江苏专用高考数学一轮复习第七章数列推理与证明第34课等差数列及其前n项和教师用书
高考数学复习知识点讲解教案第35讲 等差数列及其前n项和
2
2
二次函数
于的常数项为0的____________,它的图象是抛物线
=
孤立
标为正整数的均匀分布的一群_______的点.
2
2
+ 1 −
2
上横坐
常用结论
1.已知数列{ }的通项公式是 = + (其中,为常数),则数列{ }一定
是等差数列,且公差为.
2 + 9 = 1 + + 1 + 8 = 29,
[解析] 设等差数列{ }的公差为,由已知得ቊ
5 = 51 + 10 = 35,
1 = 1,
解得ቊ
∴ 8 = 81 + 28 = 8 + 28 × 3 = 92.故选B.
= 3,
(2) [2024·九省联考] 记等差数列{an}的前n项和为Sn,a3+a7=6,a12=17,则S16= ( C )
−10
7.已知等差数列{ }的通项公式为 = 10 − ,则1 + 2 + ⋯ + 20 =______,
100
1 + 2 + ⋯ + 20 =______.
[解析] 设数列{ }的前项和为 ,
则20 = 1 + 2 + ⋯ + 20 =
20×[9+ 10−20 ]
◆ 知识聚焦 ◆
1.等差数列中的有关公式
已知等差数列{ }的首项为1 ,公差是,前项和为 ,则
等差数列定义式
+1 − =
_________________(为常数)
等差中项
+
高考数学一轮复习第7章数列第2讲等差数列及其前n项和课件(1)
设等差数列{an}的前 n 项和为 Sn,若 S3=9,S6=36,则 a7
第七页,编辑于星期六:四点 九分。
(4)若Sn为等差数列{an}的前n项和,则数列Sm,S2m-Sm,S3m- S2m,…也是等差数列.
(5)若 Sn 为等差数列{an}的前 n 项和,则数列Snn也为等差数列.
第八页,编辑于星期六:四点 九分。
【特别提醒】 用等差数列的定义判断数列是否为等差数列,要注意定义中的三个 关 键 词 : “ 从 第 2 项 起 ”“ 每 一 项 与 它 的 前 一 项 的 差 ”“ 同 一 个 常 数”.
=
()
A.- 3
B. 3
C.± 3
D.-
3 3
【答案】A
第三十五页,编辑于星期六:四点 九分。
【解析】因为数列{an}为等差数列,a1+a7+a13=2π,所以 3a7=2π, 即 a7=23π.则 tan a7=tan23π=-tanπ3=- 3.
第三十六页,编辑于星期六:四点 九分。
考向 2 等差数列和的性质
个数列是等差数列.
()
(2)数列{an}为等差数列的充要条件是对任意n∈N*,都有2an+1=an
+an+2.
()
第十九页,编辑于星期六:四点 九分。
(3)等差数列{an}的单调性是由公差d决定的.
()
(4)数列{an}为等差数列的充要条件是其通项公式为n的一次函数.
()
(5)等差数列的前n项和公式是常数项为0的二次函数.
第十七页,编辑于星期六:四点 九分。
(4)若等差数列{an}的项数为奇数 2n+1,则 ①S2n+1=(2n+1)an+1; ②SS奇 偶=n+n 1; ③S 奇-S 偶=an+1.
高考数学-等差数列及其前n项和(教师版)
(6)项数为偶数2n的等差数列{a n},有S2n=n(a1+a2n)=n(a2+a2n-1)=…=n(a n+a n+1)(a n与a n+1为中间的两项),S偶-S奇=nd,S奇S偶=a n a n+1.(7)项数为奇数2n-1的等差数列{a n},有S2n-1=(2n-1)a n(a n为中间项),S奇-S偶=a n,S奇S偶=nn-1.3.等差数列的前n项和(1)公式:若已知首项a1和末项a n,则S n=n a1+a n2,或等差数列{a n}的首项是a1,公差是d,则其前n项和公式为S n=na1+n n-12d.(2)等差数列的前n项和公式与函数的关系:S n=d2n2+⎝⎛⎭⎫a1-d2n,数列{a n}是等差数列的充要条件是S n=An2+Bn(A,B为常数).(3)最值问题:在等差数列{a n}中,a1>0,d<0,则S n存在,若a1<0,d>0,则S n存在最小值.【高考命题】等差数列高考考查考查等差数列的通项公式,前n项和公式,等差数列的性质等相关内容.对等差数列的定义,性质及等差中项的考查,以填空为主,难度较小.通项公式与前n项和相结合的题目,多出现在解答题中,难度中等.等差数列的判断方法(1)定义法:对于n≥2的任意自然数,验证a n-a n-1为同一常数;(2)等差中项法:验证2a n-1=a n+a n-2(n≥3,n∈N*)都成立;(3)通项公式法:验证a n=pn+q;(4)前n项和公式法:验证S n=An2+Bn.注后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.【小测】1.已知等差数列的公差d<0,前n项和记为S n,满足S20>0,S21<0,则当n=________时,S n达到最大值.解析∵S20=10(a1+a20)=10(a10+a11)>0,S21=21a11<0,∴a10>0,a11<0,∴n=10时,S n最大.2.(2012·南通第一学期期末考试)已知数列{a n}的前n项和为S n=-2n2+3n,则数列{a n}的通项公式为________.a n=5-4n(n∈N*).3.(2012·南京二模)设S n是等差数列{a n}的前n项和.若S3S7=13,则S6S7=________.解析由S3=3a2,S7=7a4,S3S7=13,得9a2=7a4=7(a2+2d),即a2=7d,所以a3=8d,a4=9d,从而S6=3(a3+a4)a n -a n +3=q n +2-q n -11-q=q n -11-q (q 3-1), a n +6-a n =q n -1-q n +51-q =q n -11-q (1-q 6).由①可得a n -a n +3=a n +6-a n ,即2a n =a n +3+a n +6,n ∈N *.所以对任意的n ∈N *,a n 是a n +3与a n +6的等差中项【考点3】等差数列前n 项和及综合应用【例3】 (1)在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值.(2)已知数列{a n }的通项公式是a n =4n -25,求数列{|a n |}的前n 项和.d =-53.又由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0.∴5a 13=0,即a 13=0.∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130.(2)∵a n =4n -25,a n +1=4(n +1)-25,∴a n +1-a n =4=d ,又a 1=4×1-25=-21.所以数列{a n }是以-21为首项,以4为公差的递增的等差数列.令⎩⎨⎧a n =4n -25<0, ①a n +1=4n +1-25≥0, ②由①得n <614;由②得n ≥514,所以n =6.即数列{|a n |}的前6项是以21为首项,公差为-4的等差数列,从第7项起以后各项构成公差为4的等差数列, 而|a 7|=a 7=4×7-25=3.(2)令b n =S n n +c(n ∈N *),是否存在一个非零常数c ,使数列{b n }也为等差数列?若存在,求出c 的值;若不存在,请说明理由. 解 (1)由题设,知{a n }是等差数列,且公差d >0,则由⎩⎨⎧ a 2a 3=45,a 1+a 5=18,得⎩⎨⎧a 1+d a 1+2d =45,a 1+a 1+4d =18. 解得⎩⎨⎧ a 1=1,d =4.∴a n =4n -3(n ∈N *). (2)由b n =S n n +c =n 1+4n -32n +c =2n ⎝⎛⎭⎫n -12n +c ,∵c ≠0,∴可令c =-12,得到b n =2n .∵b n +1-b n =2(n +1)-2n =2(n ∈N *),∴数列{b n }是公差为2的等差数列.即存在一个非零常数c =-12,使数列{b n }也为等差数列.12.在数列{a n }中,a 1=1,a n +1=1-14a n ,b n =22a n -1,其中n ∈N *. (1)求证:数列{b n }是等差数列;(2)设c n =(2) b n ,试问数列{c n }中是否存在三项,使它们可以构成等差数列?如果存在,求出这三项;如果不存在,说明理由.(1)证明 因为b n +1-b n =22a n +1-1-22a n -1= 22⎝⎛⎭⎫1-14a n -1-22a n -1=4a n 2a n -1-22a n -1=2(n ∈N *),且b 1=22×1-1=2所以,数列{b n }以2为首项,2为公差的是等差数列.(2)解 由(1)得c n =(2)b n =2n ,假设{c n }中存在三项c m ,c n ,c p (其中m <n <p ,m ,n ,p ∈N *)成等差数列,则2·2n =2m +2p , 所以2n +1=2m +2p,2n -m +1=1+2p -m .。
2019-2020年高三数学总复习 等差数列的前n项和教案 理
2019-2020年高三数学总复习等差数列的前n项和教案理教材分析等差数列的前n项和是数列的重要内容,也是数列研究的基本问题.在现实生活中,等差数列的求和是经常遇到的一类问题.等差数列的求和公式,为我们求等差数列的前n项和提供了一种重要方法.教材首先通过具体的事例,探索归纳出等差数列前n项和的求法,接着推广到一般情况,推导出等差数列的前n项和公式.为深化对公式的理解,通过对具体例子的研究,弄清等差数列的前n项和与等差数列的项、项数、公差之间的关系,并能熟练地运用等差数列的前n项和公式解决问题.这节内容重点是探索掌握等差数列的前n项和公式,并能应用公式解决一些实际问题,难点是前n项和公式推导思路的形成.教学目标1. 通过等差数列前n项和公式的推导,让学生体验数学公式产生、形成的过程,培养学生抽象概括能力.2. 理解和掌握等差数列的前n项和公式,体会等差数列的前n项和与二次函数之间的联系,并能用公式解决一些实际问题,培养学生对数学的理解能力和逻辑推理能力.3. 在研究公式的形成过程中,培养学生的探究能力、创新能力和科学的思维方法.任务分析这节内容主要涉及等差数列的前n项公式及其应用.对公式的推导,为便于学生理解,采取从特殊到一般的研究方法比较适宜,如从历史上有名的求和例子1+2+3+……+100的高斯算法出发,一方面引发学生对等差数列求和问题的兴趣,另一方面引导学生发现等差数列中任意的第k项与倒数第k项的和等于首项与末项的和这个规律,进而发现求等差数列前n项和的一般方法,这样自然地过渡到一般等差数列的求和问题.对等差数列的求和公式,要引导学生认识公式本身的结构特征,弄清前n项和与等差数列的项、项数、公差之间的关系.为加深对公式的理解和运用,要强化对实例的教学,并通过对具体实例的分析,引导学生学会解决问题的方法.特别是对实际问题,要引导学生从实际情境中发现等差数列的模型,恰当选择公式.对于等差数列前n项和公式和二次函数之间的联系,可引导学生拓展延伸.教学设计一、问题情景1. 在200多年前,有个10岁的名叫高斯的孩子,在老师提出问题:“1+2+3+…+100=?”时,很快地就算出了结果.他是怎么算出来的呢?他发现1+100=2+99=3+97=…=50+51=101,于是1+2+…+100=101×50=5050.2. 受高斯算法启发,你能否求出1+2+3+…+n的和.3. 高斯的方法妙在哪里呢?这种方法能否推广到求一般等差数列的前n项和?二、建立模型1. 数列的前n项和定义对于数列{an},我们称a1+a2+…+an为数列{an}的前n项和,用S n表示,即S n=a1+a2+…+an.2. 等差数列的求和公式(1)如何用高斯算法来推导等差数列的前n项和公式?对于公差为d的等差数列{an}:S n=a1+(a1+d)+(a1+2d)+…+[a1+(n—1)d],①依据高斯算法,将S n表示为S n=an+(an—d)+(an—2d)+…+[an—(n—1)d].②由此得到等差数列的前n项和公式小结:这种方法称为反序相加法,是数列求和的一种常用方法.(2)结合通项公式an=a1+(n—1)d,又能得怎样的公式?(3)两个公式有什么相同点和不同点,各反映了等差数列的什么性质?学生讨论后,教师总结:相同点是利用二者求和都须知道首项a1和项数n;不同点是前者还须要知道an,后者还须要知道d.因此,在应用时要依据已知条件合适地选取公式.公式本身也反映了等差数列的性质:前者反映了等差数列的任意的第k项与倒数第k项的和都等于首、末两项之和,后者反映了等差数的前n项和是关于n的没有常数项的“二次函数”.三、解释应用[例题]1. 根据下列各题中的条件,求相应的等差数列{an}的前n项和S n.(1)a1=—4,a8=—18,n=8.(2)a1=14.5,d=0.7,an=32.注:恰当选用公式进行计算.2. 已知一个等差数列{an}前10项的和是310,前20项的和是1220.由这些条件能确定这个等差数列的前n项和的公式吗?分析:将已知条件代入等差数列前n项和的公式后,可得到两个关于a1与d的关系式,它们都是关于a1与d的二元一次方程,由此可以求得a1与d,从而得到所求前n项和的公式.解:由题意知注:(1)教师引导学生认识到等差数列前n项和公式,就是一个关于an,a1,n或者a1,n,d的方程,使学生能把方程思想和前n项和公式相结合,再结合通项公式,对a1,d,n,an及S n这五个量知其三便可求其二.(2)本题的解法还有很多,教学时可鼓励学生探索其他的解法.例如,3. 2000年11月14日教育部下发了《关于在中小学实施“校校通”工程的通知》.某市据此提出了实施“校校通”工程的总目标:从xx年起用10年的时间,在全市中小学建成不同标准的校园网.据测算,xx年该市用于“校校通”工程的经费500万元.为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元.那么从xx年起的未来10年内,该市在“校校通”工程中的总投入是多少?教师引学生分析:每年“校校通”工程的经费数构成公差为50的等差数列.问题实质是求该数列的前10项的和.解:根据题意,从xx~xx年,该市每年投入“校校通”工程的经费都比上一年增加50万元.所以,可以建立一个等差数列{an},表示从xx年起各年投入的资金,其中,a1=500,d=50.那么,到xx年(n=10),投入的资金总额为答:从xx~xx年,该市在“校校通”工程中的总投入是7250万元.注:教师引导学生规范应用题的解题步骤.4. 已知数列{an}的前n项和S n=n2+n,求这个数列的通项公式.这个数列是等差数列吗?如果是,它的首项与公差分别是什么?解:根据由此可知,数列{an}是一个首项为,公差为2的等差数列.思考:一般地,数列{an}前n项和S n=An2+Bn(A≠0),这时{an}是等差数列吗?为什么?[练习]1. 一名技术人员计划用下面的办法测试一种赛车:从时速10km/h开始,每隔2s速度提高20km/h.如果测试时间是30s,测试距离是多长?2. 已知数列{an}的前n项的和为S n=n2+n+4,求这个数列的通项公式.3. 求集合M={m|m=2n—1,n∈N*,且m<60}的元素个数,并求这些元素的和.四、拓展延伸1. 数列{an}前n项和S n为S n=pn2+qn+r(p,q,r为常数且p≠0),则{an}成等差数列的条件是什么?2. 已知等差数列5,4,3,…的前n项和为S n,求使S n最大的序号n的值.分析1:等差数列的前n项和公式可以写成S n=n2+(a1-)n,所以S n可以看成函数y=x2+(a1-)x(x∈N*).当x=n时的函数值.另一方面,容易知道S n关于n的图像是一条抛物线上的一些点.因此,我们可以利用二次函数来求n的值.解:由题意知,等差数列5,4,3,…的公差为-,所以于是,当n取与最接近的整数即7或8时,S n取最大值.分析2:因为公差d=-<0,所以此数列为递减数列,如果知道从哪一项开始它后边的项全为负的,而它之前的项是正的或者是零,那么就知道前多少项的和最大了.即使然后从中求出n.点评这篇案例从具体的实例出发,引出等差数列的求和问题,在设计上,设计者注意激发学生的学习兴趣和探究欲望,通过等差数列求和公式的探索过程,培养学生观察、探索、发现规律、解决问题的能力.对例题、练习的安排,这篇案例注意由浅入深,完整,全面.拓展延伸的设计有新意,有深度,符合学生的认识规律,有利于学生理解、掌握这节内容.就总体而言,这篇案例体现了新课程的基本理念,尤其关注培养学生的数学思维能力和创新能力.另外,这篇案例对于继承传统教学设计注重“双基”、关注学生的落实,同时注意着眼于学生的全面发展,有比较好的体现。
2023年新高考数学一轮复习7-2 等差数列及其前n项和(知识点讲解)解析版
专题7.2 等差数列及其前n 项和(知识点讲解)【知识框架】【核心素养】1.与归纳推理相结合,考查数列的概念与通项,凸显逻辑推理的核心素养.2.与函数、不等式相结合,考查数列的概念及其性质,凸显数学抽象、逻辑推理、数学运算的核心素养. 3.与递推公式相结合,考查对求通项公式的方法的掌握,凸显数学运算、数学建模的核心素养.【知识点展示】(一)等差数列1.定义:等差数列定义:一般地,如果一个数列从第项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母表示.用递推公式表示为或.2.等差数列的通项公式:;说明:等差数列(通常可称为数列)的单调性:为递增数列,为常数列, 为递减数列.3.等差中项的概念:定义:如果,,成等差数列,那么叫做与的等差中项,其中 . 2d 1(2)n n a a d n --=≥1(1)n n a a d n +-=≥1(1)n a a n d =+-A P d 0>0d =0d <a A b A a b 2a bA +=,,成等差数列. 4.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列. 5.注意区分等差数列定义中同一个常数与常数的区别. (二)等差数列的前和的求和公式:. (三)等差数列的通项公式及前n 项和公式与函数的关系(1)当d ≠0时,等差数列{a n }的通项公式a n =dn +(a 1-d )是关于d 的一次函数. (2)当d ≠0时,等差数列{a n }的前n 项和S n =d2n 2+⎝⎛⎭⎫a 1-d 2n 是关于n 的二次函数. (四)等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值. (五)等差数列的性质:(1)在等差数列中,从第2项起,每一项是它相邻二项的等差中项;(2)在等差数列中,相隔等距离的项组成的数列是等差数列, 如:,,,,……;,,,,……;(3)在等差数列中,对任意,,,;(4)在等差数列中,若,,,且,则,特殊地,时,则,是的等差中项.(5)等差数列被均匀分段求和后,得到的数列仍是等差数列,即成等差数列.(6)两个等差数列{}n a 与{}n b 的和差的数列{}n n a b ±仍为等差数列. (7)若数列{}n a 是等差数列,则{}n ka 仍为等差数列.(8)设数列是等差数列,且公差为,(Ⅰ)若项数为偶数,设共有项,则①-S S nd =奇偶; ②;(Ⅱ)若项数为奇数,设共有项,则①S S -偶奇(中间项);②. (9)等差数列中,(),p q a q a p p q ==≠,则0p q a +=,m n m n S S S mnd +=++.a Ab ⇔2a bA +=n 11()(1)22n n n a a n n S na d +-==+{}n a {}n a 1a 3a 5a 7a 3a 8a 13a 18a {}n a m n N +∈()n m a a n m d =+-n ma a d n m-=-()m n ≠{}n a m n p q N +∈m n p q +=+m n p q a a a a +=+{}n a d 2n 1n n S a S a +=奇偶21n -n a a ==中1S nS n =-奇偶(10)如果两个等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是两个原等差数列公差的最小公倍数.(11)若与{}n b 为等差数列,且前n 项和分别为n S 与'n S ,则2121'm m m m a Sb S --=. (12)等差数列的增减性:0d >时为递增数列,且当10a <时前n 项和n S 有最小值.0d <时为递减数列,且当10a >时前n 项和n S 有最大值.【常考题型剖析】题型一:等差数列基本量的运算例1.(2019·全国·高考真题(理))记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则( ) A .25n a n =- B .310n a n =- C .228n S n n =-D .2122n S n n =-【答案】A 【解析】 【分析】等差数列通项公式与前n 项和公式.本题还可用排除,对B ,55a =,44(72)1002S -+==-≠,排除B ,对C ,245540,25850105S a S S ==-=⨯-⨯-=≠,排除C .对D ,24554150,5250522S a S S ==-=⨯-⨯-=≠,排除D ,故选A . 【详解】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A .例2.(2022·全国·高考真题(文))记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d =_______. 