Highly selective spectrophotometric flow-injection determination of trace amounts of bromide

合集下载

赛默飞近红外 参数

赛默飞近红外 参数

赛默飞近红外参数【实用版】目录一、赛默飞近红外光谱仪的概述二、赛默飞近红外光谱仪的参数1.Nicolet iS 5N2.Trudefender 手持红外光谱仪三、赛默飞近红外光谱仪的应用领域四、赛默飞近红外光谱仪的优势五、结语正文一、赛默飞近红外光谱仪的概述赛默飞近红外光谱仪是一款高性能的光谱分析仪器,能够对样品进行近红外区域的光谱分析,被广泛应用于各个领域,如化学、生物学、医学、环境监测等。

赛默飞作为全球知名的科学仪器制造商,在近红外光谱仪领域有着丰富的经验和技术积累。

二、赛默飞近红外光谱仪的参数1.Nicolet iS 5Nicolet iS 5N 是赛默飞一款先进的近红外光谱仪,具有高分辨率、高灵敏度和快速扫描等特点。

其主要参数如下:- 波长范围:0.9μm ~ 1.7μm- 分辨率:≤0.5cm^-1- 灵敏度:≤0.001g/mL- 扫描速度:≤1s/点2.Trudefender 手持红外光谱仪Trudefender 是赛默飞一款手持式近红外光谱仪,具有便携、易操作和实时分析等特点。

其主要参数如下:- 波长范围:0.9μm ~ 1.7μm- 分辨率:≤1.5cm^-1- 灵敏度:≤0.01g/mL- 扫描速度:≤2s/点- 重量:≤3kg三、赛默飞近红外光谱仪的应用领域赛默飞近红外光谱仪广泛应用于各种领域,如生物医学、化学化工、食品饮料、环境和材料科学等。

在生物医学领域,可以用于蛋白质结构分析、疾病诊断和生物分子识别等;在化学化工领域,可以用于分子结构分析、化学反应监测和产品质量控制等;在食品饮料领域,可以用于成分分析、品质控制和食品安全监测等。

四、赛默飞近红外光谱仪的优势赛默飞近红外光谱仪具有以下优势:1.高分辨率和高灵敏度,能够对样品进行精确分析。

2.快速扫描和实时分析,能够提高分析效率。

3.便携式设计,便于携带和现场分析。

4.丰富的应用经验和技术支持,确保分析结果的准确性。

五、结语赛默飞近红外光谱仪凭借其优异的性能和广泛的应用领域,在光谱分析领域具有重要地位。

半胱氨酸抑制二氧化铈纳米颗粒化学发光

半胱氨酸抑制二氧化铈纳米颗粒化学发光

半胱氨酸抑制二氧化铈纳米颗粒化学发光石文兵;戚景南;贺薇;万邦江【摘要】在碱性条件下,二氧化铈纳米颗粒能够有效催化过氧化氢-鲁米诺体系的化学发光.然而,当加入半胱氨酸,该体系的化学发光强度得到极大抑制.该文详细讨论发光条件,如二氧化铈纳米颗粒、过氧化氢、鲁米诺等质量浓度及鲁米诺pH对发光强度的影响.在最佳试验条件下,探讨半胱氨酸的抑制特性,在一定范围内抑制强度与半胱氨酸的质量浓度成正比.线性范围为0.01~1.8 μg/mL,(r=0.9946),检出限(3σ)为1.6 ng/mL,对质量浓度为1.0 lg/mL的半胱氨酸进行11次平行测定,RSD为0.72%.该法有望用于测定实际样品中半胱氨酸的含量.【期刊名称】《中国测试》【年(卷),期】2015(041)007【总页数】4页(P37-40)【关键词】半光氨酸;抑制;二氧化铈纳米颗粒;化学发光【作者】石文兵;戚景南;贺薇;万邦江【作者单位】无机特种功能材料重庆市重点实验室,长江师范学院化学化工学院,重庆408100;唐山科技职业技术学院,唐山063001;无机特种功能材料重庆市重点实验室,长江师范学院化学化工学院,重庆408100;无机特种功能材料重庆市重点实验室,长江师范学院化学化工学院,重庆408100【正文语种】中文L-半胱氨酸属于蛋白质氨基酸,在临床医学和医药产业中发挥着重要的生物学作用。

L-半胱氨酸参与多种重要的细胞功能,如蛋白质合成、解毒和新陈代谢等;因此,灵敏、快速和廉价检测半胱氨酸的含量具有重要意义。

近几年,越来越多的方法已用于测定药物、尿液、血清和血浆中L-半胱氨酸含量,如高效液相色谱法(HPLC)[1-2]、分光光度法[3-4]、固相微萃取[5]、比色法[6-7]、电化学法[8]、荧光法[9]。

虽然这些方法大多数具有灵敏度高和选择性好的优点,但它们要么仪器昂贵,要么步骤繁复耗时。

化学发光法(LC)因其灵敏度高、线性范围宽、仪器设备便宜简单、容易实现自动化,广泛应用于不同领域。

荧光分光光度法英文

荧光分光光度法英文

荧光分光光度法英文Fluorescence SpectrophotometryFluorescence spectrophotometry is a widely used analytical technique in the fields of chemistry, biology, and medicine. It is based on the emission of light by certain molecules that have been excited by absorbing light of a specific wavelength. This emitted light is known as fluorescence and can be measured by a spectrophotometer.Principles of Fluorescence SpectrophotometryThe basic principle of fluorescence spectrophotometry is the excitation of a molecule by absorbing light at a specific wavelength. The molecule becomes excited and reaches a higher energy state. This energy is released in the form of emitted light at a longer wavelength. The emitted light is detected by a photodetector, and the signal is amplified and recorded by a computer.Advantages of Fluorescence SpectrophotometryFluorescence spectrophotometry has several advantages over other analytical techniques, such as absorbance spectrophotometry. One major advantage is high sensitivity. Fluorescence spectrophotometry can detect trace amounts of substances, which makes it ideal for research and analysis. Another advantage is selectivity. Fluorescence spectrophotometry can selectively measure certain molecules, which makes it useful in identifying specific compounds in a mixture.Applications of Fluorescence SpectrophotometryFluorescence spectrophotometry has numerous applicationsin various scientific fields. It can be used to study the structure and function of biomolecules, such as proteins and nucleic acids. It is also used in the pharmaceutical industry to develop and analyze drugs. In addition, fluorescence spectrophotometry is used in environmental monitoring, food analysis, and forensic science.ConclusionIn conclusion, fluorescence spectrophotometry is a powerful analytical technique that has revolutionized many scientific fields. Its high sensitivity and selectivity make it an indispensable tool in research and analysis. With the development of new instruments and methods, fluorescence spectrophotometry will continue to play an important role in advancing scientific knowledge.。

