2016学年广东省深圳市龙岭中学七年级(上)数学期中试卷带参考答案
广东省 七年级(上)期中数学试卷-(含答案)
七年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.冰箱冷藏室的温度零上5℃,记作+5℃,保鲜室的温度零下7℃,记作()A. 7℃B. −7℃C. 2℃D. −12℃2.下列四个数中,负数是()A. −3B. 0C. 1D. 23.-5的相反数是()A. −5B. 5C. −15D. 154.下列各数中,互为倒数的是()A. 0.1与1B. 3与−13C. −3与3 D. 2与125.比-1大1的数是()A. 2B. 1C. 0D. −26.(-3)2的值是()A. 9B. −9C. 6D. −67.下列单项式中,与a2b是同类项的是()A. 2a2bB. a2b2C. ab2D. 3ab8.计算:5x-3x=()A. 2xB. 2x2C. −2xD. −29.舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A. 5×1010千克B. 50×109千克C. 5×109千克D. 0.5×1011千克10.近似数2.70所表示的准确数a的取值范是()A. 2.695≤a<2.705B. 2.65≤a<2.75C. 2.695<a≤2.705 D. 2.65<a≤2.75二、填空题(本大题共6小题,共24.0分)11.我市某天的最高气温是6℃,最低气温是-2℃,那么当天的日温差是______℃.12.买一个篮球需要x元,买一个排球需要y元,则买3个篮球和2排球共需______元.13.-6x m y3是一个六次单项式,则m=______.14.已知5x3y m与6x n y2可以合并为一项,则m n的值是______.15.若(a-2)2+|b-3|=0,那么a-b=______.16.拉面是这样做的:一根拉一次变成2根,再拉一次变成4根,照这样做下去,那么拉上7次后,师傅手中的拉面有______根.三、计算题(本大题共1小题,共9.0分)17.有这样一道题:先化简,再计算:(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3),其中x=12,y=-1.甲同学把“x=12”错抄成“x=-12”,但他计算的结果也是正确的,试说明理由,并求出这个结果.四、解答题(本大题共6小题,共57.0分)18.计算:(1)33+(-6)+17+(-24)×(-6)(2)(-20)÷(-4)-13(3)(3x+3)-2(x-1).19.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,-3,2,-0.5,1,-2,-2,-2.5,这8筐白菜共超重或不足多少千克?总重量是多少千克?20.已知:A=2x2−3x+2,B=x2−3x−2.(1)求A-B;(2)当x=-2时,求A-B的值.21.已知a、b互为相反数,c、d互为倒数,m的绝对值为3,求a+b+m-cd的值.522. 观察下列等式:第1个等式:a 1=11×3=12×(1-13); 第2个等式:a 2=13×5=12×(13-15); 第3个等式:a 3=15×7=12×(15-17); 第4个等式:a 4=17×9=12×(17-19)…请解答下列问题:(1)用含有n (n 为正整数)的式子表示第n 个等式; (2)求a 1+a 2+a 3+a 4+…+a 100的值.23. 小马虎在计算一个多项式减去2a 2+a -5的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减去后面两项没有变号,结果得到的差是a 2+3a -1. (1)求这个多项式;(2)算出此题的正确的结果.答案和解析1.【答案】B【解析】解:∵冰箱冷藏室的温度零上5℃,记作+5℃,∴保鲜室的温度零下7℃,记作-7℃.故选:B.首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.【答案】A【解析】解:四个数中,负数是-3.故选:A.根据小于0的是负数即可求解.此题主要考查了正数和负数,判断一个数是正数还是负数,关键是看它比0大还是比0小.3.【答案】B【解析】解:-5的相反数是5.故选:B.根据相反数的概念解答即可.本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.【答案】D【解析】解:0.1×1=0.1,故A错误;3×(-)=-1,故B错误;-3×3=-9,故C错误;2×=1,故D正确.故选:D.依据倒数的定义回答即可.本题主要考查的是倒数的定义,熟练掌握倒数的定义是解题的关键.5.【答案】C【解析】解:(-1)+1=0,故比-1大1的数是0,故选:C.根据有理数的加法,可得答案.本题考查了有理数的加法,互为相反数的和为0.6.【答案】A【解析】解:(-3)2=9.故选A.本题考查有理数的乘方运算,(-3)2表示2个(-3)的乘积.乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数.7.【答案】A【解析】解:A、2a2b与a2b所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;B、a2b2与a2b所含字母相同,但相同字母b的指数不相同,不是同类项,故本选项错误;C、ab2与a2b所含字母相同,但相同字母a和字母b的指数都不相同,不是同类项,本选项错误;D、3ab与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误.故选:A.根据同类项的概念:所含字母相同,并且相同字母的指数也相同,结合选项解答即可.本题考查了同类项的知识,解答本题的关键是掌握同类项中相同字母的指数相同的概念.8.【答案】A【解析】解:原式=(5-3)x=2x,故选A原式合并同类项即可得到结果.此题考查了合并同类项,熟练掌握合并同类项法则是解本题的关键.9.【答案】A【解析】解:500亿=50000000000=5×1010.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.【答案】A【解析】解:近似数4.50所表示的准确值a的取值范围是2.695≤a<2.705.故选A.根据近似数的精确度进行求解即可.本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所以这些数字都叫这个近似数的有效数字.11.【答案】8【解析】解:6-(-2),=6+2,=8℃.故答案为:8.用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.12.【答案】(3x+2y)【解析】解:∵买一个篮球需要x元,买一个排球需要y元,∴买3个篮球和2排球共需:(3x+2y)元.故答案为:(3x+2y).直接利用根据题意表示出买3个篮球以及2个排球的钱数,相加即可.此题主要考查了列代数式,正确表示出买篮球以及排球的钱数是解题关键.13.【答案】3【解析】解:由题意得m+3=6,解得:m=3.故答案为:3.根据单项式次数的概念求解.本题考查了单项式的知识,一个单项式中所有字母的指数的和叫做单项式的次数.14.【答案】8【解析】解:∵5x3y m与6x n y2是同类项,∴n=3,m=2,则m n=8.故答案为:8.根据同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,求出m,n的值,继而可求得结论.本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个相同:相同字母的指数相同.15.【答案】-1【解析】解:由题意得,a-2=0,b-3=0,解得a=2,b=3,所以,a-b=2-3=-1.故答案为:-1.根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.【答案】128【解析】解:∵拉1次面条根数为21,拉2次面条根数为22,∴拉n次面条根数为2n,∴拉上7次后,师傅手中的拉面有27=128根.故答案为:128.根据乘方的定义和题意可知,拉面师傅拉1次面条根数为21,拉2次面条根数为22,…,拉n次面条根数为2n,据此列出方程即可得出答案.此题主要考查了从图示或数据中寻找规律的能力.乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.乘方的意义就是求n个相同因数的积的简便运算.17.【答案】解:原式=2x3-3x2y-2xy2-x3+2xy2-y3-x3+3x2y-y3=-2y3,由于所得的结果与x的取值没有关系,故他将y的值代入计算后,所得的结果也正确,当y=-1时,原式=2.【解析】将原式去括号合并得到最简结果,得到结果与x无关,进而将“x=12”错抄成“x=-12”,运算结果也正确.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.18.【答案】解:(1)33+(-6)+17+(-24)=(33+17)+[(-6)+(-24)]=50+(-30)=20;×(-6)(2)(-20)÷(-4)-13=5+2=7;(3)(3x+3)-2(x-1)=3x+3-2x+2=x+5.【解析】(1)根据整式的加减法可以解答本题;(2)根据有理数的乘除法和减法可以解答本题;(3)先去括号,然后合并同类项即可解答本题.本题考查整式的加减和有理数的混合运算,解答本题的关键是明确整式的加减和有理数的混合运算的计算方法.19.【答案】解:1.5-3+2-0.5+1-2-2-2.5=-5.5,25×8-5.5=200-5.5=194.5(千克).答:这8筐白菜不足5.5千克,总重量是194.5千克.【解析】先把超出或不足标准的8个数相加,根据有理数的加法运算法则进行计算,然后再加上标准质量即可.本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.20.【答案】解:(1)A-B=2x2−3x+2−x2−3x−2=2x2−3x+2−x2+3x+2=x2+4;(2)当x=-2时,原式=−22+4=8.【解析】(1)根据整式的加减,多项式减多项式要加括号,再根据去括号、合并同类项,可化简整式;(2)根据代数式求值,可得答案.本题考查了整式的加减,去括号是解题关键,括号前是负数去括号都变号,括号前是正数去括号不变号.21.【答案】解:根据题意得:a +b =0,cd =1,m =3或-3,当m =3时,a +b 5+m -cd =0-1+3=2; 当m =-3时,a +b 5+m -cd =0-1-3=-4.【解析】利用相反数,倒数,以及绝对值的代数意义求出a+b ,cd ,以及m 的值,代入原式计算即可得到结果.此题考查了代数式求值,利用相反数,倒数,以及绝对值的代数意义求出a+b ,cd ,以及m 的值是解本题的关键.22.【答案】解:(1)由已知等式知,连续奇数乘积的倒数等于各自倒数差的一半,∴第n 个等式为1(2n−1)(2n +1)=12(12n−1-12n +1);(2)原式=12×(1-13)+12×(13-15)+12×(17-19)+…+12(1199-1201) =12×(1-13+13-15+15-17+…+1199-1201) =12×(1-1201) =12×200201 =100201. 【解析】(1)由已知等式知,连续奇数乘积的倒数等于各自倒数差的一半,据此可得;(2)根据以上规律可得原式=×(1-)+×(-)+×(-)+…+(-)=×(1-+-+-+…+-),即可得出答案.本题主要考查数字的变化规律,根据题意得出连续奇数乘积的倒数等于各自倒数差的一半且掌握裂项求和是解题的关键.23.【答案】解:(1)由题意可得,这个多项式是:a2+3a-1+2a2-a+5=3a2+2a+4,即这个多项式是3a2+2a+4;(2)由(1)可得,3a2+2a+4-(2a2+a-5)=3a2+2a+4-2a2-a+5=a2+a+9,即此题的正确的结果是a2+a+9.【解析】(1)根据题意可以求得相应的多项式;(2)根据(1)中的结果可以求得正确的结果.本题考查整式的加减,解答本题的关键是明确整式的加减时对多项式要加括号,求出相应的多项式.第11页,共11页。
深圳市初一年级期中数学测试卷(含答案解析)
深圳市初一年级期中数学测试卷(含答案解析)深圳市xx初一年级期中数学测试卷(含答案解析)一、选择题(每小题3分,共30分)1.下列四个数中,最小的数是()A.-2 B.-1C.1 D.02.数轴上A,B两点对应的数分别是-101和+3,那么A,B两点间的距离是()A.104 B.98 C.-104 D.-983、在1,-1,-2这三个数中,任意两数之和的最大值是()A.1 B.0 C.-1 D.-34.a,b是有理数,若已知|a+b|=-(a+b),|a-b|=a-b,那么下图中正确的是()5.下列说法正确的是()A.最小的数的绝对值是0 B.-2比-2、5小0、5C.任何数的绝对值都是正数 D.如果x+y=0,那么|x|=|y|6.某市为了响应国家“发展低碳经济、走进低碳生活”的号召,到目前为止共有60 000户家庭建立了“低碳节能减排家庭档案”,则60 000这个数用科学记数法表示为()A.60104 B.6105 C.6104 D.0、61067.从数-6,1,-3,5,-2中任取三个数相乘,则其积最小的是()A.-60 B.-36 C.-90 D.-308.已知a<0,-1<b<0,则a,ab,ab2之间的大小关系是()A.a>ab>ab2 B.ab2>ab>a C.ab>ab2>a D.ab>a>ab29.若n是自然数,且有理数a,b满足a+1b=0,则必有()A.an+(1b)2n=0 B.a2n+(1b)2n+1=0C.a2n+(1b)2n-1=0 D.a2n+1+(1b)2n+1=010.已知|a|=5,|b|=2,|a-b|=b-a,则a+b的值是()A.-7 B.-3 C.-7或-3 D.以上都不对二、填空题(每小题4分,共40分)11.-1、5的倒数与2的相反数的和是________.12.数学考试成绩以80分为标准,老师将5位同学的成绩简单记作(单位:分):+15,-4,+11,-7,0,则这五位同学的平均成绩为________.13、某地局的统计资料表明,高度每增加1 000米,气温就降低大约6℃、现地面气温是25℃,则8 000米高空的气温约是________.14.将一张厚度为0、12毫米的白纸对折35次后,其厚度为________毫米(只列算式).15.若a<0,b<0,则|a+b|=________、16.若|12a-4|+(b-1)2=0,则a=________,b =________、17.把3,-5,7,-13四个数利用“24点”游戏规则,可写成算式________________________.18.若(a-1)2与|b +1|的值互为相反数,则a+b=________、19.规定一种新的运算a*b=ab+a+b+1,则(-3)*4=________、20.探索规律:31=3,个位数字是3;32=9,个位数字是9;33=27,个位数字是7;34=81,个位数字是1;35=243,个位数字是3;36=729,个位数字是9;……,那么37的个位数字是________,320的个位数字是________.三、解答题(共80分)21.(12分)计算:(1)-|-5|+(-3)3(-22); (2)-36(14-19-112);(3)8+(-14)-5-(-0、25); (4)27[(-2)2+(-4)-(-1)];(5)(-312)2+612(-2)4[(-2)3-(-2)2]-1(-43);(6)(-24)(18-13+14)+(-2)3、22.(10分)某次考试六名同学成绩与平均分的差值为5,-112,-4,312,-5,0,请在数轴上画出表示各数的点,并用“<”号把它们连接起来.23、(10分)某地气象资料表明,高度每增加1 000米,气温就下降大约6℃,现在10 000米高空的气温是-23℃,试求此时地面的气温.24、(10分)一小商店一周的盈亏情况如下表所示(亏为负):星期周一周二周三周四周五周六周日盈亏情况/元128、3 -25、6 -1527 -736、598(1)计算出小商店一周的盈亏情况;(2)指出赢利最少的一天比最多的一天少多少.25.(12分)一点A从数轴上表示+2的A点开始连续移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位……求:(1)写出第一次移动后这个点在数轴上表示的数;(2)写出第二次移动后这个点在数轴上表示的数;(3)写出第五次移动后这个点在数轴上表示的数;(4)写出第n次移动后这个点在数轴上表示的数.26、(12分)为了有效控制酒后驾车,吉安市城管的汽车在一条东西方向的公路上巡逻,如果规定向东为正,向西为负,从出发点开始所走的路程为:(单位:千米)+2,-3,+2,+1,-2,-1,-2、(1)此时,这辆城管的汽车司机如何向队长描述他的位置?(2)如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升(已知每千米耗油0、2升)?27.(14分)a,b,c三个数在数轴上对应的点如图所示,且|a|=|b|、(1)比较a,-a,-c的大小;(2)化简:|a+b|+|a-b|+|a+c|+|b-c|、深圳市xx初一年级期中数学测试卷(含答案解析)参考答案一、选择题1.A 最小的数是-2、2.A |AB|=|-101-3|=104、3.B 最大值是1+(-1)=0、4.B 由条件可知a、b都是负数,且b的绝对值较大.5.D x+y=0说明x与y互为相反数,则|x|=|y|、6.C 60 000=6104、7.B (-6)(-3)(-2)=-36、8.C ab最大而a最小.9.D a与1b互为相反数,且正数的奇次幂是正的,负数的奇次幂是负的,故选D、10.C 由条件可知a=-5,b=2,故有两种情况.二、填空题11.-8312.83分80+(15-4+11-7+0)5=80+155=80+3=83(分).13、-23℃25-8 0001 0006=-23(℃).14.0、1223515.-a-b16、13 1 12a-4=0,a=3;b-1=0,b=1、17.[-13(-5)+7]318.0 ∵(a-1)2+|b+1|=0,∴a-1=0,a=1;b+1=0,b=-1,∴a+b=0、19.-10 (-3)*4=(-3)4+(-3)+4+1=-12-3+4+1=-10、20.7 1 74=1……3,个位数字为7,204=5,个位数字为1、三、解答题21.解:(1)74 原式=-5+(-27)(-4)=-5+274=-74;(2)-2 原式=-3614-36-19-36-112=-9+4+3=2;(3)3 原式=8-14-5+0、25=8-5=3;(4)27 原式=27[4+(-4)+1]=271=27;(5)413 原式=494+13216[-8-4]-1-34=494+13216-112+34=494-263+34=413;(6)-9 原式=-2418-24-13-2414+(-8)=-3+8-6-8=-9、22.解:图略-5<-4<-112<0<312<5、23、解:10 0001 000=10,106=60(℃),60+(-23)=37(℃).24.解:(1)128、3-25、6-15+27-7+36、5+98=242、2(元)>0,所以这一周盈利了242、2元;(2)128、3-(-25、6)=153、9(元).所以盈利最少的一天比最多的一天少153、9元.25.(1)3 (2)4 (3)7 (4)n+226、解:(1)2-3+2+1-2-1-2=-3(千米).∴他在出发点的西3千米处;(2)|+2|+|-3|+|+2|+|+1|+|-2|+|-1|+|-2|+|-3|=2+3+2+1+2+1+2+3=16(千米).∴160、2=3、2(升).答:共耗油3、2升.27.解:(1)-a<a <-c;(2)原式=0+2a+[-(a+c)]+(b-c)=2a-a-c+b-c =2a-a-a-c-c“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。
2016年广东省深圳市龙岭中学七年级上学期数学期中试卷带解析答案
2015-2016学年广东省深圳市龙岭中学七年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.(3分)﹣||的相反数是()A.﹣ B.C.2 D.﹣22.(3分)随着空气质量的恶化,雾霾天气现象增多,危害加重.森林是“地球之肺”,每年能为人类提供大约28.3亿吨的有机物,28.3亿可用科学记数法表示为()A.28.3×108B.2.83×109C.2.83×10 D.2.83×1073.(3分)下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大;⑤(﹣2)3和﹣23相等.A.2个 B.3个 C.4个 D.5个4.(3分)下列图形不能够折叠成正方体的是()A.B.C.D.5.(3分)下列说法正确的是()A.单项式y的次数是1,系数是0B.多项式中x2的系数是﹣C.多项式t﹣5的项是t和5D.是二次单项式6.(3分)已知a是有理数,下列各式:(﹣a)2=a2;﹣a2=(﹣a)2;(﹣a)3=a3;|﹣a3|=a3.其中一定成立的有()A.1个 B.2个 C.3个 D.4个7.(3分)刘谦的魔术表演风靡全国,小明同学也学起了刘谦发明了一个魔术盒,当任意有理数对(a,b)进入其中时,会得到一个新的有理数:a2﹣b﹣1.例如把(3,﹣2)放入其中,就会得到32﹣(﹣2)﹣1=10.现将有理数对(﹣1,﹣2)放入其中,则会得到()A.0 B.2 C.﹣4 D.﹣28.(3分)如图,若数轴上A,B两点所对应的有理数分别为a,b,则化简|a﹣b|+(b﹣a)的结果为()A.0 B.﹣2a+2b C.﹣2b D.2a﹣2b二、填空题(每小题3分,共24分)9.(3分)用一个平面去截下列几何体:①正方体;②圆锥;③圆柱;④正三棱柱,得到的截面形状可能为三角形的有(写出所有正确结果的序号)10.(3分)绝对值不大于3的所有整数的积等于.11.(3分)若3a m﹣1bc2和﹣2a3b n﹣3c2是同类项,则m+n=.12.(3分)如图,有一个高为5的圆柱体,现在它的底面圆周在数轴上滚动,在滚动前圆柱体底面圆周上有一点A和数轴上表示﹣1的点重合,当圆柱体滚动一周时A点恰好落在了表示2的点的位置.则这个圆柱体的侧面积是.13.(3分)如图是由一些相同的小正方体构成的立体图形的三种视图,那么构成这个立体图形的小正方体有个.14.(3分)下表列出了国外几个城市与首都北京的时差(带正号的表示同一时刻比北京时间早的时数,带负号的表示同一时刻比北京时间晚的时数),如北京时间的上午10时,东京时间的10时已过去了1小时,现在已是10+1=11(时).如果现在是北京时间9月11日15时,那么现在的纽约时间是.15.(3分)当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是.16.(3分)按一定规律排列的一列数依次为,﹣,,﹣,,…,若按此规律排列下去,则这列数中第7个数是.三、解答题(本大题共7小题,满分52分)17.(6分)如图是由7个完全相同的小立方块搭成的几何体,已知每个小立方块的棱长为2cm.(1)画出该几何体的三视图;(2)求出该几何体的表面积.18.(6分)有理数混合运算(1)﹣32﹣[8÷(﹣2)3﹣1]+3÷2×;(2)(﹣2)3﹣6÷(﹣)﹣36×(﹣﹣+).19.(8分)化简求值.(1)化简:(﹣4a2+2a﹣8)﹣2(a﹣1)﹣1;(2)化简求值:﹣a2b+3(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中|a﹣1|+(b+2)2=0.20.(7分)“十一”黄金周期间,某市风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):已知9月30日的游客人数为2万人,请回答下列问题:(1)七天内游客人数最多的是哪天,最少的是哪天?它们相差多少万人?(2)求这7天的游客总人数是多少万人.21.(8分)某城市出租车收费标准如下:3公里以内(含3公里)收费8元,超过3公里的部分每公里收费1.5元.(1)若行驶x公里(x为整数),试用含x的代数式表示应收的车费;(2)若某人乘坐出租汽车行驶8公里,则应付车费多少元?22.