2019年中考数学真题知识分类练习试卷:实数(含答案)
2019年全国各地中考数学试题分类汇编(第三期) --实数及其他(PDF版含解析)
对于 C,左边两个不是同类二次根式,不能合并,错误,
对于 D,8 的 3 次方根为 2,故正确。
8 (2019•黑龙江省齐齐哈尔市•3 分)下列计算不正确的是( )
A.± =±3
B.2ab+3ba=5ab
C.( ﹣1)0=1
D.(3ab2)2=6a2b4
【分析】直接利用同底数幂的乘除运算法则以及完全平方公式、合并同类项法则分别化简得
A.0 是正数
B.0 是负数
C.0 是有理数
D.0 是无理数
【分析】直接利用有理数、无理数、正负数的定义分析得出答案.
【解答】解:0 既不是正数也不是负数,0 是有理数.
故选:C.
【点评】此题主要考查了实数,正确把握实数有关定义是解题关键.
4.(2019•四川省绵阳市•3 分)若 =2,则 a 的值为( )
无限不循环小数为无理数.
11.(2019 浙江丽水 3 分)实数 4 的相反数是( )
A.﹣
B.﹣4
C.
D.4
【分析】根据互为相反数的定义即可判定选择项.
【解答】解:∵符号相反,绝对值相等的两个数互为相反数,∴4 的相反数是﹣4;
故选:B.
【点评】此题主要考查相反数的定义:只有符号相反的两个数互为相反数.
2.(2019•湖北省仙桃市•3 分)下列各数中,是无理数的是( )
A.3.1415
B.
C.
D.
【分析】根据无理数的定义:无限不循环小数进行判断, =2 是有理数;
【解答】解: =2 是有理数, 是无理数,
故选:D.
【点评】本题考查无理数的定义;能够准确辨识无理数是解题的关键.
3.(2019•湖北省咸宁市•3 分)下列关于 0 的说法正确的是( )
2019广东深圳中考数学试题分类解析汇编专项1-实数
2019广东深圳中考数学试题分类解析汇编专项1-实数注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!无论是单选、多选还是论述题,最重要的就是看清题意。
在论述题中,问题大多具有委婉性,尤其是历年真题部分,在给考生较大发挥空间的同时也大大增加了考试难度。
考生要认真阅读题目中提供的有限材料,明确考察要点,最大限度的挖掘材料中的有效信息,建议考生答题时用笔将重点勾画出来,方便反复细读。
只有经过仔细推敲,揣摩命题老师的意图,积极联想知识点,分析答题角度,才能够将考点锁定,明确题意。
专题1:实数【一】选择题1〔深圳2002年3分〕-3的相反数是【】 A 、-3B 、3C 、-31D 、31 【答案】B 。
【考点】相反数。
【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地0的相反数还是0。
因此-3的相反数是3。
应选B 。
2.〔深圳2002年3分〕化简二次根式3a -,结果是【】 A 、a a -B 、a a --C 、a a -D 、a a【答案】B 。
【考点】二次根式的性质与化简。
【分析】由题意,根据二次根式有意义的性质,隐含条件a ≤0,故利用二次根式的性质化简:=-B 。
3.〔深圳2003年5分〕实数695600保留2位有效数字的近似数是【】 A 、690000B 、700000C 、6.9×105D 、7.0×105 【答案】D 。
【考点】科学记数法和有效数字。
【分析】根据科学记数法的定义,科学记数法的表示形式为1010n a a <⨯≤,其中1,n 为整数,表示时关键要正确确定a 的值以及n 的值。
在确定n 的值时,看该数是大于或等于1还是小于1。
当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数〔含小数点前的1个0〕。
695600一共6位,从而695600=6.956×105。
2019年全国中考数学真题分类汇编:实数(解析版)
2019年全国中考数学真题分类汇编:实数一、选择题1. (2019年安徽省)在-2,-1,0,1这四个数中,最小的数是()A.-2B.-1C.0D.1【考点】有理数、有理数的大小比较【解答】A2. (2019年安徽省)2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为()A.1.61×109B.1.61×1010C.1.61×1011D.1.61×1012【考点】科学记数法【解答】B3.(2019年安徽省)据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是()A.2019年B.2020年C.2021年D.2022年【考点】有理数的运算【解答】2019年全年国内生产总值为90.3×(1+ 6.6%)=96.2598万亿,2020年全年国内生产总值为90.3×(1+6.6%)2=102.612947万亿,∴应选B4.(2019年北京市)4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为( )A.0.439×106B.4.39×106C.4.39×105D.139×103【考点】科学记数法【解答】选C5. (2019年北京市)在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A.-3B.-2C.-1D.1【考点】数轴上的点的平移、绝对值的几何意义【解答】∵点A 表示数为a ,点B 表示数为2,点C 表示数为a+1,由题意可知,a <0,∵CO=BO ,∴2|1|=+a ,解得1=a (舍)或3-=a ,故选A6.(2019年四川省广安市)﹣2019的绝对值是( )A .﹣2019B .2019C .﹣D . 【考点】绝对值的定义【解答】解:﹣2019的绝对值是:2019.故选:B .7.(2019年四川省广安市)第二届“一带一路”国际合作高峰论坛于2019年4月25日至27日在北京召开,“一带一路”建设进行5年多来,中资金融机构为“一带一路”相关国家累计发放贷款250000000000元,重点支持了基础设施、社会民生等项目.数字250000000000用科学记数法表示,正确的是( )A .0.25×1011B .2.5×1011C .2.5×1010D .25×1010【考点】科学记数法的表示方法【解答】解:数字2500 0000 0000用科学记数法表示,正确的是2.5×1011.故选:B .8.(2019年乐山市)3-的绝对值是( )()A 3 ()B 3- ()C 31 ()D 31- 【考点】绝对值的意义【解答】A9.(2019年重庆市)下列各数中,比﹣1小的数是( )A .2B .1C .0D .﹣2【考点】有理数的大小比较【解答】解:∵﹣2<﹣1<0<2,∴比﹣1小的数是﹣2,故选:D .10.(2019年天津市)计算(-3)×9的结果等于( )A. -27B. -6C. 27D. 6【考点】有理数的乘法运算【解答】原式=-3×9=-27,故选A.11. (2019年天津市)据2019年3月21日《天津日报》报道:“伟大的变革---庆祝改革开放四十周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次,将4230000用科学记数法表示为()A. 0.423×107B.4.23×106C.42.3×105D.423×104【考点】科学记数法的表示方法【解答】科学记数法表示为4.23×106,故选B.12. (2019年山东省滨州市)下列各数中,负数是()A.﹣(﹣2)B.﹣|﹣2| C.(﹣2)2D.(﹣2)0【考点】绝对值、零指数幂、相反数【解答】解:A、﹣(﹣2)=2,故此选项错误;B、﹣|﹣2|=﹣2,故此选项正确;C、(﹣2)2=4,故此选项错误;D、(﹣2)0=1,故此选项错误;故选:B.13. (2019年山东省德州市)-1的倒数是()2C. 2D. 1A. −2B. 12【考点】倒数【解答】解:-的到数是-2,故选:A.14. (2019年山东省德州市)据国家统计局统计,我国2018年国民生产总值(GDP)为900300亿元.用科学记数法表示900300亿是()A. 9.003×1012B. 90.03×1012C.0.9003×1014 D. 9.003×1013【考点】科学记数法的表示方法【解答】解:将900300亿元用科学记数法表示为:9.003×1013.故选:D.15. (2019年山东省菏泽市)下列各数中,最大的数是()A.﹣B.C.0 D.﹣2【考点】有理数大小比较【解答】解:﹣2<﹣<0<,则最大的数是,故选:B.16. (2019年山东省济宁市)下列四个实数中,最小的是()A.﹣B.﹣5 C.1 D.4【考点】有理数大小比较、估算【解答】解:根据实数大小比较的方法,可得﹣5<﹣<1<4,所以四个实数中,最小的数是﹣5.故选:B.17. (2019年山东省青岛市)﹣的相反数是()A.﹣B.﹣C.±D.【考点】相反数【解答】解:根据相反数、绝对值的性质可知:﹣的相反数是.故选:D.18. (2019年山东省青岛市)2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km,把384000km用科学记数法可以表示为()A.38.4×104km B.3.84×105kmC.0.384×10 6km D.3.84×106km【考点】科学记数法的表示方法【解答】解:科学记数法表示:384 000=3.84×105km故选:B.19. (2019年山东省枣庄市)点O,A,B,C在数轴上的位置如图所示,O为原点,AC=1,OA=OB.若点C所表示的数为a,则点B所表示的数为()A.﹣(a+1)B.﹣(a﹣1)C.a+1D.a﹣1【考点】数轴、用字母表示数【解答】解:∵O为原点,AC=1,OA=OB,点C所表示的数为a,∴点A表示的数为a﹣1,∴点B表示的数为:﹣(a﹣1),故选:B.20. (2019年四川省达州市)﹣2019的绝对值是()A.2019 B.﹣2019 C.D.﹣【考点】绝对值【解答】解:﹣2019的绝对值是:2009.故选:A.21. (2019年四川省资阳市)﹣3的倒数是()A.﹣B.C.﹣3 D.3【考点】倒数【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:A.22.(2019年四川省资阳市)设x=,则x的取值范围是()A.2<x<3 B.3<x<4 C.4<x<5 D.无法确定【考点】估算【解答】解:∵9<15<16,∴,故选:B .23. (2019年云南省)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为( )A.68.8×104B.0.688×106C.6.88×105D.6.88×106【考点】科学记数法的表示方法【解答】本题考查科学记数法较大数N a 10⨯,其中101<≤a ,N 为小数点移动的位数.∴5,88.6==N a ,故选C24. (2019年广西贵港市)计算(-1)3的结果是( )A. −1B. 1C. −3D. 3 【考点】有理数的乘方运算【解答】解:(-1)3表示3个(-1)的乘积,所以(-1)3=-1. 故选:A .25. (2019年广西贺州市)﹣2的绝对值是( )A .﹣2B .2C .D .﹣【考点】绝对值的定义【解答】解:|﹣2|=2,故选:B .26.(2019年广西贺州市)某图书馆有图书约985000册,数据985000用科学记数法可表示为( )A .985×103B .98.5×104C .9.85×105D .0.985×106【考点】科学记数法的表示方法【解答】解:985000=9.85×105,故选:C .27.(2019年江苏省苏州市)5的相反数是( )A .15B .15-C .5D .5-【考点】相反数【解答】5的相反是为5-故选D28.(2019年江苏省苏州市)苏州是全国重点旅游城市,2018年实现旅游总收入约为26 000 000万元,数据26 000 000用科学记数法可表示为( )A .80.2610⨯B .82.610⨯C .62610⨯D .72.610⨯ 【考点】科学记数法【解答】726000000 2.610=⨯ 故选D29.(2019年江苏省泰州市)﹣1的相反数是( ) A .±1 B .﹣1 C .0 D .1【考点】相反数【解答】解:﹣1的相反数是1.故选:D .30. (2019年江苏省扬州市)下列个数中,小于-2的数是( )【考点】估算【解答】根据二次根式的定义确定四个选项与-2的大小关系,可得故选:A.31. (2019年河南省)﹣的绝对值是()A.﹣B.C.2 D.﹣2【考点】绝对值的性质【解答】解:|﹣|=,故选:B.32.(2019年河南省)成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.46×10﹣7B.4.6×10﹣7C.4.6×10﹣6D.0.46×10﹣5【考点】科学记数法【解答】解:0.0000046=4.6×10﹣6.故选:C.33.(2019年湖北省十堰市)下列实数中,是无理数的是()A.0 B.﹣3 C.D.【考点】无理数【解答】解:A、0是有理数,故A错误;B、﹣3是有理数,故B错误;C、是有理数,故C错误;D、是无理数,故D正确;故选:D.34. (2019年浙江省衢州市)在1,0,1,-9四个数中,负2数是()B. 0C. 1D. -9A. 12【考点】正数和负数的认识及应用<1,∴负数是-9.【解答】解:∵-9<0<12故答案为:D.35. (2019年浙江省衢州市)浙江省陆域面积为101800平方千米,其中数据101800用科学记数法表示为()A. 0.1018×105 B. 1.018×105 C. 0.101 8×105 D. 1.018×106【考点】科学记数法—表示绝对值较大的数【解答】解:∵101800=1.018×105.故答案为:B.36.(2019年浙江省温州市)计算:(﹣3)×5的结果是()A.﹣15 B.15 C.﹣2 D.2【考点】正数与负数相乘的法则【解答】解:(﹣3)×5=﹣15;故选:A.37. (2019年浙江省温州市)太阳距离银河系中心约为250 000000 000 000 000公里,其中数据250 000 000 000 000 000用科学记数法表示为()A.0.25×1018 B.2.5×1017C.25×1016D.2.5×1016【考点】科学记数法【解答】解:科学记数法表示:250 000 000 000 000 000=2.5×1017故选:B.38. (2019年甘肃省天水市)已知|a|=1,b是2的相反数,则a+b的值为()A.