河北省唐山市路南区2019-2020学年度第一学期期中检测九年级数学试卷(有答案)

合集下载

河北省部分学校2019-2020学年九年级(上)期中数学试卷(含解析)

河北省部分学校2019-2020学年九年级(上)期中数学试卷(含解析)

2019-2020学年河北省部分学校九年级(上)期中数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列四个图案中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.2.下列方程中是一元二次方程的是()A.2x+1=0B.x2+y=1C.x2+2=0D.=13.已知关于x的一元二次方程kx2﹣2x﹣1=0有实数根,若k为非正整数,则k等于()A.B.0C.0或﹣1D.﹣14.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是()A.﹣4<x<1B.x<﹣3或x>1C.x<﹣4或x>1D.﹣3<x<15.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(b,a)C.(﹣b,a)D.(b,﹣a)6.如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=25°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()A.35°B.40°C.45°D.50°7.现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:4★5=42﹣3×4+5,若x★2=6,则实数x的值是()A.﹣4或﹣1B.4或﹣1C.4或﹣2D.﹣4或28.《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x尺,根据题意,可列方程为()A.82+x2=(x﹣3)2B.82+(x+3)2=x2C.82+(x﹣3)2=x2D.x2+(x﹣3)2=829.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A.B.C.D.10.如图为函数y=ax2+bx+c与y=x的图象,下列结论:(1)b2﹣4ac>0;(2)3b+c+6=0;(3)当1<x<3时,x2+(b﹣1)x+c<0;(4).其中正确的个数为()A.1B.2C.3D.4二、填空题(每题3分,满分15分,将答案填在答题纸上)11.二次函数y=(x+2)2+3的顶点坐标是.12.关于x的方程x2﹣x﹣n=0没有实数根,则抛物线y=x2﹣x﹣n的顶点在第象限.13.AB是⊙O的直径,C,D在⊙O上且分布在AB两侧,C是直径AB所对弧的一个三等分点,则∠BDC=.14.如图,在平行四边形ABCD中,AB<AD,∠C=150°,CD=8,以AB为直径的⊙O 交BC于点E,则阴影部分的面积为.15.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2020的直角顶点的坐标为.三、解答题:共75.解答应写出文字说明、证明过程或演算步骤.16.解方程:(1)x2﹣6x+9=0(2)x2+x=2(x+1)17.关于x的一元二次方程x2﹣mx+m﹣1=0.(1)求证:方程总有两个实数根;(2)若方程有一根大于3,求m的取值范围.18.某校为了解九年级学生的体育达标情况,随机抽取50名九年级学生进行体育达标项目测试,测试成绩如下表,请根据表中的信息,解答下列问题:(1)该校九年级有450名学生,估计体育测试成绩为25分的学生人数;(2)该校体育老师要对本次抽测成绩为23分的甲、乙、丙、丁4名学生进行分组强化训练,要求两人一组,求甲和乙恰好分在同一组的概率.(用列表或树状图方法解答)测试成绩(分)2325262830人数(人)4181585 19.如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB 向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s 的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过多少秒,四边形APQC的面积最小.20.随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.21.如图,已知AB是⊙O的直径,AC,BC是⊙O的弦,OE∥AC交BC于E,过点B作⊙O的切线交OE的延长线于点D,连接DC并延长交BA的延长线于点F.(1)求证:DC是⊙O的切线;(2)若∠ABC=30°,AB=8,求线段CF的长.22.已知抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2.(1)请结合函数图象确定实数a的取值范围;(2)已知抛物线y=kx2+(2k+1)x+2恒过定点,求出定点坐标.23.如图,抛物线C1:y=x2﹣2x与抛物线C2:y=ax2+bx开口大小相同、方向相反,它们相交于O,C两点,且分别与x轴的正半轴交于点B,点A,OA=2OB.(1)求抛物线C2的解析式;(2)在抛物线C2的对称轴上是否存在点P,使PA+PC的值最小?若存在,求出点P的坐标,若不存在,说明理由;(3)M是直线OC上方抛物线C2上的一个动点,连接MO,MC,M运动到什么位置时,△MOC面积最大?并求出最大面积.2019-2020学年河北省部分学校九年级(上)期中数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列四个图案中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.【分析】根据中心对称图形和轴对称图形的定义逐个判断即可.【解答】解:A、是中心对称图形,不是轴对称图形,故本选项符合题意;B、不是中心对称图形,是轴对称图形,故本选项不符合题意;C、不是中心对称图形,是轴对称图形,故本选项不符合题意;D、是中心对称图形,也是轴对称图形,故本选项不符合题意;故选:A.【点评】本题考查了中心对称图形和轴对称图形的定义,能熟记定义的内容是解此题的关键.2.下列方程中是一元二次方程的是()A.2x+1=0B.x2+y=1C.x2+2=0D.=1【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.【解答】解:A、该方程是一元一次方程,故本选项错误.B、该方程是二元二次方程,故本选项错误.C、该方程是一元二次方程,故本选项正确.D、该方程分式方程,故本选项错误.故选:C.【点评】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).3.已知关于x的一元二次方程kx2﹣2x﹣1=0有实数根,若k为非正整数,则k等于()A.B.0C.0或﹣1D.﹣1【分析】利用一元二次方程的定义和根的判别式的意义得到k≠0且△=(﹣2)2﹣4×k ×(﹣1)≥0,然后求出两不等式的公共部分后找出非正整数即可.【解答】解:根据题意得k≠0且△=(﹣2)2﹣4×k×(﹣1)≥0,解得k≥﹣1且k≠0,∵k为非正整数,∴k=﹣1.故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.4.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是()A.﹣4<x<1B.x<﹣3或x>1C.x<﹣4或x>1D.﹣3<x<1【分析】根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时x的范围.【解答】解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.故选:D.【点评】本题考查了抛物线与x轴的交点;根据二次函数的对称轴与对称性,找出抛物线y=﹣x2+bx+c的完整图象,求出另一个交点是解决问题的关键.5.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(b,a)C.(﹣b,a)D.(b,﹣a)【分析】根据旋转前后的三角形全等及所在象限符号的特点可得所求点的坐标.【解答】解:∵△AOB≌△A′OB′,∴A′B′=AB=b,OB′=OB=a,∵A′在第二象限,∴A′坐标为(﹣b,a),故选:C.【点评】考查点的旋转问题;用到的知识点为:旋转前后图形的形状不变.6.如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=25°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()A.35°B.40°C.45°D.50°【分析】连接OC,由CE为圆O的切线,利用切线的性质得到OC垂直于CE,由OA =OC,利用等边对等角得到一对角相等,再利用外角性质求出∠COE的度数,即可求出∠E的度数.【解答】解:连接OC,∵CE为圆O的切线,∴OC⊥CE,∴∠COE=90°,∵∠CDB与∠BAC都对,且∠CDB=25°,∴∠BAC=∠CDB=25°,∵OA=OC,∴∠OAC=∠OCA=25°,∵∠COE为△AOC的外角,∴∠COE=50°,则∠E=40°.故选:B.【点评】此题考查了切线的性质,圆周角定理,等腰三角形的性质,以及三角形内角和定理,熟练掌握切线的性质是解本题的关键.7.现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:4★5=42﹣3×4+5,若x★2=6,则实数x的值是()A.﹣4或﹣1B.4或﹣1C.4或﹣2D.﹣4或2【分析】先根据新定义得到x2﹣3x+2=6,整理得x2﹣3x﹣4=0,再把方程左边分解,原方程化为x﹣4=0或x+1=0,然后解一次方程即可.【解答】解:∵x★2=6,∴x2﹣3x+2=6,整理得x2﹣3x﹣4=0,∴(x﹣4)(x+1)=0,∴x﹣4=0或x+1=0,∴x1=4,x2=﹣1.故选:B.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.8.《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x尺,根据题意,可列方程为()A.82+x2=(x﹣3)2B.82+(x+3)2=x2C.82+(x﹣3)2=x2D.x2+(x﹣3)2=82【分析】设绳索长为x尺,根据勾股定理列出方程解答即可.【解答】解:设绳索长为x尺,可列方程为(x﹣3)2+82=x2,故选:C.【点评】本题考查了勾股定理的应用,找准等量关系,正确列出一元二次方程是解题的关键.9.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A.B.C.D.【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【解答】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到绿灯的概率P==,故选:D.【点评】本题考查了概率,熟练掌握概率公式是解题的关键.10.如图为函数y=ax2+bx+c与y=x的图象,下列结论:(1)b2﹣4ac>0;(2)3b+c+6=0;(3)当1<x<3时,x2+(b﹣1)x+c<0;(4).其中正确的个数为()A.1B.2C.3D.4【分析】由函数y=ax2+bx+c与x轴无交点,可得b2﹣4ac<0;当x=3时,y=9+3b+c =3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案,把b=﹣3,c=3代入代数式即可求得.【解答】解:由图象知,二次函数过(3,3)(0,3),(1,1),∴,解得:,∴y=x2+bx+c,∵函数y=ax2+bx+c与x轴无交点,∴b2﹣4ac<0;故①错误;由图象知,抛物线y=x2+bx+c与直线y=x的交点坐标为(1,1)和(3,3),∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;故②正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故③正确;∵函数y=x2﹣3x+3,∴.故④正确;故选:C.【点评】主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.二、填空题(每题3分,满分15分,将答案填在答题纸上)11.二次函数y=(x+2)2+3的顶点坐标是(﹣2,3).【分析】根据顶点式直接解答即可.【解答】解:二次函数y=(x+2)2+3的图象的顶点坐标是(﹣2,3).故答案为(﹣2,3)【点评】本题考查了二次函数的性质,要熟悉顶点式的意义,并明确:y=a(x﹣h)2+k (a≠0)的顶点坐标为(h,k),注意符号问题.12.关于x的方程x2﹣x﹣n=0没有实数根,则抛物线y=x2﹣x﹣n的顶点在第一象限.【分析】求出抛物线y=x2﹣x﹣n的对称轴x=,可知顶点在y轴的右侧,根据x2﹣x﹣n =0在实数范围内没有实数根,可知开口向上的y=x2﹣x﹣n与x轴没有交点,据此即可判断抛物线在第一象限.【解答】解:∵抛物线y=x2﹣x﹣n的对称轴x=﹣=,∴可知抛物线的顶点在y轴的右侧.又∵关于x的一元二次方程x2﹣x﹣n=0没有实数根,∴开口向上的y=x2﹣x﹣n与x轴没有交点.∴抛物线y=x2﹣x﹣n的顶点在第一象限.故答案为:一.【点评】本题考查了抛物线与x轴的交点个数与相应一元二次方程的解的个数的关系,熟练掌握二次函数的性质是解题的关键.13.AB是⊙O的直径,C,D在⊙O上且分布在AB两侧,C是直径AB所对弧的一个三等分点,则∠BDC=30°或60°.【分析】此题分两种情况进行计算,点C有两种位置,分别根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半进行计算即可.【解答】解:如图所示:连接CO,∵C是直径AB所对弧的一个三等分点,∴∠COB=120°,∴∠CDB=60°,连接C1O,∵C1是直径AB所对弧的一个三等分点,∴∠C1OB=60°,∴∠C1DB=30°,故答案为:30°或60°.【点评】此题主要考查了圆周角定理以及圆心角度数的计算,关键是分两种情况讨论.14.如图,在平行四边形ABCD中,AB<AD,∠C=150°,CD=8,以AB为直径的⊙O 交BC于点E,则阴影部分的面积为.【分析】连接OE,作OH⊥BE于H,根据平行四边形的性质得到AB=CD=8,∠ABC =180°﹣∠C=30°,根据扇形面积公式、三角形的面积公式计算即可.【解答】解:连接OE,作OH⊥BE于H,∵四边形ABCD是平行四边形,∴AB=CD=8,∠ABC=180°﹣∠C=30°,∵OE=OB=4,∴∠OEB=∠OBE=30°,∴OH=OB=2,∠BOE=120°,由勾股定理得,BH===2,∴阴影部分的面积=﹣=﹣4,故答案为:﹣4.【点评】本题考查的是扇形面积计算、平行四边形的性质,掌握扇形面积公式:S=是解题的关键.15.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2020的直角顶点的坐标为(8076,0).【分析】根据勾股定理列式求出AB的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2020除以3,根据商为673余数为1,可知第20,20个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可.【解答】解:∵点A(﹣3,0)、B(0,4),∴AB==5,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2020÷3=673…1,∴△2020的直角顶点是第673个循环组的最后一个三角形的直角顶点,∵673×12=8076,∴△2019的直角顶点的坐标为(8076,0).故答案为(8076,0).【点评】本题主要考查了点的坐标变化规律,仔细观察图形得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.三、解答题:共75.解答应写出文字说明、证明过程或演算步骤.16.解方程:(1)x2﹣6x+9=0(2)x2+x=2(x+1)【分析】(1)根据因式分解法即可求出答案;(2)根据因式分解法即可求出答案;【解答】解:(1)∵(x﹣3)2=0,∴x﹣3=0,即x1=x2=3(2)∵x(x+1)=2(x+1),∴(x+1)(x﹣2)=0∴x+1=0或x﹣2=0∴x1=﹣1,x2=2【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.17.关于x的一元二次方程x2﹣mx+m﹣1=0.(1)求证:方程总有两个实数根;(2)若方程有一根大于3,求m的取值范围.【分析】(1)根据判别式△=(﹣m)2﹣4(m﹣1)=(m﹣2)2≥0即可得;(2)因式分解法得出x1=1,x2=m﹣1,由方程有一个根大于3知m﹣1>3,解之可得.【解答】(1)证明:依题意,得△=(﹣m)2﹣4(m﹣1)=(m﹣2)2≥0,∵(m﹣2)2≥0,∴方程总有两个实数根;(2)x2﹣mx+m﹣1=0,(x﹣1)(x﹣m+1)=0,∴x1=1,x2=m﹣1,∵方程有一个根大于3,∴m﹣1>3,∴m>4.∴m的取值范围是m>4.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.18.某校为了解九年级学生的体育达标情况,随机抽取50名九年级学生进行体育达标项目测试,测试成绩如下表,请根据表中的信息,解答下列问题:(1)该校九年级有450名学生,估计体育测试成绩为25分的学生人数;(2)该校体育老师要对本次抽测成绩为23分的甲、乙、丙、丁4名学生进行分组强化训练,要求两人一组,求甲和乙恰好分在同一组的概率.(用列表或树状图方法解答)测试成绩(分)2325262830人数(人)4181585【分析】(1)用总人数乘以成绩为25分的学生人数所占的比例即可得;(2)先画树状图列出所有等可能结果,再从中找到符合条件的结果数,继而利用概率公式求解可得.【解答】解:(1)(人),答:该校九年级有450名学生,估计体育测试成绩为25分的学生人数为162人;(2)画树状图如下图:共有12个等可能的结果,甲和乙恰好分在同一组的结果有2个,∴甲和乙恰好分在同一组的概率为.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B 的概率.19.如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB 向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s 的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过多少秒,四边形APQC的面积最小.【分析】设经过x秒,四边形APQC的面积最小,根据题意列出△PBQ的面积关于x的解析式,根据二次函数的性质求出△PBQ的面积的最大值,得到答案.【解答】解:设经过x秒,四边形APQC的面积最小由题意得,AP=2x,BQ=4x,则PB=12﹣2x,△PBQ的面积=×BQ×PB=×(12﹣2x)×4x=﹣4(x﹣3)2+36,当x=3s时,△PBQ的面积的最大值是36mm2,此时四边形APQC的面积最小.【点评】本题考查的是二次函数的应用,掌握二次函数的性质是解题的关键.20.随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.【分析】(1)2020年全省5G基站的数量=目前广东5G基站的数量×4,即可求出结论;(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,根据2020年底及2022年底全省5G基站数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)1.5×4=6(万座).答:计划到2020年底,全省5G基站的数量是6万座.(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,依题意,得:6(1+x)2=17.34,解得:x1=0.7=70%,x2=﹣2.7(舍去).答:2020年底到2022年底,全省5G基站数量的年平均增长率为70%.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.如图,已知AB是⊙O的直径,AC,BC是⊙O的弦,OE∥AC交BC于E,过点B作⊙O的切线交OE的延长线于点D,连接DC并延长交BA的延长线于点F.(1)求证:DC是⊙O的切线;(2)若∠ABC=30°,AB=8,求线段CF的长.【分析】(1)连接OC,根据平行线的性质得到∠1=∠ACB,由圆周角定理得到∠1=∠ACB=90°,根据线段垂直平分线的性质得到DB=DC,求得∠DBE=∠DCE,根据切线的性质得到∠DBO=90°,求得OC⊥DC,于是得到结论;(2)解直角三角形即可得到结论.【解答】(1)证明:连接OC,∵OE∥AC,∴∠1=∠ACB,∵AB是⊙O的直径,∴∠1=∠ACB=90°,∴OD⊥BC,由垂径定理得OD垂直平分BC,∴DB=DC,∴∠DBE=∠DCE,又∵OC=OB,∴∠OBE=∠OCE,即∠DBO=∠OCD,∵DB为⊙O的切线,OB是半径,∴∠DBO=90°,∴∠OCD=∠DBO=90°,即OC⊥DC,∵OC是⊙O的半径,∴DC是⊙O的切线;(2)解:在Rt△ABC中,∠ABC=30°,∴∠3=60°,又OA=OC,∴△AOC是等边三角形,∴∠COF=60°,在Rt△COF中,tan∠COF=,∴CF=4.【点评】本题考查了切线的判定和性质,垂径定理,圆周角定理,等腰三角形的性质,正确的作出辅助线是解题的关键.22.已知抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2.(1)请结合函数图象确定实数a的取值范围;(2)已知抛物线y=kx2+(2k+1)x+2恒过定点,求出定点坐标.【分析】(1)根据题意,可以求得该抛物线与x轴的两个交点,然后即可画出该函数的图象,从而可以得到a的取值范围;(2)根据题意,可以得到关于k的方程,从而可以求得抛物线y=kx2+(2k+1)x+2所过的定点.【解答】解:(1)令y=0,则kx2+(2k+1)x+2=0,解关于x的一元二次方程,得x1=﹣2,,∵二次函数的图象与x轴两个交点的横坐标均为整数,且k为正整数.∴k=1∴该抛物线解析式为y=x2+3x+2由图象得到:当y1>y2时,a>1或a<﹣4;(2)依题意得kx2+(2k+1)x+2﹣y=0恒成立,即k(x2+2x)+x﹣y+2=0恒成立,则解得或,所以该抛物线恒过定点(0,2)、(﹣2,0).【点评】本题考查抛物线与x轴的交点、二次函数的性质、二次函数图象上的点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.23.如图,抛物线C1:y=x2﹣2x与抛物线C2:y=ax2+bx开口大小相同、方向相反,它们相交于O,C两点,且分别与x轴的正半轴交于点B,点A,OA=2OB.(1)求抛物线C2的解析式;(2)在抛物线C2的对称轴上是否存在点P,使PA+PC的值最小?若存在,求出点P的坐标,若不存在,说明理由;(3)M是直线OC上方抛物线C2上的一个动点,连接MO,MC,M运动到什么位置时,△MOC面积最大?并求出最大面积.【分析】(1)C1、C2:y=ax2+bx开口大小相同、方向相反,则a=﹣1,将点A的坐标代入C2的表达式,即可求解;(2)作点C关于C1对称轴的对称点C′(﹣1,3),连接AC′交函数C2的对称轴与点P,此时PA+PC的值最小,即可求解;(3)S=MH×x C=(﹣x2+4x﹣x)=﹣x2+,即可求解.△MOC【解答】解:(1)令:y=x2﹣2x=0,则x=0或2,即点B(2,0),∵C1、C2:y=ax2+bx开口大小相同、方向相反,则a=﹣1,则点A(4,0),将点A的坐标代入C2的表达式得:0=﹣16+4b,解得:b=4,故抛物线C2的解析式为:y=﹣x2+4x;(2)联立C1、C2表达式并解得:x=0或3,故点C(3,3),作点C关于C2对称轴的对称点C′(1,3),连接AC′交函数C2的对称轴与点P,此时PA+PC的值最小为:线段AC′的长度=3,此时点P(2,2);(3)直线OC的表达式为:y=x,过点M作y轴的平行线交OC于点H,设点M(x,﹣x2+4x),则点H(x,x),=MH×x C=(﹣x2+4x﹣x)=﹣x2+x,则S△MOC∵﹣<0,故x=,最大值为.故当点M(,)时,S△MOC【点评】此题考查了待定系数法求解析式,还考查了三角形的面积,要注意将三角形分解成两个三角形求解;还要注意求最大值可以借助于二次函数.。