(8分)甲乙两队进行拔河比赛,标志物先向甲队方向移动0.5m,后向乙队方向移动了0.8m,相持一会后又向乙队方向移动0.5m,随后向甲队方向移动了1.5m在一片欢呼声中,标志物再向甲队方向移动1.2m.若规定只要标志物向某队方向移动2m,则该队即可获胜,那么现在甲队获胜了吗?用计算说明理由.23.(9分)将连续的正整数1,2,3,4,…,排列成如下的数表,用3×3的方框框出9个数(如图).(1)图中方框框出的9个数的和与方框正中间的数10有什么关系?(2)将方框上下左右平移,但一定要框住数表中的9个数.若设正中间的数为a,用含a的代数式表示方框框住的9个数字,并计算这9个数的和.(3)能否在方框中框出9个数,使这9个数的和为270?若能,求出这9个数;若不能,请说明理由.2015-2016学年广东省深圳市龙岭中学七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)﹣||的相反数是()A.﹣ B.C.2 D.﹣2【解答】解:﹣||=﹣,﹣的相反数为,故选:B.2.(3分)随着空气质量的恶化,雾霾天气现象增多,危害加重.森林是“地球之肺”,每年能为人类提供大约28.3亿吨的有机物,28.3亿可用科学记数法表示为()A.28.3×108B.2.83×109C.2.83×10 D.2.83×107【解答】解:将28.3亿用科学记数法表示为2.83×109.故选:B.3.(3分)下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大;⑤(﹣2)3和﹣23相等.A.2个 B.3个 C.4个 D.5个【解答】解:①正确;②2和﹣2的绝对值相等,则数轴上表示数2和﹣2的点到原点的距离相等,故命题正确;③正确;④正确;⑤正确.故选:D.4.(3分)下列图形不能够折叠成正方体的是()A.B.C.D.【解答】解:由展开图可知:A、B、C能围成正方体,不符合题意;D、围成几何体时,有两个面重合,故不能围成正方体,符合题意.故选:D.5.(3分)下列说法正确的是()A.单项式y的次数是1,系数是0B.多项式中x2的系数是﹣C.多项式t﹣5的项是t和5D.是二次单项式【解答】解:A、单项式y的次数是1,系数是1,故选项错误;B、多项式中x2的系数是﹣,故选项正确;C、多项式t﹣5的项是t和﹣5,故选项错误;D、是二次二项式,故选项错误.故选:B.6.(3分)已知a是有理数,下列各式:(﹣a)2=a2;﹣a2=(﹣a)2;(﹣a)3=a3;|﹣a3|=a3.其中一定成立的有()A.1个 B.2个 C.3个 D.4个【解答】解:(﹣a)2=a2,正确;(﹣a)2=a2,﹣a2≠a2,故错误;(﹣a)3=﹣a3,﹣a3≠a3,故错误;|﹣a3|≥,当a<0时,a3<0,故错误.∴其中正确的有1个.故选:A.7.(3分)刘谦的魔术表演风靡全国,小明同学也学起了刘谦发明了一个魔术盒,当任意有理数对(a,b)进入其中时,会得到一个新的有理数:a2﹣b﹣1.例如把(3,﹣2)放入其中,就会得到32﹣(﹣2)﹣1=10.现将有理数对(﹣1,﹣2)放入其中,则会得到()A.0 B.2 C.﹣4 D.﹣2【解答】解:由题意可得(﹣1)2﹣(﹣2)﹣1=1+2﹣1=2.故选:B.8.(3分)如图,若数轴上A,B两点所对应的有理数分别为a,b,则化简|a﹣b|+(b﹣a)的结果为()A.0 B.﹣2a+2b C.﹣2b D.2a﹣2b【解答】解:根据数轴上点的位置得:a<0<b,∴a﹣b<0,则原式=b﹣a+b﹣a=﹣2a+2b,故选:B.二、填空题(每小题3分,共24分)9.(3分)用一个平面去截下列几何体:①正方体;②圆锥;③圆柱;④正三棱柱,得到的截面形状可能为三角形的有①②④(写出所有正确结果的序号)【解答】解:①正方体能截出三角形;②圆锥沿着母线截几何体可以截出三角形;③圆柱不能截出三角形;④正三棱柱能截出三角形.故截面可能是三角形的有3个.故答案为:①②④.10.(3分)绝对值不大于3的所有整数的积等于0.【解答】解:绝对值不大于3的所有整数有:0,±1,±2,±3,∴它们的积为0.故答案为0.11.(3分)若3a m﹣1bc2和﹣2a3b n﹣3c2是同类项,则m+n=8.【解答】解:∵若3a m﹣1bc2和﹣2a3b n﹣3c2是同类项,∴m﹣1=3,n﹣3=1,∴m=4,n=4,∴m+n=8,故答案为:8.12.(3分)如图,有一个高为5的圆柱体,现在它的底面圆周在数轴上滚动,在滚动前圆柱体底面圆周上有一点A和数轴上表示﹣1的点重合,当圆柱体滚动一周时A点恰好落在了表示2的点的位置.则这个圆柱体的侧面积是15.【解答】解:依题意,圆柱体的周长为2﹣(﹣1)=3,高=5,∴圆柱体的侧面积=底面周长×高=3×5=15.故答案为:15.13.(3分)如图是由一些相同的小正方体构成的立体图形的三种视图,那么构成这个立体图形的小正方体有5个.【解答】解:如图所示:由左视图可得此图形有3行,由俯视图可得此图形有2列,由主视图可得此图形可得最高的有两个立方体组成,故构成这个立体图形的小正方体有5个.故答案为:5.14.(3分)下表列出了国外几个城市与首都北京的时差(带正号的表示同一时刻比北京时间早的时数,带负号的表示同一时刻比北京时间晚的时数),如北京时间的上午10时,东京时间的10时已过去了1小时,现在已是10+1=11(时).如果现在是北京时间9月11日15时,那么现在的纽约时间是9月11日2时.【解答】解:根据题意得:15﹣13=2,则现在纽约时间是9月11日2时,故答案为:9月11日2时15.(3分)当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是1.【解答】解:把x=1代入得:a﹣3b+4=7,即a﹣3b=3,则当x=﹣1时,原式=﹣a+3b+4=﹣3+4=1,故答案为:1.16.(3分)按一定规律排列的一列数依次为,﹣,,﹣,,…,若按此规律排列下去,则这列数中第7个数是.【解答】解:观察一系列等式得:第n个数为(﹣1)n+1•,当n=7时,(﹣1)7+1•=,故答案为:.三、解答题(本大题共7小题,满分52分)17.(6分)如图是由7个完全相同的小立方块搭成的几何体,已知每个小立方块的棱长为2cm.(1)画出该几何体的三视图;(2)求出该几何体的表面积.【解答】解:(1)如图所示:;(2)该几何体的表面积为(5+3+5)×2×2×2=112(cm2).答:该几何体的表面积是112cm2.18.(6分)有理数混合运算(1)﹣32﹣[8÷(﹣2)3﹣1]+3÷2×;(2)(﹣2)3﹣6÷(﹣)﹣36×(﹣﹣+).【解答】解:(1)原式=﹣9+1+1+=﹣;(2)原式=﹣8﹣36+18+10﹣30=﹣46.19.(8分)化简求值.(1)化简:(﹣4a2+2a﹣8)﹣2(a﹣1)﹣1;(2)化简求值:﹣a2b+3(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中|a﹣1|+(b+2)2=0.【解答】解:(1)原式=﹣a2+a﹣2﹣a+2﹣1=﹣a2﹣1;(2)原式=﹣a2b+9ab2﹣3a2b﹣4ab2+2a2b=﹣2a2b+5ab2,由|a﹣1|+(b+2)2=0,得到a=1,b=﹣2,则原式=4+20=24.20.(7分)“十一”黄金周期间,某市风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):已知9月30日的游客人数为2万人,请回答下列问题:(1)七天内游客人数最多的是哪天,最少的是哪天?它们相差多少万人?(2)求这7天的游客总人数是多少万人.【解答】解:(1)10月3日人数最多;10月7日人数最少;它们相差:(1.6+0.8+0.4)﹣(1.6+0.8+0.4﹣0.4﹣0.8+0.2﹣1.2)=2.2万人;(2)3.6+4.4+4.8+4.4+3.6+3.8+2.6=27.2(万人).答:这7天的游客总人数是27.2万人.21.(8分)某城市出租车收费标准如下:3公里以内(含3公里)收费8元,超过3公里的部分每公里收费1.5元.(1)若行驶x公里(x为整数),试用含x的代数式表示应收的车费;(2)若某人乘坐出租汽车行驶8公里,则应付车费多少元?【解答】(1)当≤3时,应收车费为8元;当>3时,应收车费为8+1.5(x﹣3)=(1.5x+3.5)元;(2)当x=8时,1.5x+3.5=15.5元.22.(8分)甲乙两队进行拔河比赛,标志物先向甲队方向移动0.5m,后向乙队方向移动了0.8m,相持一会后又向乙队方向移动0.5m,随后向甲队方向移动了1.5m在一片欢呼声中,标志物再向甲队方向移动1.2m.若规定只要标志物向某队方向移动2m,则该队即可获胜,那么现在甲队获胜了吗?用计算说明理由.【解答】解:拔河绳看作数轴,标志物开始在原点,甲在正方向,乙在负方向,标志物最后表示的数=0.5﹣0.8﹣0.5+1.5+1.2=1.9,即标志物向甲移了1.9m<2m,由此判断甲没获胜.23.(9分)将连续的正整数1,2,3,4,…,排列成如下的数表,用3×3的方框框出9个数(如图).(1)图中方框框出的9个数的和与方框正中间的数10有什么关系?(2)将方框上下左右平移,但一定要框住数表中的9个数.若设正中间的数为a,用含a的代数式表示方框框住的9个数字,并计算这9个数的和.(3)能否在方框中框出9个数,使这9个数的和为270?若能,求出这9个数;若不能,请说明理由.【解答】解:(1)3+4+5+9+10+11+15+16+17=90,90=10×9,则方框框出的9个数的和是方框正中间的数10的9倍.(2)中间的数为a,则有其他的数的数值如下表:(a﹣7)+(a﹣1)+(a+5)+(a﹣6)+a+(a+6)+(a﹣5)+(a+1)+(a+7)=9a,故九个数的和为9a.(3)不能,理由如下:∵9个数的和为270∴中间的数为30∵30在第5行、第6列,在边上,∴无法框出这样的9个数.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
广东省深圳市七年级上学期期中数学试卷
姓名:________班级:________ 成绩:________
一、 精心选一选 (共8题;共16分)
1. (2分) (2017·黄冈模拟) 下列式子中结果为负数的是( )
A . |﹣2|
B . ﹣(﹣2)
C . ﹣2﹣1
D . (﹣2)2
2. (2分) 下列运算中,正确的是( )
12. (1分) (2017·景泰模拟) 据了解,地下综合管廊是建于城市地下用于敷设市政公用管线的公用设施,该系统不仅解决城市交通拥堵问题,还极大方便了电力、通信、燃气、供排水等市政设施的维护和检修.2015年4月8日,白银市被国家确定为全国地下综合管廊试点城市,8月9日,项目采取政府和社会资本合作的PPP模式开工建设,项目总投资22.38亿元.请将22.38亿元用科学记数法表示并保留3个有效数字为________ 元.
A .
B .
C .
D .
二、 细心填一填 (共9题;共11分)
9. (1分) (2019七上·义乌月考) 的相反数是________
10. (1分) 当n=________时,多项式7x2y2n+1﹣ x2y5可以合并成一项.
11. (1分) (2017·杨浦模拟) 用代数式表示“a的相反数与b的倒数的和的平方”:________.
(2)一个n×2的矩形用不同的方式分割后,小正方形的个数最少是________
三、 认真答一答: (共9题;共79分)
18. (5分) (2017七上·马山期中) 在数轴上表示下列有理数,并用“<”号连接起来:
|﹣1.5|,﹣ ,0,﹣22 , ﹣(﹣3)
19. (6分) (2017八上·海勃湾期末) 观察下列各式: = ﹣ ; = ; = ; = ﹣ ;….
【6套打包】深圳市七年级上册数学期中考试检测试题(含答案)
人教版七年级(上)期中模拟数学试卷(10)一、选择题(本大题共8小题,每小题3分,共24分)1.与1的和是3的数是()A.﹣4 B.﹣2 C.2 D.42.下列运算中,正确的是()A.4x+3y=7xy B.4x2+3x=7x3C.4x3﹣3x2=x D.﹣4xy+3yx=﹣xy3.马拉松(Marathon)是国际上非常普及的一项长跑比赛项目,全程距离26英里385码,折合为42195米,用科学记数法表示42195为()A.4.2195×102B.4.2195×103C.4.2195×104D.42.195×1034.下列各项中是同类项的是()A.3xy与2xy B.2ab与2abc C.x2y与x2z D.a2b与ab25.如图,数轴的单位长度为1,如果点A表示的数是﹣3,那么点B表示的数是()A.﹣2 B.﹣1 C.0 D.16.按图中计算程序计算,若开始输入的x的值为1,则最后输出的结果是()A.89 B.158 C.183 D.1987.已知代数式m+2n+2的值是3,则代数式3m+6n+1的值是()A.4 B.5 C.6 D.78.已知最近的一届世界运动会、亚运会、奥运会分别于2013年、2014年、2016年举办,若这三项运动会都是每四年举办一次,则这三项运动会均不在下列哪一年举办()A.2070年B.2071年C.2072年D.2073年二、填空题(本大题有8小题,每小题3分,共24分)9.﹣3的绝对值是.10.已知(a﹣2)2+|b﹣1|=0,则a b=.11.某商店出售的某种品牌的面粉袋上,标有质量为(50±0.2)千克的字样,从中任意拿出两袋,他们的质量最多相差千克.12.若电影票上座位是“4排5号”记作(4,5),则(8,13)对应的座位是.13.若a﹣1与3互为相反数,则a=.14.比较大小:﹣8 ﹣5(填“>”或“<”)15.a是某数的十位数字,b是它的个位数字,则这个数可表示为.16.下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为.三、解答(共72分)17.计算(1)(﹣1)+(﹣3)﹣(﹣9);(2)(﹣4)×6+(﹣125)÷(﹣5);(3)(+)×(﹣36);(4)(﹣1)2018﹣6÷(﹣2)3×418.计算(1)2a﹣7a+3a;(2)(8mn﹣3m2)﹣2(3mn﹣2m2).19.先化简,再求值(1)2a﹣5b+4a+3b,其中a=,b=﹣2;(2)2(3x2﹣4xy)﹣4(2x2﹣3xy﹣1),其中x=﹣1,y=﹣2.20.画出数轴,把22,0,﹣2,(﹣1)3这四个数在数轴上表示出来;并按从小到大的顺序用“<”号将各数连接起来.21.如图所示(1)用代数式表示长方形ABCD中阴影部分的面积;(2)当a=10,b=4时,求其阴影部分的面积.(其中π取3.14)22.开学期间,为了打扫卫生,班主任派卫生委员小敏去轻工市场购买一些扫帚和抹布.选定一家店后,老板告诉小敏,扫帚每把25元,抹布每块5元,现为了搞促销,有两种优惠方案.方案一:买一把扫帚送一块抹布;方案二:扫帚和抹布都按定价的90%付款.小敏需要购买扫帚6把,抹布x块(x>6).(1)若小敏按方案一购买,需付款多少元(用含x的式子表示);(2)若小敏按方案二购买,需付款多少元(用含x的式子表示);(3)当x=10时,通过计算说明此时按哪种方案购买较为合算;(4)当x=10时,你能给小敏提供一种更为省钱的购买方案吗?试写出你的购买方法.23.已知在纸面上有一数轴(如图1),折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣4表示的点与表示的点重合;(2)若﹣2表示的点与8表示的点重合,回答以下问题:①16表示的点与表示的点重合;②如图2,若数轴上A、B两点之间的距离为2018(A在B的左侧),且A、B两点经折叠后重合,则A、B两点表示的数分别是、.(3)如图3,若m和n表示的点C和点D经折叠后重合,(m>n>0),现数轴上P、Q两点之间的距离为a(P在Q的左侧),且P、Q两点经折叠后重合,求P、Q两点表示的数分别是多少?(用含m,n,a的代数式表示)参考答案与试题解析一.选择题(共8小题)1.与1的和是3的数是()A.﹣4 B.﹣2 C.2 D.4【分析】根据有理数的加法法则即可得.【解答】解:∵2+1=3,∴与1的和是3的数是2,故选:C.2.下列运算中,正确的是()A.4x+3y=7xy B.4x2+3x=7x3C.4x3﹣3x2=x D.﹣4xy+3yx=﹣xy【分析】根据同类项的定义、合并同类项法则对四个选项进行判断即可.【解答】解:A.4x与3y不是同类项,不能合并,此选项错误;B.4x2与3x不是同类项,不能合并,此选项错误;C.4x3与﹣3x2不是同类项,不能合并,此选项错误;D.﹣4xy+3yx=﹣xy,此选项正确;故选:D.3.马拉松(Marathon)是国际上非常普及的一项长跑比赛项目,全程距离26英里385码,折合为42195米,用科学记数法表示42195为()A.4.2195×102B.4.2195×103C.4.2195×104D.42.195×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:42195=4.2195×104,故选:C.4.下列各项中是同类项的是()A.3xy与2xy B.2ab与2abc C.x2y与x2z D.a2b与ab2【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【解答】解:A.3xy与2xy是同类项,符合题意;B.2ab与2abc所含字母不相同,不符合题意;C.x2y与x2z所含字母不相同,不符合题意;D.a2b与ab2相同字母的指数不相同,不符合题意;故选:A.5.如图,数轴的单位长度为1,如果点A表示的数是﹣3,那么点B表示的数是()A.﹣2 B.﹣1 C.0 D.1【分析】可借助数轴,直接数数得结论,也可通过加减法计算得结论.【解答】解:因为点B与点A的距离为4,当点A表示的数为﹣3时,点B表示的数为﹣3+4=1.故选:D.6.按图中计算程序计算,若开始输入的x的值为1,则最后输出的结果是()A.89 B.158 C.183 D.198【分析】把x=1代入计算程序中计算即可求出所求.【解答】解:把x=1代入计算程序得:1+1+1=3<50,把x=3代入计算程序得:9+3+1=13<50,把x=13代入计算程序得:169+13+1=183>50,则输出的数为183,故选:C.7.已知代数式m+2n+2的值是3,则代数式3m+6n+1的值是()A.4 B.5 C.6 D.7【分析】由题意确定出m+2n的值,原式变形后代入计算即可求出值.【解答】解:∵m+2n+2=3,即m+2n=1,∴原式=3(m+2n)+1=3+1=4,故选:A.8.已知最近的一届世界运动会、亚运会、奥运会分别于2013年、2014年、2016年举办,若这三项运动会都是每四年举办一次,则这三项运动会均不在下列哪一年举办()A.2070年B.2071年C.2072年D.2073年【分析】根据题意可以分别写出世界运动会、亚运会、奥运会举行的时间,从而可以判断选项中的哪一个年份不符合题意,从而可以解答本题.【解答】解:由题意可得,世界运动会、亚运会、奥运会分别举行的时间为2013+4n,2014+4n,2016+4n,当n=14时,2013+4n=2019,2014+4n=2070,2016+4n=2072,当n=15时,2013+4n=2073,故选:B.二、填空题(本大题有8小题,每小题3分,共24分)9.﹣3的绝对值是 3 .【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣3的绝对值是3.10.已知(a﹣2)2+|b﹣1|=0,则a b= 2 .【分析】直接利用偶次方以及绝对值的性质得出a,b的值,进而得出答案.【解答】解:∵(a﹣2)2+|b﹣1|=0,∴a﹣2=0,b﹣1=0,解得:a=2,b=1,故a b=2.故答案为:2.11.某商店出售的某种品牌的面粉袋上,标有质量为(50±0.2)千克的字样,从中任意拿出两袋,他们的质量最多相差0.4 千克.【分析】(50±0.2)的字样表明质量最大为50.2,最小为49.8,二者之差为0.4.依此即可求解.【解答】解:根据题意得:标有质量为(50±0.2)的字样,∴最大为50+0.2=50.2,最小为50﹣0.2=49.8,故他们的质量最多相差0.4千克.故答案为:0.4.12.若电影票上座位是“4排5号”记作(4,5),则(8,13)对应的座位是8排13号.【分析】由“4排5号”记作(4,5)可知,有序数对与排号对应,(8,13)的意义为第8排13号.【解答】解:根据题意知:前一个数表示排数,后一个数表示号数.所以(8,13)表示的座位是8排13号.故答案为:8排13号.13.若a﹣1与3互为相反数,则a=﹣2 .【分析】利用相反数的性质列出方程,求出方程的解即可得到a的值.【解答】解:根据题意得:a﹣1+3=0,解得:a=﹣2,故答案为:﹣214.比较大小:﹣8 <﹣5(填“>”或“<”)【分析】利用两个负数比较大小,绝对值大的反而小,进而得出答案.【解答】解:∵|﹣8|=8,|﹣5|=5,∴﹣8<﹣5.故答案为:<.15.a是某数的十位数字,b是它的个位数字,则这个数可表示为10a+b.【分析】根据两位数=十位数字×10+个位数字即可得出答案.【解答】解:十位数字为a,个位数字为b的意义是a个10与b个1的和为:10a+b.故答案为:10a+b.16.下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为13 .【分析】仔细观察图形知道第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,由此得到规律求得第⑥个图形中正方形的个数即可.【解答】解:观察图形知:第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,…故第⑥个图形有3+2×5=13(个),故答案为:13.三、解答(共72分)17.计算(1)(﹣1)+(﹣3)﹣(﹣9);(2)(﹣4)×6+(﹣125)÷(﹣5);(3)(+)×(﹣36);(4)(﹣1)2018﹣6÷(﹣2)3×4【分析】(1)将减法转化为加法,再计算加法即可得;(2)先计算乘法和除法,再计算加减可得;(3)先利用乘法分配律展开,再依次计算乘法和加减可得;(4)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=﹣1﹣3+9=﹣4+9=5;(2)原式=﹣24+25=1;(3)原式=×(﹣36)﹣×(﹣36)+×(﹣36)=﹣20+27﹣2=5;(4)原式=1﹣6÷(﹣8)×4=1+×4=1+3=4.18.计算(1)2a﹣7a+3a;(2)(8mn﹣3m2)﹣2(3mn﹣2m2).【分析】(1)直接找出同类项进而合并同类项得出答案;(2)直接去括号进而合并同类项得出答案.【解答】解:(1)原式=(2﹣7+3)a=﹣2a;(2)原式=8mn﹣3m2﹣6mn+4m2,=(﹣3+4)m2+(8﹣6)mn=m2+2mn.19.先化简,再求值(1)2a﹣5b+4a+3b,其中a=,b=﹣2;(2)2(3x2﹣4xy)﹣4(2x2﹣3xy﹣1),其中x=﹣1,y=﹣2.【分析】(1)先合并同类项化简原式,再将a,b的值代入计算可得;(2)将原式去括号,合并同类项化简,再将x,y的值代入计算可得.【解答】解:(1)原式=6a﹣2b,当a=,b=﹣2时,原式=6×﹣2×(﹣2)=3+4=7;(2)原式=6x2﹣8xy﹣8x2+12xy+4=﹣2x2+4xy+4,当x=﹣1,y=﹣2时,原式=﹣2×(﹣1)2+4×(﹣1)×(﹣2)+4=﹣2+8+4=10.20.画出数轴,把22,0,﹣2,(﹣1)3这四个数在数轴上表示出来;并按从小到大的顺序用“<”号将各数连接起来.【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.【解答】解:22=4,0,﹣2,(﹣1)3=﹣1,如图所示:,故﹣2<(﹣1)3<0<22.21.如图所示(1)用代数式表示长方形ABCD中阴影部分的面积;(2)当a=10,b=4时,求其阴影部分的面积.(其中π取3.14)【分析】(1)用长方形的面积减去2个半径为b的圆的面积,据此可得;(2)将a,b的值代入计算可得.【解答】解:(1)阴影部分的面积为ab﹣2××πb2=ab﹣πb2;(2)当a=10,b=4时,ab﹣πb2=10×4﹣×3.14×16≈14.88.22.开学期间,为了打扫卫生,班主任派卫生委员小敏去轻工市场购买一些扫帚和抹布.选定一家店后,老板告诉小敏,扫帚每把25元,抹布每块5元,现为了搞促销,有两种优惠方案.方案一:买一把扫帚送一块抹布;方案二:扫帚和抹布都按定价的90%付款.小敏需要购买扫帚6把,抹布x块(x>6).