【答案】2 【解析】【分析】转化条件为()112+226a d a d =++,即可得解. 【详解】由32236S S =+可得()()123122+36a a a a a +=++,化简得31226a a a =++, 即()112+226a d a d =++,解得2d =. 故答案为:2.{}n a【总结提升】1.解决等差数列运算问题的思想方法(1)方程思想:等差数列的基本量为首项a 1和公差d ,通常利用已知条件及通项公式或前n 项和公式列方程(组)求解,等差数列中包含a 1,d ,n ,a n ,S n 五个量,可“知三求二”.(2)整体思想:当所给条件只有一个时,可将已知和所求都用a 1,d 表示,寻求两者间的联系,整体代换即可求解.(3)利用性质:运用等差数列性质可以化繁为简、优化解题过程. 2.等差数列的通项公式及前n 项和公式,共涉及五个量1,,,,n n a d n a S ,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题.3.特殊设法:三个数成等差数列,一般设为,,a d a a d -+;四个数成等差数列,一般设为3,,,3a d a d a d a d --++.这对已知和,求数列各项,运算很方便.题型二:等差数列的判定与证明例3. (2020·山东·高考真题)某男子擅长走路,9天共走了1260里,其中第1天、第4天、第7天所走的路程之和为390里.若从第2天起,每天比前一天多走的路程相同,问该男子第5天走多少里.这是我国古代数学专著《九章算术》中的一个问题,请尝试解决. 【答案】140里. 【解析】 【分析】由条件确定,该男子这9天中每天走的路程数构成等差数列,根据等差数列的通项公式,和前n 项和公式,列式求解.【详解】解:因为从第2天起,每天比前一天多走的路程相同, 所以该男子这9天中每天走的路程数构成等差数列, 设该数列为{}n a ,第1天走的路程数为首项1a ,公差为d , 则91260S =,147390a a a ++=. 因为1(1)2n n n S na d -=+,1(1)n a a n d =+-, 1(1)n a a n d =+-11()(1)22n n n a a n n S na d +-==+所以11119(91)91260236390a d a a d a d ⨯-⎧+=⎪⎨⎪++++=⎩,解得110010a d =⎧⎨=⎩,则514100410140a a d =+=+⨯=, 所以该男子第5天走140里.例4.(2021·全国·高考真题(文))记n S 为数列{}n a 的前n 项和,已知210,3n a a a >=,且数列是等差数列,证明:{}n a 是等差数列. 【答案】证明见解析. 【解析】 【分析】的公差d,进一步写出的通项,从而求出{}n a 的通项公式,最终得证. 【详解】∵数列是等差数列,设公差为d(n -()n *∈N∴12n S a n =,()n *∈N∴当2n ≥时,()221111112n n n a S S a n a n a n a -=-=--=- 当1n =时,11121=a a a ⨯-,满足112n a a n a =-, ∴{}n a 的通项公式为112n a a n a =-,()n *∈N ∴()()111111221=2n n a a a n a a n a a --=----⎡⎤⎣⎦∴{}n a 是等差数列.例5.(2021·全国·高考真题(理))已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①①①中选取两个作为条件,证明另外一个成立. ①数列{}n a是等差数列:②数列是等差数列;③213a a =. 注:若选择不同的组合分别解答,则按第一个解答计分. 【答案】证明过程见解析 【解析】 【分析】选①②作条件证明③时,结合,n n a S 的关系求出n a ,利用{}n a 是等差数列可证213a a =;也可分别设出公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系,进行证明.选②③作条件证明①时,an b =+,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a 是等差数列;也可利用前两项的差求出公差,然后求出通项公式,进而证明出结论. 【详解】选①②作条件证明③:[方法一]:待定系数法+n a 与n S 关系式(0)an b a +>,则()2n S an b =+, 当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n a a n =-,21a a =,故22133a a a ==.[方法二] :待定系数法设等差数列{}n a 的公差为d,等差数列的公差为1d ,1(1)n d -,将1(1)2n n n S na d -=+1(1)n d -,化简得())2222211111222d d n a n d n d n d ⎛⎫+-=+-+⎪⎝⎭对于n +∀∈N恒成立.则有21211112,240,d d a d d d ⎧=⎪⎪-=-⎨=,解得112d d a =.所以213a a =. 选①③作条件证明②:因为213a a =,{}n a 是等差数列, 所以公差2112d a a a =-=, 所以()21112n n n S na d n a -=+=,)1n =+=所以是等差数列. 选②③作条件证明①: [方法一]:定义法(0)an b a +>,则()2n S an b =+, 当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43a b =-; 当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列;当43a b =-4=3an b an a +-03a=-<不合题意,舍去. 综上可知{}n a 为等差数列. [方法二]【最优解】:求解通项公式因为213a a =,因为也为等差数列,所以公差1d()11n d =-=故21n S n a =,当2n ≥时,()()221111121n n n a S S n a n a n a -=-=--=-,当1n =时,满足上式,故{}n a 的通项公式为()121n a n a =-,所以()1123n a n a -=-,112n n a a a --=,符合题意. 【整体点评】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,选①②时,法一:利用等差数列的通项公式是关于n(0)an b a =+>,平方后得到n S 的关系式,利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩得到{}n a 的通项公式,进而得到213a a =,是选择①②证明③的通式通法;法二:分别设出{}n a 与{}n S的公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系1d =12d a =,进而得到213a a =;选①③时,按照正常的思维求出公差,表示出n S进行证明;选②③时,法一:利用等差数列的通项公式是关于n 的一次函数,(0)an b a =+>,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a两项的差1d11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,求出{}n a 的通项公式,进而证明出结论. 【总结提升】等差数列的四种判断方法(1) 定义法:对于数列{}n a ,若d a a n n =-+1()n N ∈*(常数),则数列{}n a 是等差数列; (2) 等差中项:对于数列{}n a ,若212+++=n n n a a a ()n N ∈*,则数列{}n a 是等差数列; (3)通项公式:n a pn q =+(,p q 为常数,n N ∈*)⇔是等差数列;(4)前n 项和公式:2n S An Bn =+(,A B 为常数, n N ∈*)⇔是等差数列;(5)是等差数列⇔n S n ⎧⎫⎨⎬⎩⎭是等差数列. 提醒:判断时易忽视定义中从第2项起,以后每项与前一项的差是同一常数,即易忽视验证a 2-a 1=d 这一关键条件.题型三:等差数列的前n 项和例6.【多选题】(2022·湖南永州·三模)已知等差数列{}n a 是递减数列,n S 为其前n 项和,且78S S =,则( )A .0d >B .80a =C .150S >D .7S 、8S 均为n S 的最大值【答案】BD 【解析】【分析】根据等差数列的性质以及其前n 项和的性质,逐个选项进行判断即可求解 【详解】因为等差数列{}n a 是递减数列,所以,10n n a a +-<,所以,0d <,故A 错误; 因为78S S =,所以8870a S S =-=,故B 正确; 因为()115158151502a a S a +===,故C 错误; 因为由题意得,789000a a a >⎛ = <⎝,所以,*78()n S S S n N =≥∈,故D 正确;故选:BD例7.(2020·全国·高考真题(文))记n S 为等差数列{}n a 的前n 项和.若1262,2a a a =-+=,则10S =__________. 【答案】25 【解析】 【分析】因为{}n a 是等差数列,根据已知条件262a a +=,求出公差,根据等差数列前n 项和,即可求得答案. 【详解】{}n a 是等差数列,且12a =-,262a a +=设{}n a 等差数列的公差d根据等差数列通项公式:()11n a a n d +-= 可得1152a d a d +++= 即:()2252d d -++-+= 整理可得:66d = 解得:1d =根据等差数列前n 项和公式:*1(1),2n n n S na d n N -=+∈ 可得:()1010(101)1022045252S ⨯-=-+=-+=∴1025S =. 故答案为:25.例8.(2018·全国·高考真题(文))记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【答案】(1)n a =2n –9,(2)Sn =n 2–8n ,最小值为–16. 【解析】 【详解】分析:(1)根据等差数列前n 项和公式,求出公差,再代入等差数列通项公式得结果,(2)根据等差数列前n 项和公式得nS 的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.详解:(1)设{}n a 的公差为d ,由题意得3a 1+3d =–15.由a 1=–7得d =2.所以{n a }的通项公式为n a =2n –9. (2)由(1)得Sn =n 2–8n =(n –4)2–16. 所以当n =4时,Sn 取得最小值,最小值为–16.例9.(2021·全国·高考真题)记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==. (1)求数列{}n a 的通项公式n a ; (2)求使n n S a >成立的n 的最小值. 【答案】(1)26n a n =-;(2)7. 【解析】 【分析】(1)由题意首先求得3a 的值,然后结合题意求得数列的公差即可确定数列的通项公式; (2)首先求得前n 项和的表达式,然后求解二次不等式即可确定n 的最小值. 【详解】(1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-++-=-, 从而:22d d -=-,由于公差不为零,故:2d =, 数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214252n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->, 解得:1n <或6n >,又n 为正整数,故n 的最小值为7.例10.(2022·福建·厦门一中模拟预测)已知数列{}n a 的前n 项和n S ,11a =,0n a >,141n n n a a S +=-. (1)计算2a 的值,求{}n a 的通项公式;(2)设1(1)nn n n b a a +=-,求数列{}n b 的前2n 项和2n T .【答案】(1)23a =,21n a n =- (2)24(21)n T n n =+ 【解析】 【分析】(1)根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,作差得到24n n a a +-=,再根据等差数列通项公式计算可得;(2)由(1)可得(1)(21)(21)n n b n n =--+,利用并项求和法计算可得; (1)解:当1n =时,12141a a a =-,解得23a =, 由题知141n n n a a S +=-①,12141n n n a a S +++=-②,由②-①得121()4n n n n a a a a +++-=,因为0n a >,所以24n n a a +-=, 于是:数列{}n a 的奇数项是以11a =为首项,以4为公差的等差数列, 即()2114(1)432211n a n n n -=+-=-=--,偶数项是以23a =为首项,以4为公差的等差数列,即234(1)41n a n n =+-=- 所以{}n a 的通项公式21n a n =-; (2)解:由(1)可得(1)(21)(21)n n b n n =--+,212(43)(41)(41)(41)4(41)n n b b n n n n n -=---+-+=-+21234212(341)()()()4[37(41)]44(21)2n n n n n T b b b b b b n n n -+-=++++++=+++-=⨯=+. 【总结提升】1.利用等差数列的单调性或性质,求出其正负转折项,便可求得和的最值.当10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值;若已知n a ,则n S 最值时n 的值(n N +∈)则当10a >,0d <,满足100n n a a +≥⎧⎨≤⎩的项数n 使得n S 取最大值,(2)当10a <,0d >时,满足10n n a a +≤⎧⎨≥⎩的项数n 使得n S 取最小值.2.利用等差数列的前n 项和:2n S An Bn =+(,A B 为常数, n N ∈*)为二次函数,通过配方或借助图像,二次函数的性质,转化为二次函数的最值的方法求解;有时利用数列的单调性(0d >,递增;0d <,递减);3. 利用数列中最大项和最小项的求法:求最大项的方法:设为最大项,则有11n n n n a a a a -+≥⎧⎨≥⎩;求最小项的方法:设为最小项,则有11n n n n a a a a -+≤⎧⎨≤⎩.只需将等差数列的前n 项和1,2,3,n =依次看成数列{}n S ,利用数列中最大项和最小项的求法即可.4.在解含绝对值的数列最值问题时,注意转化思想的应用. 题型四:等差数列性质及应用例11.(2020·浙江·高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n *∈N ,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6 B .2b 4=b 2+b 6 C .2428a a a = D .2428b b b =【答案】D 【解析】 【分析】根据题意可得,21212222n n n n n b S a a S ++++=+=-,而1212b S a a ==+,即可表示出题中2468,,,b b b b ,再结合等差数列的性质即可判断各等式是否成立. 【详解】对于A ,因为数列{}n a 为等差数列,所以根据等差数列的下标和性质,由4426+=+可得,4262a a a =+,A 正确;对于B ,由题意可知,21212222n n n n n b S a a S ++++=+=-,1212b S a a ==+, ∴234b a a =+,478b a a =+,61112b a a =+,81516b a a =+. ∴()47822b a a =+,26341112b b a a a a +=+++.根据等差数列的下标和性质,由31177,41288+=++=+可得()26341112784=2=2b b a a a a a a b +=++++,B 正确;对于C ,()()()()2224281111137222a a a a d a d a d d a d d d a -=+-++=-=-, 当1a d =时,2428a a a =,C 正确; 对于D ,()()22222478111213452169b a a a d a a d d =+=+=++,n a n a()()()()2228341516111125229468145b b a a a a a d a d a a d d =++=++=++,()22428112416832b b b d a d d d a -=-=-.当0d >时,1a d ≤,∴()113220d a d d a -=+->即24280b b b ->;当0d <时,1a d ≥,∴()113220d a d d a -=+-<即24280b b b ->,所以24280b b b ->,D 不正确.故选:D.例12.(2014·北京高考真题(理))若等差数列{}n a 满足7897100,0a a a a a ++>+<,则当n =__________时,{}n a 的前n 项和最大. 【答案】8 【解析】由等差数列的性质,,,又因为,所以所以,所以,,故数列的前8项最大.例13.(2016·北京·高考真题(理))已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6=S _______. 【答案】6 【解析】 【详解】试题分析:因为{}n a 是等差数列,所以35420a a a +==,即40a =,又4136a a d -==-,所以2d =-, 所以616156615(2)6S a d =+=⨯+⨯-=.故答案为6.例14.(2021·江西新余四中高二月考(理))等差数列{}n a 、{}n b 的前n 项和分别为n S 和n T ,若2132n n S n T n +=+,则2517208101214a a a ab b b b +++=+++________.【答案】4365【分析】 证明得出2121n n n n a S b T --=,结合等差中项的基本性质可求得结果. 【详解】因为等差数列{}n a 、{}n b 的前n 项和分别为n S 和n T ,则()()()()()()12121121212121221212n n n n n n n nn a a n a S a n b b T n b b -----+-===-+-,所以,25172011218101214112142211434321265a a a a a Sb b b b b T +++⨯+====+++⨯+.故答案为:4365. 【温馨提醒】等差数列的性质主要涉及“项的性质”和“和的性质”,因此,要注意结合等差数列的通项公式、前n 项和公式求解.。
高考数学一轮复习等差数列及其前n项和
