勾股定理与折叠问题(经典题型).docx

合集下载

勾股定理中的常考问题(6种类型48道)—2024学年八年级数学上册(解析版)

勾股定理中的常考问题(6种类型48道)—2024学年八年级数学上册(解析版)

勾股定理中的常考问题6种类型48道【类型一用勾股定理解决折叠问题】1.如图,将长方形ABCD沿着AE折叠,点D落在BC边上的点F处,已知AB=8,BC=10,则EC的长为()A.4B.3C.5D.2【答案】B【分析】长方形ABCD沿着AE折叠,得AD=AF=BC=10,EF=ED,根据勾股定理得BF=6,则CF=4,设EC=x,ED=8−x,根据勾股定理得EF2=EC2+CF2,即可解得EC的长.【详解】解:∵四边形ABCD是长方形,∴AD=BC=10,DC=AB=8,∵长方形ABCD沿着AE折叠,∴AD=AF=BC=10,EF=ED,∴BF=√AF2−AB2=√100−64=6,CF=BC−BF=4,设EC=x,ED=8−x,∴EF2=EC2+CF2,即(8−x)2=x2+42,解得x=3,所以EC=3,故选:B.【点睛】本题主要考查了图形折叠以及勾股定理等知识内容,掌握图形折叠的性质是解题的关键.2.如图,有一块直角三角形纸片,∠C=90°,AC=4,BC=3,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为()【答案】C【分析】利用勾股定理求得AB=5,由折叠的性质可得AB=AE=5,DB=DE,求得CE=1,设DB=DE=x,则CD=3−x,根据勾股定理可得12+(3−x)2=x2,进而求解即可.【详解】解:∵∠C=90°,AC=4,BC=3,∴AB=√32+42=5,由折叠的性质得,AB=AE=5,DB=DE,∴CE=1,设DB=DE=x,则CD=3−x,在Rt△CED中,12+(3−x)2=x2,,解得x=53故选:C.【点睛】本题考查勾股定理、折叠的性质,熟练掌握勾股定理是解题的关键.【答案】B【分析】根据图形翻折变换的性质可知,AE=BE,设AE=x,则BE=x,CE=8−x,再Rt△BCE中利用勾股定理即可求出CE的长度.【详解】解:∵△ADE翻折后与△BDE完全重合,∴AE=BE,设AE=x,则BE=x,CE=8−x,∵在Rt△BCE中,CE2=BE2−BC2,即(8−x)2=x2−62,解得,x=7,4.∴CE=74故选:B【点睛】本题考查了图形的翻折变换,解题中应注意折叠是一种对称变换,属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.4.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,AD为∠BAC的平分线,将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,则DE的长为()【答案】B【分析】根据勾股定理求得BC,进而根据折叠的性质可得AE=AC,可得BE=2,设DE=x,表示出BD,DE,进而在Rt△BDE【详解】解:∵在Rt△ABC中,∠ABC=90°,AB=3,AC=5,∴BC=√AC2−AB2=√52−32=4,∵将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,∴AE=AC,设DE=x,则DC=DE=x,BD=BC−CD=4−x,BE=AE−AB=5−3=2,在Rt△BDE中,BD2+BE2=DE2,即(4−x)2+22=x2,解得:x=52,即DE的长为52故选:B.【点睛】本题考查了勾股定理与折叠问题,熟练掌握勾股定理是解题的关键.5.如图,矩形纸片ABCD的边AB长为4,将这张纸片沿EF折叠,使点C与点A重合,已知折痕EF长为2√5,则BC长为()A.4.8B.6.4C.8D.10【答案】C【分析】过点F作FG⊥BC于点G,则四边形ABGF是矩形,从而FG=AB=4,在Rt△EFG中,利用勾股定理求得EG=√EF2−FG2=√(2√5)2−42=2.设BE=x,则BG=BE+EG=x+2.由∠AFE=∠CEF=∠AEF 得到AE=AF=BG=x+2,从而在Rt△ABE中,有AB2+BE2=AE2,代入即可解得x的值,从而得到BE,CE的长,即可得到BC.【详解】过点F作FG⊥BC于点G∵在矩形ABCD中,∠DAB=∠B=90°∴四边形ABGF是矩形∴FG=AB=4∴在Rt△EFG中,EG=√EF2−FG2=√(2√5)2−42=2设BE=x,则BG=BE+EG=x+2∵在矩形ABCD中,BC∥AD∴∠AFE=∠CEF由折叠得∠CEF=∠AEF∴AE=AF∵在矩形ABGF中,AF=BG=x+2∴AE=AF=x+2∵在Rt△ABE中,AB2+BE2=AE2∴42+x2=(x+2)2解得x=3即BE=3,AE=5∴由折叠可得CE=AE=5∴BC=BE+EC=3+5=8故选:C【点睛】本题考查矩形的性质,勾股定理的应用,利用勾股定理构造方程是解决折叠问题的常用方法.A.7B.136【答案】B【分析】根据题意可得AD=AB=2,∠B=∠ADB,CE=DE,∠C=∠CDE,可得∠ADE=90°,继而设AE=x,则CE=DE=3−x,根据勾股定理即可求解.【详解】解:∵沿过点A的直线将纸片折叠,使点B落在边BC上的点D处,∴AD=AB=2,∠B=∠ADB,∵折叠纸片,使点C与点D重合,∴CE=DE,∠C=∠CDE,∵∠BAC=90°,∴∠B+∠C=90°,∴∠ADB+∠CDE=90°,∴AD2+DE2=AE2,设AE=x,则CE=DE=3−x,∴22+(3−x)2=x2,,解得x=136即AE=13,6故选:B【点睛】本题考查了折叠的性质,勾股定理,掌握折叠的性质以及勾股定理是解题的关键.7.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边BC沿CE翻折,点B落在点F处,连接CF交AB于点D,则FD的最大值为()【答案】D【分析】根据将边BC沿CE翻折,点B落在点F处,可得FD=CF−CD=4−CD,即知当CD最小时,FD最大,此时CD⊥AB,用面积法求出CD,即可得到答案.【详解】解:如图:∵将边BC沿CE翻折,点B落在点F处,∴CF=BC=4,∴FD=CF−CD=4−CD,当CD最小时,FD最大,此时CD⊥AB,∵∠ACB=90°,AC=3,BC=4,∴AB=√AC2+BC2=√32+42=5,∵2S△ABC=AC⋅BC=AB⋅CD,∴CD=AC⋅BCAB =3×45=125,∴FD=CF−CD=4−125=85,故选:D.【点睛】本题考查直角三角形中的翻折问题,涉及勾股定理及应用,解题的关键是掌握翻折的性质.A.73B.154【答案】B【分析】先求出BD=2,由折叠的性质可得DN=CN,则BN=8−DN,利用勾股定理建立方程DN2= (8−DN)2+4,解方程即可得到答案.【详解】解:∵D是AB中点,AB=4,∴AD=BD=2,∵将Rt△ABC折叠,使点C与AB的中点D重合,∴DN=CN,∴BN=BC−CN=8−DN,在Rt△DBN中,由勾股定理得DN2=BN2+DB2,∴DN2=(8−DN)2+4,∴DN=17,4,∴BN=BC−CN=154故选:B.【点睛】本题主要考查了勾股定理与折叠问题,正确理解题意利用方程的思想求解是解题的关键.【类型二杯中吸管问题】9.如图,有一个透明的直圆柱状的玻璃杯,现测得内径为5cm,高为12cm,今有一支15cm的吸管任意斜放于杯中,若不考虑吸管的粗细,则吸管露出杯口外的长度最少为()A.1cm B.2cm C.3cm D.不能确定【答案】B【分析】吸管露出杯口外的长度最少,即在杯内最长,可用勾股定理解答.【详解】解∶∵CD=5cm,AD=12cm,∴AC=√CD2+AD2=√52+122,露出杯口外的长度为=15−13=2(cm).故答案为:B.【点睛】本题考查勾股定理的应用,所述问题是一个生活中常见的问题,与勾股定理巧妙结合,可培养同学们解决实际问题的能力.10.如图,一支笔放到圆柱形笔筒中,笔筒内部底面直径是9cm,内壁高12cm.若这支笔长18cm,则这支笔在笔筒外面部分的长度是()A.6cm B.5cm C.3cm D.2cm【分析】根据勾股定理求得AC的长,进而即可求解.【详解】解:根据题意可得图形:AB=12cm,BC=9cm,在Rt△ABC中:AC=√AB2+BC2=√122+92=15(cm),所以18−15=3(cm).则这只铅笔在笔筒外面部分长度为3cm.故选:C.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.11.如图,一支笔放到圆柱形笔筒中,笔筒内部底面直径是9cm,内壁高12cm.若这支笔长18cm,则这支笔在笔筒外面部分的长度是()A.6cm B.5cm C.4cm D.3cm【答案】D【分析】首先根据题意画出图形,利用勾股定理计算出AC的长度.然后求其差.【详解】解:根据题意可得:AB BC=9cm,在Rt△ABC中∶AC=√AB2+BC2=√122+92=15(cm),所以18−15=3(cm),则这只铅笔在笔筒外面部分长度为3cm.故选:D.【点睛】此题主要考查了勾股定理的应用,正确得出笔筒内铅笔的最短长度是解决问题的关键.12.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度ℎcm,则ℎ的取值范围是()A.ℎ≤17cm B.ℎ≥16cm C.5cm<ℎ≤16cm D.7cm<ℎ≤16cm【分析】根据勾股定理及直径为最大直角边时即可得到最小值,当筷子垂直于底面时即可得到最大值即可得到答案;【详解】解:由题意可得,当筷子垂直于底面时ℎ的值最大,ℎmax=24−8=16cm,当直径为直角边时ℎ的值最小,根据勾股定理可得,ℎmin=24−√82+152=7cm,∴7cm<ℎ≤16cm,故选D.【点睛】本题考查勾股定理的运用,解题的关键是找到最大与最小距离的情况.13.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度ℎcm,则ℎ的取值范围是()A.ℎ≤17cm B.ℎ≥16cm C.5cm<ℎ≤16cm D.7cm≤ℎ≤16cm【答案】D【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出的取值范围.