Homogeneous Charge Compression Ignition

合集下载

HCCl

HCCl

结论:
柴油HCCI燃烧是在多点同时发生,没有明 显的火焰前锋,燃烧反应迅速,燃烧温度低 且分布较均匀,只生成极少的NOx和PM,在 低负荷时具有很高的热效率。但也存在实现 不容易,排放HC过多等缺点。
比较内容 燃料 混合气 形成方式 稀薄燃烧
点燃式发动机 燃料汽油等 化油器或 喷射- 均质 否
实现HCCl的方法

基本原理:通过压缩缸内均匀的燃油和空气 的混合气,在上止点(TDC)附近实现自燃。
汽油机 柴油 柴油机

均质混合气的形成是实现对HCCI燃烧控制 的第一步。 国际上采用的柴油均质预混合气方式包括: 进气道缸外预混、缸内早喷射和晚喷。
a.缸外预混HCCI

即在进气冲程把柴油喷入进气管,与空气混合形成预混合气。 采用进气道喷射,利用进气涡流来强化混合气的形成,是提 高混合气均匀度的一个相对简单的方法。但要求较高的进气 温度来促进柴油的蒸发,需要安装加热装置和进气道燃油喷 射系统,并且不利于柴油机冷启动。早期的研究中多采用这 种方法制备混合气,最早进行研究的美国西南研究院曾采用 这种方式引入混合气,燃料在进气道喷出后与空气混合形成 均匀的混合气,进气门开启时混合气进入缸内压缩、着火。 柴油由于挥发性较差以及壁面撞击,采用此法将导致较高的 HC和CO排放以及燃油消耗量的增加。

( 7) 合适燃料( 包括混合燃料) 的开发。 ( 8) 多缸机各缸均匀性的保证。
柴油机HCCI燃烧具有超低的NOx和PM排放,具有很高 的能量转换率,这对传统柴油机来说,不但保留了原有的节 能优势,还大大降低了排放,使其性能更加完美,这无疑具 有很大的发展前景。不过,柴油机HCCI燃烧的HC和CO排 放偏高,有待进一步降低。另外,影响柴油HCCI燃烧的因 素多,使得难以控制,必然要采用双模式运行方案。即中、 低负荷时,采用HCCI燃烧方式;高负荷时,使用传统模式。 随着发动机技术的进步,柴油机HCCI燃烧的控制将更加完 善,真正达到实用化的目的。

重型柴油机的排放控制技术

重型柴油机的排放控制技术

重型柴油机的排放控制技术摘要随着排放法规的日益严格,传统的柴油机技术已经无法满足要求。

因此,各种新的技术被开发出来。

本文立足于国内外的研究现状,从新的燃烧方式、对燃料的选择、改善缸内混合气的燃烧和对排气进行后处理几个角度出发,对当前大功率柴油机的排放控制技术进行了分析和总结。

从而提出满足欧5或欧6排放标准的的技术途径。

1 柴油机低温燃烧方式低温燃烧技术(LTC)是能够有效减少柴油机内有害排放物的重要技术途径之一。

低温燃烧技术可以同时降低NOx和碳烟排放。

研究表明,在低当量比情况下,如果局部燃烧温度在2200K以上,NOx会大量生成;在当量比较高的情况下,为了避开碳烟的主要生成区域,最高燃烧温度则需要进一步降低。

如果燃烧温度可以保持在低于1650K的水平,无论当量比如何,燃烧都可以完全避开NOx和碳烟的主要生成区域[1],这种燃烧模式便是低温燃烧。

与传统直喷式柴油机的燃烧相比,低温燃烧模式通常增加燃烧前的油气混合,或者采用大量的排气再循环(EGR)。

由空气或EGR稀释后的混合气使燃烧温度降低,从而减少NOx 的生成。

均质混合气的形成减少了局部过浓的区域,从而减少了碳烟的生成。

同时,稀薄的混合气也有利于抑制碳烟的生成。

均质压燃(HCCI)技术是最主要的低温燃烧技术之一。

由于柴油机的燃烧特点是非均质燃烧,混合气的形成时间很短,而且是一边混合一边燃烧。

这就使得气缸内各个区域的过量空气系数差别很大,有的地方是富氧燃烧,有的区域是缺氧燃烧。

造成了柴油机的NOx和CO排放量都很高。

而汽油机是预混燃烧方式,即在燃烧前已经是均质混合气,所以汽油机只要严格控制空燃比就可以控制NOx,CH和CO的量,再用三效催化转化器,就可以把排放控制在要求的范围之内。

为了改善柴油机的缸内燃烧,参考汽油机的混合气形成方式,也可以想办法在柴油机上实现均质混合气压燃的技术,于是引入了HCCI的概念。

HCCI (Homogeneous charge compression ignition )即均质压燃技术。

HCCI均质混合气压燃技术

HCCI均质混合气压燃技术

均质混合气压燃技术(HCCI)【摘要】HCCI是一种以往复式汽油机为基础的一种新型燃烧模式,简单来说就是汽油机的一种压燃方式。

这是一种全新的内燃机燃烧概念,既不同于柴油机(非均质充量压缩点燃),又不同于汽油机(均质充量火花点燃),是一种火花点燃式发动机和压缩点燃式发动机概念的混合体。

【正文】内燃机最主要的燃烧方式有预混合燃烧和扩散燃烧两种然而在液体燃料与空气的上述两种燃烧混合燃烧过程中,在气缸内释放出大量的热量而产生高温高压,这种燃烧过程中高温高压的工质在推动活塞对外做功的同时,空气中的氮气和氧气在高温下反应下形成NO,而且诶燃料在高温下分解或不完全燃烧而形成碳烟,HC和CO等有害排放物。

这些排放物对环境的污染,已对地球寿命构成威胁而备受关注。

所以,面对石油能源危机,节能与超低排放已成为其面临的重要课题,在这样的背景下开发出新的内燃机燃烧技术,其中具有代表性的就是混合气的均质压燃方式HCCI(Homogeneous Charge Compression Ignition)HCCI发动机和传统的汽油发动机一样,都是向汽缸里面注入比例非常均匀的空气和燃料混合气。

传统的汽油发动机通过火花塞打火,点燃空气和燃料混合气产生能量。

但HCCI发动机则不同,它的点火过程同柴油发动机相类似,通过活塞压缩混合气使之温度升高至一定程度时自行燃烧。

装备HCCI技术的发动机的技术结构比一般发动机要复杂,当汽油机的压缩冲程快结束时,汽油通过直喷油咀喷进汽缸,HCCI发动机压缩比比普通的汽油机高,所以喷出的小油滴在压缩冲程完成时有时间在汽缸内形成均匀的分布,这时汽缸的压力足够使均匀分布的油滴自动压燃,所有的燃料都在同一时间点燃,所以提高了燃油的使用效率(传统的汽油和柴油机都是非均匀的扩散式燃烧,在扩散的同时浪费了部分的能量)而且由于它采用压缩点燃的缘故,可以采用相当稀薄的混合气,因此可以按照变质调节的方式,直接通过调节喷油量来调节扭矩,不需要节气门。

欧洲重型柴油机排放法规的技术路线_满足欧IV及更高排放标准的曼和斯堪尼亚柴油机

欧洲重型柴油机排放法规的技术路线_满足欧IV及更高排放标准的曼和斯堪尼亚柴油机

素水溶液。
EGR+PM-KAT过滤器是曼独有的 革命性技术
曼的废气再循环EGR柴油机于 1999年开发出来,为了满足欧III以及 后来的欧IV、欧V排放法规。到目前为 止,全世界大约有八十多万台曼EGR 发动机正在运行。曼EGR发动机可 靠、经济性好,广受欢迎。
曼采用冷却的和可控的外部废气 再循环EGR可以在发动机机内实现降 低氮氧化物排放,满足十分严格的欧 IV、欧V排放要求。PM-KAT则被采用 来控制颗粒物排放,以满足法规对PM 排放的要求。这种系统是安装在消音器 内的颗粒物分离装置,这种系统不会堵 塞,免于维护,并且不需要任何额外的 添加剂。PM-KAT过滤器可以消除中等 程度的细小颗粒物。 曼PM-KAT相比SCR系统的主要优势
199(270)
1250
D2066LUH22
228(310)
1700
1550
D2066LUH23
257(350)
1750
D2066LUH24
287(390)
1900
D2676LOH03
338(460)
1900
2100
1050~1400
D2676LOH04
353(480)
2300
*注:(1)OBD1表示第1代车载自动诊断系统;(2)PM-KAT,表示EGR+PM-KAT技术路线,下同。
2100
D2676LF05
353(480)
2300
D2066LF28
直6
235(320)
1900
1600
D2066LF27
265(360)
1800
D2066LF26
294(400)
1900
D2066LF25