第2节等差数列及其前n 项和最新考纲 1.理解等差数列的概念;2.掌握等差数列的通项公式与前 n 项和公式; 3•能在具体的问题情境中识别数列的等差关系, 并能用等差数列的有关知识解决 相应的问题;4.了解等差数列与一次函数的关系.I 基础摻断丨回归教材,夯实基础知识梳理1. 等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么 这个数列就叫做等差数列,这个常数叫做等差数列的公差^公差通常用字母 d表示.数学语言表达式:a n +1 — a n — d(n € N , d 为常数),或a n — a n -1 — d(n 》2, d 为常 数).一 a + b ⑵若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A —=丁.2. 等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n — a 1 + (n - 1)d .通项公式的推* a n — a m + (n — m)d(m ,n € N ). (2)等差数列的前n 项和公式 项).3. 等差数列的有关性质已知数列{a n }是等差数列,S 是{a n }的前n 项和.*(1)若 m + n — p + q(m ,n ,p ,q € N ),则有 a m + a n — a p + a q .S n —n (a 1 + a n )2 n (n — 1) 2d(其中n € N *,a 1为首项, d 为公差,a n 为第n(2)等差数列{a n}的单调性:当d>0时,{a n}是递增数列;当d v0时,{a n}是递减数列;当d —0时,{a n}是常数列.⑶若{a n}是等差数列,公差为d,则a k, a k+ m, a k+2m,…(k, m€ N )是公差为md 的等差数列.(4)数列S m, S2m- S m, S3m- Mm ,…也是等差数列.4 •等差数列的前n项和公式与函数的关系数列{a n}是等差数列? S n= An2+ Bn (A, B为常数).5 •等差数列的前n项和的最值在等差数列{a n}中,a i> 0, d v 0,贝U S n存在最大值;若a iv 0, d> 0,贝U S n存在最小值.[常用结论与微点提醒]1 .用定义法证明等差数列应注意“从第2项起”,如证明了a n+1-a n= d(n》2)时,应注意验证a2-a i是否等于d,若a2-a i^d,则数列{a n}不为等差数列.2. 利用二次函数性质求等差数列前n项和最值时,一定要注意自变量n是正整数.诊断自测1. 思考辨析(在括号内打“V”或“X”)(1)数列{a n}为等差数列的充要条件是对任意n€ N*,都有2a n+i二a n+ a n+2.()(2)等差数列{a n}的单调性是由公差d决定的.()⑶已知数列{a n}的通项公式是a n= pn+ q(其中p, q为常数),则数列{a n}一定是等差数列.()(4)数列{a n}为等差数列的充要条件是其通项公式为n的一次函数.()⑸等差数列的前n项和公式是常数项为0的二次函数.()解析(4)若公差d = 0,则通项公式不是n的一次函数.(5)若公差d = 0,则前n项和不是二次函数.答案(1)2⑵V ⑶V (4)X ⑸X2. 在等差数列{a n}中,若a2= 4, a4 = 2,则a6等于()A. - 1B. 0C. 1D. 6解析由等差数列的性质,得a6 = 2a4-a2= 2X2-4 = 0,选B.答案B3. (2017全国I卷)记S n为等差数列{a n}的前n项和.若a4 + a5 = 24, S6 = 48, 则{a n}的公差为()A. 1 B . 2 C. 4 D . 8a4 + a5 = 24,解析设{a n}的公差为d,由SISs= 48,2a i + 7d = 24,得丫解得d = 4.6a i + 15d= 48,答案C4. (2018宁波十校适应性考试)等差数列{a n}的公差d v0,且aja^,则数列{a n}的前n项和S n取得最大值时的项数n是()A. 8 或9 B . 9 或10C. 10或11 D . 11 或12解析由题意知,a〔=i a17,又因为d v 0,所以a1 = —a17,故a1 = —8d, a9= 0, a n= a1 + (n—1)d= (n —9)d,当a n> 0 时,n W 9,所以当n = 8 或9 时,S n 取最大值. 答案A5. (必修5P68A8 改编)在等差数列{a n}中,若a3 + a4 + a5 + a6+ a7= 450,则a2+ a8= ________ .解析由等差数列的性质,得a3 + a4 + a5 + a6 + a7= 5a5= 450, •••a5= 90,二a2 + a8 = 2a5= 180.答案1806. (2018湖州调研)设等差数列{a n }的公差是d ,前n 项和是S n .若 ◎ = 1, a 5= 9, 贝U 公差 d = ___ , S n= _____ .、 a 5 — a 1 n (n — 1) 2 解析 公差 d = = 2,前 n 项和 S n = n a 1+ 2 d = n +n (n —1) = n.5— 1 2答案2 n 2 I 考点突破丨分类讲练■、以俺求沱考点一等差数列基本量的运算【例11 (1)(2016全国I 卷)已知等差数列{a n }前9项的和为27, a 10= 8,则ae o =() A . 100B . 99C . 98D . 97⑵(2017全国川卷)等差数列{a n }的首项为1,公差不为0若a 2, a s , a 6成等比数 列,则{a n }前6项的和为( )A . — 24B . — 3C . 3D . 8〔9a 1+ 36d = 27,解析 (1)设等差数列{a n }的公差为d ,由已知,得, a 1 + 9d = 8,所以血=一 1,¥ 所以 a 100= a 1 + 99d =— 1 + 99= 98.l d = 1,X. 1(2)等差数列中a1 = 1,根据题意得即(a i + 2d)2= (a i + d)(a i + 5d),解得d = — 2, d = 0(舍去).6X 5 6 X 5所以数列{a n }的前6项和为6a i + —d = 1X 6 + 〒 X (— 2)= — 24. 答案(1)C (2)A规律方法 (1)等差数列的通项公式及前n 项和公式共涉及五个量a i , a n , d , n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.•76a aa(2) 数列的通项公式和前n项和公式在解题中起到变量代换作用,而a i和d是等差数列的两个基本量,用它们表示已知和未知是常用方法.【训练11 (1)(—题多解)设等差数列{a n}的前n项和为S n, 83= 6, &= 12,贝U S6= .⑵(2015浙•江卷)已知{a n}是等差数列,公差d不为零.若a2, a s, a?成等比数列,且 2a i + a 2= 1,贝U a i = _________ , d = ________ . 解析(1)法一 设数列{a n }的首项为a i ,公差为d ,由S 3= 6,53= 3a i + 3d = 6,a i = 0,S 4= 12,可得解得54= 4a i + 6d = 12, d = 2,即 S 6= 6a 1+ 15d = 30.法二 由{a n }为等差数列,故可设前n 项和S n = An 2 + Bn ,= 9A + 3B = 6,由 S 3= 6, S 4= 12,可得I S 4= 16A + 4B = 12,即 S n = n 2— n ,贝U S 6 = 36 — 6 = 30.2 2⑵因为 a 2, a 3, a 7 成等比数列,所以a 3= a 2a 7, 即 (a 〔 + 2d) = (a 〔+ d)(a 1 + 6d), 2=3, d =— 1.考点二 等差数列的判定与证明(变式迁移)【例2】(经典母题)若数列{a n }的前n 项和为S n ,且满足a n + 2S n Sn -1= 0(n 》2), 1a 1 = 2*(1) 求证:1成等差数列; (2) 求数列{a n }的通项公式.(1) 证明 当 n 》2 时,由 a n + 2S h S n -1 = 0, 1 1得 S n — S n -1 = — 2S n S n -1,所以&—= 2 ,S n S n —1又S =1 = 2,故1是首项为2,公差为2的等差数列. 1 1(2) 解 由(1)可得 S n = 2n , • S n = 当n 》2时,解得21B =—2由于 d M 0,二 a 1 = — 3d , 2a 1 +a = 1, ••• 2a 1 + a 1+ d = 1, 即卩 3a 1 + d = 1,二 a 1 2一3an —®-1 — 2n -2 (n -1) 2n (n -1) 2n (n -1)-n — 1,n — 1 — n当n = 1时, 1a 1—不适合上式. a n 1 2n (n - 1),nA 2.1【变式迁移1】 将本例条件“ a n + 2SS -1 — 0(n 》2), a 1—㊁”改为“ S n (S n - a n ) + 2a n — 0(n >2), a 〔 — 2”,冋题不变,试求解. (1)证明 当--S n [S n — (S n — S n -1)] + 2(S n — S n -1)= 即 S n S n -1 + 2(Sn — S n -1)— 0. 1 1 1「1 1 1 即 Sn S n -1 2.又 S 1 a 1 2.S 是以首项为2,公差为1的等差数列. 1 n 2故数列(2)解 由(1)知S ; — 2,- S n — n ,当 n A 2 时, 2n (n -1)当n — 1时,a 1 — 2不适合上式,a n — S h -S n -1 —n — 1,故an — i一 、小-3 , n 》2・ 【变式迁移2】 已知数列{a n }满足2a n -1 — a n a n -1 — 1(n 》2), a 1 = 2,证明数列 1a n -1 是等差数列,并求数列{a n }的通项公式.1解当 n A 2 时,a n — 2 — ,a n -11 1 — 1 1 — 1 1 — a n -1 1 a n — 1 a n -1 — 11a n -1 — 1 彳 1a n -1 — 1 a n -1 — 1 a n -1 — 1 a n -1a n -1—卅—K 常数). a n —1 — 11 -- ~ — 1 + (n 一 1) x 1 = n , a n — 1 n + 1 /. a n =n •规律方法 等差数列的四种判断方法:(1) 定义法:对于n 》2的任意自然数,验证a n — a n —1为同一常数. (2) 等差中项法:验证2a n — 1 — a n + a n — 2(n 》3, n € N )都成立. (3) 通项公式法:验证a n — pn + q.(4) 前n 项和公式法:验证S n =An 2+ Bn •后两种方法只能用来判断是否为等差数 列,而不能用来证明等差数列,主要适合在选择题中简单判断.【训练2】(2017江苏卷)对于给定的正整数 k ,若数列{a n }满足:a n -k + a n — k +1 + •••+ a n -1+ a n +1 +…+ a n + k -1+ a n +k — 2ka n ,对任意正整数 n(n>k)总成立,则称 数列{a n }是“ P(k)数列”.(1) 证明:等差数列{a n }是“P(3)数列”;(2) 若数列{a n }既是“ P(2)数列”,又是“ P(3)数列”,证明:{a n }是等差数列. 证明(1)因为{a n }是等差数列,设其公差为d , 则 a n = a 〔+ (n — 1)d , 从而,当n 》4时,a n — k + a n +k = a 1 + (n — k — 1)d + a 1 + (n + k — 1)d —2a 1 + 2(n — 1)d = 2a n , k = 1, 2, 3,所以 a n —3+ a n —2 + a n — 1 + a n +1 + a n + 2+ a n +3 — 6a n , 因此等差数列{a n }是“P(3)数列”.⑵数列{a n }既是“ P(2)数列”,又是“ P(3)数列”,因此, 当 n 》3 时,a n —2 + a n — 1 + a n +1 + a n + 2— 4a n ,① 当 n 》4 时,a n—3 + a n—2+ a n —1 + a n +1 + a n +2 + an+ 3— 6a n .②以首项为1,公差为1的等差数列.•••数a n由①知,a n-3 + a n-2—4a n-1 —(a n+ a n +1),③a n +2 + a n +3= 4a n +1 — (a n — 1 + a n ) •④ 将③④代入②,得a n -1+ a n +1 = 2a n ,其中n 》4, 所以a 3, a ;, a 5,…是等差数列,设其公差为 d '. 在①中,取 n = 4,贝U a 2 + a 3 + a 5 + a 6= 4a 4, 所以 a 2= a 3 — d',在①中,取 n = 3,贝U a 1 + a 2 + a 4+ a 5= 4a 3, 所以 a 1 = a 3 — 2d ', 所以数列{a n }是等差数列.考点三等差数列的性质及应用【例3】(1)设S n 是等差数列{a n }的前n 项和,若a 1 + a 3+ a 5 = 3,则Ss =( )A . 5B . 7C . 9D . 11S; 1 S 8⑵(2018浙江名校三联)已知等差数列{a n }的前n 项和为S n ,且&=3,则觅=(3) 已知S 是等差数列{a n }的前n 项和,若a i = — 2 014, ? 0;;- 2 008=6,则S 20仃= ________ .解析 (1) T {a n }为等差数列,.••a i + a 5= 2a 3,得 3a 3= 3,所以 a 3 = 1, A & =(2) 因为S n 为等差数列{a n }的前n 项和,所以S ;, S 8 — S ;, S 12 — S s , Si 6—S 12也成S ; 1 S 8等差数列,而 S ;= 3,所以 S 8= 3S ;,则(S 8— S ;) — S ;= S ;,则得 S 16= 10S ;,所以S 8 3_ = 10.(3) 由等差数列的性质可得|也为等差数列.S^ 014 S 2 008设其公差为 d ,则2 01;— 2 008= 6d = 6, A d = 1. 故 S017= 1 + 2 016d = — 2 014+ 2 016= 2,1- 31- 25 (a i + a 5)2=5a 3= 5,故选 A.A S2 017= 2X 2 017= 4 034.答案(1)A (2)A (3)4 034规律方法等差数列的性质是解题的重要工具.(1) 在等差数列{a n}中,数列S m, S2m一S m , S3m一S2m也成等差数列.(2) 在等差数列{a n}中,数列詈也成等差数列.【训练3】(1)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为()A. 13B. 12C. 11D. 10⑵在等差数列{a n}中,若a3 + a4 + a5 + a6 + a7= 25,则a2 + a8 = _______ .解析(1)因为印+ a2+ a3 34, a n -2 + a n— 1 + a n146, a1+ a2 + a3 + a n—2+ a n— 1 + a n= 34 + 146= 180,又因为a1 + a n= a2 + a n—1 = a3 + a n—2,所以3(a1 + a n) = 180,从而a1 + a n= 60,n (a1 + a n) n x 60所以Sn= 2 = —2—= 390,即n= 13.(2)因为{a n}是等差数列,所以a3 + a7= a4 + a s = a2 + a8 = 2a5, a3 + a4 + a5 + a6 + a7=5a5= 25,即卩a5= 5, a2 + a8 = 2a5= 10.答案(1)A (2)10考点四等差数列前n项和及其最值【例4】(1)(一题多解)等差数列{a n}的前n项和为S n,已知a1= 13, S3= S11,当S n最大时,n的值是()A. 5 B . 6 C. 7 D . 8⑵设数列{a n}的通项公式为a n = 2n —10(n€ N*),则閔| + |a2| +…+曲5匸解析(1)法一由S3= S11,得a4 + a5+ ^ + an = 0,根据等差数列的性质,可得a7 + a8 = 0.根据首项等于13可推知这个数列递减,从而得到a7>0, a8<0,故n=7时S n最大.法—-由S s= S11,可得3a i + 3d= 11a i + 55d,把a i= 13代入,得d= —2,故Sn2=13n-n(n—1)=—n + 14n.根据二次函数的性质,知当n= 7时S n最大.⑵由a n = 2n—10(n€ N )知{a n}是以一8为首项,2为公差的等差数列,又由a n =2n—10> 0 得n> 5,二n< 5 时,a n< 0,当n>5 时,a n>0, •,•田|+ |a2|+…+ |a15| =—(a1 + a2 + a3 + a4)+ (a5+ a6 + …+ a15)= 20+ 110= 130.答案(1)C (2)130规律方法求等差数列前n项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项;⑵利用性质求出其正负转折项,便可求得和的最值;(3) 将等差数列的前n项和S n= An2+ Bn (A, B为常数)看作二次函数,根据二次函数的性质求最值.【训练4】(1)设等差数列{a n}的前n项和为S n, a1>0且a6=9,则当S取最大a5 II 值时,n的值为()A. 9B. 10C. 11D. 12⑵(2018金丽衢十二校二联)已知公差为d的等差数列{a n}的前n项和为S n,若有确定正整数n。
2023年新高考数学一轮总复习核心考点分层训练 等差数列及其前n项和带讲解
第35讲 等差数列及其前n 项和学校:___________姓名:___________班级:___________考号:___________【基础巩固】1.(2022·浙江·杭师大附中模拟预测)等差数列{}n a 的前n 项和为n S ,547,29,198n n a a S -===,则n =( ) A .10 B .11 C .12 D .13【答案】B【分析】根据等差数列的通项的性质和前n 项和公式求解. 【详解】因为()()15422n n n n a a n a a S -++==, 又547,29,198n n a a S -===, 所以18198n =, 所以11n =, 故选:B .2.(2022·湖北武汉·模拟预测)设公差不为零的等差数列{}n a 的前n 项和为n S ,452a a =,则74S S =( )A .74B .-1C .1D .54【答案】C【分析】利用等差中项5462a a a =+,6572a a a =+及等差数列前n 项和的性质即可求解. 【详解】解:在等差数列{}n a 中,5462a a a =+,452a a =,故60a =, 又6572a a a =+,故75a a =-, 则745674S S a a a S =+++=,故741S S =. 故选:C.3.(2022·福建·莆田华侨中学模拟预测)2022年4月26日下午,神州十三号载人飞船返回舱在京完成开舱.据科学计算,运载“神十三”的“长征二号”F 遥十三运载火箭,在点火第一秒钟通过的路程为2千米,以后每秒钟通过的路程都增加2千米,在达到离地面380千米的高度时,火箭与飞船分离,则这一过程需要的时间大约是( ) A .10秒 B .13秒 C .15秒 D .19秒【答案】D【分析】根据题意和等差数列的定义可知每秒钟通过的路程构成数列{}n a ,结合等差数列的前n 项求和公式计算即可.【详解】设每秒钟通过的路程构成数列{}n a , 则{}n a 是首项为2,公差为2的等差数列,由求和公式有()221380n n n n n +-=+=,解得19n =. 故选:D.4.(2022·福建省德化第一中学模拟预测)设等差数列{}n a 的前n 项和为n S ,若728S =,则237a a a ++的值为( ) A .8 B .10 C .12 D .14【答案】C【分析】根据等差数列的求和公式,求得44a =,结合等差数列的性质,化简得到27433a a a a =++,即可求解.【详解】因为728S =,由等差数列的性质和求和公式得17747()7282a a S a +===,即44a =, 则112374393(3)312a d a a a a a d =+=+==++. 故选:C.5.(2022·海南海口·二模)设公差不为0的等差数列{}n a 的前n 项和为n S ,已知()9353m S a a a =++,则m =( )A .9B .8C .7D .6【答案】C【分析】根据等差数列的前n 项和的性质及等差数列通项公式化简可得.【详解】因为()9353m S a a a =++,又959S a =,所以()53593m a a a a =++,所以3553m a a a a ++=,即352m a a a +=, 设等差数列{}n a 的公差为d , 则1112(1)2(4)a d a m d a d +++-=+, 所以(+1)8m d d =,又0d ≠, 所以18m +=, 所以7m =. 故选:C.6.(2022·全国·高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.9【答案】D【分析】设11111OD DC CB BA ====,则可得关于3k 的方程,求出其解后可得正确的选项. 【详解】设11111OD DC CB BA ====,则111213,,CC k BB k AA k ===, 依题意,有31320.2,0.1k k k k -=-=,且111111110.725DD CC BB AA OD DC CB BA +++=+++,所以30.530.30.7254k +-=,故30.9k =,故选:D7.(2022·重庆·二模)等差数列{}n a 的公差为2,前n 项和为n S ,若5m a =,则m S 的最大值为( ) A .3 B .6 C .9 D .12【答案】C【分析】先利用等差数列的通项公式得到首项,再利用等差数列的前n 项和公式和一元二次函数求其最值. 【详解】设等差数列{}n a 的首项为1a , 因为5m a =,且2d =, 所以1+2(1)5a m -=, 解得172a m =-, 则1()(122)=22m m m a a m m S +-= 2(3)99m =--+≤,即3m m S =时取最大值为9. 故选:C.8.(2022·重庆八中模拟预测)已知等差数列{}n a 与等差数列{}n b 的前n 项和分别为n S 和n T ,且1n n S nT n =+,那么87a b 的值为( ) A .1312B .1413C .1514D .1615【答案】C【分析】设等差数列{}n a 、{}n b 的公差分别为1d 、2d ,由题意利用等差数列的性质求出它们的首项、公差之间的关系,可得结论.【详解】设等差数列{}{},n n a b 的公差分别为1d 和2.d11111,12n n S S a n T n T b =∴==+,即1112a b = 2112122223S a d T b d +∴==+,即11232b d d =- ① 311312333334S a d T b d +∴==+,即21143d d b =- ①由①①解得1211,.d d b d ==11811712111771526614d d a a d b b d d d ++∴===++故选:C 9.