(1)若小敏按方案一购买,需付款多少元(用含x的式子表示);(2)若小敏按方案二购买,需付款多少元(用含x的式子表示);(3)当x=10时,通过计算说明此时按哪种方案购买较为合算;(4)当x=10时,你能给小敏提供一种更为省钱的购买方案吗?试写出你的购买方法.【分析】(1)根据题意列出算式即可;(2)根据题意列出算式即可;(3)把x=10分别代入求出结果,即可得出答案;(4)先在方案一买6把扫帚,再在方案二买4块抹布即可.【解答】解:(1)∵方案一:买一把扫帚送一块抹布,∴小敏需要购买扫帚6把,抹布x块(x>6),若小敏按方案一购买,需付款25×6+5(x ﹣6)=(5x+120)元;(2)∵方案二:扫帚和抹布都按定价的90%付款,∴小敏需要购买扫帚6把,抹布x块(x>6),若小敏按方案二购买,需付款25×6×0.9+5x •0.9=(4.5x+135)元;(3)方案一需:5×10+120=170元,方案二需4.5×10+135=180元,故方案一划算;(4)其中6把扫帚6块抹布按方案一买,剩下4块抹布按方案二买,共需168元.23.已知在纸面上有一数轴(如图1),折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣4表示的点与 4 表示的点重合;(2)若﹣2表示的点与8表示的点重合,回答以下问题:①16表示的点与﹣10 表示的点重合;②如图2,若数轴上A、B两点之间的距离为2018(A在B的左侧),且A、B两点经折叠后重合,则A、B两点表示的数分别是﹣1006 、1012 .(3)如图3,若m和n表示的点C和点D经折叠后重合,(m>n>0),现数轴上P、Q两点之间的距离为a(P在Q的左侧),且P、Q两点经折叠后重合,求P、Q两点表示的数分别是多少?(用含m,n,a的代数式表示)【分析】(1)由表示1与﹣1的两点重合,利用对称性即可得到结果;(2)由﹣2表示的点与8表示的点重合,确定出3为对称点,得出两项的结果即可;(3)根据(2)的计算方法进行解答.【解答】解:(1)若1表示的点与﹣1表示的点重合,则原点为对称点,所以﹣4表示的点与4表示的点重合;(2)由题意得:(﹣2+8)÷2=3,即3为对称点,①根据题意得:2×3﹣16=﹣10;②∵3为对称点,A、B两点之间的距离为2018(A在B的左侧),且A、B两点经折叠后重合,∴A表示的数=﹣+3=﹣1006,B点表示的数=+3=1012;(3)点P表示的数为:;点Q表示的数为:.故答案为:(1)4;(2)①﹣10;②﹣1006,1012.人教版七年级数学上册期中考试试题及答案一、选择题(每题4分,共48分)1.如果+10%表示“增加10%”,那么“减少8%”可以记作()A.﹣18% B.﹣8% C.+2% D.+8%2.﹣2的相反数是()A.﹣2 B.﹣C.2 D.3.下列代数式中:,2x+y,,,,0,整式有()A.3个B.4个C.5个D.6个4.当x<3时,式子|x﹣3|化简为()A.﹣3 B.x C.x﹣3 D.3﹣x5.在﹣22,(﹣2)2,﹣(﹣2),﹣|﹣2|中,负数的个数是()A.1个B.2个C.3个D.4个6.我市加大农村沼气等清洁能源推广,年产沼气21700000立方米,这个数用科学记数法精确到百万位可表示为()A.217×105B.21.7×106C.2.17×107D.2.2×1077.下列单项式中,系数最大的是()A.﹣2ax3B.﹣xy2C.﹣abc3D.﹣xy28.现有以下四个结论:①任何数都不等于它的相反数;②互为相反数的两个数的同一偶数次方相等;③如果a>b,那么a的倒数小于b的倒数;④倒数等于其本身的有理数只有1.其中正确的有()A.1个B.2个C.3个D.4个9.如果2x3n y m+4与﹣3x9y2n是同类项,那么m、n的值分别为()A.m=﹣2,n=3 B.m=2,n=3 C.m=﹣3,n=2 D.m=3,n=2 10.对于多项式﹣x3﹣3x2+x﹣7,下列说法正确的是()A.最高次项是x3B.二次项系数是3C.多项式的次数是3 D.常数项是711.2012年6月15日,重庆市物价局发出相关通知,从今年7月1日起,我市将开始执行居民生活用电试行阶梯电价方案.方案的具体电价标准为:凡我市实行“一户一表”的城乡居民用户,月用电量200千瓦时(含)以内的为第一档,维持现行电价标准,即每千瓦时0.52元;月用电量201﹣400千瓦时(含)的为第二档,每千瓦时提高5分,即每千瓦时0.57元;月用电量在401千瓦时(含)以上的为第三档,每千瓦时提高0.30元,即每千瓦时0.82元.某居民今年11月用电量为t千瓦时(200<t≤400),则该居民所付电费为()A.0.52tB.0.57tC.0.52×20 0+0.57tD.0.52×200+0.57×(t﹣200)12.下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为()A.116 B.144 C.145 D.150二、填空题(每题4分,共24分)13.(﹣3)2﹣1=.14.的系数为,次数为.15.关于x的多项式4x n+1﹣3x2﹣x+2是四次多项式,则n=.16.多项式x2﹣3kxy﹣3y2+6xy﹣8不含xy项,则k=.17.已知=﹣1,则的值为.18.若规定一种运算:a*b=(a+b)﹣(a﹣b),其中a,b为有理数,则a*b+(b﹣a)*b 等于.三、解答题(每题8分,共16分)19.(8分)在数轴上表示下列各数,并用“<”把这些数连接起来.﹣2.5,﹣3,0,2,|﹣3|20.(8分)把下面各数对应的序号填在相应的大括号里.①﹣5,②|﹣|,③0,④﹣3.14,⑤,⑥﹣12,⑦0.1010010001…,⑧+1.99,⑨﹣,⑩﹣(﹣3)2分数集合:(…)负有理数集合:(…)四、解答题(21题12分,22题8分,23-25每题10分,26题12分,共62分)21.(12分)计算(1)(﹣18)+(+5)﹣(﹣7)﹣(+11)(2)(﹣)×(﹣1)÷(﹣2)(3)25×+(﹣25)×+25×(﹣)(4)﹣12﹣[1+(﹣12)÷6]×(﹣)322.(8分)某冰箱销售商,今年四月份销售冰箱(a﹣1)台,五月份销售冰箱比四月份的2倍少1台,六月份销售冰箱比前两个月的总和还多5台.(1)求五月份和六月份分别销售冰箱多少台?(2)六月份比五月份多销售冰箱多少台?23.(10分)先化简再求值:5abc﹣2a2b﹣[3abc+2(ab2﹣a2b)],其中a=﹣,b=﹣1,c =3.24.(10分)已知|a﹣2|+(b+1)2=0,c与互为倒数,(d﹣1)的平方是25,求代数式a c﹣2c a的值.(要求写出过程)参考答案一、选择题1.如果+10%表示“增加10%”,那么“减少8%”可以记作()A.﹣18% B.﹣8% C.+2% D.+8%【分析】正数和负数可以表示一对相反意义的量,在本题中“增加”和“减小”就是一对相反意义的量,既然增加用正数表示,那么减少就用负数来表示,后面的百分比的值不变.解:“增加”和“减少”相对,若+10%表示“增加10%”,那么“减少8%”应记作﹣8%.故选:B.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.﹣2的相反数是()A.﹣2 B.﹣C.2 D.【分析】根据只有符号不同的两个数互为相反数,可得答案.解:﹣2的相反数是2,故选:C.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.3.下列代数式中:,2x+y,,,,0,整式有()A.3个B.4个C.5个D.6个【分析】分母不含字母的式子即为整式.解:整式有:2x+y,a2b,,0,故选:B.【点评】本题考查分式与整式的概念,注意π不是字母.4.当x<3时,式子|x﹣3|化简为()A.﹣3 B.x C.x﹣3 D.3﹣x【分析】由x<3可得x﹣3<0,再根据绝对值的性质即可求解.解:∵x<3,∴x﹣3<0,∴|x﹣3|=3﹣x.故选:D.【点评】考查了绝对值,如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.5.在﹣22,(﹣2)2,﹣(﹣2),﹣|﹣2|中,负数的个数是()A.1个B.2个C.3个D.4个【分析】根据有理数的乘方、正数和负数、绝对值的知识对各选项依次计算即可.解:﹣22,=﹣4,(﹣2)2=4,﹣(﹣2)=2,﹣|﹣2|=﹣2,∴是负数的有:﹣4,﹣2.故选:B.【点评】本题考查了有理数的乘方、正数和负数、绝对值的知识,此题比较简单,计算时特别要注意符号的变化.6.我市加大农村沼气等清洁能源推广,年产沼气21700000立方米,这个数用科学记数法精确到百万位可表示为()A.217×105B.21.7×106C.2.17×107D.2.2×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,n的值是这个数的整数部分位数减1.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.解:21700000=2.17×107≈2.2×107.故选:D.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.7.下列单项式中,系数最大的是()A.﹣2ax3B.﹣xy2C.﹣abc3D.﹣xy2【分析】根据单项式系数的定义即可求解.解:∵﹣2ax3的系数是﹣2,﹣xy2的系数是﹣,﹣abc3的系数是﹣,﹣xy2的系数是﹣,﹣>﹣2>﹣>﹣,∴单项式中,系数最大的是﹣xy2.故选:B.【点评】考查了单项式,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.8.现有以下四个结论:①任何数都不等于它的相反数;②互为相反数的两个数的同一偶数次方相等;③如果a>b,那么a的倒数小于b的倒数;④倒数等于其本身的有理数只有1.其中正确的有()A.1个B.2个C.3个D.4个【分析】根据有理数的乘方法则,相反数、倒数的定义对四个选项进行逐一解答即可.解:①任何数都不等于它的相反数,错误,例如0;②互为相反数的两个数的同一偶数次方相等,正确;③如果a>b,那么a的倒数小于b的倒数,错误,0>﹣1,而0没有倒数;④倒数等于其本身的有理数只有1,错误,还有﹣1;故选:A.【点评】此题主要考查了有理数的乘方以及相反数,正确把握相关定义是解题关键.9.如果2x3n y m+4与﹣3x9y2n是同类项,那么m、n的值分别为()A.m=﹣2,n=3 B.m=2,n=3 C.m=﹣3,n=2 D.m=3,n=2 【分析】要使两个单项式同类项必须使其所含的字母相同且字母的指数也相同,观察可看出其所含的字母相同,则只要使其相同字母的指数相同.可得3n=9,m+4=2n,解方程即可求得.解:∵2x3n y m+4与﹣3x9y2n是同类项,∴3n=9,m+4=2n,∴n=3,m=2,故选:B.【点评】要使两个单项式成为同类项,只要使其满足同类项定义中的两个“相同”即可.10.对于多项式﹣x3﹣3x2+x﹣7,下列说法正确的是()A.最高次项是x3B.二次项系数是3C.多项式的次数是3 D.常数项是7【分析】根据多项式的项和次数的定义,确定各个项和各个项的系数,要带有符号.解:A、多项式﹣x3﹣3x2+x﹣7的最高次项是﹣x3;故A错误.B、多项式﹣x3﹣3x2+x﹣7的二次项系数是﹣3;故B错误.C、多项式﹣x3﹣3x2+x﹣7的次数是3;故C正确.D、多项式﹣x3﹣3x2+x﹣7的常数项是﹣7;故D错误.故选:C.【点评】本题考查与多项式相关的概念,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.11.2012年6月15日,重庆市物价局发出相关通知,从今年7月1日起,我市将开始执行居民生活用电试行阶梯电价方案.方案的具体电价标准为:凡我市实行“一户一表”的城乡居民用户,月用电量200千瓦时(含)以内的为第一档,维持现行电价标准,即每千瓦时0.52元;月用电量201﹣400千瓦时(含)的为第二档,每千瓦时提高5分,即每千瓦时0.57元;月用电量在401千瓦时(含)以上的为第三档,每千瓦时提高0.30元,即每千瓦时0.82元.某居民今年11月用电量为t千瓦时(200<t≤400),则该居民所付电费为()A.0.52tB.0.57tC.0.52×20 0+0.57tD.0.52×200+0.57×(t﹣200)【分析】某居民家11月份用电t千瓦时,交电费y元,根据等量关系列出关于y的方程即可.解:设该居民所付电费为y元,则依题意有y=0.52×150+0.57(t﹣200),故选:D.【点评】本题主要考查了列代数式的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出代数式即可.12.下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为()A.116 B.144 C.145 D.150【分析】根据题意将每个图形都看作两部分,一部分是上面的构成规则的矩形的,另一部分是构成下面的近似金字塔的形状,然后根据递增关系得到答案.解:∵4=1×2+2,11=2×3+2+321=3×4+2+3+4第4个图形为:4×5+2+3+4+5,∴第⑨个图形中的颗数为:9×10+2+3+4+5+6+7+8+9+10=144.故选:B.【点评】此题主要考查了图形变化规律,正确得出每个图形中小星星的变化情况是解题关键.二、填空题(每题4分,共24分)13.(﹣3)2﹣1=8 .【分析】根据有理数的运算法则进行计算.解:(﹣3)2﹣1=9﹣1=8.故填8.【点评】本题考查的是有理数的运算能力,注意符号的处理.14.的系数为,次数为 3 .【分析】根据单项式系数、次数的定义来求解.解:的系数为,次数为3.故答案为:,3.【点评】此题考查的是单项式,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.15.关于x的多项式4x n+1﹣3x2﹣x+2是四次多项式,则n= 3 .【分析】由于多项式是关于x的四次多项式,所以n+1=4,解方程可求n的值.解:∵关于x的多项式4x n+1﹣3x2﹣x+2是四次多项式,∴n+1=4,解得n=3.故答案为:3.【点评】本题考查了多项式的知识,几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.16.多项式x2﹣3kxy﹣3y2+6xy﹣8不含xy项,则k= 2 .【分析】先将原多项式合并同类项,再令xy项的系数为0,然后解关于k的方程即可求出k.解:原式=x2+(﹣3k+6)xy﹣3y2﹣8,因为不含xy项,故﹣3k+6=0,解得:k=2.故答案为:2.【点评】本题考查了合并同类项法则及对多项式“项”的概念的理解,题目设计巧妙,有利于培养学生灵活运用知识的能力.17.已知=﹣1,则的值为 1 .【分析】由=﹣1,可得m、n、p两负一正,再去绝对值计算即可求解.解:∵=﹣1,∴m、n、p两负一正,∴==1.故答案为:1.【点评】考查了绝对值的性质,能够根据已知条件正确地判断出m、n、p的值是解答此题的关键.18.若规定一种运算:a*b=(a+b)﹣(a﹣b),其中a,b为有理数,则a*b+(b﹣a)*b 等于4b.【分析】先根据新定义展开,再去括号合并同类项即可.解:a*b+(b﹣a)*b=(a+b)﹣(a﹣b)+(b﹣a+b)﹣(b﹣a﹣b)=a+b﹣a+b+2b﹣a+a=4b.故答案为4b.【点评】本题考查了整式的加减,主要考查学生的理解能力和计算能力,题目比较好,难度适中.三、解答题(每题8分,共16分)19.(8分)在数轴上表示下列各数,并用“<”把这些数连接起来.﹣2.5,﹣3,0,2,|﹣3|【分析】先在数轴上表示出各个数,再比较即可.解:﹣3<﹣2.5<0<2<|﹣3|.【点评】本题考查了有理数的大小比较法则和数轴、绝对值等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.20.(8分)把下面各数对应的序号填在相应的大括号里.①﹣5,②|﹣|,③0,④﹣3.14,⑤,⑥﹣12,⑦0.1010010001…,⑧+1.99,⑨﹣,⑩﹣(﹣3)2分数集合:(②,④,⑤,⑧…)负有理数集合:(①,④,⑥,⑩…)【分析】根据有理数的分类填空即可.解:分数集合:(②,④,⑤,⑧,…)负有理数集合:(①,④,⑥,⑩…),故答案为:②,④,⑤,⑧;①,④,⑥,⑩.【点评】本题考查了有理数的分类,解题的关键是正确掌握分类的标准以及注意0既不是正数也不是负数.四、解答题(21题12分,22题8分,23-25每题10分,26题12分,共62分)21.(12分)计算(1)(﹣18)+(+5)﹣(﹣7)﹣(+11)(2)(﹣)×(﹣1)÷(﹣2)(3)25×+(﹣25)×+25×(﹣)(4)﹣12﹣[1+(﹣12)÷6]×(﹣)3【分析】(1)先把减法转化加法,然后根据有理数的加法即可解答本题;(2)根据有理数的乘除法可以解答本题;(3)根据乘法分配律可以解答本题;(4)先算小括号里的,再算中括号里的,最后根据有理数的加减法即可解答本题.解:(1)(﹣18)+(+5)﹣(﹣7)﹣(+11)=(﹣18)+5+7+(﹣11)=﹣17;(2)(﹣)×(﹣1)÷(﹣2)=﹣=﹣;(3)25×+(﹣25)×+25×(﹣)=25×﹣25×+25×(﹣)=25×()=25×=;(4)﹣12﹣[1+(﹣12)÷6]×(﹣)3=﹣1﹣()×(﹣)=﹣1﹣(﹣)×(﹣)=﹣1﹣=﹣.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算顺序.22.(8分)某冰箱销售商,今年四月份销售冰箱(a﹣1)台,五月份销售冰箱比四月份的2倍少1台,六月份销售冰箱比前两个月的总和还多5台.(1)求五月份和六月份分别销售冰箱多少台?(2)六月份比五月份多销售冰箱多少台?【分析】(1)分别表示出五月份和六月份销售的台数即可;(2)用六月份减去五月份的销量即可求解.解:(1)五月份的销量为:2(a﹣1)﹣1=2a﹣3,六月份的销量为:(a﹣1)+(2a﹣3)+5=3a+1;(2)3a+1﹣(2a﹣3)=3a+1﹣2a+3=a+4.故六月份比五月份多销售冰箱(a+4)台.【点评】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则.23.(10分)先化简再求值:5abc﹣2a2b﹣[3abc+2(ab2﹣a2b)],其中a=﹣,b=﹣1,c =3.【分析】先将原式化简,然后将a、b、c的值代入原式即可求出答案.解:原式=5abc﹣2a2b﹣[3abc+2ab2﹣2a2b]=5abc﹣2a2b﹣3abc﹣2ab2+2a2b=2abc﹣2ab2,当a=﹣,b=﹣1,c=3时,原式=2×()×(﹣1)×3﹣2×()×9=3+9=12.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.24.(10分)已知|a﹣2|+(b+1)2=0,c与互为倒数,(d﹣1)的平方是25,求代数式a c﹣2c a的值.(要求写出过程)【分析】根据非负数的性质、倒数的定义和乘方分别得出a,b,c,d的值,再分别代入计算可得.解:∵|a﹣2|+(b+1)2=0,c与互为倒数,(d﹣1)的平方是25,∴a=2,b=﹣1,c=3,d=6或d=﹣4,当d=6时,a c﹣2c a=23+﹣2×32=8﹣6﹣18=﹣16;当d=﹣4时,a c﹣2c a=23+﹣2×32=8+4﹣18=﹣6;综上,代数式a c﹣2c a的值为﹣16或﹣6.【点评】本题主要考查代数式的求值,解题的关键是掌握非负数的性质、倒数的定义和乘方的运算法则.人教版数学七年级上册期中考试试题(答案)一、选择题(每小题3分,共36分)1.﹣3的绝对值是()A.3B.﹣3C.D.2.如果高出海平面20米,记作+20米,那么﹣30米表示()A.不足30米B.低于海平面30米C.高出海平面30米D.低于海平面20米3.2012年6月,我国首台载人潜水器“蛟龙号”在太平洋马里亚纳海沟,进行7000米级海试第四次下载试验中成功突破7000米深度,再创我国载人深潜新纪录.7000这个数据用科学记数法表示为()。
七年级第一学期期中考试数学试题(带有答案)
七年级第一学期期中考试数学试题(带有答案)学校:___________班级:___________姓名:___________考号:___________注意事项:本试题共6页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上.答选择题时,必须使用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;答非选择题时,用0.5mm黑色签字笔在答题卡上题号所提示的答题区域作答,答案写在试卷上无效.考试结束后,将本试卷和答题卡一并交回.第I卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣6的相反数是()A.-6B.6C.±6D.162.如图是由5个相同的小立方块搭成的几何体,从正面看这个几何体是()A. B. C. D.3.第19届亚运会于2023年9月23日至10月8日在中国浙江省杭州市举行,杭州奥体博览城核心区建筑总面积2720000平方米,将数2720000用科学记数法表示为()A.0.272X107B.2.72X106C.27.2X105D.272x104,0,(﹣1)2,﹣0.6,2,﹣|﹣10| 4.根据《九章算术》的记载,中国人最早使用负数.那么在﹣25中负数的个数有()A.2B.3C.4D.55.下列运算正确的是()A.3y2-2y2=1B.3a+2b=5abC.3x2+2x3=5x5D.3a2b-3ba2=06.下列几何体中,截面不可能是长方形的是()A. B. C. D.7.下列说法正确的是()A.﹣52的底数是﹣5B.正数和负数统称为有理数0C.单项式3πxy的系数是3D.﹣|a|-1一定是负数8.若2a-b=4,则式子4a-2b-5的值为()A.3B.﹣3C.1D.﹣19.有理数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a>﹣2B.ab>0C.|a|>|b|D.a+b>0(第9题图) (第10题图)10.如图,将一个边长为1的正方形纸片分割成7个图形,图形①面积是正方形纸片面积的 一,图形②面积是图形①面积的2倍的13,图形③而积是图形②面积的2倍的13,……,图形⑥面积是图形⑤面积的2倍的13,图形⑦面积是图形⑥面积的2倍,计算13+29+427+...+2536的值为( )A.665729B.64729C.179243D.64243第II 卷(非选择题共110分) 二.填空题:(本大题共6个小题,每小题4分,共24分)11.如果水位升高2m 记作+2m ,那么水位下降5m 记作 m. 12.比较大小:﹣1 ﹣34(填>或<)。
【6套打包】深圳市七年级上册数学期中考试测试题(解析版)