河北省唐山市 九年级(上)期中数学试卷(含答案)

河北省唐山市 九年级(上)期中数学试卷(含答案)

九年级(上)期中数学试卷一、选择题(本大题共12小题,共24.0分)1.若(k-1)x2-2kx-1=0是关于x的一元二次方程,则k的取值范围是()A. B. C. D.2.下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.3.在平面直角坐标系中,把点P(-2,1)绕原点O顺时针旋转180°,所得到的对应点P′的坐标为()A. B. C. D.4.把方程x2-8x+3=0配方成如下的形式,则正确是()A. B. C. D.5.下列变换不属于全等变换的是()A. 平移B. 旋转C. 轴对称D. 相似6.如图,⊙O△ABC的三条边所得的弦长相等,则下列说法正确的是()A. 点O是△的内心B. 点O是△的外心C. △是正三角形D. △是等腰三角形7.已知a,b,c,d是成比例线段,其中a=3cm,b=2cm,c=6cm,则d的长度为()A. 4cmB. 5cmC. 6cmD. 9cm8.下列表格是二次函数y=ax2+bx+c(d≠0)的自变量x与函数y的一些对应值,由此可以判断方程ax2之间之间C. 之间D. 之间9.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C,D,E,F,=,DE=6,则EF的值为()A. 4B. 6C. 9D. 1210.已知抛物线y=ax2-2x+1与x轴有两个交点,那么a的取值范围是()A. 且B. 且C. 且D. 且11.如图,BD是⊙O的直径,点A、C在圆上,且CD=OB,则∠DAC等于()A.B.C.D.12.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:(1)若点(x1,y1),(x2,y2)在图象上,当x2>x1>0时,y2>y1;(2)当x<-1时,y>0;(3)4a+2b+c>0;(4)x=3是关于x方程ax2+bx+c=0的一个根,其中正确的个数为()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)13.把方程x(x+1)=2化成一般形式是______ .14.抛物线y=(-x)2开口向______ .(填:“上”或“下”)15.如图,用一个半径为30cm扇形铁皮,制作一个无底的圆锥(不计损耗),经测量圆锥的底面半径r为10cm,则扇形铁皮的面积为______ cm2.(结果保留π)16.已知x=1是一元二次方程ax2+bx-10=0的一个根,则分式的值为______ .17.如图,边长为1的正五边形ABCDE,顶点A、B在半径为1的圆上,其它各点在圆内,将正五边形ABCDE绕点A逆时针旋转,当点E第一次落在圆上时,则点C转过的度数为______ .18.如图是某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A、B两点,拱桥最高点C到AB的距离为4m,AB=12m,D、E为拱桥底部的两点,且DE∥AB,点E到直线AB的距离为5m,则DE的长为______ m.三、计算题(本大题共1小题,共8.0分)19.2()根据上表填空;①方程ax2+bx+c=0的两个根分别是______ 和______ .②抛物线经过点(-3,______ );③在对称轴左侧,y随x增大而______ ;(2)求抛物线y=ax2+bx+c的解析式.四、解答题(本大题共6小题,共50.0分)20.解下列方程:(1)x2+x=0;(2)x2-4x-1=0.21.如图为一段圆弧形弯道,弯道长12π米,圆弧所对的圆心角是81°.(1)用直尺和圆规作出圆弧所在的圆心O;(不写作法,保留作图痕迹)(2)求这段圆弧的半径R.22.如图,在平面直角坐标系xOy中,点O是边长为2的正方形ABCD的中心.(1)若函数y=x2+m的图象过点C,求这个函数的解析式;并判断其函数图象是否过A点.(2)若将(1)中的函数图象先向右平移1个单位,再向上平移2个单位,直接写出平移后函数的解析式和顶点坐标.23.如图,在长60m,宽40m的长方形花园中,欲修宽度相等的观赏路(图中阴影部分),要使观赏路面积占总面积的,求观赏路面宽是多少m.24.如图,△OAB中,OA=OB=10,∠AOB=70°,以点O为圆心,6为半径的优弧分别交OA、OB于点M,N.(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转70°得OP′.求证:AP=BP′;(2)点T在左半弧上,若AT与弧相切,求点T到OA的距离;(3)设点Q在优弧上,当△AOQ的面积最大时,直接写出∠BOQ的度数.25.【探究】中秋节前某商场计划购进一批进价为每盒40元的食品进行销售,根据销售经验,应季销售时,若每盒食品的售价为60元,则可售出400盒,当每盒食品的售价每提高1元,销售量就相应减少10盒.(1)假设每盒食品的售价提高x元,那么销售每盒食品所获得的利润是______ 元,销售量是______ 盒.(用含x为代数式表示)(2)设应季销售利润为y元,求y与x的函数关系式,并求出应季销售利润为8000元时每盒食品的售价.【拓展】根据销售经验,过季处理时,若每盒食品的售价定为30元亏本销售,可售出50盒,若每盒食品的售价每降低1元,销售量就相应增加5盒.当单价降低z 元时,解答:(1)现剩余100盒食品需要处理,经过降价处理后还是无法销售的只能积压在仓库,损失本金,若使亏损金额最小,此时每盒食品的售价应为______ 元;(2)若过季需要处理的食品共m盒,过季处理时亏损金额为y1元,求y1与z的函数关系式;当100≤m≤300时,求过季销售亏损金额最小时多少元?答案和解析1.【答案】B【解析】解:由题意得:k-1≠0,解得:k≠1,故选:B.根据一元二次方程定义可得k-1≠0,再解即可.此题主要考查了一元二次方程的定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2.【答案】B【解析】解:A、是轴对称图形,不是中心对称图形,故A选项不符合题意;B、是轴对称图形,也是中心对称图形,故B选项符合题意;C、是轴对称图形,不是中心对称图形,故C选项不符合题意;D、是轴对称图形,不是中心对称图形,故D选项不符合题意.故选:B.根据轴对称图形与中心对称图形的概念结合各图形的特点求解.本题考查了中心对称图形与轴对称图形的概念.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.【答案】A【解析】解:根据题意得,点P关于原点的对称点是点P′,∵P点坐标为(-2,1),∴点P′的坐标(2,-1),故选:A.将点P绕原点O顺时针旋转180°,实际上是求点P关于原点的对称点的坐标.本题考查了坐标与图形的变换-旋转,熟练掌握关于原点的对称点的坐标特征是解决问题的关键.4.【答案】C【解析】解:方程移项得:x2-8x=-3,配方得:x2-8x+16=13,即(x-4)2=13.故选C.方程常数项移到右边,两边加上16变形即可得到结果.此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.5.【答案】D【解析】解:因为平移、旋转、翻折、轴对称都属于全等变换,而相似则不是,故选D 全等变换的定义:按一定方法把一个图形变成另一个图形叫图形变换.此题考查全等变换问题,要知道变换前后的图形全等,像这样只改变图形的位置,而不改变其形状大小的图形变换叫做全等变换.6.【答案】A【解析】解:过O作OM⊥AB于M,ON⊥BC于N,OQ⊥AC于Q,连接OK、OD、OF,由垂径定理得:DM=DE,KQ=KH,FN=FG,∵DE=FG=HK,∴DM=KQ=FN,∵OD=OK=OF,∴由勾股定理得:OM=ON=OQ,即O到三角形ABC三边的距离相等,∴O是△ABC的内心,故选A.过O作OM⊥AB于M,ON⊥BC于N,OQ⊥AC于Q,连接OK、OD、OF,根据垂径定理和已知求出DM=KQ=FN,根据勾股定理求出OM=ON=OQ,根据三角形内心的定义求出即可.本题考查了垂径定理,勾股定理,三角形的内心的应用,注意:三角形的内心到三角形三边的距离相等.7.【答案】A【解析】解:因为a,b,c,d是成比例线段,可得:d=cm,故选A由a、b、c、d四条线段是成比例的线段,根据成比例线段的定义计算即可.此题考查了成比例线段的定义.此题比较简单,解题的关键是注意掌握比例线段的定义.8.【答案】D【解析】解:由表格中的数据看出-0.01和0.02更接近于0,故x应取对应的范围是6.18<x<6.19.故选D.利用二次函数和一元二次方程的性质进行解答即可.本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y由正变为负时,自变量的取值即可.9.【答案】C【解析】解:∵AD∥BE∥CF,∴=,即=,∴EF=9.故选C.根据平行线分线段成比例定理得到∴=,即=,然后利用比例性质求EF即可.本题考查了平行线分线段成比例:三条平行线截两条直线,所得对应线段成比例.10.【答案】A【解析】解:∵抛物线y=ax2-2x+1与x轴有两个交点,∴a≠0,△>0,∴4-4a×1>0,∴a<1,故答案为:a<1且a≠0.故选A.根据题意,令y=0,得方程ax2-2x+1=0,有两个不同的根得△>0,从而解出a 的范围.此题主要考查一元二次方程与函数的关系,关键是理解函数与x轴的交点的横坐标就是方程的根,若方程有根说明函数与x轴有交点,两者互相转化,要充分运用这一点来解题.11.【答案】D【解析】解:连接CD,OC,DA,∵CD=OB,∴△OCD为等边三角形,∴∠COD=60°,∴∠DAC=∠COD=×60°=30°,故选D.根据题意得△OCD为等边三角形,则∠COD=60°,根据圆周角定理得出∠DAC 的度数.本题考查了圆周角定理,还考查了等边三角形的判定,掌握圆周角定理的内容是解题的关键.12.【答案】A【解析】解:由图象可知该二次函数图象的对称轴为x=1,当x<1时,y随x的增大而减小;当x>1时,y随x的增大而增大,(1)由图象知,点(x1,y1),(x2,y2)在图象上,当x2>x1>0时,函数图象的增减性不定,所以可能y2>y1也可能y2<y1,所以(1)错误;(2)由图象知,当x<-1时,y>0正确;(3)令x=2,由图象知,4a+2b+c<0,所以此选项错误;(4)由图象知,x=3不是二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点,所以x=3不是关于x方程ax2+bx+c=0的一个根,所以此选项错误;所以正确的个数有1个,故选A.根据该二次函数的增减性可判断(1)(2);令x=2可判断(3);根据二次函数图象与坐标轴的交点可判断(4).本题主要考查了二次函数的性质,结合图象分析二次函数的增减性,对称轴等是解答此题的关键.13.【答案】x2+x-2=0【解析】解:x(x+1)=2,去括号得:x2+x=2,移项得:x2+x-2=0,故答案为:x2+x-2=0.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),首先把方程左边的两式相乘,再移项使方程右边变为0,然后合并同类项即可.此题主要考查了一元二次方程的一般形式,关键是去括号的过程中要注意符号的变化,不要漏乘,移项时要注意符号的变化.14.【答案】上【解析】解:∵y=(-x)2=x2,∴a=1>0,∴抛物线开口向上,故答案为:上.根据抛物线的解析式可确定其开口方向.本题主要考查二次函数的性质,掌握二次函数的开口方向由二次项系数的正负决定是解题的关键.15.【答案】300π【解析】解:∵圆锥的底面半径为10cm,∴圆锥的底面周长为20π,∵扇形的半径为30cm,∴圆锥的面积为lr=×20π×30=300πcm2,故答案为:300π.根据圆锥的底面半径求得周长,从而求得扇形的弧长,然后利用扇形面积公式求得扇形铁皮的面积即可.本题考查了圆锥的计算计算扇形的面积计算的知识,解题的关键是牢记扇形的弧长等于圆锥的底面周长,难度不大.16.【答案】5【解析】解:把x=1代入方程ax2+bx-10=得a+b-10=0,解a+b=10.===5故答案为5.根据一元二次方程解的定义把x=1代入ax2+bx-10=0即可得到a+b的值.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17.【答案】12°【解析】解:如图设圆心为O,连接OA、OB,点E落在圆上的点E′处.∵AB=OA=OB,∴∠OAB=60°,同理∠OAE′=60°,∵∠EAB=108°,∴∠EAO=∠EAB-∠OAB=48°,∴∠EAE′=∠OAE′-∠EAO=60°-48°=12°,∵点E旋转的角度和点C旋转的角度相等,∴点C旋转的角度为12°,故答案为12°.因为点E旋转的角度和点C旋转的角度相等,所以求出点E旋转的角度即可.本题考查正多边形与圆,旋转的性质,理解点E旋转的角度和点C旋转的角度相等是解决问题的关键,所以中考常考题型.18.【答案】18【解析】解:如图所示,建立平面直角坐标系,x轴在直线DE上,y轴经过最高点C.设AB与y轴交于点H,∵AB=12,∴AH=BH=6,由题可知:OH=5,CH=4,∴OC=5+4=9,∴B(6,5),C(0,9)设该抛物线的解析式为:y=ax2+k,∵顶点C(0,9),∴抛物线y=ax2+9,代入B(6,5)∴5=36a+9,解得a=-,∴抛物线:y=-x2+9,当y=0时,0=-x2+9,解得x=±9,∴E(9,0),D(-9,0),∴OE=OD=9,∴DE=OD+OE=9+9=18,故答案为:18.首先建立平面直角坐标系,x轴在直线DE上,y轴经过最高点C,设AB与y 轴交于H,求出OC的长,然后设该抛物线的解析式为:y=ax2+k,根据题干条件求出a和k的值,再令y=0,求出x的值,即可求出D和E点的坐标,DE的长度即可求出.本题主要考查二次函数综合应用的知识点,解答本题的关键是正确地建立平面直角坐标系,此题难度一般,是一道非常典型的试题.19.【答案】x1=-2;x2=1;8;减小【解析】解:(1)①观察表格得:方程ax2+bx+c=0的两个根分别是x1=-2和x2=1;②抛物线经过点(-3,8);③在对称轴左侧,y随x的增大而减小;故答案为:①x1=-2,x2=1;②8;③减小;(2)设抛物线解析式为y=ax2+bx+c,把(-2,0),(1,0)、(0,-4)代入得:,解得:,则抛物线解析式为y=2x2+2x-4.(1)①观察表格中y=0时x的值,即可确定出所求方程的解;②利用对称性确定出x=-3时y的值,确定出所求点坐标即可;③利用二次函数增减性确定出结果即可;(2)利用待定系数法确定出抛物线解析式即可.此题考查了抛物线与x轴的交点,以及待定系数法求二次函数解析式,熟练掌握二次函数的图象与性质是解本题的关键.20.【答案】解:(1)分解因式得:x(x+1)=0,x=0,x+1=0,解得:x1=0,x2=-1.解:(1)x2-4x-1=0x2-4x=1x2-4x+22=1+22(x-2)2=5∴x-2=±,∴x1=2+,x2=2-,【解析】(1)分解因式得出x(x+1)=0,推出x=0,x+1=0,求出方程的解即可.(2)根据配方法进行解答即可.本题考查解一元二次方程-配方法和因式分解法,解题的关键是明确怎么应用配方法和因式分解法解答方程.21.【答案】解:(1)如图,点O即为所求点;(2)根据题意得:=12π,解得:R=,答:这段圆弧的半径为米.【解析】(1)弧上任取三点A、B、C,连结AB、BC,分别作AB和BC的垂直平分线,两垂直平分线的交点为点O;(2)根据弧长公式列出关于R的方程,解之可得.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法;解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了弧长公式.22.【答案】解:(1),由题意得A(1,1),C(-1,-1),∵函数y=x2+m的图象过点C,∴-1=1+m,解得m=-2,∴此函数的解析式为y=x2-2,把A(1,1)代入y=x2-2的左右两边,左边=1,右边=-1,左≠右,∴其函数图象不过A点.(2)∵将抛物线y=x2-2向上平移2个单位再向右平移1个单位,∴平移后的抛物线的解析式为:y=(x-1)2-2+2.即y=(x-1)2,则平移后的抛物线的顶点坐标为:(1,0).【解析】(1)根据题意A(1,1),C(-1,-1),代入y=x2+m根据待定系数法即可求得解析式,把A的坐标代入即可判断;(2)直接利用抛物线平移规律:上加下减,左加右减进而得出平移后的解析式,即可得出顶点坐标.此题主要考查了待定系数法求二次函数的解析式、二次函数图象上点的坐标特征、二次函数图象与几何变换,正确掌握平移规律是解题关键.23.【答案】解:设路宽为x,(40-2x)(60-3x)=(1-)×60×40,解得:x=5或x=35不合题意,答:观赏道路路面宽是5m.【解析】设路宽为x,所剩下的观赏面积的宽为(40-2x),长为(60-3x)根据要使观赏路面积占总面积,可列方程求解.本题考查理解题意的能力,关键是表示出剩下的长和宽,根据面积列方程.24.【答案】(1)证明:如图1,∵∠AOP=∠AOB+∠BOP=80°+∠BOP,∠BOP′=∠POP′+∠BOP=80°+∠BOP,∴∠AOP=∠BOP′,∵在△AOP和△BOP′中′,′∴△AOP≌△BOP′(SAS),∴AP=BP′;(2)解:如图1,连接OT,过点T作TH⊥OA于点H,∵AT是⊙O的切线,∴∠ATO=90°,∴AT===8,∵×OA×TH=×AT×OT,即×10×TH=×8×6,解得:TH=,即点T到OA的距离为;(3)解:如图2,当OQ⊥OA时,△AOQ的面积最大;理由:∵OQ⊥OA,∴QO是△AOQ中最长的高,则△AOQ的面积最大,∴∠BOQ=∠AOQ+∠AOB=90°+70°=160°,当Q点在优弧右侧上,∵OQ⊥OA,∴QO是△AOQ中最长的高,则△AOQ的面积最大,∴∠BOQ=∠AOQ-∠AOB=90°-70°=20°,综上所述:当∠BOQ的度数为20°或160°时,△AOQ的面积最大.【解析】(1)首先根据已知得出∠AOP=∠BOP′,进而得出△AOP≌△BOP′,即可得出答案;(2)利用切线的性质得出∠ATO=90°,再利用勾股定理求出AT的长,进而得出TH的长即可得出答案;(3)当OQ⊥OA时,△AOQ面积最大,且左右两半弧上各存在一点分别求出即可.本题考查了圆的综合题、切线的判定与性质、全等三角形的判定与性质,第二个问题的关键是利用面积法求出线段TH,第三个问题的关键是学会用分类讨论的思想思考问题,注意一题多解,属于中考压轴题.25.【答案】20+x;400-10x;20【解析】解:【探究】(1)假设每盒食品的售价提高x元,那么销售每盒食品所获得的利润是(20+x)元,销售量是(400-10x)盒,故答案为:20+x,400-10x;(2)根据题意得:y=(20+x)(400-10x)=-10x2+200x+8000,把y=8000代入,得:-10x2+200x+8000=8000,解得:x=0或x=20,当x=0时,60+x=60,当x=20时,60+x=80,答:应季销售利润为8000元时每盒食品的售价为60元或80元;【拓展】(1)设过季处理时亏损金额为y元,单价降低z元.由题意得:y=40×100-(30-z)(50+5z)=5(z-10)2+2000;z=10时亏损金额最小为2000元,此时售价为30-10=20(元/件),故答案为:20;(2)y1=40m-(30-z)(50+5z)=5(z-10)2+40m-2000,即当z=10时,y1有最小值40m-2000,∵100≤m≤300,∴当m=100时,y1有最小值40m-2000=2000,答:过季销售亏损金额最小时2000元.探究:(1)每条围巾获得的利润=实际售价-进价,销售量=售价为60元时销售量-因价格上涨减少的销售量;(2)根据:销售利润=单件利润×销售量可列函数解析式,并求y=8000时x的值;拓展:(1)根据:亏损金额=总成本-每件围巾的售价×销售量,列出函数关系式,配方后可得最值情况;(2)根据与(1)相同的相等关系列函数关系式配方可得最小值.本题主要考查二次函数的应用,解决本题的关键是在不同情形下理清数量关系、紧扣相等关系列出函数解析式,根据解析式结合自变量取值范围求函数最值是根本技能.。

