选择性还原氧化石墨烯
还原氧化石墨烯的电阻率
还原氧化石墨烯的电阻率
要还原氧化石墨烯的电阻率,可以采取以下步骤:
1. 氧化石墨烯的制备:首先,将石墨烯置于氧化剂溶液中,常用的氧化剂包括硫酸、硝酸等。
在适当的条件下,氧化剂会氧化石墨烯上的碳原子,形成氧化石墨烯。
2. 还原氧化石墨烯:将氧化石墨烯置于还原剂溶液中,例如氨水、氢气等。
在适当的条件下,还原剂会将氧化石墨烯上的氧原子去除,从而还原石墨烯的结构。
3. 清洗:为了去除残留的氧化剂和还原剂,需要将还原后的石墨烯用适当的溶液进行清洗。
常用的清洗溶液包括纯水和有机溶剂。
4. 制备薄膜或纳米片:将还原后的石墨烯制备成薄膜或纳米片。
可以通过溶液沉积、机械剥离等方法制备。
5. 测量电阻率:采用适当的电学测试方法,如四探针测量、设备测试等,测量得到还原后的石墨烯的电阻率。
需要注意的是,还原后的石墨烯的电阻率与制备过程中的实验条件、还原剂的选择、清洗的彻底性等因素有关。
因此,确保实验的准确性和可重复性是很重要的。
同时,还原后的石墨烯的电阻率也可以通过杂质掺杂、添加其他物质等方法进行调控和改变。
用氧化还原法制造石墨烯的方法
用氧化还原法制造石墨烯的方法
氧化还原法(即化学还原法)是一种常见的制备石墨烯的方法之一。
这个方法的基本思路是将氧化的石墨氧化物(如氧化石墨烯或氧化石墨烯烯)还原为石墨烯。
以下是一种基本的制备石墨烯的氧化还原法:
1.材料准备:首先,准备好氧化石墨烯。
通常,氧化石墨烯可以通过氧化石墨或氧化石墨烯烯的方法制备得到。
2.还原剂的选择:选择一种适当的还原剂,常用的还原剂包括氢气(H2)、氨气(NH3)、还原石墨烯氧化物的有机物(如乙醇、乙二醇)等。
3.还原反应:将氧化石墨烯与还原剂置于反应容器中,进行还原反应。
反应通常在适当的温度下进行,并可能需要一定的时间。
4.分离和纯化:完成还原反应后,需要对产物进行分离和纯化。
这包括对产物进行洗涤、离心、过滤等操作,以去除未反应的材料和副产物。
5.表征:对得到的石墨烯进行表征和分析,包括使用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、拉曼光谱等技术来确定石墨烯的形态、结构和质量。
需要注意的是,氧化还原法制备石墨烯的具体操作条件和步骤可能会根据不同的研究目的和条件而有所不同。
此外,还有其他一些制备石墨烯的方法,如化学气相沉积法、化学剥离法等,每种方法都有其优缺点和适用范围。
《还原氧化石墨烯及其复合材料的制备与气敏性能研究》
《还原氧化石墨烯及其复合材料的制备与气敏性能研究》篇一一、引言近年来,氧化石墨烯及其复合材料因其独特的物理和化学性质,在众多领域中得到了广泛的应用。
其中,还原氧化石墨烯(rGO)以其优异的导电性、大比表面积和高化学稳定性等特点,被广泛研究并应用于能源、电子、传感器等高科技领域。
本文将主要研究还原氧化石墨烯及其复合材料的制备方法,以及其在气敏性能方面的应用。
二、还原氧化石墨烯及其复合材料的制备1. 氧化石墨烯的制备氧化石墨烯的制备通常采用化学氧化法,以天然石墨为原料,通过强酸、强氧化剂等处理,使石墨片层上的碳原子形成羧基、羟基、环氧等含氧基团,从而得到氧化石墨。
随后,通过热剥离或化学剥离法得到氧化石墨烯。
2. 还原氧化石墨烯的制备还原氧化石墨烯的制备方法主要包括热还原法、化学还原法和电化学还原法等。
其中,化学还原法因其操作简便、成本低廉等优点被广泛应用。
通过选择合适的还原剂(如氢气、水合肼等),将氧化石墨烯中的含氧基团去除,从而得到还原氧化石墨烯。
3. 复合材料的制备为了进一步提高材料的性能,可以将还原氧化石墨烯与其他材料进行复合。
例如,与聚合物、金属氧化物等材料进行复合,形成具有特定功能的复合材料。
这些复合材料具有优异的物理和化学性质,在气敏性能方面表现出良好的应用前景。
三、气敏性能研究1. 还原氧化石墨烯的气敏性能由于还原氧化石墨烯具有优异的导电性和大比表面积,使其在气敏传感器方面具有潜在的应用价值。
当气体分子与还原氧化石墨烯接触时,会引起其电阻的变化,从而实现对气体的检测和识别。
此外,还原氧化石墨烯的表面化学性质使其对不同气体具有不同的响应特性,为气敏传感器的设计提供了丰富的可能性。
2. 复合材料的气敏性能通过与其他材料进行复合,可以进一步提高还原氧化石墨烯的气敏性能。
例如,将金属氧化物与还原氧化石墨烯进行复合,利用金属氧化物的高催化活性和高比表面积,提高复合材料对气体的吸附能力和响应速度。
氧化还原法制备石墨烯工艺详解
氧化还原法制备石墨烯工艺详解相信很多研究生进入实验室的第一课就是氧化石墨烯制备,制备氧化石墨烯真是一个巨大的工程,其中涉及了各种复杂参数的调控,可谓经历了九九八十一难,方能制备出理想的氧化石墨烯。
今天小编就来为你深入解读如何采用氧化还原法制备出氧化石墨烯,各种参数如何调控?如何还原得到石墨烯?工业级氧化还原石墨烯制备与实验室制备又有什么区别?氧化还原法制备石墨烯氧化-还原法是指将天然石墨与强酸和强氧化性物质反应生成氧化石墨(GO),经过超声分散制备成氧化石墨烯(单层氧化石墨),加入还原剂去除氧化石墨表面的含氧基团,如羧基、环氧基和羟基,得到石墨烯。
氧化还原法制备石墨烯优缺点氧化-还原法被提出后,以其简单易行的工艺成为实验室制备石墨烯的最简便的方法,得到广大石墨烯研究者的青睐。
氧化-还原法可以制备稳定的石墨烯悬浮液,解决了石墨烯难以分散在溶剂中的问题。
氧化-还原法的缺点是宏量制备容易带来废液污染和制备的石墨烯存在一定的缺陷,例如,五元环、七元环等拓扑缺陷或存在-OH基团的结构缺陷,这些将导致石墨烯部分电学性能的损失,使石墨烯的应用受到限制。
氧化还原制备石墨烯分为三步,氧化、剥离、还原,如图1,图2.5日Rcdjcllasi图1氧化还原制备石墨烯流程CbLeiiiic^llyeouvenedgiraiilieLie图2氧化还原制备石墨烯流程1氧化氧化石墨的方法主要有三种:第一种是Hummers法,第二种是Brodietz法,第三种是Staudenmaier法,他们首先均是用无机强质子酸例如浓H2s04、发烟HN03或者它们的混合物处理原始的石墨粉原料,使得强酸小分子进入到石墨层间,而后用强氧化剂(如高镒酸钾、KC104等)氧化。
三种方法相比,Staudemaier法得到的氧化石墨的层结构受到严重破坏,原因是采用浓H2S04和发烟HN03混合酸处理了石墨,Hummers法具有很高的安全性,且可得到带有褶皱的氧化石墨的片层结构,并含有丰富的含氧官能团,在水溶液中分散性很好,对于此方法,许多研究人员也做了很大的改善。
rgo还原氧化石墨烯
rgo还原氧化石墨烯
RGO(Reduced Graphene Oxide)是指还原氧化石墨烯,是一种石墨烯
的衍生物。
它是一种表面带有羟基和羧基的石墨烯氧化物,通过还原
处理可以还原成图像化的、纯净的石墨烯,从而具备了优异的电学、
光学、力学和物理化学特性,应用广泛,比如传感器、导电墨水、晶
体管等。
下面我们来了解一下如何还原氧化石墨烯:
1. 化学还原法
化学还原法是将氧化石墨烯和还原剂混合后在一定温度下还原,得到
纯净的石墨烯。
该方法具有操作简单、成本低、产率高等优点,但还
原剂有污染环境的风险。
2. 氢气还原法
氢气还原法是在高温下,将氧化石墨烯暴露在氢气环境中,经还原反
应制得RGO。
相对于化学还原法,氢气还原法较为绿色环保,但需要
高温高压设备。
3. 辐射还原法
辐射还原法是将氧化石墨烯暴露在高剂量的电子束或γ射线下,使其
发生辐射损伤,从而去除氧和氢原子,得到RGO。
需要高能辐射设备,
较为成本昂贵。
4. 氧等离子体处理法
氧等离子体处理法是将氧化石墨烯置于高能量的氧等离子体环境中,使其表面羟基和羧基失去,生成大量自由基,从而实现RGO的制备。
该方法产率高,处理时间短,但需要专业设备支持。
以上是RGO的四种制备方法,不同的制备方法对于产物的性质和应用也有所差异,需要根据具体情况选择。
氧化石墨烯在电化学催化中的应用
氧化石墨烯在电化学催化中的应用氧化石墨烯是一种非常热门的二维材料,它具有独特的结构和特性,广泛应用于各种领域,包括电化学催化。
本文将深入探讨氧化石墨烯在电化学催化中的应用,并介绍其优势和挑战。
电化学催化是一种将电能转化为化学反应能的过程,它广泛应用于电池、燃料电池、电解等领域。
氧化石墨烯是一种具有高导电性、高比表面积和化学稳定性的材料,能够作为电化学催化剂用于提高反应速率和选择性。
1. 氧化石墨烯的制备方法在电化学催化中应用氧化石墨烯,首先就要考虑如何制备高质量的氧化石墨烯。
目前常用的制备方法包括化学还原法、热还原法和氧化法等。
化学还原法是将氧化石墨烯还原成石墨烯的方法之一。
这种方法利用还原剂如氢气、乙二醇和氨水等与氧化石墨烯反应,从而还原氧化石墨烯。
热还原法是将氧化石墨烯加热,使其还原成石墨烯。
这种方法需要高温和惰性气氛,在制备过程中有一定的难度。
氧化法是通过强氧化剂氧化石墨烯制备氧化石墨烯的方法。
这种方法具有高产率和控制精度,但普遍存在氧化程度难以控制的问题。
2. 氧化石墨烯在电化学催化中的应用氧化石墨烯在电化学催化中有广泛的应用,例如作为电极材料、电解液、还原剂和氧化剂等。
在这些应用中,氧化石墨烯的高导电性和高比表面积是其重要的优势。
氧化石墨烯作为电极材料,可以用于提高电极反应的速率和选择性。
例如,在燃料电池中,氧化石墨烯可以作为阳极材料,提高燃料气体的氧化反应速率和效率。
在电池中,氧化石墨烯可以作为负极材料,提高电池的输出功率和循环寿命。
氧化石墨烯作为电解液,可以用于改善电解反应的速率和效率。
例如,在电化学加工中,氧化石墨烯可以作为电解液,促进金属的溶解和析出反应。
在电解制备中,氧化石墨烯可以作为电解质,提高电解反应的效率和产率。
氧化石墨烯还可以作为还原剂和氧化剂,用于电化学合成和分解反应。
例如,在电化学还原中,氧化石墨烯可以作为还原剂,将有机分子还原成相应的化合物。
在电化学分解中,氧化石墨烯可以作为氧化剂,将有机分子氧化成相应的化合物。
《还原氧化石墨烯及其复合材料的制备与气敏性能研究》范文
《还原氧化石墨烯及其复合材料的制备与气敏性能研究》篇一一、引言随着纳米科技的飞速发展,二维材料因其独特的物理和化学性质在众多领域中展现出巨大的应用潜力。
其中,氧化石墨烯(GO)和其还原产物——还原氧化石墨烯(rGO)因其高导电性、大比表面积和良好的生物相容性等特性,在传感器、能源存储、复合材料等领域得到了广泛的研究。