﹣3 B.﹣1 C.﹣1或﹣3 D.1或﹣3 【考点】有理数的加法、相反数和绝对值的性质【解答】解:∵|a|=1,b是2的相反数,∴a=1或a=﹣1,b=﹣2,当a=1时,a+b=1﹣2=﹣1;当a=﹣1时,a+b=﹣1﹣2=﹣3;综上,a+b的值为﹣1或﹣3,故选:C.39.(2019年甘肃省天水市)自然界中的数学不胜枚举,如蜜蜂建造的蜂房既坚固又省料,其厚度为0.000073米,将0.000073用科学记数法表示为()A.73×10﹣6B.0.73×10﹣4C.7.3×10﹣4D.7.3×10﹣5【考点】科学记数法【解答】解:0.000073用科学记数法表示为7.3×10﹣5,故选:D.40. (2019年湖北省荆州市)下列实数中最大的是()A.B.πC.D.|﹣4|【考点】无理数、算术平方根根、绝对值的性质【解答】解:∵<π<<|﹣4|=4,∴所给的几个数中,最大的数是|﹣4|.故选:D.41. (2019年湖北省宜昌市)如图,A,B,C,D是数轴上的四个点,其中最适合表示无理数π的点是()A.点A B.点B C.点C D.点D【考点】无理数、数轴【解答】解:因为无理数π大于3,在数轴上表示大于3的点为点D;故选:D.42. (2019年甘肃省武威市)如图,数轴的单位长度为1,如果点A表示的数是﹣1,那么点B表示的数是()A.0 B.1 C.2 D.3【考点】数轴【解答】解:∵数轴的单位长度为1,如果点A表示的数是﹣1,∴点B表示的数是:3.故选:D.43.(2019年甘肃省武威市)下列整数中,与最接近的整数是()A.3 B.4 C.5 D.6【考点】无理数、估算【解答】解:∵32=9,42=16,∴3<<4,10与9的距离小于16与10的距离,∴与最接近的是3.故选:A.44.(2019年甘肃省武威市)华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A.7×10﹣7B.0.7×10﹣8C.7×10﹣8D.7×10﹣9【考点】科学记数法【解答】解:0.000000007=7×10﹣9;故选:D.45. (2019年内蒙古包头市)实数a,b在数轴上的对应点的位置如图所示.下列结论正确的是()A.a>b B.a>﹣b C.﹣a>b D.﹣a<b【考点】数轴【解答】解:∵﹣3<a <﹣2,1<b <2,∴答案A 错误; ∵a <0<b ,且|a |>|b |,∴a +b <0,∴a <﹣b ,∴答案B 错误;∴﹣a >b ,故选项C 正确,选项D 错误.故选:C .二、填空题1.(2019年乐山市)21-的相反数是 . 【考点】相反数的意义【解答】21 2.(2019年乐山市)某地某天早晨的气温是2-℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是C ︒. 【考点】有理数的加减法【解答】因为-2+6-7=-3,所以答案是-3.3.(2019年重庆市)计算:(π﹣3)0+()﹣1= .【考点】零指数幂、负整数指数幂【解答】解:原式=1+2=3,故答案为:3.4.(2019年重庆市)今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为 .【考点】科学记数法【解答】解:25600000=2.56×107.故答案为:2.56×107.5. (2019年山东省滨州市)计算:(﹣)﹣2﹣|﹣2|+÷=.【考点】负指数幂、绝对值、二次根式的混合运算【解答】解:原式=,故答案为:2+4.6. (2019年山东省德州市)已知:[x]表示不超过x的最大整数.例:[4.8]=4,[-0.8]=-1.现定义:{x}=x-[x],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}=______.【考点】定义新运算、不等式【解答】解:根据题意可得:{3.9}+{-1.8}-{1}=3.9-3-1.8+2-1+1=0.7,故答案为:0.77. (2019年山东省德州市)|x-3|=3-x,则x的取值范围是______.【考点】绝对值的意义、解不等式【解答】解:3-x≥0,∴x≤3;故答案为x≤3;8. (2019年山东省菏泽市)计算()﹣1﹣(﹣3)2的结果是.【考点】乘方运算、负整数指数幂【解答】解:原式=2﹣9=﹣7.故答案为:﹣7.9. (2019年四川省达州市)2018年,中国贸易进出口总额为4.62万亿美元(美国约为4.278万亿美元),同比增长12.6%,占全球贸易总额的11.75%,贸易总额连续两年全球第一!数据4.62万亿用科学记数法表示为.【考点】科学记数法【解答】解:4.62万亿=4.62×1012,故答案为:4.62×101210. (2019年四川省资阳市)截止今年4月2日,华为官方应用市场“学习强国”APP下载量约为88300000次.将数88300000科学记数法表示为.【考点】科学记数法【解答】解:将88300000用科学记数法表示为:8.83×107.故答案为:8.83×107.11. (2019年云南省)若零上8℃记作+8℃,则零下6℃记作℃.【考点】正负数【解答】零上记为正数,则零下记为负数,故答案为-6 12. (2019年广西贵港市)有理数9的相反数是______.【考点】相反数【解答】解:9的相反数是-9;故答案为-9;13.(2019年广西贵港市)将实数3.18×10-5用小数表示为______.【解答】解:3.18×10-5=0.0000318;故答案为0.0000318;14. (2019年江苏省泰州市)计算:(π-1)0=.【考点】零指数幂【解答】∵(a)0=1,(a≠0) ∴(π-1)0=1.故答案为:115.(2019年江苏省泰州市)2019年5月28日,我国“科学”号远洋科考船在最深约为11000m的马里亚纳海沟南侧发现了近10片珊瑚林,将11000用科学记数法表示为.【考点】科学记数法【解答】11000=1.1×104,故答案为:1.1×104.16. (2019年江苏省无锡市)2019年6月29日,新建的无锡文化旅游城将盛大开业,开业后预计接待游客量约20 000 000人次,这个年接待客量可以用科学记数法表示为人次.【考点】科学记数法【解答】20000000=2×107.17. (2019年内蒙古包头市)2018年我国国内生产总值(GDP)是900309亿元,首次突破90万亿大关,90万亿用科学记数法表示为.【解答】解:90万亿用科学记数法表示成:9.0×1013, 故答案为:9.0×1013.三、解答题1.(2019年北京市)计算:()01142604sin π----++o(). 【考点】实数的运算、零次幂、负指数、三角函数特殊值、绝对值的意义【解答】原式=423213+⨯+-332+= 2.(2019年四川省广安市)计算:(﹣1)4﹣|1﹣|+6tan30°﹣(3﹣)0. 【考点】实数的运算、零次幂、特殊角的三角函数值、绝对值的意义【解答】解:原式=1﹣(﹣1)+6×﹣1 =1﹣+1+2﹣1=1+. 3.(2019年乐山市)计算:()︒-+--⎪⎭⎫ ⎝⎛30sin 220192101π. 【考点】实数的运算、零次幂、负指数、三角函数特殊值【解答】解:原式21212⨯+-= 112+-=2=. 4. (2019年山东省济宁市)计算:6sin60°﹣+()0+|﹣2018|【考点】实数的运算、零次幂、三角函数特殊值、绝对值的意义【解答】解:原式=6×,=2019.5. (2019年山东省枣庄市)对于实数a、b,定义关于“⊗”的一种运算:a⊗b=2a+b,例如3⊗4=2×3+4=10.(1)求4⊗(﹣3)的值;(2)若x⊗(﹣y)=2,(2y)⊗x=﹣1,求x+y的值.【考点】实数的运算、二元一次方程组、定义新运算【解答】解:(1)根据题中的新定义得:原式=8﹣3=5;(2)根据题中的新定义化简得:,①+②得:3x+3y=﹣3,则x+y=﹣1.6. (2019年四川省达州市)计算:(π﹣3.14)0﹣()﹣2+﹣.【考点】实数的运算、零次幂、负指数、算术平方根、立方根【解答】解:原式=1﹣4+3﹣2=﹣2.7. (2019年云南省)计算:121-)()(π--453--+【考点】实数的运算、零次幂、负指数、算术平方根【解答】解:原式=9+1-2-1=7.8. (2019年广西贵港市)(1)计算:√4-(√3-3)0+(12)-2-4sin30°; 【考点】实数的运算、算术平方根、零指数幂、负整数指数幂、三角函数值【解答】解:(1)原式=2-1+4-4×12 =2-1+4-2=3;9.(2019年广西贺州市)计算:(﹣1)2019+(π﹣3.14)0﹣+2sin30°.【考点】实数的运算、算术平方根、零指数幂、三角函数值【解答】解:原式=﹣1+1﹣4+2×=﹣4+1=﹣3.10. (2019年江苏省苏州市)计算:()2022π+---【考点】实数的运算、零次幂、绝对值的意义【解答】解:321=+-原式4=11. (2019年江苏省无锡市)计算:(1)1013()2--+-; (2)3233)(2a a a -⋅.【考点】实数的运算、零次幂、绝对值的意义、负整数指数幂、整式的运算【解答】原式=3+2-1 原式=662a a - =4 =6a12. (2019年江苏省扬州市)计算或化简:(1)()︒45cos 4--3-80π (2)aa a -+-1112 【考点】实数的运算、零次幂、算术平方根、三角函数、分式的化简【解答】解原式=22-1-4×22 解原式 =112--a a =-1 =a +113. (2019年湖北省十堰市)计算:(﹣1)3+|1﹣|+. 【考点】实数的运算、零次幂、绝对值的意义、立方根【解答】解:原式=﹣1+﹣1+2=.14.(2019年浙江省衢州市)计算:|-3|+(π-3)0-+tan45° 【考点】算术平方根,实数的运算,0指数幂的运算性质,特殊角的三角函数值,实数的绝对值【解答】解:原式=3+1-2+1 =3。
2019年全国中考数学真题180套分类汇编:实数【含解析】
实数一、选择题1. (2018?湖北宜昌,第2题3分)在﹣2,0,3,这四个数中,最大的数是()A.﹣2 B.0 C.3 D.考点:实数大小比较.分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣2<0<<3,故选:C.点评:本题考查了实数比较大小,是解题关键.2. (2018?湖北宜昌,第14题3分)如图,M,N两点在数轴上表示的数分别是m,n,则下列式子中成立的是()A.m+n<0 B.﹣m<﹣n C.|m|﹣|n|>0 D.2+m<2+n考点:实数与数轴.分析:根据M、N两点在数轴上的位置判断出其取值范围,再对各选项进行逐一分析即可.解答:解:M、N两点在数轴上的位置可知:﹣1<M<0,N>2,∵M+N>O,故A错误,∵﹣M>﹣N,故B错误,∵|m|﹣|n|<,0故C错误.∵2+m<2+n正确,∴D选项正确.故选:D.点评:本题考查的是数轴的特点,根据a、b两点在数轴上的位置判断出其取值范围是解答此题的关键.3. (2018?湖南永州,第5题3分)若用湘教版初中数学教材上使用的某种计算器进行计算,则按键的结果为()A.21 B.15 C.84 D.67考点:计算器—数的开方..分析:根据2ndf键是功能转换键列式算式,然后解答即可.解答:解:由题意得,算式为:+43=3+64=67.故选D.点评:本题考查了利用计算器进行数的开方、平方计算,是基础题,要注意2ndf键的功能.4. (2018?河北,第5题2分)a,b是两个连续整数,若a<<b,则a,b分别是()A.2,3 B.3,2 C.3,4 D.6,8考点:估算无理数的大小.分析:根据,可得答案.解答:解:,故选:A.点评:本题考查了估算无理数的大小,是解题关键.5.(2018?陕西,第1题3分)4的算术平方根是()A.﹣2 B. 2 C.±2D.16考点:算术平方根.分析:根据算术平方根的定义进行解答即可.解答:解:∵22=4,。
初三数学中考复习 实数的大小比较和运算 专题练习题 含答案
2019 初三数学中考复习实数的大小比较和运算专题练习题1. 下列四个数中,最大的数是( )A.3 B. 3 C.0 D.π2.|6-3|+|2-6|的值为( )A.5 B.5-2 6 C.1 D.26-13. 下列说法中正确的是( )A.实数-a2是负数 B.a2=|a|C.|-a|一定是正数 D.实数-a的绝对值是a4. 下列实数中最大的数是( )A.3 B.0 C. 2 D.-45. 比较三个数-3,-π,-10的大小,下列结论正确的是( ) A.-π>-3>-10 B.-10>-π>-3C.-10>-3>-π D.-3>-π>-106. 3-11的相反数是___________.7. 估计5-12与0.5的大小关系是:5-12_______0.5.(填“>”“=”或“<”)8. 若|a|=|-5|,则a=____________9. 若|a+1|=5,则a=_______________________10. 实数a在数轴上的位置如图,则|a-3|=__________11. 大于-18而小于13的所有整数的和为____.12. 已知实数a,b在数轴上的对应点的位置如图所示,则a+b____0.(填“>”“<”或“=”)13. 求下列各式中的x:(1)|-x|=5-1; (2)|3-x|= 2.14. 计算:25+3-8-(3)2+2215. 观察例题:∵4<7<9,即2<7<3,∴7的整数部分为2,小数部分为7-2.请你观察上述规律后解决下面的问题:(1)规定用符号[m]表示实数m 的整数部分,例如:[23]=0,[3.14]=3.按此规定,[10+1]的值为____;(2)如果3的小数部分为a ,5的小数部分为b ,求3·a+5·b-8的值. 参考答案:1---5 DCBAD 6. 11-37. >8. ±5 9. 5-1或-5-1 10. 3-a11. -412. >13. (1) 解:x =5-1或-5+1.(2) 解:x =3+2或3- 2.14. 解:原式=5-2-3+2=2.15. (1) 4(2) 解:∵1<3<4,即1<3<2,∴3的整数部分为1,小数部分为a =3-1.∵4<5<9,即2<5<3,∴5的整数部分为2,小数部分为b =5-2,∴3·a+5·b-8=3(3-1)+5(5-2)-8=3-3+5-25-8=-3-2 5.。
2019年中考数学专题知识点分类汇编---实数(含二次根式 三角函数特殊值的运算)
③(2a2)3=8a6,故此选项错误;
④﹣a8÷a4=﹣a4,正确.
故选:D.
