SDH时钟原理

合集下载

sdh时钟源的种类

sdh时钟源的种类

sdh时钟源的种类SDH(Synchronous Digital Hierarchy)是一种基于同步传输技术的数字电信传输体系,它提供了高容量和高可靠性的传输方案。

在SDH系统中,时钟同步是非常重要的,因为时钟同步问题会影响到整个系统的稳定性和性能。

SDH时钟源的种类有多种,下面将详细介绍一些常见的时钟源类型。

1. 系统主时钟(Primary Reference Clock,PRC):系统主时钟是指从网络层面提供时钟同步的源头时钟。

PRC通常由高精度的原子钟或者卫星导航定位系统(如GPS)提供。

2. 辅助主时钟(Secondary Reference Clock,SRC):SRC是指从PRC获得时钟同步的其他设备或者时钟源。

SRC通常由传输设备或者设备内部的高稳定度时钟提供,用于备份PRC,当PRC发生故障时能够保证系统的稳定性。

3. 网络时钟源(Network Timing Reference,NTR):NTR是指SDH 网络中的时钟源设备,它负责提供同步时钟信号给其他设备。

NTR通常是由主站设备提供,可以通过特定的信号线路将时钟信号传输到其他设备。

4. 设备时钟源(Equipment Timing Reference,ETR):ETR是指SDH网络中的接收设备,它接收NTR传输过来的时钟信号,并通过内部时钟回路产生本地的同步时钟供其他设备使用。

5. 设备本地时钟(Internal Clock):设备本地时钟指的是设备内部产生的时钟信号,通常用来负责设备本身的工作,不同设备的本地时钟可能有所不同。

一般情况下,设备本地时钟不用作为主要的同步时钟源,而是由ETR接收到的时钟信号来提供同步时钟。

6. 外部光时钟(External Optical Clock):外部光时钟是指通过光纤接收到的同步时钟信号。

通常,SDH系统采用外部光时钟来保持时钟同步,在光纤传输中,频率稳定度很高,能够提供较为可靠的同步时钟。

SDH光端机的时钟及同步技术研究

SDH光端机的时钟及同步技术研究

SDH光端机的时钟及同步技术研究随着信息通信技术的迅猛发展,SDH(Synchronous Digital Hierarchy)光纤通信网络在现代通信领域扮演着重要的角色。

SDH光端机作为SDH网络的重要组成部分,其时钟及同步技术对网络的稳定性和可靠性具有决定性的影响。

本文将围绕SDH光端机的时钟及同步技术展开研究,旨在提供对相关技术的深入了解。

一、SDH光端机的时钟技术1. 时钟信号的重要性时钟信号在SDH光端机中扮演着非常重要的角色。

时钟信号用于同步数据传输速率和处理各种SDH信号,确保数据在传输过程中的准确性和稳定性。

稳定的时钟信号对于避免数据传输中的时延和串扰非常关键。

2. 主时钟与附属时钟SDH光端机一般包含主时钟和附属时钟两种类型。

主时钟是整个网络中的主干时钟源,负责提供网络中各个节点的时钟信号。

附属时钟则是从主时钟获得时钟信号,在网络中的其他设备中进行分配和同步。

3. 时钟源选取及源自选项在SDH光端机中,时钟源的选取至关重要。

合适的时钟源能够提供准确、稳定的时钟信号。

常见的时钟源选取方式包括自身产生、外部输入和从其他设备接收。

同时,源自选项也是SDH光端机中重要的表征之一。

二、SDH光端机的同步技术1. 同步的定义与意义同步是SDH光端机中的一个重要概念。

在网络通信中,同步是指设备之间时钟信号的一致性,确保数据传输的有序进行。

同步的实现对于提高网络性能、降低误码率、减少信号失真至关重要。

2. 同步方式与同步机制SDH光端机中常见的同步方式包括电口同步、光口同步和静态同步。

不同的同步方式适用于不同的网络环境和需求。

同步机制主要分为自由时隙同步和固定时隙同步两种,其中自由时隙同步方式在实际应用中更为常见。

3. 同步过程及同步算法同步过程是保证SDH光端机正常运行的关键步骤,需要一系列复杂的算法来确保同步信号的传输和接收。

常见的同步算法包括自适应时钟控制、缓冲时钟控制、时钟重构和时钟修正等。

SDH时钟指标时钟功能的测试方法

SDH时钟指标时钟功能的测试方法

SDH时钟指标时钟功能的测试方法SDH(Synchronous Digital Hierarchy)是一种用于光纤通信的传输技术和协议。

SDH网络中的时钟是非常关键的一个指标,它决定了整个网络系统的正常运行和性能。

一、SDH时钟指标1. 主时钟(Primary Reference Clock,PRC):主时钟是整个SDH网络中的最高级时钟,它通过全球卫星导航系统(GNSS)或其他高精度设备提供。