本文将重点探讨还原氧化石墨烯及其复合材料的制备方法,以及其在气敏性能方面的研究。
二、还原氧化石墨烯的制备2.1 原料与设备制备还原氧化石墨烯的主要原料为天然石墨、强酸等。
所需设备包括高温炉、超声波处理器、离心机等。
2.2 制备过程制备过程主要包括氧化石墨的制备和还原两步。
首先,通过改进的Hummers法将天然石墨氧化成氧化石墨。
然后,利用还原剂(如氢气、水合肼等)在高温下对氧化石墨进行还原,得到还原氧化石墨烯。
三、复合材料的制备3.1 复合材料的选择与制备为了进一步提高还原氧化石墨烯的性能,常将其与其他材料复合,如聚合物、金属氧化物等。
以聚合物为例,通过溶液混合、原位聚合等方法将聚合物与rGO复合,得到具有良好气敏性能的复合材料。
四、气敏性能研究4.1 测试方法通过气敏传感器测试技术,对所制备的还原氧化石墨烯及其复合材料的气敏性能进行测试。
测试气体包括但不限于氨气、甲烷、甲醛等。
4.2 结果与分析经过测试发现,还原氧化石墨烯及其复合材料具有良好的气敏性能。
其中,复合材料因具有更多的活性位点和良好的导电性,表现出更优异的气敏性能。
此外,不同材料之间的协同效应也能提高气敏性能。
同时,我们也发现还原程度、材料形貌等因素对气敏性能具有重要影响。
五、结论本文研究了还原氧化石墨烯及其复合材料的制备方法,并对其气敏性能进行了深入研究。
结果表明,所制备的材料具有良好的气敏性能,为进一步开发高性能气敏传感器提供了新的思路。
然而,仍需进一步研究材料的制备工艺、性能优化等方面的问题,以提高材料的实用性和稳定性。
石墨烯的制备(一):氧化-还原法
高温-较低温’’反应过程。实验现象:1 原始石墨与浓硫酸混合呈现墨黑色、2 加入高锰酸钾 后变成墨绿色、3 加热反应后变成深褐色、4 样品溶入水中呈深棕色、5 经过双氧水处理后 呈橙黄色,6 样品经过离心洗涤、超声剥离、干燥研磨处理后得到样品 F1-3:GO-120。
2.3.F2-1:GO-72 的制备实验
国轩高科动力能源股份公司 材料分院
8
石墨烯的制备(一) :氧化-还原法
2015.10
4.1.2.GO 的 FT-IR 表征
图 13 不同 GO 的 FT-IR 图谱
从图 13 可以看出, 5 个样品在 3426cm-1 处都出现一个较宽的吸收峰, 其中 F1-2-2:GO-48、 F1-2-2:GO-120 和 F2-1:GO-72 的峰较强,这主要是由于-OH 的伸缩振动引起的;5 个样品在 1617cm−1 处的吸收峰可能是 C-OH 的弯曲振动吸收峰; F1-2-2:GO-120 在 1725cm−1 处出现的 较强的吸收峰为羧基上的 C=O 伸缩振动峰;5 个样品在 1076cm−1、1389cm−1 的峰为 C-O-C、 C-O 的振动吸收峰,但峰形很弱,表明 C-O-C 基团很少;另外,1617cm-1 和 1389cm-1 处振 动吸收峰的共同出现,对应的是水分子的变形振动吸收峰,说明样品中有水分子的存在,这 也说明样品中的水分子很难去除;综上所述,可得知所制备的氧化石墨烯主要含有 OH 、 -COOH、C-O-C、-C=O 四种官能团。
国轩高科动力能源股份公司 材料分院
10
石墨烯的制备(一) :氧化-还原法
2015.10
4.1.3.3.F1-3:GO-120
图 16 F1-3:GO-120 的 AFM 图谱
石墨烯的氧化还原法制备及结构表征
石墨烯的氧化还原法制备及结构表征
石墨烯是一种二维碳材料,具有优异的性能,如超强弹性、优良的热导率和电学性能等。
目前,主要的制备技术有氧化还原法。
氧化还原法是用氧化剂把石墨彻底分解成碳氧微粒,再用还原剂将碳氧微粒重组成石墨烯的技术。
其具体实现过程主要包括选择介质、制备原料碳原料悬浮液,合成悬浮液氧化/ 竞争性反应,滤液洗涤,单分子层稳定化吸附,水热处理法, 热处理,电解沉积等步骤。
氧化还原制备石墨烯的好处是可以制备灵活多变的微纳结构,如各种卷曲石墨烯,交织石墨烯和空心石墨烯等,尺寸可以调节范围从几纳米到几十纳米;另外,由于控制了还原反应,可以调节它的结构,例如碳冒号数量,棱镜样角等纳米特征,从而改变其物理性能;此外,氧化还原法可以在各种介质,如水、溶剂混合物、电解质、有机溶剂中实现绿色环保的合成。
可见,氧化还原法是一种有效的制备石墨烯的方法,它具有灵活的形状、微纳的结构、易于控制的参数和绿色环保的特点,使石墨烯在电子、力学和绝热方面具有广阔的应用前景。
还原氧化石墨烯
CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2017年第36卷第5期·1838·化 工 进展还原氧化石墨烯/纤维素复合薄膜的制备及性能王咚,黄颖为(西安理工大学印刷包装与数字媒体学院,陕西 西安 710048)摘要:利用还原氧化石墨烯(RGO )改善离子液体溶剂纤维素(CE )的综合性能,将氧化石墨烯(GO )分散在去离子水中,通过热还原法得到RGO ,RGO 与离子液体(IL )混合后采用减压蒸馏法去除水分,得到均匀分散的RGO/IL 溶液,以RGO/IL 溶液为纤维素溶剂,利用RGO 改善CE 薄膜的各项性能,用扫描电子显微镜和XRD 表征了材料的形貌和结构。
结果表明,RGO 质量分数为1%时,RGO/CE 复合薄膜的拉伸强度和模量分别为122MPa 和6.77GPa ,较纯CE 薄膜分别提高了188%和320%。
RGO/CE 复合薄膜的电导率为4.7×10–6S/m ,较纯CE 薄膜(2.5×10–14S/m )提高了9个数量级,由于RGO 与CE 分子链间新的氢键的形成以及RGO 优异的二维结构,RGO 可以显著提高复合薄膜的热稳定性、力学性能和导电能力。
关键词:纤维素;还原氧化石墨烯;离子液体;复合薄膜中图分类号:TQ327.9 文献标志码:A 文章编号:1000–6613(2017)05–1838–05 DOI :10.16085/j.issn.1000-6613.2017.05.035Preparation and properties of reduced graphene oxide/cellulose filmsWANG Dong ,HUANG Yingwei(School of Printing ,Packaging Engineering and Digital Media Technology ,Xi’an University of Technology ,Xi’an710048,Shaanxi ,China )Abstract :This study aims to use reduced graphene oxide (RGO )to improve the properties of cellulose(CE )in ionic liquid (IL )solvent. To achieve that ,graphene oxide (GO )was dispersed in deionized water to prepare RGO using thermal reduction method ,then the obtained RGO was mixed with IL. After removing the moisture by vacuum distillation ,we obtained uniform dispersed reduced graphene oxide (RGO )/IL solution. RGO/IL was used as CE solvent and RGO was added to improve the property of CE film ,the morphology of the materials were revealed using scanning electron microscope (SEM ),and the structures were characterized with XRD. The results show that under the RGO loading of 1%,the tensile strength and modulus of RGO 10/CE composite film was 122MPa and 6.77GPa respectively ,which were 188% and 320% higher than that of CE film. The electrical conductivity of RGO/CE film was improved by 9 orders of magnitude ,from 2.5×10-14S/m to 4.7×10-6S/m. It was due to the formation of new hydrogen bond between RGO and CE and the excellent two dimensional structures of RGO that made RGO significantly improve the thermal stability ,mechanical properties and conductive capacity of the composite film. Key words :cellulose ;reduced graphene oxide ;ionic liquid ;composite film纤维素(CE )是一种天然的、可再生的高分子材料,生长和存在于大量的绿色植物中,作为一种取之不尽、用之不竭的天然聚合物,具有良好的生物降解以及可再生性[1-2]。
水合肼还原氧化石墨烯
水合肼还原氧化石墨烯
水合肼是一种高效还原剂,可以用于还原氧化石墨烯。
氧化石墨烯是一种重要的碳基材料,具有优异的电学、光学和力学性质,因此在电子、能源、催化等领域具有广阔的应用前景。
水合肼还原氧化石墨烯的过程中,水合肼可以将氧化石墨烯表面的氧原子还原成羟基,从而使其导电性得到提高。
同时,水合肼还可以实现氧化石墨烯表面的清洁和修复,提高其质量和稳定性。
因此,水合肼还原氧化石墨烯的方法对于提高氧化石墨烯的质量和应用性能具有重要的意义。
水合肼是一种无色结晶体,其化学式为N2H4·H2O。
