电流滞环跟踪spwm要点

合集下载

SPWM

SPWM
(2)调节频率时,一方面,调制波与载波的周期要同时改变(改变的规律本文不作介绍);另一方面,调制波的 振幅要随频率而变,而载波的振幅则不变,所以,每次调节后,所交点的时间坐标都必须重新计算。 要满足上 述要求,只有在计算机技术取得长足进步的20世纪80年代才有可能,同时,又由于大规模集成电路的飞速发展, 迄今,已经有能够产生满足要求的SPWM波形的专用集成极性法 实施要求
PWM的全称是Pulse Width Modulation(脉冲宽度调制),它是通过改变输出方波的占空比来改变等效的 输出电压。广泛地用于电动机调速和阀门控制,比如电动车电机调速就是使用这种方式。
所谓SPWM,就是在PWM的基础上改变了调制脉冲方式,脉冲宽度时间占空比按正弦规律排列,这样输出 波形经过适当的滤波可以做到正弦波输出。它广泛地用于直流交流逆变器等,比如高级一些的UPS就是一个例子。 三相SPWM是使用SPWM模拟市电的三相输出,在变频器领域被广泛的采用。
谢谢观看
2.
(1)调制波和载波:曲线①是正弦调制波,其周期决定于需要的调频比kf,振幅值决定于ku,曲线②是采用等 腰三角波的载波,其周期决定于载波频率,振幅不变,等于ku=1时正弦调制波的振幅值,每半周期内所有三角波 的极性均相同(即单极性)。
调制波和载波的交点,决定了SPWM脉冲系列的宽度和脉冲音的间隔宽度,每半周期内的脉冲系列也是单极 性的。
在通用变频器采用的交-直-交变频装置中,前级整流器是不可控的,给逆变器供电的是直流电源,其幅值恒 定。从这点出发,设想把上述一系列等宽不等幅的矩形波用一系列等幅不等宽的矩形脉冲波来替代,只要每个脉 冲波的面积都相等,也应该能实现与正弦波等效的功能,称作正弦脉宽调制(spwm)波形。例如,把正弦半波分作 n等分(n=9),把每一等分的正弦曲线与横轴所包围的面积都用一个与此面积相等的矩形脉冲来代替,矩形脉冲的 幅值不变,各脉冲的中点与正弦波每一等分的中点相重合,这样就形成spwm波形。同样,正弦波的负半周也可 用相同的方法与一系列负脉冲波等效。这种正弦波正、负半周分别用正、负脉冲等效的spwm波形称作单极式 spwm。

SPWM与SVPWM之比较

SPWM与SVPWM之比较

SPWM与SVPWM之比较首先,先分别了解SPWM和SVPWM的原理SPWM原理:正弦PWM的信号波为正弦波,就是正弦波等效成一系列等幅不等宽的矩形脉冲波形,其脉冲宽度是由正弦波和三角波自然相交生成的.正弦波波形产生的方法有很多种,但较典型的主要有:对称规则采样法、不对称规则采样法和平均对称规则采样法三种.第一种方法由于生成的PWM脉宽偏小,所以变频器的输出电压达不到直流侧电压的倍;第二种方法在一个载波周期里要采样两次正弦波,显然输出电压高于前者,但对于微处理器来说,增加了数据处理量当载波频率较高时,对微机的要求较高;第三种方法应用最为广泛的,它兼顾了前两种方法的优点. SPWM虽然可以得到三相正弦电压,但直流侧的电压利用率较低, 最大是直流侧电压的倍,这是此方法的最大的缺点.SVPWM原理:电压空间矢量PWM(SVPWM)的出发点与SPWM不同,SPWM调制是从三相交流电源出发,其着眼点是如何生成一个可以调压调频的三相对称正弦电源.而SVPWM是将逆变器和电动机看成一个整体,用八个基本电压矢量合成期望的电压矢量,建立逆变器功率器件的开关状态,并依据电机磁链和电压的关系,从而实现对电动机恒磁通变压变频调速.若忽略定子电阻压降,当定子绕组施加理想的正弦电压时,由于电压空间矢量为等幅的旋转矢量,故气隙磁通以恒定的角速度旋转,轨迹为圆形. SVPWM比SPWM的电压利用率高15%,这是两者最大的区别,但两者并不是孤立的调制方式,典型的SVPWM是一种在SPWM的相调制波中加入了零序分量后进行规则采样得到的结果,因此SVPWM有对应SPWM的形式.反之,一些性能优越的SPWM方式也可以找到对应的SVPWM算法,所以两者在谐波的大致方向上是一致的,只不过SPWM易于硬件电路实现,而SVPWM更适合于数字化控制系统.接下来对SPWM和SVPWM进行具体的对比。

按照波形面积相等的原则,每一个矩形波的面积与相应位置的正弦波面积相等,因而这个序列的矩形波与期望的正弦波等效。

spwm原理

spwm原理

spwm原理
SPWM(Sinusoidal Pulse Width Modulation)是一种调制技术,用于将直流电压转换成交流电压。

它通过改变一个周期内脉冲的宽度,以在不同的时间点上施加不同的电压,并最终形成一个近似正弦波的输出。

SPWM的原理是通过将一个完整的周期分成很多短时间段,
并在每个时间段内施加一定的电压。

这些时间段可以被视为不同的采样点,通过改变每个时间段内脉冲的宽度来改变电压的幅值。

为了生成一个近似正弦波形的输出,这些脉冲的宽度需要按照正弦函数的规律变化。

SPWM的关键在于如何确定每个时间段内脉冲的宽度。

一种
常见的方法是使用三角波载波信号和参考信号进行比较,以得到需要施加的电压值。

三角波载波信号的频率通常比参考信号的频率高,因此每个周期内会产生多个脉冲。

通过比较三角波载波信号与参考信号的大小,确定脉冲的宽度。

如果参考信号的幅值大于三角波的幅值,则脉冲宽度增加,反之则减小。

通过不断调整每个时间段内脉冲的宽度,就可以在输出端生成一个接近正弦波形的电压信号。

这种调制技术被广泛应用于交流电压变换、电机控制等领域,能够提供高效、稳定的电压输出。

总结一下,SPWM利用调整脉冲的宽度来改变电压幅值,通
过比较三角波载波信号和参考信号来确定脉冲宽度的变化,从
而生成一个近似正弦波形的输出电压。

这种调制技术在电压变换和电机控制等领域有着广泛的应用。

5.SPWM

5.SPWM

D A
tA
B
tB
t
t1
t2
TC
t3
t
规则采样法(2) 规则采样法(2)
• 在三角载波每一 周期的负峰值找 到正弦调制波上 的对应点. 的对应点. • 采样水平线与三 角载波的交点位 于正弦调制波两 侧,脉宽生成误 差(与自然采样 法比)明显减小 明显减小, 法比 明显减小, 所得SPWM波形更 所得SPWM波形更 SPWM 准确. 准确.
(1)单极性 )单极性PWM控制方式 控制方式
ut ur U tm U rm
0
ut
ur
ut ur U tm U rm
ur
ut
• 单相桥式 单相桥式PWM逆变电路 逆变电路
π
Ud
VT V1 1
uA +U d
θ1 ∆θ
θ2
(a)
π