发动机HCCI技术概要

发动机HCCI技术概要

Mercedes-Benz F700 DiseOtto直4 1.8T CGI HCCI发动 机
奔驰的07年的F700概念车为例,其 DiseOtto 1.8T直4 CGI直喷发动机在 采用HCCI技术后,输出功率达到 238hp,最大扭矩达到400Nm,完 全就是一台3.5L V6的水平,难得的 是它的油耗仅为6L/100km,二氧化 碳排放仅127g/100km。
展望未来
相信随着技术难关的不断攻克,HCCI技 术将会快速普及到大众当中,作为一种新 的节能增效技术,为地球的蓝天作一份贡 献。
谢谢
---那HCCI技术那么好,为什么还不 马上推广大量是用呢? ---原来现在的HCCI技术还有一些技 术难关。
技术难关
一 在燃烧时刻的控制上,HCCI发动机靠汽缸的压力和温度自燃, 油气混合气的密度,汽缸的温度和压力都需要进行精确的检测和控制, 所以发动机的ECU管理程序也要进行相应的加强。 二 由于HCCI的同时压燃和放热,瞬时间汽缸和活塞会受到强大的 压力,有可能会产生爆震的现象,所以必须降低混合气的空燃比(低于 传统的14.7:1),这就需要HCCI在稀燃状态下工作,排气的温度也比 较低,使得发动机较难采用涡轮增压。以上这些都使得HCCI可能达到的 最大负荷比典型的火花点燃式和直喷式柴油机低得多。另外,低排气温 度对催化转化器来说也是一个问题,因为需要相当高的温度才能起动氧 化/还原反应。 三 也就由于刚才我们讲到的HCCI发动机可能达到的最大负荷比典 型的火花点燃式和直喷式柴油机低得多,所以,在大负荷高转速的时候 或者冷机状态下发动机还必须依靠传统的火花塞点火系统,这就间接要 求了发动机的压缩比可变,在传统点火模式的时候变回低压缩比。所以 气门正时系统及众多的压力传感器也是必须的。

均质压燃(HCCI)燃烧技术的研究现状与展望

均质压燃(HCCI)燃烧技术的研究现状与展望

均质压燃(HCCI)燃烧技术的研究现状与展望均质压燃(HCCI)是一种全新的燃烧模式,它是预混均质可燃混合气在压缩行程中温度升高达到自燃点后自燃的燃烧模式。

作者主要阐述了均质压燃(HCCI)燃烧技术的概念与特点、当前研究所面临的难题和研究所取得的主要进展。

标签:均质压燃;低温燃烧;燃料改质引言当前,全球汽车保有量不断增加,然而能源日趋匮乏,排放法规越来越严重,因此内燃机的节能减排技术不得不受到重视,研发节能、清洁和高效的内燃机也具有更为重要的意义。

但是,现有的汽油机和柴油机仍然不能同时符合我们在经济性与排放性方面的需求。

均质压燃(HCCI,Homogeneous Charge Compression Ignition)作为一种全新的燃烧技术,有别于现有汽油机的点燃式与现有柴油机的压燃式,它兼具现有汽油机均质燃烧与现有柴油机压燃点燃的优点,能够提高发动机的动力性和经济性,同时大大降低发动机NOx和碳烟的排放。

1 HCCI燃烧技术的概念与特点从内燃机被发明以来,内燃机的点火方式有两种类型:一种是柴油机的压燃点燃方式;另一种是汽油机的点燃燃烧方式。

因为柴油机的热效率高,动力性好,可靠性高,常常被用在动力机械上,例如工程机械、载重货车等。

同时,汽油机凭借其构造简单、体积小、重量轻、转速高、振动噪声小等优点占领了大多数的乘用车市场,尤其是小轿车上多半配置的是汽油机。

因为人们对汽车的依赖性越来越高,全球汽车的保有量不断增加,环境也日趋恶化,能源越来越紧张,迫使人们不断地改进柴油机与汽油机的性能,同时积极地寻找更为清洁环保的发动机燃料。

在对这些新型清洁环保的发动机燃料研究时,研发人员使用了一些汽油机和柴油机比较完善的技术。

比如,尝试在柴油机中使用燃点较高的醇类燃料;为了让醇类燃料在汽油机中稳定燃烧,把汽油机的压缩比增加到11~13。

其中最为大胆和最有创新性的研究是結合柴油机和汽油机的优点,最后建立一种崭新的燃烧模式——均质充量压缩燃烧,即均质压燃(HCCI)。

均质充量燃烧

均质充量燃烧

• 2. 采用比火花点燃式发动机高得多的压缩 比,且允许压缩比在一个广阔的范围内变 动。 • 3.为了使均质混合气能够通过压缩而点燃, 必要时需对吸入空气进行加热。 • 4.采用压缩点燃。在压缩冲程中,混合气 温度升高,达到自燃温度而自燃;也就是 说,不需要任何点火系统。
• 5. 由于压缩点燃的缘故,可以采用相当稀 薄的混合气,因此可以按照变质调节的方 式,直接通过调节喷油量来调节扭矩,不 需要节气门。 • 6. 既然均质混合气是自燃的,所以燃烧大 体上是整个气缸内同时开始的。可以采用 过量空气或者残余废气达到高度稀释的混 合气。
• 7. HCCI发动机采用的燃油辛烷值允许在 一个广阔的范围内变动。可以采用汽油、 天然气、二甲醚等辛烷值较高的燃油作为 主要燃料,也可以采用多种燃料混合燃烧。 还可以将对高辛烷值燃料和低辛烷值燃料 配比的调整,用作在HCCI燃烧中控制燃烧 起点和负荷范围的方法。也有人试图用柴 油作为HCCI燃料,但效果远不及汽油。
HCCI技术尚待解决的问题
• 1.随发动机转速和负荷的改变控制着点火正 时。 • 2.高负荷运行时燃烧速率的控制。 • 3.改善冷启动和发动机变工况运行的响应特 征。 • 4.排放控制系统的发展。 • 5.发动机控制策略和系统的发展以及相应传 感器的研制。
• 6.HCCI燃烧运行范围扩展。 • 7.合适燃料的开发。 • 8.多缸机各缸均匀性的保证。
均质充量压缩燃烧 • HCCI(homogeneous charge compression ignition)
HCCI的发展历史
• 1876年产生第一台四冲程内燃机以来,传统的点燃式和压燃式内
燃机在进一步提高燃料利用率和降低有害物排放方面已经达到了极。
• 20世纪70年代,首次提出了均质压燃的概念,但由于控制技 术的限制而没有受到重视。 • 90年代后期,随着控制技术的发展,均质压燃技术以其在内燃

HCCI一种大有前途但又面临诸多挑战的清洁汽车技术

HCCI一种大有前途但又面临诸多挑战的清洁汽车技术

TRANSPOWORLD 2012 No.5/6(Mar)102HCCI控制发动机排放的基本原理HCCI,亦称可控自燃着火(CAI,Controlled Auto Ignition),它是指大量燃料和稀释物(空气和再循环废气等)在进气过程中预先混合成均质混合气,当压缩行程活塞运动到上止点附近时,均质混合气自燃着火的一种燃烧过程。

HCCI燃烧方式结合了柴油机压燃和汽油机均质混合气点火燃烧的特点,基本特征是均质、压燃和低温火焰燃烧。

与传统的点燃式发动机相比,它取消了节气门,泵气损失小,混合气多点同时着火,燃烧持续期短,可以得到与压燃式发动机相当的较高热效率;与传统柴油机相比,由于混合气是均质的,燃烧反应几乎是同步进行,没有火焰前锋面,燃烧火焰温度低(低于2000K),NO x 排放很低,几乎没有PM排放。

传统的柴油机采用扩散燃烧,化学反应速率远高于燃料和空气的混合与扩散速率,燃烧快慢由混合扩散速率决定。

在这种类型的燃烧中,混合气和温度分布都极不均匀,扩散火焰外壳的高温区易产生NO x ,内部高温缺氧区易产生PM。

而HCCI通过提高压缩比、采用废气再循环、进气加热和增压等手段提高缸内混合气的温度和压力,促使混合气压缩自燃,在缸内形成多点火核,有效维持了着火燃烧的稳定性,并减少了火焰传播距离和燃烧持续期。

它的燃烧速率只与本身的化学反应动力学有关。

大多数燃料的HCCI燃烧表现出独特的二阶段放热:第一阶段放热和主放热阶段。

第一阶段放热与低温动力学反应有关,此时是冷焰、蓝焰。

在第一阶段放热和主放热之间有一个时间延迟,延迟时间主要由这些反应的负温度系数现象(NTCR, Negative Temperature Coefficient Regime,即温度升高,反应变慢)来决定。

用光学诊断的方法来研究HCCI的燃烧过程发现第二阶段燃烧即主放热阶段是多点同时进行的,一旦着火,混合气迅速燃烧,没有可视火焰传播,一般认为HCCI的完全燃烧仅由化学动力学控制,没有一般燃烧中的流动,但由于局部仍存在不均匀物质,从而也有局部波动现象。