它是一种强还原剂,可以将许多金属、半导体和无机化合物还原成相应的金属或氧化物。
在还原氧化石墨烯的过程中,水合肼直接作用于氧化石墨烯表面的氧原子,通过电子转移将氧原子还原成羟基。
羟基的引入可以使氧化石墨烯表面的电子密度得到增加,从而提高其导电性。
此外,水合肼还可以起到去除氧化石墨烯表面污染物和修复其质量的作用。
氧化石墨烯在实际应用过程中往往会受到氧化、水分解、杂质污染等因素的影响,从而使其质量和稳定性降低。
水合肼可以将氧化石墨烯表面的杂质物质还原成相应的金属或氧化物,同时还可以填充氧化石墨烯表面的缺陷,从而实现氧化石墨烯表面的清洁和修复。
总之,水合肼可以作为一种高效的还原剂用于还原氧化石墨烯。
通过水合肼的还原作用,氧化石墨烯表面的氧原子得到还原,羟基得到引入,从而提高了氧化石墨烯的导电性。
同时,水合肼还可以实现氧化石墨烯表面的清洁和修复,提高其质量和稳定性。
因此,水合肼还原氧化石墨烯的方法在氧化石墨烯的制备和应用方面具有广阔的应用前景。
氧化石墨烯和还原氧化石墨烯
氧化石墨烯和还原氧化石墨烯
氧化石墨烯和还原氧化石墨烯分别是一种由碳原子组成的材料。
氧化石墨烯是一种在石墨中加入氧原子后形成的氧化物,具有氧官能团,通常呈现灰色或棕色。
还原氧化石墨烯则是对氧化石墨烯进行还
原处理得到的材料,其结构中含有更多的碳-碳键,呈现黑色。
两种材料在性质上有所不同。
相比于还原氧化石墨烯,氧化石墨
烯具有更高的化学稳定性、更好的溶解性和更佳的加工性能。
然而它
的电学导性和热学导性相对较差。
还原氧化石墨烯则相反,它具有优
异的电学和热学性能,但是相对氧化石墨烯来说,稳定性会稍逊一些。
这两种材料在不同领域中都有广泛应用。
比如在电池领域中,氧
化石墨烯常常被用作阳极材料,而还原氧化石墨烯则被用作电解质。
在纳米技术领域,氧化石墨烯和还原氧化石墨烯分别可应用于生物分
子分析、纳米电子器件、纳米机器人等方面。
浙江农林大学LiangChen课题组--选择性还原氧化石墨烯膜中的环氧基以实现超高透水性
浙江农林大学LiangChen课题组--选择性还原氧化石墨烯膜中的环氧基以实现超高透水性当除去环氧基而在GO薄片中保留羟基时,预计氧化石墨烯(GO)膜的渗透性会显着改善。
但是,对于常规的还原方法,仍然难以实现对含氧基团的这种选择性还原。
在本文中,我们展示了使用改性电子束辐照(EBI)精确选择性地还原低环氧含量但高羟基含量的GO薄片。
值得注意的是,用还原的GO薄片(EBI-rGO)制备的膜具有92.7至267.1 L m-2 h-1 bar-1的超高水渗透率,同时仍保持了两种染料(甲基蓝、对硝基苯胺和若丹明B)和多价金属离子(Fe3+、Pb2+、Cu2+)的有效排斥率。
理论计算表明,通过使用氢自由基(H+)还原环氧而获得新生成的羟基在控制选择性还原中起着重要作用。
我们的研究提供了一种制备具有出色水净化性能的GO膜的有效方法。
Figure 1. (a)沿标记的白线截取的具有相应高度轮廓的横截面的AFM图像,以及(b)EBI-rGO3/4的侧面面积分布Figure 2. GO和rGO膜的扫描电子显微镜(SEM)图像。
GO膜的(a)表面和(b)横截面, EBI-rGO3/4的(c)表面和(d)横截面,(e)C-rGO膜的表面,以及(f)T-rGO膜的表面膜用于抵制副苯胺溶液Figure 3. 从(a)染料(MB、PR、RB)和(b)多价金属离子(Fe3+、Pb2+、Cu2+)渗透测试获得的GO和EBI-rGO膜的水通量和截留率。
基于水流量,c)染料和d)多价离子的水通量和排斥率,与文献中的报道进行对比Figure 4. (a)GO和(b)EBI-rGO3/4膜对MB的透水率和截留率的稳定性测试。
相关研究成果于2021年由浙江农林大学Liang Chen课题组,发表在Carbon(/10.1016/j.carbon.2020.09.076)上。
原文:Selective reduction of epoxy groups in graphene oxide membrane for ultrahigh water permeation。
还原氧化石墨烯结构
还原氧化石墨烯结构概述氧化石墨烯是一种具有广泛应用前景的材料,具有良好的导电性和机械性能。
然而,在某些应用中,需要将其还原为石墨烯以发挥其优越的导电性能。
本文将探讨还原氧化石墨烯结构的方法和应用。
还原方法热还原法热还原法是最常见和常用的还原氧化石墨烯的方法之一。
其过程是通过高温处理氧化石墨烯,在高温条件下,氧化物会被还原为相应的氧化物,从而还原为石墨烯结构。
热还原法的关键是选择合适的温度和时间。
通常,较高的温度可以加速还原反应的进行,但过高的温度可能会破坏石墨烯结构。
因此,需要在保证还原效果的前提下,选择合适的温度和时间。
化学还原法化学还原法是另一种常用的还原氧化石墨烯的方法。
其过程是通过化学反应将氧化石墨烯中的氧化物还原为石墨烯结构。
常见的化学还原方法包括还原剂法、电化学还原法和生物还原法等。
还原剂法中常用的还原剂包括氢气、氢气气氛、亚硫酸盐等。
电化学还原法是利用电流将氧化物还原为石墨烯结构。
生物还原法则利用微生物或酶的作用还原氧化物。
化学还原法的优点是反应条件温和,可以在室温下进行。
然而,需要选择合适的还原剂或实验条件,以确保还原效果。
光还原法光还原法是一种基于光照原理的还原氧化石墨烯的方法。
通过选择特定波长的光照射氧化石墨烯,可以激发电子跃迁,促进还原反应的进行。
光还原法的优点是无需加热或添加化学试剂,对石墨烯结构影响较小,能够实现对大面积氧化石墨烯的还原。
然而,选择合适的光照条件和波长是关键,需要根据氧化石墨烯的具体情况进行调整。
应用电子器件氧化石墨烯由于其导电性能优越,被广泛应用于电子器件中。
然而,在某些应用中,还原氧化石墨烯以获得更好的导电性能是必要的。
通过还原氧化石墨烯,可以恢复其石墨烯结构,从而提高导电性能和电子迁移率。
这对于一些高性能电子器件的制备非常重要,例如晶体管、触摸屏和光电传感器等。
封装材料石墨烯具有出色的机械性能和化学稳定性,因此被用作封装材料,对电子器件进行保护。
在一些封装材料应用中,还原氧化石墨烯结构可以使其在材料中具有更好的导电性能和机械性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文章编号: 1007⁃8827(2014)01⁃0061⁃06选择性还原氧化石墨烯徐 超1, 员汝胜1, 汪 信2(1.福州大学光催化研究所福建省重点实验室⁃国家重点实验室培育基地,福建福州350002;2.南京理工大学教育部软化学与功能材料重点实验室,江苏南京210094)摘 要: 还原氧化石墨烯已被广泛用于制备基于石墨烯的材料㊂目前,还原处理方法均是尽可能地将氧化石墨烯中的功能团去除,恢复石墨烯的电子结构㊂由于氧化石墨烯中氧基功能团(如羟基㊁羧基及环氧基)不同的反应活性,氧化石墨烯是可能通过分步的方法进行还原㊂利用醇溶剂如乙醇㊁乙二醇㊁丙三醇还原氧化石墨烯,并采用不同分析手段对样品进行表征㊂结果发现,在一定条件下这些醇可选择性地还原氧化石墨烯㊂经这些醇的处理后,氧化石墨烯中环氧功能团被大部分去除,而其他的功能团如羟基和羧基仍被保留㊂这种选择性去除氧化石墨烯表面功能团的方法可利于有效地控制氧化石墨烯的还原程度㊁获得具有特定功能团的石墨烯衍生物,从而扩大这类材料的使用范围㊂关键词: 氧化石墨烯;氧化功能团;醇;选择性还原基金项目:国家自然科学基金(21201036,21077023);福建省自然科学基金(2010J01035,2012J01039).作者简介:徐 超,博士,讲师.E⁃mail:cxu@Selective reduction of graphene oxideXU Chao1, YUAN Ru⁃sheng1, WANG Xin2(1.Research Institute of Photocatalysis,Fujian Provincial Key Laboratoryof Photocatalysis⁃⁃State Key Laboratory Breeding Base,Fuzhou University,Fuzhou350002,China;2.Key Laboratory for Soft Chemistry and FunctionalMaterials of Ministry Education,Nanjing University of Science and Technology,Nanjing210094,China)Abstract: The reduction of graphene oxide has been widely used to control the properties of graphene⁃based materials.Traditional methods thoroughly remove oxygenated functional groups in graphene oxides.We show that ethanol,ethylene glycol and glycerol can se⁃lectively reduce epoxy groups in graphene oxide while hydroxyl and carboxyl groups remain unchanged.Hydrazine hydrate can reduce ox⁃ygen functional groups except carboxyl groups.These selective removals can be used to control the reduction degree of graphene oxides and their properties.The electrical conductivity of the reduced graphene oxides with different types of oxygen functional groups varied sig⁃nificantly and increased with the degree of reduction.Keywords: Graphene oxide;Oxygenated