人教版七年级第一学期期中模拟数学试卷(含答案)一、选择题(每小题3分,共计36分)1.﹣6的倒数是()A.6 B.﹣6 C.D.﹣2.粤海铁路是我国第一条横跨海峡的铁路通道,设计年输送货物能力为11 000 000吨,用科学记数法应记为()A.11×106吨B.1.1×107吨C.11×107吨D.1.1×108吨3.计算(﹣0.5)2013×(﹣2)2014的结果是()A.﹣0.5 B.0.5 C.﹣2 D.24.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.5.下列计算中正确的是()A.5a3﹣6a3=﹣a B.3a2+4a2=7a4C.7a+3a2=10a3D.a2+4a2=5a26.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c是单项式C.是多项式D.中,系数是7.下列说法:①﹣a一定是负数;②|﹣a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个8.长方形的一边长等于3x+2y,另一边长比它长x﹣y,这个长方形的周长是()A.4x+y B.12x+2y C.8x+2y D.14x+6y9.在(﹣1)3,(﹣1)2,﹣22,(﹣3)2,这四个数中,最大的数与最小的数的和等于()A.6 B.﹣5 C.8 D.510.若|x|=7,|y|=5,且x+y>0,那么x+y的值是()A.2或12 B.2或﹣12 C.﹣2或12 D.﹣2或﹣12 11.已知整式x2﹣2x的值为3,则2x2﹣4x+6的值为()A.7 B.9 C.12 D.1812.对正整数n,记n!=1×2×3×…×n,则1!+2!+3!+…+10!的末尾数为()A.0 B.1 C.3 D.5二、填空题(每小题3分,共计12分)13.单项式﹣y的系数是.14.a、b互为相反数,c、d互为倒数,则=.15.设[x]表示不大于x的最大整数,例如[1.8]表示不超过1.8的最大整数就是1,[﹣3.8]表示不超过﹣3.8的最大整数﹣4,计算[2.7]+[﹣4.5]的值为.16.如图,是一个数值转换机,根据所给的程序计算,若输入x的值为1,则输出y的值为.三.解答题(共计52分)17.(12分)计算:(1)25.7+(﹣7.3)+(﹣13.7)+7.3(2)(3)(4)﹣14﹣(1﹣0.5)×18.(6分)先化简,再求值:(3a+2a﹣4a3)﹣(﹣a+3a3﹣2a2),其中a=﹣219.(6分)一个物体是由棱长为3cm的正方体模型堆砌而成的,其视图如图:(1)请在俯视图上标出小正方体的个数(2)求出该物体的体积是多少.(3)该物体的表面积是多少?20.(6分)有理数a、b、c在数轴上的点如图所示:化简:|c|+|a﹣c|﹣2|c+b|+|a+b|.21.(6分)某商场销售一种西装和领带,西装每套定价500元,领带每条定价100元,“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.现某客户要到商场购买西服20套,领带x条(x>20).方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.(1)若客户按方案一购买,需付款元;若客户按方案二购买,需付款元;(2)若x=30,请通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并计算此方案需要付款多少元?22.(8分)我们知道,|a|可以理解为|a﹣0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a﹣b|,反过来,式子|a﹣b|的几何意义是:数轴上表示数a 的点和表示数b的点之间的距离.利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是,数轴上表示数﹣1的点和表示数﹣3的点之间的距离是.(2)数轴上点A用数a表示,若|a|=5,那么a的值为.(3)数轴上点A用数a表示,①若|a﹣3|=5,那么a的值是.②当|a+2|+|a﹣3|=5时,数a的取值范围是,这样的整数a有个③|a﹣3|+|a+2017|有最小值,最小值是.23.(8分)23、如图,将一个边长为1的正方形纸片分割成7个部分,部分①是边长为1的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,依此类推.(1)阴影部分的面积是多少?(2)受此启发,你能求出的值吗?参考答案一、选择题1.﹣6的倒数是()A.6 B.﹣6 C.D.﹣【分析】根据倒数的定义求解.解:﹣6的倒数是﹣.故选:D.【点评】倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.粤海铁路是我国第一条横跨海峡的铁路通道,设计年输送货物能力为11 000 000吨,用科学记数法应记为()A.11×106吨B.1.1×107吨C.11×107吨D.1.1×108吨【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤a<10,n 表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.11 000 000=1.1×107.解:11 000 000=1.1×107.故选:B.【点评】本题考查学生对科学记数法的掌握.科学记数法要求前面的部分的绝对值是大于或等于1,而小于10,小数点向左移动7位,应该为1.1×107.3.计算(﹣0.5)2013×(﹣2)2014的结果是()A.﹣0.5 B.0.5 C.﹣2 D.2【分析】把(﹣2)2014写成(﹣2)×(﹣2)2013,然后根据有理数的乘方的定义,先乘积再乘方进行计算即可得解.解:(﹣0.5)2013×(﹣2)2014,=(﹣0.5)2013×(﹣2)×(﹣2)2013,=(﹣2)×[(﹣0.5)×(﹣2)]2013,=﹣2×1,=﹣2.故选:C.【点评】本题考查了有理数的乘方,此类题目,转化为同指数幂相乘是解题的关键,也是难点.4.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题.解:选项A、D经过折叠后,标有字母“M”的面不是下底面,而选项C折叠后,不是沿沿图中粗线将其剪开的,故只有B正确.故选:B.【点评】正方体共有11种表面展开图,把11种展开图都去掉一个面得无盖的正方体展开图,把相同的归为一种得无盖正方体有8种表面展开图.5.下列计算中正确的是()A.5a3﹣6a3=﹣a B.3a2+4a2=7a4C.7a+3a2=10a3D.a2+4a2=5a2【分析】根据合并同类项的法则,结合选项进行判断即可.解:A、5a3﹣6a3=﹣a3,故本选项错误;B、3a2+4a2=7a2,故本选项错误;C、7a和3a2不是同类项,不能合并,故本选项错误;D、a2+4a2=5a2,故本选项正确;故选:D.【点评】此题考查了合并同类项的知识,属于基础题,关键是掌握合并同类项的法则.6.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c是单项式C.是多项式D.中,系数是【分析】直接利用单项式的系数以及多项式的次数与项数确定方法分别分析得出答案.解:A、1﹣a﹣ab是二次三项式,正确,不合题意;B、﹣a2b2c是单项式,正确,不合题意;C、是多项式,正确,不合题意;D、πr2中,系数是:π,故此选项错误,符合题意.故选:D.【点评】此题主要考查了单项式和多项式,正确把握相关定义是解题关键.7.下列说法:①﹣a一定是负数;②|﹣a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个【分析】根据正数和负数的意义,可判断①;根据绝对值的意义,可判断②;根据倒数的意义,可判断③;根据绝对值的性质,可判断④;根据平方的意义,可判断⑤.解:①﹣a可能是负数、零、正数,故①说法错误;②|﹣a|一定是非负数,故②说法错误;③倒数等于它本身的数是±1,故③说法正确;④绝对值等于它本身的数是非负数,故④说法错误;⑤平方等于它本身的数是0或1,故⑤说法错误;故选:A.【点评】本题考查了有理数的乘方,注意0的平方等于0,﹣a不一定是负数,绝对值都是非负数.8.长方形的一边长等于3x+2y,另一边长比它长x﹣y,这个长方形的周长是()A.4x+y B.12x+2y C.8x+2y D.14x+6y【分析】根据题意表示另一边的长,进一步表示周长,化简.解:依题意得:周长=2(3x+2y+3x+2y+x﹣y)=14x+6y.故选D.【点评】此题考查了整式的加减,列式表示出长方形的周长是关键.9.在(﹣1)3,(﹣1)2,﹣22,(﹣3)2,这四个数中,最大的数与最小的数的和等于()A.6 B.﹣5 C.8 D.5【分析】先根据有理数的乘方运算法则将各数化简,找到最大的数与最小的数,然后根据有理数的加法法则求得计算结果.解:∵(﹣1)3=﹣1,(﹣1)2=1,﹣22=﹣4,(﹣3)2=9,且﹣4<﹣1<1<9,∴最大的数与最小的数的和等于﹣4+9=5.故选:D.【点评】解决此类题目的关键是熟记有理数的运算法则.10.若|x|=7,|y|=5,且x+y>0,那么x+y的值是()A.2或12 B.2或﹣12 C.﹣2或12 D.﹣2或﹣12【分析】根据题意,利用绝对值的代数意义,以及有理数的加法法则判断即可.解:∵|x|=7,|y|=5,且x+y>0,∴x=7,y=5;x=7,y=﹣5,则x+y=12或2,故选:A.【点评】此题考查了有理数的加法,以及绝对值,熟练掌握运算法则是解本题的关键.11.已知整式x2﹣2x的值为3,则2x2﹣4x+6的值为()A.7 B.9 C.12 D.18【分析】先把代数式进行适当的变形,然后直接把已知整式的值代入代数式即可求出代数式的值.解:2x2﹣4x+6=2(x2﹣2x)+6,将x2﹣2x=3代入上面的代数式得,2x2﹣4x+6,=2×3+6,=12,故选:C.【点评】本题主要考查了代数式的求值方法,通车分为三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.12.对正整数n,记n!=1×2×3×…×n,则1!+2!+3!+…+10!的末尾数为()A.0 B.1 C.3 D.5【分析】根据n!=1×2×3×…×n得到1!=1,2!=1×2=2,3!=1×2×3=6,4!=1×2×3×4=24,且5!、…、10!的数中都含有2与5的积,则5!、…、10!的末尾数都是0,于是得到1!+2!+3!+…+10!的末尾数为3.解:∵1!=1,2!=1×2=2,3!=1×2×3=6,4!=1×2×3×4=24,而5!、…、10!的数中都含有2与5的积,∴5!、…、10!的末尾数都是0,∴1!+2!+3!+…+10!的末尾数为3.故选:C.【点评】本题考查了规律型:数字的变化类:通过特殊数字的变化规律探讨一般情况下的数字变化规律.二、填空题(每小题3分,共计12分)13.单项式﹣y的系数是﹣.【分析】直接利用单项式的系数确定方法分析得出答案.解:单项式﹣y的系数是:﹣.故答案为:﹣.【点评】此题主要考查了单项式,正确把握单项式的系数确定方法是解题关键.14.a、b互为相反数,c、d互为倒数,则=.【分析】由a、b互为相反数,c、d互为倒数可知a+b=0,cd=1,然后代入求值即可.解:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1.∴原式=﹣3×0﹣﹣=﹣.故答案为:﹣.【点评】本题主要考查的是有理数的运算,根据题意得到a+b=0,cd=1是解题的关键.15.设[x]表示不大于x的最大整数,例如[1.8]表示不超过1.8的最大整数就是1,[﹣3.8]表示不超过﹣3.8的最大整数﹣4,计算[2.7]+[﹣4.5]的值为﹣3 .【分析】根据[x]表示不大于x的最大整数,进而得出答案.解:由题意可得:[2.7]+[﹣4.5]=2﹣5=﹣3.故答案为:﹣3.【点评】此题主要考查了新定义,正确理解题意是解题关键.16.如图,是一个数值转换机,根据所给的程序计算,若输入x的值为1,则输出y的值为4 .【分析】把x=1代入数值转换机中计算即可得到结果.解:把x=1代入得:2×12﹣4=2﹣4=﹣2,把x=﹣2代入得:2×(﹣2)2﹣4=8﹣4=4,则输出y的值为4.故答案为:4【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.三.解答题(共计52分)17.(12分)计算:(1)25.7+(﹣7.3)+(﹣13.7)+7.3(2)(3)(4)﹣14﹣(1﹣0.5)×【分析】(1)根据加法结合律可以解答本题;(2)先把除法转化为乘法,然后根据乘法分配律即可解答本题;(3)先算乘法,再算加减即可解答本题;(4)先算小括号里的,再算中括号里的,最后根据有理数的乘法和减法即可解答本题.解:(1)25.7+(﹣7.3)+(﹣13.7)+7.3=(25.7﹣13.7)+[(﹣7.3)+7.3]=12+0=12;(2)=(﹣)×(﹣36)=18+20+(﹣21)=17;(3)=(﹣1)+﹣1=﹣;(4)﹣14﹣(1﹣0.5)×=﹣1﹣=﹣1﹣×(﹣3)=﹣1+=﹣.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算顺序.18.(6分)先化简,再求值:(3a+2a﹣4a3)﹣(﹣a+3a3﹣2a2),其中a=﹣2【分析】根据整式的运算法则即可求出答案.解:原式=3a+2a﹣4a3+a﹣3a3+2a2=6a﹣7a3+2a2当a=﹣2时,原式=6×(﹣2)﹣7×(﹣8)+2×4=﹣12+56+8=52.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.19.(6分)一个物体是由棱长为3cm的正方体模型堆砌而成的,其视图如图:(1)请在俯视图上标出小正方体的个数(2)求出该物体的体积是多少.(3)该物体的表面积是多少?【分析】(1)根据三视图可分别得出俯视图上小立方体的个数;(2)根据(1)可得小正方体的个数为10,然后利用1个小正方体的体积乘以10即可;(3)根据三视图可得该物体的表面有多少个小正方形,然后利用1个小正方形的面积乘以个数即可.解:(1)如图所示:(2)3×3×3×10=270(cm3),答:该物体的体积是270cm3;(3)3×3×38=342(cm2),答:该物体的表面积是342cm2.【点评】本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.20.(6分)有理数a、b、c在数轴上的点如图所示:化简:|c|+|a﹣c|﹣2|c+b|+|a+b|.【分析】根据数轴判断出a、b、c的符号,再根据绝对值的性质去掉绝对值符号,合并同类项即可.解:如图可知:a>0,c<0,b<0,且|b|>|c|>|a|,则|c|=﹣c,|a﹣c|=a﹣c,|c+b|=﹣c﹣b,|a+b|=﹣a﹣b,则原式=﹣c+(a﹣c)﹣2(﹣c﹣b)+(﹣a﹣b)=﹣c+a﹣c+2c+2b﹣a﹣b=b.【点评】本题考查了整式的加减、数轴、绝对值,在数轴上判断出字母的符号是解题的关键.21.(6分)某商场销售一种西装和领带,西装每套定价500元,领带每条定价100元,“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.现某客户要到商场购买西服20套,领带x条(x>20).方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.(1)若客户按方案一购买,需付款(100x+8000)元;若客户按方案二购买,需付款(90x+9000)元;(2)若x=30,请通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并计算此方案需要付款多少元?【分析】(1)根据题目提供的两种不同的付款方式列出代数式即可;(2)将x=30代入求得的代数式中即可得到费用,然后比较即可得到选择哪种方案更合算;(3)根据题意可以得到先按方案一购买20套西装获赠送20条领带,再按方案二购买10条领带更合算.解:(1)客户要到该商场购买西装20套,领带x条(x>20).方案一费用:(100x+8000)元;方案二费用:(90x+9000)元;(2)当x=30时,方案一费用:100x+8000=100×30+8000=11000(元);方案二费用:90x+9000=90×30+9000=11700(元);∵11000<11700,∴按方案一购买较合算;(3)先按方案一购买20套西装获赠20条领带,再按方案二购买10条领带.20×500+100×0.9×10=10900(元).故此方案需要付款10900元.【点评】本题考查了列代数式和求代数式的值的相关的题目,解题的关键是认真分析题目并正确的列出代数式.22.(8分)我们知道,|a|可以理解为|a﹣0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a﹣b|,反过来,式子|a﹣b|的几何意义是:数轴上表示数a 的点和表示数b的点之间的距离.利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是 5 ,数轴上表示数﹣1的点和表示数﹣3的点之间的距离是 2 .(2)数轴上点A用数a表示,若|a|=5,那么a的值为5或﹣5 .(3)数轴上点A用数a表示,①若|a﹣3|=5,那么a的值是﹣2或8 .②当|a+2|+|a﹣3|=5时,数a的取值范围是﹣2≤a≤3 ,这样的整数a有 6 个③|a﹣3|+|a+2017|有最小值,最小值是2020 .【分析】(1)根据两点间的距离公式求解可得;(2)根据绝对值的定义可得;(3)①利用绝对值定义知a﹣3=5或﹣5,分别求解可得;②由|a+2|+|a﹣3|=5的意义是表示数轴上到表示﹣2和表示3的点的距离之和是5的点的坐标,据此可得;③由|a﹣3|+|a+2017|表示数轴到表示3与表示﹣2017的点距离之和,根据两点之间线段最短可得.解:(1)数轴上表示数8的点和表示数3的点之间的距离是8﹣3=5,数轴上表示数﹣1的点和表示数﹣3的点之间的距离是﹣1﹣(﹣3)=2,故答案为:5、2.(2)若|a|=5,那么a的值为5或﹣5,故答案为:5或﹣5.(3)数轴上点A用数a表示,①若|a﹣3|=5,则a﹣3=5或a﹣3=﹣5,∴a=8或﹣2,故答案为:﹣2或8.②∵|a+2|+|a﹣3|=5的意义是表示数轴上到表示﹣2和表示3的点的距离之和是5的点的坐标,∴﹣2≤a≤3,其中整数有﹣2,﹣1,0,1,2,3共6个,故答案为:﹣2≤a≤3,6.③|a﹣3|+|a+2017|表示数轴到表示3与表示﹣2017的点距离之和,由两点之间线段最短可知:当﹣2017≤a≤3时,|a﹣3|+|a+2017|有最小值,最小值为2017﹣(﹣3)=2020,故答案为:2020.【点评】本题主要考查的是绝对值的定义的应用,理解并应用绝对值的定义及两点间的距离公式是解题的关键.23.(8分)23、如图,将一个边长为1的正方形纸片分割成7个部分,部分①是边长为1的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,依此类推.(1)阴影部分的面积是多少?(2)受此启发,你能求出的值吗?【分析】观察图形发现部分①的面积为:,部分②的面积为:=,…,部分的面积,据此规律解答即可.解:∵观察图形发现部分①的面积为:,部分②的面积为:=,…,部分的面积,∴(1)阴影部分的面积是=;(2)=1﹣=;【点评】本题考查了图形的变化类问题,解题的关键是仔细观察图形并发现图形变化的规律.人教版七年级第一学期期中模拟数学试卷(含答案)一、选择题(每小题3分,共计36分)1.﹣6的倒数是()A.6 B.﹣6 C.D.﹣2.粤海铁路是我国第一条横跨海峡的铁路通道,设计年输送货物能力为11 000 000吨,用科学记数法应记为()A.11×106吨B.1.1×107吨C.11×107吨D.1.1×108吨3.计算(﹣0.5)2013×(﹣2)2014的结果是()A.﹣0.5 B.0.5 C.﹣2 D.24.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.5.下列计算中正确的是()A.5a3﹣6a3=﹣a B.3a2+4a2=7a4C.7a+3a2=10a3D.a2+4a2=5a26.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c是单项式C.是多项式D.中,系数是7.下列说法:①﹣a一定是负数;②|﹣a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个8.长方形的一边长等于3x+2y,另一边长比它长x﹣y,这个长方形的周长是()A.4x+y B.12x+2y C.8x+2y D.14x+6y9.在(﹣1)3,(﹣1)2,﹣22,(﹣3)2,这四个数中,最大的数与最小的数的和等于()A.6 B.﹣5 C.8 D.510.若|x|=7,|y|=5,且x+y>0,那么x+y的值是()A.2或12 B.2或﹣12 C.﹣2或12 D.﹣2或﹣12 11.已知整式x2﹣2x的值为3,则2x2﹣4x+6的值为()A.7 B.9 C.12 D.1812.对正整数n,记n!=1×2×3×…×n,则1!+2!+3!+…+10!的末尾数为()A.0 B.1 C.3 D.5二、填空题(每小题3分,共计12分)13.单项式﹣y的系数是.14.a、b互为相反数,c、d互为倒数,则=.15.设[x]表示不大于x的最大整数,例如[1.8]表示不超过1.8的最大整数就是1,[﹣3.8]表示不超过﹣3.8的最大整数﹣4,计算[2.7]+[﹣4.5]的值为.16.如图,是一个数值转换机,根据所给的程序计算,若输入x的值为1,则输出y的值为.三.解答题(共计52分)17.(12分)计算:(1)25.7+(﹣7.3)+(﹣13.7)+7.3(2)(3)(4)﹣14﹣(1﹣0.5)×18.(6分)先化简,再求值:(3a+2a﹣4a3)﹣(﹣a+3a3﹣2a2),其中a=﹣219.(6分)一个物体是由棱长为3cm的正方体模型堆砌而成的,其视图如图:(1)请在俯视图上标出小正方体的个数(2)求出该物体的体积是多少.(3)该物体的表面积是多少?20.(6分)有理数a、b、c在数轴上的点如图所示:化简:|c|+|a﹣c|﹣2|c+b|+|a+b|.21.(6分)某商场销售一种西装和领带,西装每套定价500元,领带每条定价100元,“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.现某客户要到商场购买西服20套,领带x条(x>20).方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.(1)若客户按方案一购买,需付款元;若客户按方案二购买,需付款元;(2)若x=30,请通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并计算此方案需要付款多少元?22.(8分)我们知道,|a|可以理解为|a﹣0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a﹣b|,反过来,式子|a﹣b|的几何意义是:数轴上表示数a 的点和表示数b的点之间的距离.利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是,数轴上表示数﹣1的点和表示数﹣3的点之间的距离是.(2)数轴上点A用数a表示,若|a|=5,那么a的值为.(3)数轴上点A用数a表示,①若|a﹣3|=5,那么a的值是.②当|a+2|+|a﹣3|=5时,数a的取值范围是,这样的整数a有个③|a﹣3|+|a+2017|有最小值,最小值是.23.(8分)23、如图,将一个边长为1的正方形纸片分割成7个部分,部分①是边长为1的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,依此类推.(1)阴影部分的面积是多少?(2)受此启发,你能求出的值吗?参考答案一、选择题1.﹣6的倒数是()A.6 B.﹣6 C.D.﹣【分析】根据倒数的定义求解.解:﹣6的倒数是﹣.故选:D.【点评】倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.粤海铁路是我国第一条横跨海峡的铁路通道,设计年输送货物能力为11 000 000吨,用科学记数法应记为()A.11×106吨B.1.1×107吨C.11×107吨D.1.1×108吨【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤a<10,n 表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.11 000 000=1.1×107.解:11 000 000=1.1×107.故选:B.【点评】本题考查学生对科学记数法的掌握.科学记数法要求前面的部分的绝对值是大于或等于1,而小于10,小数点向左移动7位,应该为1.1×107.3.计算(﹣0.5)2013×(﹣2)2014的结果是()A.﹣0.5 B.0.5 C.﹣2 D.2【分析】把(﹣2)2014写成(﹣2)×(﹣2)2013,然后根据有理数的乘方的定义,先乘积再乘方进行计算即可得解.解:(﹣0.5)2013×(﹣2)2014,=(﹣0.5)2013×(﹣2)×(﹣2)2013,=(﹣2)×[(﹣0.5)×(﹣2)]2013,=﹣2×1,=﹣2.故选:C.【点评】本题考查了有理数的乘方,此类题目,转化为同指数幂相乘是解题的关键,也是难点.4.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题.解:选项A、D经过折叠后,标有字母“M”的面不是下底面,而选项C折叠后,不是沿沿图中粗线将其剪开的,故只有B正确.故选:B.【点评】正方体共有11种表面展开图,把11种展开图都去掉一个面得无盖的正方体展开图,把相同的归为一种得无盖正方体有8种表面展开图.5.下列计算中正确的是()A.5a3﹣6a3=﹣a B.3a2+4a2=7a4C.7a+3a2=10a3D.a2+4a2=5a2【分析】根据合并同类项的法则,结合选项进行判断即可.