uA
π

ωt
+
Ud 2
信号波 αα 调制 1 2 u α3 c 电路 载波 ur
Ud
VT1
VT4
三单相桥式PWM逆变器 逆变器 三单相桥式
0
0
A VT1′
ωt

VD1 R uo VD2 L
ωt
VD3
VT V3 3
+ c) V2 VT2
V4 VT4 VD4
0
π

ωt
单相桥式PWM逆变电路 逆变电路 单相桥式
d)
VT3 VT6′ VT5
VT2′
B
C
VT6
VT3′
VT2
VT5′
单相单极性SPWM逆变电路 逆变电路 单相单极性
uof

单相和三相逆变器SPWM调制技术的仿真与分析

单相和三相逆变器SPWM调制技术的仿真与分析

目录1.引言 .......................................................................................... - 2 -2.PWM控制的基本原理........................................................... - 2 -3.PWM逆变电路及其控制方法............................................... - 3 -4.电路仿真及分析 ...................................................................... - 4 -4.1双极性SPWM波形的产生 . (4)4.2三相SPWM波形的产生 (6)4.3双极性SPWM控制方式单相桥式逆变电路仿真及分析-7-5.双极性SPWM控制方式的单相桥式逆变电路和三相逆变电路比较分析 .................................................................................. - 12 -6.结论 ........................................................................................ - 13 -7.参考文献 ................................................................................ - 13 -1. 引言PWM 技术的的应用十分广泛,目前中小功率的逆变电路几乎都采用了PWM 技术。

它使电力电子装置的性能大大提高,因此它在电力电子技术的发展史上占有十分重要的地位。

PWM 控制技术正是有赖于在逆变电路中的成功应用,才确定了它在电力电子技术中的重要地位。

电力拖动自动控制系统(名词解释)

电力拖动自动控制系统(名词解释)

电力拖动自动控制系统(名词解释)一、名词解释:1.G-M系统(旋转变流机组):由交流电动机拖动直流发电机G实现变流,由G给需要调速的直流电动机M供电,调节G的励磁If即改变其输出电压U,从而调节电动机的转速n,这样的调速系统简称G-M系统,国际上统称Ward-Leonard系统。

2.V-M 系统(晶闸管-电动机调速系统):通过调解器触发装置GT的控制电压Uc来移动触发脉冲的相位,即可改变平均整流电压Ud,从而实现评平滑调速,这样的系统叫V-M系统。

3. (SPWM):按照波形面积相等的原则,每一个矩形波的面积与相应位置的正弦波面积相等,因而这个序列的矩形波雨期望波的争先等效,这种调制方法称作正弦波脉宽调制(SPWM)。

4.(旋转编码器的测速方法)M法测速——在一定时间Tc内测取旋转编码器输出的脉冲个数M1,用以计算这段时间内的平均转速,称作M法测速。

T法测速——在编码器两个相邻输出脉冲间隔时间内,,用一个计数器对已知频率为f0的高频时钟脉冲进行计数,并由此来计算转速,称作T法测速。

M/T法测速——既检测Tc时间内旋转编码器输出的脉冲个数M1,又检测用一时间间隔的高频时钟脉冲个数M2,用来计算转速,称作M/T法测速。

5.无刷电动机:磁极仍为永磁材料,但输出方波电流,气隙磁场呈梯形波分布,这样就更接近于直流电动机,但没有电刷,故称无刷电动机(梯形波永磁同步电动机)。

6.DTC(直接转矩控制系统):它是利用转矩反馈直接控制电机的电磁转矩,是既矢量控制系统之后发展起来的另一种高动态性能的交流电动机变压变频调速系统。

7.恒Eg/f1=C控制:对于三相异步电动机,要保持气隙磁通不变,当频率从额定值向下调节时,必须同时降低气隙磁通在在定子每相中感应电动势的有效值Eg,使Eg/f1=恒定值,像这样的控制方法叫恒Eg/f1=C控制。

(譬如,对于异步电动机,如果在电压-频率协调控制中,恰当地提高电压Us的数值,使它在克服钉子阻抗压降以后,能维持Eg/f1为恒值,这种控制方法叫Eg/f1=C控制。

滞环控制

滞环控制

电流滞环跟踪PWM(CHBPWM)控制技术的仿真桂寒 120100068摘要:电流滞环跟踪PWM(CHBPWM)控制技术的仿真所采用的器件简单,利用simulink工具分析了在电流跟踪控制中采用滞环宽度并讨论了滞环宽度与开关频率和控制精度之间的关系,给出了各波形。

关键词:电流滞环控制 脉宽控制 滞环宽度控制法 1. 前言 2.应用PWM 控制技术的变压变频器一般都是电压源型的,它可以按需要方便地控制其输出电压,为此前面两小节所述的PWM 控制技术都是以输出电压近似正弦波为目标的。

但是,在电流电机中,实际需要保证的应该是正弦波电流,因为在交流电机绕组中只有通入三相平衡的正弦电流才能使合成的电磁转矩为恒定值,不含脉动分量。

因此,若能对电流实行闭环控制,以保证其正弦波形,显然将比电压开环控制能够获得更好的性能。

2. 电流滞环跟踪控制原理2.1 单相电流滞环控制原理常用的一种电流闭环控制方法是电流滞环跟踪 PWM (Current Hysteresis Band PWM ——CHBPWM )控制,具有电流滞环跟踪 PWM 控制的 PWM 变压变频器的A 相控制原理如1图所示。

