆C 的半径有最小值2,此时圆的周长最小...................4分 (2)由(1)得,3m =,圆的方程为:22(3)(2)4x y -+-=.当直线与x 轴垂直时,1x =,此时直线与圆相切,符合条件;..............6分 当直线与x 轴不垂直时,设()12y k x =--,............7分2=,解得34k =,..............10分 所以切线方程为31144y x =-,即34110x y --=..................................11分 综上,直线方程为1x =或34110x y --=......................12分19.(1)∵ ,∴ ,∴,又∵是公差为的等差数列,∴,∴,...............3分∴当 时,,........................4分∴,......................5分整理得: , 即,..........................6分∴,显然对于 也成立, ∴ 的通项公式;...........................8分(2)....................10分∴∴...................12分20.(1)证明:直线 的方程可化为,令1010x y -=⎧⎨-=⎩,解得11x y =⎧⎨=⎩.∴直线l 恒过定点()1,1P ...............3分∵||1PC =<3451(1)1123212n n n n n n ++=⨯⨯⨯⨯⋅⋅⋅⨯⨯=--2n T <l ()11y m x -=-∴点P 在圆C 内,∴直线l 与圆C 总有两个不同的交点. ...............6分(2)由()2215,10,x y mx y m ⎧+-=⎪⎨-+-=⎪⎩消去y 整理得()22221250mx m x m +-+-=,显然()22222(2)41(5)4(45)0m m m m ∆=--+-=+>. ....................8分 设()()1122,,,A x y B x y ,12,x x 则是一元二次方程的两个实根,∴2212122225,11m m x x x x m m -+==++,....................9分∵12AB x =-=....................10分=,解得23,m =∴m =l的斜率为分∴直线l 的倾斜角为3π或23π....................12分21.解:(1)证明:依题意,()*1121n n a a n N n +⎛⎫=+∈ ⎪⎝⎭,即11111122n n n n a a a n n ++⎛⎫==+⋅⎪⎝⎭, 故1112n n a a n n +=⋅+,故数列n a n ⎧⎫⎨⎬⎩⎭是等比数列,首项为111a =,公比为12的等比数列, 故1112n n a n -⎛⎫=⨯ ⎪⎝⎭,即112n n a n -⎛⎫=⋅ ⎪⎝⎭;....................4分(2)因为11112n n a a n +⎛⎫=+ ⎪⎝⎭,即11112n n n a a +⎛=⎫+ ⎪⎝⎭, 故1n =时11n na a +=,即12a a =,1n >时,11n n aa +<,即1n n a a +<, 故1234...a a a a =>>>,故11n M a ==,112n n n m a n -⎛⎫=⋅ ⎪⎝⎭=,所以1111122222n nn n n n M m b n -⎛⎫+⋅ ⎪+⎛⎫⎝⎭===+⋅ ⎪⎝⎭.......................6分①设数列12n n ⎧⎫⎪⎪⎛⎫⋅⎨⎬ ⎪⎝⎭⎪⎪⎩⎭的前n 项和为n T ,则1231111123...2222nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅++⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,234111111123...22222n n T n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅++⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式作差得,1231111111...222222n n n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,即01211111111122...21222222212nn n nn n n T n n -⎛⎫- ⎪+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=++++-⋅=-⋅=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-,故123112 (2222)n n n n n b b b b T n S n +=++++=+=+-;....................8分 ②因为1122mm b m ⎛⎫=+⋅ ⎪⎝⎭,1102k k a k -⎛⎫=⋅> ⎪⎝⎭,m k b a =,所以1111111222222m m m k b m a a -⎛⎫=+⋅=+=> ⎪⎝⎭,即1122k m a a -=, 又因为3411422a ⎛⎫=⨯= ⎪⎝⎭,2313324a ⎛⎫=⨯= ⎪⎝⎭,121a a ==,且1234...a a a a =>>>,可知4k <且k *∈N ,即1,2,3k =,由1122k m a a -=知,1k =时,11111222m m a a a -=-=,故1m a =,即1,2m =,但m k >,故2m =符合题意;2k =时,21111222m m a a a -=-=,故1m a =,即1,2m =,但m k >,故无解; 3k =时,313112422m m a a a -=-=,故12m a =,即4m =,又m k >,故4m =符合题意;综上,所有满足条件的实数对(),m k 有()()2,1,4,3....................12分 22.(1)解:设圆M 的方程为()()222x a y b r -+-=,则)()()()()()22222222210422a b r a b r a b r ⎧+-=⎪⎪-+-=⎨⎪--+-=⎪⎩,解得2024a b r =⎧⎪=⎨⎪=⎩, 所以圆M 的标准方程为()2224x y +-=;....................4分 (2)解:设直线1l 的方程为1y kx =+,即10kx y -+=, 则圆心()0,2到直线1l的距离1d ==所以PQ == (i )若0k =,则直线2l 斜率不存在,则PQ =4EF =,则12S EF PQ =⋅= 若0k ≠,则直线2l 得方程为11y x k =-+,即0x ky k +-=,则圆心()0,2到直线1l的距离2d =所以EF = 则12S EF PQ =⋅=7===, 当且仅当221k k =,即1k =±时,取等号,综上所述,因为7 所以S 的最大值为7;.................8分 (ii )设()()1122,,,P x y Q x y ,10 联立()22241x y y kx ⎧+-=⎪⎨=+⎪⎩,消y 得()221230k x kx +--=, 则12122223,11k x x x x k k -+==++, 直线OP 的方程为11y y x x =, 直线BQ 的方程为2244y y x x -=+, 联立112244y y x x y y x x ⎧=⎪⎪⎨-⎪=+⎪⎩,解得121243x x x x x =+, 则()121121211212124144333kx x y x x y x y x x x x x x x +=⋅==+++ 1221212124462233kx x x x x x x x x +--===-++, 所以12124,23x x N x x ⎛⎫- ⎪+⎝⎭, 所以点N 在定直线2y =-上...................12分。

江西省宜春市上高二数学中2022高二数学上学期第二次月考试题 文(含解析)

江西省宜春市上高二数学中2022高二数学上学期第二次月考试题 文(含解析)