河北省唐山市路南区2019-2020学年九年级上学期期末数学试题(word无答案)

河北省唐山市路南区2019-2020学年九年级上学期期末数学试题(word无答案)

河北省唐山市路南区2019-2020学年九年级上学期期末数学试题(word无答案)一、单选题(★) 1 . 下列几何体的三视图相同的是()A.圆柱B.球C.圆锥D.长方体(★) 2 . 点A(-2,1)关于原点对称的点A'的坐标是()A.(2,1)B.(-2,-1)C.(-1,2)D.(2,-1)(★) 3 . 下列光线所形成的投影不是中心投影的是()A.太阳光线B.台灯的光线C.手电筒的光线D.路灯的光线(★) 4 . 下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼(★) 5 . 下列函数中,是的反比例函数()A.B.C.D.(★) 6 . 在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是()A.甲组B.乙组C.丙组D.丁组(★★) 7 . 已知反比例函数,下列结论中不正确的是.()A.图象必经过点(3,-2)B.图象位于第二、四象限C.若,则D.在每一个象限内,随值的增大而增大(★) 8 . 若点在抛物线上,则的值()A.2021B.2020C.2019D.2018(★) 9 . 下列说法中,正确的个数()①位似图形都相似:②两个等边三角形一定是位似图形;③两个相似多边形的面积比为5:9.则周长的比为5:9;④两个大小不相等的圆一定是位似图形.A.1个B.2个C.3个D.4个(★) 10 . 河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为A.12米B.4米C.5米D.6米(★) 11 . 如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC 的长为()A.2πB.4πC.5πD.6π(★) 12 . 若二次函数的图象与轴仅有一个公共点,则常数的为()A.1B.±1C.-1D.(★★) 13 . 到△ABC的三条边距离相等的点是△ABC的().A.三条中线的交点B.三条边的垂直平分线的交点C.三条高的交点D.三条角平分线的交点(★) 14 . 如图,如果∠BAD=∠CAE,那么添加下列一个条件后,仍不能确定△ABC∽△ADE 的是( )A.∠B=∠D B.∠C=∠AEDC.=D.=(★) 15 . 生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润和月份之间的函数关系式为,则该企业一年中应停产的月份是()A.1月、2月、3月B.2月、3月、4月C.1月、2月、12月D.1月、11月、12月二、填空题(★) 16 . 二次函数图象的开口向__________.(★) 17 . 两地的实际距离是,在地图上众得这两地的距离为,则这幅地图的比例尺是___________.(★) 18 . 如图,用长的铝合金条制成使窗户的透光面积最大的矩形窗框,那么这个窗户的最大透光面积是___________ .(中间横框所占的面积忽略不计)三、解答题(★★) 19 . (1)解方程: ;(2)计算: .(★) 20 . 如图,是由两个长方体组合而成的一个立体图形的主视图和左视图,根据图中所标尺寸(单位: ).(1)直接写出上下两个长方休的长、宽、商分别是多少:(2)求这个立体图形的体积.(★★) 21 . 如图,相交于点,连结.(1)求证: ;(2)直接回答与是不是位似图形?(3)若,求的长.(★★) 22 . 如图,有四张质地完全相同的卡片,正面分别写有四个角度,现将这四张卡片洗匀后,背面朝上.(1)若从中任意抽取--张,求抽到锐角卡片的概宰;(2)若从中任意抽取两张,求抽到的两张角度恰好互补的概率.(★★) 23 . 如图,在平面直角坐标系中,已知矩形的顶点,过点的双曲线与矩形的边交于点.(1)求双曲线的解析式以及点的坐标;.(2)若点是抛物线的顶点;①当双曲线过点时,求顶点的坐标;②直接写出当抛物线过点时,该抛物线与矩形公共点的个数以及此时的值.(★★) 24 . 如图,在南北方向的海岸线上,有两艘巡逻船,现均收到故障船的求救信号.已知两船相距海里,船在船的北偏东60°方向上,船在船的东南方向上,上有一观测点,测得船正好在观测点的南偏东75°方向上.(1)分别求出与,与间的距离和; (本问如果有根号,结果请保留根号)(此提示可以帮助你解题:∵ ,∴ )(2)已知距观测点处100海里范围内有暗礁,若巡逻船沿直线去营救船,去营救的途中有无触礁的危险?(参考数据: )(★★★★★) 25 . 游乐园新建的一种新型水上滑道如图,其中线段表示距离水面(x轴)高度为5m的平台(点P在y轴上).滑道可以看作反比例函数图象的一部分,滑道可以看作是二次函数图象的一部分,两滑道的连接点B为二次函数的顶点,且点B到水面的距离,点B到y轴的距离是5m.当小明从上而下滑到点C时,与水面的距离,与点B的水平距离.(1)求反比例函数的关系式及其自变量的取值范围;(2)求整条滑道的水平距离;(3)若小明站在平台上相距y轴的点M处,用水枪朝正前方向下“扫射”,水枪出水口N距离平台,喷出的水流成抛物线形,设这条抛物线的二次项系数为p,若水流最终落在滑道上(包括B、D两点),直接写出p的取值范围.。

2019-2020学年九年级数学上学期期中A卷(河北)(考试版)【测试范围:冀教版九上全册】

2019-2020学年九年级数学上学期期中A卷(河北)(考试版)【测试范围:冀教版九上全册】

数学试题 第1页(共6页) 数学试题 第2页(共6页)2019-2020学年上学期期中A 卷九年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:冀教版九上全册。

第Ⅰ卷一、选择题(本大题共16小题,共42分,1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.若一元二次方程20ax bx c ++=中的2a =,0b =,1c =-,则这个一元二次方程是 A .2 210x -= B .2210x +=C .2 20x x +=D .2 20x x -=2.已知23x y =,则xy等于A .2B .3C .23D .323.若2sin A,则锐角A 的度数为 A .30°B .45°C .60°D .75°4.某市五月份连续五天的日最高气温分别为23、20、20、21、26(单位:°C ),这组数据的中位数和众数分别是A .22°C ,26°CB .22°C ,20°C C .21°C ,26°CD .21°C ,20°C5.如图,在⊙O 中,=AB AC ,∠AOB =40°,则∠ADC 的度数是A .40°B .30°C .20°D .15°6.如图所示的两个三角形相似,则α与β的度数分别为A .α=30°,β=30°B .α=105°,β=30°C .α=30°,β=105°D .α=105°,β=45°7.一元二次方程2250x x --=的左边配成完全平方后所得方程为 A .2 (1)6x -= B .2 (1)6x +=C .2 (2)9x +=D .2 (2)9x -=8.圆锥底面圆半径与母线长之比为1:2,那么圆锥侧面展开图扇形的圆心角为 A .30° B .60°C .90°D .180°9.如图,在一块长为20m ,宽为15m 的矩形绿化带的四周扩建一条宽度相等的小路(图中阴影部分),建成后绿化带与小路的总面积为546m 2,如果设小路的宽度为x m ,那么下列方程正确的是A .()()2015546x x --=B .()()2015546x x ++=C .()()202152546x x --=D .()()202152546x x ++=10.如图,正六边形ABCDEF 内接于O ,过点O 作OM ⊥弦BC 于点M ,若O 的半径为4,则OM和BC 的长分别为数学试题 第3页(共6页) 数学试题 第4页(共6页)A .2,π3 B.πC2π3D.4π311.如图,在△ABC 中,∠ADE =∠B ,DE :BC =2:3,则下列结论正确的是A .AD :AB =2:3 B .AE :AC =2:5C .AD :DB =2:3D .CE :AE =3:212.如图,已知圆心角∠AOB =118°,则圆周角∠ACB =A .59°B .118°C .121°D .125°13.若点A (a ,b )在反比例函数2y x=的图象上,则代数式ab –4的值为 A .0 B .2C .–2D .–614.已知12m n n -=,则mn 的值为 A .23B .13C .32D .1215.河堤横断面如图所示,堤高BC =5米,迎水坡AB 的坡比1AC 的长是A .10米 B.米C .15米D.16.如图,已知⊙O 的半径是4,点A ,B ,C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为A.83π- B.163π-C.163π-D.83π-第Ⅱ卷二、填空题(本大题共3小题,共11分.17小题3分;18~19小题各有2个空,每空2分)19.已知x 1,x 2,x 3的平均数x =10,方差s 2=3,则2x 1,2x 2,2x 3的平均数为__________,方差为__________. 三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8+3tan30°–(π–1)0. 21.(本小题满分9分)解下列一元二次方程:(1)2340x x +-=;(2)()()315x x -+=;(3)229(2)4(1)x x -=+.数学试题 第5页(共6页) 数学试题 第6页(共6页)22.(本小题满分9分)已知0654a b c==≠,且223a b c +-=,求a 的值. 23.(本小题满分9分)在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (2,–4),B (3,–2),C (6,–3).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)以M 点为位似中心,在网格中画出△A 1B 1C 1的位似图形△A 2B 2C 2,使△A 2B 2C 2与△A 1B 1C 1的相似比为2:1.24.(本小题满分10分)关于x 的方程()21220k x kx -++=.(1)求证:无论k 为何值,方程总有实数根; (2)设12,x x 是该方程的两个根,记121221x x S x x x x =+++,S 的值能为2吗?若能求出此时k 的值. 25.(本小题满分10分)如图,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,D 为⊙O 上一点,OD ⊥AC ,垂足为E ,连接BD .(1)求证:BD 平分∠ABC ;(2)当∠ODB =30°时,求证:BC =OD .26.(本小题满分12分)如图,已知直线y =kx (k >0)与双曲线8y x=交于A 、B 两点,且点A 的纵坐标为4,第一象限的双曲线上有一点()1,P a ,过点P 作PQ //y 轴交直线AB 于点Q . (1)直接写出k 的值及点B 的坐标:(2)求线段PQ 的长;(3)如果在直线y =kx 上有一点M ,且满足△BPM 的面积等于12,求点M 的坐标.。