图1 电流滞环跟踪控制的A 相原理图图中,电流控制器是带滞环的比较器,环宽为2h 。

将给定电流 *a i 与输出电流 a i 进行比较,电流偏差 ∆ a i 超过时 ±h ,经滞环控制器HBC 控制逆变器 A 相上(或下)桥臂的功率器件动作。

B 、C 二相的原理图均与此相同。

采用电流滞环跟踪控制时,变压变频器的电流波形与PWM 电压波形示于图6-23。

⏹ 如果, a i < *a i , 且*a i - a i ≥ h ,滞环控制器 HBC 输出正电平,驱动上桥臂功率开关器件V1导通,变压变频器输出正电压,使a i 增大。

当增长到与*a i 相等时,虽然滞环比较器的输入信号的符号发生了变化,但HBC 仍保持正电平输出,保持导通,使a i 继续增大 ⏹直到达到a i = *a i + h , a i = –h ,使滞环翻转,HBC 输出负电平,关断V1 ,并经过延时后驱动V4,直到电流的负半周V4才能导通。

SPWM与SVPWM的原理、算法以及两者的区别

SPWM与SVPWM的原理、算法以及两者的区别

SPWM与SVPWM的原理、算法以及两者的区别所谓SPWM,就是在PWM的基础上改变了调制脉冲方式,脉冲宽度时间占空比按正弦规律排列,这样输出波形经过适当的滤波可以做到正弦波输出。

它广泛地用于直流交流逆变器等,比如高级一些的UPS就是一个例子。

三相SPWM是使用SPWM模拟市电的三相输出,在变频器领域被广泛的采用。

SPWM(Sinusoidal PWM)法是一种比较成熟的,目前使用较广泛的PWM法。

前面提到的采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。

SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值。

SVPWM的主要思想是以三相对称正弦波电压供电时三相对称电动机定子理想磁链圆为参考标准,以三相逆变器不同开关模式作适当的切换,从而形成PWM波,以所形成的实际磁链矢量来追踪其准确磁链圆。

传统的SPWM方法从电源的角度出发,以生成一个可调频调压的正弦波电源,而SVPWM方法将逆变系统和异步电机看作一个整体来考虑,模型比较简单,也便于微处理器的实时控制。

spwm与svpwm的原理SPWM原理正弦PWM的信号波为正弦波,就是正弦波等效成一系列等幅不等宽的矩形脉冲波形,其脉冲宽度是由正弦波和三角波自然相交生成的。

正弦波波形产生的方法有很多种,但较典型的主要有:对称规则采样法、不对称规则采样法和平均对称规则采样法三种。

第一种方法由于生成的PWM脉宽偏小,所以变频器的输出电压达不到直流侧电压的倍;第二种方法在一个载波周期里要采样两次正弦波,显然输出电压高于前者,但对于微处理器来说,增加了数据处理量当载波频率较高时,对微机的要求较高;第三种方法应用最为广泛的,它兼顾了前两种方法的优点。

svpwm变频调速原理 详解svpwm与SPWM区别

svpwm变频调速原理 详解svpwm与SPWM区别

svpwm变频调速原理详解svpwm与SPWM区别本文主要是关于svpwm变频调速的相关介绍,并着重对svpwm与SPWM进行了详尽的区分介绍。

SVPWMSVPWM的主要思想是以三相对称正弦波电压供电时三相对称电动机定子理想磁链圆为参考标准,以三相逆变器不同开关模式作适当的切换,从而形成PWM波,以所形成的实际磁链矢量来追踪其准确磁链圆。

传统的SPWM方法从电源的角度出发,以生成一个可调频调压的正弦波电源,而SVPWM方法将逆变系统和异步电机看作一个整体来考虑,模型比较简单,也便于微处理器的实时控制。

原理普通的三相全桥是由六个开关器件构成的三个半桥。

这六个开关器件组合起来(同一个桥臂的上下半桥的信号相反)共有8种安全的开关状态。

其中000、111(这里是表示三个上桥臂的开关状态)这两种开关状态在电机驱动中都不会产生有效的电流。

因此称其为零矢量。

另外6种开关状态分别是六个有效矢量。

它们将360度的电压空间分为60度一个扇区,共六个扇区,利用这六个基本有效矢量和两个零量,可以合成360度内的任何矢量。

当要合成某一矢量时先将这一矢量分解到离它最近的两个基本矢量,而后用这两个基本矢量去表示,而每个基本矢量的作用大小就利用作用时间长短去代表。

用电压矢量按照不同的时间比例去合成所需要的电压矢量。

从而保证生成电压波形近似于正弦波。

在变频电机驱动时,矢量方向是连续变化的,因此我们需要不断的计算矢量作用时间。

为了计算机处理的方便,在合成时一般是定时器计算(如每0.1ms计算一次)。

这样我们只要算出在0.1ms内两个基本矢量作用的时间就可以了。

由于计算出的两个时间的总和可能并不是0.1ms(比这小),而那剩下的时间就按情况插入合适零矢量。

由于在这样处理时,合成的驱动波形和PWM很类似。

因此我们还叫它PWM,又因这种PWM是基于电压空间矢量去合成的,所以就叫它SVPWM了。

svpwm变频调速原理SVPWM原理电压空间矢量PWM(SVPWM)的出发点与SPWM不同,SPWM调制是从三相交流电源。

电流滞环跟踪PWM控制技术

电流滞环跟踪PWM控制技术

电流滞环跟踪PWM控制技术摘要:电流滞环跟踪PWM(CHBPWM)控制技术的仿真所采用的器件简单,利用simulink工具分析了在电流跟踪控制中采用滞环宽度并讨论了滞环宽度与开关频率和控制精度之间的关系,给出了各波形。

关键词:电流滞环控制脉宽控制滞环宽度控制法一、前言应用PWM控制技术的变压变频器一般都是电压源型的,它可以按需要方便地控制其输出电压,为此前面两小节所述的PWM控制技术都是以输出电压近似正弦波为目标的。

但是,在电流电机中,实际需要保证的应该是正弦波电流,因为在交流电机绕组中只有通入三相平衡的正弦电流才能使合成的电磁转矩为恒定值,不含脉动分量。

因此,若能对电流实行闭环控制,以保证其正弦波形,显然将比电压开环控制能够获得更好的性能。

二、电流滞环跟踪控制原理常用的一种电流闭环控制方法是电流滞环跟踪 PWM(Current Hysteresis Band PWM ——CHBPWM)控制,具有电流滞环跟踪 PWM 控制的 PWM 变压变频器的A相控制原理如1图所示。