(2022·广东·华南师大附中三模)已知数列{}n a 满足()213nn n a a ++-=,11a =,22a =,数列{}n a 的前n项和为n S ,则30S =( ) A .351 B .353 C .531 D .533【答案】B【分析】根据题意讨论n 的奇偶,当n 为奇数时,可得23n n a a +-=,按等差数列理解处理,当n 为偶数时,可得23n n a a ++=,按并项求和理解出来,则30S 按奇偶分组求和分别理解处理. 【详解】依题意,()213nn n a a ++-=, 显然,当n 为奇数时有23n n a a +-=,即有313a a -=,533a a -=,…,21213n n a a +--=, 令21n n b a -=,故13n n b b +-=,所以数列{}n b 是首项为1,公差为3的等差数列, 故32n b n =-;当n 为偶数时有23n n a a ++=,即423a a +=,643a a +=,…,2223n n a a ++=, 于是,()()3013292430S a a a a a a =+++++++()()()12152462830b b b a a a a a =+++++++++⎡⎤⎣⎦14315273330233532+=⨯++⨯=+=, 故选:B .10.(多选)(2022·河北沧州·二模)已知数列{}n a 满足()1121,(1)n n n a a a n n ++==--+,记{}n a 的前n 项和为n S ,则( )A .4850100a a += B .50464a a -= C .48600S = D .49601S =【答案】BCD【分析】由条件可得当n 为奇数时,211n n a a a +===;当n 为偶数时,22n n a a n ++=,然后可逐一判断.【详解】因为()1121,(1)n n n a a a n n ++==--+,所以当n 为奇数时,211n n a a a +===;当n 为偶数时,22n n a a n ++=.所以485096a a +=,选项A 错误;又因为464892a a +=,所以50464a a -=,选项B 正确; ()()()481354724684648S a a a a a a a a a a ⎡⎤=+++++++++++⎣⎦()()24612241226462426002+⨯=⨯+⨯+++=+⨯=故C 正确4948496001601S S a =+=+=,选项D 正确.故选:BCD11.(多选)(2022·湖北·华中师大一附中模拟预测)记数列{}n a 是等差数列,下列结论中不恒成立的是( )A .若120a a +>,则230a a +>B .若130a a +<,则20a <C .若12a a <,则2a >D .若10a <,则()()21230a a a a --> 【答案】ACD【分析】根据等差数列通项公式及等差中项,结合基本不等式即可求解. 【详解】设等差数列{}n a 的首项为1a ,公差为d ,则对于A ,由数列{}n a 是等差数列及120a a +>,所以可取123101a a a ===-,,,所以230a a +>不成立,故A 正确;对于B ,由数列{}n a 是等差数列,所以13202a a a +<=,所以20a <恒成立,故B 不正确;对于C, 由数列{}n a 是等差数列,12a a <可取123321a a a =-=-=-,,,所以2a C 正确;对于D ,由数列{}n a 是等差数列,得()()221230a a a a d --=-≤,无论1a 为何值,均有()()21230a a a a --≤所以若10a <,则()()21230a a a a -->恒不成立,故D 正确. 故选:ACD.12.(2022·北京·101中学三模)已知等差数列{}n a 中2341,25a a a =-+=,则20222020a a -=_______. 【答案】4【分析】设出公差,利用等差数列通项公式基本量计算得到方程组,求出公差,求出答案.【详解】设公差为d ,则()11112235a d a d a d +=-⎧⎨+++=⎩,解得:132a d =-⎧⎨=⎩,所以2022202024a a d -==故答案为:413.(2022·山东青岛·二模)将等差数列中的项排成如下数阵,已知该数阵第n 行共有12n -个数,若12a =,且该数阵中第5行第6列的数为42,则n a =___________.a 1 a 2 a 3 a 4 a 5 a 6 a 7 ……【答案】2n【分析】利用等比数列前n 项和公式确定42为数列中的第几项,可以求出公差,从而确定等差数列的通项公式.【详解】解:设公差为d , 因为该数阵第n 行共有12n -个数, 则前4行共有()41121512⨯-=-个数,所以第5行第6列数为2142a =,则2114222211211a a d --===--, 所以2(1)22n a n n =+-⨯=. 故答案为:2n .14.(2022·辽宁·抚顺一中模拟预测)已知等差数列{}n a 的前n 项和为n S ,若12113S a =,则5a =______,9S =______.【答案】 0 0【分析】根据等差数列的求和公式,化简可得12d a =,代入12113S a =即可求出14a d =-,根据等差数列的通项公式和求和公式,即可求出答案.【详解】等差数列{}n a 中,12111112663330S a d a a d =+==+, 所以111266330a d a d +=+, 即14a d =-,所以5140a a d =+=,9590S a == 故答案为:①0;①0.15.(2022·江苏·南京市天印高级中学模拟预测)2022年北京冬奥会开幕式始于24节气倒计时,它将中国人的物候文明、传承久远的诗歌、现代生活的画面和谐统一起来.我国古人将一年分为24个节气,如图所示,相邻两个节气的日晷长变化量相同,冬至日晷长最长,夏至日晷长最短,周而复始.已知冬至日晷长为13.5尺,芒种日晷长为2.5尺,则一年中夏至到立冬的日晷长的和为______尺【答案】60【分析】因为相邻两个节气的日晷长变化量相同,所以每个节气的日晷长构成等差数列,所以夏至到立冬的日晷长的和可以用等差数列求和公式得到.【详解】因为相邻两个节气的日晷长变化量相同,所以每个节气的日晷长构成等差数列, 设冬至日晷长13.5尺为1a ,则芒种日晷长2.5尺为12a ,所以1211121a a d -==--, 所以夏至日晷长为1.5尺,记夏至日晷长1.5尺为1b ,小暑为2b ,大暑为3b ,……,立冬为10b则121010(101)101.51602b b b ⋅-+++=⋅+⋅=. 故答案为:60.16.(2022·重庆八中模拟预测)在等差数列{}n a 中,261028a a a ++=,则数列{}n a 的前13项和为______. 【答案】26【分析】由等差数列的通项公式得12+6a d =,再代入求和公式()13113+6S a d =可求得答案. 【详解】解:设等差数列{}n a 的公差为d ,因为261028a a a ++=,()()()111+++5+2+98d d a a a d ∴=, 12+6a d ∴=,则()131113(131)13+13+6262S a d a d ⨯-===, 故答案为:26.17.(2022·广东·模拟预测)已知{}n a 和{}n b 均为等差数列,若12456,9a b a b ==+=,则78a b +的值是__________. 【答案】6【分析】利用等差数列的性质计算即可得解. 【详解】解:因为{}n a 和{}n b 均为等差数列, 所以1742852,2a a a b b b +=+=, 所以()1728452a a b b a b +++=+, 即781229a b ++=⨯,所以786a b +=. 故答案为:6.18.(2022·江苏泰州·模拟预测)已知等差数列{n a }的前n 项和是n S ,180S >,190S <,则数列{|n a |}中值最小的项为第___项. 【答案】10【分析】根据题意判断等差数列{n a }的90a >,100a <,9100a a >->,由此可判断数列{||}n a 的项的增减情况,进而确定答案.【详解】由题意得:119191019()1902a a S a +===<,①100a <,()1180990S a a =+>,①90a >,9100a a >->,①910a a >,故等差数列{n a }为递减数列,即公差为负数, 因此{||}n a 的前9项依次递减,从第10项开始依次递增, 由于910a a >,①{|n a |}最小的项是第10项, 故答案为:1019.(2022·湖北·大冶市第一中学模拟预测)已知数列{}n a 的前n 项和为n S ,111a =-,29a =-,且()11222n n n S S S n +-+=+≥.(1)求数列{}n a 的通项公式; (2)已知11n n n b a a +=,求数列{}n b 的前n 项和n T . 【解】(1)由题意得:由题意知()()112n n n n S S S S +----=,则()122n n a a n +-=≥又212a a -=,所以{}n a 是公差为2的等差数列,则()11213n a a n d n =+-=-; (2)由题知()()11112132112213211n b n n n n ⎛⎫==- ⎪----⎝⎭则1111111111211997213211211211n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-++-+++-=-- ⎪ ⎪ ⎪ ⎪⎢⎥---⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦12122n n =- 20.(2022·山东·济南市历城第二中学模拟预测)在“①1n n a a +>,31044a a =,4915a a +=;①765S a =,23a =;①2(3)n S n n =+”三个条件中任选一个,补充到下面的横线上,并解答.已知等差数列{}n a 的前n 项和为n S ,且__________. (1)求{}n a 的通项公式; (2)若11n n n b a a +=,求{}n b 的前n 项和为n T ,求证:12n T <. 【解】(1)若选择①,因为1n n a a +>,31044a a =,4915a a +=,31049a a a a +=+, 解得34a =,1011a =,设公差为d ,则有1324a a d +==,101911a a d =+=, 解得12a =,1d =, 所以1n a n =+.若选择①,设公差为d ,74675S a a ==, 即()()117355a d a d +=+,结合213a a d =+=,解得12a =,1d =, 所以1n a n =+.若选择①,当1n =时,112a S ==; 当2n ≥时,1(3)(1)(2)122n n n n n n n a S S n -+-+=-=-=+, 当1n =时亦满足上式, 所以1n a n =+. (2)证明:由(1)得11111(1)(2)12n n n b a a n n n n +===-++++, 所以1111111123341222n T n n n =-+-++-=-+++, 因为102n >+,(*N n ∈),所以111222n -<+,所以12n T <. 【素养提升】1.(2022·浙江省江山中学模拟预测)已知sin ,sin ,sin x y z 依次组成严格递增的等差数列,则下列结论错误..的是( )A .tan ,tan ,tan x y z 依次可组成等差数列B .cos ,cos ,cos x y z 依次可组成等差数列C .cos ,cos ,cos x z y 依次可组成等差数列D .cos ,cos ,cos z x y 依次可组成等差数列【答案】B 【分析】取,0,66x y z ππ=-==,即可判断A ;利用反证法,假设cos ,cos ,cos xy z 依次可组成等差数列,则有2cos coscos y x z =+,2sin sin sin y x z =+,两式相加,整理即可判断B ;取sin 0,sin x y z ===CD.【详解】解:对于A ,当,0,66x y z ππ=-==时,此时11sin ,sin 0,sin 22x y z =-==依次组成严格递增的等差数列,则tan tan 0,tan x y z ===依次组成等差数列,故A 正确; 对于B ,假设cos ,cos ,cos x y z 依次可组成等差数列, 则有2cos cos cos y x z =+, 又因2sin sin sin y x z =+,两式平方相加得()422cos cos sin sin x z x z =++, 则()cos 1x z -=,故2x z k π-=,所以2,Z x k z k π=+∈, 所以()sin sin 2sin x k z z π=+=,与题意矛盾,所以cos ,cos ,cos x y z 依次不可能组成等差数列,故B 错误;对于C ,当sin 0,sin 33x y z =-==11cos ,cos ,cos 133x z y =-==,则cos ,cos ,cos x z y 为等差数列,故C 正确;对于D ,当sin 0,sin 33x y z =-==若11cos ,cos ,cos 133z x y =-==,则cos ,cos ,cos z x y 为等差数列,故D 正确.故选:B.2.(2022·辽宁·渤海大学附属高级中学模拟预测)已知等差数列{}n a 的前n 项和为n S ,且满足()552sin 2350a a +--=,()201820182sin 2370a a +--=,则下列结论正确的是( )A .20222022S =,且52018a a >B .20222022S =-,且52018a a <C .20224044S =-,且52018a a >D .20224044S =,且52018a a <【答案】C【分析】根据题意构造函数()2sin 3f x x x =-,确定函数的奇偶性及单调性,进而根据()()520182,2f a f a ++的关系即可确定答案.【详解】设函数()2sin 3f x x x =-,则()f x 为奇函数,且()2cos 30f x x '=-<,所以()f x 在R 上递减,由已知可得()()552sin 2321a a +-+=-,()()201820182sin 2321a a +-+=,有()521f a +=-,()201821f a +=,所以()()5201822f a f a +<+,且()()5201822f a f a +=-+,所以520185201822a a a a +>+⇒>,且()5201822a a +=-+,所以520184a a +=-, 120222022520182022()1011()40442a a S a a +==+=-.故选:C.3.(多选)(2022·江苏·南京市江宁高级中学模拟预测)已知两个等差数列{}n a 和{}n b ,其公差分别为1d 和2d ,其前n 项和分别为n S 和n T ,则下列说法正确的是( )A .若为等差数列,则112d a =B .若{}n n S T +为等差数列,则120d d +=C .若{}n n a b 为等差数列,则120d d ==D .若*n b N ∈,则{}n b a 也为等差数列,且公差为12d d【答案】ABD【分析】对于A ,利用 对于B ,利用()2211332S T S T S T +=+++化简可得答案;对于C ,利用2211332a b a b a b =+化简可得答案;对于D ,根据112n n b b a a d d +-=可得答案.【详解】对于A ,因为为等差数列,所以即 化简得()21120d a -=,所以112d a =,故A 正确;对于B ,因为{}n n S T +为等差数列,所以()2211332S T S T S T +=+++, 所以()11121111122223333a d b d a b a d b d +++=+++++, 所以120d d +=,故B 正确;对于C ,因为{}n n a b 为等差数列,所以2211332a b a b a b =+, 所以11121111122()()(2)(2)a d b d a b a d b d ++=+++, 化简得120d d =,所以10d =或20d =,故C 不正确;对于D ,因为11(1)n a a n d =+-,且*n b N ∈,所以11(1)n b n a a b d =+-()112111a b n d d =++--⎡⎤⎣⎦,所以()()1111211n b a a b d n d d =+-+-,所以()()()11111211112111n n b b a a a b d nd d a b d n d d +-=+-+-----12d d =,所以{}n b a 也为等差数列,且公差为12d d ,故D 正确. 故选:ABD4.(多选)(2022·福建南平·三模)如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n =⋅⋅⋅⋅⋅⋅且,i i x y ∈Z .记n n n a x y =+,如()11,0A 记为11a =,()21,1A -记为20a =,()30,1A -记为31,a =-⋅⋅⋅,以此类推;设数列{}n a 的前n 项和为n S .则( )A .202242a =B .202287S =-C .82n a n =D .()245312n n n n S ++=【答案】ABD【分析】由图观察可知第n 圈的8n 个点对应的这8n 项的和为0,则2440n n S +=,同时第n 圈的最后一个点对应坐标为(),n n ,设2022a 在第k 圈,则k 圈共有()41k k +个数,可判断前22圈共有2024个数,2024a 所在点的坐标为()22,22,向前推导,则可判断A ,B 选项;当2n =时,16a 所在点的坐标为()2,2--,即可判断C 选项;借助2440n n S +=与图可知22222244144245454544n n n n n nn n n n n n S S S a a a++++++++=-=+++,即n 项之和,对应点的坐标为()1,+n n ,()1,1n n +-,…,()1,1n +,即可求解判断D 选项. 【详解】由题,第一圈从点()1,0到点()1,1共8个点,由对称性可知81280S a a a =+++=;第二圈从点()2,1到点()2,2共16个点,由对称性可知248910240S S a a a -=+++=,即 240S =,以此类推,可得第n圈的8n 个点对应的这8n 项的和为0,即()214482n nn n SS ++⨯==,设2022a 在第k 圈,则()()888168412k k k kk ++++==+,由此可知前22圈共有2024个数,故20240S =,则()2022202420242023S S a a =-+,2024a 所在点的坐标为()22,22,则2024222244a =+=,2023a 所在点的坐标为()21,22,则2023212243a =+=,2022a 所在点的坐标为()20,22,则2022202242a =+=,故A 正确;()()20222024202420230444387S S a a =-+=-+=-,故B 正确;8a 所在点的坐标为()1,1,则8112a =+=,16a 所在点的坐标为()2,2--,则16224a =--=-,故C 错误;22222244144245454544n n n n n nn n n n n n S S S aaa++++++++=-=+++,对应点的坐标为()1,+n n ,()1,1n n +-,…,()1,1n +,所以()()()()()245111112122n n S n n n n n n n n +=+++++-++++=+++++()()2123122n n n n n ++++==,故D 正确.故选:ABD5.(2022·湖北·荆门市龙泉中学一模)在数列{}n a 中,11a =,()11nn n a a n ++-=,*N n ∈,则4a =_______;{}n a 的前2022项和为_______.【答案】 3 1023133【分析】求出数列前若干项,根据其特性,分别求和后再可解即可. 【详解】由()11nn n a a n ++-=,得()11nn n a n a +=--,又11a =,所以()21112a a =--=,()232210a a =--=,()343313a a =--=,()454411a a =--=,()565516a a =--=,()676610a a =--=,()787717a a =--=,()898811a a =--=,()91099110a a =--=,()1011101010a a =--=,()11121111111a a =--=,()1213121211a a =--=,()13141313114a a =--=,⋯;因为202250542=⨯+, 所以,明显可见,规律如下: 159132021,,,,,a a a a a ,成各项为1的常数数列,其和为1506506⨯=, 2610142022,,,,,a a a a a ,成首项为2,公差为4的等差数列,其和为25065055062450625120722⨯⨯+⨯=⨯=, 3711152019,,,,,a a a a a ,成各项为0的成常数数列,其和为05050⨯=,4812162020,,,,,a a a a a ,成首项为3,公差为4的等差数列,其和为505504505345105552⨯⨯+⨯=, 故202250651207205105551023133S =+++=. 