紫外分光光度法在保健食品检测中的应用

紫外分光光度法在保健食品检测中的应用

食品科技紫外分光光度法在保健食品检测中的应用罗婷婷(广西华测检测认证有限公司,广西南宁 530000)摘 要:紫外分光光度法是一种常用的光谱分析技术,可以用于分析物质的结构、浓度、纯度等参数。

在保健食品的检测中,紫外分光光度法有着广泛的应用,可以用于检测保健食品的成分含量、质量和安全性等。

本研究简单分析了紫外分光光度法在保健食品检测中的应用,讨论了紫外分光光度法在保健食品检测中的必要性,探讨了紫外分光光度法在保健食品测定中的应用,旨在为我国未来保健食品的生产与管理提供帮助与参考。

关键词:紫外分光光度法;保健食品;检测分析;食品安全管理Application of Ultraviolet Spectrophotometry in the Detectionof Health FoodLUO Tingting(Guangxi Huace Testing and Certification Co., Ltd., Nanning 530000, China) Abstract: Ultraviolet spectrophotometry is a commonly used spectral analysis technique that can be used to analyze parameters such as the structure, concentration, and purity of substances. In the detection of health food, ultraviolet spectrophotometry is also widely used, which can be used to detect the content, quality, and safety of ingredients in health food. This study briefly analyzed the application of ultraviolet spectrophotometry in the detection of health food, discussed the necessity of ultraviolet spectrophotometry in the detection of health food, and discussed the application of ultraviolet spectrophotometry in the determination of health food, aiming to provide assistance and reference for the future production and management of health food in China.Keywords: ultraviolet spectrophotometry; health food; detection analysis; food safety management紫外分光光度法是一种常用的光谱分析技术,利用化合物分子在紫外区或可见光区的吸收特性,通过检测样品溶液中不同波长光线的吸收强度,确定分子的结构、浓度、纯度等参数[1]。

钙离子测定的几种方法

钙离子测定的几种方法

钙离子测定的几种方法1. 火焰原子吸收光谱法(FAAS)原理:FAAS方法利用钙离子在火焰中产生特定的吸收峰,通过测量钙离子吸收光线的强度来确定其浓度。

优点:- 灵敏度高,能够测定低至微克级别的钙离子浓度。

- 分析速度快,适用于大批量样品分析。

- 使用简单,设备成本相对较低。

缺点:- 仪器对样品的干扰较为敏感,需要进行前处理或矫正。

- 不能同时测定多种金属离子,可能需要分离步骤。

2. 离子选择电极法(ISE)原理:ISE方法是通过使用特定的离子选择电极来测定钙离子浓度,电极的响应与钙离子浓度呈现一定的关系。

优点:- 高选择性,可测定特定离子的浓度。

- 测定范围广,可适用于不同浓度水平的样品。

- 快速测定结果,无需显著的前处理步骤。

缺点:- 仪器价格较高。

- 电极使用寿命有限,需要定期更换。

- 在某些样品中可能受到干扰,需要进行矫正。

3. 比色法原理:比色法测定钙离子浓度是通过与钙离子反应生成有色产物,进而通过测量产物的吸光度或颜色来确定钙离子浓度。

优点:- 使用方便,操作简单。

- 适用于多种样品,如水、食品等。

- 可以进行快速测定,结果准确。

缺点:- 比色法对于样品颜色的影响较大,颜色较深的样品可能需要进行稀释或前处理。

- 针对不同样品需要选择适当的试剂,有可能导致分析复杂化。

总结以上是钙离子测定的几种常用方法,每种方法都有其优缺点。

在选择合适的方法时,需要考虑样品特性、所需测定范围和分析准确性等因素。

根据具体需求,可选择适合的方法进行钙离子浓度的测定。

参考文献:1. Smith, J. et al. (2015). Determination of calcium ion concentration by flame atomic absorption spectrometry. Analytical Methods, 7(21), 9140-9146.2. Wang, L. et al. (2018). Electrochemical ion selective electrodes for calcium ion detection. Journal of Materials Chemistry C, 6(18), 4816-4826.3. Zhang, H. et al. (2012). Spectrophotometric determination of calcium ion concentration in water samples. Chinese Journal of Analytical Chemistry, 40(12), 1804-1807.4. Li, L. et al. (2019). Colorimetric determination of calcium ion concentration in food samples. Food Analytical Methods, 12(1), 184-191.。

高通量全自动毛细管电泳分析系统技术参数

高通量全自动毛细管电泳分析系统技术参数

高通量全自动毛细管电泳分析系统技术参数1.主要用途:1.1 用于高通量动植物基因组核酸扩增产物微卫星片段大小分析,即SSR分析。

1.2 用于农业育种反向遗传学辐射或化学诱变突变体筛查,即Tilling分析。

1.3 用于常规DNA/RNA或扩增产物片段大小定性定量分析。

1.4 用于二代测序(NGS)过程中基因组DNA及文库的质控(定性定量)。

1.5 RNA定性定量分析。

1.6 质粒DNA分析、CAPS/RAPD分析。

1.7 同时具备定性和定量的功能。

2. 工作条件2.1 环境温度: 15到25°C2.2电源:100-240 VAC, 50-60Hz2.3湿度:小于80%3.技术指标3.1*自动进样系统标准要求:标准SBS格式96孔板装载样品,12个样品同时进样,同时检测。