functional groups;Alcohols;Selective reductionCLC number: TQ127.1+1Document code: AReceived date:2013⁃07⁃10; Revised date:2013⁃12⁃22Corresponding author:XU Chao,Ph.D,Lecturer.E⁃mail:cxu@Foundation items:National Natural Science Foundation of China(21201036,21077023);Natural Science Foundation of Fujian Province (2010J01035,2012J01039).English edition available online ScienceDirect(http:∕∕∕science∕journal∕18725805).DOI:10.1016/S1872⁃5805(14)60126⁃81 IntroductionGraphene oxide(GO),utilized as precursor for a large⁃scale production of graphene⁃based materials,has attracted a great deal of attention in recent years[1⁃5]. GO sheets are electrically insulating,owing to their oxygenated functional groups(hydroxyl,carboxyl and epoxy groups)on surface,which usually need further treatments to restore the electrical conductivity for spe⁃cific applications[6].A lot of methods,such as chemi⁃cal reduction[7⁃9],laser irradiation[10,11],microwave ir⁃radiation[12,13],photocatalysis[14,15],solvothermal re⁃duction[16,17],have been explored to remove these atta⁃ched groups thoroughly and to recover graphene net⁃works of sp2bonds.Actually,researchers recently have found that the reduction degree of graphene oxide or oxidation degree of graphene has certain influences on their properties,such as electrical conductivity,catalysis activity and semi⁃conductive band positions[18⁃20]. Among these research work,the reduction degree of 第29卷 第1期2014年2月新 型 炭 材 料NEW CARBON MATERIALS Vol.29 No.1 Feb.2014 graphene oxide sheets(or oxidation degree of gra⁃phene)is controlled by adjusting the reactive temper⁃ature or time[19⁃21].It is very difficult for these meth⁃ods to control the reduction degree precisely and the repeatability is usually far from satisfactory,which limit further studies on their inherent characteristics.It is well known that the oxygenated functional groups on GO sheets mainly consist of hydroxyl,carboxyl and epoxy groups[22].In theory,these functional groups should have different reaction activities.Ac⁃cordingly,it is possible to utilize such diversified re⁃activities to remove these functional groups selectively through a stepwise manner,resulting in a controllable reduction of GO.Herein,we will show that under manipulative conditions,alcohols such as ethanol,ethylene glycol and glycerol can act as mild reducing agents to reduce GO selectively.Although some of these alcohols have been utilized to reduce GO,few attention is paid to their special reducing abilities[17,23,24].Our experi⁃mental results indicate that when GO was treated with these alcohols under appropriate conditions,only the signals from epoxy groups have been attenuated,but no obvious reactions are observed for the hydroxyl and carboxyl groups on GO.Such selective elimina⁃tion of functional groups could enable us to manipu⁃late the reduction degree of GO in a well⁃controlled manner and to obtain certain functional groups⁃in⁃volved graphene consequently.2 Experimental2.1 Chemical reduction of GOGO was prepared from purified natural graphite with a mean particle size of325mesh according to the method reported by Hummers and Offeman[25].All other reagents were purchased from Shanghai Ling⁃feng Chemical Reagents Co.Ltd.,China.Three types of alcohols(ethanol,ethylene glycol and glycerol)were used to react with GO.Typically, GO powder was dispersed in50mL of ethylene glycol under sonication for30min at room temperature. Then the as⁃obtained suspension was heated in an oil bath at160℃for6h under vigorous stirring.Subse⁃quently,the mixture was centrifuged while still hot, which was further washed with anhydrous alcohol and deionized water completely and dried at60℃.The as⁃prepared products are labeled as RGO⁃EG.Sam⁃ples reduced by glycerol were prepared using the same procedure,and the products are labeled as RGO⁃GL. Reduction of GO by ethanol was carried out in a sealed autoclave and heated at160℃for6h,and the as⁃prepared samples are labeled as RGO⁃ET.The hy⁃drazine hydrate,a typically strong reducing agent for GO,was also used here as a comparison[8].200mg of GO was dispersed in100mL of water by sonication for30min to form a suspension.2mL of hydrazine hydrate(50%w/v)was then added to the suspen⁃sion that was refluxed(100℃)for24h.After the re⁃action,the solid product(RGO⁃Hy)was isolated by filtration and washed with water and anhydrous alco⁃hol,and finally dried at60℃in vacuum.2.2 