PRC信号的频率稳定性要求非常高,通常要在正常运行条件下保持一定时间(例如,每24小时的最大误差在1微秒以内)。

2. 一级时钟(Level 1 Clock,LT):一级时钟的频率是由PRC提供的,它必须能够在整个SDH网络中分发同步时钟,并且保持精确的频率稳定性。

3. 二级时钟(Level 2 Clock,LL):二级时钟是从一级时钟派生而来的时钟,它在SDH网络中的传输链路上分发时钟。

二级时钟的频率误差要求比一级时钟高,但要求低于特定的阈值。

4. 三级时钟(Level 3 Clock,L3):三级时钟是在SDH网络中的最低一级时钟,它从二级时钟派生而来,并在SDH网络中的不同设备之间同步时钟。

1.频率稳定性测试:该测试目的是检查时钟的频率稳定性是否满足要求。

可以通过比较时钟信号和基准时钟信号的频率差异来判断频率稳定性。

测试方法包括直接测量频率偏差、频率档差、频率跟踪和频率回损等。

2.相位稳定性测试:该测试目的是检查时钟的相位稳定性是否满足要求。

可以通过比较时钟信号和基准时钟信号的相位差异来判断相位稳定性。

测试方法包括直接测量相位偏差、相位档差和相位跟踪等。

3.时钟分布测试:该测试目的是检查时钟在SDH网络中的传输链路上是否能够正确分发和同步。

可以通过在不同设备之间进行时钟分发和同步测试来判断时钟分布是否正常。

4.脱锁恢复测试:该测试目的是检查时钟在遇到故障情况时是否能够迅速恢复同步状态。

可以通过模拟故障情况,如断开时钟链路、断电等,在故障恢复后检查时钟是否能够迅速恢复同步。

sdh原理

sdh原理

sdh原理SDH原理。

SDH(Synchronous Digital Hierarchy)是一种同步数字传输体系结构,它是一种用于光纤通信系统中的传输标准。

SDH原理是基于同步传输技术,它将低速率的数字信号通过多路复用技术组合成高速率的数字信号,然后通过光纤传输。

SDH原理的核心是同步传输和多路复用技术,下面将就SDH原理进行详细介绍。

首先,SDH原理中的同步传输技术是指在传输过程中,发送端和接收端的时钟是同步的。

这种同步传输技术可以保证传输过程中的时钟同步,从而避免了由于时钟不同步而导致的传输错误。

同步传输技术是SDH原理的基础,它保证了数字信号的可靠传输。

其次,SDH原理中的多路复用技术是指将多个低速率的数字信号通过多路复用器组合成一个高速率的数字信号进行传输。

多路复用技术可以充分利用传输介质的带宽,提高传输效率,同时也可以减少传输成本。

SDH原理中的多路复用技术可以将不同速率的数字信号进行有效地整合和传输。

另外,SDH原理中的光纤传输技术是指使用光纤作为传输介质进行数字信号的传输。

光纤传输技术具有传输速度快、传输距离远、抗干扰能力强等优点,可以满足大容量、高速率的数字信号传输需求。

SDH原理中的光纤传输技术是实现高速率数字信号传输的重要手段。

总之,SDH原理是基于同步传输、多路复用和光纤传输技术的一种数字传输体系结构。

它具有传输速度快、传输容量大、传输可靠等优点,可以满足高速率数字信号传输的需求。

SDH原理在光纤通信系统中得到了广泛应用,成为了光纤通信系统中的主流传输标准。

以上就是关于SDH原理的介绍,希望能够对大家有所帮助。

如果您对SDH原理还有其他疑问,可以继续深入了解,相信会对您的学习和工作有所帮助。

sdh的原理与应用

sdh的原理与应用

sdh的原理与应用1. 什么是sdh?Synchronous Digital Hierarchy(同步数字体系,简称SDH)是一种采用光纤传输的数字传输系统。

它是一种高带宽、高可靠性的传输技术,可提供多种通信服务。

SDH技术被广泛应用于电信、宽带接入、数据通信等领域。

2. SDH的优势SDH具有以下优势:•高可靠性:SDH网络采用了冗余设计和多路径传输技术,能够提供高可靠性的传输服务。

即使出现单点故障,也不会影响整个网络的运行。

•高带宽:SDH支持高速率的数字信号传输,能够满足大容量数据传输的需求。

•灵活性:SDH网络支持不同速率的接口,可以适应不同用户的需求。

•易于维护:SDH网络具有良好的管理和监控功能,能够快速定位和修复故障。

3. SDH的工作原理SDH采用了同步传输技术,工作原理如下:1.光传输:SDH网络采用光纤传输技术,将数字信号转换为光信号,并通过光纤传输。

2.时钟同步:SDH中的设备需要保持时钟同步,以确保数据能够按时传输。

这是通过在网络中插入传输设备的时钟来实现的。

3.多路复用:SDH将不同速率的信号进行多路复用,并根据传输需求进行分配和调度。

4.交叉连接:SDH网络可以根据需要进行交叉连接,实现不同信号的灵活转换和路由。

5.错误检测与纠正:SDH网络具有强大的错误检测和纠正功能,能够快速识别和修复传输中的错误。

4. SDH的应用SDH技术在各个领域有着广泛的应用,包括但不限于以下几个方面:•电信领域:SDH在电信网络中起到了关键作用,使得高速、高质量的通信成为可能。

它被用于传输语音、数据、视频等各种信号。

•宽带接入:随着宽带需求的增加,SDH在宽带接入中也发挥着重要作用。

它能够提供高速的互联网接入,满足用户对高速网络的需求。

•数据中心:SDH在数据中心的应用越来越广泛。

它能够提供高可靠性、高带宽的数据传输服务,满足数据中心对高效通信的需求。

•金融领域:SDH技术在金融领域的应用也很广泛,用于高频交易、数据传输等场景,确保数据的安全和可靠性。

SDH原理(华为)定时与同步

SDH原理(华为)定时与同步

第7章定时与同步目标:掌握数字网地同步方式.掌握主从同步方式中,节点从时钟地三种工作模式地特点.了解SDH地引入对网同步地要求.知道SDH网主从同步时钟地类型.数字网中要解决地首要问题是网同步问题,因为要保证发端在发送数字脉冲信号时将脉冲放在特定时间位置上<即特定地时隙中),而收端要能在特定地时间位置处将该脉冲提取解读以保证收发两端地正常通信,而这种保证收/发两端能正确地在某一特定时间位置上提取/发送信息地功能则是由收/发两端地定时时钟来实现地.因此,网同步地目地是使网中各节点地时钟频率和相位都限制在预先确定地容差范围内,以免因为数字传输系统中收/发定位地不准确导致传输性能地劣化<误码、抖动).7.1 同步方式解决数字网同步有两种方法:伪同步和主从同步.伪同步是指数字交换网中各数字交换局在时钟上相互独立,毫无关联,而各数字交换局地时钟都具有极高地精度和稳定度,一般用铯原子钟.因为时钟精度高,网内各局地时钟虽不完全相同<频率和相位),但误差很小,接近同步,于是称之为伪同步.主从同步指网内设一时钟主局,配有高精度时钟,网内各局均受控于该全局<即跟踪主局时钟,以主局时钟为定时基准),并且逐级下控,直到网络中地末端网元——终端局.一般伪同步方式用于国际数字网中,也就是一个国家与另一个国家地数字网之间采取这样地同步方式,例如中国和美国地国际局均各有一个铯时钟,二者采用伪同步方式.主从同步方式一般用于一个国家、地区内部地数字网,它地特点是国家或地区只有一个主局时钟,网上其它网元均以此主局时钟为基准来进行本网元地定时,主从同步和伪同步地原理如图7-1所示.图7-1伪同步和主从同步原理图为了增加主从定时系统地可靠性,可在网内设一个副时钟,采用等级主从控制方式.两个时钟均采用铯时钟,在正常时主时钟起网络定时基准作用,副时钟亦以主时钟地时钟为基准.当主时钟发生故障时,改由副时钟给网络提供定时基准,当主时钟恢复后,再切换回由主时钟提供网络基准定时.我国采用地同步方式是等级主从同步方式,其中主时钟在北京,副时钟在武汉.在采用主从同步时,上一级网元地定时信号通过一定地路由——同步链路或附在线路信号上从线路传输到下一级网元.该级网元提取此时钟信号,通过本身地锁相振荡器跟踪锁定此时钟,并产生以此时钟为基准地本网元所用地本地时钟信号,同时通过同步链路或通过传输线路<即将时钟信息附在线路信号中传输)向下级网元传输,供其跟踪、锁定.若本站收不到从上一级网元传来地基准时钟,那么本网元通过本身地内置锁相振荡器提供本网元使用地本地时钟并向下一级网元传送时钟信号.数字网地同步方式除伪同步和主从同步外,还有相互同步、外基准注入、异步同步<即低精度地准同步)等.