3.2进样系统配置要求:3 x 96样品进样托盘,可实现无人值守下288个样本连续进样分析。

3.3*毛细管电泳分离技术,12通道毛细管长度55cm或者80cm。

片段大小分辨率2bp(小于300bp片段)3.4全自动仪器,每次标本分析都更换新的分离胶。

3.5分析前全自动灌胶。

3.6全自动进样。

3.7全自动进Marker和Ladder。

3.8分析结束后全自动清洗毛细管。

3.9分析结束后全自动将毛细管置入毛细管保存液中。

3.10标准分析时间:15分钟内完成12个样本的分析检测(小于3kbp样本)3.11*检出限:5 pg/µL,即2ul上述单组分标本稀释12倍后进样,可测出信噪比大于10:1的信号。

3.12动态范围:从最小至最高优于3个数量级。

3.13样品要求:PCR产物、基因组DNA、RNA 等。

样品无需纯化除盐等后处理,直接进样分析。

3.14*可检测DNA范围:1~100000bp。

最大可测到10万碱基对,可对gDNA基因组DNA进行质控检测。

3.15*突变检测灵敏度:可检测1000bp大小的DNA片段中1个碱基突变的存在以及8个混合样本中1个突变样本的存在。

TCTA对红绿磷光有机电致发光器件发光层激子的调控作用

TCTA对红绿磷光有机电致发光器件发光层激子的调控作用

TCTA对红绿磷光有机电致发光器件发光层激子的调控作用张微;张方辉;黄晋【摘要】制备了结构为ITO/MoO3(50 nm)/NPB(40 nm)/TCTA(10 nm)/CBP∶ 14%GIr1 (30 nm)/TCTA(x)/CBP∶ 2% R-4B(10 nm)/BCP(10 nm)/Alq3(40 nm)/LiF(1 nm)/Al(100 nm)的红绿磷光有机电致发光器件,GIr1和R-4B分别为红、绿磷光染料.通过在红绿间插入较薄间隔层TCTA的方法,调节载流子、激子在红绿发光层中的分布,并结合TCTA和BCP对发光层内载流子和激子的有效阻挡作用,研究了载流子调控层TCTA在不同厚度下对器件发光性能的影响.结果表明,TCTA为1 nm时,器件的发光性能得到了很好的提升.电压为6V时,TCTA为1nm器件的电流密度、亮度、最大电流效率分别为0.509 mA/cm2 、69.91 cd/m2和13.72cd/A,而TCTA为0nm器件的电流密度、亮度、最大电流效率分别为1.848mA/cm2 、215.7 cd/m2和11.67 cd/A.%Red and green phosphorescent organic light emitting diodes were fabricated,utilizing GIr1 and R-4B (novel red and green) phosphorescent materials.Device structure was ITO/MoO3 (50 nm)/NPB(40 nm)/TCTA(10 n m)/CBP∶ 14%GIr1 (30 nm)/TCTA(x)/CBP∶ 2% R-4B(10 nm)/BCP(10 nm)/Alq3(40 nm)/LiF(1 nm)/ Al(1O0 nm).The luminescent properties were studied by inserting different thickness of TCTA (regulation of carrier) spacer layer between red and green emitting layer to adjust the distribution of carriers and excitons.The results showed that the optimum performance of OLED was achieved when the thicknessof TCTA spacer layer is 1 nm.The maximum the device performance reached 13.72 cd/A,0.509 mA/cm2 and 69.91 cd/m2 at 6 V.While for 0 nm(none spacer),the device performance reached 11.67 cd/A,1.848 mA/cm2 and 215.7 cd/m2 at 6 V.【期刊名称】《发光学报》【年(卷),期】2013(034)007【总页数】5页(P877-881)【关键词】有机电致发光器件;磷光;阻挡层;间隔层【作者】张微;张方辉;黄晋【作者单位】陕西科技大学电气与信息工程学院,陕西西安710021;陕西科技大学电气与信息工程学院,陕西西安710021;陕西科技大学电气与信息工程学院,陕西西安710021【正文语种】中文【中图分类】TN383+.11 引言有机电致发光器件(OLED)具有高效、固态面发光、广视角、可柔性显示等优点[1-3],广泛应用于照明和显示领域[4-5],尤其是白色有机电致发光器件在液晶背光源和照明方面的应用,得到了广泛的关注。

石墨烯修饰的电极对对氨基苯酚和对乙酰氨基酚进行同时测定

石墨烯修饰的电极对对氨基苯酚和对乙酰氨基酚进行同时测定

石墨烯修饰的电极对对氨基苯酚和对乙酰氨基酚进行同时测定宋海燕;倪永年【摘要】利用石墨烯修饰的玻碳电极采用微分脉冲伏安法对对氨基苯酚和对乙酰氨基酚进行同时测定.实验证明在pH=5.72的Britton-Robinson(B-R)缓冲溶液中这两种物质都具有良好的氧化峰,在修饰电极上两物质的伏安峰能够很好地分开,因此可以直接对这两种物质进行同时测定.在最佳实验条件下对氨基苯酚和对乙酰氨基酚的线性范围分别为0.1~1.8,0.2~2.2 mg·mL-1,两者的检测限分别为0.067,0.074mg·mL-1.利用本文提出的方法对血清实际样中的对氨基苯酚和对乙酰氨基酚进行测定,可得较高的回收率.%A differential pulse voltammetric method for simultaneous determination of 4-aminophen and acetaminophen with graphene modified glass carbon electrode was developed. Both of the two compounds gave well defined oxidation voltammetric peaks at modified electrode in medium of pH 5. 72 Britton-Rob-inson buffer. As a result,it is possible to simultaneously determine these two compounds. Under the optimum conditions,the linear ranges of 4-aminophen and acetaminophen were 0. 1~1. 8 and 0. 2~2. 2 mg · mL-1 ,with detection limits of 0. 067 and 0. 074 mg · mL-1 respectively. This method was successfully applied for the determination of acetaminophen and 4-aminophen in serum to obtain satisfied results.【期刊名称】《南昌大学学报(理科版)》【年(卷),期】2012(036)004【总页数】4页(P363-366)【关键词】伏安法;石墨烯;对氨基苯酚;对乙酰氨基酚;同时测定【作者】宋海燕;倪永年【作者单位】南昌大学食品科学与技术国家重点实验室,江西南昌 330047;南昌大学化学系,江西南昌 330031;南昌大学食品科学与技术国家重点实验室,江西南昌330047;南昌大学化学系,江西南昌 330031【正文语种】中文【中图分类】O646.54对乙酰氨基酚又称扑热息痛,是一种广泛使用的消炎镇痛退烧药,1893年它首次被化学合成并用于制药业生产。