【详解】解:如图1所示,当筷子的底端在D点时,筷子露在杯子外面的长度最长,=24−8=16cm,∴ℎ最大如图2所示,当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15cm,BD=8cm,∴AB=√AD2+BD2=17cm,=24−17=7cm,∴此时ℎ最小∴的取值范围是7cm≤h≤16cm.故选:D.【点睛】本题主要考查了勾股定理的应用,明确题意,准确构造直角三角形是解题的关键.A.5B.7C.12D.13【答案】A【分析】根据勾股定理求出h的最短距离,进而可得出结论.【详解】解:如图,当吸管、底面直径、杯子的高恰好构成直角三角形时,h最短,此时AB=√92+122=15(cm),故ℎ=20−15=5(cm);最短故选:A.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.15.如图,某同学在做物理实验时,将一支细玻璃棒斜放入了一只盛满水的烧杯中,已知烧杯高8cm,玻璃棒被水淹没部分长10cm,这只烧杯的直径约是()A.9cm B.8cm C.7cm D.6cm【答案】D可.【详解】解:由题意,可得这只烧杯的直径是:√102−82=6(cm).故选:D.【点睛】本题考查了勾股定理的应用,能够将实际问题转化为数学问题是解题的关键.16.如图,一根长18cm的牙刷置于底面直径为5cm、高为12cm的圆柱形水杯中,牙刷露在杯子外面的长度为h cm,则h的取值范围是()A.4<h<5B.5<h<6C.5≤h≤6D.4≤h≤5【答案】C【分析】根据题意,求出牙刷在杯子外面长度最小与最大情况即可得出取值范围.【详解】解:根据题意,当牙刷与杯底垂直时,ℎ最大,如图所示:故ℎ最大=18−12=6cm;∵当牙刷与杯底圆直径、杯高构成直角三角形时,ℎ最小,如图所示:在RtΔABC中,∠ACB=90°,AC=5cm,BC=12cm,则AB=√BC2+AC2=√52+122=13cm,∵牙刷长为18cm,即AD=18cm,∴ℎ最小=AD−AB=18−13=5cm,∴h的取值范围是5≤h≤6,故选:C.【点睛】本题考查勾股定理解实际应用题,读懂题意,根据牙刷的放置方式明确牙刷在杯子外面长度最小与最大情况是解决问题的关键.【类型三楼梯铺地毯问题】17.如图在一个高为3米,长为5米的楼梯表面铺地毯,则地毯至少需要().A.3米B.4米C.5米D.7米【答案】D【分析】当地毯铺满楼梯时的长度是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,即可求得地毯的长度.【详解】解:由勾股定理得:楼梯的水平宽度=√52−32=4(米),∵地毯铺满楼梯的长度应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是3+4=7(米).故选:D.【点睛】此题考查了生活中的平移现象以及勾股定理,属于基础题,利用勾股定理求出水平边的长度是解答本题的关键.18.如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要()【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【详解】解:由勾股定理得:楼梯的水平宽度=√132−52=12m,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是12+5=17(m).故选B.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解答本题的关键.19.如图是楼梯的示意图,楼梯的宽为5米,AC=5米,AB=13米,若在楼梯上铺设防滑材料,则所需防滑材料的面积至少为()A.65m2B.85m2C.90m2D.150m2【答案】B【分析】勾股定理求出BC,平移的性质推出防滑毯的长为AC+BC,利用面积公式进行求解即可.【详解】解:由图可知:∠C=90°,∵AC=5米,AB=13米,∴BC=√AB2−AC2=12米,由平移的性质可得:水平的防滑毯的长度=BC=12(米),铅直的防滑毯的长度=AC=5(米),∴至少需防滑毯的长为:AC+BC=17(米),∵防滑毯宽为5米∴至少需防滑毯的面积为:17×5=85(平方米).故选:B.【点睛】本题考查勾股定理.解题的关键是利用平移,将防滑毯的长转化为两条直角边的边长之和.A.13cm B.14cm C.15cm D.16cm【答案】A【分析】根据勾股定理即可得出结论.【详解】如图,由题意得AC=1×5=5(cm),BC=2×6=12(cm),故AB=√122+52=13(cm).故选:A.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.21.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A.8m B.10m C.14m D.24m【答案】C【分析】先根据直角三角形的性质求出AB的长,再根据楼梯高为BC的高=6m,楼梯的宽的和即为AB的长,再把AB、BC的长相加即可.【详解】∵△ABC是直角三角形,BC=6m,AC=10m∴AB=√AC2−BC2=√102−62=8(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=8+6=14(米).故选C【点睛】本题考查的是勾股定理的应用,解答此题的关键是找出楼梯的高和宽与直角三角形两直角边的等量关系.22.某酒店打算在一段楼梯面上铺上宽为2米的地毯,台阶的侧面如图所示,如果这种地毯每平方米售价为80元,则购买这种地毯至少需要()A.2560元B.2620元C.2720元D.2840元【答案】C【分析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.【详解】利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为√132−52=12米、5米,∴地毯的长度为12+5=17米,地毯的面积为17×2=34平方米,∴购买这种地毯至少需要80×34=2720元.故选C.【点睛】本题考查的知识点是勾股定理的应用,生活中的平移现象,解题关键是要注意利用平移的知识,把要求的所有线段平移到一条直线上进行计算.23.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()A.5m B.6m C.7m D.8m【答案】C【详解】楼梯竖面高度之和等于AB的长.由于AB=√AC2−BC2=√52−32=4,所以至少需要地毯长4+3=7(m).故选C24.如图,是一段楼梯,高BC是1.5m,斜边AC是2.5m,如果在楼梯上铺地毯,那么至少需要地毯()A.2.5m B.3m C.3.5m D.4m【答案】C【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得AB,然后求得地毯的长度即可.【详解】解:由勾股定理得:AB=√2.52−1.52=2因为地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和所以地毯的长度至少是1.5+2=3.5(m)故选C.【点睛】本题考查了图形平移性质和勾股定理,解决本题的关键是要熟练掌握勾股定理.【类型四最短路径问题】25.如图,透明圆柱的底面半径为6厘米,高为12厘米,蚂蚁在圆柱侧面爬行.从圆柱的内侧点A爬到圆柱的外侧点B处吃食物,那么它爬行最短路程是厘米.(π≈3)【答案】30【分析】把圆柱的侧面展开,根据勾股定理即可得到结论.【详解】解:∵透明圆柱的底面半径为6厘米,∴透明圆柱的底面周长为2×6π=厘米≈36厘米,作点A关于直线EF的对称点A′,连接A′B,则A′B的长度即为它爬行最短路程,×36=18厘米,∴A′A=2AE=24厘米,AB=12∴A′B=√AB2+A′A2=√182+242=30(cm),故答案为:30.【点睛】本题考查平面展开-最短路径问题,解题的关键是计算出圆柱展开后所得长方形的长和宽的值,然后用勾股定理进行计算.【答案】10【分析】将圆柱侧面展开,由图形可知蚂蚁在圆柱侧面爬行,从点A爬到点B的最短路程即为AB的长,再由勾股定理求出.【详解】解:根据圆柱侧面展开图,cm,高为8cm,∵圆柱的底面半径为6π∴底面圆的周长为2×6×π=12cm,π×12=6cm,∴BC=8cm,AC=12由图形可知蚂蚁在圆柱侧面爬行,从点A爬到点B的最短路程即为AB的长,AB=√AC2+BC2=10cm,故答案为:10.【点睛】本题考查了平面展开最短路线问题,勾股定理,将立体图形转化成平面图形求解是解题的关键.27.如图有一个棱长为9cm的正方体,一只蜜蜂要沿正方体的表面从顶点A爬到C点(C点在一条棱上,距离顶点B 3cm处),需爬行的最短路程是cm.【答案】15【分析】首先把正方体展开,然后连接AC,利用勾股定理计算求解即可.【详解】解:如图,连接AC,由勾股定理得,AC=√92+(9+3)2=15,故答案为:15.【点睛】本题考查了正方体的展开图、勾股定理的应用,解题的关键在于明确爬行的最短路线.28.如图,桌上有一个圆柱形玻璃杯(无盖),高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A处有一滴蜜糖,在玻璃杯的内壁,A的相对方向有一小虫P,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖处的最短距离是厘米.【答案】10【分析】将杯子侧面展开,作A关于杯口的对称点A′,根据两点之间线段最短可知A′P的长度即为所求,再结合勾股定理求解即可.【详解】解:如图所示:将杯子侧面展开,作A关于杯口的对称点A′,连接PA′,最短距离为PA′的长度,)2+(6−1.5+1.5)2=10(厘米),PA′=√PE2+EA′2=√(162最短路程为PA ′=10厘米.故答案为:10.【点睛】本题考查了平面展开−最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.【答案】20【分析】先把圆柱的侧面展开,连接AS ,利用勾股定理即可求得AS 的长.【详解】解:如图,∵在圆柱的截面ABCD 中,AB =24π,BC =32,∴AB =12×24π×π=12,BS =12BC =16, ∴AS =√AB 2+BS 2=20,故答案为:20.【点睛】本题考查平面展开图−最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解题的关键.30.