内燃机HCCI技术

内燃机HCCI技术

内燃机HCCI技术摘要:随着经济的发展,具有全球性影响的环境问题日益突出。

内燃机的经济性和排放也成为首要问题。

均质压燃(HCCI)是一种全新的燃烧方式,它能够有效地提高发动机的燃烧热效率,降低NOx和碳烟的排放。

本文阐述了HCCI燃烧的特点、HCCI燃烧技术的优点、需要解决的技术问题,最后对HCCI燃烧技术的应用前景进行了展望。

关键词:HCCI 发展燃烧方式技术问题0前言随着世界范围内石油资源的日趋紧张,并伴随着我国对于空气质量的更高要求,提高内燃机的燃油经济性,降低有害排放,实现节能减排显得尤为重要。

其中HCCI(Homogeneous Charge Compression Ignition)“均质充量压燃”技术成为了全球内燃机领域的研究热点。

HCCI是一种以Otto往复式汽油机为基础的一种新型燃烧模式,简单来说就是汽油机的一种压燃方式,它结合了压燃式发动机和点燃发动机优点,成为一种全新的燃烧模式。

1. HCCI燃烧技术的发展历程均质充量压缩着火(HCCI)是一种全新的内燃机燃烧方式。

国外对HCCI技术的研究开展较早,1979年Onishi等人发现汽油机在部分工况下通过缸内大量的残余废气,不用点燃也可以平稳运转,并称为活化热氛围燃烧过程。

这被普遍认为是最早提出的具有均质压燃特征的燃烧概念[1]。

(尧命发.均质压燃与低温燃烧的燃烧技术研究进展与展望[J].汽车工程学报,2012,(2))而这项技术在90年代初已经被提出并开始实验,但是当时电子控制技术没有现在成熟,随着电子控制技术的发展,均质压燃技术以其在内燃机节能减排方面的巨大潜力而备受关注。

迄今为止,虽已有少量生产但离广泛的商业化还仍有许多技术难题需要解决。

在2008年的法兰克福车展上,戴姆勒公司正是采用可变压缩比技术实现了HCCI燃烧,在中小负荷采用高压缩比实现HCCI燃烧,改善燃油经济性,在大负荷降低压缩比,回归到传统的火花点火式燃烧。

[2](汽油机HCCI燃烧技术存在的问题与对策[J] 叶坦中国高新技术产业,2014,32)目前H CCI技术专利申请的目标国家/地区分布情况为美国分布最多,达到2069件,占32.25%,且大多为价值很高的发明专利申请;中国的申请量分布仅次于美国,占16.55%;德国的申请量分布位于全球第三,占11.16%;通过PCT途径提交的相关专利申请量占11.07%,列居第四;其余国家包括韩国、英国、澳大利亚、加拿大、瑞典等的相关专利申请量分布总共占比不足10%。

均质混合气压缩着火(HCCI)技术解析 Homogeneous charge compression

均质混合气压缩着火(HCCI)技术解析 Homogeneous charge compression

均质混合气压缩着火(HCCI)技术解析Homogeneous charge compression ignition technology of shrinkageThe HCCI engine like the traditional gasoline engine that, mixed gas suction uniform, but without the spark plug ignition, but by increasing the compression ratio, the exhaust gas recirculation, intake heating and pressurizing technology, improve the mixture in cylinder temperature and pressure, and the spontaneous combustion of mixed gas compressor. A plurality of ignition kernel is formed in the cylinder, effectively maintain the stability of flame combustion, and reduce plant flame propagation distance and the combustion duration. The burning rate it is only related with chemical reaction kinetics of itself.The characteristics of diesel HCCI combustionThe realization of diesel HCCIcombustion to face, facing two difficulties: one is the diesel oil of high viscosity, low volatility. It is difficult to form a homogeneous mixture; two is a diesel is as high as sixteen octane fuel, prone to spontaneous combustion at low temperature reaction, the combustion speed control difficulty of homogeneous mixture, easy cause rough burning.Diesel HCCI combustion is also occurs in many points, there is no obvious flame, combustion reaction is rapid, the combustion temperature is low and the distribution is uniform, only low production of NOx and PM, with high thermal efficiency at low loads. But the traditional diesel engine with high pressure injection forming non uniformly mixed gas diffusion combustion, gas mixture and temperature distribution is very uneven, in the diffusion flame shell 7 coffee Chen shovel student NOx, internal high stainlesshypoxia households student P more than 3, the influence factors of diesel HOCl combustion mode 3, effect of 3 kinds of mixed gas! The formation of diesel HCCI combustion.Homogeneous mixture formation is to achieve the first step of HCCI combustion control, including the international use of diesel homogeneous premixed gas: inlet cylinder external premixed, early in cylinder injection and late injection.Cylinder premixed HCCIThat is, the diesel spray people intake pipe in the intake stroke, and air mixture formation of pre mixed gas. Using a port injection, to strengthen the mixture formation by intake swirl, is to improve the mixture uniformity of a relatively simple method. 3, 1, 2 early in cylinder injection HCCI the way HCCI diesel premixed gas formation is a commonly used way. In the early stage of thecompression stroke, diesel spray cylinder with the piston upward, gradually mixed with air. Until the occurrence of spontaneous ignition. In order to improve the atomization and mixing of fuel, diesel engine with HCCI fuel injection advance angle is far more than the conventional diesel engine, the diesel fully mixed with the air before catching fire. 3, 1, 3 after the cylinder late injection HCCI check point or at TDC in close proximity, the diesel spray cylinder, and the use of a large number of pre cooling EGR, strengthen the vortex and reduce the compression ratio to achieve ignition delay measures to make diesel ignition occurred just at the end of the injection after. Despite the late injection forming cylinder oil and gas uniformity as a port injection and in cylinder early spray evenly, but NOx and PM emissions is still lower than the traditional diesel engine.Influence of inlet air temperatureHCCI combustion ignition timing is very sensitive to air temperature, with the air intake temperature increasing, ignition phenomenon will appear, therefore, to control the temperature in the cylinder is a Guan Jian factor controlling HCCI ignition time. Generally by adjusting the air inlet temperature control HCCI combustion and ignition.In the intake pipe intake heating device, the introduction of exhaust gas recirculation (EGR) can improve the intake temperature, HCCI of Najt and Foster and later Thring in four stroke diesel engines do is through the electric heating device for exhaust gas recirculation after the realization of the mixed gas heating. 3, the influence of 3 load of 3, 3, 1 low load of HCCI diesel engine running at low load conditions, the cycle of oil quantity is small, theconcentration of the mixed gas is diluted, and reactant concentration is an important factor affecting the combustion reaction, and at this time the cylinder temperature is low, the ignition time to make HCCI burning significantly delayed, and even the emergence of the phenomenon of fire. In the cycle, subsequent cyclic explosion pressure tend to rise suddenly, this is because the fire some of the fuel cycle in the residual circulation oil cylinder, resulting in a quantity to increase, cause the outbreak the pressure rise.High loadHCCI diesel engine operation at high load, the cycle of oil quantity is large, when the cylinder temperature is high, the concentration of the mixed gas, the combustion reaction speed, thus easy to cause fire too far in advance of the phenomenon, the combustion speed too fast will cause the pressure rise rateincreases rapidly, and the emergence of combustion pressure oscillation. Rough burning, increasing the noise, vibration and shock load dependent, easy to cause the engine parts damage, at the same time, the emission of NOx was rapidly increased, limiting the HCCI combustion load extension. 3, the influence of exhaust gas recirculation (EGR 4EGR) can improve the intake temperature, the ignition characteristics change of mixed gas, thus affecting the ignition time. The introduction of exhaust gas recirculation purpose is diluted concentration of the mixture gas in it, can effectively slow combustion speed, reducing the combustion noise. HCCI high load zone combustion control provides an effective means of. At the same time, exhaust gas recirculation can recover some of the exhaust gas energy. When the EGR ratio is less than 30%, the decrease of oxygenconcentration is not enough to affect the combustion exhaust gas recirculation, this time to control ignition effect is very small. The research of Christensen, the results show that the exhaust gas recirculation delayed ignition time, improve the indicated efficiency, reduce emissions of unburned HC at the same time, the exhaust temperature increased, can be installed to oxidize unburned HC by catalytic oxidation, compared with the gasoline engine HCCI combustion. Diesel HCCI combustion is more easily achieved, in the traditional diesel engine, because of its high compression ratio, the air - fuel ratio control in a certain range and the rate of EGR, close to room temperature can be successful implementation of diesel HCCI combustion. The mean effective pressure of HCCI diesel engine operation range by knocking, fire and low value, but higher than the gasoline engine HCCI combustionknocking of air-fuel ratio to achieve. Controlled autoignition time low temperature reaction rate by EGR, and the start time of the main heat release stage by the air-fuel ratio greater impact.Influence of valve timing.To change the valve timing can change the in cylinder residual gas and temperature in the cylinder, increasing negative valve overlap period (early exhaust valve closed, open the inlet valve, delay) the in cylinder residual gas volume increases, the residual gas recompression temperature increase. High temperature exhaust gas is beneficial to fuel evaporation, forming a homogeneous mixture, and high temperature in the cylinder and make the HCCI combustion ignition timing, thus easy to cause the high power state harshness, wells caused the maximum output power drop.HCCI发动机像传统的汽油发动机那样,吸人均质的混合气,但不用火花塞点火,而是通过提高压缩比,采用废气再循环、进气加温和增压等技术,提高缸内混合气的温度和压力,而使混合气压缩自燃。