江西省宜春市上高二数学中2022高二数学上学期第二次月考试题文(含解析)一、单选题(本大题共12小题,每小题5分,共60分)1.圆心为(1,﹣1),半径为2的圆的方程是()A.(x﹣1)2+(y+1)2=2 B.(x+1)2+(y﹣1)2=4C.(x+1)2+(y﹣1)2=2 D.(x﹣1)2+(y+1)2=42.已知抛物线的焦点坐标是(0,﹣3),则抛物线的标准方程是()A.x2=﹣12y B.x2=12y C.y2=﹣12x D.y2=12x3.已知水平放置的△ABC是按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=1,A′O ′=,那么原△ABC的面积是()A .B .C .D .4.椭圆+y2=1的一个焦点在抛物线y2=4x的准线上,则该椭圆的离心率为()A .B .C .D .5.已知A(﹣4,2,3)关于xOz平面的对称点为A1,A1关于z轴的对称点为A2,则|AA2|等于()A.8 B.12 C.16 D.196.一个几何体的三视图如图所示,则该几何体的体积为()A .B .C .D.8 7.P 是椭圆上一点,F1、F2分别是椭圆的左、右焦点,若|PF1|•|PF2|=12,则∠F1PF2的大小为()A.30°B.60°C.120°D.150°8.如图,正方体AC1中,E、F分别是DD1、BD的中点,则直线AD1与EF所成的角余弦值是()A .B .C .D .9.已知P为抛物线y2=4x上的任意一点,记点P到y轴的距离为d,对于给定点A(4,5),则|PA|+d的最小值为()A .B .﹣1C .﹣2D .﹣410.如图,过抛物线y2=3x的焦点F的直线交抛物线于点A,B,交其准线l于点C,若|BC|=2|BF|,且|AF|=3,则|AB|=()A.4 B.6 C.8 D.1011.已知椭圆E :的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB 的中点坐标为(1,﹣1),则E的方程为()A .B .C .D .12.如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:①BD⊥AC;②△BCA是等边三角形;③三棱锥DABC是正三棱锥;④平面ADC⊥平面ABC.其中正确的是()A.①②④B.①②③C.②③④D.①③④二、填空题(本大题共4小题,每小题5分,共20分)13.直线y=kx+1与焦点在x 轴上的椭圆总有公共点,则实数m 的取值范围为.14.过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分两部分,使这两部分的面积之差最大,则该直线的方程为.15.已知椭圆的左、右焦点分别为F1,F2,过F1且与x轴垂直的直线交椭圆于A,B 两点,直线AF2与椭圆的另一个交点为C,若=2,则椭圆的离心率为.16.已知三棱锥P﹣ABC内接于球O,PA=PB=PC=2,当三棱锥P﹣ABC的三个侧面的面积之和最大时,球O 的表面积为.三、解答题.(共70分)17.已知圆心为C的圆经过点A(﹣1,1)和B(﹣2,﹣2),且圆心在直线l:x+y﹣1=0上(1)求圆C的标准方程;(2)若直线kx﹣y+5=0被圆C截得的弦长为8,求k的取值.18.如图,四棱锥A﹣BCDE中,△ABC是正三角形,四边形BCDE是矩形,且平面ABC⊥平面BCDE,AB=2,AD=4.(1)若点G是AE的中点,求证:AC∥平面BDG(2)若F是线段AB 的中点,求三棱锥B﹣EFC的体积.19.已知抛物线C1的焦点与椭圆C2:+=1的右焦点重合,抛物线C1的顶点在坐标原点,过点M(4,0)的直线l与抛物线C1分别相交于A、B两点.(Ⅰ)写出抛物线C1的标准方程;(Ⅱ)求△ABO面积的最小值.20.如图,三棱柱ABC﹣A1B1C1的侧面AA1C1C是矩形,侧面AA1C1C⊥侧面AA1B1B,且AB=4AA1=4,∠BAA1=60°,D是AB的中点.(Ⅰ)求证:AC1∥平面CDB1;(Ⅱ)求证:DA1⊥平面AA1C1C.21.如图1,在矩形ABCD中,AB=4,AD=2,E是CD的中点,将△ADE沿AE折起,得到如图2所示的四棱锥D1﹣ABCE,其中平面D1AE⊥平面ABCE.(1)证明:BE⊥平面D1AE;(2)设F为CD1的中点,在线段AB上是否存在一点M,使得MF∥平面D1AE,若存在,求出的值;若不存在,请说明理由.22.已知椭圆C:=1(a>b>0)的短轴长为2,离心率为.过点M(2,0)的直线l与椭圆C 相交于A、B两点,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)求•的取值范围;(Ⅲ)若B点关于x轴的对称点是N,证明:直线AN恒过一定点.2022江西省宜春市上高二中高二(上)第二次月考数学试卷(文科)参考答案与试题解析一、单选题(本大题共12小题,每小题5分,共60分)1.圆心为(1,﹣1),半径为2的圆的方程是()A.(x﹣1)2+(y+1)2=2 B.(x+1)2+(y﹣1)2=4C.(x+1)2+(y﹣1)2=2 D.(x﹣1)2+(y+1)2=4【解答】解:根据题意得:圆的方程为(x﹣1)2+(y+1)2=4.故选:D.2.已知抛物线的焦点坐标是(0,﹣3),则抛物线的标准方程是()A.x2=﹣12y B.x2=12y C.y2=﹣12x D.y2=12x【解答】解:依题意可知焦点在y轴,设抛物线方程为x2=2py∵焦点坐标是F(0,﹣3),∴p=﹣3,p=﹣6,故抛物线方程为x2=﹣12y.故选:A.3.已知水平放置的△ABC是按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=1,A′O ′=,那么原△ABC的面积是()A .B .C .D .【解答】解:因为,且若△A′B′C′的面积为×2××=,那么△ABC的面积为故选:A.4.椭圆+y2=1的一个焦点在抛物线y2=4x的准线上,则该椭圆的离心率为()A .B .C .D .【解答】解:由抛物线y2=4x的方程得准线方程为x=﹣1,又椭圆+y2=1的焦点为(±c,0).∵椭圆+y2=1的一个焦点在抛物线y2=4x的准线上,∴﹣c=﹣1,得到c=1.∴a2=b2+c2=1+1=2,解得.∴.故选:B.5.已知A(﹣4,2,3)关于xOz平面的对称点为A1,A1关于z轴的对称点为A2,则|AA2|等于()A.8 B.12 C.16 D.19【解答】解:A(﹣4,2,3)关于xOz平面的对称点为A1(﹣4,﹣2,3).A1关于z轴的对称点为A2(4,2,3).则|AA2|==8.故选:A.6.一个几何体的三视图如图所示,则该几何体的体积为()A .B .C .D.8【解答】解:根据三视图可知几何体是四棱锥,且底面是边长为2和4的长方形,由侧视图是等腰直角三角形,直角边长为2,∴该几何体的体积V ==,故选:B.7.P 是椭圆上一点,F1、F2分别是椭圆的左、右焦点,若|PF1|•|PF2|=12,则∠F1PF2的大小为()A.30°B.60°C.120°D.150°【解答】解:∵P 是椭圆上一点,F1、F2分别是椭圆的左、右焦点,∴|PF1|+|PF2|=8,|F1F2|=2∵|PF1|•|PF2|=12,∴(|PF1|+|PF2|)2=64,∴|PF1|2+|PF2|2=40,在△F1PF2中,cos∠F1PF2==,∴∠F1PF2=60°,故选:B.8.如图,正方体AC1中,E、F分别是DD1、BD的中点,则直线AD1与EF所成的角余弦值是()A .B .C .D .【解答】解:如图,取AD的中点G,连接EG,GF,∠GEF为直线AD1与EF所成的角设棱长为2,则EG =,GF=1,EF =cos∠GEF =,故选:C.9.已知P为抛物线y2=4x上的任意一点,记点P到y轴的距离为d,对于给定点A(4,5),则|PA|+d的最小值为()A .B .﹣1C .﹣2D .﹣4【解答】解:抛物线y2=4x的焦点F(1,0),准线l:x=﹣1.如图所示,过点P作PN⊥l交y轴于点M,垂足为N,则|PF|=|PN|,∴d=|PF|﹣1,∴|PA|+d≥|AF|﹣1=﹣1=﹣1.故选:B.10.如图,过抛物线y2=3x的焦点F的直线交抛物线于点A,B,交其准线l于点C,若|BC|=2|BF|,且|AF|=3,则|AB|=()A.4 B.6 C.8 D.10【解答】解:过B向准线做垂线垂足为D,过A点做准线的垂线垂足为E,准线与x轴交点为G,根据抛物线性质可知|BD|=|BF|∵|BC|=2|BF|,∴|BC|=2|BD|,∴∠C=30°,∠EAC=60°又∵|AF|=|AE|,∴∠FEA=60°∴|AF|=|AE|=|CF|=3,∵|CF|=2|GF|=3,|BF|=1,∴|AB|=|AF|+|BF|=4.故选:A.11.已知椭圆E :的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB 的中点坐标为(1,﹣1),则E的方程为()A .B .C .D .【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E 的方程为.故选:D.12.如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:①BD⊥AC;②△BCA是等边三角形;③三棱锥DABC是正三棱锥;④平面ADC⊥平面ABC.其中正确的是()A.①②④B.①②③C.②③④D.①③④【解答】解:根据直二面角的定义知,BD⊥面ACD,所以BD⊥AC,①正确;因为三角形ABC为等腰直角三角形,设AD=1,则可求出AB=BC=AC =,所以△BCA是等边三角形,所以②正确;由上可知AB=BC=AC,且AD=BD=CD,根据正三棱锥的定义可知,三棱锥DABC是正三棱锥,所以③正确,④不正确.故选:B.二、填空题(本大题共4小题,每小题5分,共20分)13.直线y=kx+1与焦点在x 轴上的椭圆总有公共点,则实数m 的取值范围为[1,9).【解答】解:直线y=kx+1恒过定点P(0,1),焦点在x轴上的椭圆,可得0<m<9,①由直线y=kx+1与焦点在x轴上的椭圆总有公共点,可得P在椭圆上或椭圆内,即有+≤1,解得m≥1,②由①②可得1≤m<9.故答案为:[1,9).14.过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分两部分,使这两部分的面积之差最大,则该直线的方程为x +y﹣2=0 .【解答】解:要使直线将圆形区域分成两部分的面积之差最大,必须使过点P的圆的弦长达到最小,所以需该直线与直线OP 垂直即可.又已知点P(1,1),则k OP=1,故所求直线的斜率为﹣1.又所求直线过点P(1,1),故由点斜式得,所求直线的方程为y﹣1=﹣(x﹣1),即x+y﹣2=0.故答案为:x+y﹣2=0.15.已知椭圆的左、右焦点分别为F1,F2,过F1且与x轴垂直的直线交椭圆于A,B 两点,直线AF2与椭圆的另一个交点为C,若=2,则椭圆的离心率为.【解答】解:如图,由题意,A(﹣c,),∵=2,∴,且x C﹣c=c,得x C=2c.∴C(2c,),代入椭圆,得,即5c2=a2,解得e=.故答案为:.16.已知三棱锥P﹣ABC内接于球O,PA=PB=PC=2,当三棱锥P﹣ABC的三个侧面的面积之和最大时,球O 的表面积为12π.【解答】解:由题意三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,三棱锥P﹣ABC的三个侧面的面积之和最大,三棱锥P﹣ABC的外接球就是它扩展为正方体的外接球,求出正方体的对角线的长:2所以球的直径是2,半径为,球的表面积:4π×=12π.故答案为:12π.三、解答题.(共70分)17.已知圆心为C的圆经过点A(﹣1,1)和B(﹣2,﹣2),且圆心在直线l:x+y﹣1=0上(1)求圆C的标准方程;(2)若直线kx﹣y+5=0被圆C截得的弦长为8,求k的取值.【解答】解:(1)∵点A(﹣1,1)和B(﹣2,﹣2),∴k直线AB==3,线段AB的中点坐标为(﹣,﹣),∴线段AB垂直平分线方程为y+=﹣(x+),即x+3y+3=0,与直线l 联立得:,解得:,∴圆心C坐标为(3,﹣2),∴半径|AC|==5,则圆C方程为(x﹣3)2+(y+2)2=25;(2)∵圆C半径为5,弦长为8,∴圆心到直线kx﹣y+5=0的距离d ==3,即=3,解得:k =﹣.18.如图,四棱锥A﹣BCDE中,△ABC是正三角形,四边形BCDE是矩形,且平面ABC⊥平面BCDE,AB=2,AD=4.(1)若点G是AE的中点,求证:AC∥平面BDG(2)若F是线段AB的中点,求三棱锥B﹣EFC的体积.【解答】解:如图,(1)证明:设CE∩BD=O,连接OG,由三角形的中位线定理可得:OG∥AC,∵AC⊄平面BDG,OG⊂平面BDG,∴AC∥平面BDG.(2)∵平面ABC⊥平面BCDE,DC⊥BC,∴DC⊥平面ABC,∴DC⊥AC ,∴;又∵F是AB的中点,△ABC是正三角形,∴CF⊥AB,∴,又平面ABC⊥平面BCDE,EB⊥BC,∴EB⊥平面BCF,∴.19.已知抛物线C1的焦点与椭圆C2:+=1的右焦点重合,抛物线C1的顶点在坐标原点,过点M(4,0)的直线l与抛物线C1分别相交于A、B两点.(Ⅰ)写出抛物线C1的标准方程;(Ⅱ)求△ABO面积的最小值.【解答】解:(Ⅰ)椭圆C2:+=1的右焦点为(1,0),设抛物线的方程为y2=2px(p>0),即有=1,解得p=2,则抛物线的方程为y2=4x;(Ⅱ)设直线AB的方程为x=my+4,代入抛物线方程可得,y2﹣4my﹣16=0,判别式为16m2+64>0恒成立,y1+y2=4m,y1y2=﹣16,则△ABO面积为S=S△OAM+S△OBM =•|OM|•|y1﹣y2|=2|y1﹣y2|=2=2≥2=16,当且仅当m=0时,△ABO的面积取得最小值16.20.如图,三棱柱ABC﹣A1B1C1的侧面AA1C1C是矩形,侧面AA1C1C⊥侧面AA1B1B,且AB=4AA1=4,∠BAA1=60°,D是AB的中点.(Ⅰ)求证:AC1∥平面CDB1;(Ⅱ)求证:DA1⊥平面AA1C1C.【解答】证明:(1)连结A1C交AC1于F,取B1C中点E,连结DE,EF.∵四边形AA1C1C是矩形,∴F是A1C的中点,∴EF∥A1B1,EF =A1B1,∵四边形ABB1A1是平行四边形,D是AB的中点,∴AD∥A1B1,AD =A1B1,∴四边形ADEF是平行四边形,∴AF∥DE,即AC1∥DE.又∵DE⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1.(2)∵AB=4AA1=4,D是AB中点,∴AA1=1,AD=2,∵∠BAA1=60°,∴A1D ==.∴AA12+A1D2=AD2,∴A1D⊥AA1,∵侧面AA1C1C⊥侧面AA1B1B,侧面AA1C1C∩侧面AA1B1B=AA1,AC⊥AA1,AC⊂平面AA1C1C,∴AC⊥平面AA1B1B,∵A1D⊂平面AA1B1B,∴AC⊥A1D,又∵AA1⊂平面AA1C1C,AC⊂平面AA1C1C,AC∩AA1=A,∴DA1⊥平面AA1C1C.21.如图1,在矩形ABCD中,AB=4,AD=2,E是CD的中点,将△ADE沿AE折起,得到如图2所示的四棱锥D1﹣ABCE,其中平面D1AE⊥平面ABCE.(1)证明:BE⊥平面D1AE;(2)设F为CD1的中点,在线段AB上是否存在一点M,使得MF∥平面D1AE ,若存在,求出的值;若不存在,请说明理由.【解答】(1)证明:连接BE,∵ABCD为矩形且AD=DE=EC=2,∴AE=BE=2,AB=4,∴AE2+BE2=AB2,∴BE⊥AE,又D1AE⊥平面ABCE,平面D1AE∩平面ABCE=AE,∴BE⊥平面D1AE.(2)=.取D1E中点N,连接AN,FN,∵FN∥EC,EC∥AB,∴FN∥AB,且FN ==AB,∴M,F,N,A共面,若MF∥平面AD1E,则MF∥AN.∴AMFN为平行四边形,∴AM=FN =.∴=.22.已知椭圆C :=1(a>b>0)的短轴长为2,离心率为.过点M(2,0)的直线l与椭圆C相交于A、B两点,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)求•的取值范围;(Ⅲ)若B点关于x轴的对称点是N,证明:直线AN恒过一定点.【解答】(Ⅰ)解:由题意b=1,得a2=2c2=2a2﹣2b2,故a2=2.故方程为.(Ⅱ)解:设l:y=k(x﹣2),与椭圆C的方程联立,消去y得(1+2k2)x2﹣8k2x+8k2﹣2=0.由△>0得.设A(x1,y1),B(x2,y2),则.∴==.∵,∴,故所求范围是.(Ⅲ)证明:由对称性可知N(x2,﹣y2),定点在x轴上.直线AN:,令y=0得:,∴直线l过定点(1,0).。

2023_2024学年天津市南开区高二第一学期第二次月考数学测检测模拟试题(附解析)

2023_2024学年天津市南开区高二第一学期第二次月考数学测检测模拟试题(附解析)

C : x 1 y 1 4
2
【详解】解:因为
所以圆心

C 1,1
2

到直线 l : x y 2 0 的距离
AB 2 4 2 2 2
d
11 2
2
2

.
故选:B
3.B
【分析】利用等差数列的性质可求得
a4 的值,再结合等差数列求和公式以及等差中项的性质
,因此,双曲线的标准方程为
.
故选:C.
5.B
【分析】结合抛物线的定义求得正确答案.
【详解】由于抛物线的准线方程是 x 2 ,
所以抛物线的开口向左,设抛物线的方程为
y 2 2 px p 0

p
2, 2 p 8
2
则2
,所以抛物线的标准方程为 y 8 x .
故选:B
6.C
可求得 S7 的值.
a 6,
【详解】由等差数列的性质可得 2a6 a8 6 a8 a4 ,则 4

S7
7 a1 a7
7 a4 42
2
.
故选:B.
4.C
【分析】由已知可得出 c 的值,求出点 A 的坐标,分析可得
AF1 F1 F2
,由此可得出关于 a 、
b 、 c 的方程组,解出这三个量的值,即可得出双曲线的标准方程.