如图,圆柱形玻璃杯的杯高为9cm ,底面周长为16cm ,在杯内壁离杯底4cm 的点A 处有一滴蜂蜜,此时,一只蚂蚁正好在杯外壁上,它在离杯上沿1cm ,且与蜂蜜相对的点B 处,则蚂蚁从外壁B 处到内壁A 处所走的最短路程为 cm .(杯壁厚度不计)【答案】10【分析】如图(见解析),将玻璃杯侧面展开,作B关于EF的对称点B′,根据两点之间线段最短可知AB′的长度即为所求,利用勾股定理求解即可得.【详解】解:如图,将玻璃杯侧面展开,作B关于EF的对称点B′,作B′D⊥AE,交AE延长线于点D,连接AB′,BB′=1cm,AE=9−4=5(cm),由题意得:DE=12∴AD=AE+DE=6cm,∵底面周长为16cm,×16=8(cm),∴B′D=12∴AB′=√AD2+B′D2=10cm,由两点之间线段最短可知,蚂蚁从外壁B处到内壁A处所走的最短路程为AB′=10cm,故答案为:10.【点睛】本题考查了平面展开——最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.31.如图所示,ABCD是长方形地面,长AB=20m,宽AD=10m.中间竖有一堵砖墙高MN=2m.一只蚂蚱从A点爬到C点,它必须翻过中间那堵墙,则它要走的路程s取值范围是.【答案】s≥26m【分析】连接AC,利用勾股定理求出AC的长,再把中间的墙平面展开,使原来的长方形长度增加而宽度不变,求出新长方形的对角线长即可得到范围.【详解】解:如图所示,将图展开,图形长度增加4m,原图长度增加4m,则AB=20+4=24m,连接AC,∵四边形ABCD是长方形,AB=24m,宽AD=10m,∴AC=√AB2+BC2=√242+102=26m,∴蚂蚱从A点爬到C点,它要走的路程s≥26m.故答案为:s≥26m.【点睛】本题考查的是平面展开最短路线问题及勾股定理,根据题意画出图形是解答此题的关键.【答案】5【分析】要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.【详解】解:将圆柱表面切开展开呈长方形,则彩灯带长为2个长方形的对角线长,∵圆柱高3米,底面周长2米,∴AC2=22+1.52=6.25,∴AC=2.5,∴每根柱子所用彩灯带的最短长度为5m.故答案为5.【点睛】本题考查了平面展开−最短路线问题,勾股定理的应用.圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.【类型五旗杆高度问题】【答案】6m【分析】设AD=x,在△ABC中,利用勾股定理列出方程,解之即可.【详解】解:∵BF=2m,∴CE=2m,∵DE=1m,∴CD=CE−DE=1m,设AD=x,则AB=x,AC=AD−CD=x−1,由题意可得:BC⊥AE,在△ABC中,AC2+BC2=AB2,即(x−1)2+32=x2,解得:x=5,即AD=5,∴旗杆AE的高度为:AD+DE=5+1=6m.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理的相关知识并在直角三角形中正确运用是解题的关键.34.荡秋千是深受人们喜爱的娱乐项目,如图,小丽发现,秋千静止时踏板离地面的垂直高度DE=0.5m,将它往前推送至点B,测得秋千的踏板离地面的垂直高度BF=1.1m,此时水平距离BC=EF=1.8m,秋千的绳索始终拉的很直,求绳索AD的长度.【答案】3m【分析】设绳索AD的长度为xm=(x−0.6)m,在Rt△ABC中,由勾股定理得出方程,解方程即可.【详解】解:设秋千的绳索AD长为xm,则AB为xm,∵四边形BCEF是矩形,∴BF=CE=1.1m,∵DE=0.5m,∴CD=0.6m则AC为(x−0.6)m在Rt△ABC中,由勾股定理得:AC2+BC2=AB2,即:(x−0.6)2+1.82=x2解得:x=3∴绳索AD的长度为3m.【点睛】本题考查了勾股定理的应用,由勾股定理得出方程是解题的关键.35.如图,数学兴趣小组要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),聪明的小红发现:先测出垂到地面的绳子长,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离n,利用所学知识就能求出旗杆的长,若m=1米,n=5米,求旗杆AB的长.【答案】12米【分析】设旗杆的高为x米,在Rt△ABC中,推出x2+52=(x+1)2,可得x=12,由此解决问题.【详解】解:设AB=x米,因为∠ABC=90°,所以在Rt△ABC中,根据勾股定理,得:x2+52=(x+1)2,解之,得:x=12,所以,AB的长为12米,答:旗杆AB的长为12米.【点睛】本题考查直角三角形、勾股定理等知识,解题的关键是理解题意,学会构建方程.【答案】风筝的高度CE为61.68米.【分析】利用勾股定理求出CD的长,再加上DE的长度,即可求出CE的高度.【详解】解:在Rt△CDB中,由勾股定理,得CD=√CB2−BD2=√652−252=60(米).∴CE=CD+DE=60+1.68=61.68(米).答:风筝的高度CE为61.68米.【点睛】本题考查了勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.37.看着冉冉升起的五星红旗,你们是否想过旗杆到底有多高呢?某数学兴趣小组为了测量旗杆高度,进行以下操作:如图1,先将升旗的绳子拉到旗杆底端,发现绳子末端刚好接触到地面;如图2,再将绳子末端拉到距离旗杆8m处,发现绳子末端距离地面2m.请根据以上测量情况,计算旗杆的高度.【答案】17米【分析】根据题意画出示意图,设旗杆高度为xm,可得AC=AD=x m,AB=(x−2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.【详解】解:如图所示设旗杆高度为x m,则AC=AD=x m,AB=(x−2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2(x−2)2+82=x2解得:x=17,答:旗杆的高度为17m.【点睛】本题考查了勾股定理的应用,解题的关键是构造直角三角形.38.同学们想利用升旗的绳子、卷尺,测算学校旗杆的高度.爱动脑的小华设计了这样一个方案:如图,将升旗的绳子拉直刚好触底,此时测得绳子末端C到旗杆AB的底端B的距离为1米,然后将绳子末端拉直到距离旗杆5米的点E处,此时测得绳子末端E距离地面的高度DE为1米.请你根据小华的测量方案和测量数据,求出学校旗杆的高度.【答案】12.5米【分析】过点E作EF⊥AB,垂足为F,在Rt△ABC和Rt△AEF中,根据勾股定理得出AC2=AB2+BC2,AE2= AF2+EF2,根据AC=AE,得出AB2+12=(AB−1)2+52,求出AB的长即可.【详解】解:过点E作EF⊥AB,垂足为F,如图所示:由题意可知:四边形BDEF是长方形,△ABC和△AEF是直角三角形,∴DE=BF=1,BD=EF=5,BC=1,在Rt△ABC和Rt△AEF中,根据勾股定理可得:AC2=AB2+BC2,AE2=AF2+EF2,即AC2=AB2+12,AE2=(AB−1)2+52,又∵AC=AE,∴AB2+12=(AB−1)2+52,解得:AB=12.5.答:学校旗杆的高度为12.5米.【点睛】本题主要考查了勾股定理的应用,解题的关键是根据勾股定理列出关于AB方程AB2+12= (AB−1)2+52.39.学过《勾股定理》后,某班兴趣小组来到操场上测量旗杆AB的高度,得到如下信息:①测得从旗杆顶端垂直挂下来的升旗用的绳子比旗杆长1米(如图1);②当将绳子拉直时,测得此时拉绳子的手到地面的距离CD为1米,到旗杆的距离CE为6米(如图2).根据以上信息,求旗杆AB的高度.【答案】9米【分析】设AB=x,则AC=x+1,AE=x−1,再根据勾股定理可列出关于x的等式,解出x即得出答案.【详解】解:设AB=x依题意可知:在Rt△ACE中,∠AEC=90°,AC=x+1,AE=x−1,CE=6,根据勾股定理得:AC2=AE2+CE2,即:(x+1)2=(x−1)2+62,解得:x=9答:旗杆AB的高度是9米.【点睛】本题考查勾股定理的实际应用.结合题意,利用勾股定理列出含未知数的等式是解题关键.40.如图,学校要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),同学们首先测量了多出的这段绳子长度为1米,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离为5米,求旗杆的高度.【答案】12米【分析】因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度为x米,则绳子的长度为(x+1)米,根据勾股定理即可求得旗杆的高度.【详解】解:设旗杆的高度AB为x米,则绳子AC的长度为(x+1)米,在Rt△ABC中,根据勾股定理可得:x2+52=(x+1)2,解得,x=12,答:旗杆的高度为12米.【点睛】本题考查了勾股定理的应用,熟知勾股定理是解题关键.【类型六航海问题】【答案】30海里/小时【分析】先根据题意结合方位角的描述求出∠ABC=90°以及AB、BC的长,再利用勾股定理求出AC的长即可得到答案.【详解】解:如图所示,由题意得,∠HAB=90°−60°=30°,∠MBC=90°−∠EBC=60°,∵AH∥BM,∴∠ABM=∠BAH=30°,∴∠ABC=∠ABM+∠MBC=90°,∵巡逻艇沿直线追赶,半小时后在点C处追上走私船,∴BC=18×0.5=9海里,在Rt△ABC中,∠ABC=90°,AB=12海里,BC=9海里,∴AC=√AB2+BC2=15海里,∴我军巡逻艇的航行速度是15=30海里/小时,0.5答:我军巡逻艇的航行速度是30海里/小时.【点睛】本题主要考查了勾股定理的实际应用,正确理解题意在Rt△ABC中利用勾股定理求出AC的长是解题的关键.(1)求点A与点B之间的距离;(2)若在点C处有一灯塔,灯塔的信号有效覆盖半径为处有一艘轮船准备沿直线向点多能收到多少次信号?(信号传播的时间忽略不计)【答案】(1)AB=1000海里(2)最多能收到14次信号【分析】(1)由题意易得∠ACB是直角,由勾股定理即可求得点A与点B之间的距离;(2)过点C作CH⊥AB交AB于点H,在AB上取点M,N,使得CN=CM=500海里,分别求得NH、MH的长,可求得此时轮船过MN时的时间,从而可求得最多能收到的信号次数;【详解】(1)由题意,得:∠NCA=54°,∠SCB=36°;。

