【新课标-精品卷】2018年最新鲁教版五四制八年级数学下册《特殊平行四边形》单元测试题及答案

合集下载

2022年最新强化训练鲁教版(五四制)八年级数学下册第六章特殊平行四边形同步训练试题(含详细解析)

2022年最新强化训练鲁教版(五四制)八年级数学下册第六章特殊平行四边形同步训练试题(含详细解析)

鲁教版(五四制)八年级数学下册第六章特殊平行四边形同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,正方形ABCD 的两条对角线AC ,BD 相交于点O ,点E 在BD 上,且BE =AD ,则∠ACE 的度数为( )A .22.5°B .27.5°C .30°D .35°2、如图,长方形OABC 中,点A 在y 轴上,点C 在x 轴上.4OA BC ==,8AB OC ==.点D 在边AB 上,点E 在边OC 上,将长方形沿直线DE 折叠,使点B 与点O 重合.则点D 的坐标为( )A .()4,4B .()5,4C .()3,4D .()6,43、正方形具有而矩形不一定有的性质是( )A .对角线互相垂直B .对角线相等C .对角互补D .四个角相等4、已知,如图长方形ABCD 中,AB =3,AD =9,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则BEF 的面积为( )A .6B .7.5C .12D .155、如图,菱形ABCD 的面积为24cm 2,对角线BD 长6cm ,点O 为BD 的中点,过点A 作AE ⊥BC 交CB 的延长线于点E ,连接OE ,则线段OE 的长度是( )A .3cmB .4cmC .4.8cmD .5cm6、如图,菱形ABCD 的对角线AC 、BD 相交于点O ,点P 是对角线BD 上一点,过点P 分别作PE ⊥AB ,PF ⊥AD ,垂足分别是点E 、F ,若OA =4,S 菱形ABCD =24,则PE +PF 的长为( )A B .3 C .125 D .2457、已知锐角∠AOB ,如图.(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径画弧,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,两弧交于点P ,连接CP ,DP ;(3)作射线OP 交CD 于点Q .根据以上作图过程及所作图形,下列结论中错误的是( )A .四边形OCPD 是菱形B .CP =2QC C .∠AOP =∠BOPD .CD ⊥OP8、如图,等腰Rt ABC ∆中,90BAC ∠=︒,AD BC ⊥于D ,ABC ∠的平分线分别交AC 、AD 于点E 、F ,CAD ∠的平分线分别交BE 、BC 于点M 、N ,连接DM 、EN ,下列结论:①DF DN =;②AE CN =;③DMN ∆是等边三角形;④EN NC ⊥;⑤BE 垂直平分AN ,其中正确的结论个数是( )A .2个B .3个C .4个D .5个9、下列四个命题中,真命题是( )A .对角线互相平分的四边形是平行四边形B .对角线互相垂直的四边形是菱形C .以一条对角线为对称轴的四边形是菱形D .对角线相等的四边形是矩形10、如图,在△ABC 中,AB =AC ,BD =CD ,点E 为AC 的中点,连接DE ,若△ABC 的周长为20cm ,则△CDE 的周长为( )A .10 cmB .12 cmC .14 cmD .16 cm第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,90,ACB AC BC ∠=︒=,D 为ABC 外一点,且,AD BD DE AC =⊥交CA 的延长线于E 点,若1,3AE ED ==,则BC =_______.2、如图,正方形ABCD中,将边BC绕着点C旋转,当点B落在边AD的垂直平分线上的点E处时,∠AEC的度数为_______3、如图,四边形ABFE、AJKC、BCIH分别是以Rt△ABC的三边为一边的正方形,过点C作AB的垂线,交AB于点D,交FE于点G,连接HA、CF.欧几里得编纂的《原本》中收录了用该图形证明勾股定理的方法.关于该图形的下面四个结论:①△ABH≌△FBC;②正方形BCIH的面积=2△ABH的面积;③矩形BFGD的面积=2△ABH的面积;④BD2+AD2+CD2=BF2.正确的有______.(填序号)4、菱形的判定:(1)有一组邻边____________的平行四边形叫做菱形.几何语言描述:∵四边形ABCD是平行四边形,AB=____________,∴四边形ABCD是菱形.(2)对角线互相____________的平行四边形是菱形几何语言描述:∵在平行四边形ABCD中,AC⊥____________,∴ 平行四边形ABCD是菱形.(3)四条边都____________的四边形是菱形.几何语言描述:∵在四边形ABCD中,AB=BC=CD=____________,∴ 平行四边形ABCD是菱形.5、在菱形ABCD中,60∠=︒,其所对的对角线长为2,则菱形ABCD的面积是__.A三、解答题(5小题,每小题10分,共计50分)1、如图,已知正方形ABCD,点E在边BC上,连接AE.(1)尺规作图:作ADF∠的边与线段AB的交点.(不写作法,保∠,使ADF BAE∠∠,点F是ADF=留作图痕迹);(2)探究:AE,DF的位置关系和数量关系,并说明理由.2、如图,在菱形ABCD中,点E、F分别是边CD、BC的中点(1)求证:四边形BDEG 是平行四边形;(2)若菱形ABCD 的边长为13,对角线AC =24,求EG 的长.3、如图,在ABCD 中,AE BC ⊥于点E ,延长BC 至点F ,使CF BE =,连接AF ,DE ,DF .(1)求证:四边形AEFD 为矩形;(2)若3AB =,4DE =,5BF =,求DF 的长.4、如图,已知菱形ABCD 中,分别以C 、D 为圆心,大于12CD 的长为半径作弧,两弧分别相交于M 、N 两点,直线MN 交CD 于点F ,交对角线AC 于点E ,连接BE 、DE .(1)求证:BE =CE ;(2)若∠ABC =72°,求∠ABE 的度数.5、如图所示,在每个小正方形的边长均为1的网格中,线段AB 的端点A 、B 均在小正方形的顶点上.(1)在图中画出等腰△ABC ,且△ABC 为钝角三角形,点C 在小正方形顶点上;(2)在(1)的条件下确定点C后,再画出矩形BCDE,D,E都在小正方形顶点上,且矩形BCDE的周长为16,直接写出EA的长为.-参考答案-一、单选题1、A【解析】【分析】利用正方形的性质证明∠DBC=45°和BE=BC,进而证明∠BEC=67.5°.【详解】解:∵四边形ABCD是正方形,∴BC=AD,∠DBC=45°,∵BE=AD,∴BE=BC,∴∠BEC=∠BCE=(180°﹣45°)÷2=67.5°,∵AC⊥BD,∴∠COE=90°,∴∠ACE=90°﹣∠BEC=90°﹣67.5°=22.5°,故选:A.【点睛】本题考查正方形的性质,以及等腰三角形的性质,掌握正方形的性质并加以利用是解决本题的关键.2、C【解析】【分析】设AD=x,在Rt△OAD中,据勾股定理列方程求出x,即可求出点D的坐标.【详解】解:设AD=x,由折叠的性质可知,OD=BD=8-x,在Rt△OAD中,∵OA2+AD2=OD2,∴42+x2=(8-x)2,∴x=3,3,4,∴D()故选C.【点睛】本题考查了矩形的性质,勾股定理,以及折叠的性质,熟练掌握勾股定理是解答本题的关键.直角三角形两条直角边的平方和等于斜边的平方.3、A【解析】【分析】根据正方形的性质,矩形的性质逐一进行判断即可.【详解】解:A中对角线互相垂直,是正方形具有而矩形不具有,故符合题意;B中对角线相等,正方形具有而矩形也具有,故不符合题意;C中对角互补,正方形具有而矩形也具有,故不符合题意;D中四个角相等,正方形具有而矩形也具有,故不符合题意;【点睛】本题考查了正方形的性质,矩形的性质.解决本题的关键是对正方形,矩形性质的灵活运用.4、B【解析】【分析】根据翻折的性质可得,BE=DE,设AE=x,则ED=BE=9−x,在直角△ABE中,根据勾股定理可得32+x2=(9−x)2,即可得到BE的长度,由翻折性质可得,∠BEF=∠FED,由矩形的性质可得∠FED=∠BFE,即可得出△BEF是等腰三角形,BE=BF,即可得出答案.【详解】解:设AE=x,则ED=BE=9−x,根据勾股定理可得,32+x2=(9−x)2,解得:x=4,由翻折性质可得,∠BEF=∠FED,∵AD∥BC,∴∠FED=∠BFE,∴∠BEF=∠BFE,∴BE=BF=5,×5×3=7.5.∴S△BFE=12故选:B.【点睛】本题主要考查了翻折的性质及矩形的性质,熟练应用相关知识进行求解是解决本题的关键.5、B【分析】由菱形的性质得出BD=6cm,由菱形的面积得出AC=8cm,再由直角三角形斜边上的中线等于斜边的一半即可得出结果.【详解】解:∵四边形ABCD是菱形,∴BD⊥AC,AC×BD=24cm2,∵BD=6cm,S菱形ABCD═12∴AC=8cm,∵AE⊥BC,∴∠AEC=90°,AC=4cm,∴OE=12故选:B.【点睛】本题主要考查了菱形的性质、直角三角形斜边上的中线性质;熟练掌握菱形的性质是解题的关键.6、D【解析】【分析】根据菱形的面积以及OA的长,求得OB的长,勾股定理求得边长AB,进而根据菱形的面积等于()⨯+,即可求得答案.AB PE PF【详解】解:∵四边形ABCD是菱形∴11,,22AO AC OB BD AO OD ==⊥,AB AD = OA =4,S 菱形ABCD =24,1242AC BD ∴⨯= 即122242OA OB ⨯⨯⨯⨯= 3OB ∴=Rt AOB 中,5AB连接PAPE ⊥AB ,PF ⊥AD ,∴22()ABD ABP APD ABCD S S S S ==+△△△菱形11222AB PE AD PF ⎛⎫=⨯⨯⨯+⨯ ⎪⎝⎭()AB PE PF =⨯+S 菱形ABCD =24,5AB =245PE PF ∴+= 故选D【点睛】本题考查了菱形的性质,勾股定理,掌握菱形的性质是解题的关键.7、A【解析】【分析】根据作图信息可以判断出OP 平分AOB ∠,由此可以逐一判断即可.【详解】解:由作图可知,,,OC OD PC PD OP ==平分AOB ∠∴OP 垂直平分线段CD∴∠AOP =∠BOP ,CD ⊥OP故选项C ,D 正确;由作图可知,CD CP PD ==∴PCD ∆是等边三角形,∴60CPD ∠=︒∵OP 垂直平分线段CD∴30CPQ ∠=︒∴CP =2QC故选项B 正确,不符合题意;由作图可知,,OC OD PC PD ==,不能确定四边形OCPD 是菱形,故选项A 符合题意,故选:A【点睛】本题考查了基本作图,解题的关键是熟练掌握作图的依据.8、C【解析】【分析】求出BD AD =,DBF DAN ∠=∠,BDF ADN ∠=∠,证ΔΔDFB DAN ≅,即可判断①,证ΔΔABF CAN ≅,推出CN AF AE ==,即可判断②;求出22.5ADM ∠=︒,即可判断⑤,根据三角形外角性质求出DNM ∠,求出MDN DNM ∠=∠,即可判断③,可证NE NC =,求得90ENC ∠=︒,可判断④.【详解】解:90BAC ∠=︒,AC AB =,AD BC ⊥,45ABC C ∴∠=∠=︒,AD BD CD ==,90ADN ADB ∠=∠=︒,45BAD CAD ∠=︒=∠, BE 平分ABC ∠,122.52ABE CBE ABC ∴∠=∠=∠=︒, 9022.567.5BFD AEB ∴∠=∠=︒-︒=︒,67.5AFE BFD AEB ∴∠=∠=∠=︒,AF AE ∴=, M 为EF 的中点,AM BE ∴⊥,90AMF AME ∴∠=∠=︒,9067.522.5DAN MBN ∴∠=︒-︒=︒=∠,在ΔFBD 和ΔNAD 中FBD DAN BD ADBDF ADN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ΔΔFBD NAD ASA ∴≅,DF DN ∴=,故①正确;∵AN 平分∠CAD , ∴122.52CAN DAN CAD ABF ∠=∠=∠=︒=∠,在AFB ∆和ΔCNA 中4522.5BAF C AB ACABF CAN ∠=∠=︒⎧⎪=⎨⎪∠=∠=︒⎩, ()ΔΔAFB CAN ASA ∴≅,AF CN ∴=,AF AE =,AE CN ∴=,故②正确; =AE AF ,M 为EF 的中点,AM EF ∴⊥,90AMF ∴∠=︒,同理90ADB ∠=︒,BFD AFE ∠=∠, BE 平分ABC ∠,MBA MBN ∴∠=∠,AN BM ⊥,90AMB NMB ∴∠=∠=︒,1801809022.567.5BNM BAM AMB ABM ∴∠=∠=︒-∠-∠=︒-︒-︒=︒,BA BN ∴=,AM MN ∴=,BE ∴垂直平分AN ,故⑤正确;22.522.545DMN DAN ADM ∴∠=∠+∠=︒+︒=︒,45BMD ∴∠=︒,4522.567.5DNA C CAN ∠=∠+∠=︒+︒=︒,1804567.567.5MDN DNM ∴∠=︒-︒-︒=︒=∠,DM MN ∴=,ΔDMN ∴是等腰三角形,而67.5MND ∠=︒,ΔDMN ∴不是等边三角形,故③错误,AM MN =,AN BE ⊥,AE EN ∴=,NE NC ∴=,45NEC C ∴∠=∠=︒,90ENC ∴∠=︒,EN NC ∴⊥,故④正确;即正确的有4个,故选:C .【点睛】本题考查全等三角形的判定与性质、等腰三角形的判定与性质、角平分线的定义、线段垂直平分线的判定与性质、三角形外角性质、三角形内角和定理、直角三角形斜边上中线性质的应用,综合性强,难度适中,能正确证明推出两个三角形全等是解此题的关键,主要考查学生的推理能力.9、A【解析】【分析】根据平行四边形、菱形、矩形的判定定理即可判断.【详解】解:A、对角线互相平分的四边形是平行四边形,故原命题是真命题;B、对角线互相垂直的平行四边形才是菱形,故原命题是假命题;C、以两条对角线为对称轴的四边形是菱形,以一条对角线为对称轴的四边形可能是“筝”形,故原命题是假命题;D、对角线相等的平行四边形才是矩形,故原命题是假命题;故选:A.【点睛】本题考查平行四边形、菱形、矩形的判定,掌握平行四边形、菱形、矩形的判定定理是解题的关键.10、A【解析】【分析】根据三角形中位线定理求出DE,根据三角形的周长公式计算,得到答案.【详解】解:∵点E为AC的中点,∴AE=CE,∵BD=CD,∴DE=1AB,2∵△ABC的周长为20,即AB+BC+AC=20cm,(AB+BC+AC)=10cm,∴△CDE的周长=DE+CD+CE=12故选:A.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.二、填空题1、2【解析】【分析】过点D作DM⊥CB于M,证出∠DAE=∠DBM,判定△ADE≌△BDM,得到DM=DE=3,证明四边形CEDM是矩形,得到CE=DM=3,由A E=1,求出BC=AC=2.【详解】解:∵DE⊥AC,∴∠E=∠C=90°,∥,∴CB ED过点D作DM⊥CB于M,则∠M=90°=∠E,∵AD=BD,∴∠BAD=∠ABD,∵AC=BC,∴∠CAB=∠CBA,∴∠DAE=∠DBM,∴△ADE≌△BDM,∴DM=DE=3,∵∠E=∠C=∠M =90°,∴四边形CEDM是矩形,∴CE=DM=3,∵A E=1,∴BC=AC=2,故答案为:2.【点睛】此题考查了全等三角形的判定及性质,矩形的判定及性质,等边对等角证明角度相等,正确引出辅助线证明△ADE≌△BDM是解题的关键.2、45︒或135︒【解析】【分析】分两种情况分析:当点E 在BC 下方时记点E 为点1E ,点E 在BC 上方时记点E 为点2E ,连接1BE ,2BE ,根据垂直平分线的性质得11E B E C =,22E B E C =,由正方形的性质得AB BC =,90ABC ∠=︒,由旋转得1BC E C =,2BC E C =,故1E BC ,2E BC 是等边三角形,1ABE ,2ABE 是等腰三角形,由等边三角形和等腰三角形的求角即可.【详解】如图,当点E 在BC 下方时记点E 为点1E ,连接1BE ,∵点1E 落在边AD 的垂直平分线,∴11E B E C =,∵四边形ABCD 是正方形,∴AB BC =,∵BC 绕点C 旋转得1CE ,∴1BC E C =,∴1E BC 是等边三角形,1ABE 是等腰三角形,∴1160CBE BE C ∠=∠=︒,19060150ABE ∠=︒+︒=︒,∴11(180150)215AE B BAE ∠=∠=︒-︒÷=︒,∴111601545AE C BE C AE B =∠-∠=︒-︒=︒,当点E 在BC 上方时记点E 为点2E ,连接2BE ,∵点2E 落在边AD 的垂直平分线,∴22E B E C =,∵四边形ABCD 是正方形,∴AB BC =,,∵BC 绕点C 旋转得2CE ,∴2BC E C =,∴2E BC 是等边三角形,2ABE 是等腰三角形,∴2260CBE BE C ∠=∠=︒,2906030ABE ∠=︒-︒=︒,∴22(18030)275AE B BAE ∠=∠=︒-︒÷=︒,∴2226075135AE C BE C AE B =∠+∠=︒+︒=︒.故答案为:45︒或135︒.【点睛】本题考查正方形的性质、垂直平分线的性质、旋转的性质,以及等边三角形与等腰三角形的判定与性质,掌握相关知识点的应用是解题的关键.3、①②③【解析】【分析】由“SAS”可证△ABH≌△FBC,故①正确;由平行线间的距离处处相等,可得S△ABH=S△BCH=12S正方形BCIH,故②正确;同理可证矩形BFGD的面积=2△ABH的面积,故③正确;由勾股定理可得BD2+AD2+2CD2=BF2,故④错误,即可求解.【详解】解:∵四边形ABFE和四边形CBHI是正方形,∴AB=FB,HB=CB,∠ABF=∠CBH=90°,∴∠CBF=∠HBA,∴△ABH≌△FBC(SAS),故①正确;如图,连接HC,∵AI∥BH,∴S△ABH=S△BCH=12S正方形BCIH,∴正方形BCIH的面积=2△ABH的面积,故②正确;∵CG∥BF,∴S△CBF=12×BF×BD=12S矩形BDGF,∴矩形BFGD的面积=2△ABH的面积,故③正确;∵BC2=CD2+DB2,AC2=CD2+AD2,BC2+AC2=AB2,∴BD2+CD2+CD2+AD2=AB2=BF2,∴BD2+AD2+2CD2=BF2,故④错误,故答案为:①②③.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,平行线的性质,勾股定理等知识,灵活运用这些性质解决问题是解题的关键.4、相等AD垂直BD相等AD【解析】略5、【解析】【分析】根据菱形的性质证得△ABD是等边三角形,得到OB,利用勾股定理求出OA,由菱形的性质求出菱形的面积.【详解】解:如图所示:在菱形ABCD 中,60BAD ∠=︒,其所对的对角线长为2,AD AB ∴=,AC BD ⊥,BO DO =,AO CO =,ABD ∴∆是等边三角形,则2AB AD ==,故1BO DO ==,则AO =AC =则菱形ABCD 的面积122=⨯⨯故答案为:【点睛】此题主要考查了菱形的性质以及勾股定理,正确得出菱形的另一条对角线的长是解题关键.三、解答题1、 (1)见解析;(2)AE DF =,AE DF ⊥,见解析【解析】【分析】(1)根据题意作出ADF BAE =∠∠即可;(2)证明ABE DAF △≌△即可得结论.(1)如图,ADF ∠即为所求.(2)AE DF =,AE DF ⊥.∵四边形ABCD 是正方形,∴90ABC DAB ∠=∠=︒,AD AB =.在ABE △和DAF △中,ADF BAE ABC DAB AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABE DAF △≌△(AAS ),∴AE DF =.∵90ADF DFA ∠+∠=︒,ADF BAE =∠∠.∴90BAE DFA ∠+∠=︒,即AE DF ⊥.【点睛】本题考查了正方形的性质,三角形全等的性质与判定,作一个角等于已知角,掌握全等三角形的性质与判定是解题的关键.2、 (1)证明见解析(2)10【解析】【分析】(1)利用AC 平分∠BAD ,AB ∥CD ,得到∠DAC =∠DCA ,即可得到AD =DC ,利用一组对边平行且相等可证明四边形ABCD 是平行四边形,再结合AB =AD ,即可求证结论;(2)根据菱形的性质,得到CD=13,AO=CO=12,结合中位线性质,可得四边形BDEG是平行四边形,利用勾股定理即可得到OB、OD的长度,即可求解.(1)证明:∵AC平分∠BAD,AB∥CD,∴∠DAC=∠BAC,∠DCA=∠BAC,∴∠DAC=∠DCA,∴AD=DC,又∵AB∥CD,AB=AD,∴AB∥CD且AB=CD,∴四边形ABCD是平行四边形,∵AB=AD,∴四边形ABCD是菱形.(2)解:连接BD,交AC于点O,如图:∵菱形ABCD的边长为13,对角线AC=24,∴CD=13,AO=CO=12,∵点E、F分别是边CD、BC的中点,∴EF∥BD(中位线),∵AC、BD是菱形的对角线,∴AC⊥BD,OB=OD,∴DE∥BG,BD∥EG,∵四边形BDEG是平行四边形,∴BD=EG,在△COD中,∵OC⊥OD,CD=13,CO=12,∴5OB OD=,∴EG=BD=10.【点睛】本题考查了平行四边形性质判定方法、菱形的判定和性质、等腰三角形性质、勾股定理等知识,关键在于熟悉四边形的判定方法和在题目中找到合适的判定条件.3、 (1)见解析(2)12 5【解析】【分析】(1)根据线段的和差关系可得BC=EF,根据平行四边形的性质可得AD∥BC,AD=BC,即可得出AD =EF,可证明四边形AEFD为平行四边形,根据AE⊥BC即可得结论;(2)根据矩形的性质可得AF=DE,可得△BAF为直角三角形,利用“面积法”可求出AE的长,即可得答案.(1)∵BE=CF,∴BE+CE=CF+CE,即BC=EF,∵ABCD是平行四边形,∴AD =EF ,∵AD ∥EF ,∴四边形AEFD 为平行四边形,∵AE ⊥BC ,∴∠AEF =90°,∴四边形AEFD 为矩形.(2)∵四边形AEFD 为矩形,∴AF =DE =4,DF =AE ,∵3AB =,4DE =,5BF =,∴AB 2+AF 2=BF 2,∴△BAF 为直角三角形,∠BAF =90°, ∴1122ABFS AB AF BF AE =⨯=⨯, ∴AE =125, ∴125DF AE ==. 【点睛】本题考查平行四边形的性质、矩形的判定与性质及勾股定理的逆定理,熟练掌握相关性质及判定定理是解题关键.4、 (1)见解析(2)∠ABE =18°【解析】【分析】(1)根据四边形ABCD 是菱形,得出CB =CD ,∠ACB =∠ACD ,再证△ECB ≌△ECD (SAS ),得出BE =DE ,根据MN 垂直平分线段CD ,得出EC =ED 即可;(2)根据等腰三角形内角和可求∠BAC =∠BCA =12(180°﹣72°)=54°,根据EB =EC ,求出∠EBC =∠ECB =54°即可.(1)证明:∵四边形ABCD 是菱形,∴CB =CD ,∠ACB =∠ACD ,在△ECB 和△ECD 中,CE CE ECB ECD CB CD =⎧⎪∠=∠⎨⎪=⎩, ∴△ECB ≌△ECD (SAS ),∴BE =DE ,由作图可知,MN 垂直平分线段CD ,∴EC =ED ,∴BE =CE .(2)解:∵BA =BC ,∠ABC =72°,∴∠BAC =∠BCA =12(180°﹣72°)=54°,∵EB =EC ,∴∠EBC =∠ECB =54°,∴∠ABE=∠ABC﹣∠EBC=18°.【点睛】本题考查菱形的性质,全等三角形的判定与性质,线段垂直平分线的判定与性质,等腰三角形的性质,三角形内角和定理,正确理解题意是解题关键.5、 (1)见解析(2)【解析】【分析】(1)作出腰为5且∠ABC是钝角的等腰三角形ABC即可;(2)作出边长分别为5,3的矩形ABDE即可.(1)解:如图,AB=BC,∠ABC>90°,所以△ABC即为所求;(2)解:如图,矩形BCDE即为所求.AE【点睛】本题考查作图-应用与设计作图,等腰三角形的判定,矩形的判定,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.。