【知识点】幂的乘方与积的乘方;同底数幂的除法;零指数幂;负整数指数幂;二次根式的加减法
2. (2019 贵州省毕节市,题号 5,分值 3 分)下列四个运算中,只有一个是正确的.这个正确运算的序号是 ( ) ①30+3﹣1=﹣3;② 5 ﹣ 2 = 3 ;③(2a2)3=8a5;④﹣a8÷a4=﹣a4. A.① B.② C.③ D.④ 【答案】D. 【解析】解:①30+3﹣1=1 1 ,故此选项错误;
3 【解题过程】解:解:原式=1﹣2 × 2 + 3 ‒ 1+2=2. 【知识点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值
14. (2019 湖南湘西,19,6 分)计算: 25 + 2sin30°﹣(3.14﹣π)0
【思路分析】直接利用二次根式的性质以及特殊角的三角函数值、零指数幂的性质分别化简得出答案 1
a(a-b) (a + b)2 = (a-b)(a + b) • a
a(a-b) (a + b)2
=1, a+ b
当 a=﹣1 时,取 b=2,
原式= 1 =1. - 1+ 2
【知识点】实数的运算;分式的化简求值;零指数幂;负整数指数幂;特殊角的三角函数值
16.(2019 年陕西省,15,5 分)(本题 5 分)计算: (3)2 3 5 20 (1 )2 . 2
【思路分析】对该代数式中的每一项进行化简,然后,进行代数式的化简、合并. 【解题过程】
(3)2 3 5 20 (1 )2 2
9 (3 5) 2 5 4 93 52 54 10 3 5
2019年全国各地中考数学试卷真题汇集:实数(含答案)
2019年中考数学真题汇集:实数一.选择题1.(2019•安徽)与1+最接近的整数是()A.4 B. 3 C. 2 D. 1考点:估算无理数的大小..分析:由于4<5<9,由此根据算术平方根的概念可以找到5接近的两个完全平方数,再估算与1+最接近的整数即可求解.解答:解:∵4<5<9,∴2<<3.又5和4比较接近,∴最接近的整数是2,∴与1+最接近的整数是3,故选:B.点评:此题主要考查了无理数的估算能力,估算无理数的时候,“夹逼法”是估算的一般方法,也是常用方法.2.(2019•衡阳, 第1题3分)计算(﹣1)0+|﹣2|的结果是()A.﹣3 B. 1 C.﹣1 D. 3考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用绝对值的代数意义化简,计算即可得到结果.解答:解:原式=1+2=3.故选D.3.(2019•山东德州,第4题3分)下列运算正确的是()A.﹣= B. b2•b3=b6 C. 4a﹣9a=﹣5 D.(ab2)2=a2b4B:根据同底数幂的乘法法则判断即可;C:根据合并同类项的方法判断即可;D:积的乘方法则:(ab)n=a n b n(n是正整数),据此判断即可.解答:解:∵,∴选项A错误;∵b2•b3=b5,∴选项B错误;∵4a﹣9a=﹣5a,∴选项C错误;∵(ab2)2=a2b4,∴选项D正确.故选:D..6、(2019年浙江舟山6,3分)( )A. 4B. 5C. 6D. 7【答案】C.【考点】估计无理数的大小;作差法的应用.【分析】∵25<31<365<<6⇒56:.又∵11<022=,∴11<2∴11<<626.故选C.7.(2019•通辽,第3题3分)实数tan45°,,0,﹣π,,﹣,sin60°,0.3131131113…(相邻两个3之间依次多一个1),其中无理数的个数是() A. 4 B. 2 C. 1 D. 3考点:无理数.分析:掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合题意判断即可.解答:解:在实数tan45°,,0,﹣π,,﹣,sin60°,0.3131131113…(相邻两个3之间依次多一个1)中,无理数有:﹣π,sin60°,0.3131131113…(相邻两个3之间依次多一个1),共3个,故选D.点评:此题主要考查了无理数的定义,熟记无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数是解题的关键.8.(2019•东营,第1题3分)|﹣|的相反数是()A. B.﹣C. 3 D.﹣3考点:绝对值;相反数.专题:常规题型.分析:一个负数的绝对值是它的相反数,求一个数的相反数就是在这个数前面添上“﹣”号.解答:解:∵|﹣|=,∴的相反数是﹣.故选:B.点评:本题考查了相反数的意义,求一个数的相反数就是在这个数前面添上“﹣”号,不要把相反数的意义与倒数的意义混淆.同时考查了绝对值的性质:一个负数的绝对值是它的相反数.10. (2019•云南,第1题3分)﹣2的相反数是()A.﹣2 B. 2 C.﹣ D.考点:相反数.分析:根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.解答:解:﹣2的相反数是:﹣(﹣2)=2,故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.11. (2019•云南,第4题3分) 2011年国家启动实施农村义务教育学生营养改善计划,截至2014年4月,我省开展营养改善试点中小学达17580所,17580这个数用科学记数法可表示为( )A .17.58×103B . 175.8×104C . 1.758×105D .1.758×104考点: 科学记数法—表示较大的数.分析: 科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解答: 解:将17580用科学记数法表示为1.758×104.故选D .点评: 本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.(2019•宜昌,第1题3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,13. (2019江苏扬州第1题3分)实数0是 ( )A 、有理数B 、无理数C 、正数D 、负数14. (2019江苏常州第6题2分)已知a =22,b =33,c =55,则下列大小关系正确的是A.a>b>c B.c>b>a C.b>a>c D.a>c>b 15.(2019•长沙,第1题3分)下列实数中,为无理数的是()A. 0.2 B. C. D.﹣5考点:无理数.分析:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.解答:解:∵﹣5是整数,∴﹣5是有理数;∵0.2是有限小数,∴0.2是有理数;∵,0.5是有限小数,∴是有理数;∵是无限不循环小数,∴是无理数.故选:C.点评:此题主要考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.16.(2019•温州第1题4分)给出四个数0,,﹣1,其中最小的是()A.0 B.C. 1 D.﹣1考点:实数大小比较.分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解答:解:根据实数比较大小的方法,可得﹣1<0<,∴四个数0,,﹣1,其中最小的是﹣1.故选:D.点评:此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.17.(2019•营口,第1题3分)下列计算正确的是()A. |﹣2|=﹣2 B. a2•a3=a6 C.(﹣3)﹣2= D.=3考点:同底数幂的乘法;绝对值;算术平方根;负整数指数幂.分析:分别根据绝对值的性质、同底数幂的乘法法则、负整数指数幂的运算法则及数的开方法则对各选项进行逐一计算即可.解答:解:A、原式=2≠﹣2,故本选项错误;B、原式=a5≠a6,故本选项错误;C、原式=,故本选项正确;D、原式=2≠3,故本选项错误.故选C.18.(3分)(2019•桂林)(第1题)下列四个实数中最大的是()A.﹣5 B.0 C.πD.3考点:实数大小比较.分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解答:解:根据实数比较大小的方法,可得﹣5<0<3<π,所以四个实数中最大的是π.故选:C.19.(2019•湖南湘西州,第14题,4分)式子2+的结果精确到0.01为(可用计算器计算或笔算)()A.4.9 B.4.87 C. 4.88 D.4.89考点:计算器—数的开方..分析:首先得出≈1.732,≈1.414,进一步代入求得答案即可.解答:解:∵≈1.732,≈1.414,∴2+≈2×1.732+1.414=4.878≈4.88.故选:C.20. (2019•江苏泰州,第2题3分)下列4个数:、、π、()0,其中无理数是()A.B.C.π D.()0考点:无理数;零指数幂.分析:根据无理数是无限不循环小数,可得答案.解答:解:π是无理数,故选:C.点评:本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.21.(2019•青岛,第1题3分)的相反数是().22.(2019•济南,第2题3分)新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为( )A . 0.109×105B . 1.09×104C .1.09×103 D .109×102 考点: 科学记数法—表示较大的数.分析: 科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解答: 解:将10900用科学记数法表示为:1.09×104.故选:B .点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.23.(2019•青岛,第2题3分)某种计算机完成一次基本运算的时间约为0.000 000列式子中正确的是( )25.(2019•恩施州第4题3分)函数y=+x﹣2的自变量x的取值范围是的算术平方根是 2 ,3.(2019•四川凉山州第13题4分)的平方根是±3.考点:平方根;算术平方根..分析:首先化简,再根据平方根的定义计算平方根.解答:解:=9,9的平方根是±3,故答案为:±3.4.(2019•四川攀枝花第12题4分)计算:+|﹣4|+(﹣1)0﹣()﹣1= 6 .考点:实数的运算;零指数幂;负整数指数幂..专题:计算题.分析:原式第一项利用算术平方根定义计算,第二项利用绝对值的代数意义化简,第三项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果.解答:解:原式=3+4+1﹣2=6.故答案为:6.5.(2019•四川遂宁第16题7分)计算:﹣13﹣+6sin60°+(π﹣3.14)0+|﹣|考点:实数的运算;零指数幂;特殊角的三角函数值..专题:计算题.分析:原式第一项利用乘方的意义化简,第二项化为最简二次根式,第三项利用特殊角的三角函数值计算,第四项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.解答:解:原式=﹣1﹣3+6×+1+=.6.(2019•黔南州14题4分)(第14题)计算:2×﹣+.考点:实数的运算..专题:计算题.分析:原式利用二次根式的乘法法则,以及立方根定义计算即可得到结果.解答:解:原式=2××3﹣2﹣=﹣.7.(2019•安徽, 第11题5分)﹣64的立方根是﹣4 .考点:立方根..分析:根据立方根的定义求解即可.解答:解:∵(﹣4)3=﹣64,∴﹣64的立方根是﹣4.故选﹣4.8、(2019年陕西省,11,3分)将实数,π,0,﹣6由小到大用“<”号连起来,可表示为﹣6.10.(2019•湖北, 第13题3分)计算:2﹣1﹣= 0 .考点:实数的运算;负整数指数幂.专题:计算题.分析:原式第一项利用负整数指数幂法则计算,第二项利用立方根定义计算即可得到结果.解答:解:原式=﹣=0,故答案为:0.11.(2019•山东德州,第13题4分)计算2﹣2+()0=考点:实数的运算;零指数幂;负整数指数幂..分析:首先根据负整数指数幂的运算方法,求出2﹣2的值是多少;然后根据a0=1(a≠0),求出的值是多少;最后再求和,求出算式2﹣2+()0的值是多少即可解答:解:2﹣2+()0=1/4+1=5/4故答案为:5/4.点评:(1)此题主要考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)a﹣p=(a≠0,p为正整数);(2)计算负整数指数幂时,一定要根据负整数指数幂的意义计算;(3)当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)a0=1(a≠0);(2)00≠1.元,比2013年提高了8.9%.37000元用科学记数法表示是 3.7×104 元. 考点: 科学记数法—表示较大的数. 分析: 科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解答: 解:37000=3.7×104, 故答案为:3.7×104.点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 14.(2019•湘潭,第11题3分)在今年的湘潭市“党和人民满意的好老师”的评选活动中,截止到5月底,王老师获得网络点赞共计183000个,用科学记数5增长,美化了城市环境,提升了市民的生活质量,截至2014年.全国已有21个省、自治区、直辖市的75个城市获得了“国家森林城市”乘号.永州市也在积极创建“国家森林城市”.据统计近两年全市投入“创森”资金约为816. (2019江苏常州第9题2分)计算102)1(-+-π=_________.(2019•长沙,第15题3分)把+进行化简,得到的最简结果是2(结17.果保留根号).考点:二次根式的混合运算.分析:先进行二次根式的化简,然后合并.解答:解:原式=+=2.故答案为:2.18. (2019年重庆B第15题4分)计算:02+- =___________.(3.14(3)【答案】10考点:实数的计算.19.(2019•江苏镇江,第7题,2分)数轴上实数b的对应点的位置如图所示,比较大小: b+1 >0.考点:实数大小比较;实数与数轴..分析:根据图示得到b的取值范围,然后利用不等式的性质进行解答.解答:解:如图所示,b>﹣2,∴b>﹣1,∴b+1>0.故答案是:>.20.(2019•甘肃庆阳,第14题,3分)的平方根是±2.考点:平方根;算术平方根..分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:的平方根是±2.故答案为:±2点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.21.(2019•甘肃庆阳,第16题,3分)若﹣2x m﹣n y2与3x4y2m+n是同类项,则m﹣3n 的立方根是 2 .考点:立方根;合并同类项;解二元一次方程组..专题:计算题.分析:根据同类项的定义可以得到m,n的值,继而求出m﹣3n的立方根.解答:解:若﹣2x m﹣n y2与3x4y2m+n是同类项,∴,解方程得:.∴m﹣3n=2﹣3×(﹣2)=8. 8的立方根是2. 故答案为:2.点评: 本题考查了同类项的概念以及立方根的求法,解体的关键是根据定义求出对应m 、n 的值.22.(2019•济南,第17题3分)计算: +(﹣3)0= 3 . 考点: 实数的运算;零指数幂. 专题: 计算题.分析: 原式第一项利用算术平方根定义计算,第二项利用零指数幂法则计算即可得到结果.解答: 解:原式=2+1=3. 故答案为:3.三.解答题1.(2019•昆明第15题,5分)计算:+(﹣1)2019+(6﹣π)0﹣(﹣1/2)﹣2. 考点: 实数的运算;零指数幂;负整数指数幂.. 专题: 计算题.分析: 原式第一项利用算术平方根定义计算,第二项利用乘方的意义计算,第三项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果.解答: 解:原式=3﹣1+1﹣4 =﹣1.2.(2019•曲靖第17题3分)计算:(﹣1)2019﹣(1/3)﹣2+(2﹣)0﹣|﹣2|. 考点: 实数的运算;零指数幂;负整数指数幂..分析: 根据零指数幂、乘方、负整数指数幂、绝对值四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 解答: 解:原式=﹣1﹣9+1﹣2 =﹣11.点评: 本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.3.(2019•温州第17(1)题5分)(1)计算:20190+(2)化简:(2a+1)(2a ﹣1)﹣4a (a ﹣1) 考点: 实数的运算..分析: (1)先算乘方、化简二次根式与乘法,最后算加法; 解答: 解:(1)原式=1+2﹣1 =2;4 (2019年浙江衢州17,6(0214sin 60-+--︒ .【答案】解:原式=21411+-=-=-.【考点】实数的运算;二次根式化简;绝对值;零指数幂;特殊角的三角函数值. 【分析】针对二次根式化简,绝对值,零指数幂,特殊角的三角函数值4个考点分别进行计算,然后根据实数的运算法则求得计算结果.5.(2019•甘肃庆阳,第21题,8分)计算:(﹣2)0+(1/3)﹣1+4cos30°﹣|﹣|考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值..