汽油机HCCI燃烧技术综述

汽油机HCCI燃烧技术综述

汽油机HCCI燃烧技术综述摘要:为了适应严峻的环境和能源问题,车用发动机在努力提高热效率和降低排放的同时,也在不断地探索新的燃烧方法。

本文简要介绍了发动机均质混合压缩着火(HCCI)燃烧的特征及其燃烧控制方式,HCCI汽油机产业化的难点。

关键词:HCCI 汽油机均质混合控制方法目前,内燃机的燃烧模式主要有四种:均质混合气火花点燃(HCSI)模式、非均混合气压燃(SCCI)模式、分层混合气火花点火(SCSI)模式和均质混合气压缩着火(HCCI)模式。

发动机均质混合气压缩着火HCCI(Homogeneous Charge Compression Ignition)燃烧时一种全新的燃烧方式,它能有效降低内燃机的燃油消耗和排放问题,而且HCCI排放同时降至几乎为燃烧有可能使汽油机达到与柴油机同样高的热效率,使炭烟和NOx零。

1 汽油机HCCI燃烧的特征HCCI燃烧时多点大面积同时压缩着火,没有火焰传播前锋面,因而它可以再极端的时间内完成燃烧放热,其燃烧放热速率和等容度要远比传统的火花点燃火焰传播的HCSI 方式高得多,因而只是热效率和油耗会明显改善。

HCCI采用稀薄均匀混合气,并引入大量EGR,因而拒不燃烧温度可控制在1800K以下,消除了NO的基本生成条件。

由于是稀薄燃烧,进气节流可大大减少或完全不节流(像EGR那样),改善了传统汽油机节流损失过高的弊端。

上述中的核心问题是均质、低温和快速放热三点。

均质可以避免扩散燃无法产生;快速放热可以提高汽油机的热效率,而烧引起的炭烟生成;低温燃烧使NOx实现快速放热的最好方式是多点自燃。

由于HCCI燃烧同时解决了热效率低的五个问题(压缩比低、比热容低、泵吸损失大、燃烧等容度低以及循环波动率高),所以HCCI汽油机的油耗可以大幅度地降低,甚至降低至柴油机水平。

但因燃烧温度和压缩终点压力过低时,汽油混合气难以自燃着火,出现失火和着火时刻不稳定等现象;燃烧温度和压缩终点过低时,着火时刻过于提前以及燃烧速率过快出现粗暴燃烧等现象。

RCCI燃烧技术研究

RCCI燃烧技术研究

HUNAN UNIVERSITY 流体力学论文论文题目发动机RCCI燃烧技术方案研究学生姓名明阳学生学号S150200369专业班级动力工程及工程热物理学院名称机械与运载工程学院指导老师杨小龙2015年10月日摘要在环境问题日益严重的今天,汽车排放的净化处理技术显得愈加重要。

以现有的后处理技术,虽然可以使排放数值达到标准,但是其后续的费用、复杂的结构、昂贵的原料使得排放性和经济性无法得到平衡。

本文旨在解决过分依赖后处理来提高排放所引出的问题,通过优化缸内燃烧过程,运用RCCI技术降低排放、减轻后处理负担,最大限度的平衡经济性和排放性的国四柴油机技术的匹配。

RCCI(Reactivity Controlled Compression Ignition)是比较新的一种低温预混合燃烧并且可以实现燃烧相位可控的均质稀燃技术,本文通过进气道喷射汽油进行预混合,在缸内直喷直喷柴油后压燃混合气,通过两种燃油质量比的改变控制燃烧相位,达到小负荷不熄火、高负荷不粗暴的目的,同时有着较高的热效率。

为了进一步净化CO和HC的排放污染,搭配催化氧化技术(DOC)的RCCI内燃机,可以在原有极低的NOx和soot排放的基础上达到四种排放物数值同时降低到国四标准以下的程度,并且有望实现对于燃烧效率和排放性能的平衡。

关键词:国四排放标准,RCCI,DOC,PFI,DI1、引言1.1 课题背景及目的和意义环境与发展是世界各国普遍关注的焦点问题,发展不仅是满足当代人的需要,还要考虑和不损害后代人的生存条件。

因此,保护人类赖以生存的环境成为世界共同关心的问题。

汽车污染是环境污染的主要途径,为了人类的可持续发展,防治汽车污染已经成了刻不容缓的全球性问题,这就需要我们共同努力在科技创新、节能减排等方面来防治汽车污染。

汽车作为人们日常生活中不可或缺的部分,其造成的排放对于环境的影响愈加严重[1]。

世界各国对于汽车排放的法规颁布随着技术的发展日趋严格,排放性能的要求对于汽车的研发环节的影响也同样占据了越来越重的比例。

均质压燃(HCCI)发动机着火与燃烧过程的理论与数值研究共3篇

均质压燃(HCCI)发动机着火与燃烧过程的理论与数值研究共3篇

均质压燃(HCCI)发动机着火与燃烧过程的理论与数值研究共3篇均质压燃(HCCI)发动机着火与燃烧过程的理论与数值研究1均质压燃(HCCI)发动机着火与燃烧过程的理论与数值研究均质压燃(Homogeneous charge compression ignition,简称HCCI)是一种新型的发动机燃烧模式,其将汽油发动机和柴油发动机的优点集成在一起,可以同时实现高效、低排放和高功率。

HCCI发动机虽然具有广泛应用前景,但是其着火与燃烧过程复杂,仍需深入研究。

本文主要介绍HCCI发动机着火与燃烧过程的理论与数值研究。

一、HCCI发动机的优势HCCI发动机具有以下优点:首先,由于HCCI燃烧时采用了均质混合气,其NOx排放量较低;其次,使用混合气进行燃烧,燃烧效率较高,具有高功率特性;最后,不需要点火系统,使HCCI发动机的制造和维修成本较低。

二、HCCI发动机着火与燃烧过程的理论研究HCCI发动机中,燃料和空气混合在缸内,进入压缩阶段,若缸内压力和温度达到一定条件时,则发生着火。

着火点取决于混合气的成分、压强、温度和混合气的体积。

理论研究表明,HCCI燃烧的关键是混合气的均匀性和稳定性。

此外,混合气温度也是控制HCCI发动机着火与燃烧过程的重要参数。

三、HCCI发动机着火与燃烧过程的数值模拟数值模拟是HCCI发动机着火与燃烧过程研究的重要手段之一。

数值模拟可以提供一些难以从实验中获得的性能指标和工作参数信息,可以在燃料和操作条件变化的情况下进行HCCI发动机的优化。

在数值模拟中,需要确定HCCI燃烧时的物理、化学和流动学参数,包括混合气成分、热力学状态参数、燃油喷射过程、着火过程和燃气扩散过程等。

数值模拟的结果应与实验数据进行对比,以进一步优化HCCI发动机的设计和控制。

四、HCCI发动机着火与燃烧过程的关键技术HCCI发动机的着火与燃烧过程仍需要面临一些关键技术问题。

首先,需要寻找一种可靠的方法来预测着火和燃烧过程,以优化喷油量和提高发动机效率。

内燃机原理知识点及复习题

内燃机原理知识点及复习题

内燃机原理知识点及复习题平均有效压力Pmeo假想的平均不变的压力作用在活塞顶上使活塞移动一个行程所做的功等于每循环所做的有效功。

指示热效率n it。

发动机实际循环指示功与所消耗燃料热量的比值。

充量系数①c。

内燃机每循环实际进入气缸的新鲜充量与以进气管内状态充满气缸的工作容积的理论充量之比。

滞燃期。

指柴油机从开始喷油到开始着火的阶段。

喷油规律。

在喷油过程中,单位曲轴转角或单位时间内从喷油器喷入气缸中的燃油量。

放热规律。

燃料燃烧的瞬时放热率随曲轴转角的变化关系。

供油规律。

单位曲轴转角或单位时间内喷油泵供入高压油路的燃油流量。

充气效率。

实际进入气缸的新鲜工质与进气下整个气缸充满新鲜工质质量之比。

点火提前角特性曲线。

在气我机。

保持节气门开度,转速以及混合气浓度一定,记录功率排气温度随点火提前角变化曲线。

喷油泵速度特性。

喷油泵在流量调节齿杆位置不变,每循环喷油量随油泵转速变化的特性。

喷油泵调速特性。

柴油机调速器调速手柄位置一定。

喷油泵的循环供油量或拉杆位移随转速的变化关系。

负荷特性。

发动机转速不变,性能指标随负荷变化关系。

速度特性。

在油量调节机构位置保持不变。

内燃机性能指标随转速变化关系。

万有特性曲线。

在一张图上较全面地表示内燃机各种性能参数的变化,应用多参数特性的线。

转矩储备系数。

最大转距与标定转距之差与标定转距的相对值。

MAP图。

通过大量标定实验,获得喷油参数与综合目标控制之间的关系曲线图形。

功率标定。

生产者根据内燃机用途规定该机在标准大气条件下输出有效功率及对应转速,即额定功率与额定转速。

理想的喷油规律。

初期缓慢,中期急速,后期快断。

初期喷油速率不能太高,目的是减少在滞燃期内形成的可燃混合气数量,降低初期燃烧速率,以降低最高燃烧温度和压力升高率,从而抑制NOx的生成量以及降低燃烧噪声。

喷油中期应采用高喷油压力和高喷油速率以提高扩散燃烧速度,防止生成大量的PM和降低热效率。

喷射后期要迅速结束喷射,以避免在低的喷油压力和喷油速率下使燃油雾化变差,导致燃烧不完全而使HC和PM的排放量增加。

部分预混燃烧的原理

部分预混燃烧的原理

部分预混燃烧的原理
部分预混燃烧(Partially Premixed Combustion,PPC)是一种燃烧方式,结合了均匀预混燃烧(Homogeneous Charge Compression Ignition, HCCI)和传统的内燃机燃烧方式。

