电磁感应中的导轨模型
(完整版)电磁感应定律——单杆+导轨模型(含思路分析)
“单杆+导轨”模型1. 单杆水平式(导轨光滑) 物理模型动态分析 设运动过程中某时刻棒的速度为v ,加速度为a =F m -错误!,a 、v 同向,随v 的增加,a 减小,当a =0时,v 最大,I =错误!恒定收尾状态 运动形式 匀速直线运动力学特征 a =0,v 最大,v m =错误! (根据F=F 安推出,因为匀速运动,受力平衡)电学特征I 恒定注:加速度a 的推导,a=F 合/m (牛顿第二定律),F 合=F —F 安,F 安=BIL ,I=E/R整合一下即可得到答案。
v 变大之后,根据 上面得到的a 的表达式,就能推出a 变小这里要注意,虽然加速度变小,但是只要和v 同向,就是加速运动,是a 减小的加速运动(也就是速度增加的越来越慢,比如1s 末速度是1,2s 末是5,3s 末是6,4s 末是6。
1 ,每秒钟速度的增加量都是在变小的)2。
单杆倾斜式(导轨光滑)物理模型动态分析 棒释放后下滑,此时a =g sin α,速度v ↑E=BLv↑I=错误!↑错误!F=BIL↑错误!a↓,当安培力F=mg sin α时,a=0,v最大注:棒刚释放时,速度为0,所以只受到重力和支持力,合力为mgsin α收尾状态运动形式匀速直线运动力学特征a=0,v最大,v m=错误!(根据F=F安推出)电学特征I恒定【典例1】如图所示,足够长的金属导轨固定在水平面上,金属导轨宽度L=1.0 m,导轨上放有垂直导轨的金属杆P,金属杆质量为m=0。
1 kg,空间存在磁感应强度B=0。
5 T、竖直向下的匀强磁场。
连接在导轨左端的电阻R=3.0 Ω,金属杆的电阻r=1。
0 Ω,其余部分电阻不计。
某时刻给金属杆一个水平向右的恒力F,金属杆P由静止开始运动,图乙是金属杆P运动过程的v-t图象,导轨与金属杆间的动摩擦因数μ=0.5。
在金属杆P运动的过程中,第一个2 s内通过金属杆P的电荷量与第二个2 s内通过P的电荷量之比为3∶5。
电磁感应中的“杆+导轨”类问题(3大模型)(解析版)
电磁感应中的“杆+导轨”类问题(3大模型)电磁感应“杆+导轨”模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下:模型一 单杆+电阻+导轨模型[初建模型][母题] 如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。
整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。
将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。
重力加速度为g ,导轨电阻不计,杆与导轨接触良好。
求:(1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。
[解析] (1)设杆cd 下滑到某位置时速度为v ,则杆产生的感应电动势E =BL v ,回路中的感应电流I =ER +R杆所受的安培力F =BIL 根据牛顿第二定律有mg sin θ-B 2L 2v2R=ma当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下当杆的加速度a =0时,速度最大,最大速度v m =2mgR sin θB 2L 2,方向沿导轨平面向下。
(2)杆cd 从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sin θ=Q 总+12m v m 2又Q 杆=12Q 总,所以Q 杆=12mgx sin θ-m 3g 2R 2sin 2θB 4L 4。
[答案] (1)g sin θ,方向沿导轨平面向下 2mgR sin θB 2L 2,方向沿导轨平面向下 (2)12mgx sin θ-m 3g 2R 2sin 2θB 4L 4[内化模型]单杆+电阻+导轨四种题型剖析开始时a =g sin α,B L[变式] 此题若已知金属杆与导轨之间的动摩擦因数为μ。
现用沿导轨平面向上的恒定外力F 作用在金属杆cd 上,使cd 由静止开始沿导轨向上运动,求cd 的最大加速度和最大速度。