2021-2022学年鲁教版八年级数学下册《第6章特殊平行四边形》单元综合练习(附答案)

2021-2022学年鲁教版八年级数学下册《第6章特殊平行四边形》单元综合练习(附答案)

2021-2022学年鲁教版八年级数学下册《第6章特殊平行四边形》单元综合练习(附答案)1.菱形具有而平行四边形不一定具有的性质是()A.两组对边分别平行B.两组对角分别相等C.对角线互相平分D.对角线互相垂直2.下列说法中,错误的是()A.平行四边形的对角线互相平分B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形3.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90°D.CE⊥DE4.如图,E是边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BE于点R,则PQ+PR的值是()A.B.C.D.5.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形6.将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心(对角线的交点),则图中四块阴影面积的和为()A.2cm2B.4cm2C.6cm2D.8cm27.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是.8.如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为.9.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD 上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是(把你认为正确的都填上).10.如图,将两条宽度都为3的纸条重叠在一起,使∠ABC=60°,则四边形ABCD的面积为.11.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是.12.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.若AB=,AG=1,则EB=.13.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD其中正确结论的为(请将所有正确的序号都填上).14.如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,则MN =.15.一个平行四边形的一条边长为3,两条对角线的长分别为4和2,则它的面积为.16.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.17.如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE 与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.18.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.19.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P 的坐标为.20.如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.21.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.22.如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,GD.(1)求证:△ECG≌△GHD;(2)小亮同学经过探究发现:AD=AC+EC.请你帮助小亮同学证明这一结论.(3)若∠B=30°,判定四边形AEGF是否为菱形,并说明理由.23.已知正方形ABCD如图所示,连接其对角线AC,∠BCA的平分线CF交AB于点F,过点B作BM⊥CF于点N,交AC于点M,过点C作CP⊥CF,交AD延长线于点P.(1)若正方形ABCD的边长为4,求△ACP的面积;(2)求证:CP=BM+2FN.24.如图,已知四边形ABCD为正方形,AB=4,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.25.已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.26.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,求证:矩形DEFG是正方形;(2)若AB=2,CE=,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.27.如图1,在正方形ABCD中,点P是对角线BD上的一点,点E在AD的延长线上,且P A=PE,PE交CD于点F,(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.28.如图,O是矩形ABCD的对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,且AE=BF=CG=DH.(1)求证:四边形EFGH是矩形;(2)若E、F、G、H分别是OA、OB、OC、OD的中点,且DG⊥AC,OF=2cm,求矩形ABCD的面积.参考答案1.解:A、不正确,两组对边分别平行;B、不正确,两组对角分别相等,两者均有此性质正确,;C、不正确,对角线互相平分,两者均具有此性质;D、菱形的对角线互相垂直但平行四边形却无此性质.故选:D.2.解:根据平行四边形和菱形的性质得到ABC均正确,而D不正确,因为对角线互相垂直的四边形也可能是梯形,故选:D.3.解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;B、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;C、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;D、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误.故选:B.4.解:连接BP,过C作CM⊥BD,∵S△BCE=S△BPE+S△BPC=BC×PQ×+BE×PR×=BC×(PQ+PR)×=BE×CM×,BC=BE,∴PQ+PR=CM,∵BE=BC=1,且正方形对角线BD=BC=,又∵BC=CD,CM⊥BD,∴M为BD中点,又△BDC为直角三角形,∴CM=BD=,即PQ+PR值是.故选:D.5.解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A错误;若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.6.解:如图,连接AP,AN,点A是正方形的对角线的交点.则AP=AN,∠APF=∠ANE=45°,∵∠P AF+∠F AN=∠F AN+∠NAE=90°,∴∠P AF=∠NAE,∴△P AF≌△NAE,∴四边形AENF的面积等于△NAP的面积,而△NAP的面积是正方形的面积的,而正方形的面积为4,∴四边形AENF的面积为1cm2,四块阴影面积的和为4cm2.故选:B.7.解:如图,过点D作DE⊥DP交BC的延长线于E,∵∠ADC=∠ABC=90°,∴四边形DPBE是矩形,∵∠CDE+∠CDP=90°,∠ADC=90°,∴∠ADP+∠CDP=90°,∴∠ADP=∠CDE,∵DP⊥AB,∴∠APD=90°,∴∠APD=∠E=90°,在△ADP和△CDE中,,∴△ADP≌△CDE(AAS),∴DE=DP,四边形ABCD的面积=四边形DPBE的面积=18,∴矩形DPBE是正方形,∴DP==3.故答案为:3.8.解:如图,过点E作x轴的垂线EH,垂足为H.过点G作x轴的垂线GM,垂足为M,连接GE、FO交于点O′.∵四边形OEFG是正方形,∴OG=EO,∠GOM=∠OEH,∠OGM=∠EOH,在△OGM与△EOH中,∴△OGM≌△EOH(ASA)∴GM=OH=2,OM=EH=3,∴G(﹣3,2).∴O′(﹣,).∵点F与点O关于点O′对称,∴点F的坐标为(﹣1,5).故答案是:(﹣1,5).9.解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC﹣BE=CD﹣DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,AD2+DF2=AF2,即a2+(a﹣)2=4,解得a=,则a2=2+,S正方形ABCD=2+,④说法正确,故答案为:①②④.10.解:∵纸条的对边平行,即AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是3,∴S四边形ABCD=AB×3=BC×3,∴AB=BC,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.如图,过A作AE⊥BC,垂足为E,∵∠ABC=60°,∴∠BAE=90°﹣60°=30°,∴AB=2BE,在△ABE中,AB2=BE2+AE2,即AB2=AB2+32,解得AB=2,∴S四边形ABCD=BC•AE=2×3=6.故答案是:6.11.解:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,则AM=BC+CE=1+3=4,FM=EF﹣AB=3﹣1=2,∠AMF=90°,∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°,∵H为AF的中点,∴CH=AF,在Rt△AMF中,由勾股定理得:AF===2,∴CH=,故答案为:.12.解:连接BD交AC于O,∵四边形ABCD、AGFE是正方形,∴AB=AD,AE=AG,∠DAB=∠EAG,∴∠EAB=∠GAD,在△AEB和△AGD中,,∴△EAB≌△GAD(SAS),∴EB=GD,∵四边形ABCD是正方形,AB=,∴BD⊥AC,AC=BD=AB=2,∴∠DOG=90°,OA=OD=BD=1,∵AG=1,∴OG=OA+AG=2,∴GD==,∴EB=.故答案为:.13.解:∵△ACE是等边三角形,∴∠EAC=60°,AE=AC,∵∠BAC=30°,∴∠F AE=∠ACB=90°,AB=2BC,∵F为AB的中点,∴AB=2AF,∴BC=AF,∴△ABC≌△EF A,∴FE=AB,∴∠AEF=∠BAC=30°,∴EF⊥AC,故①正确,∵EF⊥AC,∠ACB=90°,∴HF∥BC,∵F是AB的中点,∴HF=BC,∵BC=AB,AB=BD,∴HF=BD,故④说法正确;∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°,∵∠F AE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF,∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EF A(AAS),∴AE=DF,∵FE=AB,∴四边形ADFE为平行四边形,∵AE≠EF,∴四边形ADFE不是菱形;故②说法不正确;∴AG=AF,∴AG=AB,∵AD=AB,则AD=4AG,故③说法正确,故答案为:①③④.14.解:连接CF,∵正方形ABCD和正方形BEFG中,AB=7,BE=5,∴GF=GB=5,BC=7,∴GC=GB+BC=5+7=12,∴=13.∵M、N分别是DC、DF的中点,∴MN==.故答案为:.15.解:∵平行四边形两条对角线互相平分,∴它们的一半分别为2和,∵22+()2=32,∴两条对角线互相垂直,∴这个四边形是菱形,∴S=4×2=4.故答案为:4.16.解:在正方形ABCD中,∵∠ABD=∠CBD=45°,∵四边形MNPQ和AEFG均为正方形,∴∠BEF=∠AEF=90°,∠BMN=∠QMN=90°,∴△BEF与△BMN是等腰直角三角形,∴FE=BE=AE=AB,BM=MN=QM,同理DQ=MQ,∴MN=BD=AB,∴==,故答案为:.17.解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=BF,∵BC=5、CF=CD﹣DF=5﹣2=3,∴BF==,∴GH=BF=,故答案为:.18.解:∵正方形ABCD,∴AB=AD,∠BAE=∠DAE,在△ABE与△ADE中,,∴△ABE≌△ADE(SAS),∴∠AEB=∠AED,∠ABE=∠ADE,∵∠CBF=20°,∴∠ABE=70°,∴∠AED=∠AEB=180°﹣45°﹣70°=65°,故答案为:6519.解:由题意,当△ODP是腰长为5的等腰三角形时,有三种情况:(1)如答图①所示,PD=OD=5,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE===3,∴OE=OD﹣DE=5﹣3=2,∴此时点P坐标为(2,4);(2)如答图②所示,OP=OD=5.过点P作PE⊥x轴于点E,则PE=4.在Rt△POE中,由勾股定理得:OE===3,∴此时点P坐标为(3,4);(3)如答图③所示,PD=OD=5,点P在点D的右侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE===3,∴OE=OD+DE=5+3=8,∴此时点P坐标为(8,4).综上所述,点P的坐标为:(2,4)或(3,4)或(8,4);故答案为:(2,4)或(3,4)或(8,4);20.解:∵四边形ABCD是矩形,∴AB=DC=1,∠B=∠C=90°,AD∥BC,AD=BC,∴∠AMB=∠DAE,∵DE=DC,∴AB=DE,∵DE⊥AM,∴∠DEA=∠DEM=90°,在△ABM和△DEA中,,∴△ABM≌△DEA(AAS),∴AM=AD,∵AE=2EM,∴BC=AD=3EM,设EM=CM=x,则BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得:12+(2x)2=(3x)2,解得:x=,∴BM=;故答案为:.21.(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.22.解:(1)∵AF=FG,∴∠F AG=∠FGA,∵AG平分∠CAB,∴∠CAG=∠F AG,∴∠CAG=∠FGA,∴AC∥FG,∵DE⊥AC,∴FG⊥DE,∵FG⊥BC,∴DE∥BC,∴AC⊥BC,∴∠C=∠DHG=90°,∠CGE=∠GED,∵F是AD的中点,FG∥AE,∴H是ED的中点,∴FG是线段ED的垂直平分线,∴GE=GD,∠GDE=∠GED,∵DE∥BC,∴∠CGE=∠GED=∠GDE,∴△ECG≌△GHD(AAS);(2)证明:过点G作GP⊥AB于P,∴GC=GP,而AG=AG,∴△CAG≌△P AG,∴AC=AP,由(1)可得EG=DG,∴Rt△ECG≌Rt△DPG,∴EC=PD,∴AD=AP+PD=AC+EC;(3)四边形AEGF是菱形,证明:∵∠B=30°,∴∠ADE=30°,∴AE=AD,∴AE=AF=FG,由(1)得AE∥FG,∴四边形AEGF是平行四边形,∴四边形AEGF是菱形.23.解:∵四边形ABCD是正方形,AC是对角线,∴∠1=∠2=22.5°,又∵CP⊥CF,∴∠3+∠FCD=∠1+∠FCD=90°∴∠3=∠1=22.5°∴∠P=67.5°又四边形ABCD为正方形,∴∠ACP=45°+22.5°=67.5°∴∠P=∠ACP∴AP=AC又AC=AB=4∴AP=4,∴S△APC=AP•CD=4×4=8;(2)∵在△PDC和△FBC中,∴△PDC≌△FBC∴CP=CF在CN上截取NH=FN,连接BH∵FN=NH,且BN⊥FH∴BH=BF∴∠4=∠5∴∠4=∠1=∠5=22.5°又∠4+∠BFC=∠1+∠BFC=90°∴∠HBC=∠BAM=45°在△AMB和△BHC中,,∴△AMB≌△BHC,∴CH=BM∴CF=BM+2FN∴CP=BM+2FN.24.解:(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,∵正方形ABCD,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,(2)CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴AC=AE+CE=AB=×4=8,∴CE+CG=8是定值.25.(1)证明:∵四边形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵点E,O,F分别为AB,AC,AD的中点,∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)解:当AB⊥BC时,四边形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四边形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四边形AEOF是正方形.26.(1)证明:作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在Rt△EQF和Rt△EPD中,,∴Rt△EQF≌Rt△EPD(ASA),∴EF=ED,∴矩形DEFG是正方形;(2)如图2中,在Rt△ABC中.AC=AB=2,∵EC=,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,易知CG=.(3)①当DE与AD的夹角为30°时,∠EFC=120°,②当DE与DC的夹角为30°时,∠EFC=30°综上所述,∠EFC=120°或30°.27.(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∵P A=PE,∴PC=PE;(2)解:由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵P A=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPE=∠EDF=90°;(3)解:AP=CE;理由如下:在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∠BAP=∠BCP,∵P A=PE,∴PC=PE,∴∠DAP=∠DCP,∵P A=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE.28.(1)证明:∵四边形ABCD是矩形,∴OA=0B=OC=OD,∵AE=BF=CG=DH,∴AO﹣AE=OB﹣BF=CO﹣CG=DO﹣DH,即:OE=OF=OG=OH,∴四边形EFGH是矩形;(2)解:∵G是OC的中点,∴GO=GC,∵DG⊥AC,∴∠DGO=∠DGC=90°,又∵DG=DG,∴△DGC≌△DGO,∴CD=OD,∵F是BO中点,OF=2cm,∴BO=4cm,∵四边形ABCD是矩形,∴DO=BO=4cm,∴DC=4cm,DB=8cm,∴CB==4,∴矩形ABCD的面积=4×4=16cm2.。

2020-2021年度鲁教版八年级数学下册《第6章特殊的平行四边形》综合培优训练(附答案)

2020-2021年度鲁教版八年级数学下册《第6章特殊的平行四边形》综合培优训练(附答案)