2
F 5, 0
F
【详解】抛物线 y 4 5 x 的准线方程为 x 5 ,则 c 5 ,则 1
、 2
5, 0,
b
x c


y x
bc

天津市第四十七中学2021-2022学年高二上学期第二次月考数学试题(含答案解析)

天津市第四十七中学2021-2022学年高二上学期第二次月考数学试题(含答案解析)

天津市第四十七中学2021-2022学年高二上学期第二次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,直线l 的斜率是()ABC .D .2.已知()2,1,3=- a ,()4,2,b x =- ,且a b ∥,则x 的值为()A .103B .103-C .6D .-63.已知等差数列{}n a 的公差为2,若134,,a a a 成等比数列,n S 是{}n a 的前n 项和,则9S 等于()A .8-B .6-C .10D .04.已知ABC 的两个顶点A ,B 的坐标分别是(2,0)-、(2,0),且AC ,BC 所在直线的斜率之积等于2,则顶点C 的轨迹方程是()A .22148x y -=(2x ≠±)B .2212y x -=C .22148x y -=D .2212x y -=(2x ≠±)5.在三棱锥-P ABC 中,点D ,E ,F 分别是BC ,PC ,AD 的中点,设PA a = ,PB b =,PC c = ,则EF =()A .111244a b c --B .111+244a b c- C .111+244a b c -D .111++244a b c- 6.已知过抛物线y 2=4x 焦点F 的直线l 交抛物线于A 、B 两点(点A 在第一象限),若AF = 3FB ,则直线l 的斜率为()A .2B .12C D7.直线:20l kx y --=与曲线1C x =-只有一个公共点,则实数k 范围是()A .(3,)(,3)+∞-∞- B .3,2⎡⎫+∞⎪⎢⎣⎭C .4(2,4]3⎧⎫⎨⎬⎩⎭D .(-8.设1F 是双曲线2222:1(0,0)y x C a b a b-=>>的一个焦点,1A ,2A 是C 的两个顶点,C 上存在一点P ,使得1PF 与以12A A 为直径的圆相切于Q ,且Q 是线段1PF 的中点,则C 的渐近线方程为A .y =B .y =C .12y x =±D .2y x=±9.已知有公共焦点的椭圆与双曲线的中心为原点,焦点在x 轴上,左右焦点分别为1F ,2F ,且它们在第一象限的交点为P ,12PF F △是以1PF 为底边的等腰三角形.若110PF =,双曲线的离心率的取值范围为(1,2),则该椭圆的焦距的取值范围是()A .55,32⎛⎫ ⎪⎝⎭B .205,3⎛⎫ ⎪⎝⎭C .10,53⎛⎫ ⎪⎝⎭D .510,23⎛⎫ ⎪⎝⎭二、填空题10.抛物线28y x =的焦点到双曲线2213y x -=的渐近线的距离是__________.11.已知C :224630x y x y +---=,点()20M -,是C 外一点,则过点M 的圆的切线的方程是__________.12.空间直角坐标系中,四面体ABCD 的各顶点(0,0,2)A ,(2,2,0)B ,(1,2,1)C ,(2,2,2)D ,则点B 到平面ACD 的距离是_______________.13.已知椭圆2222:1(0)x y C a b a b +=>>l 与椭圆C 交于A ,B 两点且线段AB 的中点为()3,2M ,则直线l 的斜率为________.14.设点P 是曲线221(0)3x y x -=>上一动点,点Q 是圆()2221x y +-=上一动点,点()20A -,,则PA PQ +的最小值是_____________15.已知抛物线C :24y x =的焦点为F ,准线与x 轴的交点为H ,点P 在C 上,且PH =,则PFH ∆的面积为______.三、解答题16.(1)已知直线1l :60x ay ++=和直线2l :(2)320a x y a -++=,若12l l ⊥,求a 值.(2)求与直线220x y --=平行且纵截距是2-的直线3l 的一般式方程.(3)若直线l 经过(2,1)A 、()21,B m (R m ∈)两点,求直线l 的倾斜角α的取值范围.17.如图,在四棱锥P ABCD -中,PA ⊥平面,//ABCD AB CD ,且2,1CD AB ==,1,,BC PA AB BC N ==⊥为PD 的中点.(1)求证://AN 平面PBC ;(2)求平面PAD 与平面PBC 所成锐二面角的余弦值;(3)在线段PD 上是否存在一点M ,使得直线CM 与平面PBC ,若存在,求出DMDP的值;若不存在,说明理由.18.已知正项等比数列{}n a 满足12a =,2432a a a =-,数列{}n b 满足212log n n b a =+.(1)求数列{}n a ,{}n b 的通项公式;(2)令n n n c a b =⋅求数列{}n c 的前n 项和n S .(3)设{}n b 的前n 项和为n T ,求n a T 19.(1)若圆M 的圆心在直线1y x =-上,且圆M 过点(0,1)A ,B ,求圆M 标准方程(2)已知直线0mx ny c ++=和圆O :221x y +=交于A ,B 两点,且O 到此直线的距离为12,求OA OB ⋅的值.(3)两圆1C :222240x y ax a +++-=和2C :2224140x y by b +--+=恰有三条公切线,若a ∈R ,b ∈R ,且0ab ≠,求2211a b +的最小值.20.如图,椭圆22221x y a b +=(0a b >>为A ,B ,C ,D ,且||2AB =.(1)求椭圆的方程;(2)P是椭圆上位于x轴上方的动点,直线CP,DP与直线l:4x=分别交于G、H两点.若||4GH=,求点P的坐标;(3)直线AM,BM分别与椭圆交于E,F两点,其中点1,2M t⎛⎫⎪⎝⎭满足0t≠且t贡若BME面积是AMF面积的5倍,求t的值.参考答案:1.B【分析】由图中求出直线l 的倾斜角,再根据斜率公式求出直线l 的斜率.【详解】如图,直线l 的倾斜角为30°,tan30°=l .故选:B.2.D【分析】由向量a b ∥可得21342x-==-,从而得出答案.【详解】由a b ∥,则21342x-==-,则6x =-故选:D 3.D【分析】由a1,a3,a4成等比数列,可得23a =a1a4,再利用等差数列的通项公式及其前n 项和公式即可得出.【详解】∵a1,a3,a4成等比数列,∴23a =a1a4,∴21(22)a +⨯=a1•(a1+3×2),化为2a1=-16,解得a1=-8.∴则S9=-8×9+982⨯×2=0,故选D .【点睛】本题考查了等比数列与等差数列的通项公式及其前n 项和公式,考查了推理能力与计算能力,属于中档题.4.A【分析】首先设点(),,2C x y x ≠±,根据条件列式,再化简求解.【详解】设(),,2C x y x ≠±,2AC BC k k ⋅=,所以222y y x x ⋅=+-,整理为:22148x y -=,2x ≠±,故选:A 5.B【分析】连接DE 由中位线性质可知12DE b =-;利用空间向量的加减法和数乘运算可表示出结果.【详解】连接DE ,D ,E 分别是BC ,PC 的中点111222DE BP PB b∴==-=-()1111122444EF DF DE DA DE AD DE AB AC DE AB AC DE∴=-=-=--=-+-=---()()1111111144442244EF AB AC DE PB PA PC PA PB PA PB PC∴=---=----+=+-PA a = ,PB b =,PC c = 111111244244EF PA PB PC a b c∴=+-=+- 故选:B 6.D【分析】作出抛物线的准线,设A 、B 在l 上的射影分别是C 、D ,连接AC 、BD ,过B 作BE ⊥AC 于E.由抛物线的定义结合题中的数据,可算出Rt △ABE 中,cos ∠BAE 12=,得∠BAE =60°,即直线AB 的倾斜角为60°,从而得到直线AB 的斜率k 值.【详解】作出抛物线的准线l :x =﹣1,设A 、B 在l 上的射影分别是C 、D ,连接AC 、BD ,过B 作BE ⊥AC 于E.∵AF = 3FB,∴设AF =3m ,BF =m ,由点A 、B 分别在抛物线上,结合抛物线的定义,得AC =3m ,BD =m .因此,Rt △ABE 中,cos ∠BAE 12=,得∠BAE =60°所以,直线AB 的倾斜角∠AFx =60°,得直线AB 的斜率k =tan 60°=故选:D.【点睛】本题给出抛物线的焦点弦被焦点分成3:1的比,求直线的斜率k ,着重考查了抛物线的定义和简单几何性质,直线的斜率等知识点,属于中档题目.7.C【分析】确定直线:20l kx y --=恒过定点(0,2)-,确定曲线1C x -表示圆心为(1,1),半径为1,且位于直线1x =右侧的半圆,包括点(1,2),(1,0),由直线与圆位置关系解决即可.【详解】由题知,直线:20l kx y --=恒过定点(0,2)-,曲线1C x -表示圆心为(1,1),半径为1,且位于直线1x =右侧的半圆,包括点(1,2),(1,0),当直线l 经过点(1,0)时,l 与曲线C 有2个交点,此时2k =,不满足题意,直线记为1l ,当直线l 经过点(1,2)时,l 与曲线C 有1个交点,此时4k =,满足题意,直线记为3l ,如图,当直线l1=,解得43k =,直线记为2l ,由图知,当24k <≤或43k =,l 与曲线C 有1个交点,故选:C 8.C【分析】根据图形的几何特性转化成双曲线的,,a b c 之间的关系求解.【详解】设另一焦点为2F ,连接2PF ,由于1PF 是圆O 的切线,则OQ a =,且1OQ PF ⊥,又Q 是1PF 的中点,则OQ 是12F PF △的中位线,则22PF a =,且21PF PF ⊥,由双曲线定义可知14PF a =,由勾股定理知2221212F F PF PF =+,2224416c a a =+,225c a =,即224b a =,渐近线方程为a y x b=±,所以渐近线方程为12y x =±.故选C.【点睛】本题考查双曲线的简单的几何性质,属于中档题.9.B【分析】设椭圆的焦距为2c ,双曲线的实轴长为2a ,根据双曲线的定义及双曲线的离心率的取值范围求出c 的范围,进而可得出答案.【详解】解:设椭圆的焦距为2c ,双曲线的实轴长为2a ,则1222F F PF c ==,双曲线的半实轴长为12502PF PF a c -==->,则05c <<,又双曲线的离心率的取值范围为(1,2),所以125c ca c <=<-,所以51023c <<,所以20523c <<,即该椭圆的焦距的取值范围是205,3⎛⎫⎪⎝⎭.故选:B.10【分析】先求出抛物线的焦点坐标,再求出双曲线的渐近线方程,利用点到直线的距离公式即可求解.【详解】抛物线28y x =的焦点为(2,0),双曲线2213yx -=的渐近线方程为y =,利用点到直线的距离公式可得:d =11.20x +=或724140x y ++=【分析】按切线斜率存在不存在分类讨论,利用点到直线的距离求解.【详解】由题意得圆C :22(2)(3)16x y -+-=,圆C 是以()23,为圆心,4为半径的圆.当直线的斜率不存在时,2x =-,与圆相切,满足题意,当直线斜率存在时,可设切线l 的方程为()2y k x =+.由圆C 到直线l的距离等于半径,可得4d ==.解得724k =-.所以切线方程为20x +=或724140x y ++=.故答案为:20x +=或724140x y ++=.12【分析】先求出平面ACD 的法向量n,则点B 到平面ACD 的距离是BA n n ⋅.【详解】由题可得()()121220,,,,,AC AD =-=,则设平面ACD 的法向量为(),,n x y z = ,则20220n AC x y z n AD x y ⎧⋅=+-=⎪⎨⋅=+=⎪⎩,取()1,1,1n =--.又()222,,BA =-- ,则点B 到平面ACD的距离BA nd n ⋅===13.1-【分析】由椭圆离心率和,,a b c 关系可得,a b 关系,再由点差法和中点坐标公式、两点的斜率公式可得所求值.【详解】解:由题意可得c e a ==a =,设()()1122,,,A x y B x y ,则2222112222221,1x y x y a b a b+=+=,两式相减可得()()()()12121212220x x x x y y y y a b-+-++=,AB 的中点为(3,2)M ,12126,4x x y y +=+=∴,则直线斜率212122121226134y y x x b k x x a y y -+==-⋅=-⨯=--+.故答案为:1-.14.1【分析】通过双曲线的定义得PA PQ PQ PF +=++【详解】解:设双曲线2213x y -=的右焦点为()20F ,,圆()2221x y +-=的圆心为()02M ,,如图所示:由双曲线的定义得PA PF -=,所以PA PF =,所以2221PA PQ PQ PF FQ FM MQ +=+++-+,当且仅当P ,Q 分别为线段FM 与双曲线的右支,圆的交点时取等号.故PA PQ +的最小值为1.故答案为:1.【点睛】方法点睛:本题考查双曲线的定义,双曲线的性质和几何意义,点与圆的位置关系,属于中档题.在解决线段的和或差的最值,常运用圆锥曲线的定义,化曲为直得以解决.15.4±【解析】设2,4t P t ⎛⎫ ⎪⎝⎭,()0t >,则214t PF PM ==+,PH =由PH =,可得2840t t -+=,解得4t =±即可求解.【详解】解:由抛物线C :24y x =,得焦点()1,0F ,准线方程为 1.x =-过P 作PM 垂直准线于M ,设2,4t P t ⎛⎫ ⎪⎝⎭,()0t >,则214t PF PM ==+,PH =由PH =,可得2840t t -+=,解得4t =±.则PFH ∆的面积为1242t ⨯⨯=±故答案为:4±【点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,考查计算能力,属于中档题.16.(1)12a =;(2)240x y --=;(3)ππ0,π42α⎡⎤⎛⎫∈ ⎪⎢⎥⎣⎦⎝⎭【分析】(1)根据两直线垂直的公式求解即可;(2)设3:l 20x y a -+=,再根据截距求解即可;(3)根据倾斜角与斜率的关系可得tan 1α≤,再根据倾斜角的范围求解即可.【详解】(1)因为12l l ⊥,故()1230a a ⨯-+=,解得12a =;(2)设3:l 20x y a -+=,因为纵截距是2-,故()0220a -⨯-+=,解得4a =-.故3:l 240x y --=;(3)直线l 的斜率为221112m m -=--,因为20m ≥,故211m -≤,则tan 1α≤.因为[)0,πα∈,故ππ0,,π42α⎡⎤⎛⎫∈ ⎪⎢⎣⎦⎝⎭17.(1)见解析(2)23(3)存在M ,且23DM DP =.【分析】(1)过A 作AE CD ⊥于E ,以A 为原点建立空间直角坐标系,求出平面PBC 的法向量和直线AN 的向量,从而可证明线面平行.(2)求出平面PAD 的法向量,利用向量求夹角公式解得.(3)令DM DP λ=,[0,1]λ∈,设(),,M x y z ,求出CM ,结合已知条件可列出关于λ的方程,从而可求出DMDP的值.【详解】(1)过A 作AE CD ⊥,垂足为E ,则1DE =,如图,以A 为坐标原点,分别以AE ,AB ,AP 为,,x y z 轴建立空间直角坐标系,则()0,0,0A ,()0,1,0B,()E,()1,0D -,()C ,()0,0,1P ,N Q 为PD的中点,11,22N ⎫∴-⎪⎭,则11,22AN ⎫=-⎭ ,设平面PBC 的一个法向量为(),,m x y z = ,(0,1,1)BP =-,BC =,则00m BP y z M BC ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,,,令1y =,解得:()0,1,1m = .11022AN m =∴⋅=-+uuu r r ,即AN m ⊥uuu r u r ,又AN ⊄平面PBC ,所以//AN 平面PBC .(2)设平面PAD 的一个法向量为(,,)n a b c =,(0,0,1)AP =,1,0)AD =- ,所以00AP n c AD n b ⎧⋅==⎪⎨⋅=-=⎪⎩ ,令1a =,解得(1,n =r .所以2cos ,3m n m n m n⋅==⋅u r ru r ru r r .即平面PAD 与平面PBC 所成锐二面角的余弦值为23.(3)假设线段PD 上存在一点M ,设(,,)M x y z ,DM DP λ=,[0,1]λ∈.(1,)(x y z λ-+=-Q,,1,)M λλ∴-,则(,2,)CM λλ=--又直线CM 与平面PBC ,平面PBC 的一个法向量()0,1,1m =CM m CM m ⋅=uuu r uuu u r r u r ,化简得22150240λλ-+=,即()()327120λλ--=,[0,1]λ∈ ,23λ∴=,故存在M ,且23DM DP =.18.(1)2n n a =,21n b n =+;(2)1(21)22n n S n +=-⋅+;(3)21222n n n n a T T +==+.【分析】(1)由等差数列的基本量法求得公比q 后可得n a ,再计算得n b ;(2)由错位相减法求和;(3)由等差数列的前n 项和公式计算.【详解】(1)设{}n a 的公比为q ,则由已知得22222a a q a q =-,20a ≠,则220q q --=,2q =或1q =-(舍去),∴1222n n n a -=⨯=,212log 221nn b n =+=+;(2)(21)2nn n n c a b n ==+⋅,23252(21)2n n S n =⨯+⨯+++⋅ ,∴23123252(21)2(21)2n n n S n n +=⨯+⨯++-⋅++⋅ ,相减得231322(222)(21)2n n n S n +-=⨯++++-+⋅ 1114(12)62(21)22(12)212n n n n n -++-=+⨯+⋅=-+-⋅-,∴1(21)22n n S n +=-⋅+;(3)由(1)21n b n =+,2n n a =,2122(3221)35(221)222n n n n nn na T T ++⨯+==+++⨯+==+ .19.(1)()2214x y ++=(2)12-(3)1【分析】(1)设圆心(),1M a a -,由MA MB =求出a ,可得圆心和半径,从而得到答案;(2)根据O 到此直线的距离为12,得到2π3AOB ∠=,再由数量积公式计算可得答案;(3)由圆和圆的位置关系判断出两圆外切,得到2249a b +=,再由基本不等式求解可得答案.【详解】(1)设圆心(),1M a a -,由MA MB ==,解得0a =,所以()0,1M -2=,圆M 标准方程为()2214x y ++=;(2)因为O 到此直线的距离为12,所以112sin 12∠==OAB ,所以π6∠=∠=OAB OBA ,即2π3AOB ∠=,1== OA OB ,所以1cos 2⋅=⋅∠=- OA OB OA OB AOB ;(3)圆1C :()224x a y ++=,圆心()1,0C a -,半径为2,圆2C :()2221x y b +-=,圆心()20,2C b ,半径为1,因为两圆1C 和2C 恰有三条公切线,所以两圆外切,所以123C C =3=,整理得2249a b +=,因为a ∈R ,b ∈R ,且0ab ≠,所以()222222222211111145994⎛⎫⎛⎫+=++=++ ⎝⎭⎝⎭a b a b a b b a a b()11559419⎛≥+=+= ⎝,当且仅当22224=a b a b即223,32==b a 时等号成立.所以2211a b+的最小值为1.20.(1)2214x y +=(2)()0,1P 或83,55P ⎛⎫⎪⎝⎭(3)1t =±【分析】(1)根据短轴,离心率的定义与椭圆的基本量的关系求解即可.(2)设直线CP 的方程为()()2,0y k x k =+>,联立直线与椭圆方程,结合韦达定理表示出点P 的坐标,从而得到点,G H 的坐标,根据4GH =列出方程即可得到结果.(3)分别设直线AM ,直线BM 的方程,联立椭圆的方程,再利用三角形的面积公式表达出BME 面积是AMF 面积的5倍,再代入韦达定理求解即可.【详解】(1)由题意可知22222c e a AB b a b c ⎧=⎪⎪⎪==⎨⎪=+⎪⎪⎩,解得222413a b c ⎧=⎪=⎨⎪=⎩所以椭圆的方程为2214x y +=(2)设直线CP 的方程为()()2,0y k x k =+>由()42x y k x =⎧⎨=+⎩得()4,6G k 联立直线CP 的方程与椭圆方程()22214y k x x y ⎧=+⎪⎨+=⎪⎩消去y 可得()222214161640k x k x k +++-=设()00,P x y ,则()202164214k x k --=+,所以20022284,1414k kx y k k -==++,即222284,1414k k P k k ⎛⎫- ⎪++⎝⎭又因为()2,0D ,所以2224142821414DPkk k k k k --+-+==,所以直线DP 的方程为()124y x k =--,由()1244y x k x ⎧=--⎪⎨⎪=⎩得14,2H k ⎛⎫- ⎪⎝⎭,所以1642GH k k =+=,因为0k >,所以12k =或16从而得()0,1P 或83,55P ⎛⎫⎪⎝⎭(3)∵()0,1A ,()0,1B -,1,2M t ⎛⎫⎪⎝⎭,且0t ≠,∴直线AM 的斜率为112k t =-,直线BM 斜率为232k t=,∴直线AM 的方程为112y x t =-+,直线BM 的方程为312y x t=-,由2214112x y y x t ⎧+=⎪⎪⎨⎪=-+⎪⎩得()22140t x tx +-=,∴0x =,241t x t =+,∴22241,11t E t t t ⎛⎫- ⎪++⎝⎭,由2214312x y y x t ⎧+=⎪⎪⎨⎪=-⎪⎩得()229120t x tx +-=,∴0x =,2129t t x =+,∴222129,99t t F t t ⎛⎫- ⎪++⎝⎭;∵1sin 2AMF S MA MF AMF =∠ ,1sin 2BME S MB ME BME =∠ ,AMF BME ∠=∠,5AMF BME S S =△△,∴5MA MF MB ME =,即5MA MB MEMF=,又t 贡∴22541219t tt t t t tt =--++,整理方程得:()22519t t +=+,解得:1t =±.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.。