热点专题系列(六) 电磁感应中的“杆和导轨”模型
热点专题系列(六) 电磁感应中的“杆和导轨”模型热点概述:电磁感应中的“杆-轨”运动模型,是导体切割磁感线运动过程中动力学与电磁学知识的综合应用,此类问题是高考命题的重点。
[热点透析]单杆模型初态v0≠0v0=0示意图质量为m、电阻不计的单杆ab以一定初速度v0在光滑水平轨道上滑动,两平行导轨间距为L轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L,拉力F恒定轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L,拉力F恒定续表初态v0≠0v0=0运动分析导体杆做加速度越来越小的减速运动,最终杆静止当E感=E时,v最大,且v m=EBL,最后以v m匀速运动当a=0时,v最大,v m=FRB2L2,杆开始匀速运动Δt时间内流入电容器的电荷量Δq=CΔU=CBLΔv电流I=ΔqΔt=CBLΔvΔt=CBLa安培力F安=BLI=CB2L2a F-F安=ma,a =Fm+B2L2C,所以杆以恒定的加速度匀加速运动能量分析动能转化为内能,12m v2=Q电能转化为动能和内能,E电=12m v2m+Q外力做功转化为动能和内能,W F=12m v2m+Q外力做功转化为电能和动能,W F=E电+12m v2注:若光滑导轨倾斜放置,要考虑导体杆受到重力沿导轨斜面向下的分力作用,分析方法与表格中受外力F时的情况类似,这里就不再赘述。
(2020·山东省聊城市一模)(多选)如图所示,宽为L的水平光滑金属轨道上放置一根质量为m的导体棒MN,轨道左端通过一个单刀双掷开关与一个电容器和一个阻值为R的电阻连接,匀强磁场的方向垂直于轨道平面向里,磁感应强度大小为B,电容器的电容为C,金属轨道和导体棒的电阻不计。
现将开关拨向“1”,导体棒MN在水平向右的恒力F作用下由静止开始运动,经时间t0后,将开关S拨向“2”,再经时间t,导体棒MN恰好开始匀速向右运动。
电磁感应中的“杆+导轨”模型
电磁感应中的“杆+导轨”模型电磁感应中的“杆+导轨”模型一、单棒模型阻尼式:在单棒模型中,导体棒相当于电源,根据洛伦兹力的公式,可以得到安培力的特点为阻力,并随速度减小而减小,加速度随速度减小而减小,最终状态为静止。
根据能量关系、动量关系和瞬时加速度,可以得到公式B2l2v R rF和q mv/Bl,其中q表示流过导体棒的电荷量。
需要注意的是,当有摩擦或者磁场方向不沿竖直方向时,模型的变化会受到影响。
举例来说,如果在电阻不计的光滑平行金属导轨固定在水平面上,间距为L、导轨左端连接一阻值为R的电阻,整个导轨平面处于竖直向下的磁感应强度大小为B的匀强磁场中,一质量为m的导体棒垂直于导轨放置,a、b之间的导体棒阻值为2R,零时刻沿导轨方向给导体棒一个初速度v,一段时间后导体棒静止,则零时刻导体棒的加速度为0,零时刻导体棒ab两端的电压为BLv,全过程中流过电阻R的电荷量为mv/Bl,全过程中导体棒上产生的焦耳热为0.二、发电式在发电式中,导体棒同样相当于电源,当速度为v时,电动势E=Blv。
根据安培力的特点,可以得到公式22Blv/l=Blv/(R+r)。
加速度随速度增大而减小,最终特征为匀速运动。
在稳定后的能量转化规律中,F-BIl-μmg=m*a,根据公式可以得到a=-(F-μmg)/m、v=0时,有最大加速度,a=0时,有最大速度。
需要注意的是,当电路中产生的焦耳热为mgh时,电阻R中产生的焦耳热也为mgh。
1.如图所示,相距为L的两条足够长的光滑平行金属导轨MN、PQ与水平面的夹角为θ,N、Q两点间接有阻值为R的电阻。
整个装置处于磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向下。
将质量为m、阻值也为R的金属杆cd垂直放在导轨上,杆cd由静止释放,下滑距离x时达到最大速度。
重力加速度为g,导轨电阻不计,杆与导轨接触良好。
求:1)杆cd下滑的最大加速度和最大速度;2)上述过程中,杆上产生的热量。
高二物理:电磁感应中的“杆+导轨”模型
转到解析
3.规律方法