它的原理是将燃料和空气局部预混,并在部分预混燃烧室中进行点燃。

部分预混燃烧的原理包括以下几个方面:
1. 燃料和空气预混合:在部分预混燃烧中,燃料和空气在燃烧室中进行预混合,使得燃料和空气的混合更为均匀。

这种预混合有助于提高燃料和空气的反应速度和速率,使得燃烧更加均匀和完全。

2. 极限混合条件:在部分预混燃烧中,通过提高某些条件,例如进气温度和压力的控制,来达到燃料和空气混合的极限条件。

这种极限混合条件有助于提高燃料和空气的可燃性和反应的速率。

3. 缓慢燃烧速率:在部分预混燃烧中,点燃方式选择较为缓慢和温和的方式,例如通过碰撞和扩散来点燃混合物。

这种缓慢燃烧速率有助于降低峰值燃烧温度和压力,减少燃烧室内的热负荷,从而减少氮氧化物(NOx)和颗粒物(PM)的生成。

4. 控制燃烧时机:在部分预混燃烧中,通过控制点火时机,使得燃料和空气在
合适的时间内进行混合和点燃。

这有助于提高燃烧效率和燃料利用率,并降低尾气中有害物质的排放。

通过上述原理,部分预混燃烧能够在一定程度上解决传统内燃机燃烧过程中的一些问题,例如高温高压下的NOx生成和颗粒物排放,同时提高燃料经济性和环境友好性。

稀薄燃烧

稀薄燃烧

稀薄燃烧黄学新06车辆工程四班200630480411摘要:本文主要介绍了汽油发动机的稀薄燃烧技术,在车用汽油机普遍采用电控技术,发动机性能普遍得到较大改善的今天,稀薄燃烧技术为汽油机性能的进一步提高提供了广阔的前景。

关键词:汽油机;稀薄燃烧;缸内直喷稀薄燃烧;GDI;HCCI;均质稀薄点燃;随着汽车工业的发展,汽车已不仅仅是一部机械,更重要的是一个先进科技的混合物,各种领先科技都汇集在一部汽车上。

对汽车的动力性,舒适性,经济性,操纵稳定性,安全性等的要求越来越高。

世界上能源越来越稀缺,汽油价格也逐年攀升,汽车尾气排放更是令人深恶痛绝,这些都妨碍着汽车工业的发展,汽车行业研究者不断通过高新的技术去克服这些问题,稀薄燃烧就是为了解决这些问题的新技术之一。

稀薄燃烧技术是提高汽油机燃油经济性和降低排放的重要手段。

稀薄燃烧是指空燃比达到20以上的燃烧。

目前, 汽油机稀薄燃烧包括进气道喷射稀燃系统(PFI)、直接喷射稀燃系统(GDI)和均质混合气压燃系统(HHCI)。

1.PFI进气道喷射稀燃系统(PFI)普通汽油机工作时保证可靠点火所对应的空燃比为10:2~20:1,与此相比,稀燃汽油机的空燃比要大得多。

为了保证可靠点火,点燃式稀燃汽油机在点火瞬间火花塞周围必须形成易于点燃的空燃比为12:1~13.5:1的混合气。

这就要求混合气在气缸内非均质分布。

而要实现混合气的非均质分布,必须使混合气在气缸内分层。

混合气分层主要依靠气流的运动结合适时的喷油实现。

进气道喷射稀燃系统根据进气流在气缸内的流动形式不同,可分为涡流分层和滚流分层两种。

2.GDIGDI是Gasoline Direct-Injection的缩写,意即汽油直接喷射,其结构见图1。

近年来,国外各大汽车厂商都在积极研究开发缸内直喷分层稀薄燃烧技术。

德国大众公司于2000年向市场投放了FSI型缸内直喷汽油机,2001年标致雪铁龙公司开发了HPI 缸内直喷系统,丰田公司则推出了D-4型直喷式火花点火发动机等。

Homogeneous charge compression ignition barrel eng

Homogeneous charge compression ignition barrel eng

专利名称:Homogeneous charge compression ignition barrel engine发明人:トーマス チャールズ ラッセル申请号:JP2002539674申请日:20011030公开号:JP4148773B2公开日:20080910专利内容由知识产权出版社提供摘要: Homogeneous charge air compression ignition barrel (50) engine, having an engine housing with the second end and the first end. Provided in the longitudinal direction of the engine housing of the engine, an elongated power shaft (52), defines the longitudinal axis of the engine. The surround has its longitudinal axis (54), a plurality of cylinders (54) is provided with an open end and a closed end each cylinder. (54) has a central axis each cylinder. Each open end of the cylinder (54) is directed into each of the cylinders as a whole combustible air-fuel mixture. Trajectory (56), be provided between the open end of the cylinder (54) and the first end of the housing, the central axis of each cylinder (54) as a whole part orbit (56) and is adapted to be placed in a state of being aligned with. Trajectory (56) has a (58) a cam surface which is undulating in the longitudinal direction relative to the open end of the cylinder (54). Part of the cam surface (58) is disposed in a state of being aligned with the overall central axis of each cylinder. (54), operable combustible air-fuel mixture until the ignition automatically compressing the combustible air-fuel mixture without causing spark each cylinder.申请人:トーマス チャールズ ラッセル地址:アメリカ合衆国 ルイジアナ州 70435 カヴィントン バーチ ベンド 74333国籍:US代理人:中村 稔,大塚 文昭,熊倉 禎男,宍戸 嘉一,小川 信夫,西島 孝喜,箱田 篤更多信息请下载全文后查看。

HCCI——一种大有前途的清洁汽车技术(二)

HCCI——一种大有前途的清洁汽车技术(二)

HCCI——一种大有前途的清洁汽车技术(二)摘要:随着环保意识的日益提高和世界经济的发展,清洁汽车技术越来越成为汽车产业领域的热点。

HCCI(Homogeneous Charge Compression Ignition)技术因其高效、低排放的特性而备受关注。

本文主要探讨了HCCI技术的基本原理、发展历程以及其优缺点。

通过分析HCCI技术的现状和未来发展,展望了HCCI技术作为清洁汽车技术之一的前景。

关键词:HCCI技术、清洁汽车、排放、高效、未来正文:1. HCCI技术的基本原理HCCI技术是一种革命性的汽车发动机燃烧方式。

其基本原理是在汽缸内混合空气和燃料,使其形成均质的混合气,然后通过压缩点火的方式实现自燃,从而释放能量驱动汽车运动。

与传统的汽油和柴油发动机相比,HCCI技术具有更高的热效率和更低的排放,因此被认为是一种非常有前途的清洁能源技术。

2. HCCI技术的发展历程HCCI技术最早可以追溯到20世纪60年代初,其原始形式是使用高压空气喷枪将燃料喷入发动机内部。

但是,由于燃料不能完全混合,燃烧不稳定,因此这种技术无法实现商业化。

随着计算机技术和控制系统的发展,HCCI技术逐渐成熟,并在1990年代初得到了广泛的应用。

截至目前,HCCI技术已经应用于多款商用车和概念车中。

3. HCCI技术的优缺点HCCI技术的优点有:(1)高效:与传统发动机相比,HCCI发动机具有更高的热效率,可以更有效地利用燃料的能量。

(2)低排放:HCCI发动机的排放比传统发动机低,特别是在氮氧化物和颗粒物方面。

(3)灵活性:HCCI技术可以使用多种类型的燃料,如汽油、柴油和生物质燃料等。

HCCI技术的缺点有:(1)难以控制:由于HCCI技术需要在混合气锥中点燃,因此控制点火点和燃料性质是非常困难的。

(2)经济成本高:目前,HCCI发动机的制造和维护成本相对较高,因此在商业应用中还不如传统发动机。

4. HCCI技术的未来HCCI技术作为一种清洁能源技术,有着广阔的前景。

HCCI燃烧方式的实质

HCCI燃烧方式的实质

HCCI燃烧方式的实质一、引言汽车工业一直在不断地探索和寻找更加高效、环保的燃烧方式,以减少对环境的污染和提高汽车燃油的效率。

HCCI燃烧方式,也就是均质压燃式发动机,正是针对这一目标而所开发的一种新型发动机,那么,HCCI燃烧方式的实质是什么呢?二、HCCI燃烧方式的发展历程HCCI燃烧方式的研究,最早可以追溯到20世纪的70年代,当时一些研究人员开始尝试使用预混合进气来实现计算精度高、燃油效率高的燃烧方式。