CharacterizationPowder X⁃ray diffraction(XRD) were per⁃formed on a Bruker D8Advance diffractometer with Cu Kαradiation.The diffraction data were recorded for2θangles between5°and60°.Scanning electron microscopy(SEM)were carried out on a JEOL JSM⁃6380LV scanning electron microscope.Fourier⁃trans⁃formed infrared spectroscopy(FT⁃IR)were carried out on a Bruker Vector⁃22,for which samples were prepared in potassium bromide pellets.The X⁃ray photoelectron spectra(XPS)were recorded on a Per⁃kin⁃Elmer PHI5300X⁃ray photoelectron spectrome⁃ter,using Mg Kα(hυ=1253.6eV)X⁃ray as the excitation source.The elemental analysis were carried out on a Vario ELⅢ,and before test all samples were dried at100℃in vacuum for two days.Raman spectra were recorded from200to2000cm⁃1on a Renishaw Invia Raman Microprobe using a514.5nm argon ion laser.The electrical conductivity of each sample was was analyzed by a SDY⁃4four⁃point probe instrument.3 Results and discussionHydrazine hydrate is a strong reducing agent which was employed here to reduce GO as a compari⁃son for other methods in this study[8].Fig.1shows the XRD patterns of GO and its derivatives treated by ethylene glycol and hydrazine hydrate(the resulting materials are labeled as RGO⁃EG and RGO⁃Hy,re⁃spectively).It can be clearly seen that the XRD pat⁃terns of RGO⁃EG are quite different from that of GO .Fig.1 XRD patterns of GO,RGO⁃EG and RGO⁃Hy.㊃26㊃ 新 型 炭 材 料第29卷The characteristic diffraction peak (001)of GO al⁃most disappears ,while a new broad peak at around 24°is formed ,which is one characteristic diffraction peak observed in the traditional reduced GO [8,17].Furthermore ,the XRD patterns of RGO⁃ET and RGO⁃GL are similar to that of RGO⁃EG and RGO⁃Hy ,indicating structure of GO could be changed by reducing with these alcohols [17,26,27].Fig .2displays SEM images of GO ,RGO⁃EG and RGO⁃Hy .By comparison ,it can be found that GO sheets possess a plat lamellar structure (Fig .2a ,b ),whereas RGO⁃EG and RGO⁃Hy possess a floccu⁃lent morphology ,forming a disordered solid (Fig .2b ),which is similar to that of reduced GOs reported in previous literatures [8,17].Fig .2 SEM images of (a ,b )GO ,(c )RGO⁃EG and (d )RGO⁃Hy .Fig .3 FT⁃IR spectra of GO ,RGO⁃EG and RGO⁃Hy . It is worth noting that there are some differences between these reduced GO using alcohols and hydra⁃zine hydrate .Fig .3shows the FT⁃IR spectra of GO ,RGO⁃EG and RGO⁃Hy .As shown in Fig.3,the characteristic features in the FT⁃IR spectra of GO are =the absorption bands corresponding to the C Ocarbonyl stretching at 1720cm ⁃1,the C OH stretc⁃hing at 1224cm ⁃1,and the C O stretching at 1050cm ⁃1[28,29].=The spectra also show a C C peak at 1620cm ⁃1corresponding to the remaining sp 2charac⁃ter [30].These absorption bands in the RGO⁃Hy are not pronounced ,indicative of an apparent removal of the oxygen⁃containing groups [31].Several absorption bands at around 1721,1568and 1210cm ⁃1are still ob⁃servable in the spectrum of RGO⁃EG .It has been =demonstrated that C O carbonyl stretching at a⁃round 1720cm ⁃1is hard to be reduced ,even with hy⁃drazine hydrate .The same phenomenon is observed in our samples [7].The bands at around 1568and 1210cm ⁃1may be attributed to the vibrations of skeleton and C OH bonds of RGO⁃EG ,respectively [17].It is worth noting that the absorption of epoxy groups (around 1050cm ⁃1)almost disappear as the arrow ,which may be ascribe to the reactions between the ep⁃㊃36㊃第1期XU Chao et al :Selective reduction of graphene oxideoxy groups and alcohols .Analogously ,the RGO⁃ET and RGO⁃GL possess almost the same absorption bands .The functional groups present in these samples are further analyzed by XPS .The C 1s XPS spectrum of GO (Fig .4a )clearly indicates that there are four kinds of carbon :the sp 2⁃hybridized C C ,the C in C OH bonds ,the epoxy C ,and the carboxylate car⁃bon [8,32].Strong reductants such as hydrazine hydrate can usually remove oxygen in GO considerably (Fig .4c ).However ,by comparison ,it can be clearly seen that only epoxy C 1s peak intensity of RGO⁃EG re⁃duced significantly after reduction with ethylene gly⁃col ,and the change of the C 1s peak intensities of hy⁃droxyl and carboxyl groups in RGO⁃EG is not notice⁃able (as shown in Fig .4b ),which is consistent with the results of FT⁃IR spectra .On the other hand ,the increased area percentage of the peak associated with sp 2=⁃hybridized C indicates the