一种具有大斯托克斯位移和高光学稳定性的线粒体靶向近红外染料及其细胞成像应用(英文)

一种具有大斯托克斯位移和高光学稳定性的线粒体靶向近红外染料及其细胞成像应用(英文)

A mitochondria-targeting near-infrared dye with large Stokes shift and high optical stability for cellular imaging applicationsAbstractMitochondrial imaging is of great significance for studying mitochondrial function and for investigating diseases related to dysfunction in these organelles. Fluorescent dyes have been widely used for imaging mitochondria, however, there are challenges associated with achieving high optical stability and sufficient sensitivity for visualization. In this study, we developed a mitochondria-targeting near-infrared dye with a large Stokes shift and high optical stability for cellular imaging applications. The dye demonstrated excellent mitochondria-targeting ability and low cytotoxicity. Additionally, it displayed a large Stokes shift, which reduces spectral overlap and enables high signal-to-background ratios. This dye provides a powerful tool for mitochondrial imaging and has the potential to advance our understanding of mitochondrial biology and disease.IntroductionMitochondria are organelles that exist within eukaryotic cells, which play a crucial role in energy metabolism, programmed cell death and other cellular processes. Therefore, mitochondrial imaging has significant clinical and research applications, such as in diseases such as cancer, cardiovascular disease and neurological disorders.Fluorescent imaging is commonly used for mitochondrial imaging, but it remains challenging to achieve high optical stability and sufficient sensitivity. This is due to low fluorescence quantum yields of dyes, spectral overlap, and issues with photobleaching, phototoxicity and poor targeting efficiency.In order to overcome these challenges, we have developed a mitochondria-targeting near-infrared dye with a large Stokes shift and high optical stability, which has promising indications for use in cellular imaging applications.Materials and MethodsThe design of the dye was based on a coumarin-based chromophore coupled to a triphenylphosphonium ion (TPP) moiety, which is known for strong mitochondrial targeting. The TPP-coumarin (TPPC) conjugate was synthesized and characterized using standard synthetic methods.Cytotoxicity was measured by incubating the dye with human embryonic kidney cells (HEK293) for 24 hours and assessing cell viability. The mitochondrial-targeting ability of the dye was evaluated using confocal microscopy with MitoTracker as a reference.The optical stability of the dye was assessed through measurements of fluorescence intensity, and photobleaching and photostability tests were also performed.ResultsThe TPPC dye showed excellent mitochondria-targeting ability and low cytotoxicity. Confocal microscopy showed that the dye co-localized with MitoTracker in live cells, indicating that the dye can effectively target and accumulate in the mitochondria.The dye demonstrated a large Stokes shift of 104 nm, which significantly reduces spectral overlap and hence improves signal-to- background ratios, making it an ideal candidate for fluorescence imaging.The dye also showed high optical stability, with fluorescence intensity remaining stable over an extended period of time. Photobleaching and photostability tests demonstrated that the dye is highly resistant to photobleaching, and is maintained at high fluorescence intensity in prolonged exposure to intense light.DiscussionIn this study, we have demonstrated the successful development of a mitochondria-targeting near-infrared dye with a large Stokes shift and high optical stability. The dye showed excellent mitochondrial- targeting ability, low cytotoxicity, high photostability, and a large Stokes shift, indicating great potential for use in cellular imaging applications.With continued research and development, this dye could potentially be used to deepen our understanding of mitochondrial biology and related diseases. Future studies should continue to optimize the design of this dye, and explore its potential as a theranostic tool in targeted drug delivery and disease therapy.ConclusionIn summary, the mitochondria-targeting near-infrared dye with a large Stokes shift and high optical stability developed in this study represents a significant step towards the improvement of cellular imaging applications. The dye showed excellent mitochondrial-targeting ability, low cytotoxicity, and high photostability, and a large Stokes shift. It has the potential to advance our understanding of mitochondrial biology and disease. With further optimization, this research may lead to the development of a potent theranostic tool for targeted drug delivery and disease therapy.。

materials science英文缩写

materials science英文缩写

materials science英文缩写在材料科学领域,有许多常见的英文缩写。

以下是一些常见的材料科学英文缩写:1. SEM: Scanning Electron Microscopy(扫描电子显微镜)2. TEM: Transmission Electron Microscopy(透射电子显微镜)3. XRD: X-ray Diffraction(X射线衍射)4. FTIR: Fourier Transform Infrared Spectroscopy(傅立叶变换红外光谱)5. NMR: Nuclear Magnetic Resonance(核磁共振)6. AFM: Atomic Force Microscopy(原子力显微镜)7. STM: Scanning Tunneling Microscopy(扫描隧道显微镜)8. XPS: X-ray Photoelectron Spectroscopy(X射线光电子能谱)9. HRTEM: High-Resolution Transmission Electron Microscopy(高分辨透射电子显微镜)10. UV-Vis: Ultraviolet-Visible Spectroscopy(紫外-可见光谱)11. DSC: Differential Scanning Calorimetry(差示扫描量热法)12. TGA: Thermogravimetric Analysis(热重分析)13. DMA: Dynamic Mechanical Analysis(动态机械分析)14. CVD: Chemical Vapor Deposition(化学气相沉积)15. PECVD: Plasma-Enhanced Chemical Vapor Deposition(等离子体增强化学气相沉积)这些缩写通常用于科学文献、实验室报告和学术讨论中,以简洁地表示各种实验方法、仪器和技术。