2020-2021年度鲁教版八年级数学下册《第6章特殊的平行四边形》综合培优训练(附答案)1.如图,在长方形ABCD中,AE平分∠BAD交BC于点E,连接ED,若ED=5,EC=3,则长方形的周长为()A.20B.22C.24D.262.如图,矩形ABCD的对角线AC,BD相交于点O,且∠AOD=120°.过点A作AE⊥BD 于点E,则BE:ED等于()A.1:3B.1:4C.2:3D.2:53.如图,四边形ABCD是平行四边形,下列说法能判定四边形ABCD是菱形的是()A.AC⊥BD B.BA⊥BD C.AB=CD D.AD=BC4.如图,正方形ABCO和正方形DEFO的顶点A,E,O在同一直线l上,且EF=,AB =3,给出下列结论:①∠COD=45°,②AE=5,③CF=BD=,④△COF的面积S△COF=3,其中正确的个数为()A.1个B.2个C.3个D.4个5.如图,菱形ABCD的边AB的垂直平分线交AB于点E,交AC于点F,连接DF.当∠BAD=100°时,则∠CDF=()A.15°B.30°C.40°D.50°6.如图,菱形ABCD中,∠D=135°,BE⊥CD于E,交AC于F,FG⊥BC于G.若△BFG的周长为4,则菱形ABCD的面积为()A.4B.8C.16D.167.如图,正方形ABCD中,点E是对角线AC上的一点,且AE=AB,连接BE,DE,则∠CDE的度数为()A.20°B.22.5°C.25°D.30°8.如图,矩形ABCD中,AD=5,AB=7,正方形MBND′的顶点M,N分别在矩形的边AB,BC上,点E为DC上一个动点,当点D与点D′关于AE对称时,DE的长为.9.把长方形ABCD沿着直线EF对折,折痕为EF,对折后的图形EB′GF的边FG恰好经过点C,若∠AFE=55°,则∠CEB'=.10.如图,在正方形ABCD中,E是对角线AC上的动点,以DE为边作正方形DEFG,H 是CD的中点.连接GH,若GH的最小值是1,则正方形ABCD的边长为.11.如图,正方形ABCD的边长为2,M是BC的中点,N是AM上的动点,过点N作EF ⊥AM分别交AB,CD于点E,F.(1)AM的长为;(2)EM+AF的最小值为.12.如图,以Rt△ABC的斜边AB为一边,在AB的右侧作正方形ABED,正方形对角线交于点O,连接CO,如果AC=4,CO=,那么BC=.13.如图,已知正方形ABCD的边长为2,对角线AC、BD相交于点O,AE平分∠BAC交BD于点E,则BE的长为.14.如图,已知正方形ABCD,E是AD上一点,过BE上一点O作BE的垂线,交AB于点G,交CD于点H.BE=6,则GH=.15.如图,菱形ABCD中,AC,BD相交于O,DE⊥BC于E,连接OE,∠BAD=40°,则∠OED的度数为.16.如图,正方形ABCD边长为2,F为BC上一动点,作DE⊥AF于E,连接CE.当△CDE是以CD为腰的等腰三角形时,DE的长为.17.如图正方形ABCD边长为2,E为CD边中点,P为射线BE上一点(P不与B重合),若△PDC为直角三角形,则BP=.18.如图,正方形ABCD的边长为6,E是边AB边一点,G是AD延长线上一点,BE=DG,连接EG,CF⊥EG交EG于点H,交AD于点F,连接CE,BH,若BH=4,则EG 的长等于.19.如图,在菱形ABCD中,E为对角线BD上一点,且AE=DE,连接CE.(1)求证:CE=DE.(2)当BE=2,CE=1时,求菱形的边长.20.菱形ABCD的边长为6,∠D=60°,点E在边AD上运动.(1)如图1,当点E为AD的中点时,求AO:CO的值;(2)如图2,F是AB上的动点,且满足BF+DE=6,求证:△CEF是等边三角形.21.如图,过△ABC边AC的中点O,作OE⊥AC,交AB于点E,过点A作AD∥BC,与BO的延长线交于点D,连接CD,CE,若CE平分∠ACB,CE⊥BO于点F.(1)求证:①OC=BC;②四边形ABCD是矩形;(2)若BC=3,求DE的长.22.如图,正方形ABCD中,点P是对角线AC上一点,连接PB,边作PE⊥PB交AD边于于点E,且点E不与点A,D重合,作PM⊥AD,PN⊥AB,垂足分别为点M和N.(1)求证:PM=PN;(2)求证:EM=BN.23.如图,在正方形ABCD中,E,F分别是AD,CD的中点,连接BE,AF交于点M,分别延长AF,BC交于点N.(1)求∠BMN的度数;(2)求证:CM=AD.24.如图,矩形ABCD的对角线相交于O,点E是CF的中点,DF∥AC交CE延长线于点F,连接AF.(1)求证:四边形AODF是菱形;(2)若∠AOB=60°,∠AFC=90°,AB=1,求CF的长.25.在正方形ABCD中,点E为CD中点,连接AE并延长交BC延长线于点G,点F在BC上,∠F AE=∠DAE,连接FE并延长交AD延长线于H,连接HG.(1)求证:四边形AFGH为菱形:(2)若DH=1.求四边形AFGH的面积.26.如图,在矩形ABCD中,AB=3cm,BC=6cm.点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.参考答案1.解:∵四边形ABCD是长方形,∴∠B=∠C=90°,AB=DC,∵ED=5,EC=3,∴DC===4,则AB=4,∵AE平分∠BAD交BC于点E,∴∠BAE=∠DAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠BEA,∴AB=BE=4,∴长方形的周长为:2×(4+4+3)=22.故选:B.2.解:∵四边形ABCD是矩形,∴OA=OB=OD,∵∠AOD=120°,∴∠AOB=180°﹣120°=60°,∴△AOB为等边三角形,∵AE⊥BD,∴BE=OE=OB,∴ED=3BE,∴=,故选:A.3.解:能判定四边形ABCD是菱形的是AC⊥BD,理由如下:∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,故选:A.4.解:①∵∠AOC=90°,∠DOE=45°,∴∠COD=180°﹣∠AOC﹣∠DOE=45°,故正确;②∵EF=,∴OE=2,∵AO=AB=3,∴AE=AO+OE=2+3=5,故正确;③作DH⊥AB于H,作FG⊥CO交CO的延长线于G,则FG=1,CF=,BH=3﹣1=2,DH=3+1=4,BD=,故错误;④△COF的面积S△COF=×3×1=,故错误;故选:B.5.解:如图,连接BF,∵四边形ABCD是菱形,∴CD=BC,∠DCF=∠BCF,在△BCF和△DCF中,∵,∴△BCF≌△DCF(SAS)∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×100°=50°∴∠ABF=∠BAF=50°∵∠ABC=180°﹣100°=80°,∠CBF=80°﹣50°=30°∴∠CDF=30°.故选:B.6.解:∵菱形ABCD中,∠D=135°,∴∠BCD=45°,∵BE⊥CD于E,FG⊥BC于G,∴△BFG与△BEC是等腰直角三角形,∵∠GCF=∠ECF,∠CGF=∠CEF=90°,CF=CF,∴△CGF≌△CEF(AAS),∴FG=FE,CG=CE,设BG=FG=EF=x,∴BF=x,∵△BFG的周长为4,∴x+x+x=4,∴x=4﹣2,∴BE=2,∴BC=BE=4,∴菱形ABCD的面积=4×2=8,故选:B.7.解:∵四边形ABCD是正方形,∴AB=AD,∠ADC=90°,∠DAC=45°,∵AE=AB,∴AD=AE,∴∠ADE=∠AED=67.5°,∴∠CDE=90°﹣67.5°=22.5°,故选:B.8.解:如图,连接ED′,AD′,延长MD′交DC于点P,∵正方形MBND′的顶点M,N分别在矩形的边AB,BC上,点E为DC上一个动点,点D与点D′关于AE对称,∴设MD′=ND′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在Rt△EPD′中,设ED′=a,①当MD′=3时,AM=7﹣3=4,D′P=5﹣3=2,EP=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,AM=7﹣4=3,D′P=5﹣4=1,EP=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.综上所述:DE的长为:或.故答案为:或.9.解:如图,在长方形ABCD中,AD∥BC,则∠FEC=∠AFE=55°.∴∠BEF=180°﹣55°=125°.根据折叠的性质知:∠B′EF=∠BEF=125°.∴∠CEB'=∠B′EF﹣∠FEC=125°﹣55°=70°.故答案是:70°.10.解:连接CG.∵四边形ABCD是正方形,四边形DECG是正方形,∴DA=DC,DE=DG,∠ADC=∠EDG=90°,∠DAC=45°,∴∠ADE=∠CDG,∴△ADE≌△CDG(SAS),∴∠DCG=∠DAE=45°,∴点G的运动轨迹是射线CG,根据垂线段最短可知,当GH⊥CG时,GH的值最小为1,∴CH=.∴CD=2CH=2,故答案为:2.11.解:(1)∵正方形ABCD的边长为2,∴AB=BC=2,∠ABC=90°,∵M是BC的中点,∴BM=,∴,故答案为:;(2)过F作FG⊥AB于G,则FG=BC=AB,∠ABM=∠FGE=90°,∵EF⊥AM,∴∠BAM+∠AEN=∠AEN+∠GFE=90°,∴∠BAM=∠GFE,∴△ABM≌△FGE(SAS),∴AM=EF,将EF沿EM方向平移至MH,连接FH,则EF=MH,∠AMH=90°,EM=FH,当A、F、H三点共线时,EM+AF=FH+AF=AH的值最小,此时EM+AF=AH=,∴EM+AF的最小值为,故答案为:.12.解:如图,延长CB到点G,使BG=AC=4,∵根据题意,四边形ABED为正方形,∴∠4=∠5=45°,∠EBA=90°,∴∠1+∠2=90°,又∵△ABC是直角三角形,AB为斜边,∴∠2+∠3=90°,∴∠1=∠3,∵∠1+∠5=∠3+∠4,∴∠CAO=∠GBO,在△CAO和△GBO中,,∴△CAO≌△GBO(SAS),∴CO=GO=,∠6=∠8,∵∠7+∠8=90°,∴∠6+∠7=90°,∴∠COG=90°,∴=,∴BC=CG﹣BG=12﹣4=8.故答案为:8.13.解:如图,过点E作EH⊥AB于H.∵四边形ABCD是正方形,∴AB=BC=CD=AD=2,BD=AC=2,OD=OB=,∵EA平分∠BAO,EH⊥AB,EO⊥AC,∴EH=EO,设EH=EO=a,则BE=a,∴a+a=,解得a=2﹣,∴BE=a=2﹣2.故答案为:2﹣2.14.解:过点A作GH的平行线,交DC于点H′,交BE于点O',如图所示:∵ABCD是正方形,∴AG∥H′H,BA=AD,∠BAE=∠D=90°,∴∠H′AD+∠AH′D=90°,∵GH⊥BE,AH′∥GH,∴AH′⊥BE,∴∠H′AD+∠BEA=90°,∴∠BEA=∠AH′D,在△BAE和△ADH′中,,∴△BAE≌△ADH′(AAS),∴BE=AH′,∵AG∥H′H,AH′∥GH,∴四边形AH′HG是平行四边形,∴GH=AH′,∴GH=BE=6,故答案为:6.15.解:∵四边形ABCD是菱形,∠BAD=40°,∴∠DAO=BAD=20°,AC⊥BD,DO=BO,AD∥BC,∴∠DOA=90°,∴∠ADO=90°﹣∠DAO=70°,∵AD∥BC,DE⊥BC,∴DE⊥AD,∴∠ADE=90°,∴∠ODE=∠AD∠E﹣∠ADO=20°,∵DE⊥BC,∴∠DEB=90°,∵DO=BO,∴OE=BD=OD,∴∠OED=∠ODE=20°,故答案为:20°.16.解:过C作CG⊥DE于G,∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∵DE⊥AF,∴∠AED=90°,∴AD>DE,∴CD>DE,当△CDE是以CD为腰的等腰三角形时,此时只能CD=CE,∵CG⊥DE,∴EG=DG=DE,∵∠ADE+∠CDG=∠ADE+∠DAE=90°,∴∠CDG=∠DAE,∵∠AED=∠CGD=90°,∴△AED≌△DGC(AAS),∴AE=DG=DE,设AE=x,则DE=2x,在Rt△AED中,由勾股定理得:AE2+DE2=AD2,∵AD=2,∴x2+(2x)2=22,解得:x=,∵x>0,∴x=,∴DE=2x=,当F与B重合,则E与A重合,△CDE是以CD为腰的等腰三角形,此时DE=AD=2,故答案为:或2.17.解:分三种情况:①如图1,当∠DPC=90°时,∵E是CD的中点,且CD=2,∴PE=CD=1,∵四边形ABCD是正方形,∴BC=2,∠BCD=90°,∴BE==,∴BP=﹣1;②如图2,当∠DPC=90°时,同理可得BP=+1;③如图3,当∠CDP=90°时,∵∠BCE=∠EDP=90°,DE=CE,∠BEC=∠DEP,∴△BCE≌△PDE(ASA),∴PE=BE=,∴BP=2,综上,BP的长是﹣1或+1或2;故答案为:﹣1或+1或2.18.解:连接CG,∵四边形ABCD是正方形,∴CB=CD,∠CBE=∠ADC=90°,在△CGD与△CEB中,,∴△CGD≌△CEB(SAS),∴CG=CE,∠GCD=∠ECB,∴∠GCE=90°,即△GCE是等腰直角三角形.又∵CH⊥GE,∴CH=EH=GH.过点H作AB、BC的垂线,垂足分别为点M、N,则∠MHN=90°,又∵∠EHC=90°,∴∠1=∠2,在△HEM与△HCN中,,∴△HEM≌△HCN(AAS).∴HM=HN,∵∠HMB=∠ABC=∠BNH=90°,∴四边形MBNH为正方形,∵BH=4,∴BN=HN=4,∵HM∥AG,EH=GH,∴AG=2HM=2HN=8,∴DG=BE=AG﹣AD=8﹣6=2,∴AE=6﹣2=4,在Rt△AEG中,EG===4.故答案为:4.19.(1)证明:∵四边形ABCD是菱形,∴∠ABE=∠CBE,AB=CB,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE,∵AE=DE,∴CE=DE;(2)解:如图,连接AC交BD于H,∵四边形ABCD是菱形,∴AH⊥BD,BH=DH,AH=CH,∵CE=DE=AE=1,∴BD=BE+DE=2+1=3,∴BH=BD=,EH=BE﹣BH=2﹣=,在Rt△AHE中,由勾股定理得:AH===,在Rt△AHB中,由勾股定理得:AB===,∴菱形的边长为.20.(1)解:∵四边形ABCD是菱形,∴BC=AD=6,AD∥BC,∵点E为AD的中点,∴AE=AD=3,∵AD∥BC,∴△AOE∽△COB,∴===;(2)证明:∵四边形ABCD是菱形,∴AB=BC,AD∥BC,∠B=∠D=60°,∴∠CAE=∠ACB,△ABC是等边三角形,∴AC=BC,∠ACB=60°,∴∠EAC=60°=∠B,∵AE+DE=AD=6,BF+DE=6,∴AE=BF,在△ACE和△BCF中,,∴△ACE≌△BCF(SAS),∴CE=CF,∠ACE=∠BCF,∴∠ACE+∠ACF=∠BCF+∠ACF=∠ACB=60°,即∠ECF=60°,∴△CEF是等边三角形.21.(1)证明:①∵CE平分∠ACB,∴∠OCE=∠BCE,∵BO⊥CE,∴∠CFO=∠CFB=90°,在△OCF与△BCF中,,∴△OCF≌△BCF(ASA),∴OC=BC;②∵点O是AC的中点,∴OA=OC,∵AD∥BC,∴∠DAO=∠BCO,∠ADO=∠CBO,在△OAD与△OCB中,,∴△OAD≌△OCB(ASA),∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵OE⊥AC,∴∠EOC=90°,在△OCE与△BCE中,,∴△OCE≌△BCE(SAS),∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AD=BC=3,∠DAB=90°,AC=BD,∴OB=OC,∵OC=BC,∴OC=OB=BC,∴△OBC是等边三角形,∴∠OCB=60°,∴∠ECB=OCB=30°,∵∠EBC=90°,∴EB=EC,∵BE2+BC2=EC2,BC=3,∴EB=,EC=2,∵OE⊥AC,OA=OC,∴EC=EA=2,在Rt△ADE中,∠DAB=90°,∴DE===.22.证明:(1)∵四边形ABCD为正方形,∴AC平分∠BAD,又∵PM⊥AD,PN⊥AB,∴PM=PN.(2)∵PM⊥AD,PN⊥AB,∠MAN=90°,PM=PN,∴四边形PMAN为正方形,∴∠MPN=90°,即∠MPE+∠EPN=90°.∵PE⊥PB,∴∠EPN+∠NPB=90°,∴∠MPE=∠NPB.∵PM⊥AD,PN⊥AB,在△PME和△PNB中,,∴△PME≌△PNB(ASA),∴EM=BN.23.解:(1)∵四边形ABCD是正方形,∴AD=CD=AB,∠BAD=∠D=90°,∵E、F分别是AD、CD的中点,∴AE=AD,DF=CD,∴AE=DF,在△ABE和△DAF中,,∴△ABE≌△DAF(SAS),∴AF=BE,∠AEB=∠AFD,在直角△ADF中,∠DAF+∠AFD=90°,∴∠DAF+∠AEB=90°,∴∠AME=90°,∴AF⊥BE,∴∠BMN=90°;(2)证明:∵DF=CF,∠D=∠FCN=90°,∠AFD=∠NFC,在△ADF和△NCF中,,∴△ADF≌△NCF(ASA),∴AD=CN=CD=BC,在直角△BMN中,BC=CN,∴CM=BN=BC=AD.24.(1)证明:∵DF∥AC,∴∠DFC=∠OCF,∠EDF=∠EOC,∵点E是CF的中点,FE=CE,∴△DEF≌△OEC(AAS),∴DF=OC,∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴OA=OD,∴DF=OA,且DF∥AO,∴四边形AODF是平行四边形,又∵OA=OD,∴平行四边形AODF是菱形;(2)解:由(1)得:OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=1,∵四边形AODF是菱形,∴AF=OA=1,AF∥BD,∴∠F AC=∠AOB=60°,∵∠AFC=90°,∴∠ACF=30°,∴CF=AF=.25.(1)证明:∵四边形ABCD是正方形,∴AD∥BC,∴∠DAE=∠FGA,∵∠F AE=∠DAE,∴∠FGA=∠F AE,∴F A=FG,∵点E为CD中点,∴DE=CE,∵∠ADE=∠GCE=90°,在△ADE和△GCE中,,∴△ADE≌△GCE(AAS),∴AD=CG,同理:△DEH△CEF(AAS),∴DH=CF,∵AH=AD+DH,GF=CG+CF,∴AH∥FG,∵AH∥FG,∴四边形AFGH为平行四边形,∵F A=FG,∴四边形AFGH为菱形;(2)解:FC=DH=1,设AB=AD=x,由(1)知FC=DH=1,∴AF=AH=AD+DH=x+1,BF=BC﹣FC=x﹣1,在Rt△ABF中,根据勾股定理,得AF2=AB2+BF2,∴(x+1)2=x2+(x﹣1)2,解得x=4,x=0(舍去),∴AF=FG=x+1=5,∴菱形AFGH的面积为:FG•DC=5×4=20.26.解:(1)由已知可得,BQ=DP=t,AP=CQ=6﹣t 在矩形ABCD中,∠B=90°,AD∥BC,当BQ=AP时,四边形ABQP为矩形,∴t=6﹣t,得t=3故当t=3s时,四边形ABQP为矩形.(2)由(1)可知,四边形AQCP为平行四边形∴当AQ=CQ时,四边形AQCP为菱形即时,四边形AQCP为菱形,解得t=,故当t=s时,四边形AQCP为菱形.(3)当t=时,AQ=,CQ=,则周长为:4AQ=4×=15cm面积为:。

鲁教版2019-2020八年级数学下册第六章特殊的平行四边形自主学习能力达标测试题C(附答案)

鲁教版2019-2020八年级数学下册第六章特殊的平行四边形自主学习能力达标测试题C(附答案)

鲁教版2019-2020八年级数学下册第六章特殊的平行四边形自主学习能力达标测试题C (附答案)1.如图,30EOF ∠=︒,A ,B 为射线OE 上两点,点P 为射线OF 上一点,且10OP =,90APB ∠=︒,则线段AB 的最小值为( ).A .10B .52C .53D .82.如图,将矩形ABCD 沿对角线AC 剪开,再把△ACD 沿CA 方向平移得到△A 1C 1D 1,连结AD 1,BC 1.若∠ACB =30°,AB =1,CC 1=x ,△ACD 与△A 1C 1D 1重叠部分的面积为s ,则下列结论:①△A 1AD 1≌△CC 1B ②当x =1时,四边形ABC 1D 1是菱形 ③当x =2时,△BDD 1为等边三角形 ④s =32(x ﹣2)2(0<x <2),其中正确的有( )A .1 个B .2 个C .3 个D .4 个3.如图,四边形ABCD 是正方形,AB =1,点F 是对角线AC 延长线上一点,以BC 、CF 为邻边作菱形BEFC ,连接DE ,则DE 的长是( ).A .2B .21+C .3D .24.如图,矩形ABCD 中, AB=8,BC=4,P ,Q 分别是直线AB ,AD 上的两个动点,点E 在边CD 上,2DE =,将DEQ ∆沿EQ 翻折得到FEQ ∆,连接PF ,PC ,则PF PC +的最小值为( )A .622-B .8C .10D .822-5.下列命题是真命题的是( )A .对角线互相平分且相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .对角线互相垂直且相等的四边形是正方形D .对角线互相平分的四边形是平行四边形6.矩形、菱形、正方形都具有的性质是( )A .一组邻边相等,对角线互相垂直平分B .一组邻角相等,对角线也相等C .一组对边平行且相等,对角线互相平分D .对角线相等,且互相垂直平分 7.如图,已知某菱形花坛ABCD 的周长是24m ,120BAD ∠=o ,则花坛对角线AC 的长是( )A .63mB .6mC .33mD .3m8.如图,延长矩形ABCD 的边BC 至点E ,使CE =BD ,连结AE ,如果∠ABD =60°,那么∠BAE 的度数是( )A .40°B .55°C .75°D .80°9.如图,下列结论:①四边形ABCD 是平行四边形,且AB BC ⊥;②四边形ABCD是平行四边形,且AC BD ⊥;③四边形ABCD 是矩形,且AC BD ⊥;④四边形ABCD 是菱形,且AC BD =.其中能推出四边形ABCD 为正方形的有( )A .①②B .②③C .③④D .①②③④10.在四边形ABCD 中,两对角线交于点O ,若OA =OB =OC =OD ,则这个四边形( )A .可能不是平行四边形 B .一定是菱形C .一定是正方形D .一定是矩形11.如图,点O是菱形ABCD两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为8和10时,则阴影部分的面积为_____.12.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD 的中点,若AB=2cm,BC=16cm,则EF=_________cm.13.如图,正方形ABCD的边长为8,点E是BC上的一点,连接AE并延长交射线DC 于点F,将△ABE沿直线AE翻折,点B落在点N处,AN的延长线交DC于点M,当AB=2CF时,则NM的长为_____.14.如图,在正方形ABCD和正方形DEFG中,点G在CD上,DE=2,将正方形DEFG 绕点D顺时针旋转60°,得到正方形DE'F'G',此时点G'在AC上,连接CE',则CE'+CG'=_____.15.如图,已知正方形ABCD,点E在边DC上,DE=4,EC=2,则AE的长为___ .16.如图,等边△BCP在正方形ABCD内,则∠APD=_____度.17.有一个角是直角的平行四边形是_______;有一组邻边相等的平行四边形是______________;四条边都相等,四个角都是直角的四边形是___________.18.如图,菱形ABCD 的一个内角是60∘,将它绕对角线的交点O 顺时针旋转90∘后得到菱形A′B′C′D′.旋转前后两菱形重叠部分多边形的周长为2431=+S S ,则菱形ABCD 的边长为_________.19.如图,一根木棍斜靠在与地面(OM )垂直的墙(ON )上,设木棍中点为P ,若木棍A 端沿墙下滑,且B 沿地面向右滑行.在此滑动过程中,点P 到点O 的距离_______(填 不变.变小 或变大 ).20.如图,矩形ABCD 中,6AB =,8BC =,E 是BC 边上一点,将ABE △沿AE 翻折,点B 恰好落在对角线AC 上的点F 处,则BE 的长为________.21.如图,正方形ABCD 的对角线AC ,BD 交于点O ,DE 平分ODA ∠交OA 于点E ,若2AB =,则线段OE 的长为________.22.长方形OABC绕顶点C(0,5)逆时针方向旋转,当旋转到CO′A′B′位置时,边O′A′交边AB于D,且A′D=2,AD=4.(1)求BC长;(2)求阴影部分的面积.23.如图,在四边形ABCD中,AC平分∠BAD,∠ABC=90°,AC=AD=2,M、N分别为AC、CD的中点,连接BM、MN、BN.(1)求证:BM=MA;(2)若∠BAD=60°,求BN的长;(3)当∠BAD=°时,BN=1.(直接填空)24.如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图1中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;(2)在图2中画出以线段AB为一腰,底边长为22的等腰三角形ABE,点E在小正方形的项点上.25.如图,在△ABC 中,AD 是高,E 、F 分别是AB 、AC 的中点。

八年级数学下册《第6章特殊的平行四边形》章末综合提升训练(附答案)

八年级数学下册《第6章特殊的平行四边形》章末综合提升训练(附答案)