专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用负指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.解答:解:原式=1+3+4×﹣2=4.6.(2019•甘肃天水,第19题,9分)计算:(1)(π﹣3)0+﹣2cos45°﹣考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:(1)根据0指数幂、二次根式的化简、特殊角的三角函数值、负指数幂的定义解答;解答:解:(1)原式=1+3﹣2×﹣8=2﹣7;7.(2019•湖南湘西州,第19题,5分)计算:32﹣20190+tan45°.考点:实数的运算;零指数幂;特殊角的三角函数值..分析:分别进行乘方、零指数幂、特殊角的三角函数值等运算,然后合并.解答:解:原式=9﹣1+1=9.8.(2019•江苏镇江,第18题,8分)(1)计算:﹣(﹣π)0﹣2sin60°考点:实数的运算;零指数幂;特殊角的三角函数值..分析:(1)先化简二次根式,计算0指数幂与特殊角的三角函数,再算加减;解答:解:(1)原式=4﹣1﹣2×=4﹣1﹣3=0;+1=3+2×11.(2019•桂林)计算:(﹣3)0+2sin30°﹣+|﹣2|.考点:实数的运算;零指数幂;特殊角的三角函数值.分析:分别根据0指数幂的计算法则、特殊角的三角函数值、数的开方法则及绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=1+2×﹣2+2=1+1﹣2+2=2.12.(8分)(2019•毕节市)(第21题)计算:(﹣2019)0+|1﹣|﹣2cos45°++(﹣1/3)﹣2.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用绝对值的代数意义化简,第三项利用特殊角的三角函数值计算,第四项化为最简二次根式,最后一项利用负整数指数幂法则计算即可得到结果.解答:解:原式=1+﹣1﹣2×+2+9=2+9.13.(20分)(2019•铜仁市)(第19题)(1)﹣÷|﹣2×sin45°|+(﹣2)÷(﹣14)X1/2(2)先化简(+)×,然后选择一个你喜欢的数代入求值.|.专题:计算题.分析:原式第一项利用绝对值的代数意义化简,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,第四项利用零指数幂法则计算,最后一项利用算术平方根的定义计算即可得到结果.解答:解:原式=﹣1+4×﹣2﹣1+3=+1.15.(2019•娄底,第19题6分)计算:(﹣1.414)0+(1/3)﹣1﹣+2cos30°.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=1+3﹣+2×=4.16.(2019•长沙,第19题6分)计算:(1/2)﹣1+4cos60°﹣|﹣3|+.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:原式第一项利用负整数指数幂法则计算,第二项利用特殊角的三角函数值计算,第三项利用绝对值的代数意义化简,最后一项利用算术平方根定义计算即可得到结果.解答:解:原式=2+4×﹣3+3=4.17.(2019•青海西宁第21题7分)计算:2sin60°+|﹣2|+.考点:实数的运算;特殊角的三角函数值..分析:分别根据特殊角的三角函数值、绝对值的性质及数的开方法则计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=2×+2﹣+2=2+2.18.(2019•海南,第19题10分)(1)计算:(﹣1)3﹣﹣12×2﹣2;(2)解不等式组:.考点: 实数的运算;负整数指数幂;解一元一次不等式组. 专题: 计算题. 分析: (1)原式第一项利用乘方的意义计算,第二项利用算术平方根定义计算,第三项利用负整数指数幂法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可. 解答: 解:(1)原式=﹣1﹣3﹣12×=﹣1﹣3﹣3=﹣7; (2),由①得:x≤2, 由②得:x >﹣1,则不等式组的解集为﹣1<x≤2.【思路分析】将特殊角的三角函数值代入计算2cos45°,根据负数的绝对值等于它的相反数化简5-,根据二次根式的化简方法进行8的化简,由0指数据意义进行(-1)0的计算,最后合并. 解:(-1)0-42cos45°+5-+8=1-4×22+5+22=6. 【解题步骤】实数混合运算的顺序:先算乘方和开方,再算乘除,最后算加减.如果遇到括号,则先进行括号里的运算.当然,计算时,还要根据具体的算式,确定恰当的运算顺序求得正确的计算结果. 21. (2019·江苏连云港,第17题6分)计算:+(1/2)﹣1﹣20190.22.(1)计算:(﹣2)X(-2)﹣(2)解方程:=.考点: 实数的运算;零指数幂;负整数指数幂..专题:计算题.分析:(1)原式第一项利用乘方的意义化简,第二项利用立方根定义计算,第三项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)原式=4﹣4=0(2)去分母得:x+5=6x,解得:x=1,经检验x=1是分式方程的解.23. (2019•江苏宿迁,计算:cos60°﹣2﹣1+﹣(π﹣3)0.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用特殊角的三角函数值计算,第二项利用负整数指数幂法则计算,第三项利用二次根式性质化简,最后一项利用零指数幂法则计算即可得到结果.解答:解:原式=﹣+2﹣1=1.24. (2019•江苏盐城,第19题8分)(1)计算:|﹣1|﹣()0+2cos60°(2)解不等式:3(x﹣)<x+4.考点:实数的运算;零指数幂;解一元一次不等式;特殊角的三角函数值.分析:(1)利用绝对值的求法、0指数幂及锐角三角函数的知识代入求解即可;(2)去括号、移项、合并同类项、系数化为1后即可求得不等式的解集.解答:解:(1)原式=1﹣1+2×=1;(2)原不等式可化为3x﹣2<x+4,∴3x﹣x<4+2,∴2x<6,∴x<3.25. (2019江苏连云港第17题6分)计算(-3)2+(12)-1-20190.【思路分析】(-3)2=9 =3 ;(12)-1可利用公式a-p=1a p计算,a0=1(a≠0)【答案】原式=3+2-1 ……………………………………5分=4.……………………………………6分20190﹣1.3tan30°+6.+2﹣28、(2019年浙江舟,17,3分)计算:152--+;【答案】解:原式=1525162+⨯=+=.29.(2019•通辽,第18题12分)(1)计算:(π﹣)0+()﹣1﹣﹣tan30°;(2)解方程:+=1;(3)解不等式组,并把解集在数轴上表示出来.解答:解:(1)原式=1+2﹣3﹣=3﹣;(2)方程两边同时乘以(x+3)(x﹣3)得,3+x(x+3)=x2﹣9,解得x=4,代入(x+3)(x﹣3)得,(4+3)(4﹣3)=7≠0,故x=4是原分式方程的解;(3),由①得,y≥1,由②得,y<2,故不等式组的解集为:1≤y<2.30.(2019•东营,第19题7分)(1)计算:(﹣1)2019﹣+(3﹣π)0+|3﹣|+(tan30°)﹣1(2)解方程组:.专题:计算题.分析:(1)原式第一项利用乘方的意义计算,第二项利用算术平方根定义计算,第三项利用零指数幂法则计算,第四项利用绝对值的代数意义化简,最后一项利用负整数指数幂法则计算即可得到结果;(2)方程组利用加减消元法求出解即可.解答:解:(1)原式=﹣1﹣3+1+3﹣+=0;(2),①+②得:3x=15,即x=5,把x=5代入①得:y=1,则方程组的解为.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.31. 2019•乌鲁木齐,第16题8分)计算:(﹣2)2+|﹣1|﹣..= .考点:实数的运算;负整数指数幂..专题:计算题.分析:原式第一项利用算术平方根定义计算,第二项利用绝对值的代数意义化简,第三项利用乘方的意义化简,最后一项利用负整数指数幂法则计算即可得到结果.解答:解:原式=3﹣2﹣1+=,故答案为:0﹣1+(﹣3)2.考点:实数的运算;零指数幂;特殊角的三角函数值..专题:计算题.分析:(1)原式第一项化为最简二次根式,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项利用乘方的意义化简,计算即可得到结果;解答:解:(1)原式=2﹣1﹣4×+9=8;- 21 -。
苏州市2019年中考数学《实数》专题练习(1)含答案
2019年中考数学专题练习1《实数》【知识归纳】1、有理数:像3、53-、119……这样的 或 。
2、数轴:规定了 、 和 的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
3、相反数:只有 不同的两个数,如a 的相反数是 ,0的相反数仍是 。
若a 与b 互为相反数,则 .4、绝对值:正数的绝对值是它 ,负数的绝对值是它的 ,0的绝对值是0.任何实数的绝对值都是 ,a ≧0.互为相反数的两个数的绝对值相等,a =a -。
5、倒数: 没有倒数。
正数的倒数是正数,负数的倒数是负数。
若a 与b 互为倒数,则 .6、有理数的四则混合运算:(1)先乘方,再乘除,最后加减; (2)同级运算,从左到右进行;(4)如有括号,先做括号内的运算,按 ,中括号, 依次进行。
7、乘方:求n 个 的积的运算,叫做乘方,乘方的结果叫做 。
在a n 中,a 叫做 ,n 叫做 。
8、科学记数法:把一个数写做 的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。
9、平方根:如果一个数的平方等a ,那么这个数叫做a 的 或 ,0的平方根是0,负数 平方根。
a 的平方根记为a ±(a ≧0),读作“正负根号a ”,a 叫做被开方数。
10、算术平方根:如果一个正数的平方等于a ,那么这个正数叫做a 的 ,0的算术平方根为0。
a 的算术平方根记为a (a ≧0),读作“根号a ”,a 叫做被开方数。
11、立方根:如果一个数的立方等于a ,那么这个数叫做a 的 或 ,0的立方根是0,正数的立方根是正数,负数的立方根是负数。
3a -=的立方根记为3a ,读作“三次根号a ”,a 叫做 ,3是 。
12、无理数:像2、33、……这样的 。
13、实数: 和 统称为实数。
实数与数轴上的点 。
【基础检测】1.(2019·成都)在-3,-1,1,3四个数中,比-2小的数是( )A .-3B .-1C .1D .32.(2019·南京)数轴上点A 、B 表示的数分别是5,-3,它们之间的距离可以表示为( )A .-3+5B .-3-5C .|-3+5|D .|-3-5|3.(2019·毕节)下列说法正确的是( )A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是14.(2019·宁夏)实数a 在数轴上的位置如图,则|a -3|=__ __.5.(2019·十堰)计算:|38 -4|-(12)-2=__ __. 6.|-5|+327-(13)-1; 【达标检测】一、选择题:1.(2019•南充)如果向右走5步记为+5,那么向左走3步记为( )A .+3B .﹣3C .+D .﹣2.(2019•攀枝花)下列各数中,不是负数的是( )A .﹣2B .3C .﹣D .﹣0.103.(2019•德州)2的相反数是( )A .B .C .﹣2D .2 4.(2019南宁)据《南国早报》报道:2019年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为( )A .0.332×106B .3.32×105C .3.32×104D .33.2×1045.(2019河北)点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b.对于以下结论:第11题图甲:b-a<0; 乙:a+b>0;丙:|a|<|b|; 丁:0b a. 其中正确的是( )A .甲乙B .丙丁C .甲丙D .乙丁6.(2019·福建龙岩)(﹣2)3=( )A .﹣6B .6 C.﹣8 D .87.(2019·山东菏泽)当1<a <2时,代数式|a ﹣2|+|1﹣a|的值是( )A .﹣1B .1C .3D .﹣38. (2019•河北,第7题3分)在数轴上标注了四段范围,如图,则表示的点落在( )A . 段① B. 段② C. 段③ D. 段④二、填空题:9.(2019·重庆市)在﹣,0,﹣1,1这四个数中,最小的数是 .10.(2019·湖北武汉)计算5+(-3)的结果为_______.11.(2019•河北)计算:3﹣2×(﹣1)=( )12.(2019·青海西宁)青海日报讯:十五年免费教育政策已覆盖我省所有贫困家庭,首批惠及学生近86.1万人.将86.1万用科学记数法表示为 .13.(2019•广东东莞)观察下列一组数:,…,根据该组数的排列规律,可推出第10个数是 .三、解答题:14.(2019·宜昌)计算:(-2)2×(1-34).15.(2019·杭州)计算:6÷(-12+13). 方方同学的计算过程如下:原式=6÷(-12)+6÷13=-12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.16. (2019·厦门)计算:10+8×(-12)2-2÷15.17.(2019•茂名)为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M ﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52019的值.参考答案【知识归纳】1、有限小数或无限循环小数。
2019全国中考数学真题分类汇编之09:实数(含答案)
2019年全国中考数学真题分类汇编:实数一、选择题1. (2019年安徽省)在-2,-1,0,1这四个数中,最小的数是( )A.-2B.-1C.0D.1【考点】有理数、有理数的大小比较 【解答】A2. (2019年安徽省)2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为( )A.1.61×109B.1.61×1010C.1.61×1011D.1.61×1012【考点】科学记数法 【解答】B3.(2019年安徽省)据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是( )A.2019年B.2020年C.2021年D.2022年【考点】有理数的运算【解答】2019年全年国内生产总值为90.3×(1+6.6%)=96.2598万亿, 2020年全年国内生产总值为90.3×(1+6.6%)2=102.612947万亿, ∴应选B4.(2019年北京市)4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为( )A.0.439×106B.4.39×106C.4.39×105D.139×103【考点】科学记数法 【解答】选C5. (2019年北京市)在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A.-3B.-2C.-1D.1【考点】数轴上的点的平移、绝对值的几何意义 【解答】∵点A 表示数为a ,点B 表示数为2,点C 表示数为a+1,由题意可知,a <0, ∵CO=BO ,∴2|1|=+a ,解得1=a (舍)或3-=a ,故选A 6.(2019年四川省广安市)﹣2019的绝对值是( )A .﹣2019B .2019C .﹣D .【考点】绝对值的定义【解答】解:﹣2019的绝对值是:2019.故选:B .7.(2019年四川省广安市)第二届“一带一路”国际合作高峰论坛于2019年4月25日至27日在北京召开,“一带一路”建设进行5年多,中资金融机构为“一带一路”相关国家累计发放贷款250000000000元,重点支持了基础设施、社会民生等项目.数字250000000000用科学记数法表示,正确的是( ) A .0.25×1011B .2.5×1011C .2.5×1010D .25×1010【考点】科学记数法的表示方法【解答】解:数字2500 0000 0000用科学记数法表示,正确的是2.5×1011. 故选:B .8.(2019年乐山市)3-的绝对值是( ) ()A 3()B 3-()C 31 ()D 31- 【考点】绝对值的意义【解答】A9.(2019年重庆市)下列各数中,比﹣1小的数是( ) A .2B .1C .0D .﹣2【考点】有理数的大小比较 【解答】解:∵﹣2<﹣1<0<2, ∴比﹣1小的数是﹣2,故选:D .10.(2019年天津市)计算(-3)×9的结果等于( ) A. -27 B. -6 C. 27 D. 6 【考点】有理数的乘法运算 【解答】原式=-3×9=-27,故选A.11. (2019年天津市)据2019年3月21日《天津日报》报道:“伟大的变革---庆祝改革开放四十周年大型展览”3月20日圆满闭幕,自开幕以,现场观众累计约为4230000人次,将4230000用科学记数法表示为( )A. 0.423×107B.4.23×106C.42.3×105D.423×104 【考点】科学记数法的表示方法【解答】科学记数法表示为4.23×106,故选B.12. (2019年山东省滨州市)下列各数中,负数是( ) A .