解决此类问题的分析要抓住三点 (1)杆的稳定状态一般是匀速运动(达到最大速度或最小速度,此时合力 为零); (2)整个电路产生的电能等于克服安培力所做的功; (3)电磁感应现象遵从能量守恒定律。
(1)电阻R消耗的功率; (2)水平外力的大小。
答案
B2l2v2 (1)
B2 (2)
l2v+μmg
R
R
转到解析
【思维训练2】(2016·泰州一模)如图13甲,MN、PQ两条平行的光滑 金属轨道与水平面成θ=37°角固定,M、P之间接电阻箱R,导轨所在 空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B= 0.5 T。质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为 r。现从静止释放杆ab,测得最大速度为vm。改变电阻箱的阻值R,得 到vm与R的关系如图乙所示。已知轨距为L=2 m,重力加速度g取10 m/s2,轨道足够长且电阻不计。求:(1)杆ab下滑过程中感应电流的方 向及R=0时最大感应电动势E的大小;
2.典例剖析
【思维训练1】(2015·海南单科,13)如图12,两平行金属导轨位于同 一水平面上,相距l,左端与一电阻R相连;整个系统置于匀强磁场中, 磁感应强度大小为B,方向竖直向下。一质量为m的导体棒置于导轨上 ,在水平外力作用下沿导轨以速率v匀速向右滑动,滑动过程中始终保 持与导轨垂直并接触良好。已知导体棒与导轨间的动摩擦因数为μ,重 力加速度大小为g,导轨和导体棒的电阻均可忽略。求
目录页
Contents Page
物理建模:电磁感应 中的“杆+导轨”模型
微专题 电磁感应中的“杆+导轨”模型
(2)0~4 s 内磁场均匀变化,产生的感应电动势 E1=ΔΔBt L1L2=0.5 V 由闭合电路欧姆定律得 I1=RE+1 r=0.1 A 0~4 s 内小灯泡上产生的焦耳热 Q1=I12Rt1=0.16 J
4~5 s 内导体棒在磁场中匀速运动,导体棒运动的位移 x=vt2=1 m<L2, 导体棒没有出磁场,小灯泡上产生的焦耳热 Q2=I22Rt2=0.16 J 0~5 s 内小灯泡上产生的焦耳热 Q=Q1+Q2=0.32 J. [答案] (1)0.8 kg 0.2 N (2)0.32 J
Q 总=-W 安=mgxsin θ-12mv2=2 J
QR=R+R rQ 总=1.5 J. 答案:(1)1 A b→a (2)1 N 平行于导轨平面向上 (3)1.5 J
3.如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为 θ, 导轨间距为 l,所在平面的正方形区域 abcd 内存在有界匀强磁场,磁感 应强度大小为 B,方向垂直于斜面向上.将阻值相同、质量均为 m 的相 同甲、乙两金属杆放置在导轨上,甲金属杆处在磁场的上边界,甲、乙 相距 l.从静止释放两金属杆的同时,在金属杆甲上施加一个沿着导轨的 外力,使甲金属杆在运动过程中始终沿导轨向下做匀加速直线运动,且 加速度大小为 a=gsin θ,乙金属杆刚进入磁场时做匀速运动.
[典例 3] 如图所示,两根足够长的平行金属导轨固 定在倾角 θ=30°的斜面上,导轨电阻不计,间距 L= 0.4 m.导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边 界与斜面的交线为 MN,Ⅰ中的匀强磁场方向垂直斜 面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场 的磁感应强度大小均为 B=0.5 T.在区域Ⅰ中,将质量为 m1=0.1 kg、电阻为 R1=0.1 Ω 的金属条 ab 放在导轨上,ab 刚好不下滑.然后,在区域Ⅱ中将质量 为 m2=0.4 kg、电阻为 R2=0.1 Ω 的光滑导体棒 cd 置于导轨上,由静止开始下 滑.cd 在滑动过程中始终处于区域Ⅱ的磁场中,ab、cd 始终与导轨垂直且两端 与导轨保持良好接触,取 g=10 m/s2.求:
电磁感应中的导轨模型
无外力不等距式
1.电路特点棒 1 相当于电源;棒 2 受安培力而加 速起动,运动后产生反电动势.