故答案为:①3;①1023133.6.(2022·湖南·长郡中学模拟预测)已知数列{}n a 的前n 项和2n S n an =+(a 为常数),则20222021a a -=________;设函数()8sin()cos()g x x x x ππ=+-且()()()12918g a g a g a +++=,则5a =__________.【答案】 2;14【分析】根据数列前n 项和与第n 项的关系、等差数列的定义、等差数列的性质,结合辅助角公式、构造函数法,利用导数的性质进行求解即可.【详解】当*2,N n n ≥∈时,221(1)(1)21n n n a S S n an n a n n a -=-=+----=+-,当1n =时,显然成立,因为当*2,N n n ≥∈时,12n n a a --=,数列{}n a 为等差数列,且公差2d =,所以202220212a a -=.又因为111()8sin πcos π8π8π2444g x x x x x x x x ⎛⎫⎛⎫⎛⎫=+-=-=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令()8πh t t t =,因为()8π)(8π)()h t t t t t h t -=--=-=-, 所以()h t 为奇函数,因为()8cos π0h t t =+>',所以()h t 在R 上单调递增. 由题意得()()()1292220g a g a g a -+-++-=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦,因为数列{}n a 是公差不为0的等差数列,其中129a a a <<<,则129111444a a a -<-<<-,假设1911044a a ⎛⎫⎛⎫-+-> ⎪ ⎪⎝⎭⎝⎭,1919191111110444444a a h a h a h a h a ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫->--⇒->--⇒-+-> ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.因为1928374651111111112,444444444a a a a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-=-+-=-+-=-+-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭所以1291110444h a h a h a ⎛⎫⎛⎫⎛⎫-+-++-> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.假设1911044a a ⎛⎫⎛⎫-+-< ⎪ ⎪⎝⎭⎝⎭,同理可得1291110444h a h a h a ⎛⎫⎛⎫⎛⎫-+-++-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,综上,19195111104424a a a a a ⎛⎫⎛⎫-+-=⇒+=⇒= ⎪ ⎪⎝⎭⎝⎭.故答案为:2;14。
高考数学苏教版理科一轮复习配套课件5.2等差数列及其前n项和
等差数列及其前 n 项和
1.等差数列的有关概念
(1)定义:如果一个数列从 第 2 项 起,每一项与它的前 一项的 差 都等于同一个常数,那么这个数列就叫做等差
数列.符号表示为 an+1-an=d (n∈N+,d为常数).
(2)等差中项:数列 a,A,b 成等差数列的充要条件
a+b A= 2 ,其中 A 叫做 a,b 的 等差中项 . 是
(3)通项公式:an=pn+q(p,q 为常数)⇔{an}是等差数列.
(4)前 n 项和公式:Sn=An2+Bn(A、B 为常数)⇔{an}是等差 数列.
2.活用等差数列的常用性质
(1)通项公式的推广:an=am+(n-m)d,(n,m∈N+).
(2)若{an}为等差数列,且k+l=m+n,(k,l,m,n∈N+), 则ak+al=am+an. (3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,„(k, m∈N+)是公差为md的等差数列.
答案:45 2. (2014· 南京、 盐城一模)在等差数列{an}中, 若 a3+a5+a7=9,
则其前 9 项和 S9 的值为________.
解析:由题知 a3+a5+a7=3a5=9,则 a5=3,所以 S9= 9a5=27.
答案:27
1.(2013· 新课标卷Ⅰ改编)设等差数列{an}的前 n 项和为 Sn,若 Sm
又由(1)知 am+2=2m-3 为奇数,所以 am+2=2m-3=± 1,解得 m=1 或 2. 经检验,符合题意的正整数 m=2.
[类题通法]
1.等差数列的通项公式及前 n 项和公式共涉及五个量 a1, an,d,n,Sn,知其中三个就能求另外两个,体现了用方程组 解决问题的思想.
(江苏专用)2017版高考数学大一轮复习 第七章 数列、推理与证明 文
第七章数列、推理与证明【知识网络】
【考情分析】
【备考策略】
数列与函数和不等式等容易综合,是高考命题的好素材,是考查函数与方程、转化与化归、分类讨论等重要思想,以及对配方法、换元法、待定系数法等基本数学方法的有效载体.因此,复习中要注重对类比推理能力、知识迁移能力、信息编程背景下的运用能力和在平面几何、解析几何及实际问题背景下探究思维能力的培养.
对于推理与证明的考查是综合在许多问题中的,单独考查并不多见,需适当关注.。
2022年教学教材《2021江苏高中数学一轮学案 等差数列及其前n项和》优秀教案
第二节等差数列及其前n项和[最新考纲]项和公式3能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题4了解等差数列与一次函数的关系.1.等差数列1定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示.数学语言表示-a n=dn∈N*,d为常数.为a n+12等差中项:数列a,A,b成等差数列的充要条件是A=错误!,其中A叫做a,b的等差中项.2.等差数列的有关公式1通项公式:a n=a1+n-1d2前n项和公式:S n=na1+错误!d=错误!3.等差数列的通项公式及前n项和公式与函数的关系1当d≠0时,等差数列{a n}的通项公式a n=dn+a1-d是关于d的一次函数.2当d≠0时,等差数列{a n}的前n项和S n=错误!n2+错误!n是关于n的二次函数.4.等差数列的前n项和的最值在等差数列{a n}中,a1>0,d0,那么S n存在最小值.错误!等差数列的常用性质1通项公式的推广:a n=a m+n-mdn,m∈N*.2假设{a n}为等差数列,且m+n=+a n=a,n,,a+2m,…,m∈N*是公差为md的等差数列.4数列S m,S2m-S m,S3m-S2m,…m∈N*也是等差数列,公差为m2d5假设{a n},{b n}均为等差数列且其前n项和为S n,T n,那么错误!=错误!6假设{a n}是等差数列,那么错误!也是等差数列,其首项与{a n}的首项相同,公差是{a n}的公差的错误!7假设等差数列{a n}的项数为偶数2n,那么①S2n=na1+a2n=…=na n+a n+1;②S偶-S奇=nd,错误!=错误!8假设等差数列{a n}的项数为奇数2n+1,那么①S2n+1=2n+1a n+1;②错误!=错误!一、思考辨析正确的打“√〞,错误的打“×〞1假设一个数列从第2项起每一项与它的前一项的差都是常数,那么这个数列是等差数列.2等差数列{a n}的单调性是由公差d决定的3数列{a n}为等差数列的充要条件是对任意n∈N+,都有2a n+1=a n+a n+24等差数列的前n项和公式是常数项为0的二次函数.[答案]1×2√3√4×二、教材改编1.等差数列{a n}中,a4+a8=10,a10=6,那么公差d等于C.2D.-错误!A[∵a4+a8=2a6=10,∴a6=5,又a10=6,∴公差d=错误!=错误!=错误!应选A]2.设数列{a n}是等差数列,其前n项和为S n,假设a6=2且S5=30,那么S8等于A.31 B.32C.33 D.34B[设数列{a n}的公差为d,法一:由S5=5a3=30得a3=6,又a6=2,∴S8=错误!=错误!=错误!=32法二:由错误!得错误!∴S8=8a1+错误!d=8×错误!-28×错误!=32]3.等差数列-8,-3,2,7,…,那么该数列的第100项为.487[依题意得,该数列的首项为-8,公差为5,所以a100=-8+99×5=487]4.某剧场有2021位,后一排比前一排多2个座位,最后一排有60个座位,那么剧场总共的座位数为.82021设第n排的座位数为a n n∈N*,数列{a n}为等差数列,其公差d=2,那么a n=a1+n-1d=a1+2n-1.由a20210,得60=a1+2×2021,解得a1=22,那么剧场总共的座位数为错误!=错误!=82021考点1等差数列根本量的运算解决等差数列运算问题的思想方法1方程思想:等差数列的根本量为首项a1和公差d,通常利用条件及通项公式或前n项和公式列方程组求解,等差数列中包含a1,d,n,a n,S n五个量,可“知三求二〞.2整体思想:当所给条件只有一个时,可将和所求都用a1,d表示,寻求两者间的联系,整体代换即可求解.3利用性质:运用等差数列性质可以化繁为简、优化解题过程.12021·全国卷Ⅰ记S n为等差数列{a n}的前n项和.S4=0,a5=5,那么A.a n=2n-5B.a n=3n-10C.S n=2n2-8n D.S n=错误!n2-2nA[由题知,错误!解得错误!∴a n=2n-5,S n=n2-4n,应选A]2.2021·全国卷Ⅰ记S n为等差数列{a n}的前n项和.假设3S3=S2+S4,a1=2,那么a5等于A.-12 B.-10C.10 D.12B[设等差数列{a n}的公差为d,由3S3=S2+S4,得3错误!=2a1+错误!×d+4a1+错误!×d,将a1=2代入上式,解得d=-3,故a5=a1+5-1d=2+4×-3=-]3.2021·黄山三模?算法统宗?是古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,“九儿问甲歌〞就是其中一首:一个公公九个儿,假设问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,记这位公公的第n个儿子的年龄为a n,那么a1=A.23 B.32C.35 D.38C[由题意可知年龄构成的数列为等差数列,其公差为-3,那么9a1+错误!×-3=2021解得a1=35,应选C]确定等差数列的关键是求出两个最根本的量,即首项a1和公差d考点2等差数列的判定与证明等差数列的4个判定方法1定义法:证明对任意正整数n都有a n+1-a n等于同一个常数.2等差中项法:证明对任意正整数n都有2a n+1=a n+a n+23通项公式法:得出a n=+n=,n,+a n=a>1,且a m-1+a m+1-a错误!-1=0,S2m-1=39,那么m等于A.39 B.2021.19 D.10B[数列{a n}为等差数列,那么a m-1+a m+1=2a m,那么a m-1+a m+1-a错误!-1=0可化为2a m -a错误!-1=0,解得a m=-1=2m-1a m=39,那么m=]2.设等差数列{a n},{b n}的前n项和分别为S n,T n,假设对任意的n∈N*,都有错误!=错误!,那么错误!+错误!的值为C[由题意可知b3+b13=b5+b11=b1+b15=2b8,∴错误!+错误!=错误!=错误!=错误!=错误!=错误!=错误!应选C]考点4等差数列前n项和的最值问题求等差数列前n项和S n最值的2种方法1函数法:利用等差数列前n项和的函数表达式S n=an2+bn,通过配方或借助图象求二次函数最值的方法求解.2邻项变号法:①当a1>0,d0时,满足错误!的项数m使得S n取得最小值为S m[一题多解]等差数列{a n}的前n项和为S n,a1=13,S3=S11,当S n最大时,n的值是A.5 B.6C.7 D.8C[法一:邻项变号法由S3=S11,得a4+a5+…+a11=0,根据等差数列的性质,可得a7+a8=0根据首项等于13可推知这个数列为递减数列,从而得到a7>0,a80,当n≥14时,a n<0所以当n=12或n=13时,S n取得最大值.法二:S n=2021错误!·错误!=-错误!n2+错误!n=-错误!错误!错误!错误!因为n∈N*,所以当n=12或n=13时,S n有最大值.法三:由S10=S15,得a11+a12+a13+a14+a15=0所以5a13=0,即a13=0所以当n=12或n=13时,S n有最大值.此题用了三种不同的方法,其中方法一是从项的角度分析函数最值的变化;方法二、三是借助二次函数的图象及性质给与解得,三种方法各有优点,灵活运用是解题的关键.1设数列{a n}是公差d<0的等差数列,S n为其前n项和,假设S6=5a1+10d,那么S n取最大值时,n的值为A.5 B.6C.5或6 D.11C[由题意得S6=6a1+15d=5a1+10d,化简得a1=-5d,所以a6=0,故当n=5或6时,S n 最大.]2.2021·北京高考设{a n}是等差数列,a1=-10,且a2+10,a3+8,a4+6成等比数列.1求{a n}的通项公式;2记{a n}的前n项和为S n,求S n的最小值.[解]1∵{a n}是等差数列,a1=-10,且a2+10,a3+8,a4+6成等比数列.∴a3+82=a2+10a4+6,∴-2+2d2=d-4+3d,解得d=2,∴a n=a1+n-1d=-10+2n-2=2n-122法一:函数法由a1=-10,d=2,得S n=-10n+错误!×2=n2-11n=错误!错误!-错误!,∴n=5或n=6时,S n取最小值-30法二:邻项变号法由1知,a n=2n-12所以,当n≥7时,a n>0;当n≤6时,a n≤0所以S n的最小值为S6=-30。
高考数学大一轮复习 6.2等差数列及其前n项和教师用书 理 苏教版
§6.2 等差数列及其前n 项和1.等差数列的定义如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母 d 表示. 2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . 3.等差中项 如果A =a +b2,那么A 叫做a 与b 的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. 5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n a 1+a n2或S n =na 1+n n -2d .6.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n .数列{a n }是等差数列⇔S n =An 2+Bn (A 、B 为常数). 7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最 大 值;若a 1<0,d >0,则S n 存在最 小 值. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( √ ) (3)等差数列{a n }的单调性是由公差d 决定的.( √ )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( × ) (5)数列{a n }满足a n +1-a n =n ,则数列{a n }是等差数列.( × )(6)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.( √ )1.(2014·福建改编)等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6= . 答案 12解析 由题意知a 1=2,由S 3=3a 1+3×22×d =12,解得d =2,所以a 6=a 1+5d =2+5×2=12.2.设{a n }为等差数列,公差d =-2,S n 为其前n 项和,若S 10=S 11,则a 1= . 答案 20解析 因为S 10=S 11,所以a 11=0. 又因为a 11=a 1+10d ,所以a 1=20.3.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11= . 答案 88 解析 S 11=a 1+a 112=a 4+a 82=88.4.(2013·课标全国Ⅱ)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为 . 答案 -49解析 由题意知a 1+a 10=0,a 1+a 15=103.两式相减得a 15-a 10=103=5d ,∴d =23,a 1=-3.∴nS n =n ·⎝⎛⎭⎪⎫na 1+n n -2d =n 3-10n23=f (n ), 令f (x )=x 3-10x 23,x >0,f ′(x )=13x (3x -20).令f ′(x )=0得x =0(舍)或x =203.当x >203时,f (x )是单调递增的;当0<x <203时,f (x )是单调递减的.故当n =7时,f (n )取最小值,f (n )min =-49. ∴nS n 的最小值为-49.题型一 等差数列基本量的运算例1 (1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为 .(2)(2013·课标全国Ⅰ改编)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m = . 答案 (1)52(2)5解析 (1)由2a n +1=1+2a n 得a n +1-a n =12,所以数列{a n }是首项为-2,公差为12的等差数列,所以S 10=10×(-2)+-2×12=52. (2)由题意得a m =S m -S m -1=2,a m +1=S m +1-S m =3,故d =1,因为S m =0,故ma 1+m m -2d =0,故a 1=-m -12,因为a m +a m +1=S m +1-S m -1=5, 故a m +a m +1=2a 1+(2m -1)d =-(m -1)+2m -1=5, 即m =5.思维升华 (1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.(1)若等差数列{a n }的前5项和S 5=25,且a 2=3,则a 7= .(2)记等差数列{a n }的前n 项和为S n ,若a 1=12,S 4=20,则S 6= .(3)已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是 .答案 (1)13 (2)48 (3)2 解析 (1)由题意得S 5=a 1+a 52=5a 3=25,故a 3=5,公差d =a 3-a 2=2,a 7=a 2+5d =3+5×2=13.(2)∵S 4=2+6d =20,∴d =3,故S 6=3+15d =48. (3)∵S n =n a 1+a n2,∴S n n =a 1+a n 2,又S 33-S 22=1,得a 1+a 32-a 1+a 22=1,即a 3-a 2=2,∴数列{a n }的公差为2. 题型二 等差数列的性质及应用例2 (1)设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9= . (2)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为 .(3)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 014,S 2 0142 014-S 2 0082 008=6,则S 2 016= .答案 (1)45 (2)13 (3)2 016解析 (1)由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列. 即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45.(2)因为a 1+a 2+a 3=34,a n -2+a n -1+a n =146,a 1+a 2+a 3+a n -2+a n -1+a n =34+146=180,又因为a 1+a n =a 2+a n -1=a 3+a n -2, 所以3(a 1+a n )=180,从而a 1+a n =60, 所以S n =n a 1+a n2=n ·602=390,即n =13.(3)由等差数列的性质可得{S n n}也为等差数列,设其公差为d . 则S 2 0142 014-S 2 0082 008=6d =6,∴d =1.故S 2 0162 016=S 11+2 015d =-2 014+2 015=1, ∴S 2 016=1×2 016=2 016.思维升华 在等差数列{a n }中,数列S m ,S 2m -S m ,S 3m -S 2m 也成等差数列;{S n n}也是等差数列.