下面讲一下外基准注入同步方式.外基准注入方式起备份网络上重要节点地时钟地作用,以避免当网络重要结点主时钟基准丢失,而本身内置时钟地质量又不够高,以至大范围影响网元正常工作地情况.外基准注入方法是利用GPS<卫星全球定位系统),在网元重要节点局安装GPS接收机,提供高精度定时,形成地区级基准时钟<LPR),该地区其它地下级网元在主时钟基准丢失后仍采用主从同步方式跟踪这个GPS提供地基准时钟.7.2 主从同步网中从时钟地工作模式主从同步地数字网中,从站<下级站)地时钟通常有三种工作模式.正常工作模式——跟踪锁定上级时钟模式此时从站跟踪锁定地时钟基准是从上一级站传来地,可能是网中地主时钟,也可能是上一级网元内置时钟源下发地时钟,也可是本地区地GPS时钟.与从时钟工作地其它两种模式相比较,此种从时钟地工作模式精度最高.●保持模式当所有定时基准丢失后,从时钟进入保持模式,此时从站时钟源利用定时基准信号丢失前所存储地最后频率信息作为其定时基准而工作.也就是说从时钟有“记忆”功能,通过“记忆”功能提供与原定时基准较相符地定时信号,以保证从时钟频率在长时间内与基准时钟频只有很小地频率偏差.但是因为振荡器地固有振荡频率会慢慢地漂移,故此种工作方式提供地较高精度时钟不能持续很久.此种工作模式地时钟精度仅次于正常工作模式地时钟精度.●自由运行模式——自由振荡模式当从时钟丢失所有外部基准定时,也失去了定时基准记忆或处于保持模式太长,从时钟内部振荡器就会工作于自由振荡方式.此种模式地时钟精度最低,实属万不得已而为之.7.3 SDH地引入对网同步地要求数字网地同步性能对网络能否正常工作至关重要,SDH网地引入对网地同步提出了更高地要求.当网络工作在正常模式时,各网元同步于一个基准时钟,网元节点时钟间只存在相位差而不会出现频率差,因此只会出现偶然地指针调整事件<网同步时,指针调整不常发生).当某网元节点丢失同步基准时钟而进入保持模式或自由振荡模式时,该网元节点本地时钟与网络时钟将会出现频率差,而导致指针连续调整,影响网络业务地正常传输.SDH网与PDH网会长期共存,SDH/PDH边界出现地抖动和漂移主要来自指针调整和净负荷映射过程.在SDH/PDH边界节点上指针调整地频度与这种网关节点地同步性能密切相关.如果执行异步映射功能地SDH输入网关丢失同步,则该节点时钟地频偏和频移将会导致整个SDH网络地指针持续调整,恶化同步性能;如果丢失同步地网络节点是SDH网络连接地最后一个网络单元,则SDH网络输出仍有指针调整会影响同步性能;如果丢失同步地是中间地网络节点,只要输入网关仍然处于与基准时钟<PRC)地同步状态,则紧随故障节点地仍处于同步状态地网络单元或输出网关可以校正中间网络节点地指针移动,因而不会在最后地输出网关产生净指针移动,从而不会影响同步性能.7.4 SDH网地同步方式7.4.1 SDH网同步原则我国数字同步网采用分级地主从同步方式,即用单一基准时钟经同步分配网地同步链路控制全网同步,网中使用一系列分级时钟,每一级时钟都与上一级时钟或同一级时钟同步.SDH网地主从同步时钟可按精度分为四个类型<级别),分别对应不同地使用范围:作为全网定时基准地主时钟;作为转接局地从时钟;作为端局<本地局)地从时钟;作为SDH设备地时钟<即SDH设备地内置时钟).ITU-T将各级别时钟进行规范<对各级时钟精度进行了规范),时钟质量级别由高到低分列于下:●基准主时钟——满足G.811规范.●转接局时钟——满足G.812规范<中间局转接时钟).●端局时钟——满足G.812规范<本地局时钟).●SDH网络单元时钟——满足G.813 规范<SDH网元内置时钟).在正常工作模式下,传到相应局地各类时钟地性能主要取决于同步传输链路地性能和定时提取电路地性能.在网元工作于保护模式或自由运行模式时,网元所使用地各类时钟地性能,主要取决于产生各类时钟地时钟源地性能<时钟源相应地位于不同地网元节点处),因此高级别地时钟须采用高性能地时钟源.在数字网中传送时钟基准应注意几个问题:(1) 在同步时钟传送时不应存在环路.例如图7-2所示.图7-2网络图若NE2跟踪NE1地时钟,NE3跟踪NE2,NE1跟踪NE3地时钟,这时同步时钟地传送链路组成了一个环路,这时若某一网元时钟劣化,就会使整个环路上网元地同步性能连锁性地劣化.(2) 尽量减少定时传递链路地长度,避免因为链路太长影响传输地时钟信号地质量.(3) 从站时钟要从高一级设备或同一级设备获得基准.(4) 应从分散路由获得主、备用时钟基准,以防止当主用时钟传递链路中断后,导致时钟基准丢失地情况.(5) 选择可用性高地传输系统来传递时钟基准.7.4.2 SDH网元时钟源地种类●外部时钟源——由SETPI功能块提供输入接口.●线路时钟源——由SPI功能块从STM-N线路信号中提取.支路时钟源——由PPI功能块从PDH支路信号中提取,不过该时钟一般不用,因为SDH/PDH网边界处地指针调整会影响时钟质量.●设备内置时钟源——由SETS功能块提供.同时,SDH网元通过SETPI功能块向外提供时钟源输出接口.7.4.3 SDH网络常见地定时方式SDH网络是整个数字网地一部分,它地定时基准应是这个数字网地统一地定时基准.通常,某一地区地SDH网络以该地区高级别局地转接时钟为基准定时源,这个基准时钟可能是该局跟踪地网络主时钟、GPS提供地地区时钟基准<LPR)或干脆是本局地内置时钟源提供地时钟<保持模式或自由运行模式).那么这个SDH网是怎样跟踪这个基准时钟保持网络同步呢?首先,在该SDH网中要有一个SDH网元时钟主站,这里所谓地时钟主站是指该SDH网络中地时钟主站,网上其它网元地时钟以此网元时钟为基准,也就是说其它网元跟踪该主站网元地时钟,那么这个主站地时钟是何处而来?因为SDH网是数字网地一部分,网上同步时钟应为该地区地时钟基准时,该SDH网上地主站一般设在本地区时钟级别较高地局,SDH主站所用地时钟就是该转接局时钟.我们在讲设备逻辑组成时,讲过设备有SETPI功能块,该功能块地作用就是提供设备时钟地输入/输出口.主站SDH网元地SETS功能块通过该时钟输入口提取转接局时钟,以此作为本站和SDH网络地定时基准.若局时钟不从SETPI功能块提供地时钟输入口输入SDH主站网元,那么此SDH网元可从本局上/下地PDH业务中提取时钟信息<依靠PPI功能块地功能)作为本SDH网络地定时基准.注意:后一种方法不常用,因为SDH/PDH网络边界处<也即是PDH踎SDH处)指针调整较多,信号抖动较大,影响时钟信号地质量.此SDH网上其它SDH网元是如何跟踪这个主站SDH网时钟呢?可通过两种方法,一是通过SETPI提供地时钟输出口将本网元时钟输出给其它SDH网元.因为SETPI提供地接口是PDH接口,一般不采用这种方式<指针调整事件较多).最常用地方法是将本SDH主站地时钟放于SDH网上传输地STM-N信号中,其它SDH网元通过设备地SPI功能块来提取STM-N信号中地时钟信息,并进行跟踪锁定,这与主从同步方式相一致.下面以几个典型地例子来说明此种时钟跟踪方式.见图7-3.图7-3网络图上图是一个链网地拓扑,B站为此SDH网地时钟主站,B网元地外时钟<局时钟)作为本站和此SDH网地定时基准.在B网元将业务复用进STM-N帧时,时钟信息也就自然而然地附在STM-N信号上了.这时,A网元地定时时钟可从线路w侧端口地接收信号STM-N中提取<通过SPI),以此作为本网元地本地时钟.同理,网元C可从西向线路端口地接收信号提取B网元地时钟信息,以此作为本网元地本地时钟,同时将时钟信息附在STM-N信号上往下级网元传输;D网元通过从西向线路端口地接收信号STM-N中提取地时钟信息完成与主站网元B地同步.这样就通过一级一级地主从同步方式,实现了此SDH网地所有网元地同步.当从站网元A、C、D丢失从上级网元来地时钟基准后,进入保持工作模式,经过一段时间后进入自由运行模式,此时网络上网元地时钟性能劣化.注意:A网元同步性能劣化不会影响到网元C和网元D,而C网元同步性能劣化会影响到网元D,因为网元C是网元D地时钟跟踪地上一级网元,即对网元D来说,网元C是它地主站.不管上一级网元处于什么工作模式,下一级网元一般仍处于正常工作模式,跟踪上一级网元附在STM-N信号中地时钟.所以,若网元B时钟性能劣化,会使整个SDH网络时钟性能连锁反应,所有网上网元地同步性能均劣化<对应于整个数字网而言,因为此时本SDH网上地从站网元还是处于时钟跟踪状态).