高二数学上学期第二次月考试题文含解析

高二数学上学期第二次月考试题文含解析

HY 博尔塔拉蒙古自治州第五师高级中学2021-2021学年高二数学上学期第二次月考试题 文〔含解析〕一、选择题〔本大题一一共12个小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的〕 1.,,a b c ∈R ,那么以下推理中正确的选项是 ( ) A. 22>⇒>a b am bm B.a ba b c c>⇒> C. 3311,0a b ab a b>>⇒< D. 2211,b 0a b a a b>>⇒< 【答案】C 【解析】试题分析:对于A ,当0m =时不成立;对于B ,当0c <时不成立;对于D ,当,a b 均为负值时,不成立,对于C ,因为3y x =在R 上单调递增,由33a b a b >⇔>,又因为0ab >,所以a b ab ab >即11a b<,正确;综上可知,选C. 考点:不等式的性质.2.“x<﹣1”是“x 2﹣1>0”的〔 〕 A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】试题分析:由x <﹣1,知x 2﹣1>0,由x 2﹣1>0知x <﹣1或者x >1.由此知“x<﹣1”是“x 2﹣1>0”的充分而不必要条件.解:∵“x<﹣1”⇒“x 2﹣1>0”, “x 2﹣1>0”⇒“x<﹣1或者x >1”.∴“x<﹣1”是“x 2﹣1>0”的充分而不必要条件. 应选A .点评:此题考察充分条件、必要条件和充要条件的应用,解题时要注意根本不等式的合理运用.3.椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的两倍,那么m 的值是〔 〕A.14B.12C. 2D. 4【答案】A 【解析】【详解】试题分析:将其方程变为HY 方程为2211y x m+=,根据题意可得,11m >,且14m=,解得14m=,故A 正确. 考点:椭圆的方程及根本性质 4.以下命题中,真命题是〔 〕 A. 00,0x x R e∃∈≤ B. 2,2x x R x ∀∈>C. 0a b +=的充要条件是1ab=- D. 1,1a b >>是1ab >的充分条件【答案】D 【解析】A :根据指数函数的性质可知0x e > 恒成立,所以A 错误.B :当1x =- 时,()2112112--=<=,所以B 错误.C :假设0a b 时,满足0a b += ,但 1a b=-, 不成立,所以C 错误. D :11a b >,>, 那么1ab > ,由充分必要条件的定义,11a b >,>,,是 1ab >的充分条件,那么D 正确. 应选D .5.假设不等式2(2)2(2)40a x a x -+--<对任意实数x 均成立,那么实数a 的取值范围是〔 〕 A. (2,2]-B. [2,2]-C. (2,)+∞D.(,2]-∞【答案】A 【解析】 【分析】分类讨论,结合不等式〔a ﹣2〕x 2+2〔a ﹣2〕x ﹣4<0对任意实数x 均成立,利用函数的图象,建立不等式,即可求出实数a 的取值范围.【详解】a=2时,不等式可化为﹣4<0对任意实数x 均成立;a≠2时,不等式〔a ﹣2〕x 2+2〔a ﹣2〕x ﹣4<0对任意实数x 均成立,等价于()2204(2)1620a a a -⎧⎨-+-⎩<<, ∴﹣2<a <2.综上知,实数a 的取值范围是〔﹣2,2]. 应选A .【点睛】此题考察恒成立问题,考察解不等式,考察分类讨论的数学思想,考察学生的计算才能,属于中档题.,x y 满足约束条件22{2441x y x y x y +≥+≤-≥-,那么目的函数3z x y =-的取值范围是A. 3[,6]2-B. 3[,1]2-- C. [1,6]-D.3[6,]2-【答案】A 【解析】作出不等式组表示的可行域,如图阴影局部所示,作直线3x -y =0,并向上、下平移,由图可得,当直线过点A 时,z =3x -y 取最大值;当直线过点B 时,z =3x -y 取最小值.由220{240x y x y +-=+-=,解得A(2,0);由420{240x y x y -+=+-=,解得B(12,3). ∴z max =3×2-0=6,z min =3×12-3=-32. ∴z=3x -y 的取值范围是[-32,6].7.0x >,0y >,821y x+=,那么x y +的最小值为〔 〕 A. 6 B. 12C. 18D. 24【答案】C 【解析】【分析】 由82()()x y x y y x+=++展开后利用根本不等式求得最小值。

2022-2023学年江西省南昌市第二中学高二上学期第二次月考数学试题(解析版)

2022-2023学年江西省南昌市第二中学高二上学期第二次月考数学试题(解析版)

2022-2023学年江西省南昌市第二中学高二上学期第二次月考数学试题一、单选题1.将直线l 沿x 轴正方向平移2个单位,再沿y 轴负方向平移3个单位,又回到了原来的位置,则l 的斜率是( ) A .32-B .4C .1D .12【答案】A【分析】设直线l 上任意一点()00,P x y ,再根据题意可得()2002,3P x y +-也在直线上,进而根据两点间的斜率公式与直线的斜率相等列式求解即可.【详解】设直线l 上任意一点()00,P x y ,将直线l 沿x 轴正方向平移2个单位,则P 点移动后为()1002,P x y +,再沿y 轴负方向平移3个单位,则1P 点移动后为()2002,3Px y +-. ∵2,P P 都在直线l 上,∴直线l 的斜率00003322k y y x x --=-+-=.故选:A .2.如图所示,在平行六面体1111ABCD A B C D -中,E 为AC 与BD 的交点,则下列向量中与1D E 相等的向量是( )A .111111122A B A D A A -+ B .111111122A B A D A A ++ C .111111122A B A D A A -++D .111111122A B A D A A --+【答案】A【分析】根据平行六面体的特征和空间向量的线性运算依次对选项的式子变形,即可判断. 【详解】A :11111111111111111()2222A B A D A A A B A D D D D B D D -+=-+=+1111=2DB D D DE D D D E =+=+,故A 正确; B :11111111111111111()2222A B A D A A A B A D A A AC A A ++=++=+ 111AE A A A E D E =+=≠,故B 错误;C :11111111111111111()2222A B A D A A B A A D B B B D B B -++=++=+111BE B B B E D E =+=≠,故C 错误;D :11111111111111111()2222A B A D A A A B A D A A AC A A --+=-++=-+111AE A A EA A A D E =-+=+≠,故D 错误;故选:A3.已知圆221:(1)(2)9O x y -++=,圆2224101:2O x x y y ++-+=,则这两个圆的位置关系为( )A .外离B .外切C .相交D .内含【答案】C【分析】求得两个圆的圆心和半径,求得圆心距,由此确定正确选项. 【详解】圆1O 的圆心为1,2,半径为13r =, 2242110x y x y +++-=可化为()()222214x y +++=,圆2O 的圆心为()2,1--,半径为24r =,圆心距12O O =21211,7,17r r r r -=-=,所以两个圆的位置关系是相交. 故选:C4.已知空间中三点(0,1,0)A ,(2,2,0)B ,(1,3,1)C -,则( )A .AB 与AC 是共线向量 B .与向量AB 方向相同的单位向量是55⎛⎫⎪ ⎪⎝⎭C .AB 与BCD .平面ABC 的一个法向量是(1,2,5)-【答案】D【分析】根据共线向量定理,单位向量,法向量,向量夹角的定义,依次计算,即可得到答案; 【详解】对A ,(2,1,0),(1,2,1)AB AC ==-,又不存在实数λ,使得AB AC λ=,∴AB 与AC 不是共线向量,故A 错误;对B ,||5AB =,∴与向量AB 方向相同的单位向量是55⎛⎫⎪ ⎪⎝⎭,故B 错误;对C ,(3,1,1)BC =-,cos ,||||5AB BC AB BC AB BC ⋅-<>===,故C 错误;对D ,设(,,)n x y z =为面ABC 的一个法向量,∴0,0n AB n AC ⋅=⋅=,∴2020x y x y z +=⎧⎨-++=⎩,取1,2,5x y z ==-=,∴平面ABC 的一个法向量是(1,2,5)-,故D 正确;故选:D5.已知椭圆22221(0)x y a b a b+=>>的左右焦点分别1F ,2F ,焦距为4,若以原点为圆心,12F F 为直径的圆恰好与椭圆有两个公共点,则此椭圆的方程为( ) A .22184x y +=B .2213216x y +=C .22148x y +=D .221164x y +=【答案】A【分析】已知2c ,又以原点为圆心,12F F 为直径的圆恰好与椭圆有两个公共点,这两个公共点只能是椭圆短轴的顶点,从而有b c =,于是可得a ,从而得椭圆方程。