图1 电流滞环跟踪控制的A相原理图图中,电流控制器是带滞环的比较器,环宽为2h。

将给定电流i*a 与输出电流i a进行比较,电流偏差∆i a超过时±h,经滞环控制器HBC控制逆变器A相上(或下)桥臂的功率器件动作。

B、C二相的原理图均与此相同。

采用电流滞环跟踪控制时,变压变频器的电流波形与PWM电压波形示于图6-23。

如果,i a < i*a ,且i*a - i a ≥h,滞环控制器 HBC输出正电平,驱动上桥臂功率开关器件V1导通,变压变频器输出正电压,使增大。

当增长到与相等时,虽然,但HBC仍保持正电平输出,保持导通,使继续增大直到达到i a= i*a+ h, i a = –h,使滞环翻转,HBC输出负电平,关断V1 ,并经延时后驱动V4但此时未必能够导通,由於电机绕组的电感作用,电流不会反向,而是通过二极管续流,使受到反向钳位而不能导通。

SPWM电流跟踪并网逆变控制技术研究

SPWM电流跟踪并网逆变控制技术研究

第1 期
高 嵩 等 :P S WM 电流跟踪并 网逆变控制技术研究
7 5
馈人 电网的正 弦 波 电流 波形 . 变压 器起 到将 并 网逆 变 系统 与 电网隔离 的作 用 , 以保 护逆 变环 节 的 电 可
路.
电 网
图 2 逆 变 器 输 出矢 量 三 角 形
Fg 2 I v re u p tv co ra ge i. n et ro t u et rtin l
a Sg a P o es rDS ) 仅 可 以 比较方 便 地 实 l in l r cso , P 不
现 控制 目的 , 而且 大 大 简 化 了控 制 电路 的设 计 , 提 高 了可 靠性 . 随着 太 阳能 的利用 越 来越 受 到 人 们 的广泛 重 视 , 网逆变 技术 的研 究 尤 为重 要 . 并 光伏 发 电并 网
运 用 了闭环控 制模 式 , 加入 了电压 前馈补 偿环 节 , 过控 制逆 变 系统的输 出电流 以跟 踪 市 电的 通
变化 , 电 网 电压 同频 、 与 同相 . 真 结 果 表 明 , 仿 改进 后 的 方 法输 出电 流 波 形谐 波 畸 变含 量 为
O 2 , 入 P 控制 环 节的调整 时间为 0 2S .6 加 I . .
第 3 卷第 1 1 期 21 年 O 01 2月
西
安ቤተ መጻሕፍቲ ባይዱ






Vo . 1 No 1 13 . Fe . 0 1 b 2 1
J u n l fXia c n lgclUnv r i o r a ’ nTeh oo i ie st o a y
文 章编 号 1 7 — 9 5 2 1 ) 10 40 6 39 6 (0 1 0 — 7— 4

SPWM变频电源双闭环控制的设计和研究.wps

SPWM变频电源双闭环控制的设计和研究.wps

SPWM变频电源双闭环控制的设计和研究在目前逆变电源的控制技术中,滞环控制技术和SPWM控制技术是变频电源中比较常用的两种控制方法。

滞环控制技术开关频率不固定,滤波器较难设计,且控制复杂,难以实现;SPWM控制技术开关频率固定,滤波器设计简单,易于实现控制。

当二者采用电压电流瞬时值双闭环反馈的控制策略时,均能够输出高质量的正弦波,且系统拥有良好的动态性能。

对于SPWM变频电源,采用电压电流瞬时值双闭环反馈的控制策略,工程中参数设计往往采用试凑法,工作繁琐,误差较大。

本文详细介绍了SPWM变频电源主要的控制参数设计准则和方法,对于快捷、准确地选择合适的闭环参数,有很大的实践应用价值。

2系统简介图1 双闭环控制的SPWM变频电源系统构成简化图图1为系统构成简化图,该系统由主电路和控制电路两部分组成。

逆变电源主电路采用以IGBT为开关器件的单相逆变电路, 采用全桥电路结构,经过LC低通滤波器,滤去高频成分,在滤波电容两端获得相应频率的光滑的正弦波。

虚线框包括的是控制电路,电压电流瞬时值双闭环反馈控制是由输出滤波电感电流和输出滤波电容电压反馈构成的。

其外环为输出电压反馈,电压调节器一般采用PI形式。

电压外环对输出电压的瞬时误差给出调节信号,该信号经PI调节后作为内环给定;电感电流反馈构成内环,电流环设计为电流跟随器。

电流内环由电感电流瞬时值与电流给定比较产生误差信号,与三角形载波比较后产生SPWM信号,通过驱动电路来控制功率器件,保证输出电压的稳定,形成典型的双环控制。

在实际应用中采用电流内环之外还设置电压外环的目的除了降低输出电压的THD外,还在于对不同负载实现给定电流幅值的自动控制。

3SPWM变频电源的线性化模型由于SPWM变频电源中存在着开关器件,因此是一个非线性系统,但因为一般情况下,SPWM变频电源的开关频率远高于调制频率,故可以利用传递函数和线性化技术,建立起SPWM变频电源的线性化模型[1],如图2所示。

什么是电流跟踪型PWM变流电路?采用滞环比较方式的电流跟踪型变流器有何特点?

什么是电流跟踪型PWM变流电路?采用滞环比较方式的电流跟踪型变流器有何特点?