解:A、5a3﹣6a3=﹣a3,故本选项错误;B、3a2+4a2=7a2,故本选项错误;C、7a和3a2不是同类项,不能合并,故本选项错误;D、a2+4a2=5a2,故本选项正确;故选:D.【点评】此题考查了合并同类项的知识,属于基础题,关键是掌握合并同类项的法则.6.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c是单项式C.是多项式D.中,系数是【分析】直接利用单项式的系数以及多项式的次数与项数确定方法分别分析得出答案.解:A、1﹣a﹣ab是二次三项式,正确,不合题意;B、﹣a2b2c是单项式,正确,不合题意;C、是多项式,正确,不合题意;D、πr2中,系数是:π,故此选项错误,符合题意.故选:D.【点评】此题主要考查了单项式和多项式,正确把握相关定义是解题关键.7.下列说法:①﹣a一定是负数;②|﹣a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个【分析】根据正数和负数的意义,可判断①;根据绝对值的意义,可判断②;根据倒数的意义,可判断③;根据绝对值的性质,可判断④;根据平方的意义,可判断⑤.解:①﹣a可能是负数、零、正数,故①说法错误;②|﹣a|一定是非负数,故②说法错误;③倒数等于它本身的数是±1,故③说法正确;④绝对值等于它本身的数是非负数,故④说法错误;⑤平方等于它本身的数是0或1,故⑤说法错误;故选:A.【点评】本题考查了有理数的乘方,注意0的平方等于0,﹣a不一定是负数,绝对值都是非负数.8.长方形的一边长等于3x+2y,另一边长比它长x﹣y,这个长方形的周长是()A.4x+y B.12x+2y C.8x+2y D.14x+6y【分析】根据题意表示另一边的长,进一步表示周长,化简.解:依题意得:周长=2(3x+2y+3x+2y+x﹣y)=14x+6y.故选D.【点评】此题考查了整式的加减,列式表示出长方形的周长是关键.9.在(﹣1)3,(﹣1)2,﹣22,(﹣3)2,这四个数中,最大的数与最小的数的和等于()A.6 B.﹣5 C.8 D.5【分析】先根据有理数的乘方运算法则将各数化简,找到最大的数与最小的数,然后根据有理数的加法法则求得计算结果.解:∵(﹣1)3=﹣1,(﹣1)2=1,﹣22=﹣4,(﹣3)2=9,且﹣4<﹣1<1<9,∴最大的数与最小的数的和等于﹣4+9=5.故选:D.【点评】解决此类题目的关键是熟记有理数的运算法则.10.若|x|=7,|y|=5,且x+y>0,那么x+y的值是()A.2或12 B.2或﹣12 C.﹣2或12 D.﹣2或﹣12【分析】根据题意,利用绝对值的代数意义,以及有理数的加法法则判断即可.解:∵|x|=7,|y|=5,且x+y>0,∴x=7,y=5;x=7,y=﹣5,则x+y=12或2,故选:A.【点评】此题考查了有理数的加法,以及绝对值,熟练掌握运算法则是解本题的关键.11.已知整式x2﹣2x的值为3,则2x2﹣4x+6的值为()A.7 B.9 C.12 D.18【分析】先把代数式进行适当的变形,然后直接把已知整式的值代入代数式即可求出代数式的值.解:2x2﹣4x+6=2(x2﹣2x)+6,将x2﹣2x=3代入上面的代数式得,2x2﹣4x+6,=2×3+6,=12,故选:C.【点评】本题主要考查了代数式的求值方法,通车分为三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.12.对正整数n,记n!=1×2×3×…×n,则1!+2!+3!+…+10!的末尾数为()A.0 B.1 C.3 D.5【分析】根据n!=1×2×3×…×n得到1!=1,2!=1×2=2,3!=1×2×3=6,4!=1×2×3×4=24,且5!、…、10!的数中都含有2与5的积,则5!、…、10!的末尾数都是0,于是得到1!+2!+3!+…+10!的末尾数为3.解:∵1!=1,2!=1×2=2,3!=1×2×3=6,4!=1×2×3×4=24,而5!、…、10!的数中都含有2与5的积,∴5!、…、10!的末尾数都是0,∴1!+2!+3!+…+10!的末尾数为3.故选:C.【点评】本题考查了规律型:数字的变化类:通过特殊数字的变化规律探讨一般情况下的数字变化规律.二、填空题(每小题3分,共计12分)13.单项式﹣y的系数是﹣.【分析】直接利用单项式的系数确定方法分析得出答案.解:单项式﹣y的系数是:﹣.故答案为:﹣.【点评】此题主要考查了单项式,正确把握单项式的系数确定方法是解题关键.14.a、b互为相反数,c、d互为倒数,则=.【分析】由a、b互为相反数,c、d互为倒数可知a+b=0,cd=1,然后代入求值即可.解:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1.∴原式=﹣3×0﹣﹣=﹣.故答案为:﹣.【点评】本题主要考查的是有理数的运算,根据题意得到a+b=0,cd=1是解题的关键.15.设[x]表示不大于x的最大整数,例如[1.8]表示不超过1.8的最大整数就是1,[﹣3.8]表示不超过﹣3.8的最大整数﹣4,计算[2.7]+[﹣4.5]的值为﹣3 .【分析】根据[x]表示不大于x的最大整数,进而得出答案.解:由题意可得:[2.7]+[﹣4.5]=2﹣5=﹣3.。
广东 七年级(上)期中数学试卷-(含答案)
七年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列几何体没有曲面的是()A. 圆柱B. 圆锥C. 球D. 长方体2.的倒数是()A. B. 2 C. D.3.在式子,,,,,中,整式有()A. 3个B. 4个C. 5个D. 6个4.将0.00025用科学记数法表示为()A. B. C. D.5.单项式-3πxy2z3的系数和次数分别是()A. ,5B. ,6C. ,6D. ,76.下列各数中:+5、-2.5、、2、、-(-7)、0、-|+3|负有理数有()A. 2个B. 3个C. 4个D. 5个7.一个两位数x,还有一个两位数y,若把两位数x放在y前面,组成一个四位数,则这个四位数为()A. B. xy C. D.8.若x,y为实数,且满足|x-3|+(y+3)2=0,则()2016的值是()A. 4B. 3C. 2D. 19.下列说法中,正确的个数有()(1)绝对值最小的数是1和-1.(2)多项式-3a2b+7a2b2-2ab+1的项数是4.(3)数轴上与表示-2的点距离3个长度单位的点所表示的数是1.(4)若|x|=-x,则x<0.A. 0个B. 1个C. 2个D. 3个10.对于实数a,b,如果a>0,b<0且|a|<|b|,那么下列等式中成立的是()A. B.C. D.二、填空题(本大题共6小题,共24.0分)11.用以平面去截一个正方体,得到的截面形状中最多是______ 边形.12.据统计今年全国高校毕业生将达约7270000人,将数据7270000用科学记数法表示______ .13.比较大小:-______-.14.若关于x的多项式x3+(2m-6)x2+x+2不含有二次项,则m的值是______ .15.材料:一般地,n个相同因数a相乘:记为a n.如23=8,此时,3叫做以2个为底的8的对数,记为log28(即log28=3).那么,log39= ______ ,(log216)2+log381= ______ .16.在数学兴趣小组活动中,小明为了求…+的值,在边长为1的正方形中,设计了如图所示的几何图形.则…+的值为______(结果用n表示).三、计算题(本大题共2小题,共13.0分)17.计算:22-[(-3)×(-)-(-2)3].18.若|x|=3,|y|=6,且xy<0,求2x+3y的值.四、解答题(本大题共7小题,共53.0分)19.如图是一个正方体纸盒的展开图,如果这个正方体纸盒相对的两个面上的代数式的值相等,求2a+b-3c的值.20.已知a、b互为相反数,c、d互为倒数,m的绝对值是5,n是最大的负整数,求代数式2016(a+b)-4cd+2mn的值.21.某市为了节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨的部分,按2元/吨收费;超过10吨的部分按2.5元/吨收费.(1)若黄老师家5月份用水16吨,问应交水费多少元?(2)若黄老师家7月用水a吨,问应交水费多少元?(用a的代数式表示)22.已知多项式x m+1y2+2xy2-4x3+1是六次四项式,单项式26x2n y5-m的次数与该多项式的次数相同,求(-m)3+2n的值.23.已知正方体的边长为a.(1)一个正方体的表面积是多少?体积是多少?(2)2个正方体(如图②)叠放在一起,它的表面积是多少?体积是多少?(3)n个正方体按照图②的方式叠放在一起,它的表面积是多少?体积是多少?24.(1)观察与发现:=1-,=-,=-,…,=-,以上各等式说明了什么运算规律?把这种规律用含有n(n是正整数)的等式表示出来:______ ;(2)运用你发现的规律进行计算:;(3)拓展延伸:计算:.25.阅读材料:求1+2+22+23+24+…+220的值.解:设S=1+2+22+23+24+…+220,将等式两边同时乘以2得:2S=2+22+23+24+25+…+221将下式减去上式得2S-S=221-1即S=221-1即1+2+22+23+24+…+220=221-1请你仿照此法计算:(1)1+2+22+23+24+…+22016(2)1+2+22+23+24+…+2n(其中n为正整数)(3)1+5+52+53+54+…+5n(其中n为正整数)答案和解析1.【答案】D【解析】解:A、圆柱由2个平面和一个曲面组成,不符合题意;B、圆锥由一个平面和一个曲面组成,不符合题意;C、球由一个曲面组成,不符合题意;D、长方体是由六个平面组成,符合题意.故选:D.根据立体图形的形状即可判断.本题考查曲面的定义,注意面有平面与曲面之分.2.【答案】A【解析】解:-的倒数是-2.故选:A.根据倒数的定义求解.本题主要考查了倒数的定义,解题的关键是熟记定义.3.【答案】B【解析】解:和分母中含有未知数,则不是整式,其余的都是整式共四个.故选B.根据整式的定义进行解答.本题重点对整式定义的考查:整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母.单项式和多项式统称为整式.4.【答案】C【解析】解:0.00025=2.5×10-4,故选:C.根据用科学记数法表示较小的数的方法解答即可.本题考查的是用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【答案】C【解析】解:根据单项式系数、次数的定义,单项式-3πxy2z3的系数和次数分别是-3π,6.故选C.根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.注意π是数字,应作为系数.6.【答案】B【解析】解:-2.5、-、-|+3|是负有理数,故选:B.根据小于零的有理数是负有理数,可得答案.本题考查了有理数,小于零的有理数是负有理数,注意零既不是正数也不是负数.7.【答案】C【解析】解:根据题意,得这个四位数是100x+y.故选C.把两位数x放在y前面,组成一个四位数,相当于把x扩大了100倍.此题考查了用字母表示数的方法,理解数位的意义.8.【答案】D【解析】解:由题意得,x-3=0,y+3=0,解得,x=3,y=-3,则()2016=(-1)2016=1,故选:D.根据非负数的性质列出算式,求出x、y的值,根据乘方法则计算即可.本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.9.【答案】B【解析】解:(1)0是绝对值最小的数,故(1)错误;(2)多项式-3a2b+7a2b2-2ab+1的项数是4,正确;(3)-2+3=1,-2-3=-5,∴数轴上与表示-2的点距离3个长度单位的点所表示的数是1或-5,故(3)错误;(4)若|x|=-x,则x≤0,故(4)错误.故选:B.(1)0是绝对值最小的数;(2)根据多项式的定义回答即可;(3)符合条件的点有两个;(4)根据绝对值性质判断即可.本题主要考查的是多项式、数轴、绝对值,掌握相关性质是解题的关键.10.【答案】D【解析】解:由已知可知:a,b异号,且正数的绝对值<负数的绝对值.∴a+b=-(|b|-|a|).故选D.题中给出了a,b的范围,根据“正数的绝对值是其本身,负数的绝对值是其相反数,0的绝对值是0”进行分析判断.有理数的加法运算法则:异号的两个数相加,取绝对值较大的数的符号,再让较大的绝对值减去较小的绝对值.11.【答案】六【解析】解:∵用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,∴最多可以截出六边形,故答案为:六.正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此最多可以截出六边形.此题考查了截一个几何体,用到的知识点为:截面经过正方体的几个面,得到的截面形状就是几边形.12.【答案】7.27×106【解析】解:将7270000用科学记数法表示为:7.27×106.故答案为:7.27×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.【答案】<【解析】解:∵|-|=,|-|=,>,∴-<-.故答案为:<.先求出各数的绝对值,再根据负数比较大小的法则进行比较即可.本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.14.【答案】3【解析】【分析】本题考查的是多项式的概念,在多项式中不含哪项,即哪项的系数为0,两项的系数互为相反数,合并同类项时为0.根据题意列出关于m的方程,解方程得到答案.【解答】解:∵多项式x3+(2m-6)x2+x+2不含有二次项,∴2m-6=0,解得,m=3,故答案为3.15.【答案】2;17【解析】解:根据题意,log39=2;log216=4,log381=4,∴(log216)2+log381=42=17.故答案为:2;17.直接根据题意得出log39;log216=4,log381=4,进而得出答案.此题主要考查了新定义,正确理解log28的意义是解题关键.16.【答案】1-【解析】解:…+=1-.答:…+的值为1-.故答案为:1-.根据图中可知正方形的面积依次为,,….根据组合图形的面积计算可得.考查了正方形的面积公式,及组合图形的面积计算.正方形的面积为1,根据图中二等分n次,面积为.17.【答案】解:22-[(-3)×(-)-(-2)3]=4-[4-(-8)]=4-(4+8)=4-12=-8【解析】首先计算乘方,然后计算括号里面的运算,最后计算减法即可.此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.18.【答案】解:∵|x|=3,|y|=6,∴x=±3,y=±6,∵xy<0,∴x=3,y=-6,或x=-3,y=6,①x=3,y=-6时,原式=2×3+3×(-6)=6-18=-12;②x=-3,y=6,原式=2×(-3)+3×6=-6+18=12.【解析】判断出x,y可能的值,进而代入代数式求值即可.考查绝对值的相关计算;根据绝对值的定义及条件判断出x,y可能的值是解决本题的关键.19.【答案】解:依题意有3a=-6,a=-2;2b-1=3,b=2;c-1=1-2c,.=-4.故2a+b-3c的值是-4.【解析】此题的关键是找出正方体的相对面,仔细观察会发现3a与-6是相对面,c-1与1-2c是相对面,2b-1与3是相对面,根据这个正方体纸盒相对的两个面上的代数式的值相等,求出a,b,c的值,再代入计算可求2a+b-3c的值.考查了正方体相对两个面上的文字,做这类题学生要养成仔细观察并动脑的习惯.20.【答案】解:∵a、b互为相反数,c、d互为倒数,m的绝对值是5,n是最大的负整数,∴a+b=0,cd=1,|m|=5,n=-1,∴m=±5.当m=5时,原式=2016×0-4×1+2×5×(-1)=-14;当m=-5时,原式=2016×0-4×1+2×(-5)×(-1)=6.∴代数式2016(a+b)-4cd+2mn的值是-14或6.【解析】依据题意可求得a+b、cd、n、m的值,然后代入求解即可.本题主要考查的是求代数式的值,相反数、倒数、绝对值以及有理数的分类求得a+b=0,cd=1,n=-1,m=±5是解题的关键.21.【答案】解:(1)根据题意得:10×2+(16-10)×2.5=35(元),答:应交水费35元.(2)①当0<a≤10时,应交水费为2a(元).②当a>10时,应交水费为:20+2.5(a-10)=2.5a-5(元).【解析】(1)根据题意可得水费应分两部分:不超过10吨的部分的水费+超过10吨部分的水费,把两部分加起来即可;(2)此题要分两种情况进行讨论:①当0<a≤10时,②当a>10时,分别进行计算即可.此题主要考查了由实际问题列代数式,正确理解题意,分清楚如何计算水费是本题的关键.22.【答案】解:由于多项式是六次四项式,所以m+1+2=6,解得:m=3,单项式26x2n y5-m应为26x2n y2,由题意可知:2n+2=6,解得:n=2,所以(-m)3+2n=(-3)3+2×2=-23.【解析】利用多项式与单项式的次数的确定方法得出关于m与n的等式进而得出答案.此题主要考查了多项式与单项式的次数,正确得出m,n的值是解题关键.23.【答案】解:(1)依题意得:正方体的表面积=6×正方形的面积=×26a2,体积=a3;(2)2个正方体叠放在一起,它的表面积=6a2×2-2a2=10a2,体积=2a3;(3)n个正方体的方式叠放在一起,它的表面积=n•6a2-(n-1)•2a2=(4n+2)a2,体积=na3.【解析】(1)根据正方体的表面积由6个正方形的面积组成,所以正方体的表面积=6×正方形的面积=6a2,正方体的体积=正方体的边长3,把相关数值代入即可求解;(2)根据(1)的计算结果计算即可;(3)根据(1)、(2)的计算结果计算即可.本题考查了几何体的表面积,明确正方体的表面积、体积计算公式,是解答此题的关键.24.【答案】=-【解析】解:(1)根据题意得:=-;(2)原式=1-+-+…+-=1-=;(3)原式=(1-+-+…+-)=(1-)=.故答案为:=-.(1)归纳总结得到一般性规律,写出即可;(2)原式利用拆项法变形,计算即可得到结果;(3)原式利用拆项法变形,计算即可得到结果.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.【答案】解:(1)设S=1+2+22+23+24+ (22016)两边乘以2得:2S=2+22+23+24+ (22017)下式减去上式得:S=22017-1;(2)设S=1+2+22+23+24+ (2)两边乘以2得:2S=2+22+23+24+…+2n+1,下式减去上式得:S=2n+1-1;(3)设S=1+5+52+53+54+…+5n,两边乘以5得:5S=5+52+53+54+…+5n+1,下式减去上式得:4S=5n+1-1,即S=,则1+5+52+53+54+…+5n=.【解析】(1)设原式=S,两边乘以2变形得到关系式,两式相减即可求出S;(2)设原式=S,两边乘以2变形得到关系式,两式相减即可求出S;(3)设原式=S,两边乘以5变形得到关系式,两式相减即可求出S.本题考查数字的变化类,解题的关键是明确题意,找出数字的变化特点.。
2016年深圳中学7年级第一学期期中试卷
深圳市深圳中学2016-2017学年第一学期数学中段考一、选择题1、某物的三视图是如图所示的三个图形,那么该物体的形状是()A.圆柱体B.圆锥正视图左视图俯视图C.立方体D.长方体2、下面平面图形经过折叠不能围成正方体的是(A.B. C.D. 3、下列结果为负数的是( )A.-(-3) B.-32 C.(-3)2 D. |-3|4、|-3|的相反数是( )A. 3 B.-3 C.31 D. 31- 5、21-的倒数是( ) A.-2 B.2 C.21- D.21 6、下列说法中,不正确的是( )A. 0既不是正数,也不是负数 B. 1是绝对值最小的数 C. 0的相反数是0 D. 0的绝对值是07、在数轴上与0的距离等于5个单位长度的点表示的数是( ) A. 0和5 B. 0和-5 C. -5和2 D.-5和58、甲期中考试考了a分,之后他继续努力,期末考试比期中考试提高了b%,则甲期末考试的分数为( )A. a+b% B.(1+b%)a C. 100-b%a D.1+b%a9、从-3,-4,-2,4,5,这五个数中,取出三个不同的数作乘法,则最大的乘积是( )A. 20 B.-20 C. 60 D. 8010、据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学计数法表示为( )A 3.12×105 B 3.12×107C31.2×105D3.12×10611、下列各式中,正确的是( )A (-4)2=-42B -23>-45 C(-2)2=4 D -(-2)4=1212、下列四个数中,最小的数是( )A. |-6| B. -2 C.-21的相反数 D. 013、一个两位数,个位数字为a,十位数字为b,则这个两位数可以用代数式表示为( ) A. ab B. ba C. 10a+b D. 10b+a14、若|a|=a,|b|≠b,则ab与0的关系( )A. ab>0 B.ab<0 C.ab≥0 D.ab≤015、若|x+2|+(y-4)2=0,则xy的值为( )A. 8 B.-8 C. 16 D.-1616、如图,数轴上的点A所表示的数为k,化简|k-1|+|k-1|的结果为()A. 2B. 2kC.-2kD.-217、已知-x+2y=6,则3(x-2y)2-5(x-2y)+6的值是()A84B144C-72D-13218、一个小虫在数轴上向右爬2个单位,再向左爬6个单位,所在位置正好距离数轴原点2个单位,则小虫的起始位置所表示的数是()A. 6B. 2或-2C. -2或4D. 2或619、如图是一块长方形ABCD的场地,长AB=a米,宽AD=b米,从A、B两处入口的小路宽都为1米,两小路汇合处开始为2米,其余部分都种植草坪,则草坪面积为()米。
2015-2016深圳第一学期七年级数学期中考试试卷
2015-2016第一学期七年级数学期中调研试卷命题人:李玲玲 审核人: 罗贤华一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一 项是符合题目要求的,请将正确答案填涂在答题卡上,否则不得分) 1. 2015的相反数是( )A .2015B .-2015 C. 20151 D .-201512. 下列各数中,最小的是( )3. 下列各式:①-(-2);②-|-2|;③-22;④(-2)2,计算结果为负数的个数有( ) A .4个 B .3个 C .2个 D .1个 4. 在数轴上与O 的距离等于4个单位的点表示的数是( )A. 4B. -4C.-4和4D. 3和55. 被誉为“地球之肺”的森林正以每年15000000公顷的速度从地球上消失,每年森林的消失量用科学记数法表示应是( )A .15×106×107公顷 C. 150×105×l08公顷 6. 下列计算正确的是 ( )A . ab b a 325=-B .a a a 523-=+-C . 532752a a a =+ D . b a a b a 2223b 25=- 7. 下列说法中错误的是( )A .若一个有理数不是正数,则它一定是负数B .0是自然数,也是整数,也是有理数C .若仓库运进货物5t 记作+5t ,那么运出货物5t 记作﹣5tD .0既不是正数,也不是负数8. 已知某商品原价为a 元,打7折后的价格为( ) A .70%a 元 B.10a 7元 C.30%a 元 D.37a 元 9. 下列各组数中,结果相等的是( )A .()2211--与 B .332233⎛⎫ ⎪⎝⎭与C .32和23D .()3333--与10. 下列说法中,正确的是( )A.2-是单项式,但不是整式6523-+-x xy 的次数是3次 332a π-的系数是32-332a π-的次数是3次 11. 已知x 2﹣2x ﹣3=0,则2x 2﹣4x 的值为( )A .-6 B.6 C. -2或6 D. -2或30 12. 数a 、b 在数轴上的位置如图所示,化简a b a --的结果为( )C. -bD. b二、填空题。
深圳市XX中学2016-2017学年七年级上期中数学试卷含答案解析
参考答案与试题解析
一、选择题:(每题 3 分,共 12 分) 1.计算﹣﹣2 A.9 B.的﹣9结果C是.(6 D.)﹣6 【考点】有理数的乘方. 【分析】根据有理数的乘方的定义解答. 【解答】解:﹣﹣2=﹣9. 故选:B.