2.电流特点随着棒 1 的减速、棒 2 的加速,最终当 Bl1v1=Bl2v2 时,电
流为零,两棒都做匀速运动
3.两棒的运动情况
安培力大
小:
两棒的相对速度变小,感应电流变小,安培力变小. 棒 1 做加速度变小的减速运动,最终匀速;棒 2 做加速度变小的 加速运动,最终匀速; 4.最终特征回路B中l1v电1 流B为l2v零2 5.能量转化规律系统动能电能内能 两棒产生焦耳热之比: 6.流过某一截面的电量
3.加速度特点加速度随速度减小而减小 a FB B2l2v
v0
m m(R r)
4.运动特点 a 减小的减速运动
5.最终状态静止
6.三个规律 (1)能量关系:
1 2
mv02
0
Q
(2)动量关系: BIl t 0 mv0
q mv0 Bl
(3)瞬时加速度: a FB B2l2v m m(R r)
电容有外力充电式
1.电路特点导体棒为发电棒;电容器被充电。
2.三个基本关系
FB BIl
导体棒受到的安培力为: a F FB m
导体棒加速度可表示为:
回路中的电流可表示为:
3.四个重要结论: (1)导体棒做初速度为零匀加速运动:
a
m
mg CB2L2
(2)回路中的电流恒定:
I
CBlmg mg CB2l 2
4.运动特点 a 减小的加速运动
5.最终特征匀速运动
6.两个极值
am
F
mg m
(1)v=0 时,有最大加速度:
电磁感应中的导轨模型
电磁感应中的“杆+导轨”模型一、单棒模型阻尼式1.电路特点 导体棒相当于电源 2.安培力的特点 安培力为阻力,并随速度减小而减小。
3.加速度特点 加速度随速度减小而减小 4.运动特点 a 减小的减速运动 5.最终状态 静止 6.三个规律 (1)能量关系: (2)动量关系: (3)瞬时加速度: 7.变化 (1)有摩擦 (2)磁场方向不沿竖直方向 电动式1.电路特点导体为电动棒,运动后产生反电动势(等效于电机)2.安培力的特点 安培力为运动动力,并随速度增大而减小。
3.加速度特点 加速度随速度增大而减小 4.运动特点 a 减小的加速运动 5.最终特征 匀速运动 6.两个极值 (1)最大加速度: v=0时,E 反=0,电流、加速度最大 (2)最大速度: 稳定时,速度最大,电流最小 7.稳定后的能量转化规律 8.起动过程中的三个规律(1)动量关系:(2)能量关系: (3)瞬时加速度: 发电式1.电路特点 导体棒相当于电源,当速度为v 时,电动势E =Blv2.安培力的特点 安培力为阻力,并随速度增大而增大3.加速度特点 加速度随速度增大而减小 4.运动特点 a 减小的加速运动5.最终特征 匀速运动 6.两个极值 (1) v=0时,有最大加速度: (2) a=0时,有最大速度: 7.稳定后的能量转化规律 8.起动过程中的三个规律v 022B B l v F BIl R r ==+22()B F B l va m m R r ==+20102mv Q-=00BIl t mv -⋅∆=-0mv q Bl =Bl sq n R r R r φ∆⋅∆==++22()B F B l va m m R r ==+(E E B lR r -=+反)m EI R r=+m m F mga mμ-=,m m F BI l =min min ()2min mI E I E I R r mgv μ=+++反0m BLq mgt mv μ-=-212E m qEQ mgS mv μ=++B F mg a m μ-=(B ()E lv B l gm R r μ--+)=FBlv B l R r =+m F mga m μ-=B F F mg a mμ--=220=--=+()F B l vg m m R r μ22-+=()()m F mg R r v B l μ2()m m mBLv Fv mgv R r μ=++0m Ft BLq mgt mv μ--=-(1)动量关系:(2)能量关系: (3)瞬时加速度: 电容放电式:1.电路特点 电容器放电,相当于电源;导体棒受安培力而运动。
高分策略之电磁感应中的杆导轨模型