什么是电流跟踪型PWM变流电路?采用滞环比较方式的电流跟踪型变流器有何特点?
电流跟踪型PWM变流电路是一种通过跟踪负载电流来控制输出电流的电路。

它通常用于要求精确控制和调节负载电流的应用,如电动机驱动、电源适配器等。

采用滞环比较方式的电流跟踪型变流器具有以下特点:
1.滞环比较方式:滞环比较方式是一种在电流跟踪型PWM
变流器中常用的控制方法。

该方式通过将参考电流与实际
负载电流进行比较,并应用滞回控制算法,调整PWM信
号的占空比,使输出电流跟踪参考电流。

2.高精度电流控制:滞环比较方式的电流跟踪型变流器具有
高精度的电流控制能力。

通过将滞环比较器设置为合适的
阈值,可以实现对输出电流的精确控制和调节。

该方式适
用于对负载电流要求较高的应用,能够实现精确的负载电
流跟踪和控制。

3.快速响应性能:采用滞环比较方式的电流跟踪型变流器具
有快速的响应速度。

由于滞环比较器能够快速调整PWM
信号的占空比,以响应负载电流的变化,因此可以实时动
态调整输出电流,并具有较好的过载能力和动态响应性能。

4.抗负载波动能力强:滞环比较方式的电流跟踪型变流器通
过及时调整PWM信号的占空比来跟踪负载电流,具有较
强的抗负载波动能力。

即使在负载电流发生变化的情况下,
也能够迅速调整输出电流,使其保持稳定。

需要注意的是,滞环比较方式的电流跟踪型变流器可能存在一些不足之处,如可能引入更多谐波成分和较高的开关频率。

因此,在应用中需要综合考虑设计需求和性能要求,选择合适的控制策略和优化方法,以实现最佳的电流跟踪和控制效果。

SPWM逆变原理及控制方法

SPWM逆变原理及控制方法

确定a1的值,再令两个 不同的an=0 (n= 1, 3, 5 …),就可建三个方 程,求得a1、a2和a3
O a 1
-U d
a2 a3
p
2p
wt
24
2.2 SPWM逆变及其控制方法
消去两种特定频率的谐波
在三相对称电路的线电压中,相电压所含的3次谐波相 互抵消。 可考虑消去5次和7次谐波,得如下联立方程:
给定 a1 ,解方程可得 a1 、 a2 和 a3 。a1变,a1、a2和a3也相 应改变。
25
2.2 SPWM逆变及其控制方法
一般在输出电压半周期内,器件通、断各k次,考 虑到PWM波四分之一周期对称,k个开关时刻可控, 除用一个自由度控制基波幅值外,可消去k-1个频 率的特定谐波
k的取值越大,开关时刻的计算越复杂
u O uUN'
Ud
2 -
urU
uc urV
urW
t
Ud
2
O
t
fr很低时,fc也很低,由调制带来的 fr很高时,fc会过高,使开关器件难
uVN' O uWN' O
29t
t
2.2 SPWM逆变及其控制方法
3)分段同步调制——
异步调制和同步调制的综合应用
把整个fr范围划分成若干个频段, 每个频段内保持N恒定,不同频段 的N不同 在 fr 高的频段采用较低的 N ,使载 波频率不致过高;在fr低的频段采 用较高的N,使载波频率不致过低
与计算法及调制法相比相同开关频率时输出电流中高次谐波含量多闭环控制是各种跟踪型pwm变流电路的共同特点4722spwm逆变及其控制方法滞环比较方式电压跟踪控制把指令电压u和输出电压u进行比较滤除偏差信号中的谐波滤波器的输出送入滞环比较器由比较器输出控制开关器件的通断从而实现电压跟踪控制4822spwm逆变及其控制方法滞环比较方式电压跟踪控制和电流跟踪控制电路相比只是把指令和反馈信号从电流变为电压u0时输出电压u为频率较高的矩形波相当于一个自励振荡电路u为交流信号时只要其频率远低于上述自励振荡频率从u中滤除由器件通断产生的高次谐波后所得的波形就几乎和相同从而实现电压跟踪控制4922spwm逆变及其控制方法基本原理不是把指令信号和三角波直接进行比较而是通过闭环来进行控制把指令电流iuiv和iw和实际输出电流iuiviw进行比较求出偏差通过放大器a放大后再去和三角波进行比较产生pwm波形放大器a通常具有比例积分特性或比例特性其系数直接影响电流跟踪特性特点开关频率固定等于载波频率高频滤波器设计方便为改善输出电压波形三角波载波常用三相三角波载波和滞环比较控制方式相比这种控制方式输出电流所含的谐波少三相三角波发生电路5022spwm逆变及其控制方法120cos120cossincos三相交流相电压可以由一个空间电压矢量或其两个分量代替假定一个新的电压空间矢量120sin120cos120cos120sin120cos120cos可以推导出新电压空间矢量与三相交流相电压之间的关系5122spwm逆变及其控制方法cnbncnbn矩阵表示新电压空间矢量与三相交流相电压之间的关系即为