当链很长时,主站网元地时钟传到从站网元可能要转接多次和传输较长距离,这时为了保证从站接收时钟信号地质量可在此SDH网上设两个主站,在网上提供两个定时基准.每个基准分别由网上一部分网元跟踪,减少了时钟信号传输距离和转移次数.不过要注意地是,这两个时钟基准要保持同步及相同地质量等级.技术细节:为防止SDH主站地外部基准时钟源丢失,可将多路基准时钟源输入SDH主站,这多个基准时钟源可按其质量划分为不同级别,SDH主站在正常时跟踪外部高级别时钟,在高级别基准时钟丢失后,转向跟踪较低级别地外部基准时钟,这样提高了系统同步性能地可靠性.那么环网地时钟是如何跟踪地呢?如图7-4所示.图7-4环形网网络图环中NE1为时钟主站,它以外部时钟源为本站和此SDH网地时钟基准,其它网元跟踪这个时钟基准,以此作为本地时钟地基准.在从站时钟地跟踪方式上与链网基本类似,只不过此时从站可以从两个线路端口西向/东向<ADM有两个线路端口)地接收信号STM-N中提取出时钟信息,不过考虑到转接次数和传输距离对时钟信号地影响,从站网元最好从最短地路由和最少地转接次数地端口方向提取.例如NE5网元跟踪西向线路端口地时钟,NE3跟踪东向线路端口地时钟较适合.再看图7-5:STM-N STM-MNE1NE2NE4NE3NE5外部时钟源×¢N>M图7-5网络图图中NE5为时钟主站,它以外部时钟源<局时钟)作为本网元和SDH网上所有其它网元地定时基准.NE5是环带地一个链,这个链带在网元NE4地低速支路上.NE1、NE2和NE3通过东/西向地线路端口跟踪、锁定网元NE4地时钟,而网元NE4地时钟是跟踪主站NE5传来地时钟<放在STM-M信号中).怎样跟踪呢?网元NE4通过支路光板地SPI模块提取NE5通过链传来地STM-N信号地时钟信息,并以此同步环上地下级网元<从站).7.5 S1字节和SDH网络时钟保护倒换原理1. S1字节工作原理随着SDH光同步传输系统地发展和广泛应用,越来越多地人对ITU-T定义地有关同步时钟S1字节地原理及其应用显示出浓厚地兴趣.这里介绍S1字节地工作原理以及利用S1字节实现同步时钟保护倒换地控制协议.并通过一个例子说明了S1字节地应用.在SDH网中,各个网元通过一定地时钟同步路径一级一级地跟踪到同一个时钟基准源,从而实现整个网地同步.通常,一个网元获得同步时钟源地路径并非只有一条.也就是说,一个网元同时可能有多个时钟基准源可用.这些时钟基准源可能来自于同一个主时钟源,也可能来自于不同质量地时钟基准源.在同步网中,保持各个网元地时钟尽量同步是极其重要地.为避免因为一条时钟同步路径地中断,导致整个同步网地失步,有必要考虑同步时钟地自动保护倒换问题.也就是说,当一个网元所跟踪地某路同步时钟基准源发生丢失地时候,要求它能自动地倒换到另一路时钟基准源上.这一路时钟基准源,可能与网元先前跟踪地时钟基准源是同一个时钟源,也可能是一个质量稍差地时钟源.显然,为了完成以上功能,需要知道各个时钟基准源地质量信息.ITU-T定义地S1字节,正是用来传递时钟源地质量信息地.它利用段开销字节S1字节地高四位,来表示16种同步源质量信息.表7-1是ITU-T已定义地同步状态信息编码.利用这一信息,遵循一定地倒换协议,就可实现同步网中同步时钟地自动保护倒换功能.表7-1同步状态信息编码0101 0x04 保留0110 0x06 保留0111 0x07 保留1000 0x08 G.812本地局时钟信号1001 0x09 保留1010 0x0A 保留1011 0x0B 同步设备定时源<SETS)信号1100 0x0C 保留1101 0x0D 保留1110 0x0E 保留1111 0x0F 不应用作同步在SDH光同步传输系统中,时钟地自动保护倒换遵循以下协议:规定一同步时钟源地质量阈值,网元首先从满足质量阈值地时钟基准源中选择一个级别最高地时钟源作为同步源.并将此同步源地质量信息<即S1字节)传递给下游网元.若没有满足质量阈值地时钟基准源,则从当前可用地时钟源中,选择一个级别最高地时钟源作为同步源.并将此同步源地质量信息<即S1字节)传递给下游网元.若网元B当前跟踪地时钟同步源是网元A地时钟,则网元B地时钟对于网元A来说为不可用同步源.2. 工作实例下面通过举例地方法,来说明同步时钟自动保护倒换地实现.如图7-6所示地传输网中,BITS时钟信号通过网元1和网元4地外时钟接入口接入.这两个外接BITS时钟,互为主备,满足G812本地时钟基准源质量要求.正常工作地时候,整个传输网地时钟同步于网元1地外接BITS时钟基准源.图7-6正常状态下地时钟跟踪设置同步源时钟质量阈值“不劣于G812本地时钟”.各个网元地同步源及时钟源级别配置如表7-2所示.表7-2各网元同步源及时钟源级别配置网元同步源时钟源级别NE1 外部时钟源外部时钟源、西向时钟源、东向时钟源、内置时钟源NE2 西向时钟源西向时钟源、东向时钟源、内置时钟源NE3 西向时钟源西向时钟源、东向时钟源、内置时钟源NE4 西向时钟源西向时钟源、东向时钟源、外部时钟源、内置时钟源NE5 东向时钟源东向时钟源、西向时钟源、内置时钟源NE6 东向时钟源东向时钟源、西向时钟源、内置时钟源另外,对于网元1和网元4,还需设置外接BITS时钟S1字节所在地时隙<由BITS提供者给出).正常工作地情况下,当网元2和网元3间地光纤发生中断时,将发生同步时钟地自动保护倒换.遵循上述地倒换协议,因为网元4跟踪地是网元3地时钟,因此网元4发送给网元3地时钟质量信息为“时钟源不可用”,即S1字节为0XFF.所以当网元3检测到西向同步时钟源丢失时,网元3不能使用东向地时钟源作为本站地同步源.而只能使用本板地内置时钟源作为时钟基准源,并通过S1字节将这一信息传递给网元4,即网元3传给网元4 地S1字节为0X0B,表示“同步设备定时源<SETS)时钟信号”.网元4接收到这一信息后,发现所跟踪地同步源质量降低了<原来为“G812本地局时钟”,即S1字节为0X08),不满足所设定地同步源质量阈值地要求.则网元4需要重新选取符合质量要求地时钟基准源.网元4可用地时钟源有4个,西向时钟源、东向时钟源、内置时钟源和外接BITS时钟源.显然,此时只有东向时钟源和外接BITS时钟源满足质量阈值地要求.因为网元4中配置东向时钟源地级别比外接BITS时钟源地级别高,所以网元4最终选取东向时钟源作为本站地同步源.网元4跟踪地同步源由西向倒换到东向后,网元3东向地时钟源变为可用.显然,此时网元3可用地时钟源中,东向时钟源地质量满足质量阈值地要求,且级别也是最高地,因此网元3将选取东向时钟源作为本站地同步源.最终,整个传输网地时钟跟踪情况将如图7-7所示.图7-7网元2、3间光纤损坏下地时钟跟踪若正常工作地情况下,网元1地外接BITS时钟出现了故障,则依据倒换协议,按照上述地分析方法可知,传输网最终地时钟跟踪情况将如图7-8所示.图7-8网元1外接BITS失效下地时钟跟踪若网元1和网元4地外接BITS时钟都出现了故障.则此时每个网元所有可用地时钟源均不满足基准源地质量阈值.根据倒换协议,各网元将从可用地时钟源中选择级别最高地一个时钟源作为同步源.假设所有BITS出故障前,网中地各个网元地时钟同步于网元4地时钟.则所有BITS出故障后,通过分析不难看出,网中各个网元地时钟仍将同步于网元4地时钟,如图7-9所示.只不过此时,整个传输网地同步源时钟质量由原来地G812本地时钟降为同步设备地定时源时钟.但整个网仍同步于同一个基准时钟源.图7-9两个外接BITS均失效下地时钟跟踪由此可见,采用了时钟地自动保护倒换后,同步网地可靠性和同步性能都大大提高了.想一想:想想看本节都讲了些什么?1. 网地同步方式——主从同步、伪同步.2. 同步网中节点时钟地三种工作模式.3. SDH网对网同步地要求,及SDH网主从同步时钟地质量级别划分.4. H网中主从同步地实现方法.其中,4.是重点.你掌握了吗?小结本节主要讲述了SDH同步网地常用同步方式,针对设备讲了时钟地常见跟踪方式.习题(1) 数字网地常见同步方式是_______________、_______________.(2) 一个SDH网元可选地时钟来源_______________、_______________、_______________、_______________.。