河北省唐山市2019-2020学年中考一诊数学试题含解析

河北省唐山市2019-2020学年中考一诊数学试题含解析

河北省唐山市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,直线AB、CD相交于点O,EO⊥CD,下列说法错误的是()A.∠AOD=∠BOC B.∠AOE+∠BOD=90°C.∠AOC=∠AOE D.∠AOD+∠BOD=180°2.如图,已知△ABC,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是( )A.四条边相等的四边形是菱形B.一组邻边相等的平行四边形是菱形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直平分的四边形是菱形3.如图,左、右并排的两棵树AB和CD,小树的高AB=6m,大树的高CD=9m,小明估计自己眼睛距地面EF=1.5m,当他站在F点时恰好看到大树顶端C点.已知此时他与小树的距离BF=2m,则两棵树之间的距离BD是()A.1m B.43m C.3m D.103m4.若分式11x-有意义,则x的取值范围是A.x>1 B.x<1 C.x≠1D.x≠05.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是( )A.2(x-1)+3x=13 B.2(x+1)+3x=13C.2x+3(x+1)=13 D.2x+3(x-1)=136.2-的相反数是A.2-B.2 C.12D.12-7.在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:选手 1 2 3 4 5 6 7 8 9 10 时间(min) 129 136 140 145 146 148 154 158 165 175由此所得的以下推断不正确...的是()A.这组样本数据的平均数超过130B.这组样本数据的中位数是147C.在这次比赛中,估计成绩为130 min的选手的成绩会比平均成绩差D.在这次比赛中,估计成绩为142 min的选手,会比一半以上的选手成绩要好8.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B (﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.49.关于x的方程3x+2a=x﹣5的解是负数,则a的取值范围是()A.a<52B.a>52C.a<﹣52D.a>﹣5210.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF 的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:111.如图,A、B、C是⊙O上的三点,∠B=75°,则∠AOC的度数是()A .150°B .140°C .130°D .120°12.下列运算中,正确的是 ( ) A .x 2+5x 2=6x 4B .x 326·x x =C .236()x x =D .33()xy xy =二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.已知双曲线k 1y x+=经过点(-1,2),那么k 的值等于_______. 14.在ABCD 中,AB=3,BC=4,当ABCD 的面积最大时,下列结论:①AC=5;②∠A+∠C=180o ;③AC ⊥BD ;④AC=BD .其中正确的有_________.(填序号)15.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,则EC 的长为_______.16.小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是_____________________.17.因式分解a 3-6a 2+9a=_____.18.若点A (3,﹣4)、B (﹣2,m )在同一个反比例函数的图象上,则m 的值为 . 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果; (2)求两次摸出的球上的数字和为偶数的概率.20.(6分)某市旅游景区有A ,B ,C ,D ,E 等著名景点,该市旅游部门统计绘制出2018年春节期间旅游情况统计图(如图),根据图中信息解答下列问题:(1)2018年春节期间,该市A,B,C,D,E这五个景点共接待游客万人,扇形统计图中E景点所对应的圆心角的度数是,并补全条形统计图.(2)甲,乙两个旅行团在A,B,D三个景点中随机选择一个,这两个旅行团选中同一景点的概率是.21.(6分)关于x的一元二次方程ax2+bx+1=1.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.22.(8分)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.()1小明和小刚都在本周日上午去游玩的概率为________;()2求他们三人在同一个半天去游玩的概率.23.(818(2166÷31324.(10分)石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.设每件童装降价x元时,每天可销售______ 件,每件盈利______ 元;(用x的代数式表示)每件童装降价多少元时,平均每天赢利1200元.要想平均每天赢利2000元,可能吗?请说明理由.25.(10分)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.王老师采取的调查方式是(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共件,其中b班征集到作品件,请把图2补充完整;王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.26.(12分)如图1为某教育网站一周内连续7天日访问总量的条形统计图,如图2为该网站本周学生日访问量占日访问总量的百分比统计图.请你根据统计图提供的信息完成下列填空:这一周访问该网站一共有万人次;周日学生访问该网站有万人次;周六到周日学生访问该网站的日平均增长率为.27.(12分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:此次共调查了名学生;将条形统计图1补充完整;图2中“小说类”所在扇形的圆心角为度;若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据对顶角性质、邻补角定义及垂线的定义逐一判断可得.【详解】A、∠AOD与∠BOC是对顶角,所以∠AOD=∠BOC,此选项正确;B、由EO⊥CD知∠DOE=90°,所以∠AOE+∠BOD=90°,此选项正确;C、∠AOC与∠BOD是对顶角,所以∠AOC=∠BOD,此选项错误;D、∠AOD与∠BOD是邻补角,所以∠AOD+∠BOD=180°,此选项正确;故选C.【点睛】本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义.2.A【解析】【分析】根据翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根据菱形的判定推出即可.【详解】∵将△ABC 延底边 BC 翻折得到△DBC ,∴AB=BD , AC=CD ,∵AB=AC ,∴AB=BD=CD=AC ,∴四边形 ABDC 是菱形;故选A.【点睛】本题考查了菱形的判定方法:四边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;有一组邻边相等的平行四边形是菱形.3.B【解析】【分析】由∠AGE=∠CHE=90°,∠AEG=∠CEH 可证明△AEG ∽△CEH ,根据相似三角形对应边成比例求出GH 的长即BD 的长即可. 【详解】由题意得:FB=EG=2m ,AG=AB ﹣BG=6﹣1.5=4.5m ,CH=CD ﹣DH=9﹣1.5=7.5m , ∵AG ⊥EH ,CH ⊥EH , ∴∠AGE=∠CHE=90°, ∵∠AEG=∠CEH , ∴△AEG ∽△CEH ,∴ EG AG =EH CH =EG GH CH + ,即 24.5=27.5GH+,解得:GH=43,则BD=GH=43m ,故选:B . 【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中抽象出相似三角形. 4.C 【解析】 【分析】 【详解】分式分母不为0,所以10x -≠,解得1x ≠. 故选:C. 5.A 【解析】 【分析】要列方程,首先要根据题意找出题中存在的等量关系,由题意可得到:买A 饮料的钱+买B 饮料的钱=总印数1元,明确了等量关系再列方程就不那么难了. 【详解】设B 种饮料单价为x 元/瓶,则A 种饮料单价为(x-1)元/瓶, 根据小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了1元, 可得方程为:2(x-1)+3x=1. 故选A . 【点睛】列方程题的关键是找出题中存在的等量关系,此题的等量关系为买A中饮料的钱+买B中饮料的钱=一共花的钱1元.6.B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键.7.C【解析】分析:要求平均数只要求出数据之和再除以总个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可求解.详解:平均数=(129+136+140+145+146+148+154+158+165+175)÷10=149.6(min),故这组样本数据的平均数超过130,A正确,C错误;因为表中是按从小到大的顺序排列的,一共10名选手,中位数为第五位和第六位的平均数,故中位数是(146+148)÷2=147(min),故B正确,D正确.故选C.点睛:本题考查的是平均数和中位数的定义.要注意,当所给数据有单位时,所求得的平均数和中位数与原数据的单位相同,不要漏单位.8.B【解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.9.D先解方程求出x,再根据解是负数得到关于a的不等式,解不等式即可得. 【详解】解方程3x+2a=x﹣5得x=522a --,因为方程的解为负数,所以522a--<0,解得:a>﹣5 2 .【点睛】本题考查了一元一次方程的解,以及一元一次不等式的解法,解一元一次不等式时,要注意的是:若在不等式左右两边同时乘以或除以同一个负数时,不等号方向要改变.10.B【解析】【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故选B.11.A【解析】【分析】直接根据圆周角定理即可得出结论.【详解】∵A、B、C是⊙O上的三点,∠B=75°,∴∠AOC=2∠B=150°.【解析】分析:直接利用积的乘方运算法则及合并同类项和同底数幂的乘除运算法则分别分析得出结果.详解:A. x 2+5x 2=2466x x ≠ ,本项错误;B.3256x x x x ⋅=≠ ,本项错误;C.236()x x = ,正确;D.3333()xy x y xy =≠,本项错误.故选C.点睛:本题主要考查了积的乘方运算及合并同类项和同底数幂的乘除运算,解答本题的关键是正确掌握运算法则.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.-1 【解析】 【详解】分析:根据点在曲线上点的坐标满足方程的关系,将点(-1,2)代入k 1y x +=,得:k 121+=-,解得:k =-1. 14.①②④ 【解析】 【分析】由当ABCD 的面积最大时,AB ⊥BC ,可判定ABCD 是矩形,由矩形的性质,可得②④正确,③错误,又由勾股定理求得AC=1. 【详解】∵当ABCD 的面积最大时,AB ⊥BC , ∴ABCD 是矩形,∴∠A=∠C=90°,AC=BD ,故③错误,④正确; ∴∠A+∠C=180°;故②正确; ∴AC==1,故①正确.故答案为:①②④. 【点睛】此题考查了平行四边形的性质、矩形的判定与性质以及勾股定理.注意证得▱ABCD 是矩形是解此题的关键. 15.213。

河北省部分学校2020届九年级上学期期中考试数学试题[精品]

河北省部分学校2020届九年级上学期期中考试数学试题[精品]

2019-2020学年第一学期期中教学质量检测九年级数学(人教版)参考答案1-5ACDDC 6-10ABCDC 11.(-2,3)12.一13.30°或60°14.163π-15.(8076,0)16.(8分)解:(1)(x-3)2=0,x-3=0,即x 1=x 2=3.…………(4分)(2)x(x+1)=2(x+1)(x+1)(x-2)=0∴x+1=0或x-2=0∴x 1=-1,x 2=2…………(8分)17.(8分)(1)证明:依题意,得△=(-m)2-4(m-1)=(m-2)2≥0∴方程总有两个实数根…………(4分)(2)x 2-mx+m-1=0x=2m ±∴x 1=1,x 2=m-1∵方程有一个根大于3∴m-1>3∴m>4∴m 的取值范围是m>4…………(8分)18.(8分)解:(1)450×1850=162(人),答:该校九年级有450名学生,估计体育测试成绩为25分的学生人数为162人;…………(3分)(2)画树状图如右图:共有12个等可能的结果,甲和乙恰好分在同一组的结果有2个,∴甲和乙恰好分在同一组的概率为212=16.…………(8分)19.(10分)解:设运动时间为x 秒,由题意得,AP=2x,BQ=4x,则PB=12-2x,△PBQ 的面积=12×BQ×PB…………(3分)=12×(12-2x)×4x=-4(x-3)2+36,当x=3s 时,△PBQ 的面积最大,此时四边形APQC 的面积最小.…………(10分)20.(8分)解:(1)1.5×4=6(万座).答:计划到2020年底,全省5G 基站的数量是6万座.…………(2分)(2)设2020年底到2022年底,全省5G 基站数量的年平均增长率为x,依题意,得:6(1+x)2=17.34,解得:x 1=0.7=70%,x 2=-2.7(舍去).答:2020年底到2022年底,全省5G 基站数量的年平均增长率为70%.…………(8分)21.(10分)(1)证明:连接OC∵OE∥AC ∴∠1=∠ACB ∵AB 是⊙O 的直径∴∠1=∠ACB=90°∴OD⊥BC,由垂径定理得OD 垂直平分BC ∴DB=DC∴∠DBE=∠DCE 又∵OC=OB∴∠OBE=∠OCE 即∠DBO=∠OCD ∵DB 为⊙O 的切线,OB 是半径∴∠DBO=90°,∴∠OCD=∠DBO=90°即OC⊥DC ∵OC 是⊙O 的半径∴DC 是⊙O 的切线………(5分)(2)由(1)知DC 是⊙O 的切线∴∠FCO=90°在Rt△ABC 中,∠ABC=30°∴∠2=60°又∵OA=OC ∴△AOC 是等边三角形∴∠COF=60°∴∠F=30°∴OF=2OC=AB=8………(10分)22.(11分)(1)令y=0,则kx 2+(2k+1)x+2=0解关于x 的一元二次方程,得x 1=-2,x 2=-1k∵二次函数的图象与x 轴两个交点的横坐标均为整数,且k 为正整数∴k=1.∴该抛物线解析式为y=x 2+3x+2由图象得到:当y 1>y 2时,a>1或a<-4.………….(6分)(2)依题意得kx 2+(2k+1)x+2-y=0恒成立,即k(x 2+2x)+x-y+2=0恒成立,则22020x x x y ⎧+=⎨-+=⎩解得02x y =⎧⎨=⎩或20x y =-⎧⎨=⎩.所以该抛物线恒过定点(0,2)、(-2,0).…………(11分)23.(12分)(1)令:y=x 2-2x=0,则x=0或2,即点B(2,0)∵C 1、C 2:y=ax 2+bx 开口大小相同、方向相反,则a=-1则点A(4,0),将点A 的坐标代入C 2的表达式得:0=-16+4b,解得:b=4∴抛物线C 2的解析式为:y=-x 2+4x;…………(4分)(2)联立C 1、C 2表达式并解得:x=0或x=3∴C(3,3)作点C 关于C 2对称轴的对称点C’(1,3)连接AC’交函数C 2的对称轴于点P此时PA+PC 的值最小,可求出直线AC’的解析式,以及当x=2时,y=2,故此时P(2,2)…………(8分)(3)直线OC 的表达式为:y=x 过点M 作y 轴的平行线交OC 于点H设点M(x,-x 2+4x),则点H(x,x)则S △MOC =12MH ⋅x C =32(-x 2+4x-x)=-32x 2+92x ∵-32<0,故x=32时,S △MOC 最大值为278.…………(12分)。

2019-2020学年度第一学期期中考试(九年级数学)

2019-2020学年度第一学期期中考试(九年级数学)