2021年度鲁教版八年级数学下册《第6章特殊的平行四边形》章末综合提升训练(附答案)1.在四边形ABCD中,对角线AC和BD交于点O,下列条件能判定这个四边形是菱形的是.(填序号)①.AD∥BC,∠A=∠C②.AC=BD,AB∥CD,AB=CD③.AB∥CD,AC=BD,AC⊥BD④.AO=CO,BO=DO,AB=BC2.正方形的边长与它的对角线的长度的比值为.3.如图,已知在矩形ABCD中,点E在边BC的延长线上,且CE=BD,联结AE交BD于点F,如果∠E=15°,那么∠AFB的度数为.4.如图,菱形ABCD的对角线AC与BD相交于点O.已知AB=10cm,AC=12cm.那么这个菱形的面积为cm2.5.我们把两条对角线所成两个角的大小之比是1:2的矩形叫做“和谐矩形”,如果一个“和谐矩形”的对角线长为10cm,则矩形的面积为cm2.6.如图,四边形ABCD为菱形,四边形AOBE为矩形,O,C,D三点的坐标为(0,0),(2,0),(0,1),则点E的坐标为.7.已知正方形ABCD的边长等于4cm,那么边AB的中点E到对角线BD的距离等于cm.8.如图,等边三角形AEF的顶点E,F分别落在矩形ABCD的两邻边BC、CD上,若BE =1,CE=2,则△AEF边长为.9.如图,矩形ABCD的两条对角线相交于点O,∠COB=2∠AOB,AB=8,则BC的长是.10.在矩形ABCD中,∠BAD的角平分线交于BC点E,且将BC分成1:3的两部分,若AB=2,那么BC=11.已知菱形一组对角的和为240°,较短的一条对角线的长度为4厘米,那么这个菱形的面积为平方厘米.12.已知矩形的两条对角线的夹角为60°,如果一条对角线长为6,那么矩形的面积为.13.已知正方形ABCD的边长为6,点E是边BC的中点.联接AC、DE相交于点F,M、N分别是AC、DE的中点,则MN的长是.14.已知四边形ABCD中,AD∥BC,AC=BD,如果添加一个条件,即可判定该四边形是矩形,那么所添加的这个条件可以是.15.如图,在菱形ABCD中,对角线AC、BD相交于点O,DE⊥AB,垂足为E,如果AC =8,BD=6,那么DE的长为.16.如图,在直角坐标平面内,矩形ABCD的对角线AC、BD交于原点O,且点A、C都在x轴上,点D的坐标为(4,3),那么点C的坐标为.17.如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB=度.18.如图,点P在边长为1的正方形ABCD边AD上,连接PB.过点B作一条射线与边DC的延长线交于点Q,使得∠QBE=∠PBC,其中E是边AB延长线上的点,连接PQ.若PQ2=PB2+PD2+1,则△P AB的面积为.19.如图,矩形ABCD中,点E在BC边上,点F在CD边上,AE平分∠BAF,且EF⊥AF 于点F.若AB=5,AD=4,则EF=.20.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=4,H是AF的中点,那么CH的长是.21.已知平行四边形ABCD,对角线AC、BD相交于点O,且CA=CB,延长BC至点E,使CE=BC,连接DE.(1)当AC⊥BD时,求证:BE=2CD;(2)当∠ACB=90°时,求证:四边形ACED是正方形.22.如图,△ABC中,AB=AC,AD平分∠BAC交BC于点D,AE平分∠BAC的外角,且∠AEB=90°.求证:四边形ADBE是矩形.23.如图,已知△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,联结EC.(1)求证:四边形ADCE是平行四边形;(2)当∠BAC=90°时,求证:四边形ADCE是菱形.24.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.25.如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(I)若△PCD是等腰三角形时,求AP的长;(Ⅱ)判断CF与AC有怎样的位置关系并说明理由.26.已知:如图,在△ABC中,AB=BC,∠ABC=90°,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC.求证:(1)四边形FBGH是菱形;(2)四边形ABCH是正方形.27.如图,在△ABC中,∠C=90°,D为边BC上一点,E为边AB的中点,过点A作AF ∥BC,交DE的延长线于点F,连接BF.(1)求证:四边形ADBF是平行四边形;(2)当D为边BC的中点,且BC=2AC时,求证:四边形ACDF为正方形.28.已知:如图,在正方形ABCD中,点E在边BC上,点F在边CD的延长线上,且BE =DF.(1)求∠AEF的度数;(2)如果∠AEB=75°,AB=2,求△FEC的面积.29.如图,四边形ABCD中,BD垂直平分AC,垂足为点F,E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC(1)求证:四边形ABDE是平行四边形;(2)如果DA平分∠BDE,AB=5,AD=6,求AC的长.30.如图,已知正方形ABCD的对角线AC、BD交于点O,CE⊥AC与AD边的延长线交于点E.(1)求证:四边形BCED是平行四边形;(2)延长DB至点F,联结CF,若CF=BD,求∠BCF的大小.31.如图,点E是矩形ABCD的边AD的中点,点P是边BC上的动点,PM⊥BE,PN⊥CE,垂足分别是M、N.求:当AB和AD应满足怎样的数量关系时,四边形PMEN是矩形?请说明理由.32.如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:DE=BF;(2)若DF=BF,求证:四边形DEBF为菱形.33.如图,正方形ABCD中,点E、F分别在边BC、CD上,AE=AF,AC和EF交于点O,延长AC至点G,使得AO=OG,连接EG、FG.(1)求证:BE=DF;(2)求证:四边形AEGF是菱形.34.如图所示,在正方形ABCD中,M是CD的中点,E是CD上一点,且∠BAE=2∠DAM.求证:AE=BC+CE.35.已知:如图,在正方形ABCD中,点E为边AB的中点,联结DE,点F在DE上CF =CD,过点F作FG⊥FC交AD于点G.(1)求证:GF=GD;(2)联结AF,求证:AF⊥DE.36.已知:如图,在等边三角形ABC中,过边AB上一点D作DE⊥BC,垂足为点E,过边AC上一点G作GF⊥BC,垂足为点F,BE=CF,联结DG.(1)求证:四边形DEFG是平行四边形;(2)连接AF,当∠BAF=3∠F AC时,求证:四边形DEFG是正方形.37.已知:正方形ABCD的边长为厘米,对角线AC上的两个动点E,F.点E从点A,点F从点C同时出发,沿对角线以1厘米/秒的相同速度运动,过E作EH⊥AC交Rt△ACD的直角边于H,过F作FG⊥AC交Rt△ACD的直角边于G,连接HG,EB.设HE、EF、FG、GH围成的图形面积为S1,AE,EB,BA围成的图形面积为S2(这里规定:线段的面积为0)E到达C,F到达A停止.若E的运动时间为x秒,解答下列问题:(1)如图,判断四边形EFGH是什么四边形,并证明;(2)当0<x<8时,求x为何值时,S1=S2;(3)若y是S1与S2的和,试用x的代数式表示y.(如图为备用图)38.我们知道正方形是四条边相等,四个内角都等于90°的四边形.如图1,已知正方形ABCD,点E是边CD上一点,延长CB到点F,使得BF=DE,作∠EAF的平分线交边BC于点G.求证:BG+DE=EG.参考答案1.解:①A、∵AD∥BC,∴∠BAD+∠ABC=180°,∵∠BAD=∠BCD,∴∠BCD+∠ABC=180°,∴AB∥CD,∴四边形ABCD是平行四边形;选项①不符合题意;②、∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,又∵AC=BD,∴四边形ABCD是矩形;选项②不符合题意;③、∵AB∥CD,AC=BD,AC⊥BD,∴四边形ABCD不一定是平行四边形,∴四边形ABCD不一定是菱形;选项③不符合题意;④、∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,又∵AB=BC,∴四边形ABCD是菱形;选项④符合题意;故选:④.2.解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,AC=BD,∠ABC=90°,∴AC===AB,∴=;故答案为:.3.解:连接AC交BD于点O,如图所示:∵四边形ABCD是矩形,∴OA=OC=AC,OB=OD=BD,AC=BD,∴OB=OC,∴∠OBC=∠OCB,∵CE=BD,∴AC=CE,∴∠CAE=∠E=15°,∴∠OBC=∠OCB=∠CAE+∠E=30°,∴∠AFB=∠OBC+∠E=30°+15°=45°;故答案为:45°.4.解:∵四边形ABCD为菱形,∴AC⊥BD,OA=OC=AC=6cm,OB=OD,∴OB===8(cm),∴BD=2OB=16cm,S菱形ABCD=AC•BD=×12×16=96(cm2).故答案为:96.5.解:∵四边形ABCD是“和谐矩形”,∴OA=OC,OB=OD,AC=BD=10,∠BAD=90°,∠CAD:∠BAC=1:2,∴OA=OD,∠CAD=30°,∠BAC=60°,∴∠ADB=∠CAD=30°,∴AB=BD=5,AD=AB=5,∴矩形ABCD的面积=AB×AD=5×5=25(cm2);故答案为:25.6.解:∵O,C,D三点的坐标为(0,0),(2,0),(0,1),∴OC=2,OD=1,∵四边形ABCD是菱形,∴OA=OC=2,OB=OD=1,∵四边形AOBE为矩形,∴∠EAO=∠EBO=90°,EB=OA=2,EA=OB=1,∵E在第二象限,∴E点的坐标是(﹣2,﹣1),故答案为:(﹣2,﹣1).7.解:∵四边形ABCD是正方形,∴AB=BC=4cm,∠EBF=45°,∵EF⊥BD,∴△EBF是等腰直角三角形,∵E是AB的中点,∴EB=2cm,∴EF=cm,故答案为:.8.解:设DF=x,CF=y,∵四边形ABCD是矩形,∴∠D=∠C=∠B=90°,DC=AB=x+y,AD=BC=BE+CE=1+2=3,∵△AEF是等边三角形,∴AE=EF=AF,∴12+(x+y)2=22+y2=x2+32,由12+(x+y)2=22+y2得:y=,代入22+y2=x2+32,整理得:3x4+26x2﹣9=0,解得:x2=,∴AF2=x2+32=,∴AF=;故答案为:.9.解:∵四边形ABCD是矩形,∴AO=OC,BO=OD,AC=BD,∴OA=OB,∵∠BOC=2∠AOB,∠BOC+∠AOB=180°∴∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=8,∴AC=BD=2AO=16,则BC==8.故答案是:8.10.解:①如图1中,∵四边形ABCD是矩形,AE平分∠BAD,∴∠BAE=∠AEB=45°,∴AB=BE=2,当EC=3BE时,EC=6,∴BC=8.②如图2中,当BE=3EC时,EC=,∴BC=BE+EC=.故答案为8或11.解:如图,∵四边形ABCD是菱形,∠BAD+∠BCD=240°,∴∠BAD=∠BCD=120°,∠ABC=∠ADC=60°∵AB=BC=AD=DC,∴△ABC,△ADC是等边三角形,∴AB=BC=AC=4,∴S菱形ABCD=2•S△ABC=2××42=8,故答案为8.12.解:矩形的两条对角线的夹角为:∠1=60°,∵矩形对角线相等且互相平分,∴△AOB为等边三角形,∴AB=AO=AC=3,在直角△ABC中,AC=6,AB=3,∴BC=,故矩形的面积为:3×3=9.故答案为:9.13.解:连接BD,∵E是边BC的中点,∴BE=BC=3,∵四边形ABCD是正方形,∴M是BD的中点,又N是DE的中点,∴MN=BE=1.5,故答案为:1.5.14.解:当AD=BC或AB∥CD时,四边形ABCD是矩形.理由:∵AD∥BC,∴当AD=BC或AB∥CD时,四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形.15.解:∵四边形ABCD是菱形,AC=8,BD=6,∴AC⊥OD,AO=AC=4,BO=BD=3,∴由勾股定理得到:AB==5.又∵AC•BD=AB•DE.∴DE=4.8.故答案为:4.8.16.解:过点D,作DE⊥OC于点E,∵点D的坐标为(4,3),∴OE=4,DE=3,∴OD==5,∵四边形ABCD是矩形,∴OD=OC=AC=BD,∴点C的坐标为(5,0),故答案为:(5,0).17.解:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=∠BAD=90°,在Rt△ABE和Rt△ADF中,,∴△ABE≌△ADF,∴∠BAE=∠DAF=(90°﹣60°)÷2=15°,∴∠AEB=75°,故答案为75.18.解:∵∠QBE=∠PBC,∠QBE+∠QBC=90°,∴∠PBQ=∠PBC+∠QBC=90°,∵∠PBC+∠PBA=90°,∴∠PBA=∠QBC,在Rt△P AB和Rt△QCB中,,∴△P AB≌△QCB(ASA),∴QC=P A,设正方形的边长AB=a,P A=x,则QC=x,∴DQ=DC+QC=a+x,PD=AD﹣P A=a﹣x,在Rt△P AB中,PB2=P A2+AB2=x2+a2,∵PQ2=PB2+PD2+1,∴(a﹣x)2+(a+x)2=x2+a2+(a﹣x)2+1,解得:2ax=1,∴ax=,∵△P AB的面积S=P A•PB=ax=×=.故答案为:.19.解:∵AE平分∠BAF,且EF⊥AF,∠B=90°∴EF=EB在Rt△ABE和Rt△AFE中∴Rt△ABE≌Rt△AFE(HL)∴AF=AB=5又∵AD=4,∠D=90°∴Rt△ADE中,DF==3∴CF=5﹣3=2设EF=EB=x,则CE=4﹣x在Rt△CEF中,22+(4﹣x)2=x2解得x=即EF=故答案为:20.解:过H作HM⊥BE于M,则∠HMC=90°,∵正方形ABCD和正方形CEFG,∴AB=BC=1,EF=CE=4,∠B=∠E=90°,∴HM∥AB∥FE,∵H为AF大的中点,∴M为BE的中点,∴HM=(AB+EF)=(1+4)=,∵BC=1,CE=2,∴BM=2.5,∴CM=1.5,在Rt△HMC中,由勾股定理得:CH==,故答案为:.21.(1)证明:∵四边形ABCD是平行四边形,又∵AC⊥BD,∴四边形ABCD是菱形.∴BC=CD.又∵CE=BC,∴BE=2BC,∴BE=2CD;(2)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BE,又∵CE=BC,∴AD=CE,AD∥CE,∴四边形ACED是平行四边形.∵∠ACB=90°,∴平行四边形ACED是矩形,又∵CA=CB,∴CA=CE,∴矩形ACED是正方形.22.证明:∵AD是∠BAC的平分线,∵AE是∠BAF的平分线,∴∠3=∠4,∵∠1+∠2+∠3+4=180°,∴∠2+∠3=90°,即∠DAE=90°,∵AB=AC,∠1=∠2,∴AD⊥BC,即∠ADB=90°,∵∠AEB=90°,∴四边形ADBE是矩形.23.(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,∵AD是边BC上的中线,∴BD=DC,∴AE=DC,又∵AE∥BC,∴四边形ADCE是平行四边形,(2)∵∠BAC=90°,AD是边BC上的中线.∴AD=CD,∵四边形ADCE是平行四边形,∴四边形ADCE是菱形,24.证明:(1)∵AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,,∴△AEF≌△DEC(AAS),∵AF=BD,∴BD=CD;(2)四边形AFBD是矩形.理由:∵AB=AC,D是BC的中点,∴AD⊥BC,∴∠ADB=90°∵AF=BD,∵过A点作BC的平行线交CE的延长线于点F,即AF∥BC,∴四边形AFBD是平行四边形,又∵∠ADB=90°,∴四边形AFBD是矩形.25.解:(I)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,∴AC==10,要使△PCD是等腰三角形,①当CP=CD时,AP=AC﹣CP=10﹣6=4,②当PD=PC时,∠PDC=∠PCD,∵∠PCD+∠P AD=∠PDC+∠PDA=90°,∴∠P AD=∠PDA,∴PD=P A,∴P A=PC,∴AP=AC=5,③当DP=DC时,如图1,过点D作DQ⊥AC于Q,则PQ=CQ,∵S△ADC=AD•DC=AC•DQ,∴DQ==,∴CQ==,∴PC=2CQ=,∴AP=AC﹣PC=10﹣=;所以,若△PCD是等腰三角形时,AP的长为4或5或;(Ⅱ)CF⊥AC,理由如下:如图2,连接PF,DE,记PF与DE的交点为O,连接OC,∵四边形ABCD和PEFD是矩形,∴∠ADC=∠PDF=90°,∴∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF,∵∠BCD=90°,OE=OD,∴OC=ED,在矩形PEFD中,PF=DE,∴OC=PF,∵OP=OF=PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,∴CF⊥AC.26.证明:(1)∵点F、G是边AC的三等分点,∴AF=FG=GC.又∵点D是边AB的中点,∴DH∥BG.同理:EH∥BF.∴四边形FBGH是平行四边形,连接BH,交AC于点O,∴OF=OG,∴AO=CO,∵AB=BC,∠ABC=90°,∴四边形FBGH是菱形;(2)∵四边形FBGH是平行四边形,∴BO=HO,FO=GO.又∵AF=FG=GC,∴AF+FO=GC+GO,即:AO=CO.∴四边形ABCH是平行四边形.∵AC⊥BH,AB=BC,∴四边形ABCH是正方形.27.(1)证明:∵AF∥BC,∴∠AFE=∠BDE,在△AEF与△BED中,,∴△AEF≌△BED,∴AF=BD,∵AF∥BD,∴四边形ADBF是平行四边形;(2)解:∵CD=DB,AE=BE,∴DE∥AC,∴∠FDB=∠C=90°,∵AF∥BC,∴∠AFD=∠FDB=90°,∴∠C=∠CDF=∠AFD=90°,∴四边形ACDF是矩形,∵BC=2AC,CD=BD,∴CA=CD,∴四边形ACDF是正方形.28.解:(1)由正方形ABCD,得AB=AD,∠B=∠ADF=∠BAD=90°,在△ABE和△ADF中,,∴△ABE≌△ADF,∴∠BAE=∠F AD,AE=AF.∴∠BAD=∠BAE+∠EAD=∠F AD+∠EAD=90°.即得∠EAF=90°,又∵AE=AF,∴∠AEF=∠AFE=45°.(2)∵∠AEB=75°,∠AEF=45°,∴∠BEF=120°.即得∠FEC=60°,由正方形ABCD,得∠C=90°.∴∠EFC=30°.∴EF=2EC,设EC=x.则EF=2x,BE=DF=2﹣x,CF=4﹣x.在Rt△CEF中,由勾股定理,得CE2+CF2=EF2.即得x2+(4﹣x)2=4x2.解得x1=2﹣2,x2=﹣2﹣2(不合题意,舍去).∴EC=2﹣2,CF=6﹣2.∴S△CEF==,∴△FEC的面积为.29.(1)证明:∵∠ADE=∠BAD,∴AB∥DE,∵AE⊥AC,BD⊥AC,AE∥BD,∴四边形ABDE是平行四边形;(2)解:∵DA平分∠BDE,∴∠AED=∠BDA,∴∠BAD=∠BDA,∴BD=AB=5,设BF=x,则DF=5﹣x,∴AD2﹣DF2=AB2﹣BF2,∴62﹣(5﹣x)2=52﹣x2,∴x=,∴AF==,∴AC=2AF=.30.(1)证明:∵四边形ABCD是正方形,∴AC⊥DB,BC∥AD,∵CE⊥AC,∴∠AOD=∠ACE=90°,∴BD∥CE,∴四边形BCED是平行四边形;(2)解:连接AF,∵四边形ABCD是正方形,∴BD⊥AC,BD=AC=2OB=2OC,即OB=OC,∴∠OCB=45°,∵Rt△OCF中,CF=BD=2OC,∴∠OFC=30°,∴∠BCF=60°﹣45°=15°.31.解:当AD=2AB时.四边形PMEN为矩形;理由如下:∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=DC,又∵点E是矩形ABCD的边AD的中点.∴AE=DE,在△ABE和△CDE中,,∴△ABE≌△DCE(SAS),∴∠AEB=∠DEC,∵四边形PMEN为矩形,∴∠BEC=90°,∴∠AEB=∠DEC=45°∴AE=DE=DC,即AD=2AB.∴当AD=2AB时;四边形PMEN为矩形.32.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,又∵AE=CF,∴△ADE≌△CBF,∴DE=BF;(2)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∵AE=CF,∴BE=DF,BE∥DF,∴四边形DEBF是平行四边形.∵DF=BF,∴平行四边形DEBF是菱形.33.证明:(1)∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=AB,在Rt△ABE和Rt△ADF中,∴Rt△ABE≌Rt△ADF(HL),∴EB=DF;(2)∵四边形ABCD是正方形,∴BC=DC,∵EB=DF,∴EC=FC,∴AC垂直平分EF,∵AO=GO,∴四边形AEGF是菱形.34.证明:取BC的中点F,连接AF,过点F作FH⊥AE于H,连接EF.∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=∠C=90°,∵M是CD的中点,∴BF=DM,在△ABF和△ADM中,,∴△ABF≌△ADM(SAS),∴∠BAF=∠DAM,∵∠BAE=2∠DAM,∴∠BAF=∠HAF,∵∠AHF=∠B=90°,∴∠AFB=∠AFH,BF=FH,∴AB=AH,∴FH=FC,∵∠FHE=∠C=90°,在Rt△CFE和Rt△HFE中,,∴Rt△CFE≌Rt△HFE(HL),∴EH=CE,∴AE=AH+HE=AB+CE=BC+CE.35.证明:(1)∵四边形ABCD是正方形,∴∠ADC=90°,∵FG⊥FC,∴∠GFC=90°,∵CF=CD,∴∠CDF=∠CFD,∴∠GFC﹣∠CFD=∠ADC﹣∠CDE,即∠GFD=∠GDF,∴GF=GD.(2)联结CG.∵CF=CD,GF=GD,∴点G、C在线段FD的中垂线上,∴GC⊥DE,∴∠CDF+∠DCG=90°,∵∠CDF+∠ADE=90°,∴∠DCG=∠ADE.∵四边形ABCD是正方形,∴AD=DC,∠DAE=∠CDG=90°,∴△DAE≌△CDG,∴AE=DG,∵点E是边AB的中点,∴点G是边AD的中点,∴AG=GD=GF,∴∠DAF=∠AFG,∠GDF=∠GFD,∵∠DAF+∠AFG+∠GFD+∠GDF=180°,∴2∠AFG+2∠GFD=180°,∴∠AFD=90°,即AF⊥DE.法2:(1)联结CG交ED于点H.∵四边形ABCD是正方形,∴∠ADC=90°,∵FG⊥FC,∴∠GFC=90°,在Rt△CFG与Rt△CDG中,,∴Rt△CFG≌Rt△CDG,∴GF=GD.(2)∵CF=CD,GF=GD,∴点G、C在线段FD的中垂线上,∴FH=HD,GC⊥DE,∴∠EDC+∠DCH=90°,∵∠ADE+∠EDC=90°,∴∠ADE=∠DCH,∵四边形ABCD是正方形,∴AD=DC=AB,∠DAE=∠CDG=90°,∵∠ADE=∠DCH,AD=DC,∠EAD=∠GDC.∴△ADE≌△DCG,∴AE=DG,∵点E是边AB的中点,∴点G是边AD的中点,∵点H是边FD的中点,∴GH是△AFD的中位线,∴GH∥AF,∴∠AFD=∠GHD,∵GH⊥FD,∴∠GHD=90°,∴∠AFD=90°,即AF⊥DE.36.证明:(1)在等边三角形ABC中,∵DE⊥BC,GF⊥BC,∴∠DEF=∠GFC=90°,∴DE∥GF,∵∠B=∠C=60°,BE=CF,∠DEB=∠GFC=90°,∴△BDE≌△CGF,∴DE=GF,∴四边形DEFG是平行四边形;(2)在平行四边形DEFG中,∵∠DEF=90°,∴平行四边形DEFG是矩形,∵∠BAC=60°,∠BAF=3∠F AC,∴∠GAF=15°,在△CGF中,∵∠C=60°,∠GFC=90°,∴∠CGF=30°,∴∠GF A=15°,∴∠GAF=∠GF A,∴GA=GF,∵DG∥BC,∴∠ADG=∠B=60°,∴△DAG是等边三角形,∴GA=GD,∴GD=GF,∴矩形DEFG是正方形.37.解:(1)四边形EFGH是矩形.理由如下:∵点E从点A,点F从点C同时出发,沿对角线以1厘米/秒的相同速度运动,∴AE=CF.∵EH⊥AC,FG⊥AC,∴EH∥FG.∵ABCD为正方形,∴AD=DC,∠D=90°,∠GCF=∠HAE=45°,又∵EH⊥AC,FG⊥AC,∴∠CGF=∠AHE=45°,∴∠GCF=∠CGF,∠HAE=∠AHE,∴AE=EH,CF=FG,∴EH=FG,∴四边形EFGH是平行四边形,又∵EH⊥AC∴平行四边形EFGH是矩形;(2)∵正方形边长为,∴AC=16.∵AE=x,连接BD交AC于O,则BO⊥AC且BO=8,∴S2=•AE•BO=4x.∵CF=GF=AE=x,∴EF=16﹣2x,∴S1=EF•GF=x(16﹣2x).当S1=S2时,x(16﹣2x)=4x,解得x1=0(舍去),x2=6.∴当x=6时,S1=S2;(3)①当0≤x<8时,y=x(16﹣2x)+4x=﹣2x2+20x.②当8≤x≤16时,AE=x,CE=HE=16﹣x,EF=16﹣2(16﹣x)=2x﹣16.∴S1=(16﹣x)(2x﹣16).∴y=(16﹣x)(2x﹣16)+4x=﹣2x2+52x﹣256.综上,可知y=.38.证明:∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°,∴∠ABF=∠D=90°,在△ABF与△ADE中,,∴△ABF≌△ADE,∴AE=AF,∵AG平分∠EAF,∴∠F AG=∠EAG,∵AG=AG,∴△EAG≌△F AG,∴EG=FG=BF+BG=DE+BG;。

八年级数学上册第五章平行四边形1平行四边形的性质第1课时平行四边形的边角性质习题课件鲁教版五四制

八年级数学上册第五章平行四边形1平行四边形的性质第1课时平行四边形的边角性质习题课件鲁教版五四制

6
7
8
9
10
11
12
13
14
15
16
(2)若 BC =2 AB ,∠ BCD =100°,求∠ ABE 的度数.
【解】由(1)易得 BF =2 AB , EF = EC .
∵ CD ∥ AB ,∴∠ FBC +∠ BCD =180°.
∵∠ BCD =100°,∴∠ FBC =180°-100°=80°.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
【证明】∵四边形 ABCD 是平行四边形,∴ AB = CD ,
∠ B =∠ D ,∠ BAD =∠ BCD . ∵ AE 平分∠ BAD , CF


平分∠ BCD ,∴∠ BAE = ∠ BAD ,∠ DCF = ∠ BCD ,


∴∠ BAE =∠ DCF .
∴∠ DAC =∠ C ,∴ AD = CD . ∵ AD = AE = BF ,
∴ BF = CD ,∴ BD = CF .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
14. 如图,在▱ ABCD 中,点 E , F 在对角线 AC 上,∠ CBE
=∠ ADF . 求证:
(1) AE = CF ;

鲁教版(五四学制)八年级数学下册《第六章特殊的平行四边形》同步单元综合训练(附答案)

鲁教版(五四学制)八年级数学下册《第六章特殊的平行四边形》同步单元综合训练(附答案)