勾股定理之折叠问题

勾股定理之折叠问题

GBEDCA勾股定理之折叠问题、整体代换二、精讲精练勾股定理的折叠专题:1. 如图,有一个直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?E AB CD2. 已知,如图长方形ABCD 中,AB =3,AD =9,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为多少?3. 如图,折叠矩形纸片ABCD ,使AD 与对角线BD 重合于DE ,得折痕DG ,若AB =8,AD =6,求AG 的长.4. 如图,矩形ABCD 中,BC =4,DC =3,将该矩形沿对角线BD 折叠,使点C 落在点F 处,求EF 的长.F EDCB A5. 把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB =3cm ,BC =5cm ,则重叠部分△DEF 的面积是多少?F EA 'D B '()CB A6. 如图,在Rt △ABC 中,∠C =90°,AC =8,BC =6,按图中所示方法将△BCD 沿BD 折叠,使点C 落在边AB 上的点C'处,则折痕BD 长的平方是__________.DCBA7. 如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B'处,点A 对应点为A',且B'C =3,求CN 和AM 的长.ABCB'DA'M整体代换:8. 已知一个直角三角形的三边长都是正整数,其中斜边长为13,并且周长为30,求这个三角形的面积.139. 小明的叔叔家承包了一个矩形鱼池,已知其面积为48m 2,其对角线长为10m ,为建栅栏,要计算这个矩形鱼池的周长,你能帮助小明算一算吗?10. 已知Rt △ABC 中,∠C =90°,若a +b =14cm ,c =10cm ,则Rt △ABC 的面积是()A .24cm 2B .36cm 2C .48cm 2D .60cm 211. (等积公式)直角三角形两直角边长分别为5cm ,12cm ,则斜边上的高为___________.12. 如果直角三角形两直角边的比为5∶12,则斜边上的高与斜边的比为( ) A .60∶13 B .5∶12 C .12∶13 D .60∶169 13. 如果直角三角形的两边长分别为3和4,则第三边长的平方是( )A .25B .14C .7D .7或25东北南A14. 若线段a ,b ,c 组成直角三角形,则它们的比可能为( )A .2∶3∶4B .3∶4∶6C .5∶12∶13D .4∶6∶7 15. 在Rt △ABC 中,∠C =90°,则①a =5,b =12,则c =_______; ②若a =15,c =25,则b=_______; ③若c =61,b =60,则a =_______ ; ④若a ∶b =3∶4,c =10,则ABC S =_____.16. 如果直角三角形的两直角边长分别为n 2-1,2n (n>1),那么它的斜边长是( )A .2nB .n +1C .n 2-1D .n 2+117. 等腰三角形底边上的高为8,周长为32,则三角形的面积为( )A .56B .48C .40D .3218. 已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( ) A .25海里 B .30海里 C .35海里D .40海里19. 如图,铁路上A ,B 两点相距25km ,C 、D 为两村庄,并且DA ⊥AB 于A ,CB⊥AB 于B ,已知DA =15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多远处?20. 在一棵树的10米高的B 处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处,另一只爬到树顶D 后直接跃到A 处,两只猴子所经过的距离相等,则这棵树高____米.21. 已知如图,在Rt △ABC 中,∠C =90°,∠1=∠2,CD =1.5 ,BD =2.5,求AC 的长.21ABCD【讲义答案】一、知识点睛1.折叠问题①找折痕——利用轴对称转移条件;②设未知数表达各边;③找直角三角形,利用勾股定理建等式.2.整体代换思想(知二求二):2(+)x y、22+x y、2(-)x y、xy知二求二;二、精讲精练1. 3cm2. A3. AG=34. EF= 785.5.1cm26. 457. CN=4,AM=2提示:连接BM,B'M8. 30 9. 28m 10. A 11. 6013cm 12. D 13. D14. C 15. ①13②20③11④24 16. D 17. B 18. D 19. AE=10km 20. 15米21. 3米【作业】1. 如图,有一个直角三角形纸片,两直角边AC =18cm ,BC =24cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,求△BDE 的周长为多少.E AB CD2. 如图所示,在△ABC 中,AB =20,AC =12,BC =16,把△ABC 折叠,使AB 落在直线AC 上,求重叠部分(阴影部分)的面积.3. 如图,在矩形纸片ABCD 中,AB =4,AD =3.折叠纸片使AD 边与对角线BD重合,折痕为DG ,点A 落在点A 1处,则△A 1BG 的面积与矩形ABCD 的面积的比为多少?ABCDA 1G4. 如图所示,折叠矩形的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,求EF 的长.FED A BC5. 已知Rt △ABC 中,∠C =90°,若a +b =17cm ,c =13cm ,则Rt △ABC 的面积为()A .24cm 2B .30cm 2C .48cm 2D .60cm 26. 已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为_____________.7. 若一个直角三角形的一条直角边长是7cm ,另一条直角边比斜边短1cm ,则斜边长为 ( )A .18cmB .20cmC .24cmD .25cm8. 直角三角形的斜边比一直角边长2cm ,另一直角边长为6cm ,则它的斜边长为( )A .4cmB .8cmC .10cmD .12cm9. 若直角三角形的三边长分别是n +1,n +2,n +3,求n .10. 直角三角形两直角边长分别为9cm ,12cm ,则斜边上的高为 . 11. 底边长为16cm ,底边上的高为6cm 的等腰三角形的腰长为________cm . 12. 若三角形的三边之比为45∶28∶53,则此三角形是________.13. 若直角三角形两直角边的比是3∶4,斜边长是20,则此直角三角形的面积为_________.14. 在Rt △ABC 中,∠C =90°,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别是()A.5,4,3 B.13,12,5 C.10,8,6 D.26,24,1015.一棵9m高的树被风折断,树顶落在离树根3m之处,若要查看断痕,要从树底开始爬多高?16.一艘轮船以16km/h的速度离开港口向东北方向航行,另一艘轮船同时离开港口以12km/h的速度向东南方向航行,它们离开港口半小时后相距_______km.17.一条河的宽度处处相等,小强想从河的南岸横游到北岸去,由于水流影响,小强上岸地点偏离目标地点200m,他在水中实际游了520m,那么该河的宽度为()A.440m B.460m C.480m D.500m18.要登上9m高的建筑物,为了安全需要,需使梯子固定在一个高1m的固定架上,并且底端离建筑物6m,梯子至少需要多长?19.校园广场内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞多少米?【作业答案】1.周长为36cm2.重叠部分面积为363.面积比为1:84.EF=5cm5. B6.30cm27. D8. C9.n=210.36cm511.10cm12.直角三角形13.9614.D15.4m16.1017.C18.梯子至少需要10米19.小鸟至少要飞13米。

利用勾股定理解决折叠问题

利用勾股定理解决折叠问题
解:根据折叠可知,△AFE≌△ADE, ∴AF=AD=10cm,EF=ED, AB=8 cm,EF+EC=DC=8cm, A ∴在Rt△ABF中
BF AF 2 AB2 102 82 6cm
D
FC=BC-BF=4cm 设EC=xcm ,则EF=DC-EC=(8-x)cm 在Rt△EFC中,根据勾股定理得 EC² =FC² =EF² B 即x² +4² =(8-x)² ,x=3cm, ∴EC的长为3cm。
利用勾股定理 解决折叠问题
三角形中的折叠
例1:一张直角三角形的纸片,如图1 所示折叠,使两个锐角的顶点A、B重合。若 ∠B=30°,AC= 3 ,求DC的长。 B
E D
C
图1
A(B)
长方形中的折叠
例2:如图2所示,将长方形纸片ABCD的一边AD 向下折叠,点D落在BC边的F处。已知AB=CD=8cm, BC=AD=10cm,求EC的长。
课堂小结
1、标已知; 2、找相等; 3、设未知,利用勾股定理,列方程的想象力

长方形还可以怎样折叠,要求折叠 一次,给出两个已知条件,提出问题, 并解答问题。 E
E D
D F C
A
A
D
B
E
F C C
B
A B
F
C
课堂小结
解题步骤
1、标已知,标问题,明确目标在哪个直角 三角形中,设适当的未知数x; 2、利用折叠,找全等。 3、将已知边和未知边(用含x的代数式表示) 转化到同一直角三角形中表示出来。 4、利用勾股定理,列出方程,解方程,得解。

八年级数学勾股定理的应用——折叠问题(专题)(含答案)

八年级数学勾股定理的应用——折叠问题(专题)(含答案)

勾股定理的应用——折叠问题(专题)一、单选题(共10道,每道10分)1.如图,长方形纸片ABCD中,AB=12,AD=5,折叠纸片使AD边与线段BD重合,折痕为DG,则AG的长为( )A. B.6C. D.答案:D解题思路:由题意得,BD=13;由折叠知D=AD=5,G=AG,∠DA′G=∠A=90°.∴B=8.设AG=x,则,BG=12-x.在Rt△BG中,∠BA′G=90°,由勾股定理得,,即,解得,.故选D.试题难度:三颗星知识点:略2.如图,折叠长方形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,则EF=( )A.4cmB.3cmC.5cmD.6cm答案:C解题思路:如图,AF=AD=BC=10,在Rt△ABF中,由勾股定理得,BF=6,所以FC=4,设EF=DE=x,则CE=8-x,在Rt△ECF中,∠C=90°,由勾股定理得,,解得,x=5.故选C.试题难度:三颗星知识点:略3.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则AE的长为____,△ABE的周长为____.( )A.,7B.,7C.,D.,答案:A解题思路:解:由题意知,在Rt△ABC中,∠B=90°,AB=3,AC=5由勾股定理得,BC=4由折叠知,AE=EC设AE=EC=x,则BE=4-x在Rt△ABE中,∠B=90°由勾股定理得,解得,则AE=,BE=∴△ABE的周长为3+x+(4-x) =3+4=7综上,AE的长为,△ABE的周长为7故选A试题难度:三颗星知识点:略4.如图,将一长方形纸片ABCD折叠,使两个顶点A,C重合,折痕为EF.若AB=4,BC=8,则△ABF的面积为( )A.6B.12C.10D.20答案:A解题思路:解:由题意知,将长方形纸片ABCD折叠,使两个顶点A,C重合,折痕为EF,∴AF=CF,∵在长方形ABCD中,AB=4,BC=8∴设BF=x,则AF=FC=8-x,在Rt△ABF中,∠B=90°,AB=4,BF=x,AF=8-x,由勾股定理得,AB2+BF2=AF2,42+x2=(8-x)2,解得,x=3,即BF=3,∴△ABF的面积为故选A.试题难度:三颗星知识点:略5.如图,长方形纸片ABCD中,AD=4,CD=3,折叠纸片使AB边与线段AC重合,折痕为AE,记与点B重合的点为F,则△CEF的面积与纸片ABCD的面积的比为( )A. B.C. D.答案:B解题思路:如图,在长方形ABCD中,AB=CD=AF=3,AD=BC=4,在Rt△ABC中,∠B=90°由勾股定理得,∴∴AC=5由折叠知,EF=BE,∠AFE=∠B=90°,设BE=x,则EF=BE=x在Rt△EFC中,∠CFE=90°,CF=AC-AF=2,EC=4-x,根据勾股定理得,∴解得,x=1.5∴∵∴故选B.试题难度:三颗星知识点:略6.如图,将边长为16cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在点F 处,折痕为MN,则CN=_____cm,AM=_____cm.( )A.6,2B.8,3C.10,2D.12,3答案:A解题思路:∵点E是BC边的中点,∴EC BC=8,设CN=x,则EN=DN=16-x,在Rt△ECN中,∠C=90°,由勾股定理得,EC2+CN2=EN2解得,x=6如图,连接DM,EM,则DM=EM,设AM=y,则BM=16-y,在Rt△ADM中,∠A=90°,由勾股定理得,在Rt△BEM中,∠B=90°,由勾股定理得,,∵DM=ME,∴解得,y=2故选A.试题难度:三颗星知识点:略7.如图,将边长为12cm的正方形纸片ABCD折叠,使得点A落在边CD上的点E处,折痕为MN.若CE的长为8cm,则AM=_____cm,BN=_____cm.( )A.,1B.,C.,D.,1答案:C解题思路:如图,设AM=x,在Rt△MED中,∠D=90°,由勾股定理,得解得,x=,即AM=,MD=,连接AN,NE,则AN=NE,设BN=y,则CN=12-y,在Rt△ABN中,∠B=90°,由勾股定理,在Rt△CEN中,∠C=90°,由勾股定理,,∵AN=NE,∴解得,故选C.试题难度:三颗星知识点:略8.如图,把长方形ABCD沿AC折叠,AD落在处,交BC于点E,已知AB=2cm,BC=4cm,则EC的长为( )A.2cmB.cmC.5cmD.cm答案:D解题思路:如图,由折叠知,∠DAC=∠EAC,∵AD∥BC,∴∠DAC=∠ECA,∴∠EAC=∠ECA,∴AE=EC设EC=x,则AE=EC=x∵BC=4,∴BE=4-x在Rt△ABE中,∠B=90°,AB=2,BE=4-x,AE=x,由勾股定理得,解得,即EC的长为cm故选D.试题难度:三颗星知识点:略9.把长方形纸片ABCD按如图所示的方式折叠,使点B与点D重合,折痕为EF.若BC=5cm,CD=3cm,则DE=( )cm.A. B.C. D.答案:B解题思路:如图,由折叠知,∠BFE=∠DFE,BF=DF,∵AD∥BC,∴∠BFE=∠DEF,∴∠DFE=∠DEF,∴DE=DF设DF=x,则BF=DF=x∵BC=5,∴CF=5-x在Rt△CDF中,∠C=90°,CD=3,CF=5-x,DF=x,由勾股定理得,解得,∴DE=DF=故选B.试题难度:三颗星知识点:略10.如图,长方形ABCD中,AB=4,BC=3,点E是CD边上一点,连接BE,把∠C沿BE折叠,使点C落在点F处.当△DEF为直角三角形时,DE的长为( )A.1B.1或C. D.3或答案:B解题思路:∵四边形ABCD是长方形,∴AB=CD=4,AD=BC=3,分两种情况讨论:①当∠FED=90°时,如图所示,则∠CEF=90°,由折叠的性质得:CE=FE=BC=3,∴DE=CD-CE=1;②当∠DFE=90°时,如图所示,在Rt△ABD中,∠A=90°,AB=4,AD=3,∴BD=5,由折叠的性质得:∠BFE=∠C=90°,BF=BC=3,EF=EC,∴∠DFE=∠BFE=90°,即点B,F,D三点共线,点F在BD上,∴DF=BD-BF=5-3=2,设DE=x,则EF=CE=4-x在Rt△DEF中,∠EFD=90°,DE=x,EF=4-x,DF=2,由勾股定理得,解得,综上所述,DE的长为1或;故选B.试题难度:三颗星知识点:略第11页共11页。