安徽省淮南市第二中学2021-2022学年高二上学期第二次月考数学(文)试题 Word版含答案

安徽省淮南市第二中学2021-2022学年高二上学期第二次月考数学(文)试题 Word版含答案

淮南二中2021届高二上学期文科数学其次次月考试卷 满分:150分 考试时间:120分钟一、选择题:(本大题共12题,每小题5分,共60分.只有一个选项正确.) 1.现要完成下列3项抽样调查: ①从15件产品中抽取3件进行检查;②某公司共有160名员工,其中管理人员16名,技术人员120名,后勤人员24名,为了了解员工对公司的意见,拟抽取一个容量为20的样本;③电影院有28排,每排有32个座位,某天放映电影时恰好坐满了观众,电影放完后,为了听取意见,需要请28名观众进行座谈. 较为合理的抽样方法是( )A.①简洁随机抽样②系统抽样③分层抽样B.①分层抽样②系统抽样③简洁随机抽样C.①系统抽样②简洁随机抽样③分层抽样D.①简洁随机抽样②分层抽样③系统抽样 2.从装有2个红球和2个黑球的口袋内任取2个球,则互斥而不对立的两大事是() A. 至少有一个黑球与都是黑球 B. 至少有一个黑球与都是红球 C. 至少有一个黑球与至少有1个红球 D. 恰有1个黑球与恰有2个黑球 3.命题“若A ∪B =A ,则A ∩B =B ”的否命题是( )A. 若A ∪B ≠A ,则A ∩B ≠BB. 若A ∩B =B ,则A ∪B =AC. 若A ∩B ≠B ,则A ∪B ≠AD. 若A ∪B ≠A ,则A ∩B =B4.已知两直线m 、n 和平面α,若m α⊥, //n α,则下列关系肯定成立的是() A. m 与n 是异面直线 B. m n ⊥ C. m 与n 是相交直线 D . //m n 5.在长为4的线段AB 上任取一点P , P 到端点,A B 的距离都大于1的概率为()A. 18B. 12C. 14 D. 136.设命题:,xp x R e x ∀∈>,则p ⌝是( ) A. ,xx R e x ∀∈≤ B.000,x x R e x ∃∈< C. ,xx R e x ∀∈< D.000,x x R e x ∃∈≤7.两次抛掷一枚骰子,则向上的点数之差的确定值等于3的概率是( )A. 112B. 16C. 13D. 128.已知命题:p 若5+≤x y ,则32或≤≤x y .命题:q <a b ,11>a b .那么下列命题为真命题是( ) A. p ∧q B.( ¬p )∧(¬q ) C. (¬p )∧q D. p ∧(¬q )9.下面四个条件中,使a b >成立的充分而不必要的条件是( )A.22a b > B. 33a b > C. 1a b >+ D. 1a b >-10.已知椭圆2217525y x +=的一条弦的斜率为3,它与直线12x =的交点恰为这条弦的中点M ,求点M 的坐标( )A.11(,)22B. 13(,52)22+ C. 11(,)22- D. 13(,52)22-11.执行如图所示的程序框图,则输出的S =( )A. 7B. 11C. 26D. 3012. 已知O 为坐标原点,F 是椭圆2222:1(0)x y C a b a b +=>>的左焦点,A ,B 分别为C 的左、右顶点,P为C 上一点,且PF x ⊥轴,过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )。

(新课标)高二数学上学期第二次月考试题 文

(新课标)高二数学上学期第二次月考试题 文

2013-2014学年度上学期第二次月考 高二数学(文)试题【新课标】(考试时间120分钟 满分150分)一、选择题:(本题共12小题,每小题5分,共计60分) 1. 命题“对任意的01,23≤+-∈x x R x ”的否定是( )A. 不存在01,23≤+-∈x x R xB. 存在01,23≥+-∈x x R xC. 存在01,23>+-∈x x R xD. 对任意的01,23>+-∈x x R x 2. 已知M(-2,0),N(2,0),|PM|-|PN|=4,则动点P 的轨迹是( )A. 一条射线B. 双曲线C. 双曲线左支D. 双曲线右支 3. 若命题p q ∧为假,且p ⌝为假,则( )A. p q ∨为假B. q 假C. q 真D. 不能判断q 的真假 4. 下列有关命题的说法正确的是( )A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”.B .“1x =-”是“2560x x --=”的必要不充分条件.C .命题“若x y =,则sin sin x y =”的逆否命题为真命题.D .命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈, 均有210x x ++<”.5. “0AB >”是“方程221Ax By +=表示椭圆”的( ) / A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件6. 椭圆短轴的一个端点看长轴的两个端点的视角为120°,则这个椭圆的离心率是( ) A.21 B .22 C .36 D . 33 7. 双曲线112422=-y x 上的点P 到左焦点的距离是6,这样的点有( ) A. 3个B. 4个C. 2个D. 1个8. 已知椭圆121022=-+-m y m x 的长轴在y 轴上,且焦距为4,则 m 等于( ) A. 4 B. 5 C. 7 D. 89. 与曲线1492422=+y x 共焦点,而与曲线1643622=-y x 共渐近线的双曲线方程为( )A .191622=-x yB .191622=-y x /C .116922=-x yD .116922=-y x10. 若双曲线22221(0,0)x y a b a b-=>>的一个焦点到一条渐近线的距离等于焦距的14,则该双曲线的渐近线方程是( )A .20x y ±=B .20x y ±=C .0x =D 0y ±=11. 若直线4=+ny mx 与⊙O : x 2+y 2= 4没有交点,则过点(,)P m n 的直线与椭圆22194x y +=的交点个数是( )A .至多为1B .2C .1D .012. 已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过F 且倾斜角为4π的直线与双曲线的右支有两个交点,则此双曲线离心率的取值范围是( ) /A .(1,2)B .[2,)+∞C .D .)+∞ 二、填空题:(本题共4小题,每小题5分,共计20分)13. 已知双曲线C 的一条渐近线方程为02=-y x ,则该双曲线的离心率e=_______14.设21,F F 是双曲线1422=-y x 的左右焦点,点P 在双曲线上,且 9021=∠PF F ,则点P 到x 轴的距离为 .15. 设椭圆12622=+y x 与双曲线1322=-y x 有公共焦点为21,F F ,P 是两条曲线的一个公共点,则21cos PF F ∠的值等于 .16. 已知点P (x,y )是椭圆1222=+y x 上一动点,则x y z 2-=的范围为 .三、解答题(本题共6小题,共计70分)17. (本小题10分)已知0208:2>--x x p ,012:22>-+-a x x q ,若p ⌝是q ⌝的必要不充分条件,求正实数a 的取值范围. /18.(本小题12分)已知命题p :方程11222=--m y m x 表示焦点在y 轴上的椭圆;命题q :双曲线1522=-mx y 的离心率)2,1(∈e ,若p 、q 有且只有一个为真,求m 的取值范围.19. (本小题12分)设双曲线C 的焦点在y 轴上,离心率为2,其一个顶点的坐标是(0,1).(Ⅰ)求双曲线C 的标准方程;(Ⅱ)若直线l 与该双曲线交于A 、B 两点,且A 、B 的中点为(2,3),求直线l 的方程20. (本小题12分)如图,x DP ⊥轴,点M 在DP 的延长线上,且,23=DP DM 当点P 在圆422=+y x 上运动时,求:动点M 的轨迹方程.21. (本小题12分)已知:双曲线的左、右焦点分别为、,动点满足。

高二数学上学期第二次月考试题文试题

高二数学上学期第二次月考试题文试题

二中2021-2021学年上学期高二第二次月考本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。

文科数学试题命题人:高二文科数学备课组 时量:120分钟 分值:150分一、选择题〔本大题一一共9个小题,每一小题5分,一共45分〕 1、容量为20的样本数据,分组后的频数如下表:那么样本数据落在区间[10,40)内的频率为〔 〕.0.35A .0.45B .0.55C .0.65D2、某组样本数据的中心为(4,5),且回归系数 1.23b =,那么回归直线的方程为〔 〕ˆ. 1.234A yx =+ ˆ. 1.235B y x =+ ˆ. 1.230.08C y x =+ ˆ.0.08 1.23D y x =+ 3、集合{2,3},{1,2,3}A B ==,从A ,B 中各任意取出一个数,那么这两个数之和为4的概率是〔 〕2.3A 1.2B 1.3C 1.6D 4、假设a R ∈,那么“2a =〞是“(1)(2)0a a --=〞的〔 〕A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件5、命题:,20xp x R ∀∈>;命题2:,1q x R x x ∃∈=-,那么以下命题中为真命题的是〔 〕.A p q ∧ .B p q ⌝∧ .C p q ⌝∨⌝ .D p q ⌝∧⌝6、方程x 25-m +y 2m +3=1表示椭圆,那么m 的范围是( ) A .(-3,5) B .(-5,3) C .(-3,1)∪(1,5) D .(-5,1)∪(1,3)7、双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,那么双曲线C 的渐近线方程为〔 〕.A y x =± 1.2B y x =±1.3C y x =± 1.4D y x =± 8、椭圆22:14x C y +=,过椭圆右焦点且斜率为1的直线交椭圆于A ,B 两点,那么AB = 〔 〕 A B C D 9876. . . .55559、函数4()f x x x,假设2()25f x x a a 对任意的(0,)x 恒成立,,那么实数a 的取值范围是〔 〕.[1,4] .[0,2] .(,1][4,) .(,0][2,)A B C D二、填空题〔本大题一一共6个小题,每一小题5分,一共30分〕10、如以下图是某一名篮球运发动在五场比赛中所得分数的茎叶图,那么该运发动在这五场比赛中得分的平均数为 ;11、如图,矩形ABCD 中,点E 为边CD 的中点,假设在矩形ABCD 内部随机的取一个点,那么点Q 取自ABE ∆内部的概率等于 ;12、F 1(0,-5),F 2(0,5),曲线上任意一点M 满足128MF MF -=,假设该曲线的一条渐近线的斜率为k ,该曲线的离心率为e ,那么k e ⋅=________.13、双曲线22221(0,0)x y a b a b -=>>和椭圆221169x y +=有一样的焦点,且双曲线的离心率是椭圆的两倍,那么双曲线的方程为 ;(11)第题0981305(10)第题14、设D 为不等式组02030x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域,那么区域D 上的点与点(1,0)之间的间隔的最小值为 ;15、函数log (3)1(01)a y x a a =+->≠且的图象恒过定点A ,假设点A 在直线10mx ny ++=上,其中0mn >,那么当12m n+取最小值时,椭圆22221x y m n +=的离心率为 ;三、简答题〔本大题一一共6小题,一共75分,简答题应写出文字说明、证明过程或者演算步骤〕 16、〔本小题满分是12分〕某校100名学生期中考试语文成绩的频率分布直方图如下图,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100]. (1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;17、〔本小题满分是12分〕命题p :关于x 的不等式210x ax -+>的解集为R ,命题q :方程4x 2+4(a -2)x +1=0无实根,假设p q∨为真,p q ∧为假,务实数a 的取值范围.18、〔本小题满分是12分〕 编号12316,,,,A A A A 为的16名篮球运发动在某次训练比赛中的得分记录如下:运发动编号1A2A3A4A5A6A7A8A得分1535212825361834运发动编号9A10A11A12A13A14A15A16A得分1726253322123138〔1〕将得分在对应区间内的人数填入相应的空格:区间 [10,20)[20,30)[30,40)人数〔2〕从得分在区间[20,30)内的运发动中随机的抽取2人, ①用运发动编号列出所有可能的结果; ②求这两人得分之和大于50的概率。