2021年度鲁教版八年级数学下册《第六章特殊的平行四边形》同步单元综合训练(附答案)1.如图,在菱形ABCD中,∠A=60°,E是AB边上一动点(不与A、B重合),且∠EDF =∠A.则下列结论错误的是()A.AE=BF B.∠ADE=∠BEFC.△DEF是等边三角形D.△BEF是等腰三角形2.如图,已知菱形ABCD对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE 的长是()A.5B.2C.D.3.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.40cm B.30cm C.20cm D.10cm4.如图,在▱ABCD中,AM,CN分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AMCN为菱形的是()A.AM=AN B.MN⊥ACC.MN是∠AMC的平分线D.∠BAD=120°5.如图,在▱ABCD中,E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.求证:四边形AECF是菱形.6.下列说法中不正确的是()A.四边相等的四边形是菱形B.对角线垂直的平行四边形是菱形C.菱形的对角线互相垂直且相等D.菱形的邻边相等7.如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD =8,∠ABD=∠CDB,则四边形ABCD的面积为()A.40 B.24 C.20 D.158.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,以A 为圆心,AB长为半径画弧交AD于F,若BF=12,AB=10,则AE的长为()A.16 B.15 C.14 D.139.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为()A.5 cm B.4.8 cm C.4.6 cm D.4 cm10.如图,矩形ABCD的对角线AC、BD交于点O.AC=4,∠AOD=120°,则BC的长为()A.4B.4 C.2D.211.如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=4,则该矩形的面积是()A.16 B.8 C.16D.812.如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若∠ACB=30°,AB=8,则MN的长为()A.2 B.4 C.8 D.1613.能判定一个平行四边形是矩形的条件是()A.两条对角线互相平分B.一组邻边相等C.两条对角线相等D.两条对角线互相垂直14.如图,已知在正方形ABCD中,AD=4,E,F分别是CD,BC上的一点,且∠EAF=45°,EC=1,点G在CB延长线上且GB=DE,连接EF,则以下结论:①DE+BF=EF,②BF=,③AF=,④S△AEF=中正确的个数有()个.A.1 B.2 C.3 D.415.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E,若∠CBF=25°,则∠AED=()A.60°B.65°C.70°D.75°16.如图,若四边形ABCD是正方形,△CDE是等边三角形,则∠EAB的度数为.17.如图,在正方形ABCD中,正方形的边长为4a,E是BC的中点,F是CD上一点,且CF=CD,判断△AEF的形状并说明理由.18.如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,求∠EAF的度数.19.下列说法不正确的是()A.一组同旁内角相等的平行四边形是矩形B.一组邻边相等的菱形是正方形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形20.下列说法错误的是()A.对角线互相垂直的平行四边形是矩形B.矩形的对角线相等C.对角线相等的菱形是正方形D.两组对边分别相等的四边形是平行四边形21.已知四边形ABCD是矩形,当补充条件(用字母表示)时,就可以判定这个矩形是正方形.22.如图,△ABC中,AB=AC,AD⊥BC于D,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果AB=AC=BC=10,求四边形AEDF的面积S.23.如图,在菱形ABCD中,AE⊥AD交BD于点E,CF⊥BC交BD于点F.(1)证明:△ADE≌△CBF;(2)连接AF、CE,四边形AECF是菱形吗?说明理由.24.如图,四边形ABCD中,AD∥BC,∠ABC=90°,DB=DC,E是BC的中点,连接DE.(1)求证:四边形ABED是矩形;(2)连接AC,若∠ABD=30°,DC=2,求AC的长.25.如图,AD是等腰△ABC底边BC上的高.点O是AC中点,延长DO到E,使OE=OD,连接AE,CE.(1)求证:四边形ADCE的是矩形;(2)若AB=17,BC=16,求四边形ADCE的面积.26.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.27.如图,已知E是平行四边形ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.(1)求证:△ABE≌△FCE;(2)连接AC、BF,若AE=BC,求证:四边形ABFC为矩形;(3)在(2)条件下,当△ABC再满足一个什么条件时,四边形ABFC为正方形.28.已知,如图,在Rt△ABC中,∠ACB=90°,点D是AB中点,过点D作DF⊥AC,垂足为F,过点C作AB的平行线,交DF的延长线于点E,连接CD,AE.(1)求证:四边形AECD是菱形;(2)当∠BAC的大小满足什么条件时,四边形AECD是正方形?证明你的结论.29.如图,正方形ABCD中,AB=4,点E是对角线AC上的一点,连接DE.过点E作EF ⊥ED,交AB于点F,以DE、EF为邻边作矩形DEFG,连接AG.(1)求证:矩形DEFG是正方形;(2)求AG+AE的值;(3)若F恰为AB中点,连接DF交AC于点M,请直接写出ME的长.参考答案1.解:连接BD,∵四边形ABCD是菱形,∴AD=AB,∠ADB=∠ADC,AB∥CD,∵∠A=60°,∴∠ADC=120°,∠ADB=60°,同理:∠DBF=60°,即∠A=∠DBF,∴△ABD是等边三角形,∴AD=BD,∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,∴∠ADE=∠BDF,∵在△ADE和△BDF中,,∴△ADE≌△BDF(ASA),∴DE=DF,AE=BF,故A正确;∵∠EDF=60°,∴△EDF是等边三角形,∴C正确;∴∠DEF=60°,∴∠AED+∠BEF=120°,∵∠AED+∠ADE=180°﹣∠A=120°,∴∠ADE=∠BEF;故B正确.∵△ADE≌△BDF,∴AE=BF,同理:BE=CF,但BE不一定等于BF.故D错误.故选:D.2.解:∵四边形ABCD是菱形,AC=6cm,BD=8cm,∴AO=CO=3cm,BO=DO=4cm,∠BOC=90°,∴BC==5(cm),∴AE×BC=BO×AC故5AE=24,解得:AE=.故选:C.3.解:∵菱形的对角线互相垂直平分,又直角三角形斜边上的中线等于斜边的一半,∴根据三角形中位线定理可得:BC=2OM=10,则菱形ABCD的周长为40cm.故选:A.4.解:如图,∵四边形ABCD是平行四边形,∴∠B=∠D,∠DAB=∠DCB,AB=CD,AD=BC,∵AM,CN分别是∠BAD和∠BCD的平分线,∴∠DCN=∠DCB,∠BAM=∠BAD,∴∠BAM=∠DCN,在△ABM和△CDN中,∴△ABM≌△CDN(ASA),∴AM=CN,BM=DN,∵AD=BC,∴AN=CM,∴四边形AMCN是平行四边形,A、∵四边形AMCN是平行四边形,AM=AN,∴平行四边形AMCN是菱形,故本选项错误;B、∵MN⊥AC,四边形AMCN是平行四边形,∴平行四边形AMCN是菱形,故本选项错误;C、∵四边形AMCN是平行四边形,∴AN∥BC,∴∠MNA=∠CMN,∵MN是∠AMC的平分线,∴∠NMA=∠NMC,∴∠MNA=∠NMA,∴AM=AN,∵四边形AMCN是平行四边形,∴四边形AMCN是菱形,故本选项错误;D、根据∠BAD=120°和平行四边形AMCN不能推出四边形是菱形,故本选项正确;故选:D.5.证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵DE=BF,∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.6.解:A.四边相等的四边形是菱形;正确;B.对角线垂直的平行四边形是菱形;正确;C.菱形的对角线互相垂直且相等;不正确;D.菱形的邻边相等;正确;故选:C.7.解:∵AB=AD,点O是BD的中点,∴AC⊥BD,∠BAO=∠DAO,∵∠ABD=∠CDB,∴AB∥CD,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∴AB=CD,∴四边形ABCD是菱形,∵AB=5,BO=BD=4,∴AO=3,∴AC=2AO=6,∴四边形ABCD的面积=×6×8=24,故选:B.8.解:连结EF,AE与BF交于点O,如图,∵AO平分∠BAD,∴∠1=∠2,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,同理:AF=BE,又∵AF∥BE,∴四边形ABEF是平行四边形,∴四边形ABEF是菱形,∴AE⊥BF,OB=OF=6,OA=OE,在Rt△AOB中,由勾股定理得:OA===8,∴AE=2OA=16.故选:A.9.解:如图,作AR⊥BC于R,AS⊥CD于S,连接AC,BD交于点O,由题意知,AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.∵两张纸条等宽,∴AR=AS.∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形,∴AC⊥BD.在Rt△AOB中,OA=3,OB=4,∴AB==5.故选:A.10.解:如图,∵矩形ABCD的对角线AC,BD交于点O,AC=4,∴OA=OB=AC=2,又∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=OB=2.∴在直角△ABC中,∠ABC=90°,AB=2,AC=4,∴BC===2故选:C.11.解:∵四边形ABCD是矩形,∴OA=OD=OB=OC,∵∠AOD=60°,∴△AOD是等边三角形,∴AD=OD=AO=4,∴BD=8,∴AB===4,∴矩形的面积=4×4=16,故选:C.12.解:如图,∵四边形ABCD是矩形,AC,BD交于点O,∠ACB=30°,AB=8,∴BD=AC=2AB=816,∴BD=2BO,即2BO=16.∴BO=8.又∵M、N分别为BC、OC的中点,∴MN是△CBO的中位线,∴MN=BO=4.故选:B.13.解:A、两条对角线互相平分的四边形是平行四边形,故本选项错误;B、一组邻边相等的平行四边形是菱形,菱形不一定是矩形,故本选项错误;C、根据矩形的判定定理:对角线相等的平行四边形是矩形,故本选项正确;D、两条对角线互相垂直的平行四边形是菱形,故本选项错误.故选:C.14.解:∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠D=∠ABG=90°,∵EC=1,∴GB=DE=1,∴AE=AG=5,即△ADE绕点A沿顺时针方向旋转90°后与△ABG重合,∴∠DAE=∠BAG,∵∠EAF=45°,∴∠DAE+∠BAF=45°=∠GAB+∠BAF=∠GAF=45°,∵AG=AE,∠F AE=∠F AG=45°,AF=AF,在△AFE和△AFG中,,∴△AFE≌△AFG(SAS),∴EF=FG,∵DE=BG,∴EF=FG=BG+FB=DE+BF,故①正确;∵BC=CD=AD=4,EC=1,∴DE=3,设BF=x,则EF=x+3,CF=4﹣x,在Rt△ECF中,(x+3)2=(4﹣x)2+12,解得x=,∴BF=,故②正确;∴AF===,故③错误;∴GF=3+=,∴S△AEF=S△AGF=AB×GF=4×=,故④正确.所以正确的有①②④,共3个.故选:C.15.解:∵四边形ABCD是正方形,∴∠ABC=90°,BA=DA,∠BAE=∠DAE=45°.又AE=AE,∴△ABE≌△ADE(SAS).∴∠ADE=∠ABE=90°﹣25°=65°.∴∠AED=180°﹣45°﹣65°=70°.故选:C.16.解:∵∠ADE=∠BCE=90°+60°=150°,AD=BC,DE=CE,∴△ADE≌△BCE,∴AE=BE,∴∠EAB=∠EBA.∵正方形中AD=DC,等边三角形中DC=DE,∴AD=DE,∵∠ADE=90°+60°=150°,∴∠DEA==15°,同理∠CEB=15°,∴∠AEB=60°﹣15°﹣15°=30°,∴∠EAB==75°.故答案为75°.17.解:△AEF为直角三角形.理由如下:∵四边形ABCD为正方形,且边长为4a,∴AB=BC=CD=DA,∠B=∠C=∠D=90°,∵E是BC的中点,且CF=CD,∴BE=CE=2a,CF=a,DF=3a,在Rt△ABE中,由勾股定理可得:AE2=AB2+BE2=(4a)2+(2a)2=20a2,同理在Rt△EFC,Rt△ADF中,可得EF2=CE2+CF2=(2a)2+a2=5a2,AF2=AD2+DF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF为直角三角形.18.解:延长EB使得BG=DF,连接AG,在△ABG和△ADF中,,可得△ABG≌△ADF(SAS),∴∠DAF=∠BAG,AF=AG,又∵EF=DF+BE=EB+BG=EG,AE=AE,在△AEG和△AEF中,,∴△AEG≌△AEF(SSS),∴∠EAG=∠EAF,∵∠DAF+∠EAF+∠BAE=90°∴∠EAG+∠EAF=90°,∴∠EAF=45°.19.解:A、一组同旁内角相等的平行四边形是矩形,正确;B、一组邻边相等的菱形是正方形,错误;C、有三个角是直角的四边形是矩形,正确;D、对角线相等的菱形是正方形,正确.故选:B.20.解:对角线互相垂直的平行四边形是菱形,故选项A错误;矩形的对角线相等,故选项B正确;对角线相等的菱形是正方形,故选项C正确;两组对边分别相等的四边形是平行四边形,故选项D正确;故选:A.21.解:因为有一组邻边相等的矩形是正方形,故补充的条件为:AB=AD.22.解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt△ABD中,DE=AB=AE,Rt△ACD中,DF=AC=AF,又∵AB=AC,点E、F分别是AB、AC的中点,∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF是菱形;(2)如图,∵AB=AC=BC=10,∴EF=5,AD=5,∴菱形AEDF的面积S=.23.(1)证明:∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∴∠ADB=∠CBD,∵AE⊥AD,∴∠EAD=90°,同理∠BCF=90°.∴∠EAD=∠BCF.在△AED和△CFB中∠ADB=∠CBD,AD=BC,∠EAD=∠BCF,∴△ADE≌△CBF.(2)解:结论:四边形AECF是菱形.理由:连接AC,∵四边形ABCD是菱形,∴AC⊥BD,即AC⊥EF,由(1)△ADE≌△CBF,∴AE=CF,∠AED=∠BFC,∴AE∥CF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.24.(1)证明:∵AD∥BC,∠ABC=90°,∴∠BAD=90°,∵DB=DC,E是BC的中点,∴∠DEB=90°,∴四边形ABED是矩形;(2)解:∵∠ABC=90°,∠ABD=30°,∴∠DBE=60°,∵DB=DC,∴△DBC是等边三角形,∴BD=BC=DC=2,∵Rt△BAD中,∠ABD=30°,∴AD=1,AB=,∴在Rt△ABC中,AC==.25.(1)证明:∵点O是AC中点,∴AO=OC,∵OE=OD,∴四边形ADCE是平行四边形,∵AD是等腰△ABC底边BC上的高,∴∠ADC=90°,∴四边形ADCE是矩形;(2)解:∵AD是等腰△ABC底边BC上的高,BC=16,AB=17,∴BD=CD=8,AB=AC=17,∠ADC=90°,由勾股定理得:AD===15,∴四边形ADCE的面积是AD×DC=15×8=120.26.(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠ABC=∠ADC=90°,∴四边形ABCD是矩形.(2)作OF⊥BC于F.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积=•EC•OF=1.27.(1)证明:在平行四边形ABCD中,AB∥CD,AB=CD,∴∠BAE=∠EFC,∵E为BC的中点,∴BE=EC,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS),(2)证明:∵△ABE≌△FCE,∴AB=FC,∵BE=CE,∴四边形ABFC为平行四边形,∵AE=EF=AF,AE=BC,∴BC=AF,∴四边形ABFC是矩形;(3)解:当△ABC为等腰三角形时,即AB=AC时,四边形ABFC为正方形;理由如下:∵AB=AC,四边形ABFC是矩形,∴四边形ABFC为正方形.28.(1)证明:∵∠ACB=90°,DF⊥AC,∴DF∥BC,∵点D是AB中点,∴F是AC的中点,∴AF=CF,∵CE∥AB,∴∠ECF=∠DAF,在△CEF和△ADF中,,∴△CEF≌△ADF(ASA),∴EF=DF,∴四边形AECD是平行四边形,又∵DF⊥AC,∴四边形AECD是菱形;(2)解:当∠BAC=45°时,四边形AECD是正方形;理由如下:∵四边形AECD是菱形,∴∠EAC=∠BAC=45°,∴∠EAD=90°,∴四边形AECD是正方形.29.解:(1)如图,作EM⊥AD于M,EN⊥AB于N.∵四边形ABCD是正方形,∴∠EAD=∠EAB,∵EM⊥AD于M,EN⊥AB于N,∴EM=EN,∵∠EMA=∠ENA=∠DAB=90°,∴四边形ANEM是矩形,∵EF⊥DE,∴∠MEN=∠DEF=90°,∴∠DEM=∠FEN,∵∠EMD=∠ENF=90°,∴△EMD≌△ENF,∴ED=EF,∵四边形DEFG是矩形,∴四边形DEFG是正方形.(2)∵四边形DEFG是正方形,四边形ABCD是正方形,∴DG=DE,DC=DA=AB=4,∠GDE=∠ADC=90°,∴∠ADG=∠CDE,∴△ADG≌△CDE(SAS),∴AG=CE,∴AE+AG=AE+EC=AC=AD=4.(3)如图,作EH⊥DF于H.∵四边形ABCD是正方形,∴AB=AD=4,AB∥CD,∵F是AB中点,∴AF=FB∴DF==2,∵△DEF是等腰直角三角形,EH⊥AD,∴DH=HF,∴EH=DF=,∵AF∥CD,∴AF:CD=FM:MD=1:2,∴FM=,∴HM=HF﹣FM=,在Rt△EHM中,EM==。

最新鲁教版八年级数学下册(五四制)电子课本课件【全册】

最新鲁教版八年级数学下册(五四制)电子课本课件【全册】

第六章 特殊平行四边形
最新鲁教版八年级数学下册(五四 制)电子课本课件【全册】
1 菱形的性质与判定
最新鲁教版八年级数学下册(五四 制)电子课本课件【全册】
2 矩形的性质与判定
最新鲁教版八年级数学下册(五四 制)电子课本课件【全册】
3 正方形的性质与判定
最新鲁教版八年级数学下册(五四 制)电子课本课件【全册】
最新鲁教版八年级数学下册(五2页 0059页 0087页 0119页 0151页 0184页 0200页 0223页 0254页 0291页 0315页 0334页 0367页
第六章 特殊平行四边形 2 矩形的性质与判定 第七章 二次根式 2 二次根式的性质 4 二次根式的乘除 1 一元二次方程 3 用公式法解一元二次方程 5 一元二次方程根与系数的关系 第九章 图形的相似 2 平行线分线段成比例 4 探索三角形相似的条件 6 黄金分割 8 相似三角形的性质

鲁教版(五四制)2018--2019学年度第二学期八年级数学第六章特殊平行四边形单元试卷

鲁教版(五四制)2018--2019学年度第二学期八年级数学第六章特殊平行四边形单元试卷

鲁教版(五四制)2018--2019学年度第二学期八年级数学第六章特殊平行四边形单元试卷一、单选题(计30分)1.(本题3分)若四边形的两条对角线相等且互相垂直,则顺次连接该四边形各边中点所得的四边形是( )A.平行四边形B.矩形C.菱形D.正方形2.(本题3分)下列命题中,正确的是()A.菱形的对角线相等B.平行四边形既是轴对称图形,又是中心对称图形C.正方形的对角线不能相等D.正方形的对角线相等且互相垂直3.(本题3分)如图,矩形ABCD的对角线AC=8cm,∠AOD=120º,则AB的长为()A.cm B.2cm C.2cm D.4cm4.(本题3分)菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(8,0),点A的纵坐标是2,则点B的坐标是()A.(4,2)B.(4,﹣2)C.(2,﹣6)D.(2,6)5.(本题3分)如图,把一张长方形纸条ABCD沿EF折叠,使点C的对应点C′恰好与点A重合,若∠1=70°,则∠FEA的度数为()A.40°B.50°C.60°D.70°6.(本题3分)如图,三个边长均为2的正方形重叠在一起,O1、O2是其中两个正方形的中心,则阴影部分的面积是()A. 1 B. 2 D.7.(本题3分)如图,矩形的对角线、相交于点,,,若,则四边形的周长为()A.4B.8C.10D.128.(本题3分)如图,正方形ABCD中,E为CD上一点,F为BC延长线上一点,CE=CF,若∠BEC=80°,则∠EFD的度数为()A.20o B. 25o C. 35o D. 40o9.(本题3分)如图,把一张长方形纸条ABCD沿EF折叠,若∠1=56°,则∠EGF应为()A.68°B.34°C.56°D.不能确定10.(本题3分)如图,将一个长为10cm错误!未找到引用源。

精品试卷鲁教版(五四制)八年级数学下册第六章特殊平行四边形章节练习试卷(精选含答案)

精品试卷鲁教版(五四制)八年级数学下册第六章特殊平行四边形章节练习试卷(精选含答案)