勾股定理中的折叠问题(分类整理版)

勾股定理中的折叠问题(分类整理版)

勾股定理中的折叠问题
1、如图,在Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,求
线段BN的长.
2、在一张直角三角形纸片中,两条直角边BC等于6,AC等于8,将三角形ABC按如图所示的方式折叠,使点A 和点B重合,折痕为DE,求CD的长
3、如图所示,在△ABC中,AB=20,AC=12,BC=16,把△ABC折叠,使AB落在直线AC上,求重叠部分(阴影部分)
的面积.
变式:如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使AC恰好落在
斜边AB上,且点C与点E重合,求CD的长。

4、如图所示,折叠长方形的一边AD,使点D落在BC边上的点F处,已知AB=8cm,BC=10CM,求DE的长
5、在长方形ABCD中,AB=6,BC=8,将长方形ABCD沿CE折叠后,点D恰好在对角线AC上的点F处、求EF的长。

6、如图,矩形纸片ABCD的边AB=10cm,BC=6cm,E为BC上一点,将矩形纸片沿AE折叠,点B恰好落
在CD边上的点G处,求BE的长.
7、如图,在长方形ABCD中,将△ABC沿AC对折至△AEC位置,CE与AD交于点F.
(1)试说明:AF=FC;
(2)如果AB=3,BC=4,求AF的长.。

折叠问题与勾股定理例题总结

折叠问题与勾股定理例题总结

CD E折叠问题与勾股定理例题总结1.如图,在矩形ABCD 中,AB =6,BC =8。

将矩形ABCD 沿CE 折叠后,使点D 恰好落在对角线AC 上的点F 处。

(1)求EF 的长;(2)求梯形ABCE 的面积。

2.如图所示,在?ABC 中,AB=20,AC=12,BC=16,把?ABC 折叠,使AB 落在直线AC 上,求重叠部分(阴影部分)的面积.3.如图,矩形纸片ABCD 的长AD=9cm ,宽AB=3cm ,将其折叠,使点D 与点B 重合,那么折叠后DE 的长是多少?4如图所示,有一块直角三角形纸片,两直角边AB=6,BC=8,将三角形ABC 折叠,使AB 落在斜边AC 上得到线段AB ’,折痕为AD ,求BD 的长为.5.如图,折叠长方形(四个角都是直角,对边相等)的一边AD 处,已知AB=8cm ,BC=10cm .求EC 的长.6.如图,将边长为8cm 的正方形纸片ABCD 折叠,使点D 落在BC 点F 处,折痕为MN ,求线段CN 的长.(MN 的长)7.如题,在长方形ABCD 中,将?ABC 沿AC 对折至?AEC 位置,CE (1)试说明:AF=FC(2)如果AB=3,BC=4,求AF 的长。

8.把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF . 若AB=3cm ,BC=5cm ,(1)重叠部分△DEF 的面积是多少cm 2? (2)求EF 的长。

9.如图,在Rt △ABC 中,∠C=90°,M 为AB 边上中点,将Rt 使点C 与点A 重合得到△DEA ,设AE 交CB 于点N . (1) 若∠B=25°,求∠BAE 的度数; (2) 若AC=2,BC=3,求CN 的长.10.如图,将矩形纸片ABCD 沿对角线AC 折叠,使点B 落到点于点E .(1)求证:△AED ≌△CEB';(2)AB =8,DE =3,点P 为线段AC 上任一点,PG ⊥AE 于G ,PH ⊥EC 于H .求PG+PH 的值,并说明理由.11.有一边长为2的正方形纸片ABCD ,先将正方形ABCD 对折,设折痕为EF ;再沿过点D的折痕将角A翻折,使得点A落在EF的H上,折痕交AE于点G,求EG的长。

专题05 勾股定理在折叠问题中的应用(解析版)

专题05 勾股定理在折叠问题中的应用(解析版)

专题05 勾股定理在折叠问题中的应用折叠问题是中考的热点也是难点问题,通常与动点问题结合起来,这类问题的题设通常是将某个图形按一定的条件折叠,通过分析折叠前后图形的变换,借助轴对称性质、勾股定理等知识进行解答。

此类问题立意新颖,充满着变化,要解决此类问题,除了能根据轴对称图形的性质作出要求的图形外,还要能综合利用相关数学模型及方法来解答。

下面就从以下的题目中逐一进行论述.题1. 如图1-1,在Rt△ABC中,∠A=90°,AB=3,AC=4,现将△ABC沿BD进行翻折,使点A刚好落在BC上,则CD=__________.图1-1【答案】5 2 .【解析】∵∠A=90°,AB=3,AC=4∴在Rt△ABC中,由勾股定理得:BC=5. 由折叠的性质知:AB=AB’=3,AD=A’D∴A’C=2设CD=x,则AD=A’D=4-x在Rt△A’DC中,由勾股定理得:CD2=A’C2+A’D2x2=4+(4-x)2解得:52 x .故答案为5 2 .题2. 如图2-1,△ABC是一张纸片,∠C=90°,AC=6,BC=8,现将其折叠.使点B与点A重合,折痕为DE,则DE的长为()A.1.75 B.3 C.3.75 D.4图2-1【答案】C.【解析】∵∠C=90°,AC=6,BC=8,∴在Rt△ABC中,由勾股定理得:AB=10.由折叠的性质知:AD=BD=3,AE=BE=5.设CD=x,则BD=AD=8-x,在Rt△ADC中,由勾股定理得:AD2=AC2+CD2(8-x)2=36+x2解得:x=1.75 .∴BD=6.25.在Rt△BDE中,由勾股定理得:DE=3.75.故答案为C.题3. 如图3-1,长方形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B 落在点B′处.当△CEB′为直角三角形时,BE的长为.【答案】3或1.5.【解析】分两种情况讨论:ABCDEB'图3-2①当∠CEB ′=90°时,如图3-2所示.由折叠性质得:AB =AB ′,四边形ABE B ′是矩形. 所以四边形ABE B ′是正方形. 此时,BE =AB =3.ABC DEB'图3-3②当∠CB ′E =90°时,如图3-3所示.由折叠性质知,∠AB ′C =90°,所以∠AB ′C+∠CB ′E =180°. ∴点A 、B ′、C 共线在Rt △ABC 中,由勾股定理得AC =5 由折叠得:AB = AB ′=3 所以B ′C =2设BE =x ,则B ′E =x ,EC =4-x在Rt △ABC 中,由勾股定理得:EC 2=B ′E 2+B ′C 2 即:(4-x )2=x 2+22 解得:x =1.5.综上所述,BE 的值为3或1.5.【点睛】本题解题关键在准确对问题进行分类讨论,并作出相应图形利用折叠的性质及勾股定理解题. 题4. 如图4-1,四边形ABCD 中,AD ∥BC ,∠B =90°, E 为AB 上一点,分别以ED ,EC 为折痕将两个角(∠A ,∠B )向内折起,点A ,B 恰好落在CD 边的点F 处.若AD =3,BC =5,则EF 的值是( )图4-1A.15B.215C.17D.217【答案】A.【解析】由折叠性质知:AE=EF,AD=DF,BE=EF,BC=CF∴CD=CF+FD=8,AE=BE=EF.∵∠AED=∠DEF,∠BEC=∠CEF∠AED+∠DEF+∠BEC+∠CEF=180°∴∠DEC=90°在Rt△BCE中,由勾股定理得:CE2=BE2+BC2同理得:DE2=AD2+AE2CD2=CE2+DE2∴CD2= BE2+BC2 +AD2+AE2即64=2EF2+9+25解得:EF=15.故答案为A.题5. 如图5-1,在长方形ABCD中,将∆DBC沿BD对折至∆DBC’位置,BC’与AD交于点E. (1)试说明:BE=DE;(2)如果AB=6,BC=8,求△EBD的面积.图5-1【答案】见解析.【解析】(1)证明:由折叠性质知:∠EBD =∠DBC , ∵ABCD 是长方形, ∴AD ∥BC ∴∠EDB =∠DBC ∴∠EBD =∠EDB ∴BE =DE .(2)解:设DE =BE =x ,则AE =8-x , 在Rt △ABE 中,由勾股定理得:222BE AB AE =+即()22268x x =+- 解得:x =254. ∴△EBD 的面积为17524DE AB ⨯⨯=. 题6. 如图6-1所示,把长方形纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF . 若CD =6,求AF 的长度.F图6-1【答案】见解析.【解析】由折叠性质知:∠BAF =∠F AE ,AB =AE ∵E 是长方形ABCD 的边CD 的中点, ∴AE =CD =2DE ∴∠DAE =30° ∴∠BAF =∠F AE =30° 设BF =x ,则AF =2x在Rt △ABF 中,由勾股定理得:222AF AB BF =+即()22226x x =+ 解得:x=∴AF =2x=题7. 如图7-1,在矩形OABC 中,OA =5,AB =4,点D 为边AB 上一点,将△BCD 沿直线CD 折叠,使点B 恰好落在OA 边上的点E 处,分别以OC ,OA 所在的直线为x 轴,y 轴建立平面直角坐标系. 求点D 的坐标.【答案】见解析.【解析】由折叠性质可知:BD =DE , BC =CE =5 ∵OC =AB =4∴在Rt △OCE 中,由勾股定理得:3OE ==.∴AE =OA -OE =2.设AD =x ,则BD =DE =4-x , 在Rt △ADE 中,由勾股定理得:222AD AE DE +=()22224x x +=-解得:x =32. 因为D 点在第三象限,所以D 点坐标为352⎛⎫-- ⎪⎝⎭,.题8. 如图8-1,在Rt ABC ∆中,90A ∠=︒,AB AC =,21BC =+,点M ,N 分别是边BC ,AB上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点'B 始终落在边AC 上.若'MBC ∆为直角三角形,则BM 的长为 .21+ 1. 【解析】通过观察及分析可知,C 点不可能为直角顶点,分两种情况讨论.A (B')BCN图8-2①当∠CM B ′=90°时,如图8-2所示.由折叠知:∠BMN =∠B ′MB =45°,又因为∠B =45°,所以∠BNM =90°,∠MNB ′=90° 即∠BNM +∠MN B ′=180°,所以B 、N 、B ′三点共线,此时B ′与点A 重合. 所以,1212BM BC +==A BCN B'图8-3②当∠CB ′M =90°时,如图8-3所示.由折叠知∠B =∠B ′=45°,因为∠C =45°,可得∠B ′MC =45°,所以△B ′MC 是等腰直角三角形 设BM = B ′M =x ,B ′C =x ,则MC = 2x因为BC 2+1所以x +2x=2+1 解得:x =1,即BM =1.故答案为:212或1. 题9. 如图9-1,AD 是△ABC 的中线,把△ADC 沿直线AD 翻折,点C 落在点C ’的位置,若∠ADC =45°,BC =4. 求BC ’的长.图9-1【答案】见解析. 【解析】由折叠性质得: ∠ADC =∠ADC ’=45°,CD =C ’D ∴∠C ’DC =∠BDC ’=90° 如图9-2所示.CAA (C')BD图9-2△BDC ’为等腰直角三角形,BD =C ’D =2, 根据勾股定理,得BC ’ =22故BC ’的长为22题10. 已知,如图10-1长方形ABCD 中,AB =3cm ,AD =9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为AB CDEF图10-1【答案】6.【解析】由折叠性质得:DE=BE设AE=x,则BE=DE=9-x,在Rt△ABE中,由勾股定理得:222AB AE BE+=()22239x x+=-解得:x=4.所以三角形ABE的面积为:11346 22AB AE⨯⨯=⨯⨯=.故答案为6.题11. 动手操作:在矩形纸片ABCD中,AB=3,AD=5. 如图11-1所示,折叠纸片,使点A落在BC边上的A’处,折痕为PQ,当点A’在BC边上移动时,折痕的端点P、Q也随之移动. 若限定点P、Q分别在AB、AD边上移动,则点A’在BC边上可移动的最大距离为.图11-1【答案】2.【解析】此题根据题目要求准确判断出点A'的最左端和最右端位置.当点Q与点D重合时,A'的位置处于最左端,当点P与点B重合时,点A'的位置处于最右端. 根据分析结果,作出图形,利用折叠性质分别求出两种情况下的BA'或CA'的长度,二者之差即为所求.①当点Q与点D重合时,A'的位置处于最左端,如图11-2所示.确定点A'的位置方法:因为在折叠过程中,A'Q=AQ,所以以点Q为圆心,以AQ长为半径画弧,与BC的交点即为点A'. 再作出∠A'QA的角平分线,与AB的交点即为点P.AD (Q )C B P A'5534图11-2由折叠性质可知,AD = A 'D =5,在Rt △A 'CD 中,由勾股定理得,2222''534A C A D CD =-=-=②当点P 与点B 重合时,点A '的位置处于最右端,如图11-3所示.AD CB (P )A'Q332图11-3确定点A '的位置方法:因为在折叠过程中,A 'P =AP ,所以以点P 为圆心,以AP 长为半径画弧,与BC 的交点即为点A '. 再作出∠A 'P A 的角平分线,与A D 的交点即为点Q . 由折叠性质可知,AB = A 'B =3,所以四边形AB A 'Q 为正方形. 所以A 'C =BC -A 'B =5-3=2.综上所述,点A 移动的最大距离为4-2=2. 故答案为:2.【点睛】此题难度较大,主要考察学生的分析能力,作图能力。