2019-2020学年度第一学期期中考试(九年级数学)(分值120分考试时间:120分钟)一、选择题:本题共10小题,共30分。

在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来。

每小题选对得3分,不选或选出的答案超过一个均记零分。

1. 如图所示的几何体的主视图是()2. 下列说法正确的是( )A. 矩形都是相似图形B. 菱形都是相似图形C. 各边对应成比例的多边形是相似多边形D. 等边三角形都是相似三角形3.已知反比例函数的图象经过点(2.-3),那么下列四个点中,也在这个函数图象上的是()A. (-6,-1)B. (-2,-3)C. (3,-2)D. (1,6)4. 在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A.B.C.D.5. 反比例函数图象上有三个点,,,其中,则,,的大小关系是()A. B. C. D.6. 函数与在同一坐标系内的图像可以是A. B. C. D.7. 如图,是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是( )A. B. C. D.8. 如图,在矩形ABCD中,,,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么∠的值是 A. B. C. D.( 第7题) ( 第8题) ( 第9题)9. 在阳光下,一名同学测得一根长为1米的垂直地面的竹竿的影长为 米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为 米,一级台阶高为 米,如图所示,若此时落在地面上的影长为 米,则树高为( )A. 米B. 7米C. 8米D. 12米10. 如图,正方形ABCD 的边长是3, ,连接AQ ,DP 交于点O ,并分别与边CD ,BC 交于点F ,E ,连接AE ,下列结论: ; ;四边形 ; 当 时, ∠,其中正确结论的个数是( )A. 1 B. 2 C. 3 D. 4二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11. 反比例函数,在每个象限内,y 随x 的增大而增大,则m 的值是______.12. 已知0)tan 3(21sin 2=-+-B A ,那么∠A+∠B= . 13. 如图, 中,D 、E 分别是AB 、AC 上的点 不平行 ,若使 与 相似,则需要添加______即可 只需添加一个条件 .14. 如图是拦水坝的横断面,斜坡 AB 的水平宽度为 12 米,斜面坡度为 1:2,则斜坡AB 的长 为 米( 第13题 ) ( 第14题 ) ( 第15题 )15. 如图△ABC 三个顶点的坐标分别为 A (2,2)、B (4,0)、C (6,4),以原点为中心,将△ABC 缩小,位似比为 1:2,则线段 AC 的中点 P 变换后对应点的坐标 .(第16题)(第17题) (第18题)16. 如图,在圆桌的正上方有一盏吊灯在灯光下,圆桌在地板上的投影是面积为π的圆已知圆桌的高度为,圆桌面的半径为1 m,则吊灯距圆桌面的高度为m.17. 如图,在△ABC 中,D、E 分别是 AB、BC 上的点,且 DE∥AC,若 S△BDE:S△CDE=1:4,则 S△BDE:S△ACD=.18. 如图,一次函数与反比例函数的图象交于A(1,12)和B(6,2)两点.点P是线段AB上一动点(不与点A和B重合),过P点分别作x、y轴的垂线PC、PD交反比例函数图象于点M、N,则四边形PMON面积的最大值是.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19. (8分) (1) -2sin45°+||-()-2+()0.(2) +|2-8|-()-1-2cos30°.20.(8分)如图,在ABC中,∠A=30°,cos B=,AC=6.求AB的长.21.(8分)如图,已知A(-4,n),B(2,-4)是一次函数y=kx+b和反比例函数y=的图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)观察图象,直接写出方程kx+b-=0的解;(3)求AOB的面积;(4)观察图象,直接写出不等式kx+b-<0的解集.22.(8分)如图,在▱ABCD中过点A作AE DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.(1)求证:ABF∽ BEC;(2)若AD=5,AB=8,sin D=,求AF的长.23.(9分)如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据: 1.414,1.732)24.(9分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=5,AB=7,求的值.25.(12分)一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:AEF∽ ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?答案和解析一、选择题1.【答案】B2.【答案】D【解析】解:A、正方形是特殊的矩形,所以矩形不都是相似图形,故本选项错误;B、菱形的内角度数不定,所以菱形不都是相似图形,故本选项错误;C、菱形和正方形可以满足边长对应成比例,但不是相似图形,故本选项错误;D、等边三角形都是相似三角形,故本选项正确.故选D.根据相似图形的三条特点相似图形的形状必须完全相同;相似图形的大小不一定相同;两个物体形状相同、大小相同时它们是全等的,全等是相似的一种特殊情况,结合选项即可判断出答案.本题考查了相似图形的定义,属于基础题,解答本题的关键是掌握相似图形的定义和特点.3.【答案】B【解析】解:反比例函数的图象经过点,反比例函数解析式为:当时,,则选项A错误;当时,,则选项B错误;当时,,则选项C正确;当时,则选项D错误;故选:B.由题意可求反比例函数解析式,将选项中点的坐标代入可求解.本题考查反比例函数图象上点的坐标特征,熟练掌握函数图象上点的坐标满足函数图象的解析式是本题的关键.4. 【答案】B【解析】【分析】本题考查了锐角三角函数的定义,勾股定理的应用,根据勾股定理列式求出BC,再根据锐角的正弦等于对边比斜边列式即可得解.【解答】解:如图,,,.故选B.5. 【答案】D【解析】【分析】此题主要考查了反比例函数的性质,熟练地应用反比例函数的性质是解决问题的关键.利用,在图象的每一支上,y随x的增大而减小,双曲线在第一三象限,分别分析即可得出答案.【解答】解:,每一象限,y随x的增大而减小,,,,,.故选D.6.【答案】B【解析】【分析】此题考查了一次函数和反比例函数的图象与性质,先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m的取值,二者一致的即为正确答案.【解答】解:由函数的图象可知,由函数的图象可知,相矛盾,故A错误;B.由函数的图象可知,由函数的图象可知,故B正确;C.由函数的图象可知,由函数的图象可知,相矛盾,故C错误;D.由函数的图象可知,由函数的图象可知,相矛盾,故D错误.故选B.7.【答案】B【解析】【分析】本题考查由三视图判断几何体的形状和圆锥侧面积的计算,解题的关键是先运用勾股定理求到圆锥的母线长是2,然后根据圆锥侧面积的公式即可得到答案.【解答】解:该几何体是一个底面直径为2,高为的圆锥,可得圆锥母线长为故这个几何体的侧面积为2,故选B.8.【答案】A【解析】【分析】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等也考查了矩形的性质和勾股定理先根据矩形的性质得,,再根据折叠的性质得,,在中,利用勾股定理计算出,则,设,则,然后在中根据勾股定理得到,解方程即可得到x,进一步得到EF的长,再根据余弦函数的定义即可求解.【解答】解:四边形ABCD为矩形,,,矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,,,在中,,,设,则在中,,,解得,,∠.故选A.9.【答案】C【解析】【分析】本题考查了相似三角形的应用,难点在于把大树的影长分成三段求出假设都在地面上的长度,作出图形更形象直观作出图形,先根据同时同地物高与影长成正比求出台阶的高落在地面上的影长EH,再求出落在台阶上的影长在地面上的长,从而求出大树的影长假设都在地面上的长度,再利用同时同地物高与影长成正比列式计算即可得解.【解答】解:如图,,,,,米,故选C.10.【答案】B【解析】解:四边形ABCD是正方形,,,,, 在与∠∠, 中,∠∠, ≌ ,, ,,,故正确;,,∠∠,∽ ,,即,,,,,故错误;在与中,∠∠∠∠,≌ ,,,在与中,∠∠,≌ ,,即四边形,故正确;,,,∽ ,,,,∠∠,∠∠,∽ ,,即∠,故错误,故选:B.由四边形ABCD是正方形,得到,,根据全等三角形的性质得到∠∠,根据余角的性质得到;根据相似三角形的性质得到,由,得到;根据全等三角形的性质得到,,于是得到,即;根据相似三角形的性质得到,求得,根据 ∽ ,即可得到四边形,进而得到结论.本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义的综合运用,熟练掌握全等三角形、相似三角形的判定和性质是解题的关键.二、填空题:11.【解析】解:根据题意得:,解得:.故答案为.根据反比例函数的定义列出方程求解,再根据它的性质决定解的取舍.本题考查了反比例函数的性质对于反比例函数,当时,在每一个象限内,函数值y随自变量x的增大而减小;当时,在每一个象限内,函数值y随自变量x的增大而增大.12.【答案】90 013.【解析】解:∠是公共角,如果∠∠或∠∠,∽ ;如果,∠∠,∽ ,故答案为:∠∠或∠∠或.根据相似三角形判定定理:两个角相等的三角形相似;夹角相等,对应边成比例的两个三角形相似,即可解题.本题主要考查相似三角形的判定,掌握相似三角形的判定方法是解题的关键,即有两组角对应相等的三角形相似,三边对应成比例的两个三角形相似,两组边对应成比例且夹角相等的两个三角形相似.14.【答案】【解析】【分析】本题考查了解直角三角形的应用,解答本题的关键是根据坡角构造直角三角形,利用三角函数的知识求解根据斜面坡度为1:2,斜坡AB的水平宽度为12米,可得,,然后利用勾股定理求出AB的长度.【解答】解:斜面坡度为1:2,,,则.故答案为.15.【答案】或【解析】【分析】本题考查了位似变换,坐标与图形性质,熟练掌握位似变换的性质是解题的关键,难点在于点P的对应点有两种情况,作出图形更形象直观分缩小后的三角形在第一象限和第三象限两种情况,根据网格结构分别找出点A、B、C的对应点的位置,然后顺次连接即可,再根据平面直角坐标系写出点P的坐标.【解答】解:如图,,,点P的坐标为,以原点为位似中心将缩小位似比为1:2,线段AC的中点P变换后的对应点的坐标为或故答案为或16.【答案】【解析】【分析】题考查了相似三角形的应用,先通过投影的面积得出投影半径,再根据相似三角形边长的相似比,代入已知的圆桌高度,即可求得吊灯距离桌面的高度,此题中得出相似比的关系是解题关键.【解答】解:投影的面积为,投影的半径,,∽,圆桌高度,解得.吊灯距圆桌面的高度为故答案为17.1:20【分析】本题考查了相似三角形的判定与性质,等高的三角形的面积的比等于底边的比,熟记相似三角形面积的比等于相似比的平方,用的面积表示出的面积是解题的关键设的面积为a,表示出的面积为4a,根据等高的三角形的面积的比等于底边的比求出,然后求出和相似,根据相似三角形面积的比等于相似比的平方求出的面积,然后表示出的面积,再求出比值即可.【解答】解:::4,设的面积为a,则的面积为4a,和的点D到BC的距离相等,,,∥,∽ ,::25,,:::20.18.【解析】解:设反比例函数解析式为,一次函数解析式为,将点代入中,得,反比例函数解析式为,将点、代入中,得,解得,一次函数解析式为.设点P的坐标为,则四边形矩形矩形,四边形PMON面积的最大值是.设反比例函数解析式为,一次函数解析式为,根据点的坐标利用待定系数法求出反比例与一次函数的解析式,再利用分割图形求面积法找出四边形关于m的函数关系式,利用配方法解决最值问题.本题考查了待定系数法求函数解析式以及反比例函数与一次函数交点的问题,解题的关键是找出关于m的函数关系式本题属于中档题,难度不大,利用分割图形求面积法是解题的关键.四边形三、解答题19【答案】(1)解:原式.19.【答案】解:.【解析】本题涉及特殊角的三角函数值、负整数指数幂、二次根式化简、绝对值4个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握特殊角的三角函数值、负整数指数幂、二次根式、绝对值等考点的运算.20.【答案】解:如图,过点C作于点D.在中,,,,在中,,设,...,.【解析】本题考查解直角三角形、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于基础题如图,过点C作于点分别在,中,求出AD,DB即可.21.【答案】解:在上,.反比例函数的解析式为.点在上,..经过,,.解得:.一次函数的解析式为.,是一次函数的图象和反比例函数的图象的两个交点,方程的解是,.当时,.点..;不等式的解集为或.【解析】把代入反比例函数得出m的值,再把代入一次函数的解析式,运用待定系数法分别求其解析式;经过观察可发现所求方程的解应为所给函数的两个交点的横坐标;先求出直线与x轴交点C的坐标,然后利用进行计算;观察函数图象得到当或时,一次函数的图象在反比例函数图象上方,即使.本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式也考查了观察函数图象的能力以及用待定系数法确定一次函数的解析式.22.【答案】证明:四边形ABCD是平行四边形,∥,∥,,,∠∠,,∠∠,∽ ;解:,∥,,在中,,在中,根据勾股定理得:,,由得: ∽ ,,即,解得:.【解析】由平行四边形的性质得出∥,∥,,得出,∠∠,证出∠∠,即可得出结论;由三角函数求出AE,由勾股定理求出BE,再由相似三角形的性质求出AF的长.此题考查了相似三角形的判定与性质,以及平行四边形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.23.【答案】解:过B作于G,中,∠,,;,,,四边形BHEG是矩形.由得:,,,中,,.中,,,..答:宣传牌CD高约米.【解析】过B作DE的垂线,设垂足为分别在中,通过解直角三角形求出BH、AH;在解直角三角形求出DE的长,进而可求出EH即BG的长,在中,,则,由此可求出CG的长然后根据即可求出宣传牌的高度.此题综合考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.24.【答案】证明:平分∠,∠∠,又,∽ ,::AB,.证明:为AB的中点,,,∠∠,∠∠,∠∠,∥;解:∥,∽ ,::CF,,,,,,.【解析】此题考查了相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质,利用直角三角形斜边上中线的性质得到是解题的关键.由AC平分∠,,可证得 ∽ ,然后由相似三角形的对应边成比例,证得;由E为AB的中点,根据在直角三角形中,斜边上的中线等于斜边的一半,即可证得,继而可证得∠∠,得到∥;易证得 ∽ ,然后由相似三角形的对应边成比例,求得的值.25.【答案】解:四边形EGFH为正方形,∥,∽ ;设正方形零件的边长为x mm,则,,∥,∽ ,,,,解得.答:正方形零件的边长为48mm.设,,∽,矩形面积故当时,此时矩形的面积最大,最大面积为.【解析】根据正方形的对边平行得到∥,利用“平行于三角形的一边的直线截其它两边或其它两边的延长线,得到的三角形与原三角形相似”判定即可.设正方形零件的边长为xmm,则,,根据∥,得到 ∽ ,根据相似三角形的性质得到比例式,解方程即可得到结果;根据矩形面积公式得到关于x的二次函数,根据二次函数求出矩形的最大值.。

2019-2020学年九年级数学上学期期中B卷(河北)(考试版)【测试范围:冀教版九上全册】

2019-2020学年九年级数学上学期期中B卷(河北)(考试版)【测试范围:冀教版九上全册】

数学试题 第1页(共6页) 数学试题 第2页(共6页)2019-2020学年上学期期中B 卷九年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:冀教版九上全册。