鲁教版(五四制)八年级数学下册第六章特殊平行四边形章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,正方形ABCD的边长为8,对角线AC、BD相交于点G.K为AC上的一点,且⊥于点E,交BD于点F,则AF的长为CK=BK并延长交CD于点H.过点A作AE BH()A.B.4C.D.2、如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=AD,则∠ACE的度数为()A.22.5°B.27.5°C.30°D.35°3、下列说法不正确的是()A.矩形的对角线相等B.直角三角形斜边上的中线等于斜边的一半C.对角线互相垂直且相等的四边形是正方形D.菱形的对角线互相垂直4、下列说法中正确的是()A.矩形的对角线平分每组对角;B.菱形的对角线相等且互相垂直;C.有一组邻边相等的矩形是正方形;D.对角线互相垂直的四边形是菱形.5、如图,在给定的正方形ABCD中,点E从点B出发,沿边BC方向向终点C运动,DF AE⊥交AB∠+∠的度数的变化情况是于点F,以FD,FE为邻边构造平行四边形DFEP,连接CP,则DFE EPC()A.一直减小B.一直减小后增大C.一直不变D.先增大后减小6、已知四边形ABCD是平行四边形,下列结论:①当AB=BC时,它是菱形;②当AC⊥BD时,它是菱形;③当∠ABC=90°时,它是矩形;④当AC=BD时,它是正方形,其中错误的有()A.1个B.2个C.3个D.4个7、下列命题是真命题的有()个.①一组对边相等的四边形是矩形;②两条对角线相等的四边形是矩形;③四条边都相等且对角线互相垂直的四边形是正方形;④四条边都相等的四边形是菱形;⑤一组邻边相等的矩形是正方形.A.1 B.2 C.3 D.48、如图,任意四边形ABCD中,E,F,G,H分别是各边上的点,对于四边形E,F,G,H的形状,小聪进行了探索,下列结论错误的是()A.E,F,G,H是各边中点.且AC=BD时,四边形EFGH是菱形B.E,F,G,H是各边中点.且AC⊥BD时,四边形EFGH是矩形C.E,F,G,H不是各边中点.四边形EFGH可以是平行四边形D.E,F,G,H不是各边中点.四边形EFGH不可能是菱形9、已知在平行四边形ABCD中,∠A=90°,如果添加一个条件,可使该四边形是正方形,那么这个条件可以是()A.∠D=90°B.AB=CD C.AD=BC D.BC=CD10、如图,O是矩形ABCD的对角线的交点,M是AD的中点.若BC=8,OB=5,则OM的长为()A.2 B.2.5 C.3 D.4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知:如图,正方形ABCD 中,AB =2,AC ,BD 相交于点O ,E ,F 分别为边BC ,CD 上的动点(点E ,F 不与线段BC ,CD 的端点重合)且BE=CF ,连接OE ,OF ,EF .在点E ,F 运动的过程中,有下列四个结论:①△OEF 是等腰直角三角形;②△OEF 面积的最小值是1;③至少存在一个△ECF ,使得△ECF 的周长是2④四边形OECF 的面积是1.所有正确结论的序号是_________________________2、如图, 在矩形ABCD 中, 对角线AC ,BD 相交于点O ,若60AOB ∠=︒,4cm AB =,则AC 的长为_____cm .3、正方形的边长与它的对角线的长度的比值为_____.4、如图,在四边形ABCD 中,AB =12,BD ⊥AD .若将△BCD 沿BD 折叠,点C 与边AB 的中点E 恰好重合,则四边形BCDE 的周长为____.5、如图,已知正方形ABCD的边长为2,E为CD边上一点(不与点C,D重合),以点A为中心,把ADE∆绕点A顺时针旋转90︒,得到ABF∆,连接EF,则四边形AECF的面积为 __.三、解答题(5小题,每小题10分,共计50分)1、已知:在平行四边形ABCD中,分别延长BA,DC到点E,H,使得BE=2AB,DH=2CD.连接EH,分别交AD,BC于点F,G.(1)求证:AF=CG;(2)连接BD交EH于点O,若EH⊥BD,则当线段AB与线段AD满足什么数量关系时,四边形BEDH是正方形?△.2、在矩形ABCD的CD边上取一点E,将BCE沿BE翻折,得到BFE(1)如图1,点F 恰好在AD 上,若75FEB ∠=︒,求出AB :BC 的值.(2)如图2,E 从C 到D 的运动过程中.①若5AB =,8BC =,ABF ∠的角平分线交EF 的延长线于点M ,求M 到AD 的距离:②在①的条件下,E 从C 到D 的过程中,直接写出M 运动的路径长.3、如图,在四边形ABCD 中,∠B =∠C .点E 、F 、G 分别在边AB 、BC 、CD 上,AE =GF =GC .(1)求证:四边形AEFG 是平行四边形;(2)当∠FGC 与∠EFB 满足怎样的关系时,四边形AEFG 是矩形.请说明理由.4、如图,在平行四边形ABCD 中,E 、F 分别是边AB 、DC 上的点,且AE CF =,90DEB ∠=︒,求证:四边形DEBF 是矩形5、如图,四边形ABCD 为菱形,点E ,F 分别为边DA ,DC 上的点,DE =DF ,连接BE ,BF ,求证:BE=BF.-参考答案-一、单选题1、C【解析】【分析】根据正方形的性质以及已知条件求得OK的长,进而证明AOF≌BOK,即可求得OF OK=,勾股定理即可求得AF的长【详解】解:如图,设,AC BD的交点为O,四边形ABCD是正方形AC BD∴⊥,AC BD=,11,22 AO AC BO BD ==∴AC ==,12OC AC == 90AOE BOK ∴∠=∠=︒,2390∠+∠=︒,AO BO =CK =OK OC CK ∴=-=AE BH ⊥∴1290∠+∠=︒13∠∠∴=在AOF 与BOK 中13AO BOAOF BOK ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AOF ≌BOKOF OK ∴==在Rt AOF中,AF ===故选C【点睛】本题考查了正方形的性质,勾股定理,全等三角形的性质与判定,掌握正方形的性质是解题的关键.2、A【解析】【分析】利用正方形的性质证明∠DBC =45°和BE =BC ,进而证明∠BEC =67.5°.【详解】解:∵四边形ABCD是正方形,∴BC=AD,∠DBC=45°,∵BE=AD,∴BE=BC,∴∠BEC=∠BCE=(180°﹣45°)÷2=67.5°,∵AC⊥BD,∴∠COE=90°,∴∠ACE=90°﹣∠BEC=90°﹣67.5°=22.5°,故选:A.【点睛】本题考查正方形的性质,以及等腰三角形的性质,掌握正方形的性质并加以利用是解决本题的关键.3、C【解析】【分析】利用矩形的性质,直角三角形的性质,正方形的判定,菱形的性质依次判断可求解.【详解】解;矩形的对角线相等,故选项A不符合题意;直角三角形斜边上的中线等于斜边的一半,故选项B不符合题意;对角线互相垂直且相等的四边形不一定是正方形,故选项C符合题意;菱形的对角线互相垂直,故选项D不符合题意;故选:C.【点睛】本题考查了正方形的判定,矩形的性质,菱形的性质,直角三角形的性质,熟练运用这些性质解决问题是本题的关键.4、C【解析】【分析】根据矩形及菱形的性质,菱形及正方形的判定定理依次判断即可得.【详解】解:A 、矩形的对角线不平分每组对角,故选项错误;B 、菱形的对角线互相垂直但不相等,故选项错误;C 、有一组邻边相等的矩形是正方形,故选项正确;D 、对角线互相垂直的平行四边形是菱形,故选项错误;故选:C .【点睛】题目主要考查特殊四边形的判定和性质,熟练掌握特殊四边形的判定和性质是解题关键.5、A【解析】【分析】根据题意DFE EPC DPC ∠+∠=∠,作PH BC ⊥交BC 的延长线于H ,证明CP 是DCH ∠的角平分线即可解决问题.【详解】解:作PH BC ⊥交BC 的延长线于H ,∵四边形ABCD 是正方形,∴AD AB BC ==,90DAF ABE DCB DCH ∠=∠=∠=∠=︒,∵DF AE ⊥,∴90BAE DAE ∠+∠=︒,90ADF DAE ∠+∠=︒,∴BAE ADF ∠=∠,∴()ADF BAE ASA ∆≅∆,∴DF AE =,∵四边形DFEP 是平行四边形,∴DF PE =,DFE DPE ∠=∠,∵90BAE AEB ∠+∠=︒,90AEB PEH ∠+∠=︒ ,∴BAE PEH ∠=∠,∵90ABE H ∠=∠=︒,AE EP =.∴()ABE EHP AAS ∆≅∆,∴PH BE =,AB EH BC ==,∴BE CH PH ==,∴45PCH ∠=︒,∵90DCH ∠=︒,∴DCP PCH ∠=∠,∴CP 是DCH ∠的角平分线,∴点P 的运动轨迹是DCH ∠的角平分线,∵DFE EPC DPE EPC DPC ∠+∠=∠+∠=∠,由图可知,点P 从点D 开始运动,所以DPC ∠一直减小,故选:A .【点睛】本题考查了正方形的性质、全等三角形的判定和性质、平行四边形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.6、A【解析】【分析】根据矩形、菱形、正方形的判定可以判断题目中的各个小题的结论是否正确,从而可以解答本题.【详解】 解:四边形ABCD 是平行四边形,A 、当AB BC =时,它是菱形,选项不符合题意,B 、当AC BD ⊥时,它是菱形,选项不符合题意,C 、当90ABC ∠=︒时,它是矩形,选项不符合题意,D 、当AC BD =时,它是矩形,不一定是正方形,选项符合题意,故选:A .【点睛】本题考查正方形、菱形、矩形的判定,解答本题的关键是熟练掌握矩形、菱形、正方形的判定定理.7、B【解析】【分析】根据两条对角线平分且相等的四边形是矩形,四条边都相等的四边形是菱形,如果对角线互相垂直平分且相等,那么这个四边形是正方形进行判断即可.【详解】解:①一组对边相等的四边形不一定是矩形,错误;②两条对角线相等的平行四边形是矩形,错误;③四条边都相等且对角线互相垂直的四边形是菱形,错误;④四条边都相等的四边形是菱形,正确;⑤一组邻边相等的矩形是正方形,正确.故选:B .【点睛】此题考查考查平行四边形、矩形、菱形、正方形的判定方法,关键是根据矩形、正方形、菱形的判定解答.8、D【解析】【分析】当E F G H ,,,为各边中点,EH BD FG EF AC GH ∥∥,∥∥,11====22EH BD FG EF AC GH ,,四边形EFGH 是平行四边形;A 中AC =BD ,则=EF FG ,平行四边形EFGH 为菱形,进而可判断正误;B 中AC ⊥BD ,则EF FG ,平行四边形EFGH 为矩形,进而可判断正误;E ,F ,G ,H 不是各边中点,C 中若四点位置满足==EH FG EF GH EH FG EF GH ∥,∥,,,则可知四边形EFGH 可以是平行四边形,进而可判断正误;D 中若四点位置满足===EH FG EF GH EH FG EF GH ∥,∥,,则可知四边形EFGH 可以是菱形,进而可判断正误.【详解】解:如图,连接AC BD 、当E F G H ,,,为各边中点时,可知EH EF FG GH 、、、分别为ABD ABC BCD ACD 、、、的中位线∴11====22EH BD FG EF AC GH EH BD FG EF AC GH ∥∥,∥∥,, ∴四边形EFGH 是平行四边形A 中AC =BD ,则=EF FG ,平行四边形EFGH 为菱形;正确,不符合题意;B 中AC ⊥BD ,则EF FG ,平行四边形EFGH 为矩形;正确,不符合题意;C 中E ,F ,G ,H 不是各边中点,若四点位置满足==EH FG EF GH EH FG EF GH ∥,∥,,,则可知四边形EFGH 可以是平行四边形;正确,不符合题意;D 中若四点位置满足===EH FG EF GH EH FG EF GH ∥,∥,,则可知四边形EFGH 可以是菱形;错误,符合题意;故选D .【点睛】本题考查了平行四边形、菱形、矩形的判定,中位线等知识.解题的关键在于熟练掌握特殊平行四边形的判定.9、D【解析】略10、C【解析】【分析】首先由O 是矩形ABCD 对角线AC 的中点,可求得AC 的长,然后由勾股定理求得AB 的长,即CD 的长,又由M 是AD 的中点,可得OM 是△ACD 的中位线,继而求得答案.【详解】解:∵O 是矩形ABCD 对角线AC 的中点,OB =5,∴AC =2OB =10,∴CD =AB6=,∵M 是AD 的中点,二、填空题1、①③④【解析】【分析】①易证得△OBE ≌△OCF (SAS ),则可证得结论①正确;②由OE 的最小值是O 到BC 的距离,即可求得OE 的最小值1,根据三角形面积公式即可判断选项②错误;≤EF <2,即可求得选项③正确;④证明△OBE ≌△OCF ,根据正方形被对角线将面积四等分,即可得出选项④正确.【详解】解:①∵四边形ABCD 是正方形,AC ,BD 相交于点O ,∴OB =OC ,∠OBC =∠OCD =45°,在△OBE 和△OCF 中,OB OC OBE OCF BE CF =⎧⎪∠=∠⎨⎪=⎩,∴△OBE≌△OCF(SAS),∴OE=OF,∵∠BOE=∠COF,∴∠EOF=∠BOC=90°,∴△OEF是等腰直角三角形;故①正确;②∵当OE⊥BC时,OE最小,此时OE=OF=12BC=1,∴△OEF面积的最小值是12×1×1=12,故②错误;③∵BE=CF,∴CE+CF=CE+BE=BC=2,假设存在一个△ECF,使得△ECF的周长是2则EF由①得△OEF是等腰直角三角形,∴OE,OE的最小值是1,∴存在一个△ECF,使得△ECF的周长是2故③正确;④由①知:△OBE≌△OCF,∴S 四边形OECF =S △COE +S △OCF =S △COE +S △OBE =S △OBC =14S 正方形ABCD =14×2×2=1, 故④正确;故答案为:①③④.【点睛】此题属于四边形的综合题.考查了正方形的性质,全等三角形的判定与性质、勾股定理以及等腰直角三角形的性质.注意掌握全等三角形的判定与性质是解此题的关键.2、8【解析】【分析】由四边形ABCD 为矩形,根据矩形的对角线互相平分且相等,可得OA OB =,由60AOB ∠=︒,根据有一个角为60︒的等腰三角形为等边三角形可得三角形AOB 为等边三角形,根据等边三角形的每一个角都相等都为60︒可得出BAO ∠为60︒,在直角三角形ABC 中,根据直角三角形的两个锐角互余可得ACB ∠为30,根据30角所对的直角边等于斜边的一半,由AB 的长可得出AC 的长.【详解】 解:四边形ABCD 为矩形,OA OC ∴=,OB OD =,且AC BD =,90ABC ∠=︒,OA OB OC OD ∴===,又60AOB ∠=︒,AOB ∴∆为等边三角形,60BAO ∴∠=︒,在直角三角形ABC 中,90ABC ∠=︒,60BAO ∠=︒,30ACB ∴∠=︒,4cm AB =,则28cm AC AB ==.故答案为:8.【点睛】此题考查了矩形的性质,等边三角形的判定与性质,以及含30角直角三角形的性质,熟练掌握矩形的性质是解觉本题的关键.3【解析】【分析】由正方形的性质得出AB BC CD AD ===,AC BD =,90ABC ∠=︒,由勾股定理求出AC =,即可得出正方形的边长与对角线长的比值.【详解】 解:四边形ABCD 是正方形,AB BC CD AD ∴===,AC BD =,90ABC ∠=︒,AC ∴,∴AB AC =;【点睛】本题考查了正方形的性质、勾股定理;熟练掌握正方形的性质,并能进行推理计算是解决问题的关键.4、24【解析】【分析】根据直角三角形斜边上中线的性质,即可得到DE=BE1=AB=6,再根据折叠的性质,即可得到四边2形BCDE的周长为6×4=24.【详解】解:∵BD⊥AD,点E是AB的中点,∴DE=BE1=AB=6,2由折叠可得:CB=BE,CD=ED,∴四边形BCDE的周长为6×4=24.故答案为:24.【点睛】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.5、4【解析】【分析】由旋转的性质得△ADE≌△ABF,从而四边形AECF的面积为正方形ABCD的面积.【详解】解:以点A为中心,把ADE∆绕点A顺时针旋转90︒,得到ABF∆,ΔΔADE ABF ∴≅,∴四边形AECF 的面积为正方形ABCD 的面积,正方形ABCD 的边长为2,∴正方形ABCD 的面积为4,∴四边形AECF 的面积为4,故答案为:4.【点睛】本题主要考查了旋转的性质,正方形的性质等知识,熟练掌握旋转前后图形是全等的是解题的关键.三、解答题1、 (1)见解析(2)当AD 时,四边形BEDH 是正方形【解析】【分析】(1)要证明AF =CG ,只要证明△EAF ≌△HCG 即可;(2)利用已知可得四边形BEDH 是菱形,所以当AE 2+DE 2=AD 2时,∠BED =90°,四边形BEDH 是正方形.(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∠BAD =∠BCD ,∴∠AEF =∠CHG ,∵BE =2AB ,DH =2CD ,∴BE =DH ,∴BE-AB=DH-DC,∴AE=CH,∴∠BAD+∠EAF=180°,∠BCD+∠GCH=180°,∴∠EAF=∠GCH,∴△EAF≌△HCG(ASA),∴AF=CG;(2)解:当AD时,四边形BEDH是正方形;理由:∵BE∥DH,BE=DH,∴四边形EBHD是平行四边形,∵EH⊥BD,∴四边形EBHD是菱形,∴ED=EB=2AB,当AE2+DE2=AD2时,则∠BED=90°,∴四边形BEDH是正方形,即AB2+(2AB)2=AD2,∴AD,∴当AD时,四边形BEDH是正方形..【点睛】本题考查了正方形的判定,菱形的判定,平行四边形的性质,全等三角形的判定与性质,结合图形分析并熟练掌握正方形的判定,平行四边形的性质,是解题的关键.2、 (1)12(2)①3,②80 13【解析】【分析】(1)①设DF=m,解直角三角形求出AB,AD(用m表示即可);(2)①如图,过点M作MK⊥AD于K,MH⊥BA交BA的延长线于H,交CD的延长线于G.证明△BMH≌△BMF(AAS),推出BH=BF=8,可得结论.②如图3-2中,当点E与D重合时,求出MG的长,可得结论.(1)如图,设DF=m.∴∠A=∠D=∠C=90°,AB=CD,AD=BC,由翻折的性质可知,∠BEF=∠BEC=75°,∠C=∠BFE=90°,EF=EC,∴∠FED=180°-75°-75°=30°,∴EF=EC=2DF=2m,DE,∴∠AEFD=60°,∠AFB=30°,AB=CD=2m,∵AF+3m,∴BC=AD+4m,∴12 ABBC==.(2)①如图,过点M作MK⊥AD于K,MH⊥BA交BA的延长线于H,交CD的延长线于G.∵四边形ABCD是矩形,∴∠C=∠BAD=∠ABD=∠ADC=90°,AB=CD=5,AD=BC=8,∵MH⊥AB,MK⊥AD,∴∠H=∠HAK=∠AKM=90°,∴AH=MK,∵BM平分∠ABF,∴∠MBH=∠MBF,∵∠H=∠AFM=90°,BM=BM,∴△BMH≌△BMF(AAS),∴BH=BF,∵BF=BC=8,∴BH=BC=8,∴MK=AH=BH-AB=8-5=3,∴M到AD的距离为3.②如图,当点E与D重合时,∵△BMH≌△BMF,∴MH=MF,设MH=MF=m,∵四边形AHGD是矩形,∴AH=DG=3,GH=AD=8,∠G=90°,∵CD=DF=5,GM=GH-HM=8-m,在Rt△DGM中,则有(8-m)2+32=(5+m)2,解得m=24 13,∴GM=8-2413=8013,观察图象可知,当E从C到D的过程中,点M运动的路径是线段MG,∴点M的运动的路径的长为80 13.【点睛】本题考查了矩形的性质,全等三角形的判定与性质,直角三角形的性质,折叠的性质,角平分线的性质,勾股定理等知识,判断出BH=BF=BC是解题的关键.3、 (1)见解析(2)当∠FGC=2∠EFB时,四边形AEFG是矩形,理由见解析【解析】【分析】(1)要证明该四边形是平行四边形,只需证明AE∥FG.根据对边对等角∠GFC=∠C,则∠B=∠GFC,得到AE∥FG.(2)在平行四边形的基础上要证明是矩形,只需证明有一个角是直角.根据三角形FGC的内角和是180°,添加∠FGC=2∠EFB,可得到∠BFE+GFC=90°.则∠EFG=90°.(1)证明:在四边形ABCD中,∠B=∠C,∵GF=GC,∴∠C=∠GFC,∠B=∠GFC,∴AB∥GF,即AE∥GF,∵AE =GF ,∴四边形AEFG 是平行四边形.(2)解:当∠FGC =2∠EFB 时,四边形AEFG 是矩形;∵∠FGC +∠GFC +∠C =180°,∠GFC =∠C ,∠FGC =2∠EFB ,∴2∠GFC +2∠EFB =180°,∴∠BFE +∠GFC =90°.∴∠EFG =90°.∵四边形AEFG 是平行四边形,∴四边形AEFG 是矩形.【点睛】本题考查了平行四边形的判定,矩形的判定,熟练掌握矩形的判定是解题的关键.4、证明见解析【解析】【分析】平行四边形ABCD ,可知AB CD AB CD =,;由于AE CF = ,可得BE DF =,BE DF ,知四边形DEBF 为平行四边形,由90DEB ∠=︒可知四边形DEBF 是矩形.【详解】证明:∵四边形 ABCD 是平行四边形∴AB CD AB CD =,∵AE CF BE AB AE DF DC CF ==-=-,,∴BE DF =∵BE DF BE DF =,∴四边形DEBF 为平行四边形又∵90DEB ∠=︒∴四边形DEBF 是矩形.【点睛】本题考查了平行四边形的性质与判定,矩形的判定等知识.解题的关键在于灵活掌握矩形的判定.5、见解析【解析】【分析】连接BD ,利用菱形的性质可得△EDB ≌△FDB ,可得结论.【详解】证明:如图,连接BD ,在菱形ABCD 中,∠ADB =∠CDB ,在△EDB 和△FDB 中,DE DF EDB FDB BD BD =⎧⎪∠=∠⎨⎪=⎩, ∴()EDB FDB SAS ≌△△,∴BE =BF .【点睛】此题考查了全等三角形的判定与性质,菱形的性质,解题的关键是熟练掌握并利用菱形的相关性质以及全等三角形的判定与性质进行求解.。