高二数学上学期第二次月考试题文PDF

高二数学上学期第二次月考试题文PDF

智才艺州攀枝花市创界学校二零二零—二零二壹第一学期第三次月考高二数学〔文科〕试题答案一.选择题:1.D2.C3.B5.B7.B8.C9.B11.C12.A二.填空题13._33_.26_6_.15._10___.16.三.解答题〔一共70分〕17.〔本小题总分值是10分〕17.解:假设为真:对,恒成立,设,配方得,所以在上的最小值为,所以,解得,所以为真时:;┉┉┉┉┉┉┉2分假设为真:,┉┉┉┉┉┉┉4分因为〞为真,“〞为假,所以与一真一假,┉┉┉┉┉┉┉5分当真假时,所以,┉┉┉┉┉┉┉7分当假真时,所以,┉┉┉┉┉┉┉9分综上所述,实数的取值范围是或者.┉┉┉┉┉┉┉10分18.解答:〔1〕因为线段AB 的中点D 的坐标为(1,2)且1AB k =,所以线段AB 的垂直平分线的方程为2(1)y x -=--,即30x y +-=.由303150x y x y +-=⎧⎨+-=⎩得:(3,6)C -,又圆的半径210r AC ==,所以圆C 的HY 方程为:22(3)(6)40x y ++-=.………6分〔2〕因为42AB =,圆心到直线AB 的间隔22(210)(22)42d =-=,所以点P 到AB的间隔的最大值为42210+,所以PAB∆的面积的最大值为:142(42210)16852⨯⨯+=+...………12分 19.〔本小题12分〕 〔1〕证明:因为,,PA AB PA BC AB BC B ⊥⊥=,所以PA ⊥平面ABC ,又因为BD ⊂平面ABC ,所以PA BD ⊥,又因为,AB BC D =为AC 的中点,所以BD AC ⊥,又AC PA A =,所以BD ⊥平面PAC ,又因为BD ⊂平面BDE ,所以平面BDE ⊥平面ABC ………6分〔2〕因为//PA 平面BDE ,平面PAC平面BDE DE =,所以//PA DE .因为D 为AC 的中点,,所以11,22DE PA BD DC ====,由〔1〕知PA ⊥平面ABC ,所以DE ⊥平面ABC ,所以1163E BCD V BD DC DE -=⋅⋅=.………6分20.〔本小题总分值是12分〕1〕依题意可设A )n ,m (、)n 2,m 2(B --,那么⎩⎨⎧=--+-=+-06)n 2()m 2(203n m ,⎩⎨⎧=+=-0n m 23n m ,解得1m -=,2n =.………………4分即)2,1(A -,又l 过点P )1,1(,易得AB 方程为03y 2x =-+.………………6分〔2〕设圆的半径为R ,那么222)554(d R+=,其中d 为弦心距,53d =,可得5R2=,故所求圆的方程为5y x22=+.……………………12分21.〔本小题总分值是12分〕解:〔1〕连结PA,由于是线段AQ的垂直平分线,所以,所以,┉┉┉┉┉┉┉2分所以点P的轨迹C是以A,B为焦点,以4为长轴长的椭圆,故其方程为.┉┉┉┉┉┉┉4分(2)①当直线的斜率不存在时,,所以.┉┉┉┉┉┉┉5分②当直线的斜率存在时,设:,代入消去y得,设,那么┉┉┉┉┉┉┉7分因为,所以┉┉┉┉┉┉┉9分因为,所以,所以,┉┉┉┉11分综上可知,的取值范围是.┉┉┉┉┉┉┉12分22.(12分)[解](1)由题意知解得 3分∴椭圆C的HY方程为+=1.6分(2)设点A(x1,y1),B(x2,y2),由得(4k2+3)x2+8kmx+4m2-12=0,5分由Δ=(8km)2-16(4k2+3)(m2-3)>0,得m2<4k2+3.6分∵x1+x2=,x1x2=,∴S△OAB=|m||x1-x2|=|m|·=,8分化简得4k2+3-2m2=0,满足Δ>0,从而有4k2-m2=m2-3(*),9分∴k OA·k OB=====-·,由(*)式,得=1,∴k OA·k OB=-,即直线OA与OB的斜率之积为定值-.12分。

2021年高二数学上学期第二次月考试题 文

2021年高二数学上学期第二次月考试题 文

2021年高二数学上学期第二次月考试题文一、选择题(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1.中心在原点,焦点在坐标轴上,且过两点的椭圆的标准方程是()A. B. C. D.2.椭圆的一个焦点是,那么()A. B. C. D.3.在空间中,下列命题正确的个数是()①平行于同一直线的两直线平行;②垂直于同一直线的两直线平行;③平行于同一平面的两直线平行;④垂直于同一平面的两直线平行.A.1 B.2 C.3 D.44.一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )5.双曲线的顶点到其渐近线的距离等于()A.B.C.D.16.设抛物线上一点到轴距离是6,则点到该抛物线焦点的距离是()A.12 B.8 C.6 D.47.若点的坐标为,是抛物线的焦点,点在抛物线上移动时,使取得最小值的的坐标为()A. B. C. D.8.过双曲线的一个焦点作垂直于实轴的弦,是另一焦点,若∠,则双曲线的离心率等于()A. B. C. D.9.为椭圆上的一点,分别为左、右焦点,且则()A. B. C. D.10.椭圆的左、右顶点分别为,点在上且直线的斜率的取值范围是,那么直线斜率的取值范围是()A.B.C.D.11.已知是直线被椭圆所截得的线段的中点,则直线的方程是()A. B. C. D.侧视图正视图12.从双曲线的左焦点引圆的切线,切点为,延长交双曲线右支于点,若为线段的中点,为坐标原点,则与的大小关系为()A. B.C. D.不确定第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.若椭圆上一点到焦点的距离为6,则点到另一个焦点的距离是.14.已知过抛物线焦点的弦长为12,则此弦所在直线的倾斜角是.15.已知椭圆和双曲线有公共的焦点,则双曲线的渐近线方程为.16.若抛物线的焦点是,准线是,则经过两点、且与相切的圆共有个.三、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤)17.(本题满分10分)已知抛物线,直线与抛物线交于、两点.(Ⅰ)求的值;(Ⅱ)求的面积.DC 1B 1A 1CBAN M PQ B C DA19.(本题满分12分)如图,在四棱锥中,//,,,平面,. (Ⅰ)求证:平面;(Ⅱ)点为线段的中点,求直线与平面所成角的正弦值.20.(本题满分12分)已知椭圆:的右焦点为,且椭圆过点. (Ⅰ)求椭圆的方程;(Ⅱ)设过点的直线与椭圆交于两点,与直线交于点,若直线、、的斜率成等差数列,求的值. 21.(本题满分12分)如图所示的几何体中,四边形是菱形,是矩形,平面⊥平面, ,,, 是的中点. (Ⅰ)求证:;(Ⅱ)求三棱锥的体积.22.(本题满分12分)已知,直线:,椭圆:的左、右焦点分别为.(Ⅰ)当直线过时,求的值;(Ⅱ)设直线与椭圆交于两点,△、△的重心分别为、,若原点在以线段为直径的圆内,求实数的取值范围.z yxDC 1B 1A 1C BAxyz PQB CD AA BCA 1B 1C 1DO参考答案三、解答题 17.解:(Ⅰ)设,显然成立, ……2分……4分 ……5分(Ⅱ)原点到直线的距离, ……7分()2212121212446AB k x x x x x =+-=+-⋅=, ……9分112464322OAB S d AB ∆∴===……10分18.解:(法一)(Ⅰ)连结交于点,侧棱底面侧面是矩形,为的中点,且是棱的中点,, ……4分 ∵平面,平面平面 ……6分 (Ⅱ),为异面直线与所成的角或其补角. ……8分,为等边三角形,,异面直线与所成的角为. ……12分(法二)(Ⅰ)以为原点,所在直线分别为轴,轴,轴建立空间直角坐标系,11(0,2,0),(0,0,2),(0,0,0),(1,1,0),(2,0,2)A B B D C ,设为平面的一个法向量, 令则 ……3分 ,又平面平面 ……6分 (Ⅱ), ……8分1111111cos ,22222AB BC AB BC AB BC ∴<>===⨯⋅异面直线与所成的角为. ……12分 19.(法一)(Ⅰ)证明:以A 为原点,建立空间直角坐标系,如图,()()()()()()2,0,2,0,22,2,0,0,0,4,0,0,0,22,0,00,4Q C A P D B 则()()()()2,22,0,0,22,2,4,0,0,0,22,4-===-= …3分00222224,0=+⨯+⨯-=⋅=⋅∴又,平面 ……6分(Ⅱ)解:由(Ⅰ)知,平面的一个法向量为, ……8分OH E A D CBQP 设直线与平面所成的角为, 则,所以直线与平面所成的角的正弦值为. ……12分 (法二)(Ⅰ)证明:设AC∩BD=O,∵CD∥AB,∴OB:OD=OA:OC=AB:CD=2 Rt△DAB 中,DA=,AB=4,∴DB=,∴DO=DB=同理,OA=CA=,∴DO 2+OA 2=AD 2,即∠AOD=90o,∴BD⊥AC ……3分 又PA⊥平面ABCD ,∴PA⊥BD ……5分 由AC∩PA=A,∴BD⊥平面PAC ……6分(Ⅱ)解:连PO ,取PO 中点H ,连QH ,则QH∥BO,由(Ⅰ)知,QH⊥平面PAC∴∠QCH 是直线QC 与平面PAC 所成的角. ……8分 由(Ⅰ)知,QH=BO=, 取OA 中点E ,则HE=PA=2,又EC=OA+OC=Rt△HEC 中,HC 2=HE 2+EC 2= ∴Rt△QHC 中,QC=,∴sin∠QCH=∴直线与平面所成的角的正弦值为. ……12分20.解:(Ⅰ)由已知 , 因为椭圆过,所以解得,椭圆方程是 ……4分(Ⅱ)由已知直线的斜率存在,设其为,设直线方程为,易得由(()22222214124014y k x k x x k xy ⎧=⎪⇒+-+-=⎨⎪+=⎩,所以……6分, , ……8分 而+()122112121)y x y x x x y y +-+++=……10分 因为、、成等差数列,故,解得 ……12分21.(Ⅰ)证明:菱形ABCD 中,AD =2,AE =1,∠DAB =60o,∴DE =.∴AD 2=AE 2+DE 2,即∠AED =90o,∵AB ∥DC ,∴DE ⊥DC …① ……2分∵平面ADNM ⊥平面ABCD ,交线AD ,ND ⊥AD ,ND 平面ADNM ,∴ND ⊥平面ABCD , ∵DE 平面ABCD ,∴ND ⊥DE …② ……4分 由①②及ND ∩DC =D ,∴DE ⊥平面NDC ……6分 ∴DE ⊥NC . ……8分(Ⅱ)解:由(Ⅰ)及ND ∥MA 知,MA ⊥平面ABCD .∴. ……12分22.解:(Ⅰ)由已知 直线交轴于点为,,解得 ……3分 (Ⅱ)设,因为的重心分别为,所以因为原点在以线段为直径的圆内,所以 ……5分 ,∴ ① …6分29423 72EF 狯33803 840B 萋35674 8B5A 譚M938630 96E6 雦F?+37906 9412 鐒32102 7D66 給~24065 5E01 币21832 5548 啈l。

高二数学上学期第二次月考试题 文(2021年整理)

高二数学上学期第二次月考试题 文(2021年整理)

甘肃省甘谷县2016-2017学年高二数学上学期第二次月考试题文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(甘肃省甘谷县2016-2017学年高二数学上学期第二次月考试题文)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为甘肃省甘谷县2016-2017学年高二数学上学期第二次月考试题文的全部内容。

甘肃省甘谷县2016-2017学年高二数学上学期第二次月考试题 文第I 卷(选择题)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}|2,0x M y y x ==<,12|log ,01N y y x x ⎧⎫==<<⎨⎬⎩⎭,则“x M ∈”是“x N ∈"的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.已知命题p :“R x ∈∀,0222>+-x x ”,则p ⌝是A.R x ∈∀,0222≤+-x x B 。

R x ∈∃0,02202>+-x x C.R x ∈∃0,022020<+-x x D.R x ∈∃0,022020≤+-x x 3.设x R ∈ ,则“21x -< ”是“220x x +-> ”的( ) A 。

充分而不必要条件 B.必要而不充分条件 C.充要条件 D 。

既不充分也不必要条件4.双曲线22123x y -=的焦点到其渐近线距离为( )A .1B .2C .3D .25.若椭圆()222210x y a b a b +=>>的离心率为32,则a b=( )A .3B .2C .3D .2 6.过点(3,2)-且与椭圆223824x y +=有相同焦点的椭圆方程为A .221510x y +=B .2211015x y +=C .2211510x y +=D .2212510x y +=7.已知椭圆221168x y +=的一点M 到椭圆的一个焦点的距离等于4,那么点到椭圆的另一个焦点的距离等于( )A .2B .4C .6D .8 8.下列说法正确的是( )A .“a b >”是“22a b >”的充分不必要条件B .命题“0x R ∃∈,2010x +<”的否定是“x R ∀∈,210x +>”C 。

2021年高二数学上学期第二次月考试卷(含解析)

2021年高二数学上学期第二次月考试卷(含解析)