第Ⅰ卷一、选择题(本大题共16小题,共42分,1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.已知方程22(2)(2)30mm x m x --+++=是关于x 的一元二次方程,则m =A .2±B .2C .–2D .02.四边形ABCD 内接于⊙O ,则∠A ∶∠B ∶∠C ∶∠D 的值可以是 A .2∶3∶4∶5B .2∶4∶3∶5C .2∶5∶3∶4D .2∶3∶5∶43.已知两个相似三角形的周长比为4:9,则它们的面积比为 A .4:9B .2:3C .8:18D .16:814.方程2230x x +-=的解是 A .1或–3B .3C .–3D .15.如图,在⊙O 中,弧AB =弧AC ,∠A =36°,则∠C 的度数为A .44°B .72°C .62°D .54° 6.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别是 A .4.65、4.70B .4.65、4.75C .4.70、4.75D .4.70、4.707.如图,⊙O 中,弦AB 的长为8cm ,圆心O 到AB 的距离为3cm ,则⊙O 的半径长为A .3cmB .4cmC .5cmD .6cm8.某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,此刻与他相邻的一棵树的影长为3.6米,则这棵树的高度为 A .4.8米B .4米C .4.2米D .2.7米9.若方程x 2+9x –a =0有两个相等的实数根,则 A .81a =B .81a =-C .814a =D .814a =-10.如图,已知第一象限内的点A 在反比例函数2x 上,第二象限的点B 在反比例函数y =kx上,且OA ⊥OB ,sin Bk 的值为A .12-B .1-C .3-D .4-11.在反比例函数2y x=-图象上有两个点A 11(,)x y ,B 22(,)x y ,若120x x <<,则下列结论正确的是 A .120y y <<B .120y y <<C .210y y <<D .210y y <<12.在Rt △ABC 中,∠C =90°,sin A =45,则cos B 的值等于数学试题 第3页(共6页) 数学试题 第4页(共6页)A .35B .45C .34D13.如图,O 是ABC △的外接圆,连接OA 、OB ,且点C 、O 在弦AB 的同侧,若50ABO ∠=,则ACB ∠的度数为A .50B .45C .40D .3014.ABC △与A'B'C'△是位似图形,且ABC △与A'B'C'△的位似比是1:2,已知ABC △的面积是3,则A'B'C'△的面积是 A .3 B .6C .9D .1215.在方差的计算公式222212101[(20)(20)(20)]10s x x x =-+-+⋅⋅⋅+-中,数字10和20分别表示的意义可以是A .数据的个数和方差B .平均数和数据个数C .数据的个数和平均数D .数据的方差和平均数16.已知直线l 1∥l 2∥l 3∥l 4,相邻两条平行线间的距离均为h ,矩形ABCD 的四个顶点分别在这四条直线上,放置方式如图所示,AB =4,BC =6,则tan α的值等于A .23B .34C .43D .32第Ⅱ卷二、填空题(本大题共3小题,共11分.17小题3分;18~19小题各有2个空,每空2分) 17.如图,梯形ABCD 中,AD ∥BC ∥EF ,AE ∶EB =2∶3,AD =12,则BC =18,则EF =__________.18.已知方程x 2+2x +a –2=0的两根为x 1,x 2,且x 1=1,则a =__________,x 2=__________. 19.如图,点A ,B 是反比例函数y =k x(x >0)图象上的两点,过点A ,B 分别作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连接OA 、BC ,已知点C (2,0),BD =3,S △BCD =3,则k 的值为__________,S △AOC 为__________.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)解方程:(1)240x x -=;(2)x 2+3x +1=0.21.(本小题满分9分)如图,AB 是圆O 的直径,CD 为弦,AB ⊥CD ,垂足为H ,连接BC 、BD .(1)求证:BC =BD ;(2)已知CD =6,OH =2,求圆O 的半径长.22.(本小题满分9分)如图,在Rt ABC △中,90C ∠=︒,点D 是BC 边上的一点,6CD =,3cos 5ADC ∠=,2tan 3B =. (1)求AC 和AB 的长;(2)求sin BAD ∠的值.23.(本小题满分9分)东台市为打造“绿色城市”,积极投入资金进行河道治污与园林绿化两项工程,已知2017年投资1000万元,预计2019年投资1210万元.若这两年内平均每年投资增长的百分率相同.(1)求平均每年投资增长的百分率;(3)若OE=BE,求∠AGC的度数.Array(2)按此增长率,计算2020年投资额能否达到1360万?24.(本小题满分10分)为了倡导“节约用水,从我做起”,市政府决定对市直机关500户家庭的用水情况做一次调查,市政府调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨)并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数;(3)根据样本数据,估计市直机关500户家庭中平均用水量不超过12吨的约有多少户?26.(本小题满分12分)如图,AB为⊙O的直径,弦CD⊥AB于点E,点G是AD上一点,连接AG,CG.(1)在不添加辅助线的前提下直接写出图中与∠AGC相等的角,不用证明;(2)求证:当AB∥DG时,△ACG与△EAC相似;数学试题第5页(共6页)数学试题第6页(共6页)。

2019-2020学年河北省唐山市滦南县九年级(上)期中数学试卷(解析版)

2019-2020学年河北省唐山市滦南县九年级(上)期中数学试卷(解析版)

2019-2020学年河北省唐山市滦南县九年级(上)期中数学试卷一、选择题(本大题共16小题,共42.0分)1.下列图形中既是轴对称图形又是中心对称图形的是()A.大众标志图B.雪佛兰图C.奥迪D.北汽新能源2.关于x的一元二次方程(a-1) x22+x+a2-1=0的一个根是0.则a的值为() A.1B.-1C.1 或-1D.23.y = 1 -k⋅x-1 是一次函数,则一元二次方程kx2+ 2 x+ 1 = 0 的根的情况是( )A.没有实数根B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根4.抛物线y=(x+ 1)2- 3 的对称轴是()A.直线x=1B.直线x=-1C.直线x=3D.直线x=-35.若关于一元二次方程ax2+bx+c=0有两个不相等的实数根,则抛物线y=ax2+bx+c与x 轴的交点个数是()A.2 个B.1 个C.0 个D.无法确定6.二次函数y=x2-2x+3的开口方向,顶点坐标分别是()A.开口向上,顶点坐标(-1,4)B.开口向上,顶点坐标(1,2)C.开口向下,顶点坐标(-1,2)D.开口向下,顶点坐标(1,4)7.二次函数y=ax2+bx+c(a≠0)如图所示,则函数值y>0 时,x的取值范围是() A.x <-1B.x > 3C.-1< x <3D.x<-1 或x > 3 8.若P1(-3,y1),P2(-2,y2),P3(3,y3)均在二次函数y= -x2+2x+c的图像九年级数学第1 页(共6 页))上,则y1,y2,y3的大小关系是(A.y1 < y2 < y3B.y3 > y1 > y2C.y2 > y1 > y3D.y3 < y2 < y1第 7 题图 第 9 题图9. 如图,某同学把两块教学用的等腰直角三角板直角顶点 A 点合在一起,顺时针方向转45°后,点 C 恰好落在斜边 DE 上,若直角边 AB=36 ,则△ ADC 的面积是( )A 39B 69 C239227 D 271. 如图,在△ABC 中,∠A =78°,AB =4,AC =6,将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A.B.C.D.2. 如图,平行于BC 的直线DE 把△ABC 分成的两部分面积相等,则为( )A.B.C.D.3. 若一元二次方程x 2+bx +5=0配方后为(x -2)2+k =0,则b 、k 的值分别是( )A. 0、5B. 0、1C. 、1D. 、54. 若线段AB = cm ,C 是线段AB 的一个黄金分割点,则线段AC 的长( )A.B.C.或D. 或5. 下列与反比例函数图象有关图形中,阴影部分面积最小的是( )A.B.C.D.6. 某公司一月份获利400万元,计划第一季度的利润达到1324万元.若该公司每月的增长率相同,则该增长率是( ) A. B. C. D. 7. 将三角形纸片△ABC 按如图所示的方式折叠,使点B落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =8,BC =10,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是( )A. 5B.C.或4D. 5或二、填空题(本大题共4小题,共12.0分)8. 小红沿坡比为1: 的斜坡上走了100米,则她实际上升了______米.9. 如图,直线l 1∥l 2∥l 3,直线AC 交l 1,l 2,l 3于点A ,B ,C ;直线DF 交l 1,l 2,l 3于点D ,E ,F ,已知 = ,则=______.10. 如图,已知矩形OABC 与矩形ODEF 是位似图形,P 是位似中心,若点B 的坐标为(2,4),点E 的坐标为(-1,2),则点P 的坐标为______.11. 已知x 1、x 2是一元二次方程x 2+x +m =0的两个根,且x 1+x 2=2+x 1x 2,则m =______. 三、计算题(本大题共1小题,共10.0分)12. 已知关于x 的一元二次方程x 2-(n +3)x +3n =0.(1)求证:此方程总有两个实数根;(2)若此方程有两个不相等的整数根,请选择一个合适的n 值,写出这个方程并求出此时方程的根.四、解答题(本大题共5小题,共56.0分)13.某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表(图1),并计算了甲成绩的平均数和方差(见图2小宇的作业).(1)a=______;(2)请完成图中表示乙成绩变化情况的折线.(3)观察图,可看出______的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.14.如图,BE是△ABC的角平分线,延长BE至D,使得BC=CD.(1)求证:△AEB∽△CED;(2)若AB=2,BC=4,AE=1,求CE长.15.物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到400件.设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元?16.如图,某渔船向正东方向以12海里时的速度航行,在A处测得岛C在北偏东的60°方向,1小时后渔船航行到B处,测得岛C在北偏东的30°方向,已知该岛周围10海里内有暗礁.(1)B处离岛C有多远?(2)如果渔船继续向东航行,需要多长时间到达距离岛C最近的位置?(3)如果渔船继续向东航行,有无触礁危险?17.为了预防“流感”,某学校对教室采用药熏法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克/立方米)与药物点燃后的时间x(分钟)成正比例,药物燃尽后,y与x成反比例(如图所示).已知药物点燃后4分钟燃尽,此时室内每立方米空气中含药量为8毫克.(1)求药物燃烧时,y与x之间函数的表达式;(2)求药物燃尽后,y与x之间函数的表达式(3)研究表明,当空气中每立方米的含药量不低于2毫克,且持续12分钟以上才能有效杀灭空气中的病菌,请计算说明此次消毒能否有效杀灭空气中的病菌?答案和解析1.【答案】B【解析】解:∵(m-2)x n-3nx+2=0是关于x的一元二次方程,∴m-2≠0,n=2,解得m≠2,n=2.故选:B.根据一元二次方程的定义列出关于m,n的方程,求出m,n的值即可.本题考查的是一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解答此题的关键.2.【答案】C【解析】解:∵b是a、c的比例中项,∴b2=ac,即,∵a:b=3:2,∴b:c=3:2.