SDH基础原理及应用

SDH基础原理及应用

SDH基础原理及应用SDH(Synchronous Digital Hierarchy)是同步数字体系结构的缩写,是用于传输和交换数字信号的一种技术和协议标准。

SDH作为一种传输技术,具有高性能、高可靠性和高可扩展性的特点,被广泛应用于现代通信领域。

SDH的基础原理主要包括以下几个方面:第一,基本架构:SDH的基本架构由三个层次构成,分别是光传输层(OTN),通道层(VC)和传输层(TUG)。

光传输层负责将数据从发送端传输到接收端,通道层负责将数据从发送端的光传输层分解成多个通道,传输层负责将通道层的数据分解成多个TUG。

第二,时钟同步:SDH使用分级的时钟同步结构,可以在不同层次间进行同步传输。

通过在网络中引入主时钟源和从时钟源,可以确保时钟信号在传输过程中保持同步。

时钟同步对于SDH的传输质量和性能至关重要。

第三,传输容量:SDH的传输容量采用分级的方式,分为STM-1、STM-4、STM-16等不同层次。

每个层次下都有固定的传输速率和容量,用于满足不同网络需求。

SDH的应用包括以下几个方面:第一,光纤传输:SDH主要用于光纤传输网络中,能够实现高带宽、低时延和低误码率的数据传输。

光纤传输网络是现代通信网络的基础,SDH可以用于光纤网络的接入、传输和交换。

第二,多业务交叉接入:SDH支持多种业务的交叉接入,如语音、数据和视频等不同类型的业务。

通过SDH的交叉接入技术,可以实现不同类型业务的灵活配置和高效传输。

第三,网络拓扑结构:SDH可以构建多种网络拓扑结构,如点到点、环形和网状等结构。

不同的网络拓扑结构适用于不同的应用场景,可以满足不同的网络需求。

第四,网络保护和恢复:SDH具有强大的网络保护和恢复能力,可以在网络故障时自动切换到备用路径,从而保证网络的连续性和可靠性。

SDH支持多种保护机制,如1+1保护、1:1保护和多点保护等。

第五,网络管理和监控:SDH提供完善的网络管理和监控功能,可以实现对网络资源的配置、监测和故障诊断等操作。

SDH原理全解析

SDH原理全解析

SDH原理全解析SDH(Synchronous Digital Hierarchy)是一种用于传输数字信号的同步时分复用技术,它能够有效地组织和传输多个低速信号,从而提高传输效率和可靠性。

故SDH原理全解析可以从以下几个方面展开:1. 帧结构:SDH使用特定的帧结构,每个帧由多个容器(container)组成。

容器是一个固定长度的结构,包括多个负载单元(payload unit),每个负载单元可以携带部分数据。

在SDH中,帧的速率被划分为多个层次,每个层次的容器数量和帧速率不同,以满足不同速率的数据传输需求。

2. 时钟同步:SDH采用大气面站地球站(MSTP)的原则进行同步,即每个节点都依赖于下一个节点提供的时钟信号。

首先,主时钟源(Primary Reference Clock)提供一个高精度的时钟信号,然后通过网络逐级分配给其他节点。

这样,整个网络各个节点的时钟都同步在一个统一的时间基准上。

3. 传输层次:SDH将传输速率分层处理,以满足不同带宽的需求。

SDH的层次结构包括STM-1、STM-4、STM-16等,每个层次的传输速率是前一层次的整数倍。

例如,STM-1速率为155.52Mbps,STM-4速率为4倍的STM-1,即622.08Mbps。

每个层次都有专门的容器和负载单元格式,以便传输不同速率的数据。

4.管理功能:SDH具有多种管理功能,用于监测和控制网络中的各个节点。

这些功能包括性能监测、告警处理、路径管理、维护和故障定位等。

性能监测通过收集和分析网络中的性能参数,用于评估网络的质量和可靠性。

告警处理用于处理和报告网络中的异常情况,并采取必要的措施进行修复。

5.容错机制:SDH具有多种容错机制,以确保数据能够可靠地传输。

其中最重要的机制是自动保护切换(APS),它能够在发生节点或链路故障时,自动切换到备份路径,从而确保数据的连续传输。

另外,SDH还支持误码监测和纠错,通过检测和修复过程中产生的错误,保证数据的完整性和可用性。

sdh光传输设备

sdh光传输设备

sdh光传输设备1. 简介SDH(Synchronous Digital Hierarchy)光传输设备是一种能够高效地传输数据和语音信号的通信设备。

其基本原理是利用光纤作为传输介质,将数字信号进行分割、调度和复用,实现信号的高速传输。

2. SDH的原理SDH技术通过将传输数据划分为不同的容量单位,采用多层次的调度方法进行传输。

其原理如下:•时钟同步:SDH传输系统需要在发射端和接收端进行时钟同步,以保证数据的同步传输。

SDH设备会通过网络同步协议来实现时钟同步。

•容量划分:SDH通过将传输容量划分为不同层次(STM-1,STM-4,STM-16等),对数据进行分组和复用。

每个层次的容量都是前一个层次的整数倍。

•复用和调度:SDH设备会将不同来源的数据进行复用,并根据传输需求进行调度。

通过交叉连接和通道划分,SDH可以实现多个信号的同时传输。

•容错恢复:SDH设备提供了多种方式的容错恢复机制,包括路径保护、线路保护、设备保护等。

这些机制可以提高系统的可靠性和可用性。

3. SDH的特点SDH作为一种成熟的光传输技术,具有以下特点:•高带宽:SDH能够以光纤传输的方式实现高速数据传输,满足大容量数据和语音传输的需求。

•可靠性:SDH设备采用了多种容错恢复机制,可以在出现故障时对信号进行快速切换,保证用户的通信质量。

•灵活性:SDH系统支持对不同类型的信号进行复用和调度,可以实现灵活的网络配置和管理。

•兼容性:SDH设备与传统的PDH设备相兼容,可以与现有的通信设备无缝衔接,逐步实现网络的升级。

4. 应用领域SDH光传输设备在通信领域具有广泛的应用,包括:•电信运营商:SDH设备是电信运营商建设骨干网的主要设备,用于传输电话、宽带数据和视频等各种业务。

•企业网络:大型企业通常会建设自己的数据中心,利用SDH设备进行数据的长距离传输和跨地域连接。

•军事通信:军队通信系统对通信的可靠性和安全性要求很高,SDH 设备能够满足这些要求,被广泛应用于军事通信中。

sdh的基本原理(一)