formation of C C bond .Therefore ,it is assumed that in our system ,the oxygen in epoxy groups are mostly removed ,while hydroxyl and carboxyl groups left un⁃attacked .Fig .4 C 1s XPS spectra of (a )GO ,(b )RGO⁃EG and (c )RGO⁃Hy . Theoretically ,the C /O atomic ratio will increase as a result of the de⁃oxygenation of the functional groups of GO .Indeed ,there is a significant change of the C /O atomic ratios by chemical reductions from the starting GO (2.9)to the reduced GO [8].Howev⁃er ,the C /O atomic ratio of RGO⁃EG (5.4)is much lower than that of RGO⁃Hy (10.8)whose oxygen functional groups are almost removed .Such feature ofselective reduction for GO with alcohols can be also supported by Raman spectroscopy .In Fig .5,two prominent peaks of GO appear at around 1355and 1598cm ⁃1,which are attributed to D and G band ,re⁃spectively [33,34].After reduction with alcohols or hy⁃drazine hydrate ,the D and G peaks still exist but with an increased D /G intensity ratio compared to that of GO (0.85).Generally ,D /G intensity ratio is in⁃versely proportional to the average crystallite size in graphite materials ,so the increase in D /G intensity ratio after reduction indicated a decrease in the aver⁃age size of the graphitic domains ,which is caused by the small re⁃graphitized sp 2domains [8,33,34].Due to the selective reduction with alcohols ,the small gra⁃phitic domains in RGO⁃EG are created merely by graphitization of the epoxy groups ,while that of RGO⁃Hy consisted of the graphitization of hydroxyl and carboxyl groups in addition to epoxy groups .As a result ,the D /G intensity ratio of RGO⁃EG (0.97)is lower than that of RGO⁃Hy (1.1).The similar phenomena are also found in Raman spectra of RGO⁃ET and RGO⁃GL .Thus ,the Raman analysis provides further evidences for the selective reduction of GO with these alcohols .Fig.5 Raman spectra of GO ,RGO⁃EG and RGO⁃Hy . Since RGO⁃EG is only partially reduced ,some of its physical properties ,for example electrical con⁃ductivity ,should be between that of GO and RGO⁃Hy .Earlier researches have suggested that the GO is electrically insulating ,and chemical reduction can re⁃store the electrical conductivity of such materials closed to that of pure graphite [8].We find that after reduction with EG ,the electrical conductivity of RGO⁃EG indeed increase from 0.02to 6.7S ㊃m ⁃1.Nevertheless ,compared with that of RGO⁃Hy (2100S ㊃m ⁃1),the extent of restoration of electrical conductivity is much lower .Though the re⁃established graphite domains increase the conductivity of RGO⁃EG ,the presence of functional groups especially the hydroxyl groups are still decorated sporadically on the surface of RGO⁃EG ,makes the electrically conduc⁃㊃46㊃ 新 型 炭 材 料第29卷tive graphite domains discontinuous.Consequently, the conductivity of RGO⁃EG is much lower than that of RGO⁃Hy(Table1).Table1 Electrical conductivity of the graphite,GO,RGO⁃EG and RGO⁃HyGraphite GO RGO⁃EG RGO⁃Hy Electricalconductivityk/S㊃m⁃12800±100.02±0.0026.5±0.52100±150 Furthermore,the as⁃prepared RGO⁃EG can be further de⁃oxygenated by hydrazine hydrate,resulting in the formation of a well⁃reduced GO.Accordingly, GO sheets can be reduced controllably by a stepwise removal of functional groups,which may be benefi⁃cial for studying properties and potential applications of graphene derivatives relating to the type of oxygen groups in the future.4 ConclusionsWe have demonstrated that GO can be selectively reduced by alcohols such as ethanol,ethylene glycol and glycerol under thermal treatments.One typical feature of this reduction is that the epoxy groups are mainly reduced and re⁃graphitized,while hydroxyl and carboxyl groups are maintained.Our research in⁃dicates that it is feasible to reduce GO selectively ac⁃cording to the activity differences between these atta⁃ched functional groups.And such selective removal of functional groups could be utilized to control the reduction degree of graphene oxide and prepare gra⁃phene derivatives with specific functional groups, which is useful to relate functional groups and proper⁃ties of graphene⁃based materials. AcknowledgmentsThis work was financially supported Natural Sci⁃ence Foundation of Fujian Province(2010J01035and 2012J01039).References[1] Allen M J,Tung V C,Kaner R B.Honeycomb carbon:A re⁃view of graphene[J].Chem Rev,2009,110:132⁃145. [2] Rao C N R,Sood A K,Voggu R,et al.Some novel attributesof graphene[J].J Phys Chem Lett,2010,1(2):572⁃580. [3] Kamat P V.Graphene based nanoarchitectures:Anchoring semi⁃conductor and metal nanoparticles on a two⁃dimensional carbon support[J].J Phys Chem Lett,2009,1:520⁃527. [4] Zhu Y,Murali S,Cai W,et al.Graphene and graphene oxide:Synthesis,properties,and applications[J].Adv Mater,2010, 22(46):5226.