第三章 勾股定理培优专题 折叠问题中的勾股定理应用(含解析)

第三章 勾股定理培优专题 折叠问题中的勾股定理应用(含解析)

第三章勾股定理培优专题折叠问题中的勾股定理应用(含解析)中小学教育资源及组卷应用平台第三章勾股定理培优专题折叠问题中的勾股定理应用类型1 勾股定理在三角形折叠中的应用1.如图,Rt△ABC 中,AB=9,BC=6,△B=90°,将△ABC折叠,使点A 与BC的中点D重合,折痕为MN,则线段BN 的长为( )C.4D.5第1题图第2题图2.如图,三角形纸片ABC中,△BAC=90°,AB=2,AC=3.沿过点A 的直线将纸片折叠,使点B落在边BC上的点D处;再折叠纸片,使点C 与点D重合,若折痕与AC 的交点为E,则AE 的长是( )3.小王剪了两张直角三角形纸片,进行了如下的操作:操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A 与B 重合,折痕为DE.(1)如果AC=6 cm,AB=10 cm,可求得△ACD的周长为___________cm;(2)如果△CAD:△BAD=1:4,可求得△B 的度数为_____________;操作二:如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=9cm,AB=15 cm,请求出CD的长.类型2 勾股定理在四边形折叠中的应用4.如图,在矩形ABCD中,AB=10,AD=6,E为BC上一点,把△CDE沿DE折叠,使点C落在AB边上的F 处,则CE 的长为_____________.第4题图第5题图5.如图,有一张长方形纸片ABCD,AB=8cm,BC=10 cm,点E为CD上一点,将纸片沿AE折叠,BC的对应边. 恰好经过点D,则线段DE的长为_____________cm.6.如图,长方形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP 沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,BE与CD 相交于点F,则AP 的长为____________.7.如图,将长方形纸片ABCD折叠,使点B与点D重合,点A 落在点P处,折痕为EF.(1)试说明:△PDE△△CDF;(2)若CD=4 cm,EF=5cm ,求BC 的长.参考答案1. C 【解析】由折叠知DN=AN=9-BN.因为点D为BC的中点,所以因为△B=90°,所以NB +DB =DN ,即BN +3 =(9-BN) ,解得BN=4.故选C.2. A 【解析】因为沿过点A 的直线将纸片折叠,使点B落在边BC上的点D处,所以AD=AB=2,△B=△ADB.因为折叠纸片,使点C与点D重合,所以CE=DE,△C=△CDE.因为△BAC=90°,所以△B+△C=90°.所以△ADB+△CDE=90°.所以△ADE=90°.所以AD +DE =AE .设AE=x,则CE=DE=3-x.所以2 +(3-x) =x ,解得所以故选A.3.解:操作一:(1)14【解析】在Rt△ABC 中,AC=6 cm,AB=10 cm,根据勾股定理,得BC=8cm .由折叠知AD=BD.所以△ACD的周长=AC+CD+AD=AC+CD+BD=AC+BC=6+8=14(cm).(2)40°.操作二:在Rt△ABC中,AC=9 cm,AB=15 cm,根据勾股定理,得BC =AB -AC =15 -9 =144.所以BC=12 cm.由折叠知AE=AC=9 cm.因为AB=15 cm,所以BE=AB-AE=6cm.设CD=x cm,则BD=(12-x) cm,DE=CD=x cm.在Rt△BDE中,根据勾股定理,得DE +BE =BD ,即x +6 =(12-x) .解得x=4.5.所以CD=4.5cm .【解析】设CE=x,则BE=6-x.由折叠性质,知EF=CE=x,DF=CD=AB=10.在Rt△DAF中,AD=6,DF=10,所以AF=8.所以BF=AB-AF=10-8=2.在Rt△BEF中,BE +BF =EF ,即((6-x) +2 =x .解得5.5 【解析】因为将纸片沿AE折叠,BC的对应边B'C'恰好经过点D,所以C'E,所所以所以因为,即DE =4 +(8-DE) ,所以DE=5cm .6. 【解析】因为OD=OE,△D=△E=90°,△DOP=△EOF,所以△DPO△△EFO(ASA).所以PO=FO,EF=DP.所以PE=DF.设AP的长为x,则PE=DF=x,DP=EF=6-x,所以BF=BE-EF=8-(6-x)=2+x,CF=DC-DF=8-x.在Rt△BCF中,.BF =BC +CF ,即(2+x) =6 +(8-x) .所以7.解:(1)因为四边形ABCD是长方形,所以△A=△ADC=△B=△C=90°,AB=CD.由折叠得AB=PD,△A=△P=90°,△B=△PDF=90°,所以PD=CD.因为△PDF=△ADC=90°,所以△PDE=△CDF.在△PDE和△CDF中,所以△PDE△△CDF(ASA).(2)如图,过点E作EG△BC于点G,所以△EGF=90°,EG=CD=4 cm.在Rt△EGF中,由勾股定理,得FG =EF -EG =5 -4 =9,所以FG=3cm.设CF=x cm,则PE=AE=BG=x cm.因为△PDE△△CDF,所以DF=DE=CG=(x+3) cm.在Rt△CDF中,由勾股定理,得DF =CD +CF ,即x +4 =(x+3) ,所以所以所以BC的长为21世纪教育网 精品试卷·第2 页(共2 页)21世纪教育网()。