PMSM矢量控制电流环的个人心得

PMSM矢量控制电流环的个人心得
i
公式就是在id= is cosβ=0(当三相合成的电流矢量is与d轴的夹角β等于90°时)的条件下推出 的。而且本人在分别做过交流和直流跟踪控制后,将直流跟踪控制的电流Clarke、Park变换进 行实际公式推导后,发现与5-9这个公式基本是一样的(只差一个常数) 。有兴趣的朋友可以 试着推导下。 可能还有兄弟会问为什么要试这个交流控制,而不直接按TI例程用直流控制呢? 做过实际项目的兄弟会有这个体会:做一个系统每走一步都是很艰难的,每一步都会 遇到很多很多预想不到的问题,因此一定要走得脚踏实地。建议大家一个阶段步一定要分 成很多小环节,然后一个小环节一个小环节做,在试过并确定每个小环节分开都能达到预 想的功能的情况下再一个环节环节加进系统中。如果你一下直接把一个大环节未经分拆调 试直接加入系统中,那基本上都是不兼容的。 因为不确定因素实在太多了,你不可能都考 虑到。所以一定要循序渐进,切忌盲目 自信,急于求成。或者有这样的大侠能跨过这一步, 不过鄙人是至今未能遇到。 本人刚开始做的时候不明白的太多,对 SVPWM、坐标变换原理没搞太明白。相对而言交 流控制则非常通俗,好理解,基于 a-b-c 坐标系,结构简单,运算量少,易于实现电流开环 系统。加上有接触过别的电机 SPWM 控制,所以就选择先做这个了。 这个方案开始时只速度环,没加电流开环时的具体做法是,将速度环 PI 输出值经过运
2
P D F 文件
用 使
" p d f F a c t 试 o 用 r 版 y 本创 P r 建 "
性发生变化,使电流解耦特性也发生变化,在电机高速时电流幅值和相位误差会增加。实际 简单、 通俗一点说就是如果假设控制器使用的是单纯的一个积分环节控制时, 基于这里控制 的是交流量,是带相位信息的电流,经过单纯积分后就会产生90度的相位滞后。 所以如果最后使用的是PI控制时, 用示波器看的话给定电压与反馈电流相位也能看出会 有接近90度偏差, (不是精确90度是因为不是单纯的积分环节,多了个比例环节) 。所以实际 做出这个PI控制后会发现空载电流会很大。 原因是给定电压与反馈电流相位的不对称就会导 致电机运行无功部分增大,而有功部分--输出机械能不变,进而会使定子电流增大。但是只 用P控制又发现系统性能不好,而且高速时还是会有相移。至于为什么转速较高时,其电流 环输出电流ABC与给定电流还是会出现幅值和相位上的偏差, 查阅了很多资料, 分析其原因。 有两个方面:一是电机反电势的对电流控制环的干扰,会随转速升高而增大。虽然可用提高 比例放大倍数来减少这一影响, 但有时又有受到直流端电压不能够任意提高的限制, 这个问 题一般通过前馈补偿方法。 二是通常采用的PI调节的工作频带不够宽。 工作频带这个问题跟 交流伺服的群主虫子交流后给支了一招:使用PID调节可以加宽带宽。但是最后试过效果好 像不太明显,可能是我没试明白。 至于前馈补偿大部分的资料都是通过电机参数和电机转速的运算出电压偏差然后进行, 这个可行度仔细想想其实很低。 所以后来想出别的办法:给定电压与反馈电流相位差可以 但是又因为经过PI调节中有个P其实已 通过在开始时计算 λ = θ + 90° 时强行进行角度补偿。 经不是单纯一个积分环节了, 所以这个相位差就不可能是准确的90度了。 而且实际就算是正 常的交流或直流跟踪控制系统也会有些许的相位偏差, 所以这个相位就不能单纯的直接补偿 90度了。 还是不太可行, 不过后来鄙人又试通过实际检测出给定电压与反馈电流相位差后再 进行补偿(这个应该也算是一个的闭环控制,或者也可以叫前馈补偿)但是这个方法需要有 个精确的检测相位差的方法和装置。在这里介绍一种方法:实际检测反馈电流过零点(软硬 件) 时对应在芯片内部运算出的编码角度值, 这样就能得出给定电压与反馈电流相位差并据 此进行补偿。 另外在实际做这个时一定要注意5-9公式中的那个负号,搞明白这个输出极性正负的问 题,因为通常DSP 的EVA 动作寄存器ACTRA都设定上桥为高有效(大部分程序设定高有 效是基于死区的考虑) ,这样实际上桥的比较值CMPR与输出的占空比是成反比的,而电机 三个绕组的极性又是与上桥一致的。所以实际使用时电流经过P或PI调节输出后可以直接赋 予CMPR,公式中的负号已通过ACTRA的设置实现。 或许经过我这么一说好像交流控制只是在电流开环时易于上手,在做到后期时是比较复 杂,好像是一无是处,其实也不尽然,交流控制器还是能够保证系统具有快速响应特性的。 另外在做完交流跟踪控制后你会发现理解并实现起直流跟踪控制会非常轻松。 ⑵直流跟踪控制法 这个方法因为电流环控制的是直流电流信号,直流信号就不会有上面交流信号滞后90 度的问题。 并且直流信号恰好具有对运行频带不敏感的特点, 从而可在一定程度上扩大电流 器的工作范围。 至于直流控制法书上基本都有较详细的说明,这里将略为述说。 PMSM 矢量控制直流跟踪控制法(DC 法)系统结构图如图 2 示:系统采用速度和电流闭 环控制。电机 A 相、B 相绕组电流 ia 、 ib 经过 Clarke 变换得到 αβ 方向的电流 iα 、 iβ ,将 三相静止坐标转换成二相静止坐标。 说白了这一变换就是根据功率等效原则将三相绕组电机 等效成二相绕组电机 (我们知道三相绕组电机通三相互差 120 相角度电流便能得到幅值不变 角度旋转的圆形磁链矢量,而二相通差 90 相角度的电流也能达到这样的旋转圆形磁链矢

永磁同步电机力矩控制:SPWM与SVPWM基础篇

永磁同步电机力矩控制:SPWM与SVPWM基础篇

永磁同步电机力矩控制:SPWM与SVPWM基础篇在FOC算法中,针对DQ两轴的PI算法计算出来得到DQ轴电压,经过反PARK变换后可得到α轴和β轴电压,但这些个电压都只是一个计算机里面的数值而已,如何转化成实实在在的加载到电机相线上的端电压,那么就需要用到由电力电子开关器件(MOSFET或IGBT)所组成的驱动桥来实现。

假设控制程序希望电机相线上有一个3V的电压,而电池的供电只有一个稳定的12V,怎样得到这个3V呢?这就是SPWM或SVPWM要干的事情。

PWM的理论依据:冲量等效原理冲量相等而形状不同的窄脉冲施加在一个惯性环节上,其效果基本相同,如下如所示四种脉冲的电压施加到RL回路上,回路中的电流响应的傅里叶级数展开的低频部分基本相同,高频部分略有区别。

该原理成立的两个条件——窄脉冲和惯性环节缺一不可。

“窄”这个概念是相对RL 回路的时间常数而言的,如果惯性环节的时间常数是毫秒级,那么这个脉冲起码就要窄到数十个微秒这个数量级;如果惯性环节的时间常数是上百个毫秒,那么这个脉冲窄到几个毫秒也能接受。

另外一个是必须有惯性环节存在,这个比较容易理解,如果被控对象是一个纯电阻,无论四种脉冲多么窄,输出电流响应不会基本相同。

这个理论是数学家们搞理论分析搞出来的,但是对当前基于半导体的计算机离散控制系统而言(量子计算及和生物计算机不知道是什么鬼样子),最简单的也最可行的方式显然就是只给0或者1的开关信号,因此基于目前人类的技术水平,图a)里面的方波的方式就是最理想的选择了。

SPWM:正弦脉宽调制正弦脉宽调制的思想比较容易简单粗暴,在得到α轴和β轴电压以后,再做一次反CLARK变换就可以得到电机的三相正弦电压Va,Vb,Vc,用一个三角波做调制从而得到每一相上的斩波信号。

相电压和线电压的都是正弦波。

以电源电压12V为例,在这种调制方式下的相电压峰峰值最多能达到12V,因此线电压的峰峰值最多能达到,母线电压利用率为在任意时刻,V a+Vb+Vc=1.5*母线电压。

SPWM及锁相

SPWM及锁相

1SPWM1.1 SPWM概念SPWM技术目前已经在实际得到非常普遍的应用。

经过长期的发展,大致可分成电压SPWM,电流SPWM和磁通SPWM。

其中电压和电流SPWM是从电源角度出发的SPWM,而磁通SPWM则是从电动机角度出发的SPWM。

电压SPWM技术是通过生成的SPWM波信号来控制逆变器的开关管,从而实现电动机电源变频的一种技术。

1.2 分类按其调制的方法不同有同步调制、异步调制和分段调制三种。

按调制波的极性分单极性SPWM法、双极性SPWM法;1、单极性SPWM(1)每半周期内所有三角波的极性均相同(即单极性)。

(2)单极性调制的工作特点:每半个周期内,逆变桥同一桥臂的两个逆变器件中,只有一个器件按脉冲系列的规律时通时通时断地工作,另一个完全截止;而在另半个周期内,两个器件的工况正好相反,流经负载的便是正、负交替的交变电流。