[5] Huang Y,Liang J J,Chen Y S.An overview of the applicationsof graphene⁃based materials in supercapacitors[J].Small,2012,8(12):1805⁃1834.[6] Stankovich S,Dikin D A,Dommett G H B,et al.Graphene⁃based composite materials[J].Nature,2006,442(7100):282⁃286.[7] Li D,Muller M B,Gilje S,et al.Processable aqueous disper⁃sions of graphene nanosheets[J].Nat Nanotechnol,2008,3(2):101⁃105.[8] Stankovich S,Dikin D A,Piner R D,et al.Synthesis of gra⁃phene⁃based nanosheets via chemical reduction of exfoliated graphite oxide[J].Carbon,2007,45(7):1558⁃1565. [9] YAN Jia⁃lin,CHEN Gui⁃jiao,CAO Jun,et al.Functionalizedgraphene oxide with ethylenediamine and1,6⁃hexanediamine[J].New Carbon Materials,2012,27(5):370⁃376.(闫家林,陈贵娇,曹 君,等.乙二胺和己二胺氨基功能化氧化石墨烯[J].新型炭材料,2012,27(5):370⁃376.) [10] Sokolov D A,Shepperd K R,Orlando T M.Formation of gra⁃phene features from direct laser⁃induced reduction of graphiteoxide[J].J Phys Chem Lett,2010,1(18):2633⁃2636. [11] Huang L,Liu Y,Ji L C,et al.Pulsed laser assisted reductionof graphene oxide[J].Carbon,2011,49(7):2431⁃2436. [12] Chen W F,Yan L F,Bangal P R.Preparation of graphene bythe rapid and mild thermal reduction of graphene oxide inducedby microwaves[J].Carbon,2010,48(4):1146⁃1152. [13] Wang K,Feng T,Qian M,Ding H I,et al.The field emissionof vacuum filtered graphene films reduced by microwave[J].Appl Surf Sci,2011,257(13):5808⁃5812.[14] Williams G,Seger B,Kamat P V.TiO2⁃graphene nanocom⁃posites.UV⁃assisted photocatalytic reduction of graphene oxide[J].ACS Nano,2008,2(7):1487⁃1491.[15] Matsumoto Y,Morita M,Kim S Y,et al.Photoreduction ofgraphene oxide nanosheet by UV⁃light Illumination under H2[J].Chem Lett,2010,39(7):750⁃752.[16] Zhou Y,Bao Q,Tang L A L,et al.Hydrothermal dehydrationfor the green”reduction of exfoliated graphene oxide to gra⁃phene and demonstration of tunable optical limiting properties[J].Chem Mater,2009,21(13):2950⁃2956. [17] Nethravathi C,Rajamathi M.Chemically modified graphenesheets produced by the solvothermal reduction of colloidal dis⁃persions of graphite oxide[J].Carbon,2008,46(14):1994⁃1998.[18] Compton O C,Nguyen S T.Graphene oxide,highly reducedgraphene oxide,and graphene:Versatile building blocks forcarbon⁃based materials[J].Small,2010,6(6):711⁃723. [19] Yeh T F,Chan F F,Hsieh CT,et al.Graphite oxide with dif⁃ferent oxygenated levels for hydrogen and oxygen productionfrom water under illumination:The band positions of graphiteoxide[J].J Phys Chem C,2011,115(45):22587⁃22597.[20] Mathkar A,Tozier D,Cox P,et al.Controlled,stepwise re⁃duction and band gap manipulation of graphene oxide[J].JPhys Chem Lett,2012,3(8):986⁃991.[21] Qiu L,Zhang X H,Yang W R,et al.Controllable corrugationof chemically converted graphene sheets in water and potentialapplication for nanofiltration[J].Chem Commun,2011,47(20):5810⁃5812.[22] Dreyer D R,Park S,Bielawski C W,et al.The chemistry ofgraphene oxide[J].Chem Soc Rev,2010,39(1):228⁃240.[23] Gong C,Acik M,Abolfath R M,et al.Graphitization of gra⁃phene oxide with ethanol during thermal reduction[J].J Phys㊃56㊃第1期XU Chao et al:Selective reduction of graphene oxide Chem C,2012,116(18):9969⁃9979.[24] Su C Y,Xu Y,Zhang W,et al.Highly efficient restoration ofgraphitic structure in graphene oxide using alcohol vapors[J].ACS Nano,2010,4(9):5285⁃5292.[25] Hummers W S,Offeman R E.Preparation of graphitic oxide[J].J Am Chem Soc,1958,80(6):1339⁃1339. [26] Xu C,Wang X,Zhu J W.Graphene metal particle nanocom⁃posites[J].J Phys Chem C,2008,112(50):19841⁃19845.[27] Liu S Y,Chen K,Fu Y,et al.Reduced graphene oxide paperby supercritical ethanol treatment and its electrochemical proper⁃ties[J].Appl Surf Sci,2012,258(13):5299⁃5303. [28] Xu C,Wu X D,Zhu J W,et al.Synthesis of amphiphilicgraphite oxide[J].Carbon,2008,46(2):386⁃389. [29] Wang G C,Yang Z Y,Li X W,et al.Synthesis of poly(ani⁃line⁃co⁃o⁃anisidine)intercalated graphite oxide composite bydelamination/reassembling method[J].Carbon,2005,43(12):2564⁃2570.[30] Stankovich S,Piner R D,Nguyen S T,et al.Synthesis and ex⁃foliation of isocyanate⁃treated graphene oxide nanoplatelets[J].Carbon,2006,44(15):3342⁃3347.