2022年最新鲁教版(五四制)八年级数学下册第六章特殊平行四边形专题训练试卷

2022年最新鲁教版(五四制)八年级数学下册第六章特殊平行四边形专题训练试卷

鲁教版(五四制)八年级数学下册第六章特殊平行四边形专题训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小明想判断家里的门框是否为矩形,他应该( )A .测量三个角是否都是直角B .测量对角线是否互相平分C .测量两组对边是否分别相等D .测量一组对角是否是直角2、如图,菱形ABCD 的对角线AC 、BD 相交于点O ,6AC =,8BD =,EF 为过点O 的一条直线,则图中阴影部分的面积为( )A .4B .6C .8D .123、已知,如图长方形ABCD 中,AB =3,AD =9,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则BEF 的面积为( )A .6B .7.5C .12D .154、如图,已知菱形OABC 的顶点O (0,0),B (2,2),菱形的对角线的交于点D ;若将菱形OABC 绕点O 逆时针旋转,每秒旋转45°,从如图所示位置起,经过60秒时,菱形的对角线的交点D 的坐标为( )A .(1,1)B .(﹣1,﹣1)C .(-1,1)D .(1,﹣1)5、下列关于ABCD 的叙述,正确的是( )A .若AC BD =,则ABCD 是矩形B .若AB AD =,则ABCD 是正方形C .若AB BC ⊥,则ABCD 是菱形 D .若AC BD ⊥,则ABCD 是正方形6、一块含45°角的直角三角板和一把直尺按如图所示方式放置,直尺的一边EF 与直角三角板的斜边AB 位于同一直线上,DE >AB .开始时,点E 与点A 重合,直角三角板固定不动,然后将直尺沿AB 方向平移,直到点F 与点B 重合时停止.设直尺平移的距离AE 的长为x ,边AC 和BC 被直尺覆盖部分的总长度为y ,则y 关于x 的函数图象大致是( )A.B.C.D.7、如图,在△ABC中,∠ABC=90°,BC=4,AB=8,P为AC边上的一个动点,D为PB上的一个动点,连接AD,当∠CBP=∠BAD时,线段CD的最小值是()A B.2 C.1D.48、如图,在Rt△ABC中,∠ACB=90°,如果D为边AB上的中点,那么下面结论错误的是()A.12CD AB=B.12CB AB=C.∠A=∠ACD D.∠ADC=2∠B9、如图,在矩形ABCD中,AB=2,BC=4,对角线AC,BD相交于点O,OE⊥AC交BC于点E,EF⊥BD 于点F,则OE+EF的值为()A B .2 C .52 D .10、将一张长方形纸片按如图所示的方式折叠,BD 、BE 为折痕,则∠EBD 的度数( )A .80°B .90°C .100°D .110°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、(1)有一个角是直角的_______是矩形.几何语言:∵四边形ABCD 是平行四边形,∠A =90°,∴四边形ABCD 是矩形.(2)_______相等的平行四边形是矩形.几何语言:∵ 四边形ABCD是平行四边形,AC=BD(或OA=OC=OB=OD),∴四边形ABCD是矩形.(3)有三个角是_______的四边形是矩形.几何语言:∵ ∠A=∠B=∠C=90°,∴四边形ABCD是矩形.2、如图,在△ABC中,AB=AC=2,∠BAC=90°,O为AC的中点,点P是射线BO上的一个动点,当△ACP为直角三角形时,则BP的长为______.3、如图,在菱形ABCD中,点M、N分别交于AB、CD上,AM=CN,MN与AC交于点O,连接BO.若∠OBC=62°,则∠DAC为____°.4、已知:如图,正方形ABCD中,AB=2,AC,BD相交于点O,E,F分别为边BC,CD上的动点(点E,F不与线段BC,CD的端点重合)且BE=CF,连接OE,OF,EF.在点E,F运动的过程中,有下列四个结论:①△OEF是等腰直角三角形;②△OEF面积的最小值是1;③至少存在一个△ECF,使得△ECF的周长是2④四边形OECF的面积是1.所有正确结论的序号是_________________________5、如图,菱形ABCD 中,12AB =,60ABC ∠=︒,点E 在AB 边上,且2BE AE =,动点P 在BC 边上,连接PE ,将线段PE 绕点P 顺时针旋转60︒至线段PF ,连接AF ,则线段AF 长的最小值为__.三、解答题(5小题,每小题10分,共计50分)1、如图,点E 、F 在菱形ABCD 的对角线AC 上,且AF =CE ,求证:DE =BF .2、如图,现将一张矩形ABCD 的纸片一角折叠,若能使点D 落在AB 边上F 处,折痕为CE ,恰好∠AEF =60°,延长EF 交CB 的延长线于点G .(1)求证:△CEG 是等边三角形;(2)若矩形的一边AD =3,求另一边AB 的长.3、尺规作图并回答问题:(保留作图痕迹)已知:如图,四边形ABCD 是平行四边形.求作:菱形AECF ,使点E ,F 分别在BC ,AD 上.请回答:在你的作法中,判定四边形AECF 是菱形的依据是 .4、如图,Rt ABC 中,90ACB ∠=︒,点D 在AB 上,8AD =,6BD =,DE BC ⊥于点E ,把DBE 绕点D 旋转得DGF △,且点G ,F 在AC 上.(1)求证:四边形CEDF 是正方形;(2)求四边形CEDF 的面积,5、四边形ABCD 是正方形,E 、F 分别是DC 和B 的延长线上点,且DE =BF ,连接AE 、AF 、EF .(1)求证:△ADE ≌ABF ;(2)若BC=4,DE=1,求△ABF的面积.-参考答案-一、单选题1、A【解析】【分析】根据矩形的判定方法解题.【详解】解:A、三个角都是直角的四边形是矩形,∴选项A符合题意;B、对角线互相平分的四边形是平行四边形,∴选项B不符合题意,C、两组对边分别相等的四边形是平行四边形,∴选项C不符合题意;D、一组对角是直角的四边形不是矩形,∴选项D不符合题意;故选:A.【点睛】本题考查矩形的判定方法,是重要考点,掌握相关知识是解题关键.2、B【解析】【分析】根据菱形的性质可证出ΔΔCFO AEO ≅,可将阴影部分面积转化为BOC ∆的面积,根据菱形的面积公式计算即可.【详解】 解:四边形ADCB 为菱形,OC OA ∴=,//AB CD ,FCO OAE ∠=∠,FOC AOE ∠=∠,()CFO AEO ASA ≅,∴CFO AOE S S =,∴CFO BOF BOC S S S +=, ∴1111··6864242BOC S AC BD =⨯=⨯⨯⨯= 故选:B .【点睛】此题考查了菱形的性质,菱形的面积公式,全等三角形的判定,将阴影部分的面积转化为BOC ∆的面积为解题关键.3、B【解析】【分析】根据翻折的性质可得,BE =DE ,设AE =x ,则ED =BE =9−x ,在直角△ABE 中,根据勾股定理可得32+x 2=(9−x )2,即可得到BE 的长度,由翻折性质可得,∠BEF =∠FED ,由矩形的性质可得∠FED =∠BFE ,即可得出△BEF 是等腰三角形,BE =BF ,即可得出答案.【详解】解:设AE =x ,则ED =BE =9−x ,根据勾股定理可得,32+x 2=(9−x )2,解得:x =4,由翻折性质可得,∠BEF =∠FED ,∵AD ∥BC ,∴∠FED =∠BFE ,∴∠BEF =∠BFE ,∴BE =BF =5,∴S △BFE =12×5×3=7.5.故选:B .【点睛】本题主要考查了翻折的性质及矩形的性质,熟练应用相关知识进行求解是解决本题的关键.4、B【解析】【分析】分别过点D 和点B 作DE x ⊥轴于点E ,作BF x ⊥轴于点F ,根据菱形的性质以及中位线的性质求得点D 的坐标,进而计算旋转的度数,7.5周,进而根据中心对称求得点旋转后的D 坐标【详解】如图,分别过点D 和点B 作DE x ⊥轴于点E ,作BF x ⊥轴于点F ,∴DE BF ∥,∵四边形OABC 为菱形,∴点D 为OB 的中点,∴点E 为OF 的中点, ∴12DE BF =,12OE OF =, ∵(2,2)B ,∴(1,1)D ;由题意知菱形OABC 绕点O 逆时针旋转度数为:45602700︒⨯=︒,∴菱形OABC 绕点O 逆时针旋转27003607.5︒÷︒=周,∴点D 绕点O 逆时针旋转7.5周,∵(1,1)D ,∴旋转60秒时点D 的坐标为()1,1--.故选B【点睛】根据菱形的性质及中点的坐标公式可得点D 坐标,再根据旋转的性质可得旋转后点D 的坐标,熟练掌握菱形的性质及中点的坐标公式、中心对称的性质是解题的关键.5、A【解析】【分析】由菱形的判定方法、矩形的判定方法、正方形的判定方法得出选项A、B、D错误,C正确;即可得出结论.【详解】=,解:ABCD中,AC BD∴四边形ABCD是矩形,选项A符合题意;=,ABCD中,AB AD∴四边形ABCD是菱形,不一定是正方形,选项B不符合题意;⊥,ABCD中,AB BC∴四边形ABCD是矩形,不一定是菱形,选项C不符合题意;⊥,ABCD中,AC BD∴四边形ABCD是菱形,选项D不符合题意;故选:A.【点睛】本题考查了平行四边形的性质、菱形的判定方法、矩形的判定方法、正方形的判定方法;熟练掌握矩形、菱形、正方形的判定方法是解决问题的关键.6、A【解析】【分析】根据直尺的平移可知,共分三个阶段,利用等腰直角三角形的性质求解即可.【详解】解:根据直尺的平移可知,共分三个阶段,分别如下图所示:如图①,设DE 、GF 与AC 的交点分别为M 、P ,作MN GF ⊥,由此可得四边形MNFE 为矩形,则MN EF =,45CMN A ∠=∠=︒,则MNP △为等腰直角三角形由勾股定理可得:MP =即y ==,如图②,设DE 与AC 的交点分别为M ,GF 与BC 的交点为点Q ,作MN GF ⊥,延长MC 交GF 于点P ,由此可得,四边形MNFE 为矩形,则MN EF =,45CMN A ∠=∠=︒,则MNP △、CPQ 为等腰直角三角形,则CP CQ =,MP ==所以,y MC CQ MP =+===如图③,由图①可得y ==,即y 不随x 的变化,不变,故选:A.【点睛】此题考查了动点问题的函数图像,涉及了勾股定理、矩形的判定与性质,等腰直角三角形的判定与性质,解题的关键是熟练掌握并灵活运用相关性质进行求解.7、D【解析】【分析】如图,取AB的中点T,连接CT,DT.首先证明∠ADB=90°,求出CT,DT,根据CD≥CT-DT,可得结论.【详解】如图,取AB的中点T,连接CT,DT.∵∠ABC=90°,∴∠ABD+∠CBD=90°,∵∠BAD=∠CBD,∴∠ABD+∠BAD=90°,∴∠ADB=90°,∵AT=TB=4,∴DT =12AB =4,CT =∵CD ≥CT -DT ,∴CD ≥,∴CD 的最小值为,故选:D .【点睛】本题考查直角三角形斜边中线的性质,勾股定理等知识,解题的关键是求出CT ,DT 的长.8、B【解析】【分析】根据直角三角形斜边上的中线的性质结合等腰三角形的性质及含30 角的直角三角形的性质,三角形外角的性质判定即可求解.【详解】解:在Rt ABC 中,90ACB ∠=︒,D 为边AB 上的中点,12AD BD CD AB ∴===,故A 选项正确,不符合题意; A ACD ∴∠=∠,故C 选项正确,不符合题意;DCB B ∠=∠,2ADC DCB B B ∴∠=∠+∠=∠,故D 选项正确,不符合题意;只有当30A ∠=︒时,12CB AB =,故B 选项错误,符合题意.故选:B .【点睛】本题主要考查直角三角形斜边上的中线,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半.9、A【解析】【分析】依据矩形的性质即可得到BOC ∆的面积为2,再根据BOC COE BOE S S S∆=+,即可得到OE EF +的值. 【详解】解:2AB =,4BC =,∴矩形ABCD 的面积为8,AC ==12BO CO AC ∴==对角线AC ,BD 交于点O ,BOC ∴∆的面积为2,EF OB ⊥,EO AC ⊥,BOC COE BOE S S S ∆∴=+,即11222CO EO OB EF =⨯+⨯,12)2EO EF ∴=+,)4EO EF +=,EO EF ∴+, 故选:A .【点睛】本题主要考查了矩形的性质,解题的关键是掌握矩形的四个角都是直角,矩形的对角线相等且互相平分.10、B【解析】【分析】根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∠ABE+∠A′BE+∠DBC+∠DBC′=180°,且∠EBD=∠A′BE+∠DBC′,继而即可求出答案.【详解】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠EBD=∠A′BE+∠DBC′=180°×1=90°.2故选B.【点睛】此题考查翻折变换的性质,三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.二、填空题1、平行四边形对角线直角【解析】略2、11【解析】【分析】分三种情况:①若∠ACP=90°,②若∠APC=90°,且点P在BO延长线上,③若∠APC=90°,且点P 在线段BO上时,分别根据图形计算即可.【详解】解:在△ABC中,AB=AC=2,∠BAC=90°,O为AC的中点,∴AO=1,BO=①若∠ACP=90°时,∵∠OCP=∠OAB=90°,CO=AO,∠COP=∠AOB,∴△OCP≌△OAB,∴OP=BO,∴BP=OP+BO②若∠APC=90°,且点P在BO延长线上时,∵O为AC的中点,∴OP=12AC=1,∴BP=OP+BO=1③若∠APC=90°,且点P在线段BO上时,∵O为AC的中点,∴OP=12AC=1,∴BP= BO-OP1;综上,线段BP的长为11.故答案为:11.【点睛】本题考查了勾股定理,直角三角形斜边上的中线,分类讨论是解题的关键.3、28【解析】【分析】由全等三角形的性质可证△AOM≌△CON,可得AO=CO,由等腰三角形的性质可得BO⊥AC,即可求解.【详解】解:∵四边形ABCD是菱形,∴AB//CD,AB=BC,BC//AD,∴∠MAO=∠NCO,∠BCA=∠CAD.在△AOM和△CON中,MAO NCO AOM CON AM CN ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AOM ≌△CON (AAS ),∴AO =CO ,又∵AB =BC ,∴BO ⊥AC ,∴∠BCO =90°﹣∠OBC =28°=∠DAC .故答案为:28.【点睛】本题考查了菱形的性质,等腰三角形的性质,全等三角形的判定和性质,掌握菱形的性质是本题的关键.4、①③④【解析】【分析】①易证得△OBE ≌△OCF (SAS ),则可证得结论①正确;②由OE 的最小值是O 到BC 的距离,即可求得OE 的最小值1,根据三角形面积公式即可判断选项②错误;≤EF <2,即可求得选项③正确;④证明△OBE ≌△OCF ,根据正方形被对角线将面积四等分,即可得出选项④正确.【详解】解:①∵四边形ABCD 是正方形,AC ,BD 相交于点O ,∴OB =OC ,∠OBC =∠OCD =45°,在△OBE 和△OCF 中,OB OC OBE OCF BE CF =⎧⎪∠=∠⎨⎪=⎩, ∴△OBE ≌△OCF (SAS ),∴OE =OF ,∵∠BOE =∠COF ,∴∠EOF =∠BOC =90°,∴△OEF 是等腰直角三角形;故①正确;②∵当OE ⊥BC 时,OE 最小,此时OE =OF =12BC =1,∴△OEF 面积的最小值是12×1×1=12,故②错误;③∵BE =CF ,∴CE +CF =CE +BE =BC =2,假设存在一个△ECF ,使得△ECF 的周长是2则EF由①得△OEF 是等腰直角三角形,∴OE=,OE 的最小值是1,∴存在一个△ECF ,使得△ECF 的周长是2故③正确;④由①知:△OBE≌△OCF,∴S 四边形OECF =S △COE +S △OCF =S △COE +S △OBE =S △OBC =14S 正方形ABCD =14×2×2=1, 故④正确;故答案为:①③④.【点睛】此题属于四边形的综合题.考查了正方形的性质,全等三角形的判定与性质、勾股定理以及等腰直角三角形的性质.注意掌握全等三角形的判定与性质是解此题的关键.5、【解析】【分析】在BC 上取一点G ,使得BG BE =,连接EG ,EF ,作直线FG 交AD 于T ,过点A 作AH GF ⊥于H .证明120BGF ∠=︒,推出点F 在射线GF 上运动,根据垂线段最短可知,当点F 与H 重合时,AF 的值最小,求出AH 即可.【详解】解:在BC 上取一点G ,使得BG BE =,连接EG ,EF ,作直线FG 交AD 于T ,过点A 作AH GF ⊥于H .60B ∠=︒,BE BG =,ΔBEG ∴是等边三角形,EB EG ∴=,60BEG BGE ∠=∠=︒,PE PF =,60EPF ∠=︒,ΔEPF ∴是等边三角形,60PEF ∴∠=︒,EF EP =,BEG PEF ∠=∠,BEP GEF ∴∠=∠,在ΔBEP 和GEF ∆中,BE GE BEP GEF PE PF =⎧⎪∠=∠⎨⎪=⎩, ()ΔΔBEP GEF SAS ∴≅,60EGF B ∴∠=∠=︒,120BGF ∴∠=︒,∴点F 在射线GF 上运动,根据垂线段最短可知,当点F 与H 重合时,AF 的值最小,12AB =,2BE AE =,8BE ∴=,4AE =,60BEG EGF ∠=∠=︒,∴GT //AB∵BG //AT∴四边形ABGT 是平行四边形,8AT BG BE ∴===,60ATH B ∠=∠=︒,∴30TAH ∠=︒12TH AH = 在Rt ATH ∆中,222AT TH AH +=∴ 22218()2AH AH +=AH ∴=AF ∴的最小值为故答案为:【点睛】本题考查菱形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.三、解答题1、见解析【解析】【分析】由菱形的性质可得CD AB =,//CD AB ,可证DCA BAC ∠=∠,由“SAS ”可证DCE BAF ∆≅∆,可得DE BF =.【详解】 证明:四边形ABCD 是菱形,CD AB ∴=,//CD AB ,DCA BAC ∴∠=∠,在DCE ∆和BAF ∆中,DC AB DCE BAF CE AF =⎧⎪∠=∠⎨⎪=⎩, ()DCE BAF SAS ∴∆≅∆,DE BF ∴=.【点睛】本题考查了菱形的性质,全等三角形的判定和性质,解题的关键是证明DCE BAF ∆≅∆.2、 (1)见解析(2)【解析】【分析】(1)根据补角性质求出∠FED =180°-∠AEF =180°-60°=120°,根据折叠△EDC ≌△EFC ,得出∠DEC =∠FDC =6201DEF ∠=︒,∠DCE =∠FCE ,根据四边形ABCD 为矩形,∠D =90°,∠DCB =90°,再求∠GCE =∠DCB -∠DCE =90°-30°=60°即可;(2)先根据30°直角三角形性质得出EF =2AE ,利用折叠性质FE =ED ,得出ED =2AE ,根据AD =AE +ED =3AE =3,求出AE =1,ED =2AE =2,利用30°直角三角形性质和勾股定理即可求解.(1)解:∵∠AEF =60°,∴∠FED =180°-∠AEF =180°-60°=120°,∵折叠,△EDC ≌△EFC ,∴∠DEC =∠FEC =6201DEF ∠=︒,∠DCE =∠FCE , ∵四边形ABCD 为矩形,∴∠D =90°,∠DCB =90°,∴∠DCE=90°-∠DEC=90°-60°=30°,∴∠FCE=∠DCE=30°,∴∠GCE=∠DCB-∠DCE=90°-30°=60°,∴∠GCE=∠GEC=60°,∴△ECG为等边三角形;(2)解:∵∠AEF=60°,∠A=90°∴∠AFE=90°-∠AEF=30°,∴EF=2AE,∵FE=ED,∴ED=2AE,∵AD=AE+ED=3AE=3,∴AE=1,ED=2AE=2,∵∠DCE=30°,∠D=90°,∴CE=2ED=2×2=4,∴CD ED22224223,∴矩形的另一边长为AB=CD=【点睛】本题考查折叠性质,矩形性质,30°直角三角形性质,勾股定理,等边三角形判定,一元一次方程掌握折叠性质,矩形性质,30°直角三角形性质,勾股定理,等边三角形判定是解题关键.3、证明见解析;邻边相等的平行四边形是菱形,对角线垂直的平行四边形是菱形.【解析】【分析】根据邻边相等的平行四边形是菱形或对角线垂直的平行四边形是菱形证明即可.【详解】解:如图,四边形AECF 即为所求作.理由:四边形ABCD 是平行四边形,∴AE ∥CF ,∴∠EAO =∠FCO ,∵EF 垂直平分线段AC ,∴OA =OC ,在△AEO 和△CFO 中,EAO FCO AO OCAOE COF ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△AEO ≌△CFO (ASA ),∴AE =CF ,∴四边形AECF 是平行四边形,∵EA =EC 或AC ⊥EF ,∴四边形AECF 是菱形.故答案为:邻边相等的平行四边形是菱形,对角线垂直的平行四边形是菱形.【点睛】本题考查作图-复杂作图,平行四边形的性质,菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4、 (1)见解析 (2)57625【解析】【分析】(1)根据旋转的性质可得DBE ≌DGF △,进而可得90DEB DFG ∠=∠=︒,根据三个角是直角的四边形证明四边形CEDF 是矩形,根据邻边相等的矩形是正方形即可得证;(2)在Rt ADG 中,根据勾股定理得AG 根据等面积法即可求得DF ,进而求得正方形的面积.(1)∵DE BC ⊥,∴90DEC DEB ∠=∠=︒.由旋转得:DE DF =,DBE ≌DGF △.∴90DEB DFG ∠=∠=︒.∵90ACB ∠=︒,∴四边形CEDF 是矩形.∵DE DF =,∴四边形CEDF 是正方形.(2)由(1)得:四边形CEDF 是正方形,∴90EDF ∠=︒.由旋转得:DBE ≌DGF △,90EDF BDG ∠=∠=︒.∴6BD GD ==,90GDA ∠=︒.在Rt ADG 中,根据勾股定理得:10AG . ∵22ADG AD DG AG DF S ⋅⋅==△, ∴861022DF ⨯⋅=. ∴245DF =. ∴257625CEDF S DF ==正方形. 【点睛】本题考查了正方形的性质与判定,勾股定理,旋转的性质,全等的性质,掌握以上性质定理是解题的关键.5、 (1)证明见解答;(2)2.【解析】【分析】(1)根据全等三角形的判定定理即可得出答案;(2)根据正方形的性质求出AB 的长度,根据全等三角形的性质求出BF 的长度,即可确定三角形ABF 的面积.(1)解:∵四边形ABCD 是正方形,∴AD =AB ,∠D =∠ABF =90°,在△ADE 和△ABF 中,AD AB ADE ABF DE BF ⎧⎪∠∠⎨⎪⎩===, ∴△ADE ≌△ABF (SAS );(2)∵DE =1,BC =4,∴BF =1,AB =4,∴S △ABF =12×1×4=2,【点睛】本题考查了正方形的性质和全等三角形的判定,解题的关键是要牢记正方形的性质和全等三角形的判定定理.。

2022年最新鲁教版(五四制)八年级数学下册第六章特殊平行四边形专题攻克试卷(含答案详解)

2022年最新鲁教版(五四制)八年级数学下册第六章特殊平行四边形专题攻克试卷(含答案详解)