2021年高二数学上学期第二次月考试卷(含解析)一、选择题(每小题5分,共60分.在每小题给出的四个选项中,只有一项是正确的.)1.(5分)已知命题p:∀x∈R,sinx≤1,则()A.¬p:∃x∈R,sinx≥1B.¬p:∀x∈R,sinx≥1C.¬p:∃x∈R,sinx>1 D.¬p:∀x∈R,sinx>12.(5分)若集合A={x|(2x+1)(x﹣3)<0},B={x∈N|x≤5},则A∩B是()A.{1,2,3} B.{0,1,2} C.{4,5} D.{1,2,3,4,5}3.(5分)若x+y>0,a<0,ay>0,则x﹣y的值为()A.大于0 B.等于0 C.小于0 D.符号不能确定4.(5分)若0<x<1,0<y<1,则在x+y,x2+y2,2xy,2中,最大的一个数是()A.2xy B.x+y C.2 D.x2+y25.(5分)已知数列{a n}的首项a1=1,且a n=2a n﹣1+1(n≥2),则a5为()A.7 B.15 C.30 D.316.(5分)已知一等比数列的前三项依次为x,2x+2,3x+3,那么﹣13是此数列的第()项.A.2 B.4 C.6 D.87.(5分)若f(x)=3x2﹣x+1,g(x)=2x2+x﹣1,则f(x)与g(x)的大小关系是()A.f(x)>g(x)B.f(x)=g(x)C.f(x)<g(x)D.随x的值的变化而变化8.(5分)若命题p:2n﹣1是奇数,q:2n+1是偶数(n∈Z),则下列说法中正确的是()A.p或q为真B.p且q为真C.非p为真D.非q为假9.(5分)命题“a=0,则ab=0”的逆否命题是()A.若ab=0,则a=0 B.若a≠0,则ab≠0C.若ab=0,则a≠0D.若ab≠0,则a≠010.(5分)x2﹣3x+2≠0是x≠1的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件11.(5分)下列数列是等差数列的是()A.a n=﹣2n B.a n=(﹣1)n•n C.a n=(n+1)2D.a n=2n+112.(5分)等差数列{a n}中,若a1+a4+a7=39,a3+a6+a9=27,则前9项的和S9等于()A.66 B.99 C.144 D.297二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)“实数a,b,c成等差数列”是“2b=a+c”的条件.(按充分、必要关系填写)14.(5分)x,y∈(0,+∞),x+2y=1,则的最小值是.15.(5分)如果函数的定义域为R,则实数k的取值范围是.16.(5分)已知数列{a n},其前n项和S n=n2+n+1,则a8+a9+a10+a11+a12=.三、解答题(本大题共4小题,共40分)17.(8分)已知x,y满足约束条件,求目标函数z=2x﹣y的最大值和最小值及对应的最优解.18.(12分)已知等差数列{a n}中,公差d>0,又a2•a3=45,a1+a4=14(I)求数列{a n}的通项公式;(II)记数列b n=,数列{b n}的前n项和记为S n,求S n.19.(8分)设两个命题:p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立,q:函数f (x)=﹣(4﹣2a)x在(﹣∞,+∞)上是减函数,若命题p∨q为真,p∧q为假,则实数a的取值范围是多少?20.(12分)已知函数(a,b为常数)且方程f(x)﹣x+12=0有两个实根为x1=3,x2=4.(1)求函数f(x)的解析式;(2)设k>1,解关于x的不等式;.内蒙古呼伦贝尔市满洲里七中xx学年高二上学期第二次月考数学试卷参考答案与试题解析一、选择题(每小题5分,共60分.在每小题给出的四个选项中,只有一项是正确的.)1.(5分)已知命题p:∀x∈R,sinx≤1,则()A.¬p:∃x∈R,sinx≥1B.¬p:∀x∈R,sinx≥1C.¬p:∃x∈R,sinx>1 D.¬p:∀x∈R,sinx>1考点:命题的否定.分析:根据¬p是对p的否定,故有:∃x∈R,sinx>1.从而得到答案.解答:解:∵¬p是对p的否定∴¬p:∃x∈R,sinx>1故选C.点评:本题主要考查全称命题与特称命题的转化问题.2.(5分)若集合A={x|(2x+1)(x﹣3)<0},B={x∈N|x≤5},则A∩B是()A.{1,2,3} B.{0,1,2} C.{4,5} D.{1,2,3,4,5}考点:交集及其运算.专题:计算题.分析:分别求出集合A中不等式的解集和集合B中解集的自然数解得到两个集合,求出交集即可.解答:解:集合A中的不等式(2x+1)(x﹣3)<0可化为或解得﹣<x<3,所以集合A=(﹣,3);集合B中的不等式x≤5的自然数解有:0,1,2,3,4,5,所以集合B={0,1,2,3,4,5}.所以A∩B={0,1,2}故选B点评:此题考查了集合交集的运算,是一道基础题.3.(5分)若x+y>0,a<0,ay>0,则x﹣y的值为()A.大于0 B.等于0 C.小于0 D.符号不能确定考点:不等式.分析:用不等式的性质判断两个变量x,y的符号,由符号判断x﹣y的值的符号.方法一:综合法证明一般性原理;方法二用特值法证明.可以看到方法二比方法一简单.解答:解:法一:因为a<0,ay>0,所以y<0,又x+y>0,所以x>﹣y>0,所以x﹣y>0.法二:a<0,ay>0,取a=﹣2得:﹣2y>0,又x+y>0,两式相加得x﹣y>0.故应选A.点评:本题考点是不等式的性质,本题考查方法新颖,尤其是第二种方法特值法充分体现了数学解题的灵活性.4.(5分)若0<x<1,0<y<1,则在x+y,x2+y2,2xy,2中,最大的一个数是()A.2xy B.x+y C.2 D.x2+y2考点:不等式的基本性质.专题:不等式的解法及应用.分析:利用基本不等式的性质和不等式的基本性质即可得出.解答:解:∵0<x<1,0<y<1,∴,x2+y2≥2xy.又x>x2,y>y2,∴x+y>x2+y2.∴在x+y,x2+y2,2xy,2中,最大的一个数是x+y.故选:B.点评:本题考查了基本不等式的性质和不等式的基本性质,属于基础题.5.(5分)已知数列{a n}的首项a1=1,且a n=2a n﹣1+1(n≥2),则a5为()A.7 B.15 C.30 D.31考点:数列递推式.专题:计算题.分析:(法一)利用已递推关系把n=1,n=2,n=3,n=4,n=5分别代入进行求解即可求解(法二)利用迭代可得a5=2a4+1=2(a3+1)+1=…进行求解(法三)构造可得a n+1=2(a n﹣1+1),从而可得数列{a n+1}是以2为首项,以2为等比数列,可先求a n+1,进而可求a n,把n=5代入可求解答:解:(法一)∵a n=2a n﹣1+1,a1=1a2=2a1+1=3a3=2a2+1=7a4=2a3+1=15a5=2a4+1=31(法二)∵a n=2a n﹣1+1∴a5=2a4+1=4a3+3=8a2+7=16a1+15=31(法三)∴a n+1=2(a n﹣1+1)∵a1+1=2∴{a n+1}是以2为首项,以2为等比数列∴a n+1=2•2n﹣1=2n∴a n=2n﹣1∴a5=25﹣1=31故选:D点评:本题主要考查了利用数列的递推关系求解数列的项,注意本题解法中的一些常见的数列的通项的求解:迭代的方法即构造等比(等差)数列的方法求解,尤其注意解法三中的构造等比数列的方法的应用6.(5分)已知一等比数列的前三项依次为x,2x+2,3x+3,那么﹣13是此数列的第()项.A.2 B.4 C.6 D.8考点:等比数列的通项公式.专题:综合题.分析:根据等比数列的性质可知第2项的平方等于第1,第3项的积,列出关于x的方程,求出方程的解,经检验得到满足题意x的值,然后根据x的值求出等比数列的首项和公比,写出等比数列的通项公式,令通项公式等于﹣13列出关于n的方程,求出方程的解即可得到n的值.解答:解:由等比数列的前三项依次为x,2x+2,3x+3,得到(2x+2)2=x(3x+3),即(x+1)(x+4)=0,解得x=﹣1或x=﹣4,当x=﹣1时,等比数列的前三项依次为﹣1,0,0不合题意舍去,所以x=﹣4,等比数列的前三项依次为﹣4,﹣6,﹣9,则等比数列的首项为﹣4,公比q==,令a n=﹣4=﹣13,解得n=4.故选B点评:此题考查学生灵活运用等比数列的通项公式化简求值,掌握等比数列的性质,是一道综合题.7.(5分)若f(x)=3x2﹣x+1,g(x)=2x2+x﹣1,则f(x)与g(x)的大小关系是()A.f(x)>g(x)B.f(x)=g(x)C.f(x)<g(x)D.随x的值的变化而变化考点:二次函数的性质.专题:计算题.分析:比较大小一般利用作差的方法,进而得到f(x)﹣g(x)=x2﹣2x+2,然后再利用二次函数的性质解决问题即可.解答:解:由题意可得:f(x)=3x2﹣x+1,g(x)=2x2+x﹣1所以f(x)﹣g(x)=x2﹣2x+2=(x﹣1)2+1≥1,所以f(x)>g(x).故选A.点评:解决此类问题的关键是熟练掌握比较大小的方法与二次函数的性质,并且结合正确的运算.8.(5分)若命题p:2n﹣1是奇数,q:2n+1是偶数(n∈Z),则下列说法中正确的是()A.p或q为真B.p且q为真C.非p为真D.非q为假考点:四种命题的真假关系.专题:计算题.分析:对复合命题的真假性进行证明,我们可先分析命题p、q的真假,然后利用真值表进行计算.由(n∈Z)易得,2n﹣1是奇数为真,2n+1也是奇数,故2n+1是偶数为假命题.解答:解:由题设知:p真q假,故p或q为真命题.故选A点评:(1)由简单命题和逻辑连接词构成的复合命题的真假可以用真值表来判断,反之根据复合命题的真假也可以判断简单命题的真假.假若p且q真,则p 真,q也真;若p或q真,则p,q至少有一个真;若p且q假,则p,q至少有一个假.(2)可把“p或q”为真命题转化为并集的运算;把“p且q”为真命题转化为交集的运算.9.(5分)命题“a=0,则ab=0”的逆否命题是()A.若ab=0,则a=0 B.若a≠0,则ab≠0C.若ab=0,则a≠0D.若ab≠0,则a≠0考点:四种命题间的逆否关系.专题:常规题型.分析:根据互为逆否的两命题是条件和结论先逆后否来解答.解答:解:因为原命题是“a=0,则ab=0”,所以其逆否命题为“若ab≠0,则a≠0”,故选D.点评:本题考察命题中的逆否关系,可以从字面理解“逆否”:先逆后否.10.(5分)x2﹣3x+2≠0是x≠1的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:计算题.分析:x2﹣3x+2≠0⇔x≠1且x≠2,由此易判断“x2﹣3x+2≠0⇒x≠1”和“x≠1⇒x2﹣3x+2≠0”的真假,进而根据充要条件的定义,得到答案.解答:解:当x2﹣3x+2≠0时,x≠1且x≠2,此时x≠1成立,故x2﹣3x+2≠0是x≠1的充分条件;当x≠1时,x2﹣3x+2≠0不一定成立,故x2﹣3x+2≠0是x≠1的不必要条件;x2﹣3x+2≠0是x≠1的充分不必要条件;故选A点评:本题考查的知识点是必要条件、充分条件与充要条件的判断,其中分别判断“x2﹣1=0⇒x3﹣x=0”与“x3﹣x=0⇒x2﹣1=0”的真假,是解答本题的关键.11.(5分)下列数列是等差数列的是()A.a n=﹣2n B.a n=(﹣1)n•n C.a n=(n+1)2D.a n=2n+1考点:等差数列的性质.专题:规律型;等差数列与等比数列.分析:由等差数列的通项公式,可得通项为n的一次函数形式,即可得出结论.解答:解:由等差数列的通项公式,可得通项为n的一次函数形式,故可知选A.故选:A.点评:本题考查等差数列的通项公式,比较基础.12.(5分)等差数列{a n}中,若a1+a4+a7=39,a3+a6+a9=27,则前9项的和S9等于()A.66 B.99 C.144 D.297考点:等差数列的前n项和.专题:计算题.分析:根据等差数列的通项公式化简a1+a4+a7=39和a3+a6+a9=27,分别得到①和②,用②﹣①得到d的值,把d的值代入①即可求出a1,根据首项和公差即可求出前9项的和S9的值.解答:解:由a1+a4+a7=3a1+9d=39,得a1+3d=13①,由a3+a6+a9=3a1+15d=27,得a1+5d=9②,②﹣①得d=﹣2,把d=﹣2代入①得到a1=19,则前9项的和S9=9×19+×(﹣2)=99.故选B.点评:此题考查学生灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道中档题.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)“实数a,b,c成等差数列”是“2b=a+c”的充要条件.(按充分、必要关系填写)考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据等差数列的定义以及充分条件和必要条件的定义即可得到结论.解答:解:若实数a,b,c成等差数列,则b﹣a=c﹣b,即2b=a+c,反之也成立,即实数a,b,c成等差数列”是“2b=a+c”的充要条件,故答案为:充要点评:本题主要考查充分条件和必要条件的判断,根据等差数列的定义是解决本题的关键.14.(5分)x,y∈(0,+∞),x+2y=1,则的最小值是3+2.考点:基本不等式.专题:计算题.分析:由x+2y=1⇒=()•(x+2y)=1+++2,结合条件,应用基本不等式即可.解答:解:∵x,y∈(0,+∞),x+2y=1,∴=()•(x+2y)=1+++2≥3+2(当且仅当=,即x=﹣1时取“=”).故答案为:3+2.点评:本题考查基本不等式,着重考查代入法及基本不等式的应用,属于基础题.15.(5分)如果函数的定义域为R,则实数k的取值范围是[0,).考点:二次函数的性质.专题:计算题.分析:由函数的定义域为R,解kx2+4kx+3=0无解,由此能求出k的取值范围.解答:解:∵函数的定义域为R,∴kx2+4kx+3=0无解,∴k=0,或,解得,故答案为:[0,).点评:本题考查二次函数的性质和应用,是基础题.解题时要认真审题,仔细解答.16.(5分)已知数列{a n},其前n项和S n=n2+n+1,则a8+a9+a10+a11+a12=100.考点:等差数列的性质.专题:计算题.分析:根据S n=n2+n+1并且a8+a9+a10+a11+a12=S12﹣S7,然后将数代入即可得到答案.解答:解:∵S n=n2+n+1∴a8+a9+a10+a11+a12=S12﹣S7=122+12+1﹣72﹣7﹣1=100故答案为:100.点评:本题主要考查数列前n项和公式的应用.考查考生的计算能力.三、解答题(本大题共4小题,共40分)17.(8分)已知x,y满足约束条件,求目标函数z=2x﹣y的最大值和最小值及对应的最优解.考点:简单线性规划.专题:不等式的解法及应用.分析:作出可行域,变形目标函数,平移直线y=2x,由截距的几何意义可得.解答:解:由题意作出约束条件所对应的可行域,如图(阴影部分)变形目标函数可得y=2x﹣z,作出直线y=2x,平移可得直线过点B时,z取最大值,经过点C时,z取最小值,联立方程组,解得,即B(5,3)同理联立可解得,即代入目标函数可得z max=7,z min=点评:本题考查线性规划,准确作图是解决问题的关键,属中档题.18.(12分)已知等差数列{a n}中,公差d>0,又a2•a3=45,a1+a4=14(I)求数列{a n}的通项公式;(II)记数列b n=,数列{b n}的前n项和记为S n,求S n.考点:数列的求和;等差数列的性质.专题:综合题;等差数列与等比数列.分析:(I)等差数列{a n}中,由公差d>0,a2•a3=45,a1+a4=14,利用等差数列的通项公式列出方程组,求出等差数列的首项和公差,由此能求出数列{a n}的通项公式.(II)由a n=4n﹣3,知b n==(﹣),由此利用裂项求和法能求出数列{b n}的前n项和.解答:解:(I)∵等差数列{a n}中,公差d>0,a2•a3=45,a1+a4=14,∴,解得,或(舍),∴a n=a1+(n﹣1)d=1+4(n﹣1)=4n﹣3.(II)∵a n=4n﹣3,∴b n===(﹣),∴数列{b n}的前n项和:S n=b1+b2+b3+…+b n=+++…+==.点评:本题考查数列的通项公式和前n项和公式的应用,解题时要认真审题,仔细解答,注意裂项求和法的合理运用.19.(8分)设两个命题:p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立,q:函数f (x)=﹣(4﹣2a)x在(﹣∞,+∞)上是减函数,若命题p∨q为真,p∧q为假,则实数a的取值范围是多少?考点:复合命题的真假.专题:简易逻辑.分析:根据一元二次不等式的解和判别式△的关系,及指数函数的单调性即可求出命题p,q下的a的取值范围,由p∨q为真,p∧q为假知p,q一真一假,所以分成p真q假,p假q真两种情况,分别求出a的取值范围再求并集即可.解答:解:p:△=4a2﹣16<0,解得﹣2<a<2;q:首先4﹣2a>0,∴a<2;函数f(x)=﹣(4﹣2a)x在(﹣∞,+∞)上是减函数,则4﹣2a>1,∴a<;若命题p∨q为真,p∧q为假,则p,q一真一假;若p真q假,则:,∴;若p假q真,则:,∴a≤﹣2;综上得a的取值范围是.点评:考查一元二次不等式的解和判别式△的关系,指数函数的单调性,p∨q,p∧q的真假和p,q真假的关系.20.(12分)已知函数(a,b为常数)且方程f(x)﹣x+12=0有两个实根为x1=3,x2=4.(1)求函数f(x)的解析式;(2)设k>1,解关于x的不等式;.考点:函数解析式的求解及常用方法.专题:计算题;综合题.分析:(1)将x1=3,x2=4分别代入方程得出关于a,b的方程组,解之即得a,b,从而得出函数f(x)的解析式.(2)不等式即为:即(x﹣2)(x﹣1)(x﹣k)>0.下面对k进行分类讨论:①当1<k<2,②当k=2时,③当k>2时,分别求出此不等式的解集即可.解答:解:(1)将x1=3,x2=4分别代入方程,得,解得,所以f(x)=.(2)不等式即为,可化为即(x﹣2)(x﹣1)(x﹣k)>0.①当1<k<2,解集为x∈(1,k)∪(2,+∞).②当k=2时,不等式为(x﹣2)2(x﹣1)>0解集为x∈(1,2)∪(2,+∞);③当k>2时,解集为x∈(1,2)∪(k,+∞).点评:本题主要是应用分类讨论思想解决不等式问题,关键是正确地进行分类,而分类一般有以下几个原则:1.要有明确的分类标准;2.对讨论对象分类时要不重复、不遗漏,即分成若干类,其并集为全集,两两的交集为空集;3.当讨论的对象不止一种时,应分层次进行,以避免混乱.根据绝对值的意义判断出f(x)的奇偶性,再利用偶函数的图象关于y轴对称,求出函数在(0,+∞)上的单调区间,并且只要求出当x>0时,函数f(x)=x2﹣2ax(a>0)最小值进而利用f(x)min≤﹣1解答此题.39788 9B6C 魬o. 24776 60C8 惈}29965 750D 甍7BBj33621 8355 荕 25053 61DD 懝26393 6719 朙。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