利用勾股定理解决折叠问题及答案

利用勾股定理解决折叠问题及答案

小专题(二) 利用勾股定理解决折叠与展开问题类型1 利用勾股定理解决平面图形的折叠问题 1.如图,有一张直角三角形纸片,两直角边AC =5 cm ,BC =10 cm ,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则CD 的长为( )A.252 cmB.152 cmC.254 cm D.154cm2.如图所示,有一块直角三角形纸片,∠C =90°,AC =4 cm ,BC =3 cm ,将斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CE 的长为( )A .1 cmB .1.5 cmC .2 cmD .3 cm3.(青岛中考)如图,将长方形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点C ′上,若AB =6,BC =9,则BF 的长为( )A .4B .3 2C .4.5D .54.如图,长方形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( )A .3B .4C .5D .65.(铜仁中考)如图,在长方形ABCD 中,BC =6,CD =3,将△BCD 沿对角线BD 翻折,点C 落在点C ′处,BC ′交AD 于点E ,则线段DE 的长为( )A .3 B.154 C .5 D.1526.如图,在长方形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是( )A.210-2B.6C.213-2D.47.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE 的周长为________.8.如图,在Rt△ABC中,∠C=90°,BC=6 cm,AC=8 cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB 边的C′点,那么△ADC′的面积是________.9.如图,已知Rt△ABC中,∠C=90°,AC=6,BC=8,将它的锐角A翻折,使得点A落在BC边的中点D处,折痕交AC边于点E,交AB边于点F,则DE的值为________.10.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=________.11.为了向建国六十六周年献礼,某校各班都在开展丰富多彩的庆祝活动,八年级(1)班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.陈莉同学在制作手工作品的第一、二个步骤是:①先裁下了一张长BC=20 cm,宽AB=16 cm的长方形纸片ABCD,②将纸片沿着直线AE折叠,点D恰好落在BC边上的F处,请你根据①②步骤解答下列问题:计算EC,FC的长.类型2 利用勾股定理解决立体图形的展开问题1.如图,一圆柱体的底面周长为24 cm,高AB为5 cm,BC是直径,一只蚂蚁从点A出发沿着圆柱体的表面爬行到点C的最短路程是( )A.6 cm B.12 cmC.13 cm D.16 cm2.如图,圆柱形玻璃杯,高为12 cm,底面周长为18 cm,在杯内离杯底4 cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为________cm.3.如图,在一个长为2 m,宽为1 m的长方形草地上,放着一根长方体的木块,它的棱和场地宽AD平行且棱长大于AD,木块从正面看是边长为0.2 m的正方形,一只蚂蚁从点A处到达C处需要走的最短路程是________m(精确到0.01 m).4.一位同学要用彩带装饰一个长方体礼盒.长方体高6 cm,底面是边长为4 cm的正方形,从顶点A到顶点C′如何贴彩带用的彩带最短?最短长度是多少?5.如图,一个长方体形状的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.(1)请你画出蚂蚁能够最快到达目的地的可能路径;(2)当AB=4,BC=4,CC1=5时,求蚂蚁爬过的最短路径的长.参考答案类型11.D 2.A 3.A 4.D 5.B 6.A 7.7 8.6 cm29.13310.1.511.因为△ADE与△AFE关于AE对称,所以△ADE≌△AFE.所以DE=FE,AD=AF.因为BC=20 cm,AB=16 cm,所以CD=16 cm,AD=AF=20 cm.在Rt△ABF中,由勾股定理,得BF=12 cm.所以CF=20-12=8(cm).因为四边形ABCD是长方形,所以∠C=90°.设CE=x,则DE=EF=16-x,在Rt△CEF中,由勾股定理,得(16-x)2=64+x2.解得:x=6.所以EC=6 cm.答:EC=6 cm,CF=8 cm.类型21.C 2.15 3.2.604.把长方体的面DCC′D′沿棱C′D′展开至面ABCD上,如图.构成矩形ABC′D′,则A到C′的最短距离为AC′的长度,连接AC′交DC于O,易证△AOD≌△C′OC.∴OD=OC.即O为DC的中点,由勾股定理,得AC′2=AD′2+D′C′2=82+62=100,∴AC′=10 cm.即从顶点A沿直线到DC中点O,再沿直线到顶点C′,贴的彩带最短,最短长度为10 cm.5.(1)如图,木柜的表面展开图是两个矩形ABC′1D1和ACC1A1.蚂蚁能够最快到达目的地的可能路径有如图所示的AC′1和AC1两种.(2)蚂蚁沿着木柜表面经线段A1B1到C′1,爬过的路径的长l1=42+(4+5)2=97.蚂蚁沿着木柜表面经线段BB1到C1,爬过的路径的长l2=(4+4)2+52=89.∵l1>l2,∴最短路径的长是89.。

专题勾股定理与折叠问题

专题勾股定理与折叠问题

专题:勾股定理在折叠问题中应用一•知识要点(1)折叠的规律是,折叠部分的图形,折叠前后,关于折痕成轴对称,两图形全等.(2)利用线段关系和勾股定理,运用方程思想进行计算.二•典例解析(一)三角形的折叠1・如图,RtZJABC 中,ZC=90° , AC=6, AB=10, D 为BC ±一点,将AC 沿AD 折叠,使点 C 落在AB上,求CD的长2•如图,RtZJABC中,ZC=90° , D为AB上一点,将JABC沿DE折叠,使点B与点A重合, <①若AC=4, BC=8,求CE的长②若AC=24, BC=32,求折痕DE的长C E(二)矩形的折叠1.如图,折叠矩形纸片ABCD,先折岀折痕(对角线)BD,再折叠,使AD落在对角线BD上,得折痕DG,若AB = 2, BC= 1,求AG2•如图,折叠长方形的一边AD, 点D落在BC边的点F处,已知AB=8cm, BC=10cm, 求EC的长.变式:如图.在直角坐标系中,矩形ABCO的边0A在x轴上,边0C在y轴上,点B的坐标为(1, 3),将矩形沿对角线AC 翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为3•如图,矩形纸片ABCD, AB=4cm, BC=8cm,现将A、C重合,使纸片折叠压平,设折痕为EF①求DF的长;②求重叠部分AAEF的面积;③求折痕EF的长.B E C(三)正方形的折叠1 •将边长为8cm的正方形ABCD折叠,使D落在BC边的中点E处,点A落在F处,折痕为MN①求线段CN的长;②求AM:③求折痕MN的长变式:如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点3落在CD边上的/处,点A对应点为且B'C = 3,则4M的长是。

勾股定理与折叠问题(经典题型)

勾股定理与折叠问题(经典题型)

与直角有关的折叠问题 (一)1•如图,将矩形ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形 EFGH,若EH=9厘米,EF=12厘米,则边AD 的长是()2.如图,在矩形ABCD 中,AB=4,BC=8,将矩形ABCD 沿EF 折叠,使点C 与点A 重合, 则折痕EF 的长为().门「 A. 6B. 5C.D.厂斗“ 门Ml3•如图1,四边形 ABCD 是一矩形纸片,AB=8cm ,AD=10cm ,E 是AD 上一点,且图1 图2 图3A. 12 厘米B. 15厘米 C. 20厘米 D. 21厘米向右折 GFC 的AE=8cm .操作:(1) 将厶AFB 以BF 为折痕 过去,得图3 .则厶 面积是()得折痕AF ,如图2 ;(A. ltm 2B. 2cm 2 C . Sen 2 D. 4cm 2 4.如图,已知边长为5的等边三角形 ABC 纸片,点E 在AC 边上,点F 在AB 边上,沿着EF 折叠,使点A 落在BC 边上5•如图,在矩形纸片 ABCD 中,AD=6cm ,点E 在BC 上,将纸 片沿AE 折叠,使点B 落在AC 上的点F 处,且ZAEF= /CEF ,则AB 的长是()A. 2 cm6.如图,CD 是Rt △ ABC 斜边AB 上的高,直角边’’ 乙",现将△ BCD 沿CD 折叠,点B 恰好落在AB 的中点E 处,则图中阴影部分的面积为IJA. 2B. 2 屯C.晶D.7.如图,在矩形ABCD 中将厶BCD 沿对角线BD 翻折,点C的点D 的位置,且ED 丄BC ,则CE 的长是()A.- 「B. 10-5^3 C . 5^3-5D. 20-10C. 4cm落在「处,AD 与BC 交于点E ,连接AC',则AC':BD 为()B. 1 -D. -CDAE = -AB8•如图,在矩形ABCD中,点E, F分别在边AB, BC上,且? ,将矩形沿直线EF 折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,有下列结论:①EF=2BE;②PF=2PE :③FQ=4EQ :④厶PBF是等边三角中正确的是()B.②③C.①③D.①④9•如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点上.若AB=16 BC=32 ,则BF的长为()A. 15B.人C. 16D. 1710. 如图,在矩形ABCD中,E是BC的中点,将厶ABE沿AE折叠后得到△ AFE,点F在矩DG k AD形ABCD内部,延长AF交CD于点G.若,则一()12^ + 1气]A.-B. 一C.D. -B E C11. 如图,折叠直角三角形纸片ABC的直角ZC,使点C落在斜边AB上的点E处,已知血=加,/B=30。

(完整版)利用勾股定理解决折叠问题及答案

(完整版)利用勾股定理解决折叠问题及答案

小专题(二) 利用勾股定理解决折叠与展开问题类型1 利用勾股定理解决平面图形的折叠问题 1.如图,有一张直角三角形纸片,两直角边AC =5 cm ,BC =10 cm ,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则CD 的长为( )A.252 cmB.152 cmC.254 cm D.154cm2.如图所示,有一块直角三角形纸片,∠C =90°,AC =4 cm ,BC =3 cm ,将斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CE 的长为( )A .1 cmB .1.5 cmC .2 cmD .3 cm3.(青岛中考)如图,将长方形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点C ′上,若AB =6,BC =9,则BF 的长为( )A .4B .3 2C .4.5D .54.如图,长方形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( )A .3B .4C .5D .65.(铜仁中考)如图,在长方形ABCD 中,BC =6,CD =3,将△BCD 沿对角线BD 翻折,点C 落在点C ′处,BC ′交AD 于点E ,则线段DE 的长为( )A .3 B.154 C .5 D.1526.如图,在长方形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是( )A.210-2B.6C.213-2D.47.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE 的周长为________.8.如图,在Rt△ABC中,∠C=90°,BC=6 cm,AC=8 cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB 边的C′点,那么△ADC′的面积是________.9.如图,已知Rt△ABC中,∠C=90°,AC=6,BC=8,将它的锐角A翻折,使得点A落在BC边的中点D处,折痕交AC边于点E,交AB边于点F,则DE的值为________.10.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=________.11.为了向建国六十六周年献礼,某校各班都在开展丰富多彩的庆祝活动,八年级(1)班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.陈莉同学在制作手工作品的第一、二个步骤是:①先裁下了一张长BC=20 cm,宽AB=16 cm的长方形纸片ABCD,②将纸片沿着直线AE折叠,点D恰好落在BC边上的F处,请你根据①②步骤解答下列问题:计算EC,FC的长.类型2 利用勾股定理解决立体图形的展开问题1.如图,一圆柱体的底面周长为24 cm,高AB为5 cm,BC是直径,一只蚂蚁从点A出发沿着圆柱体的表面爬行到点C的最短路程是( )A.6 cm B.12 cmC.13 cm D.16 cm2.如图,圆柱形玻璃杯,高为12 cm,底面周长为18 cm,在杯内离杯底4 cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为________cm.3.如图,在一个长为2 m,宽为1 m的长方形草地上,放着一根长方体的木块,它的棱和场地宽AD平行且棱长大于AD,木块从正面看是边长为0.2 m的正方形,一只蚂蚁从点A处到达C处需要走的最短路程是________m(精确到0.01 m).4.一位同学要用彩带装饰一个长方体礼盒.长方体高6 cm,底面是边长为4 cm的正方形,从顶点A到顶点C′如何贴彩带用的彩带最短?最短长度是多少?5.如图,一个长方体形状的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬(1)请你画出蚂蚁能够最快到达目的地的可能路径;(2)当AB=4,BC=4,CC1=5时,求蚂蚁爬过的最短路径的长.参考答案类型11.D 2.A 3.A 4.D 5.B 6.A 7.7 8.6 cm29.13310.1.511.因为△ADE与△AFE关于AE对称,所以△ADE≌△AFE.所以DE=FE,AD=AF.因为BC=20 cm,AB=16 cm,所以CD=16 cm,AD=AF=20 cm.在Rt△ABF中,由勾股定理,得BF=12 cm.所以CF=20-12=8(cm).因为四边形ABCD是长方形,所以∠C=90°.设CE=x,则DE=EF=16-x,在Rt△CEF中,由勾股定理,得(16-x)2=64+x2.解得:x=6.所以EC=6 cm.答:EC=6 cm,CF=8 cm.类型21.C 2.15 3.2.604.把长方体的面DCC′D′沿棱C′D′展开至面ABCD上,如图.构成矩形ABC′D′,则A到C′的最短距离为AC′的长度,连接AC′交DC于O,易证△AOD≌△C′OC.∴OD=OC.即O为DC的中点,由勾股定理,得AC′2=AD′2+D′C′2=82+62=100,∴AC′=10 cm.即从顶点A沿直线到DC中点O,再沿直线到顶点C′,贴的彩带最短,最短长度为10 cm.5.(1)如图,木柜的表面展开图是两个矩形ABC′1D1和ACC1A1.蚂蚁能够最快到达目的地的可能路径有如图所示的AC′1和AC1两种.(2)蚂蚁沿着木柜表面经线段A1B1到C′1,爬过的路径的长l1=42+(4+5)2=97.蚂蚁沿着木柜表面经线段BB1到C1,爬过的路径的长l2=(4+4)2+52=89.∵l1>l2,∴最短路径的长是89.。