2.下面几组数中,不相等的是( ) A.﹣﹣ 和+(﹣﹣) B.﹣5 和﹣(+5) C.﹣7 和﹣(﹣7) D.+2 和|﹣2| 【考点】绝对值;相反数. 【分析】根据有理数的符号法则以及绝对值的性质,把各数进行化简计算,最 后得出结论. 【解答】解:A、﹣﹣ 和+(﹣﹣)都等于 3,故它们相等; B、﹣5 和﹣(+5)都等于﹣5 ,故它们相等; C、﹣7 和﹣(﹣7)互为相反数,故它们不相等; D、+2 和|﹣2 都等于 2,故它们相等. 故选:C.
4.下列计算正确的是( ) A.﹣7﹣8 =﹣﹣B.5+(﹣2)=3 C.﹣6+0=0 D.4﹣﹣﹣=9 【考点】有理数的加减混合运算. 【分析】先利用加减法法则计算每个小题,再判断正确的选择支. 【解答】解:因为﹣7﹣8 =﹣﹣5 ≠﹣﹣;5+(﹣2)=3;﹣6+0 =﹣6≠0,4﹣﹣﹣=﹣9≠9 所以只有选项 B 正确. 故选 B.
6.将一个圆分割成四个大小相同的扇形,则每个扇形的圆心角是( A.45 B.60 C.90 D.120 【考点】认识平面图形. 【分析】圆心处构成一个周角,四等分,可得答案. 【解答】解:∵圆心处构成一个周角, ∴圆心角为 360°,
广东省深圳市 七年级(上)期中数学试卷-(含答案)
七年级(上)期中数学试卷一、选择题(本大题共12小题,共36.0分)1.-12的绝对值是()A. −2B. −12C. 12D. 22.如图的四个平面图形中,不是正方体的展开图的是()A. B. C. D.3.2007年中国月球探测工程的“嫦娥一号”卫星将发射升空飞向月球.已知地球距离月球表面约为384 000千米,那么这个距离用科学记数法(保留三个有效数字)表示应为()A. 3.84×104千米B. 3.84×105千米C. 3.84×106千米D. 38.4×104千米4.如果a2=4,|b|=2,且ab<0,则a+b的值是()A. 0B. 4C. ±4D. 6或25.下列命题中,正确的是()A. 倒数等于本身的数只有1B. 平方等于本身的数有+1,0,−1C. 相反数等于本身的数只有0D. 绝对值等于本身的数只有0和16.下列运算结果错误的个数()①(12)2=14②−223=49③−(−23)2=49④-14=-4⑤-22=4.A. 2个B. 3个C. 4个D. 5个7.下列各组代数式中,属于同类项的是()A. 4ab与4abcB. −mn与32mn C. 23a2b与23ab2 D. x2y与x2z8.下列各式正确的是()A. a−(b−c+d)=a−b−c+dB. a−2(b−c+d)=a−2b+2c+dC. a−(b−c+d)=a−b+c+dD. a−(b−c+d)=a−b+c−d9.如图,∠AOB为平角,且∠AOC=12∠BOC,则∠BOC的度数是()A. 100∘B. 135∘C. 120∘D. 60∘10.如图,点C是线段AB的中点,点D是线段BC上任意一点,下列说法错误的是()A. CD=AC−BDB. CD=AB−BD−ACC. CD=AD−BDD. CD=AD−BC11.a的平方的5倍减去3的差,应写成()A. 5a2−3B. 5(a2−3)C. (5a)2−3D. a2(5−3)12.若|a+1|+(b-2017)2=0,那么a b的值是()A. 1B. −1C. 2016D. 1或−1二、填空题(本大题共4小题,共12.0分)13.如果盈余15万元记作+15万元,那么亏损13万元记作______ .14.若-23a2b m与4a n b是同类项,则-2m+n= ______ .15.按照如图计算转换机计算,输出结果为______ .16.如图所示,∠AOB=85°,∠AOC=10°,OD是∠BOC的平分线,则∠BOD的度数为______ 度.三、计算题(本大题共1小题,共10.0分)17.化简:(1)2a-3b+6a+9b-8a+12b(2)(7y-3z)-2(8y-5z)四、解答题(本大题共6小题,共42.0分)18.计算下列各题:(1)(−213+13−16)×78(2)−23÷49×(−32)2.19.先化简,再求值:9y+6y2−3(y−23y2),其中y=-2.20.画出如图图形的三视图:21.“十•一”黄金周期间,深圳小梅沙风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):(1)若9月30日的游客人数记为a万,那么10月2日的游客数是______ 万人.(2)请判断七天内游客人数最多的是______ 日,最少的是______ 日.(3)以9月30日的游客人数为0点,用折线统计图表示这7天的游客人数情况:22.在数轴上,你会求任意两个有理数之间的距离吗?知道这个距离与绝对值有什么关系吗?请回答下列问题:(1)在数轴上,2和原点之间的距离(也就是2与0之间的距离)可以表示|2-0|;(2)在数轴上,2和3之间的距离是______ ,可以表示为______(3)在数轴上,2和-3之间的距离是______ ,可以表示为______(4)在数轴上,2和a之间的距离可以表示为______(5)在数轴上,a与b之间的距离可以表示为______ .23.如图,一副三角板的两个直角顶点重合在一起.(1)比较∠EOM和∠FON的大小,并说明为什么?(2)∠EON与∠FOM的和是多少度?为什么?答案和解析1.【答案】C【解析】解:|-|=.故选:C.计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.此题考查了绝对值的性质,属于基础题,解答本题的关键是掌握负数的绝对值是它的相反数.2.【答案】D【解析】解:由四棱柱四个侧面和上下两个底面的特征可知,D选项不可以拼成正方体.故选D.根据四棱柱的特征及正方体展开图的各种情形即可求解.本题考查了正方体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.3.【答案】B【解析】解:384000=3.84×105.故选B.确定a×10n(1≤|a|<10,n为整数)中n的值是易错点,由于384 000有6位,所以可以确定n=6-1=5.所以384000=3.84×105.一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.把一个数M记成a×10n(1≤|a|<10,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0.4.【答案】A【解析】解:∵a2=4,|b|=2,∴a=±2,b=±2,∵ab<0,∴a=2,b=-2或a=-2,b=2,则a+b=0,故选:A.根据乘方法则、绝对值的性质求出a、b,根据题意确定a、b的值,根据有理数的加法法则计算即可.本题考查的是有理数的乘方、绝对值的性质以及有理数的混合运算,掌握乘方法则、绝对值的性质是解题的关键.5.【答案】C【解析】解:A、错误,-1的倒数是-1;B、错误,-1的平方是1;C、正确;D、错误,所有正数的绝对值都是它本身.故选C.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.本题考查了相反数,平方,倒数,绝对值的知识点.6.【答案】C【解析】解:∵,故①正确;∵,故②错误;∵,故③错误;∵-14=-1,故④错误;∵-22=-4,故⑤错误;故选C.根据题目中的式子可以计算出正确的结果,从而可以判断是否正确,从而可以解答本题.本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.7.【答案】B【解析】解:A、4ab与4abc字母不同不是同类项;B、-mn与是同类项;C、与字母的指数不同不是同类项;D、x2y与x2z字母不同不是同类项.故选B.本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关,几个常数项也是同类项.同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关,几个常数项也是同类项.8.【答案】D【解析】解:A、原式=a-b+c-d,故本选项错误;B、原式=a-2b+2c-2d,故本选项错误;C、原式=a-b+c-d,故本选项错误;D、原式=a-b+c-d,故本选项正确;故选:D.根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.9.【答案】C【解析】解:设∠BOC=x,根据∠AOC=∠BOC,则∠AOC=x,∵∠AOB为平角,故x+x=180°,解得:x=120°.故选C.设∠BOC=x,根据∠AOC=∠BOC,则∠AOC=x,列出方程即可求解.本题考查了角的计算,属于基础题,关键是根据题意列出方程再进行求解.10.【答案】C【解析】解:∵C是线段AB的中点,∴AC=BD,∵CD=BC-BD,∴CD=AC-BD=AB-BD-AC=AD-BC.故选C.先根据C是线段AB的中点可知,AC=BD,再根据CD=BC-BD进行解答即可.本题考查的是两点间的距离,根据题意利用数形结合求解是解答此题的关键.11.【答案】A【解析】解:根据题意可得:5a2-3;故选A.先表示a的平方,再表示5倍,最后减3可得.此题考查了列代数式,解决问题的关键是读懂题意,找到所求的量之间的关系,列出代数式.12.【答案】B【解析】解:由题意得,a+1=0,b-2017=0,解得,a=-1,b=2017,则a b=-1,故选:B.根据非负数的性质列出算式,求出a、b的值,计算即可.本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.13.【答案】-13万元【解析】解:“正”和“负”相对,如果盈余15万元记作+15万元,那么亏损13万元记作-13万元.故答案为:-13万元.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.14.【答案】0【解析】解:∵-a2b m与4a n b是同类项,∴n=2,m=1,∴-2m+n=0,故答案为:0.根据同类项定义求出m、n,代入求出即可.本题考查了同类项的定义,能根据同类项的定义求出m、n的值是解此题的关键.15.【答案】32【解析】解:根据题意得:[(-3+3)×2-3]÷(-2)=,故答案为:把-3输入计算转换机中计算即可得到结果.此题考查了有理数的混合运算,弄清计算转换机中的运算是解本题的关键.16.【答案】37.5【解析】解:∵∠AOB=85°,∠AOC=10°∴∠BOC=85°-10°=75°又∵OD是∠BOC的平分线,∴∠BOD=∠COD=∠BOC,即∠BOD的度数为×75°=37.5°故∠BOD的度数为37.5度.利用角与角的和差关系及角平分线的性质计算.本题主要考查角平分线的知识点,比较简单.17.【答案】解:(1)原式=(2+6-8)a+(-3+9+12)b=18b;(2)原式=7y-3z-16y+10z=-9y+7z.【解析】(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.18.【答案】解:(1)(−213+13−16)×78=−213×78+13×78−16×78=-12+26-13 =1;(2)−23÷49×(−32)2=-8×94×94=-812.【解析】(1)根据乘法分配律可以解答本题;(2)根据幂的乘方和有理数的乘除法可以解答本题.本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.19.【答案】解:9y+6y2-3(y-2y2)3=9y+6y2-3y+3y2=6y+9y2,当y=-2时,原式=6×(-2)+9×(-2)2=-12+36=24.【解析】直接利用去括号法则去括号,再利用合并同类项,再把y的值代入求出答案.此题主要考查了整式的加减-化简求值,正确合并同类项是解题关键.20.【答案】解:如图所示:【解析】主视图有2列,每列小长方形数目分别为3,1;左视图有2列,每列小长方形数目分别为3,1;俯视图有2列,每行小长方形数目分别为1,2.本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.21.【答案】(a+2.4);3;7【解析】解:(1)10月2日的游客人数:a+1.6+0.8=a+2.4(万人);故答案为:(a+2.4);(2)由统计表可以看出:则1日的人数:a+1.6;2日的人数是:a+1.6+0.8=a+2.4;3日的人数是:a+2.4+0.4=a+2.8;4日的人数是a+2.8-0.4=a+2.4;5日的人数是:a+2.4-0.8=a+1.6;6日的人数是:a+1.6+0.2=a+1.8;7日的人数是:a+1.8-1.2=a+0.6.所以3日人数最多;10月7日人数最少.故答案为:3,7;(3)如图所示(1)根据统计表可以看出:10月1日人数增加1.6万,2日又增加0.8万,所以2日人数为:a+1.6+0.8;(2)分别计算出每天的人数,即可作出判断.(3)根据(2)中计算出每天的人数可以画出折线图.本题考查了折线统计图,关键是根据统计表给出的数据得出每天的游客人数是本题的关键,折线统计图表示的是事物的变化情况.22.【答案】1;|2-3|;5;|2-(-3)|;|2-a|;|a-b|【解析】解:(1)在数轴上,2和原点之间的距离(也就是2与0之间的距离)可以表示|2-0|;(2)在数轴上,2和3之间的距离是1,可以表示为|2-3|(3)在数轴上,2和-3之间的距离是5,可以表示为|2-(-3)|(4)在数轴上,2和a之间的距离可以表示为|2-a|(5)在数轴上,a与b之间的距离可以表示为|a-b|.故答案为:1、|2-3|;5、|2-(-3)|;|2-a|;|a-b|.(1)在数轴上,2和原点之间的距离(也就是2与0之间的距离)可以表示|2-0|;(2)在数轴上,2和3之间的距离是1,可以表示为2和3的差的绝对值.(3)在数轴上,2和-3之间的距离是5,可以表示为2和-3的差的绝对值.(4)在数轴上,2和a之间的距离可以表示为2和a的差的绝对值.(5)在数轴上,a与b之间的距离可以表示为a和b的差的绝对值.此题主要考查了数轴的特征和应用,绝对值的含义和求法,以及任何两个有理数之间的距离的求法,要熟练掌握.23.【答案】解:(1)∠EOM=∠FON;∵∠MON=∠FOE=90°,∴∠MON-∠MOF=∠FOE-∠MOF,∴∠EOM=∠FON;(2)∠EON与∠FOM的和是180°;∵∠MON=∠FOE=90°,∴∠EON+∠FOM=∠EOF+∠FON+∠MOF=∠EOF+∠MON=90°+90°=180°.【解析】(1)根据等式的性质可得∠MON-∠MOF=∠FOE-∠MOF,进而可得∠EOM=∠FON;(2)根据角的和差关系把∠EON化为∠EOF+∠FON,然后可得答案.此题主要考查了余角和补角,关键是理清图中角之间的关系.。
(推荐)广东深圳龙岭学校七年级上学期期中考试数学试卷(北师大版)
龙岭学校2015-2016七年级上学期期中考试数学试卷(满分100分,考试时间90分钟)学校____________ 班级__________ 姓名__________一、选择题(每小题3分,共24分) 1. 12-的相反数是( ) A .12-B .12C .2D .2-2. 随着空气质量的恶化,雾霾天气现象增多,危害加重.森林是“地球之肺”,每年能为人类提供大约28.3亿吨的有机物,28.3亿可用科学记数法表示为( ) A .28.3×108B .2.83×109C .2.83×10D .2.83×1073. 下列说法中正确的有( )①最大的负整数是-1;②数轴上表示数2和-2的点到原点的距离相等;③当0a ≤时,a a =-成立;④5a +一定比a 大;⑤3(2)-和32-相等. A .2个B .3个C .4个D .5个4. 下列图形中不能折叠成正方体的是( )A .B .C .D . 5. 下列说法正确的是( ) A .单项式y 的次数是1,系数是0 B .多项式23(1)8x -中x 2的系数是38-C .多项式5t -的项是t 和5D .12xy -是二次单项式 6. 已知a 是有理数,下列各式:22()a a -=;22()a a -=-;33()a a -=;33a a -=.其中一定成立的有( ) A .1个B .2个C .3个D .4个b a俯视图主视图左俯左视图俯7. 刘谦的魔术表演风靡全国,小明同学也学习刘谦发明了一个魔术盒,当任意有理数对(a ,b )进入其中时,会得到一个新的有理数:21a b --,例如把(3,-2)放入其中,就会得到23(2)110---=.现将有理数对(-1,-2)放入其中,则会得到( ) A .0B .2C .-4D .-28. 如图,若数轴上A ,B 两点所对应的有理数分别为a ,b ,则化简()a b b a -+-的结果为( ) A .0B .-2a +2bC .-2bD .2a -2b二、填空题(每小题3分,共24分)9. 用一个平面去截下列几何体:①正方体;②圆锥;③圆柱;④正三棱柱,得到的截面形状可能为三角形的有_________(写出所有正确结果的序号) 10. 绝对值不大于3的所有整数的乘积等于_________. 11. 若123m a bc -和3322n a b c --是同类项,则m +n =_________.12. 如图,一个高为5的圆柱体的底面圆周在数轴上滚动,若滚动前圆柱体底面圆周上的点A 和数轴上表示-1的点重合,当圆柱体滚动一周时点A 恰好落在了表示2的点的位置上,则这个圆柱体的侧面积是_________.第12题图 第13题图13. 如图是由一些相同的小正方体构成的立体图形的三视图,那么构成这个立体图形的小正方体有_________个.14. 下表列出了国外几个城市与首都北京的时差(带正号的表示同一时刻比北京时间早的时数,带负号的表示同一时刻比北京时间晚的时数),如北京时间的上午10时,东京时间的10时已过去了1小时,现在已是10+1=11(时).如果现在是北京时间9月11日15时,那么现在的纽约时间是_________. 15. 已知当1x =时,代数式334ax bx -+的值是7,则当1x =-时,这个代数式的值是_______.16. 按一定规律排列的一列数依次为23,58-,1015,1724-,2635,…,若按此规律排列下去,则这列数中第7个数是_________. 三、解答题(本大题共7小题,满分52分)17. (6分)如图是由7个完全相同的小立方块搭成的几何体,已知每个小立方块的棱长为2cm .(1)画出该几何体的三视图;(2)求出该几何体的表面积.18. (6分)有理数混合运算(1)23138(2)1322⎡⎤--÷--+÷⨯⎣⎦; (2)311155(2)636232186⎛⎫⎛⎫--÷--⨯--+ ⎪ ⎪⎝⎭⎝⎭.19. (8分)化简求值.(1)化简:211(428)21144a a a ⎛⎫-+---- ⎪⎝⎭;(2)化简求值:222223(3)2(2)a b ab a b ab a b -+---,其中21(2)0a b -++=.20.(7分)“十一”黄金周期间,某市风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):(1)七天内游客人数最多的是哪天,最少的是哪天?它们相差多少万人?(2)求这7天的游客总人数是多少万人.21.(8分)某城市出租车收费标准如下:3公里以内(含3公里)收费8元,超过3公里的部分每公里收费1.5元.(1)若行驶x公里(x为整数),试用含x的代数式表示应收的车费;(2)若某人乘坐出租汽车行驶8公里,则应付车费多少元?22.(8分)甲、乙两班进行拔河比赛,标志物先向甲班方向移动0.5m,后向乙班方向移动了0.8m,相持一会儿后又向乙班方向移动0.5m,随后向甲班方向移动了1.5m,在一片欢呼声中,标志物再向甲班方向移动1.2m.若规定只要标志物向某班方向移动2m,则该班即可获胜,那么现在甲班获胜了吗?请通过计算说明理由.23.(9分)将连续的正整数1,2,3,4,…,排列成如下的数表,用3×3的方框框出9个数(如图).1267812131418192024………………(1)图中方框框出的9个数的和与方框正中间的数10有什么关系?(2)将方框上下左右平移,但一定要框住数表中的9个数.若设正中间的数为a,用含a的代数式表示方框框住的9个数字,并计算这9个数的和.(3)能否在方框中框出9个数,使这9个数的和为270?若能,求出这9个数;若不能,请说明理由.龙岭学校2015-2016七年级上学期期中考试 数学试卷(北师版)参考答案 一、选择题 1.B 2.B 3.D 4.D 5.B6.A7.B8.B二、填空题 9. ①②④ 10. 0 11. 8 12. 15 13. 514. 9月11日2时 15. 1 16.5063三、解答题17. (1)图略;(2)该几何体的表面积为2112cm .18. (1)254-;(2)46.19. (1)21a --;(2)24.20. (1)七天内游客人数最多的是3日,最少的是7日,它们相差2.2万人; (2)这七天的游客总人数是27.2万人.21. (1)当3x ≤时,应收车费为8元;当3x >时,应收车费为(1.5 3.5x +)元; (2)15.5元.22. 甲班没有获胜,理由略.23. (1)方框框出的9个数的和是方框正中间的数10的9倍.(2)715a a a --+ 6 6a a a -+ 517a a a -++;9a .(3)不能,理由如下: ∵9个数的和为270∴中间的数为30∵30在第5行、第6列,在边上,∴无法框出这样的9个数.。
(精选)广东深圳龙岭学校七年级上学期期中考试数学试卷(北师大版)