霞浦一中2016-2017学年第一学期第二次月考
高二文科数学试题
(考试时间:120分钟; 满分:150分)
( 第Ⅰ卷(选择题,共50分)
一、选择题(本大题共12小题,每小题5分,共60分.)
1.在△ABC 中,若(a+c )(a ﹣c )=b (b+c ),则∠A=( )
A .90°
B .60°
C .120°
D .150°
2.已知命题p :(,0)x ∃∈-∞,23x x <;命题q :0sin 1x <<,则下列命题为真命
题的是( )
A .p q ∧
B .()p q ∨⌝
C .()p q ⌝∧
D .()p q ∧⌝
3.已知变量x ,y 满足约束条件01x x y x y ≥⎧⎪≤⎨⎪+≤⎩,则 )
A
.0 C .1 4.设x y R ∈、,则"1x ≥且1"y ≥是22"2"x y +≥的( )
A.既不充分也不必要条件
B.必要不充分条件
C.充要条件
D.充分不必要条件
5.已知x+y=1,则Z=2x +2y
的最小值是( )
A .3 B
..2 D .1 6
) A .1 B
D .2
7.抛物线23y x =的焦点坐标是( )
A .3,04⎛⎫ ⎪⎝⎭
B .30,4⎛⎫ ⎪⎝⎭
C .10,12⎛⎫ ⎪⎝⎭
D .1,012⎛⎫ ⎪⎝⎭ 8.已知12,F
F 右焦点,点在P 该双曲线上,

A.1或17
B.1或19
C.17
D.1
9
) A .3 B
.2
10的左、右焦点分别为12,F F ,点P 在椭圆上,若12,,P F F 是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )
A.
D.4
11的左、右焦点分别为12,F F ,点P 在椭圆上,O 为坐标原点,

B.
12.直线()1y kx k R =+∈与椭圆恒有两个公共点,则m 的取值范围为( ) A .()1,+∞ B .[)1,+∞ C .()()1,55,⋃+∞ D .[)()1,55,⋃+∞
( 第Ⅱ卷(非选择题,共90分)
二、填空题(本大题共4小题,每小题5分,共20分)
13.命题“,x ∀∈R sin 1x ≤”的否定是“ ”.
14.数列{a n } 满足a 1=1,a n+1=2a n +3(n ∈N *
),则a 4= .
15.椭圆22241x y +=的焦点坐标为
16.设F 1、F 2
右焦点,P 为椭圆上任一点,点M 的坐标为(7,3),
的最大值为__________.
三、解答题(本大题共6小题,共70分)
17.(满分10分)如图,在四边形ABCD 中,已知 AD ⊥CD,AD=10, AB=14, ∠BDA=60︒, ∠BCD=135︒。

求BC
的长.
18.(满分12分)已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列.
(1)求数列{}n a 和{}n b 的通项公式;
(2)求数列{}n b 的前n 项和.
19.(满分12分)已知正项数列{}n a 的前n 项和为n S ,且24(1)n n S a =+. (Ⅰ)求数列{}n a 的通项公式; 的前n 项和n T .
20.(满分12分)已知()2,0A ,M 是椭圆(其中1a >)的右焦点,P 是椭圆C 上的动点. (Ⅰ)若M 与A 重合,求椭圆C 的离心率; (Ⅱ)若3a =,求
21.(满分12分)设焦点在y 轴上的双曲线渐近线方程为且离心率为2 (1)求双曲线的标准方程;
(2)过点A
L 交双曲线于M,N 两点,点A 为线段MN 的中点,求直线L 方程。

22.(满分12
C上.
(1)求双曲线C的方程;
(2)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为
l的方程.
参考答案
1-12.CCDDB CCCDD AC
13.x ∃∈R ,sin 1x >
14.29
15.1(,0)2
± 16.15
【解析】
此时点P 为直线2
MF 的交点,故填15 考点:本题考查了椭圆定义
点评:利用椭圆定义转化为求解距离差的最值问题,然后借助对称性转化,根据两点之间线段最短进行求解,其过程简便.
17.解:在△ABD 中,设BD=x
则BDA AD BD AD BD BA ∠⋅⋅-+=cos 2222
即 60cos 1021014222⋅⋅-+=x x
整理得:096102=--x x
解之:161=x 62-=x (舍去)………(5分) 由正弦定理:
BCD
BD CDB BC ∠=∠sin sin ∴2830sin 135sin 16=⋅= BC ………………..(10分) 18.(1) (2)
试题解析:(Ⅰ)设等差数列{a n }的公差为d ,由题意得 d=
= = 3.∴a n =a 1+(n ﹣1)d=3n
设等比数列{b n ﹣a n }的公比为q ,则
q 3=
= =8,∴q=2,
∴b n ﹣a n =(b 1﹣a 1)q n ﹣1=2n ﹣1, ∴b n =3n+2n ﹣1
(Ⅱ)由(Ⅰ)知b n =3n+2n ﹣1, ∵数列{3n}的前n 项和为n (n+1),
数列{2n ﹣1}的前n 项和为1×
= 2n ﹣1,
∴数列{bn}的前n 项和为;
【考点】(1)等差和等比数列的定义。

(2)分组法求数列的和。

19.(I )21n a n =-;(II
试题解析:(I )1n =时,11a = 2n ≥时,2114(1)n n S a --=+,又24(1)n n S a =+,两式相减得
111()(2)0,0,2,{}n n n n n n n n a a a a a a a a ---+--=>∴-= 为是以1为首项,2为公差的等差数列,即
21n a n =-.
(II
——12分
考点:递推公式求通项和裂项法求和.
20.
(Ⅱ)最大值为5,最小值为 试题解析:(Ⅰ)由条件可知2c =,又1b =,所以2415a =+=,即
4分 (Ⅱ)若3a =,则椭圆方程为,设(,)P x y ,

.12分(若未说明x的取值扣1分)
考点:1.椭圆的标准方程及几何性质;2.二次函数的最值.
21.(1
(2)l:4x6y10
--=
解:(1
(2)设直线l:
22.(Ⅰ

【解析】
试题分析:(Ⅰ)
a=b 1分
在双曲线C上解得2
,22
2=
=b
a 4分所以双曲线C 的方程为分
(Ⅱ)由题意直线l的斜率存在,故设直线l的方程为2
+
=kx
y
得0
6
4
)
1(2
2=
-
-
-kx
x
k 8分
设直线l与双曲线C交于)
,
(
1
1
y
x
E、)
,
(
2
2
y
x
F,则
1
x、
2
x是上方程的两不等实根,
012≠-∴k 且0)1(241622>-+=∆k k 即32<k 且12≠k ①
分 所以 222)1(3-=-∴k k 即0224=--k k
0)2)(1(22=-+∴k k
又012>+k 022=-∴k 适合①式 13分
所以,直线l 的方程为分
及原点O 到直线l 的距离. 或求出直线2+=kx y 与x 轴的交点
考点:本题考查了双曲线方程及直线与双曲线的位置关系
点评:涉及弦长问题,应熟练地利用韦达定理设而不求计算弦长,还应注意运用弦长公式的前提条件。

相关文档
最新文档