2、双极性SPWM(1)调制波和载波:(2)双极性调制的工作特点:逆变桥在工作时,同一桥臂的两个逆变器件总是按相电压脉冲系列的规律交替地导通和关断,毫不停息,而流过负载ZL的是按线电压规律变化的交变电流。

1.3 产生PWM的算法产生电压SPWM信号的方法有硬件法和软件法。

其中软件法是使电路成本最低的方法,它通过实时计算来生成SPWM波。

但是实时计算对控制器的运算速度要求非常高。

DSP无疑是能满足这一要求的最理想的控制器。

电压SPWM 信号实时计算需要数学模型。

建立数学模型的方法很多,有谐波消去法、等面积法、采样型SPWM法以及由它们派生出的各种方法。

对称规则采样法的数学模型非常简单,但是由于每个载波周期只采样一次,因此所形成的阶梯波与正弦波的逼近程度仍然存在较大的误差。

如果既在三角波的顶点对称轴采样,又在三角波的底点对称轴位置采样,也就是每个载波周期采样两次,这样所形成的阶梯波的逼近程度会大大提高。

由于这样采样所形成的阶梯波与三角波的交点并不对称,因此称其为不对称规则采样法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计(论文)任务书电气与电子工程学院电力牵引与传动专业班一、课程设计(论文)题目:电流滞环跟综PWM(CHBPWM)控制技术的仿真二、课程设计(论文)工作自 2013年6月16日起至2013年6月21日止。

三、课程设计(论文) 地点: 电气学院机房四、课程设计(论文)内容要求:1.本课程设计的目的(1)熟练掌握MATLAB语言的基本知识和技能;(2)熟悉matlab下的simulink和simpowersystems工具箱;(3)熟悉构建三相电流跟踪滞环控制系统的仿真模型;(4)培养分析、解决问题的能力;提高学生的科技论文写作能力。

2.课程设计的任务及要求1)基本要求:(1)要求对主电路和脉冲电路进行封装;(2)仿真参数为:E=100-300V; f=50HZ; 带宽2h; 步长h=0.0001s,其他参数自定;(3)给出调制波原理图、相电压、相电流、线电压、不同器件所承受的电压波形以及频谱图,要求采用subplot作图;(4)选取不同参数进行仿真,比较仿真结果有何变化,给出自己的结论。

2)创新要求:封装使仿真模型更加美观、合理3)课程设计论文编写要求(1)要按照课程设计模板的规格书写课程设计论文(2)论文包括目录、正文、心得体会、参考文献等(3)课程设计论文用B5纸统一打印,装订按学校的统一要求完成4)答辩与评分标准:(1)完成原理分析:20分;(2)完成设计过程:40分;(3)完成调试:20分;(4)回答问题:20分;5)参考文献:(1)刘卫国.MATLAB程序设计与应用(第二版). 北京:高等教育出版社,2008.(2)刘志刚.电力电子学.北京:清华大学出版社、北京交通大学出版社,2004.(3)李传琦. 电力电子技术计算机仿真实验.电子工业出版社,2006.6)课程设计进度安排内容天数地点构思及收集资料2图书馆编程设计与调试1实验室撰写论文2图书馆、实验室学生签名:年月日课程设计(论文)评审意见(1)完成原理分析(20分):优()、良()、中()、一般()、差();(2)设计分析(20分):优()、良()、中()、一般()、差();(3)完成调试(20分):优()、良()、中()、一般()、差();(4)翻译能力(20分):优()、良()、中()、一般()、差();(5)回答问题(20分):优()、良()、中()、一般()、差();(6)格式规范性及考勤是否降等级:是()、否()(7) 总评分数\优()、良()、中()、一般()、差();评阅人:职称:年月日摘要滞环比较跟踪控制是一种非线性砰-砰控制方法,在各类闭环跟踪控制系统中广泛应用。

PWM变换器的跟踪控制方法是PWM变换器的主要控制方法之一,其中滞环比较方法因其结构简单,响应速度快,参数鲁棒性好等优点,应用最为广泛然而,滞环控制的开关频率一般具有很大的不定性,高低频率悬殊,其开关频率范围往往是人们在进行滞环控制系统设计师比较关心的重要方面,只有明确开关频率的计算方法,才便于进行开关器件、滤波参数及滞环控制参数的选择。

本文首先介绍了该方法的原理和基本波形;然后分析了其电路参数和系统特性的关系,指出了其主要优点和存在的问题;最后给出了仿真和实验波形。

电流跟踪型逆变器输出电流跟随给定的电流波形变化,这也是一种PWM控制方式。

电流跟踪一般都采用滞环控制,即当逆变器输出电流与给定电流的偏差超过一定值时,改变逆变器的开关状态,使逆变器输出电流增加或减小,将输出电流与给定电流的偏差控制在一定范围内。

关键词:电流滞环控制脉宽控制滞环宽度控制法目录一、电流滞环跟踪控制原理 (1)二、电路图及封装 (4)2.1 主电路图: (4)2.2 触发电路 (4)2.3 完整电路及封装图 (5)三、参数的设置及作图程序设计 (6)3.1 课设要求及选用模块 (6)3.2 模块参数设置 (7)3.2.1 Sine Wave参数设置 (7)3.2.2直流电压源参数设定 (7)3.2.3 RLC支路参数设定 (8)3.2.4 Delay参数设定 (8)3.3 作图程序设计 (9)3.3.1 六个触发脉冲的波形输出程序设计 (9)3.3.2相电压及线电压波形输出程序 (9)3.3.3电流波形输出程序 (10)四、仿真及频谱分析 (11)(一)、环宽2h=6时的仿真波形及频谱分析 (11)1、仿真波形 (11)2.频谱分析 (12)(二)、环宽2h=26时的仿真波形及频谱分析 (14)1、仿真波形 (14)2、频谱分析 (15)五、仿真结果分析及结果 (17)六、课设心得体会 (18)七、参考文献........................................................... 错误!未定义书签。