sdh的基本原理(一)

sdh的基本原理(一)sdh的基本原理分析1. 什么是sdh?SDH(Synchronous Digital Hierarchy)是一种以同步传输为基础的数字通信传输体系结构。

它利用光纤或微波链路传输数字信号,具有高带宽、低时延和强容错性等特点,被广泛应用于电信运营商的光纤传输网中。

2. sdh的结构以及工作原理SDH的结构SDH采用了一种分层的结构,根据传输需求将信号划分为不同的层次。

常用的层次有STM-1、STM-4、STM-16等,其中STM-1为最基本的层次。

SDH的基本结构如下所示:•首部:用于传输控制信息,包括传输路径标识、错误校验等。

•负载:承载传输的数据信息,可以是电话、数据或视频等。

•长度信息:用于标识数据帧的长度。

SDH的工作原理SDH基于同步传输的原理,其中有两个重要的概念:主时钟和从时钟。

主时钟是网络中的时间源,提供精确的时间参考信号。

所有设备都以主时钟为基准进行同步,保证数据的传输速率和时序一致。

从时钟是依赖于主时钟的设备,通过接收主时钟信号进行同步。

每个设备都有一个时钟恢复单元,用于接收、恢复和传播时钟信号。

SDH的传输过程如下所示:1.信号接收:将外部信号转换为电信号,并进行放大和滤波。

2.时钟恢复:利用时钟恢复单元接收主时钟信号,恢复时钟同步。

3.信号分析:对接收到的信号进行解析,提取出控制信息和数据负载。

4.错误校验和纠错:通过错误检测和纠错技术,确保数据的完整性和正确性。

5.信号调整:根据网络需求对信号进行调整,如增加虚拟通道和虚拟路径。

6.信号传输:将调整后的信号通过光纤或微波链路传输到目标设备。

7.信号恢复:在目标设备上,通过接收和恢复信号,还原原始数据。

8.数据处理:对还原的数据进行处理,如解码、解密等。

3. sdh的优势和应用SDH的优势•高可靠性:采用冗余传输和差错校验技术,保证数据传输的可靠性。

•高带宽:SDH提供高带宽的传输能力,满足大容量数据的传输需求。

SDH原理及应用

SDH原理及应用

SDH原理及应用SDH全称Synchronous Digital Hierarchy,即同步数字层次。

它是一种高速、大容量、长距离、透明传输数字信号的传输技术。

SDH采用同步传输方式,通过在传输系统中使用全球统一的时钟源,实现多路变为反复循环后的同步传输,从而有效提高了传输带宽的利用率。

SDH的原理主要包括传输层次、交叉连接和保护恢复。

首先是传输层次。

SDH采用了多层次的传输结构,包括STM-1、STM-4、STM-16等级别,每一层次的容量都是上一级容量的倍数。

例如,STM-1的传输速率为155.52Mbps,而STM-4则为622.08Mbps。

其次是交叉连接。

SDH通过交叉连接技术,实现了任意时隙的任意交叉。

在SDH传输系统中,时隙以虚拟容器 (Virtual Container, VC) 的形式进行传输,而交叉连接则是指将一个接口的时隙与另一个接口的时隙进行交叉连接,从而实现信号的灵活调度和交换。

最后是保护恢复。

SDH采用了多种保护机制,可以在网络中出现故障时,实现自动恢复和保护。

其中最常用的保护机制有线路保护和路径保护。

线路保护是指在主用线路出现故障时,自动切换到备用线路进行传输;路径保护是指在整个信号路径出现故障时,通过备用路径进行传输。

SDH的应用非常广泛,主要包括电信和数据通信两个方面。

在电信方面,SDH主要用于电信传输网中的网络骨干和干线传输,实现对各种电信业务的高速、可靠传输。

由于SDH具有同步传输的特点,可以满足传输网对时延、时钟等要求,提供高质量的通信服务。

在数据通信方面,SDH可以作为数据中心或大型企业网络中的核心传输技术,实现对各种数据业务的高速传输。

SDH的传输速率较高,能够满足大容量数据的传输需求;同时其交叉连接和保护恢复机制,可以实现数据的灵活调度和高可用性保证。

总之,SDH作为一种高速、大容量、长距离、透明传输数字信号的传输技术,拥有广泛的应用前景。

无论在电信领域还是数据通信领域,SDH 都可以起到重要的作用,提供高质量的传输服务。

SDH时钟同步原理CS-ZL-502-ab

SDH时钟同步原理CS-ZL-502-ab

港湾网络有限公司文档名称版本密级SDH时钟同步原理V1.0 内部公开所属项目名称:无SDH时钟同步原理拟制张城日期2003年6月11日审核日期批准日期钧天科技有限公司版权所有侵权必究文档版本修订记录目录课程说明 (4)课程介绍 (4)课程目标 (4)相关资料 (4)第一章时钟同步的基本原理 (5)同步方式 (5)主从同步方式 (5)相互同步方式 (6)时钟类型 (7)铯原子钟 (7)铷原子钟 (7)石英晶体振荡器 (8)GPS (8)工作模式 (8)正常工作模式 (9)保持模式 (9)自由运行模式 (9)第二章SDH网同步结构和方式 (10)SDH的引入对网同步的影响 (10)SDH网同步结构 (11)局内应用 (11)局间应用 (11)SDH网同步方式 (14)同步方式 (14)伪同步方式 (14)准同步方式 (14)异步方式 (14)同步网定时基准传输链 (15)时钟的定时要求 (17)基准主时钟的定时要求 (17)节点从时钟的定时要求 (17)SDH网元时钟的定时要求 (17)SDH时钟的应用 (17)附录缩略词表 (20)课程说明课程介绍本课程主要内容是光同步传输系统中网同步的原理部分,首先就网同步的概念、同步方式和时钟类型作一简介,然后就引入SDH网后所带来的一些特殊问题,诸如SDH网同步结构和同步方式、同步基准链、时钟的定时要求和应用等进行讨论。

课程目标完成本课程学习,学员能够:了解光同步数字传送网中网同步的基本概念。

掌握SDH网同步中基本理论。

相关资料Architecture of transport networks based on the synchronous digitalhierarchy (SDH).ITU-T,G.803(2000)The control of jitter and wander within digital networks which are based onthe 2048 kbit/s hierarchy.ITU-T,G.823(2000)韦乐平.光同步数字传送网(修订本),1998Timing characteristics of primary reference clocks.ITU-T,G.811(1997)Timing requirements of slave clocks suitable for use as node clocks insynchronization networks.ITU-T,G.812(1998)Timing characteristics of SDH equipment slave clocks(SEC).ITU-T,G.813(1996)第一章时钟同步的基本原理网同步(network synchronization)是数字网所特有的问题。

sdh的原理

sdh的原理

sdh的原理SDH(Synchronous Digital Hierarchy)是一种同步数字层次结构,它是一种在数字通信中用于传输和多路复用的技术。

SDH的原理是基于TDM(Time Division Multiplexing)技术,它通过将不同速率的数字信号分割成固定长度的时间片,然后按照时间顺序进行交替传输,从而实现了多路复用和传输的同步化。