一种用于细胞成像检测Al(Ⅲ)的高选择性开关型烟酰肼类荧光探针

一种用于细胞成像检测Al(Ⅲ)的高选择性开关型烟酰肼类荧光探针

一种用于细胞成像检测Al(Ⅲ)的高选择性开关型烟酰肼类荧光探针张晓梅;王冠元;韩静;孙予璇;李庆忠;谢承志【摘要】目的:基于烟酰肼席夫碱配体,开发一种灵敏度高、选择性强的新型铝离子荧光探针.方法:通过2-羟基-1-萘甲醛和烟酰肼的缩合反应,合成一个酰腙衍生物2-羟基-1-萘甲醛烟酰腙(IL),并通过红外和核磁氢谱验证其结构.HL可通过荧光光谱检测样品中的铝离子及通过生物成像检测细胞中的铝离子.结果:HL结合铝离子后形成2∶1的化合物,其荧光会发生显著的提高,并具有良好的选择性.基于密度泛函理论,通过计算验证其识别机制为激发态分子内质子转移(ESIPT)和分子内电荷转移(ICT).HL在低浓度下和铝离子具有很好的线性关系,检测限为2.3 nmol/L.结论:基于具有良好的铝离子检测能力,此烟酰肼席夫碱配体可作为荧光探针应用于医学检验领域.【期刊名称】《天津医科大学学报》【年(卷),期】2018(024)004【总页数】4页(P294-297)【关键词】铝离子;烟酰肼;荧光探针;密度泛函理论【作者】张晓梅;王冠元;韩静;孙予璇;李庆忠;谢承志【作者单位】天津医科大学药学院,天津300070;天津医科大学肿瘤医院药学部,天津300060;天津医科大学药学院,天津300070;天津医科大学药学院,天津300070;烟台大学化学化工学院,烟台264005;天津医科大学药学院,天津300070【正文语种】中文【中图分类】R9铝是地球上含量最多的金属元素,在生产生活领域中有着广泛的应用,如水处理、食品添加剂、药品、电化学、轻合金的生产等[1-3]。

然而,过量的铝会引起人体特定组织和细胞的损害,导致健康问题,如低色小红细胞性贫血、铝相关性骨骼疾病(ARBD)、脑病、痴呆、肌肉病变、阿尔茨海默症和帕金森病等[4-6]。

另外,铝离子还会产生生物代谢性的危害,如铝离子会影响体内的钙和硒的吸收代谢[7]。

此外,人们认为,世界上近40%的酸性土壤是由铝毒污染的,这是妨碍植物(如农作物)在酸性土壤中生长的关键因素[8]。

罗丹明6G荧光猝灭法测定痕量次氯酸根

罗丹明6G荧光猝灭法测定痕量次氯酸根

罗丹明6G荧光猝灭法测定痕量次氯酸根梁爱惠;章表明【摘要】在稀盐酸介质中,ClO-与过量的I-反应生成I-3,I-3分别与罗丹明6G(RhG)、罗丹明S(RhS)、罗丹明B(RhB)及丁基罗丹明B(b-RhB)形成缔合微粒而导致各体系的荧光分别在550、550、580和580 nm处发生猝灭.ClO-浓度分别在0.015~0.43、 0.020~0.35、0.020~0.51 、0.020~0.35 mg/L范围内与各体系的荧光猝灭强度具有线性关系.各体系的检出限分别为0.010、 0.016、0.028和0.029 mg/L ClO-.据此建立了测定次氯酸根的荧光猝灭分析法,其中RhG-ClO--KI体系不仅灵敏度高而且稳定性较好,用于漂渍液和漂白粉中ClO-的测定,结果满意.【期刊名称】《桂林理工大学学报》【年(卷),期】2008(028)002【总页数】4页(P212-215)【关键词】ClO-;罗丹明6G;缔合微粒;荧光猝灭法【作者】梁爱惠;章表明【作者单位】桂林工学院,材料与化学工程系,广西,桂林,541004;桂林工学院,材料与化学工程系,广西,桂林,541004【正文语种】中文【中图分类】O657.3次氯酸盐是一种常用的漂白剂和消毒剂。

在人体组织中,在亚铁血红素的髓过氧化物酶的催化作用下,过氧化物与氯化物反应可产生ClO-或HClO。

这种在血球内产生的 ClO-/HClO或 Cl2(HOCl的分解产物)在生物大分子的氧化损伤过程中所起的作用已成为目前生物化学研究的热点问题之一。

从事这方面的研究工作通常都用NaOCl作为ClO-/HClO的来源[1,2]。

目前,测定ClO-的方法主要有碘量法[3]、流动注射化学发光法[4]、分光光度法[5]和高效液相色谱法[6]、酶传感器[7]等。

碘量法的缺陷是灵敏度低,不适合于测定低浓度的ClO-。

流动注射分析法测定水中ClO-的线性范围为5~500 mg/L,检出限为5 mg/L。

USP药品质量标准

USP药品质量标准
– cGMP regulations require testing of each batch of finished drug product to ensure that it meets defined specifications. cGMP法规要求最终产品每批检测,以保证产品符合既定的标准
‘Non-US’: approved by stringent regulatory authority other than FDA, for marketing outside USA 被FDA之外其它严格的药物管理机构批准,并在美国之外上市的药物
Excipients 辅料
NF: listed on FDA’s Inactive Ingredients Database 收录于FDA的非活性成分数据库
USP 标准品
可提供超过2,500 种标准品 用于支持FDA强制执行的USP–NF 中的标准和测试 100.0% 纯度保证 (标签另有说明除外)
14
药典相关项目
• 认证服务 (GMP认证计划)
– 食品补充剂 – 食品补充剂原料 – 药用原辅料
• 药典培训 • 协助美国政府国际援助署
(USAID)在发展中国家 进行促进药品质量的项目
– Developed by FDA under authority granted by FFDCA 在FFDCA法律框架下由FDA建立
• FDA guidance FDA指南
– Non-binding, but indicates FDA’s thinking 非法规,但体现FDA的考虑
Recognition of USP in FFDCA – Documentary Standards
– In other cases, manufacturers can use an alternative test method if it is: 其他情况下生产商可以使用替代方法,如果(替代方法):

具有高折射率的丙烯酸类聚合物材料[发明专利]

具有高折射率的丙烯酸类聚合物材料[发明专利]

专利名称:具有高折射率的丙烯酸类聚合物材料专利类型:发明专利
发明人:解江冰
申请号:CN201110034239.7
申请日:20110201
公开号:CN102617784A
公开日:
20120801
专利内容由知识产权出版社提供
摘要:本发明涉及具有高折射率的丙烯酸类聚合物材料,具体地,涉及具有高折射率、低色散偏差、和任选地包含防蓝光辐射的丙烯酸类聚合物材料,其可用于制备医疗器材,特别地,制备眼部医疗器材,例如用于制备人工晶体、隐性眼镜、人工角膜、角膜内环、角膜内透镜、青光眼引流阀、药物缓释载体、眼镜、护目镜、医疗设备透镜、望远镜、观测镜等;。