一、电流滞环跟踪控制原理常用的一种电流闭环控制方法是电流滞环跟踪PWM (Current Hysteresis Band PWM ——CHBPWM)控制,具有电流滞环跟踪PWM 控制的PWM 变压变频器的A相控制原理如1图所示。

图1 电流滞环跟踪控制的A相原理图图中,电流控制器是带滞环的比较器,环宽为2h。

将给定电流i*a 与输出电流i a进行比较,电流偏差∆i a超过时±h,经滞环控制器HBC控制逆变器A相上(或下)桥臂的功率器件动作。

B、C二相的原理图均与此相同。

采用电流滞环跟踪控制时,变压变频器的电流波形与PWM电压波形示于图6-23。

如果,ia < i*a ,且i*a - ia ≥h,滞环控制器HBC输出正电平,驱动上桥臂功率开关器件V1导通,变压变频器输出正电压,使增大。

当增长到与相等时,虽然,但HBC仍保持正电平输出,保持导通,使继续增大直到达到ia = i*a + h ,∆ia = –h ,使滞环翻转,HBC输出负电平,关断V1 ,并经延时后驱动V4但此时未必能够导通,由於电机绕组的电感作用,电流不会反向,而是通过二极管续流,使受到反向钳位而不能导通。

此后,逐渐减小,直到时,,到达滞环偏差的下限值,使HBC 再翻转,又重复使导通。

这样,与交替工作,使输出电流给定值之间的偏差保持在范围内,在正弦波上下作锯齿状变化。

从图 2 中可以看到,输出电流是十分接近正弦波的。

图2 电流滞环跟踪控制时的电流波形图2给出了在给定正弦波电流半个周期内的输出电流波形和相应的相电压波形。

可以看出,在半个周期内围绕正弦波作脉动变化,不论在的上升段还是下降段,它都是指数曲线中的一小部分,其变化率与电路参数和电机的反电动势有关。

图3 三相电流跟踪型PWM逆变电路图4 三相电流跟踪型PWM逆变电路输出波形因此,输出相电压波形呈PWM状,但与两侧窄中间宽的SPWM波相反,两侧增宽而中间变窄,这说明为了使电流波形跟踪正弦波,应该调整一下电压波形。

电流跟踪控制的精度与滞环的环宽有关,同时还受到功率开关器件允许开关频率的制约。

当环宽选得较大时,可降低开关频率,但电流波形失真较多,谐波分量高;如果环宽太小,电流波形虽然较好,却使开关频率增大了。

这是一对矛盾的因素,实用中,应在充分利用器件开关频率的前提下,正确地选择尽可能小的环宽。

电流滞环跟踪控制方法的精度高,响应快,且易于实现。

但受功率开关器件允许开关频率的限制,仅在电机堵转且在给定电流峰值处才发挥出最高开关频率,在其他情况下,器件的允许开关频率都未得到充分利用。

为了克服这个缺点,可以采用具有恒定开关频率的电流控制器,或者在局部范围内限制开关频率,但这样对电流波形都会产生影响。

二、电路图及封装参考上学期学过的电力电子教程中的电流逆变原理,使用MA TLAB 软件中的Simulink和SimpowerSystems工具箱构建三相电流跟踪滞环控制系统的仿真模型。

2.1 主电路图:图2.12.2 触发电路图2.21 图2.2.2 图2.2.32.3 完整电路及封装图图 2.3.1如上图 2.3.1所示是完整的电路图,这个电路图中包含了主电路、触发电路、反馈电路还有显示电路。

主电路图主要是由三个桥臂、直流电源、感性负载组成,其中感性负载的电感大小决定了负载电流的波形,电感太大则容易产生平滑的电流波形,甚至是一条直线,太小不容易维持电流连续。

下图是封装好的电路模型,产生触发脉冲的封转在一起,主电路封装在一起,其余剩下万用表和显示电路。

三个万用表分别测出主电路的三条相电流,供给回馈电路实用,回馈电路的gain的倍数自己根据实际情况定,本次设计选用3倍。

倍数越大反应误差越小,当倍数过大也会是电路计算量太大,反而影响整体的效果,因此这是一对矛盾体,所以看情况而定。

图2.3.2三、参数的设置及作图程序设计3.1 课设要求及选用模块仿真参数为:E=100-300V; f=50Hz;带宽2h=5-30; 步长h=0.0001s,其他参数自定。

选用的模块主要有:Mux 、Sum 、Relay、Scope 、Sine Wave 、DC V oltage Source 、Ground 、Series RLC Branch 、Multimeter 、IGBT/Diode 、Logical Operator、V oltageMeasurement、Gain。

3.2 模块参数设置3.2.1 Sine Wave参数设置图 3.2.1上图是Sine Wave1的参数,Sine Wave2在Phase中要设置为-2*pi/3,Sine Wave3的Phase为-4*pi/3.3.2.2直流电压源参数设定图 3.2.2电压的大小可以自己定好,主要是与反馈倍数有点联系。

电压越大反馈应当也要加大一点,这样可以更精确、快速的控制输出波形。

3.2.3 RLC支路参数设定图3.2.33.2.4 Delay参数设定图 3.2.4其他的参数如下:Logical Operator:NOT ,Gain:3 ,Scope:Number of axes:3(其他两个分别是4和6),Multimeter 分别选中对应支路的电流(相电流)。

Scope1 测的是脉冲波形,Scope2测的是相电压和线电压波形,Scope3测的是电流中的三条支路电流波形。

3.3 作图程序设计3.3.1 六个触发脉冲的波形输出程序设计subplot(6,1,1);plot(wx.time,wx.signals(1).values);title('触发脉冲1');axis([0,0.02,0,1.5]);subplot(6,1,2);plot(wx.time,wx.signals(2).values);title('触发脉冲2');axis([0,0.02,0,1.5])subplot(6,1,3);plot(wx.time,wx.signals(3).values);title('触发脉冲3');axis([0,0.02,0,1.5]);subplot(6,1,4);plot(wx.time,wx.signals(4).values);title('触发脉冲4');axis([0,0.02,0,1.5]);subplot(6,1,5);plot(wx.time,wx.signals(5).values);title('触发脉冲5');axis([0,0.02,0,1.5]);subplot(6,1,6);plot(wx.time,wx.signals(6).values);title('触发脉冲6');axis([0,0.02,0,1.5]);解释:这个程序设置了图形的title和画出波形的横、纵坐标的范围,因为脉冲的大小是1v,所以为了有更好的效果纵坐标设为0~1.5v,横坐标的时间为一个周期T=0.02s。

相关文档
最新文档