一、单棒问题基本模型运动特点最终特征阻尼式a逐渐减小的减速运动静止I=0电动式匀速a逐渐减小的加速运动I=0 (或恒定)匀速发电式a逐渐减小的加速运动I 恒定二、含容式单棒问题基本模型运动特点最终特征放电式a逐渐减小的加速运动匀速运动I=0 无外力充电式a逐渐减小的减速运动匀速运动I=0 有外力充电式匀加速运动匀加速运动I 恒定三、无外力双棒问题基本模型运动特点最终特征无外力等距式杆1做a渐小的加速运动杆2做a渐小的减速运动v1=v2I=0无外力不等距式杆1做a渐小的减速运动杆2做a渐小的加速运动a=0I=0L1v1=L2v2四、有外力双棒问题基本模型运动特点最终特征有外力等距式杆1做a渐大的加速运动杆2做a渐小的加速运动a1=a2,Δv 恒定I恒定有外力不等距式杆1做a渐小的加速运动杆2做a渐大的加速运动a1≠a2,a1、a2恒定I 恒定题型一阻尼式单棒模型如图。
1.电路特点:导体棒相当于电源。
2.安培力的特点:安培力为阻力,并随速度减小而减小。
F B =BIl=3.加速度特点:加速度随速度减小而减小,a= =4.运动特点:速度如图所示。
a 减小的减速运动5.最终状态:静止 6.三个规律 (1)能量关系:-0 = Q , =(2)动量关系: 00BIl t mv -⋅∆=-q =, q ==(3)瞬时加速度:a= =【典例1】如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为L 的区域内,有一个边长为a (a<L )的正方形闭合线圈以初速v 0垂直磁场边界滑过磁场后速度变为v (v<v 0)那么( )A. 完全进入磁场中时线圈的速度大于(v0+v)/2B. 安全进入磁场中时线圈的速度等于(v0+v)/2C. 完全进入磁场中时线圈的速度小于(v0+v)/2D. 以上情况A、B均有可能,而C是不可能的【答案】B【解析】设线圈完全进入磁场中时的速度为v x。
线圈在穿过磁场的过程中所受合外力为安培力。
高中物理老师呕心沥血总结的电磁感应“导棒-导轨”模型,太绝了
⾼中物理⽼师呕⼼沥⾎总结的电磁感应“导棒-导轨”模型,太绝了
单杆问题是电磁感应与电路、⼒学、能量综合应⽤的体现,往往成为物理⾼考的出题点,因此
相关问题应从以下⼏个⾓度去分析思考:
(1)电学⾓度:判断产⽣电磁感应现象的那⼀部分导体(电源)→利⽤或求感应动电动势的⼤⼩→利
⽤右⼿定则或楞次定律判断电流⽅向→分析电路结构→画等效电路图。
(2)⼒电⾓度:与“导体单棒”组成的闭合回路中的磁通量发⽣变化→导体棒产⽣感应电动势→感应
电流→导体棒受安培⼒→合外⼒变化→加速度变化→速度变化→感应电动势变化→……,循环结束
时加速度等于零,导体棒达到稳定运动状态。
(3)功能⾓度:电磁感应现象中,当外⼒克服安培⼒做功时,就有其他形式的能转化为电能;当
安培⼒做正功时,就有电能转化为其他形式的能。
(4)功能⾓度:电磁感应现象中,通过动量定理+微元法的视⾓,建⽴⼒、时间、速度三者关系;
从⽜顿第⼆定律+微元法的视⾓建⽴⼒、时间、位移三者关系。
单杆+⽔平导轨基本模型
单杆+导轨模型变形
发电式单杆模型
电容式单杆模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应中的“杆+导轨”模型一、单棒模型阻尼式1.电路特点 导体棒相当于电源 2.安培力的特点 安培力为阻力,并随速度减小而减小。
3.加速度特点 加速度随速度减小而减小 4.运动特点 a 减小的减速运动 5.最终状态 静止 6.三个规律 (1)能量关系: (2)动量关系: (3)瞬时加速度: 7.变化 (1)有摩擦 (2)磁场方向不沿竖直方向 电动式1.电路特点导体为电动棒,运动后产生反电动势(等效于电机)2.安培力的特点 安培力为运动动力,并随速度增大而减小。