故选:C.由b是a、c的比例中项,根据比例中项的定义,即可求得,又由a:b=3:2,即可求得答案.此题考查了比例线段以及比例中项的定义.解题的关键是熟记比例中项的定义及其变形.对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,我们就说这四条线段是成比例线段,简称比例线段.3.【答案】B【解析】解:A、sin60°=,故A错误;B、tan60°=,故B正确;C、sin45°=,故C错误;D、cos30°=,故D错误;故选:B.根据特殊角三角函数值,可得答案.本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.4.【答案】B【解析】解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B.根据众数、中位数的定义分别进行解答即可.本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.【答案】C【解析】解:∵反比例函数y=图象经过A(1,2),B(n,-2)两点,∴k=1×2=-2n.解得n=-1.故选:C.根据反比例函数图象上点的坐标特征得到:k=1×2=-2n.考查了反比例函数图象上点的坐标特征.图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.6.【答案】D【解析】解:∵x=-1是关于x的一元二次方程ax2-bx-2018=0的一个解,∴a+b-2018=0,∴a+b=2018,∴1+a+b=1+2018=2019,故选:D.根据x=-1是关于x的一元二次方程ax2-bx-2018=0的一个解,可以得到a+b 的值,从而可以求得所求式子的值.本题考查一元二次方程的解,解答本题的关键是明确题意,求出所求式子的值.7.【答案】D【解析】解:∵在Rt△ABC中,CD⊥AB于点D,∴sinB=,故选:D.根据三角函数的定义解答即可.此题考查锐角三角函数的定义,关键是根据正弦函数是对边与斜边的比进行解答.8.【答案】D【解析】解:∵关于x的一元二次方程kx2-4x+1=0有实数根,∴k≠0且△=(-4)2-4k≥0,解得:k≤4且k≠0.故选:D.根据二次项系数非零结合根的判别式△≥0,即可得出关于k的一元一次不等式组,解之即可得出结论.本题考查了根的判别式以及一元二次方程的定义,牢记“当△≥0时,方程有实数根”是解题的关键.9.【答案】B【解析】【分析】反比例函数y=(k≠0,k为常数)中,当k>0时,双曲线在第一,三象限,在每个象限内,y随x的增大而减小判定则可.本题考查了由反比例函数图象的性质判断函数图象上点的坐标特征,同学们应重点掌握.【解答】解:∵k=2>0,∴函数为减函数,又∵x1>0>x2,∴A,B两点不在同一象限内,∴y2<0<y1;故选:B.10.【答案】C【解析】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C.根据相似三角形的判定定理对各选项进行逐一判定即可.本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.11.【答案】D【解析】解:∵DE把△ABC分成的两部分面积相等,∴S△ADE=S△ABC,∵DE∥BC,∴△ADE∽△ABC,∴=()2=,∴=,故选:D.证明△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方计算.本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.12.【答案】C【解析】解:∵(x-2)2=k,∴x2-4x+4-k=0,∵一元二次方程x2+bx+5=0配方后为(x-2)2=k,∴b=-4,4-k=5,∴k=-1,∴b,k的值分别为-4、-1;故选:C.先把(x-2)2=k化成x2-4x+4-k=0,再根据一元二次方程x2+bx+5=0得出b=-4,4-k=5,然后求解即可.此题考查了一元二次方程的解法,掌握配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.13.【答案】C【解析】解:由于AC可能是较长的线段,也可能是较短的线段,∴AC=×=cm或AC=-()=()cm.故选:C.把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.考查了黄金分割点的概念,能够根据黄金比计算.这里主要注意AC可能是较长线段,也可能是较短线段.14.【答案】A【解析】解:选项A中阴影部分面积=2×2-×1×2-×1×2-×1×1=,选项B、C、D中的阴影部分的面积都是2,<2,故选:A.分别求解阴影部分的面积即可判断;本题考查反比例函数系数k的几何意义,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.【答案】A【解析】解:设二、三月份平均每月增长的百分率是x,则400+400(1+x)+400(1+x)2=1324,解得:x=0.1或x=-2.1(舍去)故选:A.等量关系为:一月份利润+一月份的利润×(1+增长率)+一月份的利润×(1+增长率)2=1324,把相关数值代入计算即可.此题主要考查了一元二次方程的应用,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.16.【答案】D【解析】解:∵△ABC沿EF折叠B和B′重合,∴BF=B′F,设BF=x,则CF=10-x,∵当△B′FC∽△ABC,∴=,∵AB=8,BC=10,∴=,解得:x=,即:BF=,当△FB′C∽△ABC,=,=,解得:x=5,故BF=5或.故选:D.根据折叠得到BF=B′F,根据相似三角形的性质得到=或=,设BF=x,则CF=10-x,即可求出x的长,得到BF的长,即可选出答案.本题主要考查了相似三角形的性质,以及图形的折叠问题,解此题的关键是设BF=x,根据相似三角形的性质列出比例式.17.【答案】50【解析】解:设铅直距离为x,则水平距离为x,根据题意得:x2+(x)2=1002,解得:x=50(负值舍去),则她实际上升了50米,故答案为:50根据题意设铅直距离为x,则水平距离为x,根据勾股定理求出x的值,即可得到结果.此题考查了解直角三角形的应用-坡度坡角问题,灵活运用勾股定理是解本题的关键.18.【答案】2【解析】解:∵=,∴=2,∵l1∥l2∥l3,∴==2,故答案为:2.根据题意求出,根据平行线分线段成比例定理解答.本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.19.【答案】(-2,0)【解析】解:∵四边形OABC是矩形,点B的坐标为(2,4),∴OC=AB=4,OA=2,∴点C的坐标为:(0,4),∵矩形OABC与矩形ODEF是位似图形,P是位似中心,点E的坐标为(-1,2),∴位似比为1:2,∴OP:AP=OD:AB=1:2,设OP=x,则,解得:x=2,∴OP=2,即点P的坐标为:(-2,0).故答案为:(-2,0).由矩形OABC中,点B的坐标为(2,4),可求得点C的坐标,又由矩形OABC 与矩形ODEF是位似图形,P是位似中心,点C的对应点点E的坐标为(-1,2),即可求得其位似比,继而求得答案.此题考查了位似变换的性质.注意求得矩形OABC与矩形ODEF的位似比是解此题的关键.20.【答案】-3【解析】解:∵x1、x2是一元二次方程x2+x+m=0的两个根,∴x1+x2=-1,x1x2=m.∵x1+x2=2+x1x2,即-1=2+m,∴m=-3.故答案为:-3.根据根与系数的关系可得出x1+x2=-1、x1x2=m,结合x1+x2=2+x1x2即可得出关于m的一元一次方程,解之即可得出结论.本题考查了根与系数的关系,利用根与系数的关系结合x1+x2=2+x1x2找出关于m的一元一次方程是解题的关键.21.【答案】(1)证明:∵△=(n+3)2-12m=(n-3)2,∵(n-3)2≥0,∴方程有两个实数根;(2)解:∵方程有两个不相等的实根∴n可取0,则方程化为x2-3x=0,因式分解为x(x-3)=0∴x1=0,x2=3.【解析】(1)计算判别式的值得到△=(n-3)2,然后利用非负数的性质得到△≥0,从而根据判别式的意义可得到结论;(2)n可取0,方程化为x2-3x=0,然后利用因式分解法解方程.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.22.【答案】4 乙【解析】解:(1)由题意得:甲的总成绩是:9+4+7+4+6=30,则a=30-7-7-5-7=4,故答案为:4;(2)如图所示:;(3)①观察图,可看出乙的成绩比较稳定,∵=30÷5=6∴=[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6.由于>,所以上述判断正确.故答案为:乙;(1)根据他们的总成绩相同,得出a=30-7-7-5-7=4;(2)根据(1)中所求得出a的值进而得出折线图即可;(3)观察图,即可得出乙的成绩比较稳定.此题主要考查了方差的定义以及折线图和平均数的意义,根据已知得出a的值进而利用方差的意义比较稳定性即可.23.【答案】(1)证明:∵BE是△ABC的角平分线,∴∠ABE=∠CBE.∵BC=CD,∴∠CDE=∠CBE=∠ABE.又∵∠AEB=∠CED,∴△AEB∽△CED;(2)解:∵BC=4,∴CD=4.∵△AEB∽△CED,∴=,即=,∴CE=2.【解析】(1)根据角平分线的性质结合等腰三角形的性质可得出∠CDE=∠ABE,结合对顶角相等,即可证出△AEB∽△CED;(2)根据相似三角形的性质,即可得出=,代入数据即可求出CE的长度.本题考查了相似三角形的判定与性质、角平分线的性质以及等腰三角形的性质,解题的关键是:(1)利用角平分线的性质及等腰三角形的性质找出∠CDE=∠ABE;(2)根据相似三角形的性质找出=.24.【答案】解:(1)设二、三这两个月的月平均增长率为x,根据题意可得:256(1+x)2=400,解得:x1=,x2=-(不合题意舍去).答:二、三这两个月的月平均增长率为25%;(2)设当商品降价m元时,商品获利4250元,根据题意可得:(40-25-m)(400+5m)=4250,解得:m1=5,m2=-70(不合题意舍去).答:当商品降价5元时,商品获利4250元.【解析】(1)由题意可得,1月份的销售量为:256件;设2月份到3月份销售额的月平均增长率,则二月份的销售量为:256(1+x);三月份的销售量为:256(1+x)(1+x),又知三月份的销售量为:400元,由此等量关系列出方程求出x的值,即求出了平均增长率;(2)利用销量×每件商品的利润=4250求出即可.此题主要考查了一元二次方程的应用,本题的关键在于理解题意,找到等量关系准确的列出方程是解决问题的关键.25.【答案】解:(1)过C作CO⊥AB于O,则CO为渔船向东航行到C道最短距离,∵在A处测得岛C在北偏东的60°,∴∠CAB=30°,又∵B处测得岛C在北偏东30°,∴∠CBO=60°,∠ABC=120°,∴∠ACB=∠CAB=30°,∴AB=BC=12×1=12(海里)(等边对等角);(2)∵CO⊥AB,∠CBO=60°∴BO=BC×cos∠CBO=12×=6(海里),6÷12=0.5(小时),答:如果渔船继续向东航行,需要0.5小时到达距离岛C最近的位置;(3)∵CO⊥AB,∠CBO=60°∴CO=BC×sin∠CBO=12×sin60°=6(海里),∵6>10,∴如果渔船继续向东航行,没有触礁危险;【解析】(1)通过证明∠ACB=∠CAB=30°,即可求出CB的长;(2)过C作CO⊥AB于O,则CO为渔船向东航行到C道最短距离,求出OB 的长,即可求出答案;(3)求出CO的长度,再比较即可.本题是将实际问题转化为直角三角形中的数学问题,可通过作辅助线构造直角三角形,再把条件和问题转化到这个直角三角形中,使问题解决.26.【答案】解:(1)设正比例函数解析式:y=kx且过(4,8)∴8=4k∴k=2∴y=2x(2)设反比例函数解析式:y=,且过(4,8)∴8=∴m=32∴y=(3)当y=2时,2=2x,解得:x=1当y=2时,2=,解得:x=16则空气中每立方米的含药量不低于2毫克的持续时间为16-1=15分钟∵15>12∴此次消毒能有效杀灭空气中的病菌.【解析】(1)正比例函数图象过点(4,8),利用待定系数法可求解析式;(2)反比例函数图象过点(4,8),利用待定系数法可求解析式;(3)将y=2分别代入两个解析式,可求x的值,即可判断此次消毒能否有效杀灭空气中的病菌.本题考查了反比例函数的应用,待定系数法求解析式,利用数形结合思想解决问题是本题的关键.第21页,共19页。