随着计算机技术的发展,研究人员不断地进行计算模拟和实验研究,HCCI燃烧技术也越来越接近实用化。

1992年,日本丰田公司的研究人员第一次成功地使用HCCI发动机来驱动汽车。

在此后的几十年里,HCCI发动机不断地得到完善和改进,成为当前发展前景最为广阔的一种发动机技术。

三、HCCI燃烧方式的实质HCCI燃烧方式与传统的SI(汽油机)和CI(柴油机)有很大的不同。

在SI发动机中,空气和油气混合物被进入缸体,由火花点燃,然后燃烧。

而在CI发动机中,空气和燃料分别进入缸体,然后被压缩,最后由喷油嘴喷出柴油,就完成了燃烧过程。

在HCCI发动机中,燃料和空气在进入缸体之前就已经混合一起了,这个混合物会被压缩到一个特定的温度、压力下,以致于自发燃烧,而无需火花或者喷油嘴的干预。

这个过程被称作均质压燃燃烧(Homogeneous Charge Compression Ignition,HCCI),是一种实现自燃的发动机燃烧方式。

这一方法可以实现类似柴油机的高效率,同时又能够实现类似汽油机的低排放,因而受到很多研究人员和汽车制造商的重视。

四、HCCI燃烧方式的优点和挑战HCCI燃烧方式具有比传统的SI或CI发动机更高的燃油效率和更低的污染排放。

首先,由于燃料和空气的充分混合,燃烧更加充分,从而提高了燃油效率。

其次,由于自发燃烧是在缸内进行的,燃烧过程是均匀而且非常稳定的,从而减少了不完全燃烧和燃烧不均匀的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Homogeneous Charge Compression Ignition – the future of IC engines?Prof. Bengt JohanssonLund Institute of Technology at Lund UniversityABSTRACT The Homogeneous Charge Compression Ignition Engine, HCCI, has the potential to combine the best of the Spark Ignition and Compression Ignition Engines. With high octane number fuel the engine operates with high compression ratio and lean mixtures giving CI engine equivalent fuel consumption or better. Due to premixed charge without rich or stoichiometric zones, the production of soot and NOx can be avoided. This paper presents some results from advanced laser diagnostics showing the fundamental behaviour of the process from a close to homogeneous combustion onset towards a very stratified process at around 20-50% heat released. The need for active combustion control is shown and possible means of control are discussed. Results with multi-cylinder engines using negative valve overlap, variable compression ratio, fast inlet temperature control as well as dual fuel are given. INTRODUCTION The internal combustion engine is the key to the modern society. Without the transportation performed by the millions of vehicles on road and at sea we would not have reached the living standard of today. We have two types of internal combustion engines, the spark ignition, SI, and the compression ignition, CI. Both have their merits. The SI engine is a rather simple product and hence has a lower first cost. This engine type can also be made very clean as the three-way catalyst, TWC, is effective for exhaust aftertreatment. The problem with the SI engine is the poor part load efficiency due to large losses during gas exchange and low combustion and thermodynamical efficiency. The CI engine is much more fuel efficient and hence the natural choice in applications where fuel cost is more important than first cost. The problem with the CI engine is the emissions of nitrogen oxides, NOx, and particulates, PM. Aftertreatment to reduce NOx and particulates is expensive and still not generally available on the market. The obvious ideal combination would be to find an engine type with the high efficiency of the CI engine and the very low emissions of the SI engine with TWC. One such candidate is named Homogeneous Charge Compression Ignition, HCCI. The fuel efficiency of HCCI has been compared to that of normal SI operation by Stockinger et al. [1]. Figure 1 shows that they noted an improvement of fuel efficiency from 15% to 30% at 1.5 bar BMEP. This is an improvement of 100% equivalent to a reduction of fuel consumption with 50%. More recently Yang et al. presented a comparison between HCCI, denoted OKP, and normal SI and direct injected SI concepts, DISI. He found a much higher fuel consumption benefit for HCCI than for DISI concepts. The major benefit of HCCI compared to CI is the low emissions of NOx and PM. The CI engine normally has a trade-off between particulates and NOx. If the engine operates at conditions with higher in-cylinder peak temperature, the oxidization of soot will be good but the thermal production of NO will increase. If on the other hand the engine is operated with lower temperature NO can be suppressed but PM will be high due to bad oxidation. Figure 3 shows this trade-off and also the allowed emissions in EU and US today and in the near future. Clearly the CI engine must use exhaust aftertreatment of NOx and/or PM. In the CI engine, NO is formed in the very hot zones with close to stoichiometric conditions and the soot is formed in the fuel rich spray core. The incylinder average air/fuel ratio is always lean but the combustion process is not. This means that we have a large potential to reduce emissions of NOx and PM by simply mixing fuel and air before combustion. In Figure 3 the normal emission level from an HCCI engine is also displayed. The NOx is normally less than 1/500 of the CI level and no PM is generated by combustion. HCCI FUNDAMENTALS THE HCCI PRINCIPLE – HCCI means that the fuel and air should be mixed before combustion starts and that the mixture is autoignited due to the increase in temperature from the compression stroke. Thus HCCI is similar to SI in the sense that both engines use a premixed charge and HCCI is similar to CI as both rely on autoignition for combustion initiation. However, the combustion process is totally different for the three types. Figure 4 shows the difference between (a) SI combustion and (b) HCCI. In the SI engine we have three zones, a burnt zone, an unburned zone and between them a thin reaction zone where the chemistry takes place. This reaction zone propagates through the combustion chamber and thus we have a flame propagation. Even though the reactions are fast in the reaction zone, the combustion process will take some time as the zone must propagate from spark plug (zero mass) to the far liner wall (mass wi ). With the HCCIprocess the entire mass in the cylinder will react at once. The right part of Figure 4 shows HCCI, or as Onishi called it Active Thermo-Atmosphere Combustion, ATAC. We see that the entire mass is active but the reaction rate is low both locally and globally. This means that the combustion process will take some time even if all the charge is active. The total amount of heat released, Q, will be the same for both processes. It could be noted that the combustion process can have the same duration even though HCCI normally has a faster burn rate. Initial tests in Lund on a two stroke engine revealed the fundamental difference between these two types of engines. Figure 5 shows normal flame propagation from two spark plugs at the rated speed of 9000 rpm. We see two well defined flames and a sharp border between burned and unburned zones. Figure 6 shows the same engine when HCCI combustion was triggered by using regular gasoline (RON 95) instead of iso-octane. The engine speed was increased up to 17000 rpm and a more distributed chemiluminescense image resulted. REQUIREMENTS FOR HCCI – The HCCI combustion process puts two major requirements on the conditions in the cylinder: (a) The temperature after compression stroke should equal the autoignition temperature of the fuel/air mixture. (b) The mixture should be diluted enough to give reasonable burn rate. Figure 7 shows the autoignition temperature for a few fuel as a function of λ. The autoignition temperature has some correlation with the fuels’ resistance of knock in SI engines and thus the octane number. For iso-octane, the autoignition temperature is roughly 1000K. This means that the temperature in the cylinder should be 1000 K at the end of the compression stroke where the reactions should start. This temperature can be reached in two ways, either the temperature in the cylinder at the start of compression is controlled or the increase in temperature due to compression i.e. compression ratio is controlled. It could be interesting to note that the autoignition temperature is a very weak function of air/fuel ratio. The change in autoignition temperature for iso-octane is only 50K with a factor 2 change in λ. Figure 7 also shows the normal rich and lean limits found with HCCI. With a too rich mixture the reactivity of the charge is too high. This means that the burn rate becomes extremely high with richer mixtures. If an HCCI engine is run too rich the entire charge can be consumed within a fraction of a crank angle. This gives rise to extreme pressure rise rates and hence mechanical stress and noise. With a high autoignition temperature like that of natural gas, it is also possible that formation of NOx can be the load limiting factor. Figure 8 shows the NO formation as a function of maximum temperature. Very low emission levels are measured with ethanol. If thecombustion starts at a higher temperature like with natural gas, the temperature after combustion will also be higher for a given amount of heat released. On the lean side, the temperature increase from the combustion is too low to have complete combustion. Partial oxidation of fuel to CO can occur at extremely lean mixtures; λ above 14 has been tested. However, the oxidation of CO to CO2 requires a temperature of 1400-1500 K. As a summary, HCCI is governed by three temperatures. We need to reach the autoignition temperature to get things started; the combustion should then increase the temperature to at least 1400 K to have good combustion efficiency but it should not be increased to more that 1800 K to prevent NO formation. HCCI COMBUSTION PROCESS IN DETAIL The above description of HCCI gives just a rough idea about the requirements and conditions of the combustion process. It is also of greatest interest to acquire detailed knowledge of the process. In order to get such information, laser based diagnostics is of crucial importance. Some of the activities in this field from Lund University will thus be presented. INHOMOGENEOUS COMBUSTION – The first experiments with laser based diagnostics were performed to analyze the difference in combustion between a perfectly homogeneous fuel/air mixture and one with small gradients. Laser induced fluorescence of fuel tracer or OH was used to mark the combustion process. Figure 9 shows the system setup with a laser generating a vertical laser sheet. Figure 10 shows the fuel distribution for the two cases with an inhomogeneity of