3.加速度特点 加速度随速度增大而减小 4.运动特点 a 减小的加速运动 5.最终特征 匀速运动 6.两个极值 (1)最大加速度: v=0时,E 反=0,电流、加速度最大 (2)最大速度: 稳定时,速度最大,电流最小 7.稳定后的能量转化规律 8.起动过程中的三个规律(1)动量关系: (2)能量关系: (3)瞬时加速度: 发电式1.电路特点 导体棒相当于电源,当速度为v 时,电动势E =Blv2.安培力的特点 安培力为阻力,并随速度增大而增大3.加速度特点 加速度随速度增大而减小 4.运动特点 a 减小的加速运动5.最终特征 匀速运动 6.两个极值 (1) v=0时,有最大加速度: (2) a=0时,有最大速度: 7.稳定后的能量转化规律 8.起动过程中的三个规律v 022B B l v F BIl R r ==+22()B F B l va m m R r ==+20102mv Q-=00BIl t mv -⋅∆=-0mv q Bl =Bl sq n R r R rφ∆⋅∆==++22()B F B l va m m R r ==+(E E B lR r -=+反)m EI R r=+m m F mga mμ-=,m m F BI l =min min ()2min mI E I E I R r mgv μ=+++反0m BLq mgt mv μ-=-212E mqE Q mgS mv μ=++B F mg a m μ-=(B ()E lv B l gm R r μ--+)=FBlv B l R r =+m F mga m μ-=B F F mg a m μ--=220=--=+()F B l vg m m R r μ22-+=()()m F mg R r v B l μ2()m m mBLv Fv mgv R rμ=++0m Ft BLq mgt mv μ--=-(1)动量关系:(2)能量关系: (3)瞬时加速度: 电容放电式:1.电路特点 电容器放电,相当于电源;导体棒受安培力而运动。
2.电流的特点 电容器放电时,导体棒在安培力作用下开始运动,同时产生阻碍放电的反电动势,导致电流减小,直至电流为零,此时U C =Blv3.运动特点 a 渐小的加速运动,最终做匀速运动。
4.最终特征 匀速运动 ,但此时电容器带电量不为零 5.最大速度v m电容器充电量: 放电结束时电量: 电容器放电电量: 对杆应用动量定理: 6.达最大速度过程中的两个关系安培力对导体棒的冲量 安培力对导体棒做的功:易错点:认为电容器最终带电量为零 电容无外力充电式1.电路特点 导体棒相当于电源;电容器被充电.2.电流的特点 导体棒相当于电源; F 安为阻力, 棒减速, E 减小有I 感 I 感渐小 电容器被充电。
U C 渐大,阻碍电流 当Blv =U C 时,I =0, F 安=0,棒匀速运动。
3.运动特点 a 渐小的减速运动,最终做匀速运动。
4.最终特征 匀速运动 但此时电容器带电量不为零 5.最终速度 电容器充电量: 最终导体棒的感应电动势等于电容两端电压: 对杆应用动量定理: 电容有外力充电式1.电路特点 导体棒为发电棒;电容器被充电。
2.三个基本关系导体棒受到的安培力为: 导体棒加速度可表示为: 回路中的电流可表示为:3.四个重要结论: (1)导体棒做初速度为零匀加速运动: (2)回路中的电流恒定:22CBlmgI mg CB l =+(3)导体棒受安培力恒定: (4)导体棒克服安培力做的功等于电容器储存的电能: 证明二、双棒模型212E mFs Q mgS mv μ=++BF F mg a m μ--=22=--=+()F B l v g m m R r μ0Q CE =mQ CU CBlv ==0m QQ Q CE CBlv ∆=-=-mmv BIl t Bl Q =⋅∆=∆22m BlCE v m B l C =+22m mBlCEI mv m B l C ==+安v 0C Blv U I R -=q CU=U Blv =0mv mv BIl t Blq-=⋅∆=B F BIl =BF F a m -=22mga m CB L =+2222B CB l mgF m CB l =+1.电路特点棒2相当于电源;棒1受安培力而加速起动,运动后产生反电动势.2.电流特点 随着棒2的减速、棒1的加速,两棒的相对速度v 2-v 1变小,回路中电流也变小。