龙岭学校2015-2016七年级上学期期中考试数学试卷(满分100分,考试时间90分钟)学校____________ 班级__________ 姓名__________一、选择题(每小题3分,共24分) 1. 12-的相反数是( ) A .12-B .12C .2D .2-2. 随着空气质量的恶化,雾霾天气现象增多,危害加重.森林是“地球之肺”,每年能为人类提供大约28.3亿吨的有机物,28.3亿可用科学记数法表示为( ) A .28.3×108B .2.83×109C .2.83×10D .2.83×1073. 下列说法中正确的有( )①最大的负整数是-1;②数轴上表示数2和-2的点到原点的距离相等;③当0a ≤时,a a =-成立;④5a +一定比a 大;⑤3(2)-和32-相等. A .2个B .3个C .4个D .5个4. 下列图形中不能折叠成正方体的是( )A .B .C .D . 5. 下列说法正确的是( ) A .单项式y 的次数是1,系数是0 B .多项式23(1)8x -中x 2的系数是38-C .多项式5t -的项是t 和5D .12xy -是二次单项式 6. 已知a 是有理数,下列各式:22()a a -=;22()a a -=-;33()a a -=;33a a -=.其中一定成立的有( ) A .1个B .2个C .3个D .4个b a俯视图主视图左俯左视图俯7. 刘谦的魔术表演风靡全国,小明同学也学习刘谦发明了一个魔术盒,当任意有理数对(a ,b )进入其中时,会得到一个新的有理数:21a b --,例如把(3,-2)放入其中,就会得到23(2)110---=.现将有理数对(-1,-2)放入其中,则会得到( ) A .0B .2C .-4D .-28. 如图,若数轴上A ,B 两点所对应的有理数分别为a ,b ,则化简()a b b a -+-的结果为( ) A .0B .-2a +2bC .-2bD .2a -2b二、填空题(每小题3分,共24分)9. 用一个平面去截下列几何体:①正方体;②圆锥;③圆柱;④正三棱柱,得到的截面形状可能为三角形的有_________(写出所有正确结果的序号) 10. 绝对值不大于3的所有整数的乘积等于_________. 11. 若123m a bc -和3322n a b c --是同类项,则m +n =_________.12. 如图,一个高为5的圆柱体的底面圆周在数轴上滚动,若滚动前圆柱体底面圆周上的点A 和数轴上表示-1的点重合,当圆柱体滚动一周时点A 恰好落在了表示2的点的位置上,则这个圆柱体的侧面积是_________.第12题图 第13题图13. 如图是由一些相同的小正方体构成的立体图形的三视图,那么构成这个立体图形的小正方体有_________个.14. 下表列出了国外几个城市与首都北京的时差(带正号的表示同一时刻比北京时间早的时数,带负号的表示同一时刻比北京时间晚的时数),如北京时间的上午10时,东京时间的10时已过去了1小时,现在已是10+1=11(时).如果现在是北京时间9月11日15时,那么现在的纽约时间是_________. 15. 已知当1x =时,代数式334ax bx -+的值是7,则当1x =-时,这个代数式的值是_______.16. 按一定规律排列的一列数依次为23,58-,1015,1724-,2635,…,若按此规律排列下去,则这列数中第7个数是_________. 三、解答题(本大题共7小题,满分52分)17. (6分)如图是由7个完全相同的小立方块搭成的几何体,已知每个小立方块的棱长为2cm .(1)画出该几何体的三视图;(2)求出该几何体的表面积.18. (6分)有理数混合运算(1)23138(2)1322⎡⎤--÷--+÷⨯⎣⎦; (2)311155(2)636232186⎛⎫⎛⎫--÷--⨯--+ ⎪ ⎪⎝⎭⎝⎭.19. (8分)化简求值.(1)化简:211(428)21144a a a ⎛⎫-+---- ⎪⎝⎭;(2)化简求值:222223(3)2(2)a b ab a b ab a b -+---,其中21(2)0a b -++=.20.(7分)“十一”黄金周期间,某市风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):(1)七天内游客人数最多的是哪天,最少的是哪天?它们相差多少万人?(2)求这7天的游客总人数是多少万人.21.(8分)某城市出租车收费标准如下:3公里以内(含3公里)收费8元,超过3公里的部分每公里收费1.5元.(1)若行驶x公里(x为整数),试用含x的代数式表示应收的车费;(2)若某人乘坐出租汽车行驶8公里,则应付车费多少元?22.(8分)甲、乙两班进行拔河比赛,标志物先向甲班方向移动0.5m,后向乙班方向移动了0.8m,相持一会儿后又向乙班方向移动0.5m,随后向甲班方向移动了1.5m,在一片欢呼声中,标志物再向甲班方向移动1.2m.若规定只要标志物向某班方向移动2m,则该班即可获胜,那么现在甲班获胜了吗?请通过计算说明理由.23.(9分)将连续的正整数1,2,3,4,…,排列成如下的数表,用3×3的方框框出9个数(如图).1267812131418192024………………(1)图中方框框出的9个数的和与方框正中间的数10有什么关系?(2)将方框上下左右平移,但一定要框住数表中的9个数.若设正中间的数为a,用含a的代数式表示方框框住的9个数字,并计算这9个数的和.(3)能否在方框中框出9个数,使这9个数的和为270?若能,求出这9个数;若不能,请说明理由.龙岭学校2015-2016七年级上学期期中考试 数学试卷(北师版)参考答案 一、选择题 1.B 2.B 3.D 4.D 5.B6.A7.B8.B二、填空题 9. ①②④ 10. 0 11. 8 12. 15 13. 514. 9月11日2时 15. 1 16.5063三、解答题17. (1)图略;(2)该几何体的表面积为2112cm .18. (1)254-;(2)46.19. (1)21a --;(2)24.20. (1)七天内游客人数最多的是3日,最少的是7日,它们相差2.2万人; (2)这七天的游客总人数是27.2万人.21. (1)当3x ≤时,应收车费为8元;当3x >时,应收车费为(1.5 3.5x +)元; (2)15.5元.22. 甲班没有获胜,理由略.23. (1)方框框出的9个数的和是方框正中间的数10的9倍.(2)715a a a --+ 6 6a a a -+ 517a a a -++;9a .(3)不能,理由如下: ∵9个数的和为270∴中间的数为30∵30在第5行、第6列,在边上,∴无法框出这样的9个数.。
深圳中学初中数学七年级上期中经典测试(含答案解析)
一、选择题1.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A.35°B.45°C.55°D.65°2.生物学家发现一种病毒的长度约为0.000043mm,用科学记数法表示这个数的结果为(单位:mm)()A.4.3×10﹣5B.4.3×10﹣4C.4.3×10﹣6D.43×10﹣53.如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,∠BAF=600,那么∠DAE等于()A.45°B.30 °C.15°D.60°4.如图,从左面看该几何体得到的形状是()A.B.C.D.5.如图,线段AB=8cm,M为线段AB的中点,C为线段MB上一点,且MC=2cm,N为线段AC的中点,则线段MN的长为()A.1B.2C.3D.46.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( ) A.8×1012B.8×1013C.8×1014D.0.8×10137.若关于x的方程3x+2a=12和方程2x-4=12的解相同,则a的值为()A.6B.8C.-6D.48.随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为( ) A .70.2110⨯B .62.110⨯C .52110⨯D .72.110⨯9.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是( )A .①B .②C .③D .④10.实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A .a+b=0B .b <aC .ab >0D .|b|<|a|11.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A .27B .51C .69D .7212.一家健身俱乐部收费标准为180元/次,若购买会员年卡,可享受如下优惠: 会员年卡类型 办卡费用(元) 每次收费(元) A 类 1500 100 B 类 3000 60 C 类400040例如,购买A 类会员年卡,一年内健身20次,消费1500100203500+⨯=元,若一年内在该健身俱乐部健身的次数介于50-60次之间,则最省钱的方式为( ) A .购买A 类会员年卡 B .购买B 类会员年卡 C .购买C 类会员年卡D .不购买会员年卡13.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是( )A .B .C .D .14.有理数a 、b 、c 在数轴上的对应点如图,下列结论中,正确的是( )A .a >c >bB .a >b >cC .a <c <bD .a <b <c15.周长为68的长方形ABCD 被分成7个全等的长方形,如图所示,则长方形ABCD 的面积为( )A .98B .196C .280D .284二、填空题16.A ∠与B 的两边分别平行,且A ∠比B 的2倍少45°,则A ∠=__________. 17.某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,若设春游的总人数为x 人,则列方程为_____ 18.已知x=3是方程ax ﹣6=a+10的解,则a= .19.如右图是正方体的一个平面展开图,如果原正方体前面的字为“友”,则后面的字为____________.20.下列哪个图形是正方体的展开图( )A .B .C .D .21.在数轴上,若点A 表示2-,则到点A 距离等于2的点所表示的数为______. 22.如图,依次用火柴棒拼三角形:照这样的规律拼下去,拼n 个这样的三角形需要火柴棒______________根.23.网购越来越多地成为人们的一种消费方式,在去年的“双11”网上促销活动中天猫和淘宝的支付交易额突破1682亿元,将数字1682亿用科学记数法表示为_________________.24.一副三角板按如下图方式摆放,若2136'α∠=︒,则β∠的度数为__________.只用度表示α∠的补角为__________.25.已知方程﹣2x 2﹣5m +4m=5是关于x 的一元一次方程,那么x=_____.三、解答题26.今年秋季,长白山土特产喜获丰收,某土特产公司组织10辆汽车装运甲、乙、丙三种土特产去外地销售,按计划10辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.设装运甲种土特产的汽车有x 辆,装运乙种土特产的汽车有y 辆,根据下表提供的信息,解答以下问题.(1)装运丙种土特产的车辆数为(用含x 、y 的式子表示); (2)用含x 、y 的式子表示这10辆汽车共装运土特产的吨数;(3)求销售完装运的这批土特产后所获得的总利润(用含x 、y 的式子表示). 27.如图,在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、b 满足|a+2|+(c ﹣7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数 表示的点重合; (3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB= ,AC= ,BC= .(用含t 的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.28.试根据图中信息,解答下列问题.(1)一次性购买6根跳绳需_____元,一次性购买12根跳绳需______元;(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.29.计算:(1)-14+|3-5|-16÷(-2)×1 2 ;(2)6×11 -32⎛⎫⎪⎝⎭-32÷(-12).30.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.()1求每套队服和每个足球的价格是多少?()2若城区四校联合购买100套队服和a(a10)>个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;()3在()2的条件下,若a60=,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题二、填空题16.或【解析】【分析】由∠A与∠B的两边分别平行可得到∠A=∠B或者∠A与∠B互补再结合已知条件即可求出∠A的度数【详解】∵∠A和∠B的两边分别平行∴∠A=∠B或∠A+∠B=180°当∠A=∠B时∠A=17.x-1413=x+2614【解析】【分析】设春游的总人数是x人由包租相同的大巴13辆有14人没有座位可得一辆大巴所坐的人数为x-1413人;由多包租1辆就多了26个空位可得一辆大巴所坐的人数为x+218.8【解析】【分析】将x=3代入方程ax﹣6=a+10然后解关于a的一元一次方程即可【详解】∵x=3是方程ax﹣6=a+10的解∴x=3满足方程ax﹣6=a+10∴3a﹣6=a+10解得a=8故答案为19.诚【解析】【分析】正方体的平面展开图中相对的两个面中间必须隔着一个小正方形根据这一特点结合题意可正确解答【详解】如果原正方体上友所在的面为前面则信所在的面为左面所以相对的正方体的右面是国后面是诚故答20.B【解析】【分析】根据正方体展开图的11种特征选项ACD不是正方体展开图;选项B是正方体展开图的1-4-1型【详解】根据正方体展开图的特征选项ACD不是正方体展开图;选项B是正方体展开图故选B【点睛21.0或【解析】【分析】此题借助数轴用数形结合的方法求解还要注意该点可以在A点的左边或右边【详解】数轴上有一点A表示的数是则在数轴上到点A距离为2的点所表示的数有两个:;故答案为0或【点睛】此题综合考查22.【解析】【分析】首先正确数出前三个图形中的火柴棒的根数:第一个三角形是3根火柴;第二个三角形是5根火柴第三个三角形是7根火柴依次多2个可推出第n个这样的三角形需要多少根火柴【详解】∵第一个三角形是323.682【解析】【分析】科学记数法数学术语是指把一个大于10(或者小于1)的整数记为a×10n的形式(其中|1|≤|a|<|10|)的记数法【详解】1682亿=1682故答案为:1682【点睛】考核知24.【解析】【分析】根据平角的定义可得++90°=180°然后进一步计算即可得出的度数然后再根据补角性质用180°减去度数即可得出其补角【详解】由题意得:++90°=180°∴=90°−=;的补角=1825.-21【解析】【分析】根据一元一次方程的定义可得2﹣5m=1然后得到m的值再代入方程可得﹣2x+45=5然后再解方程即可【详解】解:由题意得:2﹣5m=1解得:m=15方程可变为﹣2x+45=5解得三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题二、填空题16.或【解析】【分析】由∠A 与∠B 的两边分别平行可得到∠A=∠B 或者∠A 与∠B 互补再结合已知条件即可求出∠A 的度数【详解】∵∠A 和∠B 的两边分别平行∴∠A=∠B 或∠A+∠B=180°当∠A=∠B 时∠A= 解析:45︒或105︒ 【解析】 【分析】由∠A 与∠B 的两边分别平行,可得到∠A=∠B 或者∠A 与∠B 互补,再结合已知条件即可求出∠A 的度数. 【详解】∵ ∠A 和∠B 的两边分别平行 ∴ ∠A=∠B 或∠A+∠B=180°, 当∠A=∠B 时,∠A=45° 当∠A+∠B=180°时 ∵ ∠A 比∠B 的两倍少45°, ∴ ∠A=2∠B-45°,∵ ∠A=2∠B-45° ,∠A+∠B=180° ∴ ∠A=105︒.综上可知∠A 的度数为45︒或105︒ 故答案为:45︒或105︒. 【点睛】此题考查了平行线的性质与方程组的解法.此题难度不大,解题的关键是由∠A 和∠B 的两边分别平行,即可得∠A=∠B 或∠A+∠B=180°,注意分类讨论思想的应用. 17.x-1413=x+2614【解析】【分析】设春游的总人数是x 人由包租相同的大巴13辆有14人没有座位可得一辆大巴所坐的人数为x-1413人;由多包租1辆就多了26个空位可得一辆大巴所坐的人数为x+2解析:x−1413=x+2614.【解析】 【分析】设春游的总人数是x 人,由包租相同的大巴13辆,有14人没有座位可得一辆大巴所坐的人数为x−1413人;由多包租1辆,就多了26个空位可得一辆大巴所坐的人数为x+2614人,由此即可得方程x−1413=x+2614.【详解】设春游的总人数是x 人. 根据题意可列方程为:x−1413=x+2614,故答案为:x−1413=x+2614.【点睛】本题考查了一元一次方程的应用,根据题意表示出一辆大巴所坐的人数是解决问题的关键. 18.8【解析】【分析】将x=3代入方程ax﹣6=a+10然后解关于a的一元一次方程即可【详解】∵x=3是方程ax﹣6=a+10的解∴x=3满足方程ax﹣6=a+10∴3a﹣6=a+10解得a=8故答案为解析:8【解析】【分析】将x=3代入方程ax﹣6=a+10,然后解关于a的一元一次方程即可.【详解】∵x=3是方程ax﹣6=a+10的解,∴x=3满足方程ax﹣6=a+10,∴3a﹣6=a+10,解得a=8.故答案为8.19.诚【解析】【分析】正方体的平面展开图中相对的两个面中间必须隔着一个小正方形根据这一特点结合题意可正确解答【详解】如果原正方体上友所在的面为前面则信所在的面为左面所以相对的正方体的右面是国后面是诚故答解析:诚【解析】【分析】正方体的平面展开图中,相对的两个面中间必须隔着一个小正方形,根据这一特点,结合题意可正确解答.【详解】如果原正方体上“友”所在的面为前面,则“信”所在的面为左面,所以相对的正方体的右面是“国”,后面是“诚”故答案为:诚【点睛】本题考查正方体相对两个面上的文字,立意新颖,是一道不错的题.关键是分清每一个面的位置.20.B【解析】【分析】根据正方体展开图的11种特征选项ACD不是正方体展开图;选项B是正方体展开图的1-4-1型【详解】根据正方体展开图的特征选项ACD不是正方体展开图;选项B是正方体展开图故选B【点睛解析:B【解析】【分析】根据正方体展开图的11种特征,选项A、C、D不是正方体展开图;选项B是正方体展开图的“1-4-1”型.【详解】根据正方体展开图的特征,选项A、C、D不是正方体展开图;选项B是正方体展开图.故选B.【点睛】正方体展开图有11种特征,分四种类型,即:第一种:“1-4-1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2-2-2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3-3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1-3-2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.21.0或【解析】【分析】此题借助数轴用数形结合的方法求解还要注意该点可以在A点的左边或右边【详解】数轴上有一点A表示的数是则在数轴上到点A距离为2的点所表示的数有两个:;故答案为0或【点睛】此题综合考查-解析:0或4【解析】【分析】此题借助数轴用数形结合的方法求解,还要注意该点可以在A点的左边或右边.【详解】-,则在数轴上到点A距离为2的点所表示的数有两个:数轴上有一点A表示的数是2-+=;224220--=-.-.故答案为0或4【点睛】.借助数轴来求解,非常直观,且不容易遗漏,体此题综合考查了数轴、绝对值的有关内容.注意此类题要考虑两种情况.现了数形结合的优点22.【解析】【分析】首先正确数出前三个图形中的火柴棒的根数:第一个三角形是3根火柴;第二个三角形是5根火柴第三个三角形是7根火柴依次多2个可推出第n个这样的三角形需要多少根火柴【详解】∵第一个三角形是3 n解析:21【解析】【分析】首先正确数出前三个图形中的火柴棒的根数:第一个三角形是3根火柴;第二个三角形是5根火柴,第三个三角形是7根火柴,依次多2个,可推出第n个这样的三角形需要多少根火柴.【详解】∵第一个三角形是3根火柴;第二个三角形是5根火柴,第三个三角形是7根火柴,发现依次多2个,即可推出第n个这样的三角形需要2n+1根火柴.【点睛】本题考查图形的变换规律,得到每个图形中火柴的根数与图形的个数的关系式解决本题的关键.23.682【解析】【分析】科学记数法数学术语是指把一个大于10(或者小于1)的整数记为a×10n 的形式(其中|1|≤|a|<|10|)的记数法【详解】1682亿=1682故答案为:1682【点睛】考核知解析:6821110⨯【解析】【分析】科学记数法,数学术语,是指把一个大于10(或者小于1)的整数记为a ×10n 的形式(其中|1|≤|a|<|10|)的记数法.【详解】1682亿=1.6821110⨯故答案为:1.6821110⨯【点睛】考核知识点:科学记数法.理解科学记数法的定义是关键.24.【解析】【分析】根据平角的定义可得++90°=180°然后进一步计算即可得出的度数然后再根据补角性质用180°减去度数即可得出其补角【详解】由题意得:++90°=180°∴=90°−=;的补角=18解析:6824' 158.4【解析】【分析】根据平角的定义可得α∠+β∠+90°=180°,然后进一步计算即可得出β∠的度数,然后再根据补角性质用180°减去α∠度数即可得出其补角.【详解】由题意得:α∠+β∠+90°=180°,2136'α∠=︒∴β∠=90°−α∠=6824';α∠的补角=180°−α∠=158.4,故答案为:6824',158.4.【点睛】本题主要考查了角的性质,熟练掌握相关概念是解题关键.25.