本发明还涉及一种可聚合黄色偶氮染料,其最大吸收波长在大约360-370nm左右,结构中含有甲基丙烯酰胺不饱和基团,可以达到有效吸收蓝光和/或紫外线的效果。

申请人:爱博诺德(北京)医疗科技有限公司
地址:102200 北京市昌平区科技园超前路37号6号楼1楼北区
国籍:CN
代理机构:中国专利代理(香港)有限公司
更多信息请下载全文后查看。

基于SPR光谱分析的液体折射率计

基于SPR光谱分析的液体折射率计

基于SPR光谱分析的液体折射率计邹璐;李慧明;菅傲群;王雷阳【摘要】为了更好地测量液体折射率,提出了一种基于表面等离子共振波长测量液体折射率的方法,采用Kretschman结构建立了模型,进行了软件仿真,并搭建实验平台进行了实验研究,分析了实验和理论之间的误差来源.结果表明,当折射率在1.33RIU ~ 1.36RIU的范围内变化时,表面等离子共振吸收峰随液体样品折射率的变化产生了频移,其灵敏度可达4808.94nm/RIU.该方法可以准确测量液体的折射率,且系统结构简单,具有较高的灵敏度.【期刊名称】《激光技术》【年(卷),期】2018(042)003【总页数】5页(P357-361)【关键词】传感器技术;共振波长;表面等离子体共振;灵敏度【作者】邹璐;李慧明;菅傲群;王雷阳【作者单位】太原理工大学微纳系统研究中心,太原030024;太原理工大学新型传感器与智能控制教育部和山西省重点实验室,太原030024;太原理工大学微纳系统研究中心,太原030024;太原理工大学新型传感器与智能控制教育部和山西省重点实验室,太原030024;太原理工大学微纳系统研究中心,太原030024;太原理工大学新型传感器与智能控制教育部和山西省重点实验室,太原030024;太原理工大学微纳系统研究中心,太原030024;太原理工大学新型传感器与智能控制教育部和山西省重点实验室,太原030024【正文语种】中文【中图分类】TN247引言折射率是分析物质信息的重要参考依据,研究结果表明,介质溶质的细小变化可以通过检测其折射率改变来精确反应[1]。

在诸多领域,如:化学食品检测、污水处理检测、空气指数检测等,待检测样品通常为低浓度介质,折射率检测法能有效分析介质的各项参量指标[2-3]。

对比目前成熟的折射率检测法,如布喇格光纤法[4]和阿贝折射率法[5],表面等离子共振(surface plasmon resonance,SPR)技术凭借其免标记、无污染、高分辨率等优势,在食品、医药、环境等多个重要领域有更加广泛的应用前景[6-7]。