《勾股定理》典型例题折叠问题

《勾股定理》典型例题折叠问题

《勾股定理》典型例题折叠问题1、如图,有一张直角三角形纸片,两直角边A C=6,BC=8,将△AB C折叠,使点B 与点A 重合,折痕为DE,则CD 等于( )A. 425B. 322C. 47D . 352、如图所示,已知△A BC中,∠C=90°,AB 的垂直平分线交BC •于M,交AB 于N,若AC =4,MB=2M C,求AB 的长.3、折叠矩形AB CD 的一边AD,点D 落在BC 边上的点F 处,已知A B=8CM,BC=10C M,求C F 和EC 。

4、如图,在长方形ABCD 中,DC=5,在DC 边上存在一点E,沿直线A E把△ABC 折叠,使点D 恰好在BC 边上,设此点为F ,若△ABF 的面积为30,求折叠的△AE D的面积B CEDDCBAF E5、如图,矩形纸片ABCD 的长AD =9㎝,宽AB=3㎝,将其折叠,使点D与点B重合,那么折叠后DE 的长是多少?6、如图,在长方形AB CD中,将∆ABC 沿AC 对折至∆AEC 位置,C E与AD 交于点F 。

(1)试说明:AF=FC ;(2)如果AB=3,B C=4,求A F的长7、如图2所示,将长方形ABCD 沿直线A E折叠,顶点D正好落在B C边上F点处,已知CE=3cm ,AB =8cm,则图中阴影部分面积为_______.8、如图2-3,把矩形ABCD沿直线BD向上折叠,使点C落在C′的位置上,已知AB=•3,BC=7,重合部分△EBD的面积为________.9、如图5,将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G。

如果M为CD边的中点,求证:DE:DM:EM=3:4:5。

10、如图2-5,长方形ABCD中,AB=3,BC=4,若将该矩形折叠,使C点与A点重合,•则折叠后痕迹EF的长为( )A.3.74 B.3.75 C.3.76 D.3.772-511、如图1-3-11,有一块塑料矩形模板ABCD,长为10cm,宽为4cm,将你手中足够大的直角三角板PHF的直角顶点P落在AD边上(不与A、D重合),在AD上适当移动三角板顶点P:①能否使你的三角板两直角边分别通过点B与点C?若能,请你求出这时AP 的长;若不能,请说明理由.②再次移动三角板位置,使三角板顶点P在AD上移动,直角边PH 始终通过点B,另一直角边PF与DC的延长线交于点Q,与BC交于点E,能否使CE=2cm?若能,请你求出这时AP 的长;若不能,请你说明理由.12、如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,若BE=12,CF=5.求线段EF的长。

勾股定理中的折叠问题(最新整理)

勾股定理中的折叠问题(最新整理)

B C E勾股定理中的折叠问题例1:如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm , 长BC 为10cm .当小红折叠时,顶点D 落在BC 边上的点F:处(折痕为AE )(1)求BF 的长;(2)求EC 的长。

BC ,使点B 落在AD 边的F 处,已知:AB=3,BC=5,例2:已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A 、6cm 2B 、8cm 2C 、10cm 2D 、12cm 2对应练习:1、如图2-2,把一张长方形纸片ABCD 折叠起来,使其对角顶点A 、C 重合, 若其长BC 为a ,宽AB 为b,则折叠后不重合部分的面积是多少?A B第11题图A EB CDF2、如图2-3,把矩形ABCD 沿直线BD 向上折叠,使点C 落在C ′的位置上,已知AB= 3,BC=7,求重合部分△EBD的面积例3:有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?对应练习:1、如图,在△ABC 中,∠B=,AB=BC=6,把△ABC 进行折叠,使点A 与点D 90重合,BD:DC=1:2,折痕为EF ,点E 在AB 上,点F 在AC 上,求EC的长。

AE B AD B CEF例4:如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。

现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,恰与AE 重合,求CD对应练习:1、如图,四边形ABCD 是矩形,AB =3,BC =4,把矩形沿直线AC 折叠,点B 落在点F 处,连接DF ,CF 与AD 相交于点E ,求DE 的长和△ACE 的面积.2、如图,折叠矩形纸片ABCD ,先折出折痕(对角线)BD ,再折叠,使AD 落在对角线BD 上,得折痕DG ,若AB = 2,BC = 1,求AG.AC DB EG A BC'E D CBA 总结:一、三角形中的折叠基本图形二、矩形F EDCB A 图1AC BD C D。

勾股定理中折叠问题

勾股定理中折叠问题

考点:折叠问题1、如图所示,已知△ABC 中,∠C=90°,AB 的垂直平分线交BC •于M ,交AB 于N ,若AC=4,MB=2MC ,求AB 的长.2、如图,在长方形ABCD 中,DC=5,在DC 边上存在一点E ,沿直线AE 把△ABC 折叠,使点D 恰好在BC 边上,设此点为F ,若△ABF 的面积为30,求折叠的△AED 的面积3、如图,在长方形ABCD 中,将∆ABC 沿AC 对折至∆AEC 位置,CE 与AD 交于点F 。

(1)试说明:AF=FC ;(2)如果AB=3,BC=4,求AF 的长4、如图2-3,把矩形ABCD 沿直线BD 向上折叠,使点C 落在C ′的位置上,已知AB=•3,BC=7,重合部分△EBD 的面积为________.DCBAFE5、(好)如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m。

假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒?6、(稍难)如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,若BE=12,CF=5.求线段EF的长。

7、(难)如图1-3-11,有一块塑料矩形模板ABCD,长为10cm,宽为4cm,将你手中足够大的直角三角板 PHF 的直角顶点P落在AD边上(不与A、D重合),在AD上适当移动三角板顶点P:①能否使你的三角板两直角边分别通过点B与点C?若能,请你求出这时 AP 的长;若不能,请说明理由.②再次移动三角板位置,使三角板顶点P在AD上移动,直角边PH 始终通过点B,另一直角边PF与DC的延长线交于点Q,与BC交于点E,能否使CE=2cm?若能,请你求出这时AP的长;若不能,请你说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与直角有关的折叠问题(一)
1.如图,将矩形ABCD勺四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH
若EH=9厘米,EF=12厘米,则边AD的长是()
A. 12厘米
B. 15厘米
C. 20厘米
D. 21厘米
2. 如图,在矩形ABCD中, AB=4, BC=8将矩形ABCD沿EF
折叠,使点C与点A重合,则折痕EF 的长为(
5C. L D.
3. 如图1,四边形ABCD是一矩形纸片,AB=8cm
作:(1)将AB向AE折过去,使AB与AE重合,得折痕AF,如图2;(2)将厶AFB以BF为
A ICm J
B 2cm j
C 3cn∩j D
4. 如图,已知边长为5的等边三角形ABC纸片,点E在AC 边上,点F在AB边上,沿着
EF折叠,使点A落在BC边上的点D的位置,且ED⊥ BC,则
CE 的长是()A. 1°B. lθ^5λ∕3 C.
D2O-1C√3
5. 如图,在矩形纸片ABCD中, AD=6cm点E在BC上,将纸片
-
P
G
AE=8cm 操
A. 6
B.
折痕向右折过去,得图
沿AE 折叠,使点 B 落在AC 上的点F 处,且∠ AEF=∠ CEF 贝U AB 的长是(
)
A. 2cm
B. - √--d --1-
C. 4cm
D. L -'
6. 如图,CD 是 Rt △ ABC 斜边AB 上的高,直角边 ■ : ,现将△ BCD 沿 CD 折叠,点B
7. 如图,在矩形 ABCD 中,二「一「:;,「二二匚,将△ BCD 沿对角线BD 翻折,点C
落在Cr 处,AD 与BC 交于点 E ,连接 AC ,贝U AC : BD 为
曲二丄M
8.
如图,在矩形 ABCD 中,点E , F 分别在边AB, BC 上,且
? ,将矩形沿直线 EF
折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q,有下列结论:①EF=2BE ②
PF=2PE ③FQ=4EQ ④厶PBF 是等边三角形.其中正确的是 ( )
A.①②
B.②③
C.①③
D.①④
恰好落在AB 的中点E 处,则图中阴影部分的面积为
A.
IC
沿AE折叠,使点B落在AC上的点F处,且∠ AEF=∠ CEF贝U AB的长是()
9. 如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点「上.若AB=16, BC=32
则BF 的长为(

8√2
10. 如图,在矩形 ABCD 中,E 是BC 的中点,将△ ABE 沿AE
DG 匕 AD 折叠后得到△ AFE,点F 在矩形ABCD 内部,延长 AF 交CD 于点G 若
,则j -'
1 Ξ√Jt + 1
∖Λt⅛ 1
A. ':
B. '
C.
D.
2
11.如图,折叠直角三角形纸片
ABC 的直角∠ C , -,j -' -
:
, ∠ B=30°,则 DE 的长为(
使点 C 落在斜边 AB 上的点E 处,已知
A.二
B. E
C D

12. 如图,点 O 是矩形ABCD 勺中心,E 是AB
叠后,点B 恰好与点O 重合,若BC=3则折痕
A. B. C. T -I 一 D. 6

(
沿CE 折
13.如图,在矩形ABCD中,-匚一―丄一,将矩形沿直线EF折叠,使点B落在AD边的
14.如图,将矩形ABCD 沿
AE折叠,使点D落在Q处,若D iΣ)-AD ,DE=2,
则0D的长为()A.柘B. C.罷D. 2忑 D E C
2
15.如图1是一个直角三角形纸片,∠ C=90°, ∠ A=30°, BC=3cm ^
将其折叠,使点C落在斜边上的点C处,折痕为BD,如图2 ,再将图2沿DE折叠,使点A 落在DC的延长线上
的点A'处,如图3,则折痕DE的长为()
* A. 3cmB. 2V3cm c. 2cmD. ^Cm
16.如图,在一张矩形纸片ABCD中,AD=6cm点E, F分别是CD和AB的中点,现将这张纸片折叠,
使点B落在EF上的点G处,折痕为AH若HG的延长线恰好经过点D,则CD的长为()
中点P处.若∠ DPE=60 ,则矩形的周长为()cm.
A.6+9√3
B.9+12√3
C.18+12√3
D.6 + 18√3
L。

相关文档
最新文档