﹣(﹣2)B .﹣|﹣2|C .(﹣2)2D .(﹣2)0【考点】绝对值、零指数幂、相反数【解答】解:A、﹣(﹣2)=2,故此选项错误;B、﹣|﹣2|=﹣2,故此选项正确;C、(﹣2)2=4,故此选项错误;D、(﹣2)0=1,故此选项错误;故选:B.13. (2019年山东省德州市)-1的倒数是()2A. −2B. 1C. 2D. 12【考点】倒数【解答】解:-的到数是-2,故选:A.14. (2019年山东省德州市)据国家统计局统计,我国2018年国民生产总值(GDP)为900300亿元.用科学记数法表示900300亿是()A. 9.003×1012B. 90.03×1012C. 0.9003×1014D. 9.003×1013【考点】科学记数法的表示方法【解答】解:将900300亿元用科学记数法表示为:9.003×1013.故选:D.15. (2019年山东省菏泽市)下列各数中,最大的数是()A.﹣B.C.0 D.﹣2【考点】有理数大小比较【解答】解:﹣2<﹣<0<,则最大的数是,故选:B.16. (2019年山东省济宁市)下列四个实数中,最小的是()A.﹣B.﹣5 C.1 D.4【考点】有理数大小比较、估算【解答】解:根据实数大小比较的方法,可得﹣5<﹣<1<4,所以四个实数中,最小的数是﹣5.故选:B.17. (2019年山东省青岛市)﹣的相反数是()A.﹣B.﹣C.±D.【考点】相反数【解答】解:根据相反数、绝对值的性质可知:﹣的相反数是.故选:D.18. (2019年山东省青岛市)2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000m,把384000m用科学记数法可以表示为()A.38.4×104m B.3.84×105mC.0.384×10 6m D.3.84×106m【考点】科学记数法的表示方法【解答】解:科学记数法表示:384 000=3.84×105m故选:B.19. (2019年山东省枣庄市)点O,A,B,C在数轴上的位置如图所示,O为原点,AC=1,OA=OB.若点C所表示的数为a,则点B所表示的数为()A.﹣(a+1)B.﹣(a﹣1)C.a+1 D.a﹣1【考点】数轴、用字母表示数【解答】解:∵O为原点,AC=1,OA=OB,点C所表示的数为a,∴点A表示的数为a﹣1,∴点B表示的数为:﹣(a﹣1),故选:B.20. (2019年四川省达州市)﹣2019的绝对值是()A.2019 B.﹣2019 C.D.﹣【考点】绝对值【解答】解:﹣2019的绝对值是:2009.故选:A.21. (2019年四川省资阳市)﹣3的倒数是()A.﹣B.C.﹣3 D.3【考点】倒数【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:A .22.(2019年四川省资阳市)设=,则的取值范围是( )A .2<<3B .3<<4C .4<<5D .无法确定【考点】估算【解答】解:∵9<15<16, ∴,故选:B .23. (2019年云南省)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为( ) A.68.8×104 B.0.688×106 C.6.88×105 D.6.88×106 【考点】科学记数法的表示方法【解答】本题考查科学记数法较大数N a 10⨯,其中101<≤a ,N 为小数点移动的位数.∴5,88.6==N a ,故选C24. (2019年广西贵港市)计算(-1)3的结果是( ) A. −1 B. 1 C. −3 D. 3【考点】有理数的乘方运算【解答】解:(-1)3表示3个(-1)的乘积,所以(-1)3=-1. 故选:A .25. (2019年广西贺州市)﹣2的绝对值是( ) A .﹣2B .2C .D .﹣【考点】绝对值的定义 【解答】解:|﹣2|=2, 故选:B .26.(2019年广西贺州市)某图书馆有图书约985000册,数据985000用科学记数法可表示为( ) A .985×103B .98.5×104C .9.85×105D .0.985×106【考点】科学记数法的表示方法 【解答】解:985000=9.85×105, 故选:C .27.(2019年江苏省苏州市)5的相反数是( )A .15B .15-C .5D .5-【考点】相反数【解答】5的相反是为5- 故选D28.(2019年江苏省苏州市)苏州是全国重点旅游城市,2018年实现旅游总收入约为26 000 000万元,数据26 000 000用科学记数法可表示为( ) A .80.2610⨯ B .82.610⨯C .62610⨯D .72.610⨯【考点】科学记数法 【解答】726000000 2.610=⨯ 故选D29.(2019年江苏省泰州市)﹣1的相反数是( ) A .±1 B .﹣1C .0D .1【考点】相反数【解答】解:﹣1的相反数是1. 故选:D .30. (2019年江苏省扬州市)下列个数中,小于-2的数是( )【考点】估算【解答】根据二次根式的定义确定四个选项与-2的大小关系,可得故选:A.31. (2019年河南省)﹣的绝对值是( )A .﹣B .C .2D .﹣2【考点】绝对值的性质 【解答】解:|﹣|=,故选:B .32.(2019年河南省)成人每天维生素D 的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为( ) A .46×10﹣7B .4.6×10﹣7C .4.6×10﹣6D .0.46×10﹣5【考点】科学记数法【解答】解:0.0000046=4.6×10﹣6.故选:C.33.(2019年湖北省十堰市)下列实数中,是无理数的是()A.0 B.﹣3 C.D.【考点】无理数【解答】解:A、0是有理数,故A错误;B、﹣3是有理数,故B错误;C、是有理数,故C错误;D、是无理数,故D正确;故选:D.34. (2019年浙江省衢州市)在1,0,1,-9四个数中,负数是()2B. 0C. 1D. -9A. 12【考点】正数和负数的认识及应用<1,∴负数是-9.【解答】解:∵-9<0<12故答案为:D.35. (2019年浙江省衢州市)浙江省陆域面积为101800平方千米,其中数据101800用科学记数法表示为()A. 0.1018×105B. 1.018×105C. 0.1018×105D. 1.018×106【考点】科学记数法—表示绝对值较大的数【解答】解:∵101800=1.018×105.故答案为:B.36.(2019年浙江省温州市)计算:(﹣3)×5的结果是()A.﹣15 B.15 C.﹣2 D.2【考点】正数与负数相乘的法则【解答】解:(﹣3)×5=﹣15;故选:A.37. (2019年浙江省温州市)太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000 000 000用科学记数法表示为()A.0.25×1018B.2.5×1017C.25×1016D.2.5×1016【考点】科学记数法【解答】解:科学记数法表示:250 000 000 000 000 000=2.5×1017故选:B.38. (2019年甘肃省天水市)已知|a|=1,b是2的相反数,则a+b的值为()A.﹣3 B.﹣1 C.﹣1或﹣3 D.1或﹣3【考点】有理数的加法、相反数和绝对值的性质【解答】解:∵|a|=1,b是2的相反数,∴a=1或a=﹣1,b=﹣2,当a=1时,a+b=1﹣2=﹣1;当a=﹣1时,a+b=﹣1﹣2=﹣3;综上,a+b的值为﹣1或﹣3,故选:C.39.(2019年甘肃省天水市)自然界中的数学不胜枚举,如蜜蜂建造的蜂房既坚固又省料,其厚度为0.000073米,将0.000073用科学记数法表示为()A.73×10﹣6B.0.73×10﹣4C.7.3×10﹣4D.7.3×10﹣5【考点】科学记数法【解答】解:0.000073用科学记数法表示为7.3×10﹣5,故选:D.40. (2019年湖北省荆州市)下列实数中最大的是()A.B.πC.D.|﹣4|【考点】无理数、算术平方根根、绝对值的性质【解答】解:∵<π<<|﹣4|=4,∴所给的几个数中,最大的数是|﹣4|.故选:D.41. (2019年湖北省宜昌市)如图,A,B,C,D是数轴上的四个点,其中最适合表示无理数π的点是()A.点A B.点B C.点C D.点D【考点】无理数、数轴【解答】解:因为无理数π大于3,在数轴上表示大于3的点为点D;故选:D.42. (2019年甘肃省武威市)如图,数轴的单位长度为1,如果点A表示的数是﹣1,那么点B表示的数是()A.0 B.1 C.2 D.3【考点】数轴【解答】解:∵数轴的单位长度为1,如果点A表示的数是﹣1,∴点B表示的数是:3.故选:D.43.(2019年甘肃省武威市)下列整数中,与最接近的整数是()A.3 B.4 C.5 D.6【考点】无理数、估算【解答】解:∵32=9,42=16,∴3<<4,10与9的距离小于16与10的距离,∴与最接近的是3.故选:A.44.(2019年甘肃省武威市)华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A.7×10﹣7B.0.7×10﹣8C.7×10﹣8D.7×10﹣9【考点】科学记数法【解答】解:0.000000007=7×10﹣9;故选:D.45. (2019年内蒙古包头市)实数a,b在数轴上的对应点的位置如图所示.下列结论正确的是()A.a>b B.a>﹣b C.﹣a>b D.﹣a<b【考点】数轴【解答】解:∵﹣3<a <﹣2,1<b <2,∴答案A 错误; ∵a <0<b ,且|a |>|b |,∴a +b <0,∴a <﹣b ,∴答案B 错误; ∴﹣a >b ,故选项C 正确,选项D 错误. 故选:C . 二、填空题1.(2019年乐山市)21-的相反数是 . 【考点】相反数的意义 【解答】21 2.(2019年乐山市)某地某天早晨的气温是2-℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是 C ︒. 【考点】有理数的加减法【解答】因为-2+6-7=-3,所以答案是-3. 3.(2019年重庆市)计算:(π﹣3)0+()﹣1= .【考点】零指数幂、负整数指数幂【解答】解:原式=1+2=3,故答案为:3.4.(2019年重庆市)今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为 . 【考点】科学记数法【解答】解:25600000=2.56×107.故答案为:2.56×107. 5. (2019年山东省滨州市)计算:(﹣)﹣2﹣|﹣2|+÷= .【考点】负指数幂、绝对值、二次根式的混合运算 【解答】解:原式=,故答案为:2+4.6. (2019年山东省德州市)已知:表示不超过的最大整数.例:[4.8]=4,[-0.8]=-1.现定义:{}=-,例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}=______.【考点】定义新运算、不等式【解答】解:根据题意可得:{3.9}+{-1.8}-{1}=3.9-3-1.8+2-1+1=0.7,故答案为:0.7 7. (2019年山东省德州市)|-3|=3-,则的取值范围是______. 【考点】绝对值的意义、解不等式 【解答】解:3-≥0, ∴≤3;故答案为≤3;8. (2019年山东省菏泽市)计算()﹣1﹣(﹣3)2的结果是.【考点】乘方运算、负整数指数幂【解答】解:原式=2﹣9=﹣7.故答案为:﹣7.9. (2019年四川省达州市)2018年,中国贸易进出口总额为4.62万亿美元(美国约为4.278万亿美元),同比增长12.6%,占全球贸易总额的11.75%,贸易总额连续两年全球第一!数据4.62万亿用科学记数法表示为.【考点】科学记数法【解答】解:4.62万亿=4.62×1012,故答案为:4.62×101210. (2019年四川省资阳市)截止今年4月2日,华为官方应用市场“学习强国”APP下载量约为88300000次.将数88300000科学记数法表示为.【考点】科学记数法【解答】解:将88300000用科学记数法表示为:8.83×107.故答案为:8.83×107.11. (2019年云南省)若零上8℃记作+8℃,则零下6℃记作℃.【考点】正负数【解答】零上记为正数,则零下记为负数,故答案为-612. (2019年广西贵港市)有理数9的相反数是______.【考点】相反数【解答】解:9的相反数是-9;故答案为-9;13.(2019年广西贵港市)将实数3.18×10-5用小数表示为______.【考点】科学记数法【解答】解:3.18×10-5=0.0000318;故答案为0.0000318;14. (2019年江苏省泰州市)计算:(π-1)0=.【考点】零指数幂【解答】∵(a)0=1,(a≠0) ∴(π-1)0=1.故答案为:115.(2019年江苏省泰州市)2019年5月28日,我国“科学”号远洋科考船在最深约为11000m 的马里亚纳海沟南侧发现了近10片珊瑚林,将11000用科学记数法表示为.【考点】科学记数法【解答】11000=1.1×104, 故答案为:1.1×104. 16. (2019年江苏省无锡市)2019年6月29日,新建的无锡文化旅游城将盛大开业,开业后预计接待游客量约20 000 000人次,这个年接待客量可以用科学记数法表示为 人次.【考点】科学记数法【解答】20000000=2×107.17. (2019年内蒙古包头市)2018年我国国内生产总值(GDP )是900309亿元,首次突破90万亿大关,90万亿用科学记数法表示为 .【考点】科学记数法【解答】解:90万亿用科学记数法表示成:9.0×1013,故答案为:9.0×1013.三、解答题1.(2019年北京市)计算:()01142604sin π----++o (). 【考点】实数的运算、零次幂、负指数、三角函数特殊值、绝对值的意义 【解答】原式=423213+⨯+-332+= 2.(2019年四川省广安市)计算:(﹣1)4﹣|1﹣|+6tan30°﹣(3﹣)0. 【考点】实数的运算、零次幂、特殊角的三角函数值、绝对值的意义【解答】解:原式=1﹣(﹣1)+6×﹣1 =1﹣+1+2﹣1 =1+.3.(2019年乐山市)计算:()︒-+--⎪⎭⎫ ⎝⎛30sin 220192101π. 【考点】实数的运算、零次幂、负指数、三角函数特殊值【解答】解:原式21212⨯+-= 112+-=2=.4. (2019年山东省济宁市)计算:6sin60°﹣+()0+|﹣2018|【考点】实数的运算、零次幂、三角函数特殊值、绝对值的意义【解答】解:原式=6×, =2019.5. (2019年山东省枣庄市)对于实数a 、b ,定义关于“⊗”的一种运算:a ⊗b =2a +b ,例如3⊗4=2×3+4=10.(1)求4⊗(﹣3)的值;(2)若⊗(﹣y )=2,(2y )⊗=﹣1,求+y 的值.【考点】实数的运算、二元一次方程组、定义新运算【解答】解:(1)根据题中的新定义得:原式=8﹣3=5;(2)根据题中的新定义化简得:, ①+②得:3+3y =﹣3,则+y =﹣1.6. (2019年四川省达州市)计算:(π﹣3.14)0﹣()﹣2+﹣.【考点】实数的运算、零次幂、负指数、算术平方根、立方根【解答】解:原式=1﹣4+3﹣2=﹣2.7. (2019年云南省)计算: 1021453--+---)()(π 【考点】实数的运算、零次幂、负指数、算术平方根【解答】解:原式=9+1-2-1=7.8. (2019年广西贵港市)(1)计算:√4-(√3-3)0+(12)-2-4sin30°;【考点】实数的运算、算术平方根、零指数幂、负整数指数幂、三角函数值【解答】解:(1)原式=2-1+4-4×12=2-1+4-2=3;9.(2019年广西贺州市)计算:(﹣1)2019+(π﹣3.14)0﹣+2sin30°. 【考点】实数的运算、算术平方根、零指数幂、三角函数值【解答】解:原式=﹣1+1﹣4+2×=﹣4+1=﹣3.10. (2019年江苏省苏州市)计算:()2022π+--- 【考点】实数的运算、零次幂、绝对值的意义【解答】解:321=+-原式4=11. (2019年江苏省无锡市)计算:(1)1013()2--+-; (2)3233)(2a a a -⋅. 【考点】实数的运算、零次幂、绝对值的意义、负整数指数幂、整式的运算【解答】原式=3+2-1 原式=662a a -=4 =6a12. (2019年江苏省扬州市)计算或化简:(1)()︒45cos 4--3-80π (2)a a a -+-1112 【考点】实数的运算、零次幂、算术平方根、三角函数、分式的化简【解答】解原式=22-1-4×22 解原式 =112--a a =-1 =a +113. (2019年湖北省十堰市)计算:(﹣1)3+|1﹣|+. 【考点】实数的运算、零次幂、绝对值的意义、立方根【解答】解:原式=﹣1+﹣1+2=.14.(2019年浙江省衢州市)计算:|-3|+(π-3)0-+tan45° 【考点】算术平方根,实数的运算,0指数幂的运算性质,特殊角的三角函数值,实数的绝对值【解答】解:原式=3+1-2+1 =3。
中考数学真题知识分类练习试卷:实数(含答案)
实数
一、单选题
1.若实数m、n满足,且m、n恰好是等腰△ABC的两条边的边长,则△ABC 的周长是()
A.12
B.10
C.8
D.6
【答案】B
2.与最接近的整数是()
A.5
B.6
C.7
D.8
【答案】B
【解析】分析:由题意可知36与37最接近,即与最接近,从而得出答案.