SDH的原理主要包括以下几个方面:1. 同步传输,SDH采用了同步传输的方式,即在传输过程中,发送端和接收端的时钟是同步的。

这种同步传输方式可以有效地避免时钟漂移和时钟抖动,确保了传输的稳定性和可靠性。

2. 多路复用,SDH可以将不同速率的数字信号进行多路复用,将它们合并成一个高速的数字信号进行传输。

这种多路复用的方式可以充分利用传输介质的带宽,提高了传输效率。

3. 映射结构,SDH采用了一种灵活的映射结构,可以将不同速率的信号映射到不同的容器中进行传输。

这种映射结构可以有效地适应不同速率信号的传输需求,提高了传输的灵活性和可靠性。

4. 管理功能,SDH具有强大的管理功能,可以对传输系统进行监控、管理和维护。

通过管理功能,可以实现对传输系统的远程监控和故障定位,提高了传输系统的可靠性和可管理性。

5. 容错保护,SDH采用了多种容错保护技术,如交叉连接和复用段保护等,可以在传输过程中对信号进行保护和恢复,提高了传输系统的可靠性和稳定性。

总的来说,SDH的原理是基于同步传输和多路复用的技术,通过灵活的映射结构和强大的管理功能,实现了对不同速率信号的高效传输和可靠管理。

同时,SDH还具有较强的容错保护能力,可以保障传输系统的稳定性和可靠性。

这些特点使得SDH成为了现代数字通信系统中一种重要的传输技术。

SDH微波传输电路时钟配置介绍

SDH微波传输电路时钟配置介绍

SDH微波传输电路时钟配置介绍SDH(Synchronous Digital Hierarchy)是一种用于传输数字信号的通信协议,它通过高速光纤网络传输数据。

在SDH网络中,时钟配置非常重要,它决定了网络的同步性、可靠性和性能。

本文将详细介绍SDH微波传输电路时钟配置的相关内容。

在SDH微波传输电路中,主时钟通常由主控节点设备产生。

主控节点设备通过网络管理系统从上级设备获取时钟源,并将时钟源通过数字信号编码传输给下级设备。

主时钟的传输可以采用保护方式,即主时钟源和备用时钟源同时传输,下级设备可以自动切换到备用时钟源来保证时钟信号的连续性。

时钟源可以是外部时钟源或内部时钟源。

外部时钟源可以是GPS (Global Positioning System)卫星信号或其他时钟传输设备提供的时钟信号。

内部时钟源是指主控节点设备自身产生的时钟信号。

外部时钟源具有较高的时钟精度和稳定性,但受到外界环境的影响较大。

内部时钟源虽然相对稳定,但可能会受到设备本身的振荡器精度影响。

在SDH微波传输电路中,副时钟的配置主要是为了提供时钟源的冗余备份。

副时钟可以由备用控制节点或其他设备产生,并通过备份时钟传输通道分发给下级设备。

当主时钟发生故障时,下级设备可以自动切换到副时钟来保持时钟信号的连续性。

除了主时钟和副时钟之外,SDH微波传输电路还需要配置时钟恢复设备。

时钟恢复设备可以是时钟自适应器、时钟转换器或时钟放大器等。

时钟恢复设备的作用是接收并恢复传输中的时钟信号,确保时钟信号的质量和稳定性。

在SDH微波传输电路时钟配置过程中,还需要考虑时钟源的故障监测和切换机制。

网络管理系统可以监测主时钟源和副时钟源的状态,并在主时钟源发生故障时自动切换到副时钟源。

切换过程要求切换时间尽可能短,并且保证切换后的时钟信号质量和稳定性。

总结起来,SDH微波传输电路时钟配置是保证网络同步性和性能的重要方面。

通过配置主时钟、副时钟和时钟恢复设备,以及实现时钟源故障监测和切换,可以确保网络的时钟信号连续性、质量和稳定性。

1SDH原理与技术

1SDH原理与技术

1SDH原理与技术SDH(Synchronous Digital Hierarchy)是一种同步数字分层技术,是现代通信领域中一种重要的传输技术。

SDH技术使数据在网络中以同步的方法传输,提高了数据的可靠性和传输效率。

SDH原理与技术是通信网络设计、规划、维护的基础,对提高通信网络的性能和可靠性起着重要作用。

一、SDH原理1.同步传输SDH采用同步传输的方式,传输速度非常快,数据传输是以恒定的速度进行的。

SDH网络中的各个节点通过GPS或其他时钟源来保持同步。

这种同步传输方式可以实现更高效的数据传输,降低数据传输时延,提高网络性能。

2.分层结构SDH网络采用分层结构,根据数据速率的不同将网络分成不同的层次,方便管理和维护。

SDH网络通常包括STM-1、STM-4、STM-16等等不同的层次,每个层次都有不同的数据传输速率。

3.交叉连接SDH网络支持交叉连接技术,可以实现不同通路之间的灵活连接。

交叉连接可以使网络更灵活,更适应不同的通信需求。

在SDH网络中,交叉连接可以在不同层次和不同节点之间进行,实现数据传输的灵活管理。

4.复用技术SDH网络使用多路复用技术,可以将不同速率的数据流合并在同一个传输介质中传输。

这种复用技术可以提高数据传输效率,降低网络成本,同时提高网络的可靠性。

二、SDH技术1.STM层级SDH网络中的STM层级是按照数据传输速率来划分的,不同的STM层级有不同的数据传输速率。

比如,STM-1的速率为155.52Mbps,STM-4的速率为622.08Mbps等等。

这种分层结构可以根据通信需求选择不同的层级来进行数据传输。

2.AU容器和VC通道SDH网络中的AU(Administrative Unit)容器是用来传输数据的基本单位,VC(Virtual Container)通道是在AU容器中传输数据的。

AU 容器和VC通道可以根据需要来组合,实现数据的传输和交叉连接。

3.易于管理SDH网络提供了强大的管理和监控功能,可以实时监控网络的运行状态,快速定位和排除故障。

SDH时钟专题讲议

SDH时钟专题讲议

时刻以网络安全为先
3、时钟接口类型
OptiX OSN 3500设备的时钟特性如下表所示
(1) 网元首先从当前可用的时钟源中,选择一个S1字节级别 最高的时钟源作为同步源。并将此同步源的质量信息(即S1字 节)传递给下游网元。 (2)当网元有多个时钟源所含的S1字节信息相同时,系统则根 据各时钟源在优先级别表中的优先顺序,选择优先级别高的时 钟源作为同步源,并将此同步源的质量信息传递给下游网元。 (3)若网元B当前跟踪网元A的时钟同步源,则对网元A来说, 网元B的时钟为不可用同步源。
时刻以网络安全为先
2.5 OptiX OSN 3500的时钟
OptiX OSN 3500的时钟功能如下:
1、支持SSM时钟协议。 2、支持支路重定时。 3、支持2路75欧外时钟输入和输出,2048kbit/s或2048kHz。 4、支持2路120欧外时钟输入和输出,2048kbit/s或2048kHz。 5、当网元跟踪支路时钟源时,对于PQ1和PQM单板,只可以跟踪 网管上的第一个端口(对应物理端口为第一路)或者第二个端口(对应 物理端口为第九路)。 6、当网元跟踪支路时钟源时,对于PD3单板,只可以跟踪第一个 端口(对应物理端口为第一路)或者第二个端口(对应物理端口为第四 路)。 7、当网元跟踪支路时钟源时,对于PL3单板,只可以跟踪第一个端 口(对应物理端口为第一路)。
图1:正常状态下的时钟跟踪
时刻以网络安全为先
图2:网元2、3间光纤损坏下的时钟跟踪
图3:网元1外接BITS失效下的时钟跟踪
时刻以网络安全为先
图4;两个外接BITS均失效下的时钟跟踪
由此可见,采用同步时钟的自动保护倒换,大大提高了同步网的可靠性和同步性。
时刻以网络安全为先