等差数列的性质是解题的重要工具.(1)设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7= .(2)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30= . 答案 (1)28 (2)60解析 (1)∵a 3+a 4+a 5=3a 4=12,∴a 4=4, ∴a 1+a 2+…+a 7=7a 4=28.(2)∵S 10,S 20-S 10,S 30-S 20成等差数列, ∴2(S 20-S 10)=S 10+S 30-S 20, ∴40=10+S 30-30,∴S 30=60. 题型三 等差数列的判定与证明例3 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由. (1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1(n ∈N *),所以b n +1-b n =1a n +1-1-1a n -1=1-1a n-1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52. 所以数列{b n }是以-52为首项,1为公差的等差数列.(2)解 由(1)知b n =n -72,则a n =1+1b n =1+22n -7.设f (x )=1+22x -7,则f (x )在区间(-∞,72)和(72,+∞)上为减函数.所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3. 思维升华 等差数列的四个判定方法:(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.已知数列{a n }的前n 项和为S n ,且满足:a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,判断⎩⎨⎧⎭⎬⎫1S n 与{a n }是否为等差数列,并说明你的理由.解 因为a n =S n -S n -1(n ≥2), 又因为a n +2S n S n -1=0,所以S n -S n -1+2S n S n -1=0(n ≥2), 所以1S n -1S n -1=2(n ≥2),又因为S 1=a 1=12,所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n =2+(n -1)×2=2n ,故S n =12n .所以当n ≥2时,a n =S n -S n -1=12n -1n -=-12nn -,所以a n +1=-12n n +, 而a n +1-a n =-12n n +--12nn -=-12n ⎝ ⎛⎭⎪⎫1n +1-1n -1=1nn -n +. 所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列.综上,可知⎩⎨⎧⎭⎬⎫1S n 是等差数列,{a n }不是等差数列.等差数列的前n 项和及其最值典例:(1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10= .(2)在等差数列{a n }中,S 10=100,S 100=10,则S 110= .(3)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为 . (4)(2014·北京)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n = 时,{a n }的前n 项和最大.思维点拨 (1)求等差数列前n 项和,可以通过求解基本量a 1,d ,代入前n 项和公式计算,也可以利用等差数列的性质:a 1+a n =a 2+a n -1=…;(2)求等差数列前n 项和的最值,可以将S n 化为关于n 的二次函数,求二次函数的最值,也可以观察等差数列的符号变化趋势,找最后的非负项或非正项. 解析 (1)由题意得a 3+a 8=9, ∴S 10=a 1+a 102=a 3+a 82=10×92=45. (2)方法一 设数列{a n }的公差为d ,首项为a 1, 则⎩⎪⎨⎪⎧10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎪⎨⎪⎧a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110.方法二 因为S 100-S 10=a 11+a 1002=-90,所以a 11+a 100=-2, 所以S110=a 1+a 1102=a 11+a 1002=-110.(3)因为等差数列{a n }的首项a 1=20,公差d =-2,代入求和公式得,S n =na 1+n n -2d =20n -n n -2×2=-n 2+21n =-(n -212)2+(212)2,又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110. (4)∵a 7+a 8+a 9=3a 8>0,∴a 8>0.∴数列的前8项和最大,即n =8. 答案 (1)45 (2)-110 (3)110 (4)8温馨提醒 (1)利用函数思想求等差数列前n 项和S n 的最值时,要注意到n ∈N *; (2)利用等差数列的性质求S n ,突出了整体思想,减少了运算量.方法与技巧1.等差数列的判断方法(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列. (2)等差中项法:2a n +1=a n +a n +2 (n ∈N *)⇔{a n }是等差数列. (3)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列. (4)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列.2.方程思想和化归思想:在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解.3.等差数列性质灵活使用,可以大大减少运算量.4.在遇到三个数成等差数列问题时,可设三个数为(1)a ,a +d ,a +2d ;(2)a -d ,a ,a +d ;(3)a -d ,a +d ,a +3d 等,可视具体情况而定. 失误与防范1.当公差d ≠0时,等差数列的通项公式是n 的一次函数,当公差d =0时,a n 为常数. 2.公差不为0的等差数列的前n 项和公式是n 的二次函数,且常数项为0.若某数列的前n 项和公式是常数项不为0的二次函数,则该数列不是等差数列,它从第二项起成等差数列.A 组 专项基础训练 (时间:40分钟)1.已知数列{a n }是等差数列,a 1+a 7=-8,a 2=2,则数列{a n }的公差d = . 答案 -3解析 方法一 由题意可得⎩⎪⎨⎪⎧a 1+a 1+6d=-8,a 1+d =2,解得a 1=5,d =-3.方法二 a 1+a 7=2a 4=-8,∴a 4=-4,2.已知直线(3m +1)x +(1-m )y -4=0所过定点的横、纵坐标分别是等差数列{a n }的第一项与第二项,若b n =1a n ·a n +1,数列{b n }的前n 项和为T n ,则T 10= .答案1021解析 依题意,将(3m +1)x +(1-m )y -4=0化为(x +y -4)+m (3x -y )=0,令⎩⎪⎨⎪⎧x +y -4=0,3x -y =0,解得⎩⎪⎨⎪⎧x =1y =3,所以直线(3m +1)x +(1-m )y -4=0过定点(1,3),所以a 1=1,a 2=3,所以公差d =2,a n =2n -1,所以b n =1a n ·a n +1=12(12n -1-12n +1),T 10=12×(11-13+13-15+…+120-1-120+1)=12×(11-121)=1021. 3.设数列{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37= . 答案 100解析 设{a n },{b n }的公差分别为d 1,d 2, 则(a n +1+b n +1)-(a n +b n ) =(a n +1-a n )+(b n +1-b n ) =d 1+d 2,∴{a n +b n }为等差数列, 又a 1+b 1=a 2+b 2=100,∴{a n +b n }为常数列,∴a 37+b 37=100.4.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则当{a n }的前n 项和S n 取到最大值时n 为 . 答案 5解析 ∵⎩⎪⎨⎪⎧a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5.5.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是 . 答案 60解析 由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0, ∴T 18=a 1+…+a 10-a 11-…-a 18 =S 10-(S 18-S 10)=60.6.已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n = . 答案 2n -1解析 设等差数列的公差为d , ∵a 3=a 22-4,∴1+2d =(1+d )2-4, 解得d 2=4,即d =±2.由于该数列为递增数列,故d =2. ∴a n =1+(n -1)×2=2n -1.7.等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时,n 的值是 . 答案 6解析 依题意得2a 6=4,2a 7=-2,a 6=2>0,a 7=-1<0;又数列{a n }是等差数列,因此在该数列中,前6项均为正数,自第7项起以后各项均为负数,于是当S n 取最大值时,n =6. 8.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N *),则a 10= . 答案 14解析 由已知1a 10=1a 1+(10-1)×13=1+3=4, ∴a 10=14.9.在等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值. 解 (1)设等差数列{a n }的公差为d , 则a n =a 1+(n -1)d .由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n . (2)由(1)可知a n =3-2n , 所以S n =n [1+-2n2=2n -n 2.由S k =-35,可得2k -k 2=-35, 即k 2-2k -35=0,解得k =7或k =-5. 又k ∈N *,故k =7.10.设等差数列{a n }的前n 项和为S n ,若a 1<0,S 2 015=0. (1)求S n 的最小值及此时n 的值; (2)求n 的取值集合,使其满足a n ≥S n . 解 (1)设公差为d ,则由S 2 015=0⇒2 015a 1+2 015×2 0142d =0⇒a 1+1 007d =0, d =-11 007a 1,a 1+a n =2 015-n 1 007a 1, ∴S n =n 2(a 1+a n )=n 2·2 015-n 1 007a 1 =a 12 014(2 015n -n 2). ∵a 1<0,n ∈N *,∴当n =1 007或1 008时,S n 取最小值504a 1.(2)a n =1 008-n 1 007a 1, S n ≤a n ⇔a 12 014(2 015n -n 2)≤1 008-n 1 007a 1. ∵a 1<0,∴n 2-2 017n +2 016≤0,即(n -1)(n -2 016)≤0,解得1≤n ≤2 016.故所求n 的取值集合为{n |1≤n ≤2 016,n ∈N *}.B 组 专项能力提升(时间:25分钟)1.已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使S n >0的n 的最大值为 .答案 19解析 ∵a 11a 10<-1,且S n 有最大值, ∴a 10>0,a 11<0,且a 10+a 11<0,∴S 19=a 1+a 192=19·a 10>0,S 20=a 1+a 202=10(a 10+a 11)<0,故使得S n >0的n 的最大值为19.2.(2013·辽宁改编)下面是关于公差d >0的等差数列{a n }的四个命题: p 1:数列{a n }是递增数列;p 2:数列{na n }是递增数列;p 3:数列⎩⎨⎧⎭⎬⎫a n n 是递增数列;p 4:数列{a n +3nd }是递增数列. 其中,真命题为 .答案 p 1,p 4解析 由于p 1:a n =a 1+(n -1)d ,d >0, ∴a n -a n -1=d >0,命题p 1正确.对于p 2:na n =na 1+n (n -1)d ,∴na n -(n -1)a n -1=a 1+2(n -1)d 与0的大小和a 1的取值情况有关. 故数列{na n }不一定递增,命题p 2不正确. 对于p 3:a n n =a 1n +n -1n d ,∴a n n -a n -1n -1=-a 1+d n n -, 当d -a 1>0,即d >a 1时,数列{a n n }递增,但d >a 1不一定成立,则p 3不正确.对于p 4:设b n =a n +3nd ,则b n +1-b n =a n +1-a n +3d =4d >0.∴数列{a n +3nd }是递增数列,p 4正确. 综上,正确的命题为p 1,p 4.3.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为 .答案 1941解析 ∵{a n },{b n }为等差数列,∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6. ∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941, ∴a 6b 6=1941. 4.已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a 2n +n -4(n ∈N *).(1)求证:数列{a n }为等差数列;(2)求数列{a n }的通项公式.(1)证明 当n =1时,有2a 1=a 21+1-4, 即a 21-2a 1-3=0,解得a 1=3(a 1=-1舍去).当n ≥2时,有2S n -1=a 2n -1+n -5,又2S n =a 2n +n -4,两式相减得2a n =a 2n -a 2n -1+1,即a 2n -2a n +1=a 2n -1,也即(a n -1)2=a 2n -1,因此a n -1=a n -1或a n -1=-a n -1.若a n -1=-a n -1,则a n +a n -1=1.而a 1=3,所以a 2=-2,这与数列{a n }的各项均为正数相矛盾, 所以a n -1=a n -1,即a n -a n -1=1,因此数列{a n }为等差数列.(2)解 由(1)知a 1=3,d =1,所以数列{a n }的通项公式a n =3+(n -1)×1=n +2, 即a n =n +2.5.已知数列{a n }中,a 1=12,a n +1=3a n a n +3. (1)求a n ;(2)设数列{b n }的前n 项和为S n ,且b n ·n -4a n a n =1,求证:12≤S n <1. (1)解 由已知得a n ≠0则由a n +1=3a n a n +3, 得1a n +1=a n +33a n , 即1a n +1-1a n =13,而1a 1=2, ∴{1a n }是以2为首项,以13为公差的等差数列. ∴1a n =2+13(n -1)=n +53, ∴a n =3n +5. (2)证明 ∵b n ·n -4a n a n =1, 则由(1)得b n =1nn +, ∴S n =b 1+b 2+…+b n =(1-12)+(12-13)+(13-14)+…+(1n -1n +1)=1-1n +1关于n 单调递增,∴12≤S n<1.。
《等差数列的前n项和》说课稿
《等差数列的前n项和》说课稿作为一位不辞辛劳的人民教师,常常要根据教学需要编写说课稿,借助说课稿可以有效提升自己的教学能力。
怎么样才能写出优秀的说课稿呢?以下是小编收集整理的《等差数列的前n项和》说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。
一、教材分析地位和作用数列是刻画离散现象的函数,是一种重要的属性模型。
人们往往通过离散现象认识连续现象,因此就有必要研究数列。
高中数列研究的主要对象是等差、等比两个基本数列。
本节课的教学内容是等差数列前n项和公式的推导及其简单应用。
在推导等差数列前n项和公式的过程中,采用了:1、从特殊到一般的研究方法;2、倒叙相加求和。
不仅得出来等差数列前n项和公式,而且对以后推导等比数列前n项和公式有一定的启发,也是一种常用的数学思想方法。
等差数列的前n项和是学习极限、微积分的基础,与数学课程的其他内容(函数、三角、不等式等)有着密切的联系。
二、目标分析(一)、教学目标1、知识与技能掌握等差数列的前n项和公式,能较熟练应用等差数列的前n项和公式求和。
2、过程与方法经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思。
3、情感、态度与价值观获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理的能力。
(二)、教学重点、难点1、重点:等差数列的前n项和公式。
2、难点:获得等差数列的前n项和公式推导的思路。
三、教法学法分析(一)、教法教学过程分为问题呈现阶段、探索与发现阶段、应用知识阶段。
探索与发现公式推导的思路是教学的重点。
如果直接介绍“倒叙相加”求和,无疑就像波利亚所说的“帽子里跳出来的兔子”。
所以在教学中采用以问题驱动、层层铺垫,从特殊到一般启发学生获得公式的推导方法。
应用公式也是教学的重点。
为了让学生较熟练掌握公式,可采用设计变式题的教学手段,通过“选择公式”,“变用公式”,“知三求二”三个层次来促进学生新的认知结构的形成。
【满足】高考数学一轮复习第七章数列推理与证明第35课等比数列及其前n项和教师用书