approximately 5% in the case of port fuel injection and homogeneity within the detection limit for the case with a mixing tank and fuel injection far upstream. Figure 11 and Figure 12 shows the fuel concentration with half the heat released. We can from these images conclude that the combustion is far from homogeneous. There are islands with much fuel remaining and close to them regions with very little fuel left. Figure 13 shows the same behavior for the concentration of OH. Zones with much OH are close to zones with no OH and the gradients are steep. Each individual cycle was also found to be unique. The four cycles displayed are randomly picked samples. No preferred type of structure could be detected. SINGLE CYCLE INFORMATION – A major limitation with the information from Figure 11 to Figure 13 is that only one image can be captured from each cycle. Due to the very large cycle to cycle variation in the process, it is impossible to extract information on possible expansion of zones with intense reactions i.e. flame propagation. To overcome this problem a unique laser system was used. Four individual lasers which can generate eight laser pulses were combined with a framing camera using eightindividual CCD chips. This system was used in an optical Scania engine with transparent liner and a window in the extended piston. The setup can be seen in Figure 14. The measured area was 95x 55 mm thus enabling distinction between local and global effects. Figure 15 shows a sequence of fuel LIF images captured with 0.5 CAD time separations at 1200 rpm. The images are from 20% to 50% heat release. From these and numerous similar mini-movies it was possible to conclude that the combustion changed behavior during the process. In the initial phase a slow but stable decrease in the fuel LIF signal was detected. This was interpreted as a slow and rather homogeneous start of the process. At around 20-30% heat released the fuel LIF image changed. Then even the smallest structures found before were amplified to give an image with more intense gradients. The gradients were found to be amplified even more as the process evolved and at approx. 50% heat release the structures found earlier during the single shot experiments were clear. From 50% heat release and onwards the structures were stable and the fuel signal disappeared not long after that. This single cycle observation of the process leads to a phenomenological description of the HCCI combustion process. THE PHENOMENOLOGICAL MODEL OF HCCI COMBUSTION – The HCCI combustion process is assumed to start with a gradual decomposition of the fuel with well distributed reactions. The reactions will become significantly exothermic when a critical temperature is approached. At this critical condition the reaction rate will be very sensitive to the temperature of the charge. Even the smallest variations in temperature will thus influence the reaction rates. As we will have random variation in temperature in the cylinder, some locations will have more favorable conditions. In those locations, sometimes denoted “hot spots” the reactions thus will start a bit earlier. As the exothermic reactions start the temperature is increased and thus reactions become even faster. We thus have a local positive feedback in temperature. Figure 16 shows an attempt to illustrate this. As the local positive feedback is fast, there will not be sufficient time to distribute all the heat to the surrounding cold bulk. Thus we have a gradual amplification of small inhomogeneities generating the very large structures seen in the experiments. The size of the hot spots was found to be of the same order as the integral length scale of turbulence in the cylinder. In the Scania engine, this was 4-6 mm. Flame propagation? - It could be argued that the “hot-spots” grow as a function of time and this growth rate could be translated to a reaction zone propagation or in other words flame front. However, after studying numerous individual cycles it was concluded that the concept of flame propagation in HCCI could not be supported. There will be a time lag between combustion starting point at different zones but new “hot-spots” show up randomly and the structures seenin the images are rather fixed i.e. do not move from image to image. If we would use the term flame speed for a case where two hot spots show up at exactly the same time we would also have a problem as the flame speed then would be infinity. THE NEED FOR CONTROL For better understanding of the combustion process, laser diagnostics is needed and this knowledge can be used to optimize the system. However, the HCCI process is very sensitive to disturbances. It can be sufficient to change the inlet temperature 2˚C to move from a very good operating point to a total misfire. This sensitivity makes the HCCI engine require closed loop combustion control, CLCC. Closed loop control requires as always a sensor, control algorithm and control means. The main parameter to control for HCCI is the combustion timing i.e. when in the cycle combustion takes place. Figure 17 shows the rate of heat release for a range of timings. With early phasing the rate of heat release is higher and as it is phased later the burn rate goes down. With combustion before top dead center, TDC, the temperature will be increased both by the chemical reactions and the compression due to piston motion. Thus for a given autoignition temperature, combustion onset before TDC will result in faster reactions. With the conditions changed to give combustion onset close to TDC, the temperature will not be increased by piston motion, the only temperature driver would be the chemical reactions. This gives a more sensitive system and the later the combustion phasing the more sensitive the system is. This is the underlying problem with HCCI combustion control. We want a late combustion phasing to reduce burn rate and hence pressure rise rate and peak pressure but on the other hand we can not accept too much variations in the combustion process. How late we can go depends on the quality of the control system. With a fast and accurate control system we can go later and hence reduce the noise and mechanical loads of the engine. COMBUSTION SENSOR – The most accurate and reliable signal for combustion is the in-cylinder pressure. With the standard heat release equation it is very easy to extract the combustion onset etc. The most usable parameter for combustion phasing is the crank angle of 50% of the heat released. Figure 18 shows the procedure to extract this 50% heat released point denoted CA50. The cylinder pressure is a very stable and robust signal but the cost of such sensors is still too high for production engines. One alternative could be an ion current measurement system. The ion current can be measured by applying a voltage on the electrodes of a normal spark plug. The technique has been used by SAAB Automobile in production since 1993 for the detection of knock and misfire in SI engines, but the application on HCCI is not straight forward. The signalintensity is very sensitive to the temperature in the cylinder and thus lean burn HCCI give low signal. Figure 19 shows a typical ion current measurement system and Figure 20 shows the typical signal obtained in HCCI mode. The best representation of combustion phasing was found by extracting the crank angle at which 50% of the maximum amplitude was detected. This gave good correlation to the crank angle of 50% heat released, CA50 as shown in Figure 21. Two individual operating points are shown, one with a relatively early timing and hence less cycle to cycle variations and one with late timing. For both cases, a small phase difference was detected between the crank angle at 50% of maximum ion signal and CA50 but this can easily be compensated by the controller. CONTROL MEANS - The HCCI combustion control can be considered as a balance in temperature. With low temperature at TDC the combustion will be late and with high temperature at TDC the combustion will start early. To control temperature, three major parameters can be used. Inlet temperature and compression ratio will directly change the TDC temperature. The third parameter is the amount of residual gas retained in the cylinder from the previous cycle. A fourth possible way of controlling the process is to change the required autoignition temperature by adjusting the fuel quality. Figure 22 shows possible combinations of inlet temperature, compression ratio and fuel octane number for combustion onset at TDC for a 1.6 liter single cylinder Volvo Truck engine. The figure shows that a higher octane fuel needs higher inlet temperature or higher compression ratio to reach autoignition at TDC. Figure 23 shows similar combinations but here the two fuels are regular gasoline and diesel oil instead of the primary reference fuels nheptane and iso-octane. A very popular concept for achieving HCCI in SI engines at part load is the use of negative valve overlap. With this concept the exhaust valves close early and thus hot burnt gas is trapped in the cylinder. After a short compression and expansion the inlet valve is opened late. This type of process often denoted Controlled Autoignition, CAI, gives good performance but in a limited operating range. Figure 24 shows the operating range of a 6-cylinder 3 litre Volvo Cars engine. A better way of controlling the process is by applying variable compression ratio or fast inlet air temperature control. With this concept it is possible to run at idle at all engine speeds between 600 and 5000 rpm. Maximum load is the same as for CAI but it can be maintained also for higher engine speeds. Figure 26 shows the operating range for a SAAB 1.6 liter 5cylinder variable compression engine using fast thermal management as shown in Figure 25. It should be noted that the BMEP is presented in contrast to the IMEP for CAI in Figure 24. A possible way of HCCI combustion control can also be the use of dual fuels. Using two fuel tanks