唐山市2020年九年级上学期数学期中考试试卷D卷

唐山市2020年九年级上学期数学期中考试试卷D卷

唐山市2020年九年级上学期数学期中考试试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019九上·柳南期末) 关于x的方程(m﹣1)x2+2mx﹣3=0是一元二次方程,则m的取值是()A . 任意实数B . m≠1C . m≠﹣1D . m>12. (2分) (2015九上·武昌期中) 下列方程中没有实数根的是()A . x2﹣x﹣1=0B . x2+3x+2=0C . 2015x2+11x﹣20=0D . x2+x+2=03. (2分)将一张边长分别为a,b(a>b)的矩形纸片ABCD折叠,使点C与点A重合,则折痕的长为()A .B .C .D .4. (2分)如图所示,点E是平行四边形ABCD的边CB延长线上的点,AB与DE相交于点F,则图中相似三角形共有()对.A . 5B . 4C . 3D . 25. (2分)如图,在宽为,长为的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为,求道路的宽.如果设小路宽为,根据题意,所列方程正确的是().A .B .C .D .6. (2分)(2018·济宁) 如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A . 50°B . 60°C . 80°D . 100°7. (2分) (2019九上·淮阴期末) 如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是()A .B .C .D .8. (2分)如图,AB是⊙O的直径,C,D是圆上两点,∠AOC=50°,则∠D等于()A . 25°B . 30°C . 40°D . 50°9. (2分)(2020·温州模拟) 如图,在△ABC中,DE∥BC,,DE=4,则BC的长()A . 8B . 10C . 12D . 1610. (2分)如图,△ABC中,AD⊥BC于D,且有下列条件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC;(3)=;(4)AB2=BD·BC其中一定能够判定△ABC是直角三角形的共有()A . 3个B . 2个C . 1个D . 0个二、填空题 (共8题;共10分)11. (1分) (2019七下·昭平期中) 已知关于x的方程xk﹣1﹣2x+3=0是一元二次方程,则k=________.12. (1分) (2017九上·宣化期末) 给出一种运算,对于函数y=xn ,规定y′=nxn﹣2﹣1,若函数y=x5 ,则有y′=5x3﹣1.已知函数y=x4 ,则方程y′=3x的解的和为________.13. (2分)(2017·成武模拟) 已知关于x的一元二次方程x2﹣2 x+1=0的实数根是x1、x2 ,则代数式x12+x22﹣x1x2=________.14. (1分)(2011·内江) 如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°.则圆锥的母线是________.15. (1分)如图,△ABC与△DEF是位似图形,位似比为2:3,则△ABC与△DEF的面积比为________16. (2分) (2017八上·海勃湾期末) 如图,△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点,点P在线段BC上以3cm/s的速度由点B向点C移动,同时,点Q在线段CA上由点C向点A移动.若点Q的移动速度与点P 的移动速度相同,则经过________秒后,△BPD≌△CQP.17. (1分)如图,已知l1∥l2 ,∠A=40°,∠1=60°,∠2=________18. (1分) (2020九下·重庆月考) 折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A 落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=________.三、解答题 (共9题;共94分)19. (20分)解下列方程:(1) (2x+1)2=3(2x+1);(2) 3x2-10x+6=0.20. (10分)(2019·南昌模拟) 如图,是的直径,点、在上,,在的延长线上有一点,使得,弦交于点,连接.(1)求证:是的切线.(2)若,,求的长.21. (2分)(2016·巴中) 如图,在平面直角坐标系xOy中,以点O为圆心的圆分别交x轴的正半轴于点M,交y轴的正半轴于点N.劣弧的长为π,直线y=﹣ x+4与x轴、y轴分别交于点A、B.(1)求证:直线AB与⊙O相切;(2)求图中所示的阴影部分的面积(结果用π表示)22. (10分) (2020九下·盐城月考) 已知关于的一元二次方程有两个不相等的实数根,(1)求m的取值范围;(2)当时,求出此时方程的两个根.23. (10分)如图,在△ABC中,∠ACB=90°,BC=15,AC=20,CD是高.(1)求AB的长;(2)求△ABC的面积;(3)求CD的长.24. (10分)(2017·河北模拟) 某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神舟行”不缴月租费,每通话1min付费0.6元.若一个月内通话x min,两种方式的费用分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;(2)一个月内通话多少分钟,两种移动通讯费用相同;(3)某人估计一个月内通话300min,应选择哪种移动通讯合算些.25. (15分) (2019九上·东港月考) 如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)求证:;(3)若AG=6,EG=2 ,求BE的长.26. (11分) (2020八上·南京期末) 如图1,在直角坐标系xoy中,点A、B分别在x、y轴的正半轴上,将线段AB绕点B顺时针旋转90°,点A的对应点为点C.(1)若A(6,0),B(0,4),求点C的坐标;(2)以B为直角顶点,以AB和OB为直角边分别在第一、二象限作等腰Rt△ABD和等腰Rt△OBE,连DE交y 轴于点M,当点A和点B分别在x、y轴的正半轴上运动时,判断并证明AO与MB的数量关系.27. (6分) (2019七下·海拉尔期末) 如图1,在平面直角坐标系中,点A , B的坐标分别为A(a , 0),B(b , 0),且a , b满足|2a+6|+(2a﹣3b+12)2=0,现同时将点A , B分别向左平移2个单位,再向上平移2个单位,分别得到点A , B的对应点C , D ,连接AC , BD .(1)请直接写出A、B、C、D四点的坐标;(2)如图2,点P是线段AC上的一个动点,点Q是线段CD的中点,连接PQ , PO ,当点P在线段AC上移动时(不与A , C重合),请找出∠PQD ,∠OPQ ,∠POB的数量关系,并证明你的结论;(3)在坐标轴上是否存在点M ,使三角形MAD的面积与三角形ACD的面积相等?若存在,直接写出点M的坐标;若不存在,试说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共9题;共94分)19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、27-1、27-2、27-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档