[31] WANG Yong⁃zhen,WANG Yan,HAN Fei,et al.The effectof heat treatment on the electrical conductivity of highly conduc⁃ting graphene films[J].New Carbon Materials,2012,27(4):266⁃270.(王永祯,王 艳,韩 非,等.还原热处理对石墨烯薄膜导电性的影响[J].新型炭材料,2012,27(4):266⁃270.) [32] Jeong H K,Lee Y P,Lahaye R J W E,et al.Evidence of gra⁃phitic stacking order of graphite oxides[J].J Am Chem Soc,2008,130(4):1362⁃1366.[33] Tuinstra F,Koenig J L.Raman spectra of graphite[J].JChem Phys,1970,53(3):1126⁃1130.[34] Kudin KN,Ozbas B,Schniepp H C,et al.Raman spectra ofgraphite oxide and functionalized graphene sheets[J].NanoLett,2008,8(1):36⁃41.Instructions to Authors New Carbon Materials is a bimonthly journal published with the permission of the Ministry of Science and Technology and of the State News and Publication Agency.The journal is sponsored by the Institute of Coal Chemistry,Chinese Academy of Sciences,and is published by Science Press. Aims and ScopeNew Carbon Materials publishes research devoted to the physics,chemistry and technology of those organic substances that are precursors for pro⁃ducing aromatically or tetrahedrally bonded carbonaceous solids,and of the materials that may be produced from those organic precursors.These mate⁃rials range from diamond and graphite through chars,semicokes,mesophase substances,carbons,carbon fibers,carbynes,fullerenes and carbon nanotubes,etc.Papers on the secondary production of new carbon and composites materials(for instance,carbon⁃carbon composites)from the above mentioned various carbons are also within the scope of the journal.Papers on organic substances will be considered if research has some relation to the resulting carbon materials.Manuscript Requirements1.New Carbon Materials accepts Research Papers,Short Communications and Reviews.2.Manuscript including an abstract,graphical abstract,highlight,keywords,reference list,original figures and captions,tables.Manuscripts can be written both in Chinese and English.3.Manuscript should be accompanied with key words placed after Abstract and a short resume of first author(name,academic degree,profes⁃sional position)placed in the end of1st page of text as foot⁃note.Corresponding author and his(her)E⁃mail address should also be mentioned.4.All illustrations,photographs,figures and tables should be on separate sheets,figure captions should be typed separately,not included on the diagram.Authors are requested to submit original photographs,which should have good contrast and intensity.5.References should be individually numbered in the order in which they are cited in the text,and listed in numerical sequence on separate sheets at the end of the paper,typed in double spacing.Remember that"unpublished works"are not references!In the reference list,periodicals[1],books [2],multi⁃author books with editors[3],proceedings[4],patents[5],and thesis[6]should be cited in accordance with the following examples:[1] Mordkovich V Z,Baxendale M,Yoshimura S,et al.Intercalation into nanotubes.Carbon,1996,34(10):1301⁃1303.[2] Lovell D R.Carbon and High⁃Performance Fibers Directory.5th ed.,London:Chapman&Hall,1991:66.[3] Mochida I,Korai Y.Chemical characterization and preparation of the carbonaceous mesophase.In:Bacha J D,Newman J W,White J L,eds.Petroleum⁃Derived Carbons.Washington DC:ACS,1986,29⁃31.[4] Su J,Li G,Hao Z.The research and application of copper impregnated coarse⁃grain graphite throat.23rd Int'l Biennial Conference on Car⁃bon,Extended Abstract and Program,July18⁃23,Pennsylvania1997,256⁃258.[5] Shigeki T,Jinichi M,Hiroshi H.Manufacture of mesocarbon microbeads.JP61⁃222913,1986.[6] Jones L E.The Effect of Boron on Carbon Fiber Microstructure and Reactivity.Ph.D.Thesis.Penn State University,University Partk,PA1987.Note:For the references with more than three authors,please give the first three and mark"et al".6.Publication of papers in the journal is free of charge.Authors whose paper is published in the journal will receive10free offprints and2copy of this journal soon after its coming out.7.Manuscript Submission:Online submission:/EN/volumn/home.shtmlE⁃mail submission:tcl@㊃66㊃ 新 型 炭 材 料第29卷选择性还原氧化石墨烯作者:徐超, 员汝胜, 汪信, XU Chao, YUAN Ru-sheng, WANG Xin作者单位:徐超,员汝胜,XU Chao,YUAN Ru-sheng(福州大学光催化研究所福建省重点实验室-国家重点实验室培育基地,福建福州,350002), 汪信,WANG Xin(南京理工大学教育部软化学与功能材料重点实验室,江苏南京,210094)刊名:新型炭材料英文刊名:New Carbon Materials年,卷(期):2014(1)本文链接:/Periodical_xxtcl201401011.aspx。