3.两棒的运动情况 安培力大小: 两棒的相对速度变小,感应电流变小,安培力变小. 棒1做加速度变小的加速运动 棒2做加速度变小的减速运动最终两棒具有共同速度 4.两个规律(1)动量规律 两棒受到安培力大小相等方向相反, 系统合外力为零,系统动量守恒. (2)能量转化规律 系统机械能的减小量等于内能的增加量.两棒产生焦耳热之比:5.几种变化:(1)初速度的提供方式不同 (2)磁场方向与导轨不垂直 (3) 无外力不等距式(4)两棒都有初速度 (5)两棒位于不同磁场中有外力等距式1.电路特点 棒2相当于电源;棒1受安培力而起动. 2.运动分析:某时刻回路中电流:最初阶段,a 2>a 1, 3.稳定时的速度差 4.变化(1)两棒都受外力作用 (2)外力提供方式变化无外力不等距式1.电路特点 棒1相当于电源;棒2受安培力而加速起动,运动后产生反电动势.2.电流特点 随着棒1的减速、棒2的加速,最终当Bl 1v 1= Bl 2v 2时,电流为零,两棒 都做匀速运动 3.两棒的运动情况安培力大小: 两棒的相对速度变小,感应电流变小,安培力变小.棒1做加速度变小的减速运动,最终匀速; 棒2做加速度变小的加速运动,最终匀速; 4.最终特征 回路中电流为零 5.能量转化规律 系统动能✍电能✍内能两棒产生焦耳热之比: 6.流过某一截面的电量2012m v (m m )v =+共1122Bl v Bl v =运动分析:杆1做a渐小的加速运动a1≠a2a1、a2恒定杆2做a渐大的加速运动I 恒定某时刻两棒速度分别为v1、v2加速度分别为a1、a2经极短时间t后其速度分别为:此时回路中电流为:练习1.(多选)如图所示,在匀强磁场中有一倾斜的足够长平行金属导轨,导轨间距为L,两导轨顶端连有一定值电阻R,导轨平面与水平面的夹角为θ,匀强磁场的磁感应强度大小为B、方向垂直导轨平面向上,质量为m、电阻为r的光滑导体棒从某一高度处由静止释放,导体棒运动过程中始终与导轨垂直且与导轨接触良好,其他部分的电阻不计,重力加速度为g,则下列说法正确的是()A.导体棒先做加速度减小的加速运动,后做匀速运动B.若导体棒的速度为v,则R两端的电压为BLvC.导体棒的最大速度为mg?R+r?B2L2D.在导体棒下滑过程中,电路中产生的焦耳热等于导体棒克服安培力所做的功【解析】AD[导体棒随着速度的增加,受到的安培力越来越大,因此受到的合力越来越小,加速度越来越小,故导体棒做加速度减小的加速运动,当加速度为零时,做匀速运动,A正确;导体棒中产生的感应电动势为E=BLv,所以在电阻R上的电压为RBLvR+r,B错误;由于导体棒匀速运动时有mg sin θ=B2L2vR+r,因此导体棒的最大速度为mg?R+r?sin θB2L2,C错误;根据功能关系,感应电流所产生的焦耳热在数值上等于导体棒克服安培力所做的功,D正确.] 练习2.(多选)如图所示,间距为l=1 m的导轨PQ、MN由电阻不计的光滑水平导轨和与水平面成37°角的粗糙倾斜导轨组成,导体棒ab、cd的质量均为m=1 kg、长度均为l=1 m、电阻均为R=0.5 Ω,ab棒静止在水平导轨上,cd棒静止在倾斜导轨上,整个装置处于方向竖直向下的匀强磁场中,磁感应强度的大小B= 2 T.现ab棒在水平外力F作用下由静止开始沿水平导轨运动,当ab棒的运动速度达到一定值时cd棒开始滑动.已知cd棒与倾斜导轨间的动摩擦因数为μ=0.8,且cd棒受到的最大静摩擦力等于滑动摩擦力,两导体棒与导轨始终接触良好,重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8.关于该运动过程,下列说法正确的是( ) A .cd 棒所受的摩擦力方向始终沿倾斜导轨向上B .cd 棒所受的摩擦力方向先沿倾斜导轨向上后沿倾斜导轨向下C .cd 棒开始滑动时,ab 棒的速度大小约为20 m/sD .cd 棒开始滑动时,ab 棒的速度大小约为10 m/s【解析】BC [cd 棒刚开始静止在倾斜导轨上,μ=0.8>tan 37°=0.75,cd 棒受到的摩擦力沿倾斜导轨向上,ab 棒向右运动切割磁感线使得ab 棒、cd 棒中产生感应电流,cd 棒受到水平向右的安培力作用,cd 棒受到的摩擦力先沿倾斜导轨向上减小到零,后反向沿倾斜导轨向下增大,故A 错误,B 正确;当cd 棒即将滑动时,由平衡条件B 2l 2v2R cos 37°=mg sin 37°+μ⎝ ⎛⎭⎪⎫mg cos 37°+B 2l 2v 2R sin 37°,代入数据可得v =19.375 m/s ,C 正确,D 错误.] 练习3.