【关键字】满足第35课等比数列及其前n项和[最新考纲]1(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫作等比数列.这个常数叫作等比数列的公比,通常用字母q表示,定义的表达式为=q(n∈N+,q为非零常数).(2)等比中项:如果a,G,b成等比数列,那么G叫作a与b的等比中项.即G是a与b的等比中项⇒a,G,b成等比数列⇒G2=ab.2.等比数列的有关公式(1)通项公式:an=a1qn-1.(2)前n项和公式:Sn=3.等比数列的常用性质(1)通项公式的推广:an=am·qn-m(n,m∈N+).(2)若m+n=p+q=2k(m,n,p,q,k∈N+),则am·an=ap·aq=a;(3)若数列{an},{bn}(项数相同)是等比数列,则{λan},,{a},{an·bn},(λ≠0)仍然是等比数列;(4)在等比数列{an}中,等距离取出若干项也构成一个等比数列,即an,an+k,an+2k,an+3k,…为等比数列,公比为qk.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)满足an+1=qan(n∈N+,q为常数)的数列{an}为等比数列.( )(2)G为a,b的等比中项⇔G2=ab.( )(3)若{an}为等比数列,bn=a2n-1+a2n,则数列{bn}也是等比数列.( )(4)数列{an}的通项公式是an=an,则其前n项和为Sn=.[答案] (1)×(2)×(3)×(4)×2.已知等比数列{an}的公比为-,则的值是____________.-2 [==-2.]3.(2017·扬州期末)已知等比数列{an}满足a2+1=4,a=a5,则该数列的前5项和为____________.31 [∵{an}是等比数列,由得解得∴S5===31.]4.(教材改编)在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为__________.27,81 [设该数列的公比为q,由题意知,243=9×q3,q3=27,∴q=3.∴插入的两个数分别为9×3=27,27×3=81.]5.在数列{an}中,a1=2,an+1=2an,Sn为{an}的前n项和.若Sn=126,则n=__________.6 [∵a1=2,an+1=2an,∴数列{an}是首项为2,公比为2的等比数列.又∵Sn=126,∴=126,解得n=6.](1)已知S3=7,则a8=____________.(2)已知数列{an}是递加的等比数列,a1+a4=9,a3=8,则数列{an}的前n项和等于__________.(1)128 (2)2n-1 [(1)∵{an}为等比数列,a2·a4=16,∴a3=4,∵a3=a1q2=4,S3=7,∴S2==3,∴(1-q2)=3(1-q),即3q2-4q-4=0,∴q=-或q=2.∵an>0,∴q=2,则a1=1,∴a8=27=128.(2)设等比数列的公比为q,则有解得或又{an}为递加数列,∴∴Sn==2n-1.][规律方法] 1.等比数列的通项公式与前n项和公式共涉及五个量a1,n,q,an,Sn,一般可以“知三求二”,体现了方程思想的应用.2.在使用等比数列的前n项和公式时,应根据公比q的情况进行分类讨论,在运算过程中,应善于运用整体代换思想简化运算.[变式训练1] (1)在等比数列{an}中,a3=7,前3项和S3=21,则公比q的值为____________.(2)设等比数列{an}的前n项和为Sn,若3-a6=0,则=__________.【导学号:】(1)1或-(2)28 [(1)根据已知条件得②÷①得=3.整理得2q2-q-1=0,解得q =1或q =-.(2)由题可知{an}为等比数列,设首项为a1,公比为q ,所以a3=a1q2,a6=a1q5,所以1q2=a1q5,所以q =3,由Sn =,得S6=,S3=,所以=·=28.]等比数列的判定与证明设数列{an}的前n 项和为Sn ,已知a1=1,Sn +1=4an +2. (1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式.[解] (1)证明:由a 1=1及S n +1=4a n +2, 有a 1+a 2=S 2=4a 1+2, ∴a 2=5,∴b 1=a 2-2a 1=3.又⎩⎪⎨⎪⎧S n +1=4a n +2, ①S n =4a n -1+2n ≥2, ②①-②,得a n +1=4a n -4a n -1(n ≥2), ∴a n +1-2a n =2(a n -2a n -1)(n ≥2). ∵b n =a n +1-2a n ,∴b n =2b n -1(n ≥2), 故{b n }是首项b 1=3,公比为2的等比数列. (2)由(1)知b n =a n +1-2a n =3·2n -1,∴a n +12n +1-a n 2n =34,故⎩⎨⎧⎭⎬⎫a n 2n 是首项为12,公差为34的等差数列.∴a n 2n =12+(n -1)·34=3n -14, 故a n =(3n -1)·2n -2.[规律方法] 等比数列的判定方法 (1)定义法:若a n +1a n=q (q 为非零常数,n ∈N +),则{a n }是等比数列. (2)等比中项法:若数列{a n }中,a n ≠0,且a 2n +1=a n ·a n +2(n ∈N +),则数列{a n }是等比数列.(3)通项公式法:若数列通项公式可写成a n =c ·q n(c ,q 均是不为0的常数,n ∈N +),则{a n }是等比数列.说明:前两种方法是证明等比数列的常用方法,后者常用于客观题中的判定. [变式训练2] (2016·全国卷Ⅲ)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式;(2)若S 5=3132,求λ.[解] (1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,故a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n . 由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1. 因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎪⎫λλ-1n .由S 5=3132得1-⎝ ⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132.解得λ=-1.等比数列的性质及应用(1)设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=____________. (2)(2017·苏州模拟)数列{a n }的首项为a 1=1,数列{b n }为等比数列且b n =a n +1a n,若b 10b 11=2 017110,则a 21=____________. 【导学号:】(1)73 (2)2 017 [∵{a n }是等比数列,∴S 2,S 4-S 2,S 6-S 4也成等比数列. 由S 4S 2=3得S 4=3S 2,设S 2=x ,则S 4=3x ,即x,2x ,S 6-3x 成等比数列,∴S 6=7x ,∴S 6S 4=7x 3x =73. (2)∵b n =a n +1a n ,∴a 21=a 21a 20·a 20a 19·a 19a 18·…·a 2a 1·a 1 =b 20·b 19·b 18·…·b 1·a 1,又{b n }成等比数列,∴b 1·b 20=b 2·b 19=…=b 10·b 11=2 017110,∴a 21=(b 10b 11)10=⎝⎛⎭⎪⎫2 01711010=2 017.][规律方法] 1.在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.2.等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项的变形,三是前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.[变式训练3] (1)在正项等比数列{a n }中,a 1 008·a 1 009=1100,则lg a 1+lg a 2+…+lga 2 016=____________.(2)(2017·南昌一模)若等比数列的各项均为正数,前4项的和为9,积为814,则前4项倒数的和为____________.(1)-2 016 (2)2 [(1)lg a 1+lg a 2+…+lg a 2 016=lg a 1a 2…a 2 016= lg(a 1 008·a 1 009)1 008=lg ⎝⎛⎭⎪⎫1100 1 008=lg ()10-2 1 008=-2 016.(2)由题意得S 4=a 11-q 41-q =9,所以1-q 41-q =9a 1.由a 1·a 1q ·a 1q 2·a 1q 3=(a 21q 3)2=814得a 21q 3=92.由等比数列的性质知该数列前4项倒数的和为1a 1⎝ ⎛⎭⎪⎫1-1q 41-1q=q 4-1a 1q 3q -1=1a 1q 3·9a 1=9a 21q 3=2.] [思想与方法]1.方程的思想.等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求解.2.函数的思想.通项公式a n =a 1qn -1可化为a n =⎝ ⎛⎭⎪⎫a 1qq n,因此a n 是关于n 的函数,即{a n }中的各项所表示的点(n ,a n )在曲线y =⎝ ⎛⎭⎪⎫a 1qq x上,是一群孤立的点.3.分类讨论思想.当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 11-q n 1-q =a 1-a n q 1-q.等比数列的前n 项和公式涉及对公比q 的分类讨论,此处是常考易错点.[易错与防范]1.特别注意q =1时,S n =na 1这一特殊情况.2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽视q =1这一特殊情形而导致解题失误.4.S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n-S n ,S 3n -S 2n 不成等比数列;当q ≠-1或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列).课时分层训练(三十五)A 组 基础达标 (建议用时:30分钟)一、填空题1.若三个正数a ,b ,c 成等比数列,其中a =5+26,c =5-26,则b =________. 【导学号:】1 [∵a ,b ,c 成等比数列,∴b 2=a ·c =(5+26)(5-26)=1.又b >0,∴b =1.] 2.(2017·苏州模拟)等比数列{a n }的公比大于1,a 5-a 1=15,a 4-a 2=6,则a 3=____________.4 [由⎩⎪⎨⎪⎧a 5-a 1=15,a 4-a 2=6,得⎩⎪⎨⎪⎧a 1q 4-a 1=15, ①a 1q 3-a 1q =6, ②①②得2q 2-5q +2=0,解得q =2或q =12(舍去), 把q =2代入①得a 1=1. ∴a 3=q 2=4.]3.在等比数列{a n }中,S n 表示前n 项和,若a 3=2S 2+1,a 4=2S 3+1,则公比q 等于____________.3 [两式相减得a 4-a 3=2a 3,从而求得a 4a 3=3,即q =3.]4.数列{a n }满足:a n +1=λa n -1(n ∈N +,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值等于____________.2 [由a n +1=λa n -1,得a n +1-1=λa n -2=λ⎝ ⎛⎭⎪⎫a n -2λ.由于数列{a n -1}是等比数列,所以2λ=1,得λ=2.]5.设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =____________.3n -1[因为3S 1,2S 2,S 3成等差数列,所以4S 2=3S 1+S 3,即4(a 1+a 2)=3a 1+a 1+a 2+a 3.化简,得a 3a 2=3,即等比数列{a n }的公比q =3,故a n =1×3n -1=3n -1.]6.在各项均为正数的等比数列{a n }中,若a m +1·a m -1=2a m (m ≥2),数列{a n }的前n 项积为T n ,若T 2m -1=512,则m 的值为____________. 【导学号:】5 [由等比数列的性质可知a m +1·a m -1=a 2m =2a m (m ≥2),所以a m =2,即数列{a n }为常数列,a n =2,所以T 2m -1=22m -1=512=29,即2m -1=9,所以m =5.]7.(2016·常州期末)已知等比数列{a n }的各项均为正数,且a 1+a 2=49,a 3+a 4+a 5+a 6=40,则a 7+a 8+a 99的值为________.117 [∵{a n }是等比数列,设公比为q ,则a 3+a 4=(a 1+a 2)q 2, a 5+a 6=(a 1+a 2)q 4,∴a 3+a 4+a 5+a 6=(a 1+a 2)(q 2+q 4)=40, 即49(q 2+q 4)=40,解得q 2=9. 又q >0,∴q =3, 由a 1+a 2=49得a 1=19,∴a 7+a 8+a 99=19q 6+q 7+q 89=36+37+3881=117.]8.等比数列{a n }的前n 项和为S n ,公比不为1.若a 1=1,则对任意的n ∈N +,都有a n +2+a n +1-2a n =0,则S 5=____________.11 [∵{a n }是等比数列,∴a n +2+a n +1-2a n =a n (q 2+q -2)=0,又a n ≠0,故q 2+q -2=0,即q =-2或q =1(舍去), ∴S 5=1--251+2=333=11.] 9.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =____________.14 [由a 4a 5a 6a 1a 2a 3=(q 3)3=3得q 3=33, ∴a n -1a n a n +1=(a 1a 2a 3)q3n -6=4×⎝⎛⎭⎫33n -2由4×⎝⎛⎭⎫33n -2=324,得n -23=4,即n =14.]10.(2016·浙江高考)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N +,则a 1=________,S 5=________.1 121 [∵a n +1=2S n +1,∴S n +1-S n =2S n +1, ∴S n +1=3S n +1,∴S n +1+12=3⎝⎛⎭⎪⎫S n +12,∴数列⎩⎨⎧⎭⎬⎫S n +12是公比为3的等比数列,∴S 2+12S 1+12=3.又S 2=4,∴S 1=1,∴a 1=1, ∴S 5+12=⎝ ⎛⎭⎪⎫S 1+12×34=32×34=2432,∴S 5=121.] 二、解答题11.设数列{a n }的前n 项和为S n ,a 1=1,且数列{S n }是以2为公比的等比数列. (1)求数列{a n }的通项公式;(2)求a 1+a 3+…+a 2n +1. 【导学号:】 [解] (1)∵S 1=a 1=1,且数列{S n }是以2为公比的等比数列, ∴S n =2n -1,又当n ≥2时,a n =S n -S n -1=2n -1-2n -2=2n -2.当n =1时a 1=1,不适合上式.∴a n =⎩⎪⎨⎪⎧1,n =1,2n -2,n ≥2.(2)a 3,a 5,…,a 2n +1是以2为首项,以4为公比的等比数列, ∴a 3+a 5+…+a 2n +1=21-4n1-4=24n-13.∴a 1+a 3+…+a 2n +1=1+24n-13=22n +1+13. 12.已知数列{a n }的前n 项和为S n ,且S n =4a n -3(n ∈N +). (1)证明:数列{a n }是等比数列;(2)若数列{b n }满足b n +1=a n +b n (n ∈N +),且b 1=2,求数列{b n }的通项公式. [解] (1)证明:依题意S n =4a n -3(n ∈N +),n =1时,a 1=4a 1-3,解得a 1=1.因为S n =4a n -3,则S n -1=4a n -1-3(n ≥2), 所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1,整理得a n =43a n -1.又a 1=1≠0,所以{a n }是首项为1,公比为43的等比数列.(2)由(1)知a n =⎝ ⎛⎭⎪⎫43n -1,由b n +1=a n +b n (n ∈N +),得b n +1-b n =⎝ ⎛⎭⎪⎫43n -1.可得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=2+1-⎝ ⎛⎭⎪⎫43n -11-43=3·⎝ ⎛⎭⎪⎫43n -1-1(n ≥2).当n =1时也满足,所以数列{b n }的通项公式为b n =3·⎝ ⎛⎭⎪⎫43n -1-1(n ∈N +).B 组 能力提升 (建议用时:15分钟)1.《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”题意是“有两只老鼠从墙的两边打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.”如果墙足够厚,S n 为前n 天两只老鼠打洞长度之和,则S n =__________尺.2n-12n -1+1 [依题意大老鼠每天打洞的距离构成以1为首项,2为公比的等比数列,所以前n 天大老鼠打洞的距离共为1×1-2n1-2=2n-1.同理可得前n 天小老鼠打洞的距离共为1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=2-12n -1,所以S n =2n -1+2-12n -1=2n-12n -1+1.]2.(2017·南京一模)设S n 是等比数列{a n }的前n 项和,a n >0,若S 6-2S 3=5,则S 9-S 6的最小值为________.20 [设等比数列的公比为q ,则q >0且q ≠1. 由S 6-2S 3=5可知,a 1q 6-1q -1-2a 1q 3-1q -1=5,∴a 1q 3-12q -1=5,∴q >1.则S 9-S 6=a 1q 9-1q -1-a 1q 6-1q -1=a 1q 6q 3-1q -1=5q 6q 3-1=5⎣⎢⎡⎦⎥⎤q 3-1+1q 3-1+10≥5×2q 3-1·1q 3-1+10 =20,当且仅当q 3=2,即q =32时取等号. ∴S 9-S 6的最小值为20.]3.已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2). (1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.[解] (1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). ∵a 1=5,a 2=5, ∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2), ∴a n +1+2a na n +2a n -1=3(n ≥2),∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列. (2)由(1)得a n +1+2a n =15×3n -1=5×3n,则a n +1=-2a n +5×3n, ∴a n +1-3n +1=-2(a n -3n).又∵a 1-3=2,∴a n -3n≠0,∴{a n -3n}是以2为首项,-2为公比的等比数列. ∴a n -3n=2×(-2)n -1,即a n =2×(-2)n -1+3n.4.已知数列{a n }的前n 项和为S n ,a 1=1,且3a n +1+2S n =3(n 为正整数). (1)求数列{a n }的通项公式;文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.11文档来源为:从网络收集整理.word 版本可编辑. (2)对任意正整数n ,是否存在k ∈R ,使得k ≤S n 恒成立?若存在,求实数k 的最大值;若不存在,请说明理由.[解] (1)因为3a n +1+2S n =3,①所以n ≥2时,3a n +2S n -1=3,②由①-②得3a n +1-3a n +2a n =0,所以a n +1=13a n (n ≥2). 又a 1=1,3a 2+2a 1=3,得a 2=13,所以a 2=13a 1,故数列{a n }是首项为1,公比q =13的等比数列,所以a n =a 1·q n -1=⎝ ⎛⎭⎪⎫13n -1. (2)假设存在满足题设条件的实数k ,使得k ≤S n 恒成立. 由(1)知S n =a 11-q n1-q =1-⎝ ⎛⎭⎪⎫13n 1-13=32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n , 由题意知,对任意正整数n 恒有k ≤32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n , 又数列⎩⎨⎧⎭⎬⎫1-⎝ ⎛⎭⎪⎫13n 单调递增,所以当n =1时数列中的最小项为23,则必有k ≤1,即实数k 最大值为1.此文档是由网络收集并进行重新排版整理.word 可编辑版本!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第34课 等差数列及其前n 项和[最新考纲]1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫作等差数列.用符号表示为a n +1-a n =d (n ∈N +,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫作a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n n -d 2=n a 1+a n2.3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N +).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N +),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N +)是公差为md 的等差数列.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N +,都有2a n +1=a n +a n +2.( ) (3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )[答案] (1)× (2)√ (3)√ (4)×2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=0,则公差d =____________. -2 [依题意得S 3=3a 2=6,即a 2=2,故d =a 3-a 2=-2.]3.(2017·南京模拟)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =____________时,{a n }的前n 项和最大.8 [由等差数列的性质可知,a 7+a 8+a 9=3a 8,a 7+a 10=a 8+a 9,故a 8>0,a 8+a 9<0,∴a 9<0,即当n =8时,{a n }的前n 项和最大.]4.(2016·江苏高考)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________.20 [法一:设等差数列{a n }的公差为d ,由S 5=10,知S 5=5a 1+5×42d =10,得a 1+2d=2,即a 1=2-2d ,所以a 2=a 1+d =2-d ,代入a 1+a 22=-3,化简得d 2-6d +9=0,所以d =3,a 1=-4.