couldcause some problems with costumer acceptance but it is possible to generate two fuels from one using a reformer. Experiments with dual fuel in Lund have shown that it is a very powerful control means. Figure 27 shows the operating range possible with a Scania 12-liter 6-cylinder truck engine running on a mixture of ethanol and n-heptane. CONTROLLER - In order to achieve the high loads reported for the SAAB and Scania multi cylinder engines, it is absolutely necessary to use closed loop control with a well tuned controller. To make the controller usable over the entire speed and load range, the gain of the controller must be changed in accordance with the change of gain of the process. Figure 28 shows the combustion phasing, CA50, as a function of octane number for the Scania dual fuel engine at different operating conditions. With early combustion timing and conditions requiring low octane number, the slope of the curves are low. This means that a large change of octane number is needed to change the combustion timing one crank angle. Thus we should have a large gain of the controller in these operating conditions. If we then look at conditions with high octane number and late combustion phasing, the required change in octane number to change phasing a crank angle is much less. With this higher gain of the process we must reduce the gain of the controller; otherwise the system will become unstable. Tuning the gain of the controller to compensate for changes in the process can be done by using gain scheduling. With this it is possible achieve close to optimal performance for all operating conditions. In fact it is even possible to operate an HCCI engine at unstable operating points with the closed loop combustion control active. Figure 29 shows one such case. TABLES AND FIGURESFigure 1: The fuel efficiency of HCCI and SI engine configurations. Open diamond =SI at λ=1, Rc=18.7, Open triangle = HCCI lean burn, Filled diamond= HCCI with EGR and Filled circle= SI at λ=1 and Rc=9.5:1 [1]Figure 2: Net indicated specific fuel consumption of four different combustion types [2] Figure 5: SI flame propagation in 2-Stroke engine at 9000 rpm [4].0,01P MUSA 2007*0 0,05NOx0,00 0,5Figure 6: HCCI combustion in 2-Stroke engine at 17000 rpm.1200 1150 Natural gas Iso−octane Ethanol MethanolFigure 3: The NOx-PM trade-off for a standard diesel engine, the future emission regulations and the emissions of HCCI (Green)Ignition Temperature [K]1100 1050 1000 950 900Figure 4: The difference between SI and HCCI combustion process. Q= total amount of heat, q=heat per mass unit, w=mass [3]850 22.533.5 λ44.55Figure 7: Ignition temperature for a few fuels as a function of dilution (λ). λFigure 8: NOx as a function maximum temperature evaluated from the pressure-trace [5].Figure 11: Fuel distribution at approx. 50% heat released with port fuel injection [6].Figure 9: First laser system [6].Figure 12: Fuel distribution at approx. 50% heat released with mixing tank [6].Figure 10: Fuel distribution with port fuel injection (left) and far upstream (right) just before combustion starts. Four individual cycles are shown. [6] Figure 13: OH signal at approximately 50% heat released. To the left with port fuel injection and to the right with mixing tank [6].Figure 17: Rate of heat release with a change in inlet temperature and thus combustion phasing [9]. Figure 14: Optical system for high speed fuel LIF [7].Visualized areaFigure 15: Fuel concentration from 2 CAD ATDC with 0.5 CAD step [7].Reactions at T(t=1), releasing significant heat Critical ignition temperature T (x,t=0) Wall T (x,t=1) Ignition at T (t=0)Ignition at T (t=1) TempFigure 18: Cylinder pressure trace and corresponding heat release [10].Arbitrary distance xFigure 16: Temperature at three instants of time [8].Figure 19: Ion current measurement system [11].Ion current [µA] Crank Angle [CAD] Figure 20: Ion current signal with a change in combustion timing. The average of 300 cycles is shown [11]. Figure 23: Combinations of percentage gasoline, compression ratio and inlet temperature to give combustion onset at TDC [12]. CA50 Figure 21: Crank angle for 50% of maximum ion signal vs. crank angle at 50% heat released for two individual operating points [11]. Figure 24: Operating range of Controlled Autoignition type of HCCI in a 6-cylinder Volvo Car engine [13].Air in Exhaust heat Exhaust out CatalystFigure 22: Combinations of fuel octane number, compression ratio and inlet temperature to give combustion onset at TDC [12]Figure 25: Fast Thermal Management, FTM [14].Figure 26: Operating range with compression ratio and inlet temperature control. Minimum load is 0 bar (idle) at all engine speeds [15].16 14 12 BMEP (bar) 10 8 6 4 2 0 1000 1200 1400 1600 Engine Speed (rpm) 1800 2000Figure 29: Operation at stable and unstable conditions after closed loop combustion control is switched off [10]. CONCLUSION The Homogeneous Charge Compression Ignition, HCCI, combustion process is an interesting alternative to the conventional Spark Ignition and Compression Ignition processes. The potential benefit of HCCI is high with simultaneous ultra low emissions of NOx and PM and low fuel consumption. Thus it can combine the best features of the SI (with TWC) and CI engines. To better understand the process, laser based techniques must be used. Such measurements in Lund have revealed that the combustion process is rather homogeneous in the initial stage but it gradually transfers into a highly inhomogeneous process with steep gradients between reacting and non-reacting zones. The HCCI engine requires active control of the combustion process. Such closed loop combustion control has been demonstrated in a number of multicylinder HCCI engines in Lund. Use of negative overlap is possible but often generates a limited operating range. The use of variable compression ratio is a very powerful control means but can have some problems to reach production for cost reasons. Fast Thermal Management can perhaps be the key technology to be used for HCCI combustion control.Figure 27: Operating range with dual fuel control [16].Figure 28: Combustion phasing vs. octane number for a range of operating conditions [16].The maximum engine speed for HCCI in Lund is 17000 rpm and the maximum load is 20.4 bar IMEP/ 16 bar BMEP. This indicates that most interesting speeds and loads can be reached with HCCI. ACKNOWLEDGMENTS The results presented in this paper are a summary of results of the HCCI activities in Lund. I thank all fellow researchers, Ph.D. students and technicians for generating the results. I would also like to thank our sponsors: The Swedish Energy Administration, The Swedish Gas Centre, Volvo Cars, Volvo Trucks, VolvoPenta, Scania CV, Saab Automobile, Fiat-GM Powertrain, Caterpillar, Cummins, Toyota, Nissan and Hino. REFERENCES 1 M. Stockinger, H. Schäpertöns, P. Kuhlmann: “Versuche an einem gemischansugenden Verbrennungsmotor mit Selbstzündning”, MTZ Motortechnische Zeitschrift 53 (1992) 2 pp 80-85 2 J. Yang, T. Culp, T. Kenney, “Development of a Gasoline Engine System Using HCCI Technology – The Concept and test Results”, SAE 2002-01-2832 3 S: Onishi, S. Hong Jo, K. Shoda, P Do Jo, S. Kato: ”Active Thermo-Atmosphere Combustion (ATAC) - A New Combustion Process for Internal Combustion Engines”, SAE 790501 4 Ekenberg, M. In-Cylinder Fluid Flow, Fuel Preparation and Combustion in SI Engines Application of Optical Diagnostics, Doctoral Thesis, Department of Heat and Power Engineering, Lund Institute of Technology, Lund, Sweden 2002. ISBN 91-7874-178-5 5 Johansson, B., Einewall, P. and Christensen, M. Homogeneous charge compression ignition (HCCI) using isooctane, ethanol and natural gas—A comparison with spark-ignition operation. SAE Transactions, Journal of Fuels and Lubricants, vol. 106, SAE Technical Paper 972874, 1997. 6 Richter, M., Franke, A., Engström, J., Aldén, M., Hultqvist, A. and Johansson, B. The Influence of Charge Inhomogeneity on the HCCI Combustion Process, SAE Technical Paper 2000-01-2868, 2000 7 Hultqvist, A., Christensen, M., Johansson, B., Richter, M., Nygren, J., Hult, J. and Aldén, M. Characterization of the HCCI Combustion Process in a Heavy Duty Engine by High-Speed Fuel Tracer LIF and Chemiluminescence Imaging, SAE 2002 Transactions, Journal of Engines, SAE Technical Paper 2002-01-0424, 2002 8 Hultqvist, A., “Characterization of the Homogeneous Charge Compression Ignition Combustion Process”, Doctoral Thesis, Department of Heat and Power Engineering, Lund Institute of Technology, Lund, Sweden 2002. ISBN 91-7874-173-4 9 Christensen, M. HCCI Combustion - Engine Operation and Emission Characteristics, Doctoral Thesis, Department of Heat and Power Engineering, Lund Institute of Technology, Lund, Sweden 2002. ISBN 91-628-5424-0 10 Jan-Ola Olsson, “The HCCI Engine – High Load Performance and Control Aspects”, Doctoral Thesis,Department of Heat and Power Engineering, Lund Institute of Technology, Lund, Sweden 2004. 11 Strandh, P., Christensen, M., Bengtsson, J., Johansson, R., Vressner, A., Tunestål, P. and Johansson, B., “Ion Current Sensing for HCCI Combustion Feedback”, SAE 2003-01-3216, 2003 12 Christensen, M., Hultqvist, A. and Johansson, B. ”Demonstrating the Multi Fuel Capability of a Homogeneous Charge Compression Ignition Engine with Variable Compression Ratio”, SAE Transactions, Journal of Engines, vol. 108, SAE Technical Paper 1999-01-3679, 1999. 13 Persson, H, Agrell,M, Olsson, J-O, Johansson, B: “The Effect of Intake Temperature on HCCI Operation Using Negative Valve Overlap”, SAE paper 2004-010944 14 Hyvönen, J., Haraldsson, G., Tunestål, P, Johansson, “HCCI Closed-Loop Combustion Control Using Fast Thermal Management”, SAE paper 200401-0943. 15 Hyvönen, J., Haraldsson, G. and Johansson, B. Supercharging HCCI to Extend the Operating Range in a Multi-Cylinder Vcr-Hcci Engine, 2003-01-3214 16 Olsson, J-O, Tunestål, P. and Johansson, B. Closed-Loop Control of an HCCI Engine. SAE Technical Paper 2001-01-1031, 2001。

相关文档
最新文档