详解:∵36<37<49,
∴<<,即6<<7,
∵37与36最接近,
∴与最接近的是6.
故选:B.
点睛:此题主要考查了无理数的估算能力,关键是整数与最接近,所以=6最接近.3.给出四个实数,2,0,-1,其中负数是()
A. B.2C.0D.-1
【答案】D
【解析】分析:根据负数的定义,负数小于0即可得出答案.
详解:根据题意:负数是-1,
故答案为: D.
点睛:此题主要考查了实数,正确把握负数的定义是解题关键.
4.实数在数轴上对应的点的位置如图所示,这四个数中最大的是()
A. B.C.D.
【答案】D
【解析】分析:根据实数的大小比较解答即可.
详解:由数轴可得:a<b<c<d,故选D.
第1页共6页。
2019年湖北省黄冈市中考数学试题分类解析【专题01】实数(含答案)
数学精品复习资料湖北黄冈中考数学试题分类解析汇编(12专题)专题1:实数(5)选择题1. (湖北省黄冈市2002年3分)将()()2013,2,61--⎪⎭⎫ ⎝⎛-这三个数按从大到小的顺序排列,正确的结果是【 】(A )()02-<161-⎪⎭⎫ ⎝⎛<()23- (B )161-⎪⎭⎫ ⎝⎛<()02-<()23-(C )()23-<()02-<161-⎪⎭⎫ ⎝⎛ (D )()02-<()23-<161-⎪⎭⎫ ⎝⎛【答案】A 。
【考点】负整数指数幂,零指数幂,平方的运算。
2. (湖北省黄冈市2003年3分)某公司员工分别住在A ,B ,C 三个住宅区,A 区有30人,B 区有15人,C 区有10人.三个区在同一条直线上,位置如图所示.该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在【 】.A .A 区B .B 区C .C 区D .A 、B 两区之间 【答案】A 。
【考点】比较线段的长短。
【分析】根据题意分别计算停靠点分别在各点是员工步行的路程和,选择最小的即可解:3. (湖北省黄冈市2004年3分)(﹣2)3与﹣23【 】A 、相等B 、互为相反数C 、互为倒数D 、它们的和为16【答案】A 。
【考点】有理数的乘方。
4. (湖北省黄冈市2004年3分)的结果是【 】A 2-B C 、)32-D 、)3【答案】B 。
【考点】实数的运算。
5. (湖北省黄冈市2009年3分)8的立方根为【 】 A .2B .±2C .4D .±4【答案】A 。
【考点】立方根。
6. (湖北省黄冈市2011年3分)计算()1221222-⎛⎫-+--- ⎪⎝⎭的正确结果是【 】A 、2B 、﹣2C 、6D 、10【答案】A 。
【考点】有理数的混合运算,有理数的乘方,负整数指数幂。
7. (湖北省黄冈市2012年3分)下列实数中是无理数的是【 】B. C. 0π D.【答案】D 。
2019年全国各地中考数学真题分类解析:实数
实数一、选择题1. ( 2018•安徽省,第1题4分)(﹣2)×3的结果是()A.﹣5 B.1 C.﹣6 D.6考点:有理数的乘法.分析:根据两数相乘同号得正,异号得负,再把绝对值相乘,可得答案.解答:解:原式=﹣2×3=﹣6.故选:C.点评:本题考查了有理数的乘法,先确定积的符号,再进行绝对值的运算.2. ( 2018•安徽省,第6题4分)设n为正整数,且n<<n+1,则n的值为()A. 5 B.6 C.7 D.8考点:估算无理数的大小.分析:首先得出<<,进而求出的取值范围,即可得出n的值.解答:解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.点评:此题主要考查了估算无理数,得出<<是解题关键.3. ( 2018•福建泉州,第1题3分)2018的相反数是()4. ( 2018•广东,第1题3分)在1,0,2,﹣3这四个数中,最大的数是()A.1B.0C.2D.﹣3考点:有理数大小比较.分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣3<0<1<2,故选:C.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.5. ( 2018•珠海,第1题3分)﹣的相反数是()﹣的相反数为.解:与﹣符号相反的数是,所以﹣的相反数是6. ( 2018•广西贺州,第1题3分)在﹣1、0、1、2这四个数中,最小的数是()A.0B.﹣1 C.1D.1考点:有理数大小比较分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣1<0<1<2,故选:B.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.7. ( 2018•广西贺州,第4题3分)未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()A.0.845×104亿元B.8.45×103亿元C.8.45×104亿元D.84.5×102亿元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将8450亿元用科学记数法表示为8.45×103亿元.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8. ( 2018•广西玉林市、防城港市,第1题3分)下面的数中,与﹣2的和为0的是()9. ( 2018•广西玉林市、防城港市,第2题3分)将6.18×10﹣3化为小数的是()10.(2018•新疆,第1题5分)下表是四个城市今年二月份某一天的平均气温:11.(2018•毕节地区,第3题3分)下列运算正确的是()+=12.(2018•武汉,第1题3分)在实数﹣2,0,2,3中,最小的实数是()13.(2018·台湾,第11题3分)如图数轴上有A、B、C、D四点,根据图中各点的位置,判断那一点所表示的数与11﹣239最接近?( )A.A B.B C.C D.D分析:先确定的范围,再求出11﹣239的范围,根据数轴上点的位置得出即可.解:∵62=36<39<42.25=6.52,∴6<39<6.5,∴12<239<13,∴﹣12>﹣239<﹣13,∴﹣1>11﹣239<﹣2,故选B.点评:本题考查了数轴和估算无理数的大小的应用,解此题的关键是求出11﹣239的范围.14. (2018•湘潭,第1题,3分)下列各数中是无理数的是()B,﹣,<A.﹣B.﹣C.D.考点:实数的大小的比较分析:根据无理数的定义进行估算解答即可.解答:A.,不成立;B.﹣2,成立;C.,不成立;D.,不成立,故答案为B.点评:此题主要考查了实数的大小的比较,解答此题要明确,无理数是不能精确地表示为两个整数之比的数,即无限不循环小数.17. (2019年江苏南京,第5题,2分) 8的平方根是()A.4 B.±4C.2D.考点:平方根的定义分析:直接根据平方根的定义进行解答即可解决问题.解答:∵,∴8的平方根是.故选D.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.18. (2018•扬州,第6题,3分)如图,已知正方形的边长为1,若圆与正方形的四条边都相切,则阴影部分的面积与下列各数最接近的是()(第8题图)20.(2018•呼和浩特,第7题3分)实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()21.(2018•滨州,第1题3分)估计在()根据二次根式的性质得出解:∵出在是知道和=323.(2018•菏泽,第3题3分)下列计算中,正确的是()=±3=3二.填空题1. ( 2018•安徽省,第11题5分)据报载,2019年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为2.5×107.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将25000000用科学记数法表示为2.5×107户.故答案为:2.5×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2. ( 2018•福建泉州,第8题4分)2019年6月,阿里巴巴注资1200000000元入股广州恒大,将数据1200000000用科学记数法表示为 1.2×109.3. ( 2018•福建泉州,第16题4分)已知:m、n为两个连续的整数,且m<<n,则m+n= 7 .先估算出∴3<的取值范围是解答此题的关键.4. ( 2018•广东,第12题4分)据报道,截止2019年12月我国民规模达618 000 000人.将618 000 000用科学记数法表示为 6.18×108.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将618 000 000用科学记数法表示为:6.18×108.故答案为:6.18×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5. ( 2018•珠海,第6题4分)比较大小:﹣2 >﹣3.6. ( 2018•广西玉林市、防城港市,第13题3分)3的倒数是..7.(2019年四川资阳,第11题3分)计算:+(﹣1)0= .考点:实数的运算;零指数幂.分析:分别根据数的开方法则、0指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=2+1=3.故答案为:3.点评:本题考查的是实数的运算,熟知数的开方法则、0指数幂的运算法则是解答此题的关键.8.(2018•新疆,第15题5分)规定用符号[x]表示一个实数的整数部分,例如[3.69]=3.[]=1,按此规定,[﹣1]= .先求出(∴3<∴2<﹣9.(2019年广东汕尾,第11题5分)4的平方根是.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.(2018•毕节地区,第21题8分)计算:(﹣)﹣2﹣|﹣﹣2|+(﹣1.414)0﹣3tan30°﹣.﹣﹣3×11. (2018•湘潭,第12题,3分)计算:()2﹣|﹣2|= 1 .12. (2018•泰州,第7题,3分)= 2 .=2三.解答题1. ( 2018•安徽省,第15题5分)计算:﹣|﹣3|﹣(﹣π)0+2018.考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用平方根定义化简,第二项利用绝对值的代数意义化简,第三项利用零指数幂法则计算,计算即可得到结果.解答:解:原式=5﹣3﹣1+2018=2018.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2. ( 2018•福建泉州,第18题9分)计算:(2﹣1)0+|﹣6|﹣8×4﹣1+.﹣8×3. ( 2018•广东,第17题6分)计算:+|﹣4|+(﹣1)0﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂.分析:本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3+4+1﹣2=6.点评:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.4. ( 2018•珠海,第11题6分)计算:()﹣1﹣(﹣2)0﹣|﹣3|+.﹣5. ( 2018•广西贺州,第19题(1)4分)(1)计算:(﹣2)0+(﹣1)2018+﹣sin45°;考点:零指数幂;二次根式的混合运算;特殊角的三角函数值.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用乘方的意义化简,第三项利用二次根式性质化简,最后一项利用特殊角的三角函数值计算即可得到结果;解答:解:(1)原式=1+1+﹣=2;点评:此题考查了零指数幂法则计算,第二项利用乘方的意义化简,第三项利用二次根式性质化简.6.(2018•广西玉林市、防城港市,第19题6分)计算:(﹣2)2﹣•+(sin60°﹣π)0.×7.(2018•新疆,第16题6分)计算:(﹣1)3++(﹣1)0﹣.+1=.8.(2018•温州,第17题10分)(1)计算:+2×(﹣5)+(﹣3)2+20180;(2)化简:(a+1)2+2(1﹣a)﹣;9.(2018•舟山,第17题6分)(1)计算:+()﹣2﹣4cos45°;(2)化简:(x+2)2﹣x(x﹣3)+4﹣4×=210.(2019年广东汕尾,第17题7分)计算:(+π)0﹣2|1﹣sin30°|+()﹣1.分析:原式第一项利用零指数幂法则计算,第二项利用特殊角的三角函数值及绝对值的代数意义化简,最后一项利用负指数幂法则计算即可得到结果.解:原式=1﹣2×+2=1﹣1+2=2.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.11.(2018•孝感,第19题6分)计算:(﹣)﹣2+﹣|1﹣|12.(2018•邵阳,第19题8分)计算:()﹣2﹣+2sin30°.13.(2018•四川自贡,第16题8分)计算:(3.14﹣π)0+(﹣)﹣2+|1﹣|﹣4cos45°.﹣14.(2018·云南昆明,第15题5分)计算:︒-+-+-45cos 221)3(|2|10)(π15.(2018·浙江金华,第1题6014cos4522⎛⎫++- ⎪⎝⎭ 【答案】4.【解析】16. (2018•益阳,第14题,6分)计算:|﹣3|+30﹣.分)计算:+18. (2018•泰州,第17题,12分)(1)计算:﹣24﹣+|1﹣4sin60°|+(π﹣)0;(2)解方程:2x2﹣4x﹣1=0.+2﹣x=19.(2018•扬州,第19题,8分)(1)计算:(3.14﹣π)0+(﹣)﹣2﹣2sin30°;(2)化简:﹣÷.﹣•﹣=20.(2018•呼和浩特,第17题5分)计算(1)计算:2cos30°+(﹣2)﹣1+|﹣|)原式=2×=﹣(21.(2018•菏泽,第15题6分)(1)计算:2﹣1﹣3tan30°+(2﹣)0+﹣3×=+。
全国各地2019年中考数学真题分类解析汇编 02实数