钛盐比色法测定消毒牛奶中残留过氧化氢的含量

钛盐比色法测定消毒牛奶中残留过氧化氢的含量

的曝光和卫生部调查结果的公布, 使全国公众都对保健品和食品的安全问题又引 起了新的关注[2]。特别是卫生部在 2004 年 12 月 3 日通报中关于“我国和国际组 织均未制定固体食品中过氧化氢的测定方法”的说明,更引起人们的深思。我国 食品添加剂标准 GB2760——96
[3]
17.020 规定,生鲜牛乳(有地区限制)中 H2O2
2+ 3+
表2 Fe3+浓度 g/L
铁(Fe3+)离子对检测结果的干扰 H2O2 浓度 mg/L 实测值 mg/L 1.16 1.47 2.66 相对偏 差 0 26.7 129.3 %
0.08 0.16 0.8
1.16 1.16 1.16
2.3 其它过氧化物对检测结果的影响 分别吸取10.00 mL经1.3.1处理后的阳性试样液置于A、B、C 3管25 mL带塞比 色管中,A管中加入0.01%过氧化氢酶溶液1 mL, B、C 2管中各加入蒸馏水1 mL, 振荡均匀后放置10 min,然后在A、B两管中加入钛溶液5.0 mL,C管中加入5.0 mL 稀硫酸(1+4)代替钛溶液作为样品空白,以下按标准曲线绘制步骤操作。试验
2.5.1 标准工作曲线与检出限 μ g 过 氧 化 氢 标
0,0.004,0.011,0.031,0.084,0.179,0.272,0.369,0.462, 标准工作曲线方程为:
A=0.0019C-0.0059 R2=0.9997
重复多次(至少 6 次)测定的试剂空白吸光度值,以试剂空白吸光度值的 3 倍标准偏差 3σ=0.011 所对应的浓度或含量 C=9 μg 作为检出限值, 钛盐比色法 的检测限为 0.36 mg/L。 2.5.2 精密度试验 用钛盐比色法对试样 A、B 在不同实验室, 由不同人员进行
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Spectrochimica Acta Part A 60(2004)2053–2057Highly selective spectrophotometric flow-injection determination of trace amounts of bromide by catalytic effect on the oxidation ofm -cresolsulfonephthalein by periodateAli A.Ensafi∗,B.Rezaei,S.NourooziCollege of Chemistry,Isfahan University of Technology,Isfahan 84156,IranReceived 12May 2003;received in revised form 12May 2003;accepted 6November 2003AbstractA new flow-injection method is reported for the determination of bromide.The method is based on catalytic effect of bromide on the oxidation of m-cresolsulfonephthalein by periodate in acidic media.The reaction was followed spectrophotometrically by measuring the decrease in absorbance at 528nm.The influence of pH,reagent concentration and manifold variables on the sensitivity was studied.Under optimum conditions,a calibration graph was obtained in the range of 0.160–20.00␮g ml −1bromides with a limit of detection of 0.150␮g ml −1bromide.The relative standard deviation for ten replicate measurement of 1.0␮g ml −1bromide was 2.1%.The influence of potential interfering ions on the selectivity was studied.The method successes to measure bromide in the presence of other halide ions.The method was used to measure bromide in river water and tap water.©2003Elsevier B.V .All rights reserved.Keywords:Bromide;Catalytic;m -Cresolsulfonephthalein;FIA1.IntroductionBromide is trace element in natural waters and biological fluids in the concentration range of 10−4to 10−8M.For this purpose,catalytic methods are considered to be most suit-able because of the high sensitivity and sufficient accuracy.Several catalytic-spectrophotometer methods have been re-ported for determination of bromide [1–7],some of these methods [1–5]based on the catalytic effect of bromide on the iodine-permanganate reaction,are sensitive,but chloride ions interfere seriously.The other method based on catalytic effect of bromide on the oxidation of pyrocathecol violet by hydrogen peroxide [6],but iodide ion interferes seriously.Tomiyasu et al.[7]have been reported a sensitive methods for determination of bromide using tetrabase-chloramine T reaction,but the method has narrow linear calibration range and suffer many interfering ions such as iodide at ng ml −1specially.Flow-injection analysis widely used as a simple and convenient approach to rapid analysis,in which varying∗Corresponding author.Tel.:+98-311-3912351;fax:+98-311-3912350.E-mail address:ensafi@cc.iut.ac.ir (A.A.Ensafi).the flow rate of the solution and the length of reaction coil can easily control the reaction time.The application of a flow-injection technique to catalytic method should offer a reproducible,rapid and rather convenient procedure for routine determinations of trace amount of bromide.Some flow-injection methods have been reported for de-termination of bromide [8–13],but these methods were not sensitive enough to determine bromide at trace lev-els or suffer from interfering ions especially iodide and chloride.This paper describes a FI-spectrophotometric procedure for the determination of bromide,by its catalytic on the oxidation of m-cresolsulfonephthalein with periodate.The method has been successfully applied to the determination of bromide in river and tap water samples.2.Experimental 2.1.ReagentsAll the solution was prepared using reagent grade chem-icals.Double distilled water was used for preparation of solutions.1386-1425/$–see front matter ©2003Elsevier B.V .All rights reserved.doi:10.1016/j.saa.2003.11.0032054 A.A.Ensafiet al./Spectrochimica Acta Part A60(2004)2053–2057Fig.1.Manifold system used for bromide determination.A bromide solution,500␮g ml−1was prepared by dis-solving0.0745g KBr(Merck)in water in a100ml volumet-ricflask.The working solutions were prepared by diluting this solution with water daily,m-cresolsulfonephthalein solution,0.001M,was prepared by dissolving0.0382g of the reagent(Merck)in mixture of EtOH/H2O(0.10/1.0), in a100ml volumetricflask.Sodium periodate solution, 0.100M,was prepared by dissolving 2.1389g NaIO4 (Merck)and diluting to100ml with water in a100ml volumetricflask.2.2.ApparatusA manifold diagram of theflow system employed is shown in Fig.1The decrease in absorbance was measured with Shimadzu Model6A V,equipped with theflow-through cell of(20ul inner volume)1.0cm optical path,its out-put was connected to Shimadzu signal processing(Model C-R4AX Chromatopac).A12-channel peristaltic pump (Desaga,Model PLG)with three silicon rubber tubes (1.0mm i.d.)was used.PTFE mixing joints and PTFE tub-ing(1.0mm i.d.)was used for the connections and for the mixing coil.The controlled water bath(Gallen-Kamp,BLG, 220V)was used at a given temperature of40±0.1◦C. Sample solutions were injected using a rotary Rheodyne valve with a sample loop of200l.2.3.ProcedureAs shown in Fig.1,H2O(R1),m-cresolsulfonephthalein (R2)and mixture of HCl/IO4−(R3)solutions were pumped at13.5ml h−1for each channel via a peristaltic pump.The standard solution-containing(160–20,000ng ml−1Br−) sample was injected into a carrier stream(H2O)at point S. The sample stream was directly treated with other reagents and passed toflow cell of the spectrophotometer where the decrease in absorbance at528nm is measured.3.Results and discussionThe oxidation reaction of m-cresolsulfonephthalein (MCP)with periodate in acidic media is so slow.On the other hand,the oxidation reaction goes to the fast in the presence of bromide ion at trace levels.The reaction can be followed spectrophotometrically by measuring thedecrease Fig.2.Variation of absorbance of m-cresolsulfonephthalein–periodate sys-tem with time in the presence of bromide.Conditions:MCP,7.8×10−5M; periodate,0.0010M;HCl,0.80M;Br−,0.500␮g ml−1;temperature, 30◦C;time interval for each scan,60s.in absorbance of MCP at528nm(Fig.2).By increasing bromide concentration,the absorbance of the reagent at characteristic band decreased linearly at afixed time of the initiation of the reaction.In order to maximize the sensitivity,the influence of acid type and concentration,reagents concentration,and mani-fold variables on the reaction was studied.Signal of bro-mide in hydrochloric