故a 9=a 1+8d =-4+24=20.法二:设等差数列{a n }的公差为d ,由S 5=10,知a 1+a 52=5a 3=10,所以a 3=2.所以由a 1+a 3=2a 2,得a 1=2a 2-2,代入a 1+a 22=-3,化简得a 22+2a 2+1=0,所以a 2=-1.公差d =a 3-a 2=2+1=3,故a 9=a 3+6d =2+18=20.]5.(教材改编)在100以内的正整数中有__________个能被6整除的数. 16 [由题意知,能被6整除的数构成一个等差数列{a n }, 则a 1=6,d =6,得a n =6+(n -1)6=6n . 由a n =6n ≤100,即n ≤1646=1623,则在100以内有16个能被6整除的数.]n n a n }的前n 项和,若S 8=4S 4,则a 10=____________. 【导学号:62172185】(2)设等差数列{a n }的前n 项和为S n ,S 11=22,a 4=-12,若a m =30,则m =____________. (1)192(2)10 [(1)∵公差为1,∴S 8=8a 1+8×8-12×1=8a 1+28,S 4=4a 1+6. ∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12,∴a 10=a 1+9d =12+9=192.(2)设等差数列{a n }的公差为d ,依题意⎩⎪⎨⎪⎧S 11=11a 1+-2d =22,a 4=a 1+3d =-12,解得⎩⎪⎨⎪⎧a 1=-33,d =7,∴a m =a 1+(m -1)d =7m -40=30,∴m =10.][规律方法] 1.等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知三求二,体现了方程思想的应用.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法,称为基本量法.[变式训练1] (1)已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是____________.(2)设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=__________. (1)2 (2)-72 [(1)∵S n =n a 1+a n2,∴S n n =a 1+a n 2,又S 33-S 22=1,得a 1+a 32-a 1+a 22=1,即a 3-a 2=2,∴数列{a n }的公差为2.(2)设等差数列{a n }的首项为a 1,公差为d ,由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9d ×82=-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1.∴S 16=16×3+16×152×(-1)=-72.]已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N +),数列{b n }满足b n =1a n -1(n∈N +).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的通项公式a n . 【导学号:62172186】 [解] (1)证明:因为a n =2-1a n -1(n ≥2,n ∈N +),b n =1a n -1.所以n ≥2时,b n -b n -1=1a n -1-1a n -1-1=1⎝ ⎛⎭⎪⎫2-1a n -1-1-1a n -1-1=a n -1a n -1-1-1a n -1-1=1.又b 1=1a 1-1=-52, 所以数列{b n }是以-52为首项,1为公差的等差数列.(2)由(1)知,b n =n -72,则a n =1+1b n =1+22n -7.[规律方法] 1.判断等差数列的解答题,常用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于客观题中的简单判断.2.用定义证明等差数列时,常采用两个式子a n +1-a n =d 和a n -a n -1=d ,但它们的意义不同,后者必须加上“n ≥2”,否则n =1时,a n 无意义.[变式训练2] (1)若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是____________.(填序号)①公差为3的等差数列; ②公差为4的等差数列; ③公差为6的等差数列; ④公差为9的等差数列. ③ [∵a 2n -1+2a 2n -(a 2n -3+2a 2n -2) =(a 2n -1-a 2n -3)+2(a 2n -a 2n -2) =2+2×2=6,∴{a 2n -1+2a 2n }是公差为6的等差数列.](2)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N +),则该数列的通项为____________.a n =1n [由已知2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知⎩⎨⎧⎭⎬⎫1a n 是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n.]数之和等于63,那么a 52=____________.⎝ ⎛⎭⎪⎫a 41 a 42 a 43a 51 a 52 a 53a61a 62 a 63(2)等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 取得最大值.(1)7 [法一:第一行三数成等差数列,由等差中项的性质有a 41+a 42+a 43=3a 42,同理第二行也有a 51+a 52+a 53=3a 52,第三行也有a 61+a 62+a 63=3a 62,又每列也成等差数列,所以对于第二列,有a 42+a 52+a 62=3a 52,所以a 41+a 42+a 43+a 51+a 52+a 53+a 61+a 62+a 63=3a 42+3a 52+3a 62=3×3a 52=63,所以a 52=7.法二:由于每行每列都成等差数列,不妨取特殊情况,即这9个数均相同,显然满足题意,所以有63÷9=7,即a 52=7.](2)法一:由S 3=S 11,可得3a 1+3×22d =11a 1+11×102d ,即d =-213a 1.从而S n =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1,因为a 1>0,所以-a 113<0. 故当n =7时,S n 最大. 法二:由法一可知,d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a 1+n -⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大.法三:由S 3=S 11,可得2a 1+13d =0, 即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0, 所以a 7>0,a 8<0,所以当n =7时,S n 最大. [规律方法] 1.等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n .2.求等差数列前n 项和S n 最值的两种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[变式训练3] (1)在等差数列{a n }中,a 3+a 9=27-a 6,S n 表示数列{a n }的前n 项和,则S 11=____________.99 [因为a 3+a 9=27-a 6,2a 6=a 3+a 9,所以3a 6=27,所以a 6=9,所以S 11=112(a 1+a 11)=11a 6=99.](2)设等差数列{a n }的前n 项和为S n ,且S 5=10,S 10=30,则S 15=____________. 60 [因为数列{a n }为等差数列,所以S 5,S 10-S 5,S 15-S 10也成等差数列,设S 15=x ,则10,20,x -30成等差数列,所以2×20=10+(x -30),所以x =60,即S 15=60.][思想与方法]1.等差数列的通项公式,前n项和公式涉及“五个量”,“知三求二”,需运用方程思想求解,特别是求a1和d.(1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….(2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,….2.等差数列{a n}中,a n=an+b(a,b为常数),S n=An2+Bn(A,B为常数),均是关于“n”的函数,充分运用函数思想,借助函数的图象、性质简化解题过程.3.等差数列的四种判断方法:(1)定义法:a n+1-a n=d(d是常数)⇔{a n}是等差数列.(2)等差中项法:2a n+1=a n+a n+2(n∈N+)⇔{a n}是等差数列.(3)通项公式:a n=pn+q(p,q为常数)⇔{a n}是等差数列.(4)前n项和公式:S n=An2+Bn(A,B为常数)⇔{a n}是等差数列.[易错与防范]1.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.2.注意区分等差数列定义中同一个常数与常数的区别.3.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件.课时分层训练(三十四)A 组 基础达标 (建议用时:30分钟)一、填空题1.在等差数列{a n }中,若前10项的和S 10=60,且a 7=7,则a 4=____________.5 [法一:由题意得⎩⎪⎨⎪⎧10a 1+45d =60,a 1+6d =7,解得⎩⎪⎨⎪⎧a 1=3,d =23,∴a 4=a 1+3d =5.法二:由等差数列的性质有a 1+a 10=a 7+a 4,∵S 10=a 1+a 102=60,∴a 1+a 10=12.又∵a 7=7,∴a 4=5.]2.已知数列{a n }是等差数列,且a 7-2a 4=6,a 3=2,则公差d =____________.【导学号:62172187】4 [法一:由题意得a 3=2,a 7-2a 4=a 3+4d -2(a 3+d )=6,解得d =4.法二:由题意得⎩⎪⎨⎪⎧a 7-2a 4=a 1+6d -a 1+3d =6,a 3=a 1+2d =2,解得⎩⎪⎨⎪⎧a 1=-6,d =4.]3.设S n 为等差数列{a n }的前n 项和,若a 1=1,a 3=5,S k +2-S k =36,则k 的值为____________.8 [设等差数列的公差为d ,由等差数列的性质可得2d =a 3-a 1=4,得d =2,所以a n=1+2(n -1)=2n -1,S k +2-S k =a k +2+a k +1=2(k +2)-1+2(k +1)-1=4k +4=36,解得k =8.]4.若数列{a n }满足a 1=15,且3a n +1=3a n -2,则使a k ·a k +1<0的k 值为________. 23 [∵3a n +1=3a n -2, ∴a n +1-a n =-23,∴a n =15+-23(n -1)=-23n +473.由a n =-23n +473>0得n <23.5,∴使a k ·a k +1<0的k 值为23.]5.(2017·苏州期中)等差数列{a n }中,前n 项和为S n ,若S 4=8a 1,a 4=4+a 2,则S 10=____________.120 [∵{a n }为等差数列,∴2d =a 4-a 2=4,d =2. 由S 4=8a 1得4a 1+4×32×2=8a 1,即a 1=3.∴S 10=10×3+10×92×2=120.]6.(2016·全国卷Ⅰ改编)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=____________.98 [法一:∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98. 法二:∵{a n }是等差数列,∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d ′=a 10-a 5=8-3=5. 故a 100=a 5+(20-1)×5=98. ]7.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N +),则a 10=____________. 【导学号:62172188】14 [由1a n +1=1a n +13得⎩⎨⎧⎭⎬⎫1a n 为首项为1,公差为13的等差数列,∴1a n =1+(n -1)×13=n +23, ∴a 10=312=14.]8.设数列{a n }的通项公式为a n =2n -10(n ∈N +),则|a 1|+|a 2|+…+|a 15|=____________.130 [由a n =2n -10(n ∈N +)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n <5时,a n <0,当n ≥5时,a n ≥0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.]9.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =____________. 5 [∵数列{a n }为等差数列,且前n 项和为S n ,∴数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.∴S m -1m -1+S m +1m +1=2S mm, 即-2m -1+3m +1=0, 解得m =5,经检验为原方程的解.]10.数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N +),若b 3=-2,b 10=12,则a 8=____________.3 [设{b n }的公差为d ,∵b 10-b 3=7d =12-(-2)=14,∴d =2. ∵b 3=-2,∴b 1=b 3-2d =-2-4=-6. ∴b 1+b 2+…+b 7=7b 1+7×62d=7×(-6)+21×2=0.又b 1+b 2+…+b 7=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=a 8-a 1=a 8-3=0, ∴a 8=3.] 二、解答题11.已知等差数列的前三项依次为a,4,3a ,前n 项和为S n ,且S k =110. (1)求a 及k 的值;(2)设数列{b n }的通项b n =S n n,证明:数列{b n }是等差数列,并求其前n 项和T n . 【导学号:62172189】[解] (1)设该等差数列为{a n }, 则a 1=a ,a 2=4,a 3=3a ,由已知有a +3a =8,得a 1=a =2,公差d =4-2=2, 所以S k =ka 1+k k -2·d =2k +k k -2×2=k 2+k .由S k =110,得k 2+k -110=0, 解得k =10或k =-11(舍去), 故a =2,k =10. (2)证明:由(1)得S n =n+2n 2=n (n +1),则b n =S nn=n +1, 故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列, 所以T n =n+n +2=n n +2.12.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求通项a n ; (2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S nn +c,求非零常数c .[解] (1)因为数列{a n }为等差数列, 所以a 3+a 4=a 2+a 5=22. 又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根,又公差d >0,所以a 3<a 4, 所以a 3=9,a 4=13,所以⎩⎪⎨⎪⎧a 1+2d =9,a 1+3d =13,所以⎩⎪⎨⎪⎧a 1=1,d =4.所以通项a n =4n -3. (2)由(1)知a 1=1,d =4, 所以S n =na 1+n n -2×d =2n 2-n =2⎝ ⎛⎭⎪⎫n -142-18.所以当n =1时,S n 最小, 最小值为S 1=a 1=1. (3)由(2)知S n =2n 2-n , 所以b n =S nn +c =2n 2-nn +c,所以b 1=11+c ,b 2=62+c ,b 3=153+c .因为数列{b n }是等差数列, 所以2b 2=b 1+b 3, 即62+c ×2=11+c +153+c, 所以2c 2+c =0,所以c =-12或c =0(舍去),经验证c =-12时,{b n }是等差数列,故c =-12.B 组 能力提升 (建议用时:15分钟)1.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为____________.1941 [∵{a n },{b n }为等差数列, ∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6. ∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941, ∴a 6b 6=1941.] 2.(2017·南京模拟)设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“吉祥数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉祥数列”,则数列{b n }的通项公式为____________.b n =2n -1 [设等差数列{b n }的公差为d (d ≠0),S n S 2n =k ,因为b 1=1,则n +12n (n -1)d=k ⎣⎢⎡⎦⎥⎤2n +12×2nn -d ,即2+(n -1)d =4k +2k (2n -1)d , 整理得(4k -1)dn +(2k -1)(2-d )=0. 因为对任意的正整数n 上式均成立, 所以(4k -1)d =0,(2k -1)(2-d )=0, 解得d =2,k =14,所以数列{b n }的通项公式为b n =2n -1.]3.已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数. (1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.[解] (1)证明:由题设知a n a n +1=λS n -1,a n +1a n +2=λS n +1-1, 两式相减得a n +1(a n +2-a n )=λa n +1, 由于a n +1≠0,所以a n +2-a n =λ. (2)由题设知a 1=1,a 1a 2=λS 1-1, 可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3; {a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2,因此存在λ=4,使得数列{a n }为等差数列.4.(2017·苏北四市摸底)已知数列{a n }满足2a n +1=a n +a n +2+k (n ∈N +,k ∈R ),且a 1=2,a 3+a 5=-4.(1)若k =0,求数列{a n }的前n 项和S n ; (2)若a 4=-1,求数列{a n }的通项公式a n .[解] (1)当k =0时,2a n +1=a n +a n +2,即a n +2-a n +1=a n +1-a n , 所以,数列{a n }是等差数列.设数列{a n }的公差为d ,则⎩⎪⎨⎪⎧a 1=2,2a 1+6d =-4,解得⎩⎪⎨⎪⎧a 1=2,d =-43.所以,S n =na 1+n n -12d =2n +n n -12×⎝ ⎛⎭⎪⎫-43=-23n 2+83n .(2)由题意,2a 4=a 3+a 5+k ,即-2=-4+k ,所以k =2. 又a 4=2a 3-a 2-2=3a 2-2a 1-6,所以a 2=3, 由2a n +1=a n +a n +2+2,得(a n +2-a n +1)-(a n +1-a n )=-2.所以,数列{a n +1-a n }是以a 2-a 1=1为首项,-2为公差的等差数列. 所以a n +1-a n =-2n +3.当n ≥2时,有a n -a n -1=-2(n -1)+3, 于是,a n -1-a n -2=-2(n -2)+3,a n -2-a n -3=-2(n -3)+3,…a 3-a 2=-2×2+3, a 2-a 1=-2×1+3,叠加得,a n -a 1=-2(1+2+…+(n -1))+3(n -1)(n ≥2), 所以a n =-2×n n -2+3(n -1)+2=-n 2+4n -1(n ≥2),又当n =1时,a 1=2也适合.所以数列{a n }的通项公式为a n =-n 2+4n -1,n ∈N +.。