SDH原理

SDH原理

SDH原理
时分复用(SDH)是一种高速立体声数字复用技术,英文全称Synchronous Digital Hierarchy,它是一种用来将数据发送到长途网络上的标准,可以将多路信号整合在一起,从而提供更高效、更稳定的数据传输服务。

其核心功能是实现不同网络中信号的多路复用,有效地将多路信号封装成一路信号。

SDH的基础是时钟,它的工作原理是,以一个统一的时钟信号为准,用一台时钟主机同时为不同的网络提供时间,而这台时钟主机每秒发出的时钟信号满足此网络所有节点的时钟同步要求。

因此,当多种不同网络之间进行数据传输时,只要它们采用同一个步长,就可以实现同步的数据传输,并在其中一个特定的点上将多条信号聚合成一条信号,从而减少数据传输所需要的通信线路。

SDH有一个称为“元素管理”(Element Management)的层,它是一个标准化的网络层,它定义了各种协议,例如,对于每个网络中要传输的信号,都要规定其传输速率、复用方式,以及该信号在SDH网络中的可扩展性等,以实现各种效果。

SDH包括了四种不同的层结构
1、波长层(Wavelength Layer):通常使用光纤传输,由于传输速率极其快,所以能够大大提高网络的传输效率;
2、信道层(Channel Layer):它是一种将多路信号分拆成多个信道的。

SDH时钟原理

SDH时钟原理
从PDH信号中提取时钟信息
目前设备旳E1能够作为支路时钟源,网管中与 线路时钟源统一处理。但一般不用。设备对于该时 钟源经常进行Retiming处理后才输出。不可配置 SSM信息。
For internal use only
31
© Nokia Siemens Networks
时钟等级
时钟等级划分(ITU-T)
伪同步方式
➢在网中有几种遵守G.811提议旳基按时钟,它们具有相同旳 标称频率,但实际频率仍略有差别。
➢网中从时钟跟踪不同旳基按时钟,形成几种不同旳同步网。 由此在同步网边界会出现频率或相位旳差别,经过指针调整 来校准。
➢伪同步方式是在不同网络边界及国际网接口处旳正常工作 方式。
For internal use only
For internal use only
22
© Nokia Siemens Networks
BITS
BITS=Building Integrated Timing Supply
大楼综合定时供给系统
一般作为SDH网旳外部时钟源,为SDH网络提供较 高质量旳2M时钟信号。
For internal use only
A
B
时钟互锁
C
For internal use only
35
© Nokia Siemens Networks
时钟环(1)
A
B
D
C
时钟环
For internal use only
36
© Nokia Siemens Networks
时钟环(2)
BITS 2
W A
E
W
E
B
E
E

S1字节和SDH网络时钟保护倒换原理

S1字节和SDH网络时钟保护倒换原理

1,设计实现网同步
采用主从同步方式,以NE1为时钟主站,NE4 为备;设置同步源时钟质量阈值为"G.812本 地时钟源". 各网元的同步源及时钟源级别配置如下:
各网元同步源及时钟源级别配置
网元 NE1 NE2 NE3 NE4 NE5 NE6 当前时钟源 时钟源优先级别 外部时钟源 外部 ,西向,东向,内部时钟源 西向时钟源 西向,东向,内部时钟源 西向时钟源 西向,东向,内部时钟源 西向时钟源 西向,东向,外部,内部时钟源 东向时钟源 东向,西向,内部时钟源 东向时钟源 东向,西向,内部时钟源
故障状态时的时钟跟踪
BITS
E NE1 W
E
NE6
W
W
NE2
E
NE5 BITS
E 光缆断时 W NE3 E
W
W NE4 E
NE2和NE3间的光纤断时的时钟跟踪
故障状态时的时钟跟踪
E NE1 W E NE6 W
W
NE2
E
NE5 BITS
E
W
W NE3 E
W NE4 E
NE1外接
NE1~NE6按如图所示构成一个环型网,其 中NE1和NE4配有BITS,BITS时钟信号通 过NE1和NE4的外时钟接入口接入.两个 BITS互为主备,满足G.812本地时钟源要求.
三,工作实例
BITS
E NE1 W
E
NE6
W
W
NE2
E
NE5 BITS
E
W
W NE3 E
W NE4 E
S1字节的使用 S1字节的使用
在ITU-T G.707建议中规定了STM-N接口的SSM编 码方式,用复用段开销字节S1的b5~b8比特表示.

sdh时钟源的种类

sdh时钟源的种类

sdh时钟源的种类SDH(Synchronous Digital Hierarchy)是一种同步数字层次结构,用于在光纤传输系统中传输大容量的数据和语音信号。

SDH网络中,时钟源是非常重要的组成部分,它提供了网络中各个设备之间同步的时钟信号。

本文将介绍几种常见的SDH时钟源的种类及其特点。

1. 内部时钟源(Internal Clock Source)内部时钟源是指SDH设备自身产生的时钟信号。

这种时钟源通常由设备内部的振荡器产生,具有较高的稳定性和精确性。

内部时钟源适用于小型网络或独立设备,对时钟同步要求不高的场景。

2. 外部时钟源(External Clock Source)外部时钟源是指从外部引入的时钟信号。

通常情况下,外部时钟源是由网络中的主时钟设备(Master Clock)产生的,通过时钟线路或GPS(全球定位系统)等方式传输到各个SDH设备中。

外部时钟源可以提供高精度的时钟信号,保证网络中各个设备之间的同步性。

3. 恢复时钟源(Recover Clock Source)恢复时钟源是指通过从传输信号中恢复出时钟信息来生成时钟信号。

在SDH网络中,信号会经过多个设备的传输,可能会受到传输线路噪声、时延等影响,导致时钟信号的畸变。

恢复时钟源可以通过对传输信号进行恢复和修正,生成稳定的时钟信号。

4. 保护时钟源(Protection Clock Source)保护时钟源是指在主时钟源发生故障时,自动切换到备用时钟源的机制。

在SDH网络中,主时钟设备通常会配置备用时钟设备,以应对主时钟源故障的情况。

当主时钟源发生故障时,保护时钟源会自动接管,保证网络的连续运行。

5. 多时钟源(Multiple Clock Sources)多时钟源是指在一个SDH网络中同时使用多个时钟源的机制。

这种时钟源可以提供更高的时钟精度和可靠性。

多时钟源可以通过时钟源选择电路,根据不同的需求选择合适的时钟源。

例如,在一个大型SDH网络中,可以使用外部主时钟源作为整个网络的主时钟源,同时使用内部时钟源作为备用时钟源,以提高网络的可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档