-21【解析】【分析】根据一元一次方程的定义可得2﹣5m=1然后得到m 的值再代入方程可得﹣2x+45=5然后再解方程即可【详解】解:由题意得:2﹣5m=1解得:m=15方程可变为﹣2x+45=5解得解析:-2.1【解析】【分析】根据一元一次方程的定义可得2﹣5m=1,然后得到m 的值,再代入方程可得﹣2x+45=5,然后再解方程即可.解:由题意得:2﹣5m=1,解得:m=15, 方程可变为﹣2x+45=5, 解得:x=﹣2.1,故答案为:﹣2.1.【点睛】此题主要考查了一元一次方程的定义,关键是掌握一元一次方程的未知数的指数为1.三、解答题26.(1)装运丙种土特产的车辆数为10-x-y ;(2)这10辆汽车共装运土特产的吨数为60-2x-y ;(3)销售完装运的这批土特产后所获得的总利润为90000-4200x-4000y .【解析】【分析】(1)根据“装运丙种土特产的车辆数=总汽车辆数10−装运甲种土特产的车辆数−装运乙种土特产的车辆数”列式表达便可;(2)根据“装运甲种土特产的每辆车运载重量×装运甲种土特产的车辆数+装运乙种土特产的每辆车运载重量×装运乙种土特产的车辆数+装运丙种土特产的每辆车运载重量×装运丙种土特产的车辆数=10辆汽车共装运土特产的数量”列出代数式并化简便可;(3)根据“甲种土特产每吨利润×甲种土特产的总吨数+乙种土特产每吨利润×乙种土特产的总吨数+丙种土特产每吨利润×丙种土特产的总吨数=总利润”列出代数式,并化简便可.【详解】(1)由题意得,装运丙种土特产的车辆数为:10−x−y (辆)答:装运丙种土特产的车辆数为(10−x−y );(2)根据题意得:4x+5y+6(10-x-y)=4x+5y+60-6x-6y=60-2x-y答:这10辆汽车共装运土特产的数量为(60-2x-y )吨;(3)根据题意得:()12004100051500610x y x y ⨯+⨯+⨯--=4800x+5000y+90000-9000x-9000y=90000-4200x-4000y .答:销售完装运的这批土特产后所获得的总利润为(90000-4200x-4000y )元.【点睛】本题主要考查了列代数式,正确理解各种数量关系之间的运算关系是列代数式的关键所在.27.(1)-2, 1,c=7;(2)4;(3)3t+3, 5t+9, 2t+6;(4)不变,3BC ﹣2AB=12.【解析】(1)利用|a+2|+(c−7)2=0,得a+2=0,c−7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)AB原来的长为3,所以AB=t+2t+3=3t+3,再由AC=9,得AC=t+4t+9=5t+9,由原来BC=6,可知BC=4t−2t+6=2t+6;(4)由3BC−2AB=3(2t+6)−2(3t+3)求解即可.【详解】(1)∵|a+2|+(c−7)2=0,∴a+2=0,c−7=0,解得a=−2,c=7,∵b是最小的正整数,∴b=1;故答案为:−2;1;7.(2)(7+2)÷2=4.5,对称点为7−4.5=2.5,28.(1)150;240;(2)11根.【解析】【分析】(1)根据单价×数量=总价,求出6根跳绳需多少元;购买12根跳绳,超过10根,打八折是指现价是原价的80%,用单价×数量×0.8即可求出购买12根跳绳需多少元;(2)有这种可能,可以设小红购买x跳绳根,那么小明购买x-2根跳绳,列出方程25x×0.8=25(x-2)-5,解答即可.【详解】解:(1)一次性购买6根跳绳需25×6=150(元);一次性购买12根跳绳需25×12×0.8=240(元);故答案为:150;240.(2)设小红购买x跳绳根,那么小明购买(x-2)根跳绳,25x×0.8=25(x-2)-5,解得:x=11;小明购买了:11-2=9根.答:小红购买11根跳绳.【点睛】解答的关键是读懂题意,根据题目给出的条件,找出合适的等量关系,列出方程进行解答即可.29.(1)5;(2)-1 4 .【分析】(1)根据有理数运算的运算法则求值即可得出结论;(2)利用乘法分配律及有理数运算的运算法则,即可求出结论.【详解】(1)原式=-1+2+16×12⎛⎫ ⎪⎝⎭×12 =-1+2+4=5.(2)原式=6×13-6×12+9×112⎛⎫⎪⎝⎭ =2-3+34 =-14. 【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.30.(1) 每套队服150元,每个足球100元;(2) 购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算.【解析】试题分析:(1)设每个足球的定价是x 元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)先求出到两家商场购买一样合算时足球的个数,再根据题意即可求解.解:(1)设每个足球的定价是x 元,则每套队服是(x+50)元,根据题意得2(x+50)=3x ,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a ﹣)=100a+14000(元), 到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)当在两家商场购买一样合算时,100a+14000=80a+15000,解得a=50.所以购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算考点:一元一次方程的应用.。
【重磅】深圳中学初一数学上学期期中测试卷
盈通企管12016年初一上学期期中测试卷数学(考试时间:90分钟满分:100分)姓名: 学校:一、选择题(本大题共12小题,每小题3分,每题只有一个答案符合题目要求)1.12的相反数是() A .12- B.2C.-2D.122.钓鱼岛是位于我国东海钓鱼岛列岛的主岛,被誉为“深海中的翡翠”,面积约4400000平方米,数据4400000用科学记数法表示为()A 、64.410⨯B 、50.4410⨯C 、54410⨯D 、54.410⨯ 3.用一个平面去截一个几何体,得到的截面是四边形,这个几何体可能是()A .圆锥B .球体C .圆柱D .以上都有可能4.下列各式符合代数式书写规范的是()A 、8aB 、stC 、1m -元D 、215x5.如图是一个正方体的表面展开图,则图中“习”字所在面的对面所标的字是() A 、我B 、们C 、加D 、油6.下列去括号正确的是() A 、()a b c a b c +-=++ B 、()a b c a b c --=-- C 、()a b c a b c --+=--D 、()a b c a b c ---=++7.下列各组数中,结果相等的是()A 、()2211--与 B 、332233⎛⎫ ⎪⎝⎭与C 、()22----与D 、()3333--与8.下列语句中错误的是()A 、数字0也是单项式B 、单项式-a 的系数与次数都是1C 、21PP 是二次单项式D 、-32ab 的系数是-32 9.已知m 是有理数,下列四个式子中一定是负数的是() A 、|m|+2B 、|m|C 、m-3D 、-|m|-510.一个多项式加上3452--x x 得x x 32--,则这个多项式为() A 、3742--x x B 、362--x x C 、362++-x x D 、3762---x x 11.化简P-P-(P+P)的最后结果是() A 、0B 、2PC 、-2PD 、2P-2P12.当2=x 时,整式13++qx px 的值等于2016,那么当2-=x 时,整式13++qx px 的值为() A 、20KKB 、-20KKC 、2015D 、-2015二、填空题(本大题共4小题,每小题3分,共12分)300m ,乙地的海拔高度是-50m ,那么甲地比乙地高____________m 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年广东省深圳市龙岭中学七年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.(3分)﹣||的相反数是()A.﹣ B.C.2 D.﹣22.(3分)随着空气质量的恶化,雾霾天气现象增多,危害加重.森林是“地球之肺”,每年能为人类提供大约28.3亿吨的有机物,28.3亿可用科学记数法表示为()A.28.3×108B.2.83×109C.2.83×10 D.2.83×1073.(3分)下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大;⑤(﹣2)3和﹣23相等.A.2个 B.3个 C.4个 D.5个4.(3分)下列图形不能够折叠成正方体的是()A.B.C.D.5.(3分)下列说法正确的是()A.单项式y的次数是1,系数是0B.多项式中x2的系数是﹣C.多项式t﹣5的项是t和5D.是二次单项式6.(3分)已知a是有理数,下列各式:(﹣a)2=a2;﹣a2=(﹣a)2;(﹣a)3=a3;|﹣a3|=a3.其中一定成立的有()A.1个 B.2个 C.3个 D.4个7.(3分)刘谦的魔术表演风靡全国,小明同学也学起了刘谦发明了一个魔术盒,当任意有理数对(a,b)进入其中时,会得到一个新的有理数:a2﹣b﹣1.例如把(3,﹣2)放入其中,就会得到32﹣(﹣2)﹣1=10.现将有理数对(﹣1,﹣2)放入其中,则会得到()A.0 B.2 C.﹣4 D.﹣28.(3分)如图,若数轴上A,B两点所对应的有理数分别为a,b,则化简|a﹣b|+(b﹣a)的结果为()A.0 B.﹣2a+2b C.﹣2b D.2a﹣2b二、填空题(每小题3分,共24分)9.(3分)用一个平面去截下列几何体:①正方体;②圆锥;③圆柱;④正三棱柱,得到的截面形状可能为三角形的有(写出所有正确结果的序号)10.(3分)绝对值不大于3的所有整数的积等于.11.(3分)若3a m﹣1bc2和﹣2a3b n﹣3c2是同类项,则m+n=.12.(3分)如图,有一个高为5的圆柱体,现在它的底面圆周在数轴上滚动,在滚动前圆柱体底面圆周上有一点A和数轴上表示﹣1的点重合,当圆柱体滚动一周时A点恰好落在了表示2的点的位置.则这个圆柱体的侧面积是.13.(3分)如图是由一些相同的小正方体构成的立体图形的三种视图,那么构成这个立体图形的小正方体有个.14.(3分)下表列出了国外几个城市与首都北京的时差(带正号的表示同一时刻比北京时间早的时数,带负号的表示同一时刻比北京时间晚的时数),如北京时间的上午10时,东京时间的10时已过去了1小时,现在已是10+1=11(时).如果现在是北京时间9月11日15时,那么现在的纽约时间是.15.(3分)当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是.16.(3分)按一定规律排列的一列数依次为,﹣,,﹣,,…,若按此规律排列下去,则这列数中第7个数是.三、解答题(本大题共7小题,满分52分)17.(6分)如图是由7个完全相同的小立方块搭成的几何体,已知每个小立方块的棱长为2cm.(1)画出该几何体的三视图;(2)求出该几何体的表面积.18.(6分)有理数混合运算(1)﹣32﹣[8÷(﹣2)3﹣1]+3÷2×;(2)(﹣2)3﹣6÷(﹣)﹣36×(﹣﹣+).19.(8分)化简求值.(1)化简:(﹣4a2+2a﹣8)﹣2(a﹣1)﹣1;(2)化简求值:﹣a2b+3(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中|a﹣1|+(b+2)2=0.20.(7分)“十一”黄金周期间,某市风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):已知9月30日的游客人数为2万人,请回答下列问题:(1)七天内游客人数最多的是哪天,最少的是哪天?它们相差多少万人?(2)求这7天的游客总人数是多少万人.21.(8分)某城市出租车收费标准如下:3公里以内(含3公里)收费8元,超过3公里的部分每公里收费1.5元.(1)若行驶x公里(x为整数),试用含x的代数式表示应收的车费;(2)若某人乘坐出租汽车行驶8公里,则应付车费多少元?22.(8分)甲乙两队进行拔河比赛,标志物先向甲队方向移动0.5m,后向乙队方向移动了0.8m,相持一会后又向乙队方向移动0.5m,随后向甲队方向移动了1.5m在一片欢呼声中,标志物再向甲队方向移动1.2m.若规定只要标志物向某队方向移动2m,则该队即可获胜,那么现在甲队获胜了吗?用计算说明理由.23.(9分)将连续的正整数1,2,3,4,…,排列成如下的数表,用3×3的方框框出9个数(如图).(1)图中方框框出的9个数的和与方框正中间的数10有什么关系?(2)将方框上下左右平移,但一定要框住数表中的9个数.若设正中间的数为a,用含a的代数式表示方框框住的9个数字,并计算这9个数的和.(3)能否在方框中框出9个数,使这9个数的和为270?若能,求出这9个数;若不能,请说明理由.2015-2016学年广东省深圳市龙岭中学七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)﹣||的相反数是()A.﹣ B.C.2 D.﹣2【解答】解:﹣||=﹣,﹣的相反数为,故选:B.2.(3分)随着空气质量的恶化,雾霾天气现象增多,危害加重.森林是“地球之肺”,每年能为人类提供大约28.3亿吨的有机物,28.3亿可用科学记数法表示为()A.28.3×108B.2.83×109C.2.83×10 D.2.83×107【解答】解:将28.3亿用科学记数法表示为2.83×109.故选:B.3.(3分)下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大;⑤(﹣2)3和﹣23相等.A.2个 B.3个 C.4个 D.5个【解答】解:①正确;②2和﹣2的绝对值相等,则数轴上表示数2和﹣2的点到原点的距离相等,故命题正确;③正确;④正确;⑤正确.故选:D.4.(3分)下列图形不能够折叠成正方体的是()A.B.C.D.【解答】解:由展开图可知:A、B、C能围成正方体,不符合题意;D、围成几何体时,有两个面重合,故不能围成正方体,符合题意.故选:D.5.(3分)下列说法正确的是()A.单项式y的次数是1,系数是0B.多项式中x2的系数是﹣C.多项式t﹣5的项是t和5D.是二次单项式【解答】解:A、单项式y的次数是1,系数是1,故选项错误;B、多项式中x2的系数是﹣,故选项正确;C、多项式t﹣5的项是t和﹣5,故选项错误;D、是二次二项式,故选项错误.故选:B.6.(3分)已知a是有理数,下列各式:(﹣a)2=a2;﹣a2=(﹣a)2;(﹣a)3=a3;|﹣a3|=a3.其中一定成立的有()A.1个 B.2个 C.3个 D.4个【解答】解:(﹣a)2=a2,正确;(﹣a)2=a2,﹣a2≠a2,故错误;(﹣a)3=﹣a3,﹣a3≠a3,故错误;|﹣a3|≥,当a<0时,a3<0,故错误.∴其中正确的有1个.故选:A.7.(3分)刘谦的魔术表演风靡全国,小明同学也学起了刘谦发明了一个魔术盒,当任意有理数对(a,b)进入其中时,会得到一个新的有理数:a2﹣b﹣1.例如把(3,﹣2)放入其中,就会得到32﹣(﹣2)﹣1=10.现将有理数对(﹣1,﹣2)放入其中,则会得到()A.0 B.2 C.﹣4 D.﹣2【解答】解:由题意可得(﹣1)2﹣(﹣2)﹣1=1+2﹣1=2.故选:B.8.(3分)如图,若数轴上A,B两点所对应的有理数分别为a,b,则化简|a﹣b|+(b﹣a)的结果为()A.0 B.﹣2a+2b C.﹣2b D.2a﹣2b【解答】解:根据数轴上点的位置得:a<0<b,∴a﹣b<0,则原式=b﹣a+b﹣a=﹣2a+2b,故选:B.二、填空题(每小题3分,共24分)9.(3分)用一个平面去截下列几何体:①正方体;②圆锥;③圆柱;④正三棱柱,得到的截面形状可能为三角形的有①②④(写出所有正确结果的序号)【解答】解:①正方体能截出三角形;②圆锥沿着母线截几何体可以截出三角形;③圆柱不能截出三角形;④正三棱柱能截出三角形.故截面可能是三角形的有3个.故答案为:①②④.10.(3分)绝对值不大于3的所有整数的积等于0.【解答】解:绝对值不大于3的所有整数有:0,±1,±2,±3,∴它们的积为0.故答案为0.11.(3分)若3a m﹣1bc2和﹣2a3b n﹣3c2是同类项,则m+n=8.【解答】解:∵若3a m﹣1bc2和﹣2a3b n﹣3c2是同类项,∴m﹣1=3,n﹣3=1,∴m=4,n=4,∴m+n=8,故答案为:8.12.(3分)如图,有一个高为5的圆柱体,现在它的底面圆周在数轴上滚动,在滚动前圆柱体底面圆周上有一点A和数轴上表示﹣1的点重合,当圆柱体滚动一周时A点恰好落在了表示2的点的位置.则这个圆柱体的侧面积是15.【解答】解:依题意,圆柱体的周长为2﹣(﹣1)=3,高=5,∴圆柱体的侧面积=底面周长×高=3×5=15.故答案为:15.13.(3分)如图是由一些相同的小正方体构成的立体图形的三种视图,那么构成这个立体图形的小正方体有5个.【解答】解:如图所示:由左视图可得此图形有3行,由俯视图可得此图形有2列,由主视图可得此图形可得最高的有两个立方体组成,故构成这个立体图形的小正方体有5个.故答案为:5.14.(3分)下表列出了国外几个城市与首都北京的时差(带正号的表示同一时刻比北京时间早的时数,带负号的表示同一时刻比北京时间晚的时数),如北京时间的上午10时,东京时间的10时已过去了1小时,现在已是10+1=11(时).如果现在是北京时间9月11日15时,那么现在的纽约时间是9月11日2时.【解答】解:根据题意得:15﹣13=2,则现在纽约时间是9月11日2时,故答案为:9月11日2时15.(3分)当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是1.【解答】解:把x=1代入得:a﹣3b+4=7,即a﹣3b=3,则当x=﹣1时,原式=﹣a+3b+4=﹣3+4=1,故答案为:1.16.(3分)按一定规律排列的一列数依次为,﹣,,﹣,,…,若按此规律排列下去,则这列数中第7个数是.【解答】解:观察一系列等式得:第n个数为(﹣1)n+1•,当n=7时,(﹣1)7+1•=,故答案为:.三、解答题(本大题共7小题,满分52分)17.(6分)如图是由7个完全相同的小立方块搭成的几何体,已知每个小立方块的棱长为2cm.(1)画出该几何体的三视图;(2)求出该几何体的表面积.【解答】解:(1)如图所示:;(2)该几何体的表面积为(5+3+5)×2×2×2=112(cm2).答:该几何体的表面积是112cm2.18.(6分)有理数混合运算(1)﹣32﹣[8÷(﹣2)3﹣1]+3÷2×;(2)(﹣2)3﹣6÷(﹣)﹣36×(﹣﹣+).【解答】解:(1)原式=﹣9+1+1+=﹣;(2)原式=﹣8﹣36+18+10﹣30=﹣46.19.(8分)化简求值.(1)化简:(﹣4a2+2a﹣8)﹣2(a﹣1)﹣1;(2)化简求值:﹣a2b+3(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中|a﹣1|+(b+2)2=0.【解答】解:(1)原式=﹣a2+a﹣2﹣a+2﹣1=﹣a2﹣1;(2)原式=﹣a2b+9ab2﹣3a2b﹣4ab2+2a2b=﹣2a2b+5ab2,由|a﹣1|+(b+2)2=0,得到a=1,b=﹣2,则原式=4+20=24.20.(7分)“十一”黄金周期间,某市风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):已知9月30日的游客人数为2万人,请回答下列问题:(1)七天内游客人数最多的是哪天,最少的是哪天?它们相差多少万人?(2)求这7天的游客总人数是多少万人.【解答】解:(1)10月3日人数最多;10月7日人数最少;它们相差:(1.6+0.8+0.4)﹣(1.6+0.8+0.4﹣0.4﹣0.8+0.2﹣1.2)=2.2万人;(2)3.6+4.4+4.8+4.4+3.6+3.8+2.6=27.2(万人).答:这7天的游客总人数是27.2万人.21.(8分)某城市出租车收费标准如下:3公里以内(含3公里)收费8元,超过3公里的部分每公里收费1.5元.(1)若行驶x公里(x为整数),试用含x的代数式表示应收的车费;(2)若某人乘坐出租汽车行驶8公里,则应付车费多少元?【解答】(1)当≤3时,应收车费为8元;当>3时,应收车费为8+1.5(x﹣3)=(1.5x+3.5)元;(2)当x=8时,1.5x+3.5=15.5元.22.(8分)甲乙两队进行拔河比赛,标志物先向甲队方向移动0.5m,后向乙队方向移动了0.8m,相持一会后又向乙队方向移动0.5m,随后向甲队方向移动了1.5m在一片欢呼声中,标志物再向甲队方向移动1.2m.若规定只要标志物向某队方向移动2m,则该队即可获胜,那么现在甲队获胜了吗?用计算说明理由.【解答】解:拔河绳看作数轴,标志物开始在原点,甲在正方向,乙在负方向,标志物最后表示的数=0.5﹣0.8﹣0.5+1.5+1.2=1.9,即标志物向甲移了1.9m<2m,由此判断甲没获胜.23.(9分)将连续的正整数1,2,3,4,…,排列成如下的数表,用3×3的方框框出9个数(如图).(1)图中方框框出的9个数的和与方框正中间的数10有什么关系?(2)将方框上下左右平移,但一定要框住数表中的9个数.若设正中间的数为a,用含a的代数式表示方框框住的9个数字,并计算这9个数的和.(3)能否在方框中框出9个数,使这9个数的和为270?若能,求出这9个数;若不能,请说明理由.【解答】解:(1)3+4+5+9+10+11+15+16+17=90,90=10×9,则方框框出的9个数的和是方框正中间的数10的9倍.(2)中间的数为a,则有其他的数的数值如下表:(a﹣7)+(a﹣1)+(a+5)+(a﹣6)+a+(a+6)+(a﹣5)+(a+1)+(a+7)=9a,故九个数的和为9a.(3)不能,理由如下:∵9个数的和为270∴中间的数为30∵30在第5行、第6列,在边上,∴无法框出这样的9个数.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。