如图所示,阻值均为2 Ω的定值电阻R 1和R 2通过水平和倾斜平行金属导轨连接,水平导轨和倾斜导轨平滑相接,导轨间距离为0.5 m ,倾斜导轨与水平面夹角为60°,水平导轨间存在方向竖直向上、磁感应强度大小为0.03 T 的匀强磁场,倾斜导轨处没有磁场.一根质量为0.1 kg 、长度为0.5 m 、阻值为2 Ω的导体棒从倾斜导轨上一定高度处由静止释放,导体棒与倾斜导轨间的动摩擦因数为34,水平导轨光滑,导体棒在水平导轨上向右运动s =2 m 停下来,在此过程中电阻R 1上产生的热量为0.3 J ,导体棒始终与导轨垂直且接触良好,重力加速度g =10 m/s 2,则下列说法正确的是( ) A .导体棒在倾斜导轨上释放点离水平面的高度为2 m B .导体棒在导轨上运动的最大速度为6 m/s C .R 1两端的最大电压为0.045 VD .导体棒在导轨上运动过程中通过R 1的电荷量为0.01 C【解析】B [导体棒滑上水平导轨后做减速运动,因此滑上水平导轨的初速度v 0是导体棒在导轨上运动的最大速度,导体棒在水平导轨上运动时,若电阻R 1上产生热量为Q ,则导体棒上产生热量为4Q ,电路产生的总热量为6Q ,由功能关系可得mv 202=6Q ,又Q =0.3 J ,得v 0=6 m/s ,B 选项正确;导体棒在倾斜导轨上运动,有mgh -μmg cos θ·h sin θ=mv 202,得h =2.4 m ,A 选项错误;导体棒运动的最大速度为v 0,最大感应电动势为E m =Blv 0,R 1两端的最大电压U m =E m 3,得U m =0.03 V ,C 选项错误;通过导体棒的电荷量q =ΔΦR 总,q 1=q2=0.005 C ,D 选项错误.]练习4.如图甲所示,dc 和ef 是足够长的光滑的金属导轨(不计电阻)水平放置,相距L =1 m ,de 处接有一个电阻,在其两端的电压低于某个特定的值U 0时,它的阻值与其两端的电压成正比,而其两端的电压大于等于U 0时,它的电阻恒为R 0=5 Ω,导轨间有垂直于导轨平面的匀强磁场,磁感应强度为B =1 T ,质量为m =0.5 kg ,长度恰好能跨放在导轨上的金属杆电阻不计,在水平向右的拉力作用下,从紧靠de 处由静止开始做加速度为a =1 m/s 2的匀加速运动,水平拉力F 与时间的关系如图乙所示. (1)试求电压的特定值U 0和图中所标的F 0的大小;(2)当t =0.5 s 时和t =2 s 时,电阻的发热功率分别为多大? (3)从开始到运动2 m 时,通过R 的电荷量为多少? (4)运动到2 m 时刻撤去外力,金属杆还能运动多远?【解析】 (1)当电压小于U 0时,设电阻R =kU ,所以电流I =U R =1k ,则I 为定值 F -BL 1k =ma ,F =ma +BL 1k当电压大于等于U 0时,F -B 2L 2v R 0=ma ,F =ma +B 2L 2aR 0t ,而当t =1 s 时,速度v =at =1 m/s ,U 0=BLv =1 V又当t =1 s 时,F =ma +B 2L 2a R 0t =ma +BL 1k ,所以有k =5故F 0=0.7 N 1 s 以后的拉力与时间的关系为F =0.5+0.2t (2)t =0.5 s 时,v =0.5 m/s ,U =E =BLv =0.5 V ,R =kU =2.5 ΩP 1=U 2R =0.1 W t =2 s 时,F =0.9 N ,安培力F 安=F -ma =0.4 N ,v =2 m/s P 2=F 安v =0.8 W(3)前1 s ,电流恒为I =U R =1k =0.2 A ,q 1=It =0.2 C ,运动了0.5 m.余下的1.5 m 是通过定值电阻R 0的电荷量,q 2=ΔΦR 0=0.3 C 所以q =q 1+q 2=0.5 C(4)撤去外力时,速度为v 2=2 m/s ,电压U 2=2 V ,变减速运动到速度v 1=1 m/s ,于是有: B 2L 2x 1R 0=m (v 2-v 1),x 1=2.5 m 此后,电流恒为0.2 A ,F 安′=BLI =0.2 N ,做匀减速运动,a′=F安′m=0.4 m/s2x2=v212a′=1.25 m 所以x=x1+x2=3.75 m.练习5.如图所示, 金属导轨是由倾斜和水平两部分圆滑相接而成, 倾斜部分与水平夹角q=37°,导轨电阻不计。