acid medium is larger than other acidic (H2SO4,HNO3,H3PO4)media.The influence of hydrochlo-ric acid concentration on the peak heights was studied with 7.05×10−5M(MCP),6.0␮g ml−1Br−and0.025M IO4−. Fig.3shows that by increasing HCl concentration,the sen-sitivity increased.Therefore,1.4M HCl was selected. Fig.4shows the effect of MCP concentration on the sen-sitivity(peak height)with the1.4M HCl,6.0␮g ml−1Br−and0.025M IO4−.The results show that the sensitivity in-creased by increasing MCP concentration up to7.0×10−5M Fig.3.Influence of HCl concentration on the sensitivity.Conditions: MCP,7.0×10−5M;Br−,6.0␮g ml−1;periodate,0.025M;flow rate, 1.0ml min−1for each channel;Reaction coil length,200cm;Sample volume,20␮l;temperature,40◦C.A.A.Ensafiet al./Spectrochimica Acta Part A 60(2004)2053–20572055Fig.4.Influence of m -cresolsulfonephthalein on the sensitivity.Conditions:such as Fig.3with 1.4M HCl.whereas greater amount of the reagent cause decrease in sensitivity by increasing of noise.Therefore,7.0×10−5M of MCP was selected for the study.The influence of periodate concentration on the sensitivity was studied with the optimum concentration of HCl and MCP in the presence of 6.0␮g ml −1Br −(Fig.5).The results show that the sensitivity increased by increasing periodates concentration up to 0.070M,and then level off.Therefore,0.070M IO 4−was selected for further study.The effect of temperature on the sensitivity was checked in the range of 22–60◦C with the optimum reagent concen-tration and 6.0␮g ml −1Br −.The results showed that peak height increases by increasing temperature up to 40◦C,and then it’s decreased.Therefore,40◦C was selected.The sample volume injected into the carrier line has sig-nificant effect on the peak height.The signal increaseduponFig.5.Effect of periodate concentration on the sensitivity.Conditions:such as Fig.4.Fig.6.Influence of sample injection volume on the peak height.Condi-tions:such as Fig.4with 0.070M periodate.increasing the sample volume,but this increasing is slowly and cause broadening of the peaks.Thus,for the rate of anal-ysis and peak shape (sharper)200␮l for the sample volume is selected (Fig.6).The peak height depends on the residence time of the sample zone in the system,e.g.on the total flow rate and length of reaction coil.The effect of the pump flow rate was checked over the range 0.5–1.5ml min −1.The signal decreased with increasing flow rate.This is due to the fact that at higher flow rate,the residence time was decreased,thus oxidation reaction and the consumption of MCP is decreased,thus causing decreasing peak heights.From the results,and for best peak shape (sharper)and rate of analysis,the flow rate of 0.7ml min −1is chosen for study (Fig.7).The increase of reaction coil length on the sensitivity was studied at a constant flow rate.Increase in length of reaction coil from 150to 335cm increased the sensitivity,which is related to the longer residence time for the reaction mixture,whereas a longer reaction coil does not affect sensitivity,but only cause peak broadening.Thus,base on the results shown in Fig.8,250cm for the reaction coil length was selected as the optimum.4.Calibration graph and reproducibilityFig.9shows typical flow signals for the injection of 1.00and 5.00␮g ml −1bromide solution obtained under the opti-mum conditions using the flow system shown in Fig.1.The calibration graph was linear from 0.160to 20.00␮g ml −1bromide with regression coefficient of r 2=0.9989.By using the signal to noise ratio equal to 3as a limiting requirement,the experimental detection limit was found to be 0.150␮g ml −1.The precision of the method was tested by injection of 15samples.2056 A.A.Ensafiet al./Spectrochimica Acta Part A 60(2004)2053–2057Fig.7.Effect of pump flow rate on the peak heights.Conditions:such as Fig.4.Fig.8.Influence of length of the reaction coil on the sensitivity.Condi-tions:such as Fig.4with flow rate of 0.7ml min −1for each channel.The standard deviations for 15replicate determinations of 1.00and 5.00␮g ml −1bromide were 3.48and 2.1%,re-spectively.The sampling rate was 27h −1.5.Influence of interferenceThe effect of more than 25ions on the determination of 1.00␮g ml −1Br −was studied.The tolerance limit was de-fined two time of standard deviation of determination ofTable 1Interferences in the determination of bromide (1.00␮g ml −1)SpeciesTolerance limit (W ion /W Br −)Pb(II),Mn(II),Al(III),Cr(VI),Mo(VI),F −,CH 3COO −,NO 3−,SO 4−,PO 4−,C 2O 42−,CO 32−,HCO 3−,ClO 3−1000Ni(II)600Fe(III)300Sn 2+,SO 32−200Cu(II),I −150Hg(II)60As(III)50SCN −351.00␮g ml −1bromide (in the absence of interfering ions).Table 1shows that many ions;especially iodide did not in-terfere with bromide.Ions,which are to participate in redox reactions as either oxidizing or reducing agent such as S 2−and BrO 3−,cause serious interference.6.Determination of bromide in water sampleIn order to test the applicability of the method,the proce-dure was applied to the determination of bromide in river and tap water samples after passed through a filter paper (What-man No.1)and then through a column (10cm ×1.0cm)containing cation exchange resin.The determinations were made by standard addition method.The results are shown in Table 2that shows good agreement between added bromide and recoveries.A.A.Ensafiet al./Spectrochimica Acta Part A60(2004)2053–20572057 Table2Determination of bromide in real samplesSample no.Bromide added(␮g ml−1)Bromide found(␮g ml−1)Recovery(%)River water10.00.05–20.80.841053 1.2 1.251044 1.6 1.641025 2.0 1.9397Tap water10.000.0–20.800.775973 1.20 1.231024 1.60 1.59995 2.00 1.9999.5 Dimeh spring water(Isfahan)10.00.04–20.800.841003 1.20 1.19984 1.60 1.62995 2.00 2.0299.57.ConclusionThe method described is significant with respect to the development of simple manifold for determining traces of bromide in the presence of other halide.Its simplicity,ex-cellent reproducibility,freedom from some interference ions and broad range of bromide determination are coupled with the high speed of the FIA technique.AcknowledgementsThe authors are acknowledging to the Center of Excel-lency of IUT and Research Council for support of this work.References[1]M.J.Fishman,M.W.Skougstad,Anal.Chem.35(1963)146.[2]G.S.Pyne,M.J.Fishman, A.G.Hedley,Analyst105(1980)657.[3]A.Sakuragawa,K.Tamura,S.Utsumi,Bunseki Kangaka35(1986)95.[4]S.L.Feng,G.E.Zhang,Guangpuxue Yu Guangpu Fenxi17(1997)104.[5]A.M.Zhang,S.H.Wang,L.Y.Du,H.Cui,Anal.Lett.33(2000)2321.[6]N.Yonehara,A.Kawasuki,H.Sakamoto,M.Kamada,Anal.Chim.Acta206(1988)273.[7]T.Tomiyasu,Y.Taga,H.Sakamoto,N.Yonehara,Anal.Chim.Acta319(1996)199.[8]N.Yonehara,S.Akaike,H.Sakamoto,M.Kamada,Anal.Sci.4(1988)273.[9]A.M.Almuaibed, A.Townskend,Anal.Chim.Acta245(1991)115.[10]W.J.M.Emaus,H.J.Henning,Anal.Chim.Acta272(1993)245.[11]P.R.Freeman, B.T.Hart,I.D.McKelvin,Anal.Chim.Acta282(1993)379.[12]T.Toiyasu,Y.Taga,H.Sakamoto,N.Yonehara,Anal.Chim.Acta319(1996)199.[13]N.Yonehara,C.Shi-ichi,T.Tomiyasu,H.Sakamoto,Anal.Sci.15(1999)277.。

相关文档
最新文档