实数一、选择题1. ( 2018•安徽省,第1题4分)(﹣2)×3的结果是()A.﹣5 B.1 C.﹣6 D.6考点:有理数的乘法.分析:根据两数相乘同号得正,异号得负,再把绝对值相乘,可得答案.解答:解:原式=﹣2×3=﹣6.故选:C.点评:本题考查了有理数的乘法,先确定积的符号,再进行绝对值的运算.2. ( 2018•安徽省,第6题4分)设n为正整数,且n<<n+1,则n的值为()A. 5 B.6 C.7 D.8考点:估算无理数的大小.分析:首先得出<<,进而求出的取值范围,即可得出n的值.解答:解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.点评:此题主要考查了估算无理数,得出<<是解题关键.3. ( 2018•福建泉州,第1题3分)2018的相反数是()4. ( 2018•广东,第1题3分)在1,0,2,﹣3这四个数中,最大的数是()A.1B.0C.2D.﹣3考点:有理数大小比较.分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣3<0<1<2,故选:C.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.5. ( 2018•珠海,第1题3分)﹣的相反数是()﹣的相反数为.解:与﹣符号相反的数是,所以﹣的相反数是6. ( 2018•广西贺州,第1题3分)在﹣1、0、1、2这四个数中,最小的数是()A.0B.﹣1 C.1D.1考点:有理数大小比较分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣1<0<1<2,故选:B.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.7. ( 2018•广西贺州,第4题3分)未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()A.0.845×104亿元B.8.45×103亿元C.8.45×104亿元D.84.5×102亿元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将8450亿元用科学记数法表示为8.45×103亿元.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8. ( 2018•广西玉林市、防城港市,第1题3分)下面的数中,与﹣2的和为0的是()9. ( 2018•广西玉林市、防城港市,第2题3分)将6.18×10﹣3化为小数的是()10.(2018•新疆,第1题5分)下表是四个城市今年二月份某一天的平均气温:11.(2018•毕节地区,第3题3分)下列运算正确的是()+=12.(2018•武汉,第1题3分)在实数﹣2,0,2,3中,最小的实数是()13.(2018·台湾,第11题3分)如图数轴上有A、B、C、D四点,根据图中各点的位置,判断那一点所表示的数与11﹣239最接近?( )A.A B.B C.C D.D分析:先确定的范围,再求出11﹣239的范围,根据数轴上点的位置得出即可.解:∵62=36<39<42.25=6.52,∴6<39<6.5,∴12<239<13,∴﹣12>﹣239<﹣13,∴﹣1>11﹣239<﹣2,故选B.点评:本题考查了数轴和估算无理数的大小的应用,解此题的关键是求出11﹣239的范围.14. (2018•湘潭,第1题,3分)下列各数中是无理数的是()B,﹣,<A.﹣B.﹣C.D.考点:实数的大小的比较分析:根据无理数的定义进行估算解答即可.解答:A.,不成立;B.﹣2,成立;C.,不成立;D.,不成立,故答案为B.点评:此题主要考查了实数的大小的比较,解答此题要明确,无理数是不能精确地表示为两个整数之比的数,即无限不循环小数.17. (2019年江苏南京,第5题,2分) 8的平方根是()A.4 B.±4C.2D.考点:平方根的定义分析:直接根据平方根的定义进行解答即可解决问题.解答:∵,∴8的平方根是.故选D.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.18. (2018•扬州,第6题,3分)如图,已知正方形的边长为1,若圆与正方形的四条边都相切,则阴影部分的面积与下列各数最接近的是()(第8题图)20.(2018•呼和浩特,第7题3分)实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()21.(2018•滨州,第1题3分)估计在()根据二次根式的性质得出解:∵出在是知道和=323.(2018•菏泽,第3题3分)下列计算中,正确的是()=±3=3二.填空题1. ( 2018•安徽省,第11题5分)据报载,2019年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为2.5×107.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将25000000用科学记数法表示为2.5×107户.故答案为:2.5×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2. ( 2018•福建泉州,第8题4分)2019年6月,阿里巴巴注资1200000000元入股广州恒大,将数据1200000000用科学记数法表示为 1.2×109.3. ( 2018•福建泉州,第16题4分)已知:m、n为两个连续的整数,且m<<n,则m+n= 7 .先估算出∴3<的取值范围是解答此题的关键.4. ( 2018•广东,第12题4分)据报道,截止2019年12月我国民规模达618 000 000人.将618 000 000用科学记数法表示为 6.18×108.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将618 000 000用科学记数法表示为:6.18×108.故答案为:6.18×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5. ( 2018•珠海,第6题4分)比较大小:﹣2 >﹣3.6. ( 2018•广西玉林市、防城港市,第13题3分)3的倒数是..7.(2019年四川资阳,第11题3分)计算:+(﹣1)0= .考点:实数的运算;零指数幂.分析:分别根据数的开方法则、0指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=2+1=3.故答案为:3.点评:本题考查的是实数的运算,熟知数的开方法则、0指数幂的运算法则是解答此题的关键.8.(2018•新疆,第15题5分)规定用符号[x]表示一个实数的整数部分,例如[3.69]=3.[]=1,按此规定,[﹣1]= .先求出(∴3<∴2<﹣9.(2019年广东汕尾,第11题5分)4的平方根是.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.(2018•毕节地区,第21题8分)计算:(﹣)﹣2﹣|﹣﹣2|+(﹣1.414)0﹣3tan30°﹣.﹣﹣3×11. (2018•湘潭,第12题,3分)计算:()2﹣|﹣2|= 1 .12. (2018•泰州,第7题,3分)= 2 .=2三.解答题1. ( 2018•安徽省,第15题5分)计算:﹣|﹣3|﹣(﹣π)0+2018.考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用平方根定义化简,第二项利用绝对值的代数意义化简,第三项利用零指数幂法则计算,计算即可得到结果.解答:解:原式=5﹣3﹣1+2018=2018.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2. ( 2018•福建泉州,第18题9分)计算:(2﹣1)0+|﹣6|﹣8×4﹣1+.﹣8×3. ( 2018•广东,第17题6分)计算:+|﹣4|+(﹣1)0﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂.分析:本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3+4+1﹣2=6.点评:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.4. ( 2018•珠海,第11题6分)计算:()﹣1﹣(﹣2)0﹣|﹣3|+.﹣5. ( 2018•广西贺州,第19题(1)4分)(1)计算:(﹣2)0+(﹣1)2018+﹣sin45°;考点:零指数幂;二次根式的混合运算;特殊角的三角函数值.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用乘方的意义化简,第三项利用二次根式性质化简,最后一项利用特殊角的三角函数值计算即可得到结果;解答:解:(1)原式=1+1+﹣=2;点评:此题考查了零指数幂法则计算,第二项利用乘方的意义化简,第三项利用二次根式性质化简.6.(2018•广西玉林市、防城港市,第19题6分)计算:(﹣2)2﹣•+(sin60°﹣π)0.×7.(2018•新疆,第16题6分)计算:(﹣1)3++(﹣1)0﹣.+1=.8.(2018•温州,第17题10分)(1)计算:+2×(﹣5)+(﹣3)2+20180;(2)化简:(a+1)2+2(1﹣a)﹣;9.(2018•舟山,第17题6分)(1)计算:+()﹣2﹣4cos45°;(2)化简:(x+2)2﹣x(x﹣3)+4﹣4×=210.(2019年广东汕尾,第17题7分)计算:(+π)0﹣2|1﹣sin30°|+()﹣1.分析:原式第一项利用零指数幂法则计算,第二项利用特殊角的三角函数值及绝对值的代数意义化简,最后一项利用负指数幂法则计算即可得到结果.解:原式=1﹣2×+2=1﹣1+2=2.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.11.(2018•孝感,第19题6分)计算:(﹣)﹣2+﹣|1﹣|12.(2018•邵阳,第19题8分)计算:()﹣2﹣+2sin30°.13.(2018•四川自贡,第16题8分)计算:(3.14﹣π)0+(﹣)﹣2+|1﹣|﹣4cos45°.﹣14.(2018·云南昆明,第15题5分)计算:︒-+-+-45cos 221)3(|2|10)(π15.(2018·浙江金华,第1题6014cos4522⎛⎫++- ⎪⎝⎭ 【答案】4.【解析】16. (2018•益阳,第14题,6分)计算:|﹣3|+30﹣.分)计算:+18. (2018•泰州,第17题,12分)(1)计算:﹣24﹣+|1﹣4sin60°|+(π﹣)0;(2)解方程:2x2﹣4x﹣1=0.+2﹣x=19.(2018•扬州,第19题,8分)(1)计算:(3.14﹣π)0+(﹣)﹣2﹣2sin30°;(2)化简:﹣÷.﹣•﹣=20.(2018•呼和浩特,第17题5分)计算(1)计算:2cos30°+(﹣2)﹣1+|﹣|)原式=2×=﹣(21.(2018•菏泽,第15题6分)(1)计算:2﹣1﹣3tan30°+(2﹣)0+﹣3×=+。
2019年全国中考真题题汇编:实数的有关概念和性质及参考答案
一、选择题1.(2019·泰州) -1的相反数是( ) A .±1 B .﹣1 C .0 D .1【答案】D【解析】只有符号不同的两个数叫做互为相反数,-(-1)=1,故选D. 2.(2019·苏州) 5的相反数是( )A .15B .15-C .5D .-5【答案】D【解析】本题考查了有理数的相反数求法,()333-=--=,故选D.3.(2019·绍兴)5-的绝对值是 ( ) A.5 B.-5 C.51 D.51- 【答案】A4.(2019·嘉兴)﹣2019的相反数是( ) A .2019 B .﹣2019 C . D .﹣【答案】A5. (2019·威海) -3的相反数是( )A .-3B .3C .13D .13-【答案】B【解析】只有符号不同的两个数叫做互为相反数.由相反数的定义可知,-3的相反数是3,故选B .6.(2019·盐城)如图,数轴上点A 表示的数是( )A.-1B.0C.1D.2【答案】C【解析】数轴上的点与实数一一对应. 故选C.7.(2019·青岛)的相反数是 【答案】D【解析】本题考查相反数的概念,数a 的相反数为-a ,所以,故选D . 8.(2019·江西)2的相反数是( ) A.2 B.-2 C.21 D.21- 【答案】B【解析】利用相反数的定义“a 的相反数是-a ”求值. 9.(2019·山西)-3的绝对值是( ) A.-3B.3C.13-D.13【答案】B【解析】负数的绝对值是它的相反数,∴|-3|=3,故选B. 10.(2019·德州)-12的倒数是() A .-2B .12C .1D .1【答案】A【解析】本题考查了倒数的定义,乘积为1的两个数互为倒数,由于-12×(-2)=1,故选A . 11.(2019·滨州)下列各数中,负数是( )A .-(-2)B .2--C .(-2)2D .(-2)0【答案】B【解析】∵-(-2)=2,2--=-2,(-2)2=4,(-2)0=1,∴负数是2--.故选B .12.(2019·遂宁)-的值为 ( )C. D. 2 【答案】B【解析】负数的绝对值是它的相反数.13.(2019·广元) -8的相反数是( )A.18-B.-8C.8 D18【答案】C【解析】负数的相反数是正数,且绝对值是相同的,只有符号不同;故选C. 14.(2019·淮安)-3的绝对值是( )A.31-B.-3C.31D.3 【答案】D【解析】-3的绝对值是3.15.(2019·株洲)﹣3的倒数是( )A .13-B .13C .﹣3D .3 【答案】A【解析】根据倒数的定义,乘积为1的两个数互为倒数,13)()13-⨯-=(,所以选A 16.(2019·长沙)下列个数中,比-3小的数是 【 】A .﹣5B .﹣1C .0D .1【答案】A【解析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.-5<-3<-1<0<1,所以比-3小的数是-5,故本题选:A . 17.(2019·益阳)-6的倒数是( )A.61-B.61C.-6D.6 【答案】A【解析】-6的倒数是61-. 18.(2019·娄底) 2019的相反数是( )A. -2019 B . 2019C .12019 D . 12019- 【答案】A【解析】根据相反数的定义“只有符号不同的两个数互为相反数”或相反数的性质“互为相反数的两个数之和为0”来解答即可. 19.(2019·衡阳)-34绝对值是( ) A. -34 B. 34C. -43D. 43【答案】B .【解析】由负数的绝对值是它的相反数,得-34绝对值是34,故选B . 20.(2019·常德)下列各数中比3大比4小的无理数是( )A B C .3.1 D .103【答案】A【解析】3<4是无理数,故选项A 正确.21.(2019·武汉)实数2019的相反数是( )A .2019B .-2019C .20191D .20191【答案】B【解析】∵a 的相反数是-a ,∴2019的相反数是-2019.故选B . 22.(2019·黄冈)-3的绝对值是( )A.-3B.-13C.3D.±3【答案】C【解析】根据绝对值的概念知-3的绝对值是3,故选C .23.(2019·陇南)如图,数轴的单位长度为1,如果点A 表示的数是﹣1,那么点B 表示的数是( )A .0B .1C .2D .3【答案】D .【解析】由数轴可得,点A 与点B 相差四个单位长度,∵点A 表示的数为-1,∴点B 表示的数为-1+4=3,故选:D .24.(2019·安徽) 在﹣2,﹣1,0,1这四个数中,最小的数是 A. ﹣2 B. ﹣1 C. 0 D. 1 【答案】A【解析】本题考查了有理数的大小比较,应注意的是比较两个负数的大小,解题的关键是掌握有理数比较大小的方法.首先4个数中有正、负数和零,由于要求最小的数,所以只需要比较出负数中最小的数就可以了,根据 “两个负数,绝对值大的反而小”,可得最小的数是-2.∵1>0>-1>-2,∴最小的数是-2.故选A . 25. (2019·怀化)下列实数中,哪个数是负数( )D.-1 【答案】D.【解析】由于-1<0,所以-1为负数.故选D.26. (2019·岳阳)-2019的绝对值是( )A.2019 B.-2019 C.12019D.12019【答案】A【解析】根据一个负数的绝对值等于它的相反数,得|-2019|=2019,故选A.27. (2019·无锡)5的相反数是()-5 B. 5 C.15-D.15【答案】A【解析】本题考查了相反数的定义,5相反数为-5 ,故选A.28. (2019·滨州)下列各数中,负数是()A.-(-2)B.2--C.(-2)2D.(-2)0【答案】B【解析】∵-(-2)=2,2--=-2,(-2)2=4,(-2)0=1,∴负数是2--.故选B.29. (2019·济宁)下列四个实数中,最小的是()A.-2 B.-5 C.1 D.4【答案】B【解析】:根据有理数的大小比较法则可知:-5<-2<1<4.30.(2019·聊城))A.-B. C.【答案】D【解析】只有符号不同的两个数互为相反数,的相反数为-(,故选D.31. (2019·泰安) 在实数|-3.14|,-3,π中,最小的数是()A.B.-3C.|-3.14|D.π【答案】B【解析】四个数中,有2个正数:|-3.14|=3.14,π,两个负数:-3,而|-3|=3,|1.732,∵3>1.732,∴-3<故选B.32. (2019·潍坊) 2019的倒数的相反数是()A.-2019 B.12019-C.12019 D.2019【答案】B【解析】2019的倒数为12019,而12019的相反数为12019-,故选B.33.(2019·潍坊)利用教材中的计算器依次按键如下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5 B.2.6 C.2.8 D.2.9【答案】B【解析】由计算器按键可知本题是计算的近似值,分别计算四个数的平方可得:2.52=6.25,2.62=6.76,2.82=7.84,2.92=8.41,根据计算结果可知最接近于7的数为6.76≈2.6,故选择B.34. (2019·枣庄)点O,A,B,C 在数轴上的位置如图所示,O 为原点,AC =1,OA =OB,若点C 所表示的数为a,则点B 所表示的数为 A.-(a+1)B.-(a -1)C.a+1D.a -1第10题图【答案】B【解析】∵点C 所表示的数为a,AC =1,点A 在点C 的左边,∴点A 所表示的数为(a -1),∵OA =OB,∴点A 和点B所表示的数互为相反数,故点B 所表示的数为-(a -1),故选B.35.(2019·淄博)与下面科学计数器的按键顺序: 对应的任务是( )A.460.6125⨯+B.450.6126⨯+ C.120.6564⨯÷+ D.1250.646⨯+【答案】B【解析】由计算器中输入顺序,对应的任务是450.6126⨯+,故选B.36. (2019·淄博) 比-2小1的实数是( ) A.-3 B.3C.-1D.1【答案】A.【解析】由题意可列出:-2-1=-(2+1)=-3. 即比-2小1的数为-3. 故选:A .37. (2019·达州) -2019的绝对值是( )A .2019 B. -2019 C. 20191 D.20191-【答案】A【解析】负数的绝对值是它的相反数,所以-2019的绝对值是-(-2019)=2019.38. (2019·乐山) 3-的绝对值是( )A .3B .-3C .13 D .31-【答案】A【解析】本题考查了有理数的绝对值求法,()333-=--=,故选A.39. (2019·乐山) a -一定是( )A .正数B .负数C .0D .以上选项都不正确 【答案】D【解析】本题考查了有理数相反数的求法,a -的符号由字母a 的符号确定:当a 为正数,则a -一定是负数;当a 为0,则a -一定是0;当a 为负数,则a -一定是正数.40.(2019·凉山) 1.-2的相反数是( )A.2B.-2C.21D.21-【答案】A【解析】-2的相反数是2,故选A.41. (2019·眉山)下列四个数中,是负数的是( )A.|-3| B.-(-3) C.(-3)2 D.【答案】D【解析】解:A.|-3|=3,是正数,故A不合题意;B.-(-3)=3,是正数,故B不合题意;C.(-3)2=9,是正数,故C不合题意;D.D符合题意,故选D.42 (2019·攀枝花)(-1)2等于()A.-1 B.1 C.-2 D.2【答案】B.【解析】负数的隅次方是正数,所以(-1)2=1,故选B.43.(2019·攀枝花)在0,-1,2,-3这四个数中,绝对值最小的数是()A.0 B.-1 C.2 D.-3【答案】A.【解析】绝对值最小的数是0,故选A.44. (2019·自贡)- 2019的倒数是()A.-2019B.C.D.2019【答案】B.【解析】∵a的倒数是,∴-2009的倒数是.故选B.45. (2019·自贡·)实数m,n在数轴上对应点的位置如图所示,则下列判断正确的是()A.|m|<1B.1-m >1C.mn >0D.m+1>0【答案】B.【解析】由数轴可知,m <-1<0,n >1>0.∴|m|>1,mn <0,m+1<0,-m >0,∴1-m >1.∴选项A,C,D 错误,正确的是选项B.故选B.46. (2019·天津)计算()93-⨯ 的结果等于 ()A. -27B. -6C. 27D. 6【答案】A【解析】一正一负相乘,先确定积的符号为负,再把绝对值相乘,绝对值为27.所以答案为 A.47. (2019·天津)估计33的值在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间【答案】D 【解析】6335363325<<∴<< ,故选D.48. (2019·湖州)数2的倒数是( )A .-2B .2C .-12 D .12【答案】D .【解析】利用“乘积为1的两个数互为倒数”的概念进行判断,∵2×12=1,∴2的倒数是12,故选D.49. (2019·金华)实数4的相反数是()A.14-B. -4C.14 D.4【答案】B.【解析】由a的相反数是-a,得实数4的相反数是-4,故选B.50.(2019·金华)某地一周前四天每天的最高气温与最低气温如下表,则这四天中温差最大的是()A. 星期一B.星期二C.星期三D.星期四【答案】C.【解析】温差=最高气温-最低气温.故选C.51. (2019·宁波) -2的绝对值为()A.-12 B.2 C.12 D.-2【答案】B【解析】负数的绝对值是它的相反数,|-2|=2,故选B.52. (2019·衢州) 在12,0,1,一9四个数中,负数是() A. 12B.0C.1D.-9【答案】D【解析】本题考查负数的概念,不含多重符号的数,含有负号的数是负数,在这四个数中,只有-9带有负号,所以负数是-9,故选D.53.(2019·重庆B 卷)5的绝对值是( ) A.5 B.-5 C.51 D.15【答案】A【解析】正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数.所以5的绝对值是5.故选A.54. (2019·重庆A 卷)下列各数中,比-1小的数是 ( )A .2B .1C .0D .-2【答案】D .【解析】利用“正数大于负数,0大于负数,两个负数,绝对值大的反而小”的原则来判断,而1、2、0都比-1大,故选D .二、填空题1.(2019·嘉兴)数轴上有两个实数a ,b ,且a >0,b <0,a +b <0,则四个数a ,b ,﹣a ,﹣b 的大小关系为 (用“<”号连接).【答案】b a a b <-<<【解析】因为0a >,0b <,故有a b >,又因为0a b +<,说明a 的绝对值小于b 的绝对值,故可得到b a a b <-<<.2.(2019·常德) 数轴上表示-3的点到原点的距离是 .【答案】3【解析】根据数轴上表示一个点到原点的距离,是指表示这个数的点与原点的线段的长度,可知-3的点到原点的距离是3.3. (2019·聊城) 计算:115324⎛⎫--÷⎪⎝⎭________. 【答案】23- 【解析】原式=542=653-⨯-4. (2019·聊城) 数轴上O,A 两点的距离为4,一动点P 从点A 出发,按以下规律跳动:第1次跳动到AO 的中点A1处,第2次从A1点跳动到A1O 的中点A2处,第3次从A2点跳动到A2O 的中点A3处,按照这样的规律继续跳动到点A4,A5,A6,…,An(n ≥3,n 是整数)处,那么线段AnA 的长度为________(n ≥3,n 是整数).【答案】4-212n -【解析】∵AO =4,∴OA1=2,OA2=1,OA3=12,OA4=212,可推测OAn =212n -,∴AnA =AO =OAn =4-212n -.5. (2019·乐山) 21-的相反数是 ( ) . 【答案】12【解析】21-的相反数是-(21-)=12,故答案为12.6、(2019·乐山)某地某天早晨的气温是2-℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是 C ︒.【答案】-3【解析】2673-+-=-,故答案为-3.7. (2019·攀枝花)|-3|的相反数是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数
一、单选题
1.若实数m、n满足,且m、n恰好是等腰△ABC的两条边的边长,则△ABC 的周长是()
A. 12
B. 10
C. 8
D. 6
【来源】江苏省宿迁市2018年中考数学试卷
【答案】B
2.与最接近的整数是()
A. 5
B. 6
C. 7
D. 8
【来源】山东省淄博市2018年中考数学试题
【答案】B
【解析】分析:由题意可知36与37最接近,即与最接近,从而得出答案.
详解:∵36<37<49,
∴<<,即6<<7,
∵37与36最接近,
∴与最接近的是6.
故选:B.
点睛:此题主要考查了无理数的估算能力,关键是整数与最接近,所以=6最接近.3.给出四个实数,2,0,-1,其中负数是()
A. B. 2 C. 0 D. -1
【来源】浙江省温州市2018年中考数学试卷
【答案】D
【解析】分析: 根据负数的定义,负数小于0 即可得出答案.
详解: 根据题意:负数是-1,
故答案为:D.
点睛: 此题主要考查了实数,正确把握负数的定义是解题关键.
4.实数在数轴上对应的点的位置如图所示,这四个数中最大的是()
A. B. C. D.
【来源】四川省成都市2018年中考数学试题
【答案】D
【解析】分析:根据实数的大小比较解答即可.
详解:由数轴可得:a<b<c<d,故选D.
点睛:此题考查实数大小比较,关键是根据实数的大小比较解答.
5.估计的值在()
A. 5和6之间
B. 6和7之间
C. 7和8之间
D. 8和9之间
【来源】天津市2018年中考数学试题
【答案】D
6.的算术平方根为()
A. B. C. D.
【来源】贵州省安顺市2018年中考数学试题
【答案】B
【解析】分析:先求得的值,再继续求所求数的算术平方根即可.
详解:∵=2,而2的算术平方根是,∴的算术平方根是,
故选B.
点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.学科&网
7.的值等于()
A. B. C. D.
【来源】江苏省南京市2018年中考数学试卷
【答案】A
8.下列无理数中,与最接近的是()
A. B. C. D.
【来源】江苏省南京市2018年中考数学试卷
【答案】C
【解析】分析:根据无理数的定义进行估算解答即可.
详解:4=,与最接近的数为,故选:C.
点睛:本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.
9.已知: 表示不超过的最大整数,例: ,令关于的函数
(是正整数),例:=1,则下列结论错误
..的是()
A. B.
C. D. 或1
【来源】湖南省娄底市2018年中考数学试题
【答案】C
10.估计的值应在()
A. 1和2之间
B. 2和3之间
C. 3和4之间
D. 4和5之间
【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)
【答案】B
【解析】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围.
【详解】=,=,
而,4<<5,所以2<<3,
所以估计的值应在2和3之间,故选B.
【点睛】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.
11.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合),现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图),若有34枚图钉可供选用,则最多可以展示绘画作品( )
A. 16张
B. 18张
C. 20张
D. 21张
【来源】2018年浙江省绍兴市中考数学试卷解析
【答案】D
二、填空题
12.化简(-1)0+()-2-+=________________________.
【来源】湖北省黄冈市2018年中考数学试题
【答案】-1
【解析】分析:直接利用负指数幂的性质以及零指数幂的性质、算术平方根的性质分别化简得出答案.
详解:原式=1+4-3-3=-1.故答案为:-1.
点睛:此题主要考查了实数运算,正确化简各数是解题关键.
13.已知一个正数的平方根是和,则这个数是__________.
【来源】四川省凉山州2018年中考数学试题
【答案】
【解析】分析:由于一个非负数的平方根有2个,它们互为相反数.依此列出方程求解即可.详解:根据题意可知:3x-2+5x+6=0,解得x=-,所以3x-2=-,5x+6=,
∴(±)2=故答案为:.
点睛:本题主要考查了平方根的逆运算,平时注意训练逆向思维.
14.用教材中的计算器进行计算,开机后依次按下.把显示结果输人下侧的程序中,则输出的结果是____________.
【来源】山东省潍坊市2018年中考数学试题
【答案】34+9.
15.对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是_____.
【来源】浙江省金华市2018年中考数学试题
【答案】﹣1
【解析】分析:根据新定义的运算法则即可求出答案.
详解:∵1*(-1)=2,∴,即a-b=2
∴原式==−(a-b)=-1故答案为:-1
点睛:本题考查代数式运算,解题的关键是熟练运用整体的思想,本题属于基础题型.16.观察下列各式:
,
,
,
……
请利用你所发现的规律,
计算+++…+,其结果为_______.
【来源】山东省滨州市2018年中考数学试题
【答案】
17.计算:__________.
【来源】2018年甘肃省武威市(凉州区)中考数学试题
【答案】0
18.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题
【答案】4035
19.计算:______________.
【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)
【答案】3
三、解答题
20.计算:(﹣2)2+20180﹣
【来源】江苏省连云港市2018年中考数学试题
【答案】﹣1
【解析】分析:首先计算乘方、零次幂和开平方,然后再计算加减即可.
详解:原式=4+1-6=-1.
点睛:此题主要考查了实数的运算,关键是掌握乘方的意义、零次幂计算公式和二次根式的性质.
21.计算:
【来源】江苏省宿迁市2018年中考数学试卷
【答案】5
22.计算:
【答案】0
【解析】分析:先分别计算0次幂、负整数指数幂和立方根,然后再进行加减运算即可. 详解:原式=1-2+2=0
23.(1)计算:;(2)化简:(m+2)2 +4(2-m)
【答案】(1)5-;(2)m2+12
24.计算.
【答案】13.
25.计算:.
【答案】3
26.计算:.
【答案】
27.计算:+(﹣2018)0﹣4sin45°+|﹣2|.
【答案】3
28.计算:.
【答案】4.
29.(1)计算:sin30°+(2018﹣)0﹣2﹣1+|﹣4|;
(2)化简:(1﹣)÷.
【答案】(1)5;(2)x+1.
30.对于任意实数、,定义关于“”的一种运算如下:.例如
.
(1)求的值;
(2)若,且,求的值.
【答案】(1);(2).
31.计算: .
【答案】10
32.(1)计算:.(2)解方程:.
【答案】(1)2;(2),.
33.计算:
【答案】7
34.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.
(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.
【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.
35.计算:|﹣2|﹣+23﹣(1﹣π)0.
【答案】6。