鲁教版(五四制)八年级数学下册第六章特殊平行四边形专题攻克考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列四个命题中,真命题是()A.对角线互相平分的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.以一条对角线为对称轴的四边形是菱形D.对角线相等的四边形是矩形2、如图,在矩形纸片ABCD中,AB=6,BC=8,点M为AB上一点,将△BCM沿CM翻折至△ECM,ME与AD相交于点G,CE与AD相交于点F,且AG=GE,则BM的长度是()A.185B.4 C.245D.53、菱形周长为20,其中一条对角线长为6,则菱形面积是( )A .48B .40C .24D .124、如图,矩形ABCD 的对角线AC ,BD 相交于点O ,点P 是AD 边上的一个动点,过点P 分别作PE ⊥AC 于点E ,PF ⊥BD 于点F .若AB =6,BC =8,则PE +PF 的值为( )A .10B .9.6C .4.8D .2.45、在Rt ABC 中,90ACB ∠=︒,分别以A 点,B 点为圆心以大于12AB 为半径画弧,两弧交于E ,F ,连接EF 交AB 于点D ,连接CD ,以C 为圆心,CD 长为半径作弧,交AC 于G 点,则:CG AB =( )A .B .1:2C .D .6、在Rt ABC △中,CD 是斜边AB 上的中线,则以下判断正确的是( )A .2BC CD =B .2CD AB =C .2AC CD = D .CD BD =7、下列命题中是真命题的选项是( )A .一组对边平行,另一组对边相等的四边形是平行四边形B .对角线互相垂直且相等的四边形是正方形C .对角线相等的平行四边形是矩形D .三条边都相等的四边形是菱形8、顺次连接对角线互相垂直的四边形的各边中点,所形成的新四边形是()A.菱形B.矩形C.正方形D.三角形9、在锐角△ABC中,∠BAC=60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:①NP =MP;②AN:AB=AM:AC;③BN=2AN;④当∠ABC=60°时,MN∥BC,一定正确的有()A.①②③B.②③④C.①②④D.①④10、如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=6,F为DE的中点.若OF的长为1,则△CEF的周长为()A.14 B.16 C.18 D.12第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在四边形ABCD中,AB=12,BD⊥AD.若将△BCD沿BD折叠,点C与边AB的中点E恰好重合,则四边形BCDE的周长为____.2、如图,在平行四边形ABCD 中,AC 是对角线,90ACD ∠=︒,点E 是BC 的中点,AF 平分BAC ∠,CF AF ⊥于点F ,连接EF .已知5AB =,13BC =,则EF 的长为_______.3、将两个直角三角板如图放置,其中AB =AC ,∠BAC =∠ECD =90°,∠D =60°.如果点A 是DE 的中点,CE 与AB 交于点F ,则∠BFC 的度数为 _____°.4、定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为6,中心为O ,在正方形外有一点P ,6OP =,当正方形绕着点O 旋转时,则点P 到正方形的最短距离d 的最大值为______.5、矩形的性质定理1:矩形的四个角都是______.矩形的性质定理2:矩形的对角线______.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,已知点(4,4)A ,C ,B 两点分别是x ,y 轴正半轴上的动点,且满足90BAC ∠=︒.(1)写出BOA ∠的度数;(2)求BO OC +的值;(3)若BP 平分OBC ∠,交OA 于点P ,PN y ⊥轴于点N ,AQ 平分BAC ∠,交BC 于点Q ,随着C ,B 位置的变化,NP AQ +的值是否会发生变化?若不变,求其值;若变化,说明理由.2、如图,点E 、F 在菱形ABCD 的对角线AC 上,且AF =CE ,求证:DE =BF .3、如图,已知矩形ABCD (AB <AD ).E 是BC 上的点,AE =AD .(1)在线段CD 上作一点F ,连接EF ,使得∠EFC =∠BEA (请用直尺和圆规作图,保留作图痕迹);(2)在(1)作出的图形中,若AB =4,AD =5,求DF 的值.4、如图,在▱ABCD 中,AE 平分∠BAD 交CD 于点E ,DF 平分∠ADC 交AB 于点F ,AE 与DF 交于点O ,连接EF,OC.(1)请依题意补全图形.求证:四边形ADEF是菱形;(2)若AD=4,AB=6,∠ADC=60°,求OC的长.5、如图,四边形ABCD为菱形,点E,F分别为边DA,DC上的点,DE=DF,连接BE,BF,求证:BE =BF.-参考答案-一、单选题1、A【解析】【分析】根据平行四边形、菱形、矩形的判定定理即可判断.【详解】解:A、对角线互相平分的四边形是平行四边形,故原命题是真命题;B、对角线互相垂直的平行四边形才是菱形,故原命题是假命题;C、以两条对角线为对称轴的四边形是菱形,以一条对角线为对称轴的四边形可能是“筝”形,故原命题是假命题;D、对角线相等的平行四边形才是矩形,故原命题是假命题;故选:A.【点睛】本题考查平行四边形、菱形、矩形的判定,掌握平行四边形、菱形、矩形的判定定理是解题的关键.2、C【解析】【分析】由ASA证明△GAM≌△GEF(ASA),得出GM=GF,AF=ME=BM=x,EF=AM=6-x,因此DF=8-x,CF=x+2,在Rt△DFC中,由勾股定理得出方程,解方程即可.【详解】解:设BM=x,由折叠的性质得:∠E=∠B=90°=∠A,在△GAM和△GEF中,A EAG GEAGM EGF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△GAM≌△GEF(ASA),∴GM=GF,∴AF=ME=BM=x,EF=AM=6-x,∴DF=8-x,CF=8-(6-x)=x+2,在Rt△DFC中,由勾股定理得:(x+2)2=(8-x)2+62,解得:x =245, ∴BM =245. 故选:C .【点睛】本题考查了矩形的性质,折叠有性质,全等三角形的判定与性质、勾股定理等知识;熟练掌握矩形的性质和全等三角形的判定与性质,由勾股定理得出方程是解决问题的关键.3、C【解析】【分析】由菱形对角线互相垂直且平分的性质、结合勾股定理解得4OA =,继而解得AC 的长,最后根据菱形的面积公式解题.【详解】解:如图,6BD =,菱形的周长为20,5AB ∴=,四边形ABCD 是菱形,132OB DB ∴==,OA OC =,AC BD ⊥, 由勾股定理得4OA =,则8AC =, 所以菱形的面积11682422AC BD =⋅=⨯⨯=.故选:C.【点睛】本题考查菱形的性质、勾股定理等知识,是重要考点,掌握相关知识是解题关键.4、C【解析】【分析】首先连接OP.由矩形ABCD的两边AB=6,BC=8,可求得OA=OD=5,然后由S△AOD=S△AOP+S△DOP求得答案.【详解】解:连接OP,∵矩形ABCD的两边AB=6,BC=8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD,AC,∴S△AOD=14S矩形ABCD=12,OA=OD=5,∴S△AOD=S△AOP+S△DOP=12OA•PE+12OD•PF=12OA(PE+PF)=12×5×(PE+PF)=12,∴PE+PF=245=4.8.故选:C.【点睛】此题考查了矩形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.5、B 【解析】【分析】根据尺规作图可知EF是AB的垂直平分线,从而CD=CG=12AB,然后可求CG:AB的值.【详解】解:根据尺规作图可知EF是AB的垂直平分线,∴D是AB中点,∴CD=CG=12 AB,∴CG:AB=12AB:AB=1:2,故选B.【点睛】本题考查了尺规作图-作线段的垂直平分线,直角三角形斜边中线的性质,熟练掌握直角三角形斜边的中线的中线等于斜边的一半是解本题的关键.6、D【解析】【分析】直接利用直角三角形的性质得出斜边长即可.【详解】解:在Rt ABC中,CD是斜边AB上的中线,2AB CD∴=,AD BD=,CD BD∴=,【点睛】本题主要考查直角三角形的性质,解题的关键是熟练掌握直角三角形斜边上的中线的性质.CD=7、∴OM=12故选:C.【点睛】此题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质.注意利用直角三角形斜边上的中线等于斜边的一半,求得AC的长是关键.3.C【解析】【分析】利用平行四边形、矩形、菱形及正方形的判定方法分别判断后,即可确定正确的选项.【详解】解:A.一组对边平行且相等的四边形是平行四边形,原命题是假命题,不符合题意;B.对角线互相平分、垂直且相等的四边形是正方形,原命题是假命题,不符合题意;C.对角线相等的平行四边形是矩形,是真命题,符合题意;D.四条边都相等的四边形是菱形,原命题是假命题,不符合题意;故答案选:C.【点睛】考查了命题与定理的知识,解题的关键是了解平行四边形、矩形、菱形及正方形的判定方法,难度不大.8、B【解析】先画出图形,再根据三角形中位线定理得到所得四边形的对边平行且相等,那么其必为平行四边形,然后根据邻边互相垂直得出四边形是矩形.【详解】解:如图,∵E、F、G、H分别是AB、BC、CD、AD的中点,∴EH BD FG,EF AC HG,11,22FG BD EF AC==,∴四边形EFGH是平行四边形,∵AC BD⊥,∴EF FG⊥,∴平行四边形EFGH是矩形,又AC与BD不一定相等,EF∴与FG不一定相等,∴矩形EFGH不一定是正方形,故选:B.【点睛】本题考查了三角形中位线定理、矩形的判定等知识点,熟练掌握三角形中位线定理是解题关键.9、C【分析】利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.【详解】∵CM、BN分别是高∴△CMB、△BNC均是直角三角形∵点P是BC的中点∴PM、PN分别是两个直角三角形斜边BC上的中线∴12 PM PN BC==故①正确∵∠BAC=60゜∴∠ABN=∠ACM=90゜−∠BAC=30゜∴AB=2AN,AC=2AM∴AN:AB=AM:AC=1:2即②正确在Rt△ABN中,由勾股定理得:BN故③错误当∠ABC=60゜时,△ABC是等边三角形∵CM⊥AB,BN⊥AC∴M、N分别是AB、AC的中点∴MN 是△ABC 的中位线∴MN ∥BC故④正确即正确的结论有①②④故选:C【点睛】本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.10、B【解析】【分析】根据中位线的性质及直角三角形斜边上中线的性质可得:22ED CF EF ==,结合图形得出CEF 的周长为EF EC FC ED EC ++=+,再由中位线的性质得出22BE OF ==,在Rt CED 中,利用勾股定理确定10ED =,即可得出结论.【详解】解:在正方形ABCD 中,BO DO =,BC CD =,90BCD ∠=︒,∵F 为DE 的中点,O 为BD 的中点,∴OF 为DBE 的中位线且CF 为Rt CDE 斜边上的中线,∴22ED CF EF ==,∴CEF 的周长为EF EC FC ED EC ++=+,∵1OF =,∴22BE OF ==,∵6CE =,∴268BC BE CE =+=+=,∴8CD BC ==,在Rt CED 中,90ECD ∠=︒,8CD =,6CE =,∴10ED ==,∴CEF 的周长为10616EF EC FC ED EC ++=+=+=,故选:B .【点睛】题目主要考查正方形的性质,三角形中位线的性质,勾股定理,直角三角形斜边中线的性质等,理解题意,熟练掌握运用各个知识点是解题关键.二、填空题1、24【解析】【分析】根据直角三角形斜边上中线的性质,即可得到DE =BE 12=AB =6,再根据折叠的性质,即可得到四边形BCDE 的周长为6×4=24.【详解】解:∵BD ⊥AD ,点E 是AB 的中点,∴DE =BE 12=AB =6, 由折叠可得:CB =BE ,CD =ED ,∴四边形BCDE 的周长为6×4=24.故答案为:24.【点睛】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.2、72##3.5##132【解析】【分析】延长AB 、CF 交于点H ,由“ASA ”可证△AFH ≌△AFC ,可得AC =AH =12,HF =CF ,由三角形中位线定理可求解.【详解】解:如图,延长AB 、CF 交于点H ,四边形ABCD 是平行四边形,//AB CD ∴,90ACD BAC ∠∠∴==︒,12AC ∴=, AF 平分BAC ∠,45HAF CAF ∴∠=∠=︒,在AFH ∆和AFC ∆中,90HAF CAF AF AFAFH AFC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ()AFH AFC ASA ∴∆≅∆,12AC AH ∴==,HF CF =,7BH AH AB ∴=-=,点E 是BC 的中点,HF CF =,∴EF 是△CBH 的中位线,1722EF BH ∴==, 故答案为:72. 【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,勾股定理,三角形中位线等知识,添加恰当辅助线构造全等三角形是本题的关键.3、120【解析】【分析】先根据直角三角形斜边上的中线等于斜边的一半得出AC =AD =AE =12DE ,由∠D =60°,得到△ACD 是等边三角形,那么∠ACD =60°,∠ACF =30°,再由三角形的外角性质可求出∠BFC 的度数.【详解】解:∵∠DCE =90°,点A 是DE 的中点,∴AC =AD =AE =12DE ,∵∠D =60°,∴△ACD 是等边三角形,∴∠ACD =60°,∴∠ACF =∠DCE -∠ACD =30°,∵∠FAC =90°,∴∠BFC =∠FAC +∠ACF =90°+30°=120°故答案为:120【点睛】本题主要考查了直角三角形的性质,等边三角形的判定与性质,三角形外角和定理等知识,求出∠ACF=30°是解题的关键.4、3【解析】【分析】由题意以及正方形的性质得OP过正方形ABCD各边的中点时,d最大,求出d的值即可得出答案【详解】解:如图:设AB的中点是E,OP过点E时,点O与边AB上所有点的连线中,OE最小,此时d=PE最大,∵正方形ABCD边长为6,O为正方形中心,∴AE=3,∠OAE=45°,OE⊥AB,∴OE=3,∵OP=6,∴d=PE=6-3=3;故答案为:3【点睛】本题考查正方形的性质,旋转的性质,根据题意得出d最大时点P的位置是解题的关键.5、 直角 相等【解析】略三、解答题1、 (1)45BOA ︒∠=;(2)8BO OC +=;(3)NP AQ +的值为4,不变,见解析【解析】【分析】(1)过点A 作AE x ⊥轴于E ,AF y ⊥轴于F ,由点(4,4)A ,得到OA 是BOC ∠的角平分线,由此得到45BOA ︒∠=;(2)由(1)得四边形AEOF 为正方形,证明△BAF ≌△CAE ,得到BF=CE ,根据BO OC OF OE +=+求出结果;(3)过点A 作AE x ⊥轴于E ,AF y ⊥轴于F ,延长NP 交AE 于K ,则四边形OEKN 为矩形,由OBP BOA CBP ABC ∠+∠=∠+∠推出AB=AP ,证明ΔΔAQB AKP ≅,得到AQ AK =,证明ΔAKP 是等腰直角三角形,得到AK=PK ,由此得到AQ PK =,依据NP AQ NP PK NK +=+=求出结果.(1)解:过点A 作AE x ⊥轴于E ,AF y ⊥轴于F ,如图1所示:点(4,4)A ,4AE AF ∴==,OA ∴是BOC ∠的角平分线,90BOC ∠=︒,45BOA ∴∠=︒;(2)解:由(1)得:四边形AEOF 为矩形,4AE AF ==,∴四边形AEOF 为正方形,4AE AF OE OF ∴====,90EAF ∠=︒,90BAC ∠=︒,90BAF FAC FAC CAE ∴∠+∠=∠+∠=︒,BAF CAE ∴∠=∠,AE x ⊥轴,AF y ⊥轴,90BFA CEA ∴∠=∠=︒,在ΔBAF 和CAE ∆中,BAF CAE AF AEBFA CEA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ΔΔBAF CAE ASA ∴≅,BF CE ∴=,448BO OC OF BF OC OF CE OC OF OE ∴+=++=++=+=+=;(3)解:随着C ,B 位置的变化,NP AQ +的值为4,不变,理由如下:过点A 作AE x ⊥轴于E ,AF y ⊥轴于F ,延长NP 交AE 于K ,如图2所示:则四边形OEKN 为矩形,90AKP ∴∠=︒,4NK OE ==,由(2)得:ΔΔBAF CAE ≅,AB AC ∴=,90BAC ∠=︒,ΔBAC ∴是等腰直角三角形,45ABC ACB ∴∠=∠=︒, BP 平分OBC ∠,OBP CBP ∴∠=∠,45BOA ABC ∠=∠=︒,OBP BOA CBP ABC ABP ∴∠+∠=∠+∠=∠,BPA OBP BOA ∠=∠+∠,BPA ABP ∴∠=∠,AB AP =∴,PN y ⊥轴,45BOA ∠=︒,ΔONP ∴是等腰直角三角形,45NPO ∴∠=︒,45APK NPO ∴∠=∠=︒, AQ 平分BAC ∠,BAC ∆是等腰直角三角形,AQ BC ∴⊥,90AQB AKP ∴∠=∠=︒,在ΔAQB 和ΔAKP 中,45AQB AKP AB AP ABQ APK ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ()ΔΔAQB AKP ASA ∴≅,AQ AK ∴=,90AKP ∠=︒,45APK ∠=︒,ΔAKP ∴是等腰直角三角形,AK PK ∴=,AQ PK ∴=,4NP AQ NP PK NK ∴+=+==.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、坐标与图形性质、正方形的判定与性质、等腰直角三角形的判定与性质等知识,本题综合性强,熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键,属于中考常考题型.2、见解析【解析】【分析】由菱形的性质可得CD AB =,//CD AB ,可证DCA BAC ∠=∠,由“SAS ”可证DCE BAF ∆≅∆,可得DE BF =.【详解】 证明:四边形ABCD 是菱形,CD AB ∴=,//CD AB ,DCA BAC ∴∠=∠,在DCE ∆和BAF ∆中,DC AB DCE BAF CE AF =⎧⎪∠=∠⎨⎪=⎩, ()DCE BAF SAS ∴∆≅∆,DE BF ∴=.【点睛】本题考查了菱形的性质,全等三角形的判定和性质,解题的关键是证明DCE BAF ∆≅∆.3、 (1)见解析 (2)52【解析】【分析】(1)作∠DAE 的角平分线,与DC 的交点即为所求,理由:可先证明△AEF ≌△ADF ,可得∠AEF =∠D =90°,从而得到∠DAE +∠DFE =180°,进而得到∠EFC =∠DAE ,再由AD ∥BC ,即可求解;(2)根据矩形的性质可得∠B =∠C =∠D =90°,AD =BC =5,AB =CD =4,从而得到BE =3,进而得到EC =2,然后在Rt CEF 中,由勾股定理,即可求解.(1)解:如图,作∠DAE的角平分线,与DC的交点即为所求.∵AE=AD,∠EAF=∠DAF,AF=AF,∴△AEF≌△ADF,∴∠AEF=∠D=90°,∴∠DAE+∠DFE=180°,∵∠EFC+∠DFE=180°,∴∠EFC=∠DAE,∵在矩形ABCD中,AD∥BC,∴∠BEA=∠DAE,∴∠EFC=∠BEA;(2)解:∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,∵AE=AD=5,∴BE3,∴EC=BC﹣BE=5﹣3=2,由(1)得:△AEF≌△ADF,∴DF EF = ,在Rt CEF 中,222CE CF EF += ,∴()22224DF DF +-= , ∴52DF = . 【点睛】本题主要考查了矩形的性质,全等三角形的判定和性质,勾股定理等知识,熟练掌握矩形的性质,全等三角形的判定和性质,勾股定理是解题的关键.4、 (1)作图见解析,证明见解析;(2)【解析】【分析】(1)以D 为圆心画弧交AD CD 、分别于点M N 、,以M N 、为圆心,大于12MN 为半径,画弧交点为Q ,连接DQ 并延长与AB 交点即为F ,连接EF OC 、即可补全图形;由DF 平分∠ADE ,AE 平分∠BAD 可知12EDF ADF ADE ∠=∠=∠,12FAE EAD FAD ∠=∠=∠,由四边形ABCD 是平行四边形,知AF DE ∥ ,EDF AFD ∠=∠,DEA FAE ∠=∠,可知ADF AFD ∠=∠,EAD DEA ∠=∠,可得AF AD AD DE ==,,AF DE ∥,进而可证四边形AFED 是菱形.(2)如图2,过点O 作OG ⊥CD 于G ,四边形ADEF 是菱形,∠ADF =∠EDF =30°,90AOD ∠=︒,在Rt AOD △中,12OA AD =,由勾股定理得OD = 在Rt DOG 中,12OG OD =,由勾股定理得DG CG CD DG =-,在Rt OCG △中,勾股定理求解OC 即可.(1)解:补全图形如图1所示,以D 为圆心画弧交AD CD 、分别于点M N 、,以M N 、为圆心,大于12MN 为半径,画弧交点为Q ,连接DQ 并延长与AB 交点即为F ,连接EF OC 、即可;证明:∵DF平分∠ADE,AE平分∠BAD∴12EDF ADF ADE∠=∠=∠,12FAE EAD FAD∠=∠=∠∵四边形ABCD是平行四边形∴AF DE∥∴EDF AFD∠=∠,DEA FAE∠=∠,∴EDF ADF AFD∠=∠=∠,FAE EAD DEA∠=∠=∠∴AF AD AD DE==,∵AF DE AF DE=∥,∴四边形AFED是平行四边形∵AF AD DE==∴四边形AFED是菱形.(2)解:如图2,过点O作OG⊥CD于G∴90OGD ∠=︒∵四边形ADEF 是菱形∴∠ADO =∠ODG =30°,90AOD ∠=︒∴在Rt AOD △中,122OA AD ==,由勾股定理知OD ,在Rt DOG 中,12OG OD ==3DG == ∴3CG CD DG =-=在Rt OCG △中,由勾股定理知OC ==∴OC =【点睛】本题考查了角平分线,菱形的判定与性质,含有30°的直角三角形,勾股定理等知识.解题的关键在于对知识的灵活综合运用.5、见解析【解析】【分析】连接BD ,利用菱形的性质可得△EDB ≌△FDB ,可得结论.【详解】证明:如图,连接BD ,在菱形ABCD 中,∠ADB =∠CDB ,在△EDB 和△FDB 中,DE DF EDB FDB BD BD =⎧⎪∠=∠⎨⎪=⎩, ∴()EDB FDB SAS ≌△△,∴BE =BF .【点睛】此题考查了全等三角形的判定与性质,菱形的性质,解题的关键是熟练掌握并利用菱形的相关性质以及全等三角形的判定与性质进行求解.。

2022年必考点解析鲁教版(五四制)八年级数学下册第六章特殊平行四边形专项练习试卷(含答案详解)

2022年必考点解析鲁教版(五四制)八年级数学下册第六章特殊平行四边形专项练习试卷(含答案详解)

鲁教版(五四制)八年级数学下册第六章特殊平行四边形专项练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在正方形ABCD中,点E、点F分别在AD、CD上,且AE=DF,若四边形OEDF的面积是1,OA的长为1,则正方形的边长AB为()A.1 B.2 C D.2、下列选项中,不能被边长为2的正方形及其内部所覆盖的图形是()A.长度为B.边长为2的等边三角形C.斜边为2的直角三角形D.面积为4的菱形3、若正方形ABCD各边的中点依次为E、F、G、H,则四边形EFGH是()A.平行四边形B.矩形C.菱形D.正方形4、已知锐角∠AOB,如图.(1)在射线OA上取一点C,以点O为圆心,OC长为半径画弧,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,两弧交于点P,连接CP,DP;(3)作射线OP交CD于点Q.根据以上作图过程及所作图形,下列结论中错误的是()A.四边形OCPD是菱形B.CP=2QCC.∠AOP=∠BOP D.CD⊥OP5、如图,点E、F分别在正方形ABCD的边DC、BC上,AG⊥EF,垂足为G,且AG=AB,则∠EAF=()度A.30°B.45°C.50°D.60°6、小明想判断家里的门框是否为矩形,他应该()A.测量三个角是否都是直角B.测量对角线是否互相平分C.测量两组对边是否分别相等D.测量一组对角是否是直角7、下列命题正确的是()A .若a b =,则33a b =B .四条边相等的四边形是正四边形C .有一组邻边相等的平行四边形是矩形D .如果2a ab =,则a b =8、已知四边形ABCD 是平行四边形,下列结论:①当AB =BC 时,它是菱形;②当AC ⊥BD 时,它是菱形;③当∠ABC =90°时,它是矩形;④当AC =BD 时,它是正方形,其中错误的有( )A .1个B .2个C .3个D .4个9、顺次连接对角线互相垂直的四边形的各边中点,所形成的新四边形是( )A .菱形B .矩形C .正方形D .三角形10、如图,将矩形纸片ABCD 沿EF 折叠,使点A 恰好与点C 重合,点B 的对应点为点B ′,若DC =4,AF =5,则BC 的长为( )A .B .C .10D .8第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,菱形ABCD 边长为4,∠B =60°,14DE AD =,14BF BC =,连接EF 交菱形的对角线AC 于点O ,则图中阴影部分面积等于________________.2、矩形的性质定理1:矩形的四个角都是________.符号语言:∵四边形ABCD是矩形,∴∠A=∠B=∠C=∠D=90°.矩形的性质定理2:矩形的对角线________.符号语言:∵四边形ABCD是矩形,∴AC=BD.3、已知:在四边形ABCD中,AD=BC,点E,F,G,H分别是AB,CD,AC,BD的中点,四边形EHFG是_____________.4、如图,在矩形ABCD中,对角线AC,BD相交于点O,若∠AOB=60°,AB=4cm,则AC的长为______cm.5、将矩形纸片ABCD(AB<BC)沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图1);再沿过点E的直线折叠,使点D落在BE上的点D'处,折痕为EG(如图2):再展开纸片(如图3),则图3中∠FEG的大小是__.三、解答题(5小题,每小题10分,共计50分)1、如图,在正方形ABCD中,E、F、G分别是AB、BC、CD边上的点,AF和EG交于点H.现在提供三个关系:①AF⊥EG;②AH=HF;③AF=EG.(1)从三个关系中选择一个作为条件,一个作为结论,形成一个真命题.写出该命题并证明;(2)若AB=3,EG垂直平分AF,设BF=n.①求EH:HG的值(含n的代数式表示);②连接FG,点P在FG上,当四边形CPHF是菱形时,求n的值.2、如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D 作DF ⊥BC 于点F .(1)试用含t 的式子表示AE 、AD 、DF 的长;(2)如图①,连接EF ,求证四边形AEFD 是平行四边形;(3)如图②,连接DE ,当t 为何值时,四边形EBFD 是矩形?并说明理由.3、如图,在Rt △ABC 中,90BAC ∠=︒,请用尺规作图的方法作一条过点A 的直线,将Rt △ABC 分为两个等腰三角形.(不写作法,保留作图痕迹)4、如图,直线12l l ∥,线段AD 分别与直线1l 、2l 交于点C 、点B ,满足AB CD =.(1)使用尺规完成基本作图:作线段BC 的垂直平分线交1l 于点E ,交2l 于点F ,交线段BC 于点O ,连接ED 、DF 、FA 、AE .(保留作图痕迹,不写做法,不下结论)(2)求证:四边形AEDF 为菱形.(请补全下面的证明过程)证明:12l l ∥1∴∠=____①____ EF 垂直平分BCOB OC ∴=,90EOC FOB ︒∠=∠=∴____②____FOB ∆≌OE ∴=____③____AB CD =OB AB OC DC +=+∴OA OD ∴=∴四边形AEDF 是___④_____EF AD ⊥∴四边形AEDF 是菱形(______⑤__________)(填推理的依据).5、如图,矩形ABCD 的对角线AC 、BD 相交于点O ,AB =5cm ,∠BOC =120°,求矩形对角线的长.-参考答案-一、单选题1、C【解析】【分析】根据正方形的性质得到AB =AD ,∠BAE =∠ADF =90°,根据全等三角形的性质得到∠ABE =∠DAF ,求得∠AOB =90°,根据三角形的面积公式得到OA =1,由勾股定理即可得到答案.【详解】解:∵四边形ABCD 是正方形,∴AB =AD ,∠BAE =∠ADF =90°,在△ABE 与△DAF 中,AB AD BAE ADF AE DF =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△DAF (SAS ),∴∠ABE =∠DAF ,∴∠ABE +∠BAO =∠DAF +∠BAO =90°,∴∠AOB =90°,∵△ABE ≌△DAF ,∴S △ABE =S △DAF ,∴S △ABE -S △AOE =S △DAF -S △AOE ,即S △ABO =S 四边形OEDF =1,∵OA =1,∴BO =2,∴AB故选:C .【点睛】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,证得△ABE ≌△DAF 是解题的关键.2、D【解析】【分析】先计算出正方形的对角线长,即可逐项进行判定求解.【详解】解:A 、正方形的边长为2,∴对角线长为∴长度为2的正方形及其内部所覆盖,故A 不符合题意;B 、边长为2的等边三角形能被边长为2的正方形及其内部所覆盖,故B 不符合题意;C 、斜边为2的直角三角形能被边长为2的正方形及其内部所覆盖,故C 不符合题意;D 、而面积为4的菱形对角线长可以为8,故不能被边长为2的正方形及其内部所覆盖,故D 符合题意,故选:D .【点睛】本题主要考查正方形的性质,等边三角形的性质,菱形的性质等知识,解题的关键是掌握相关图形的特征进行判断.3、D【解析】【分析】画出图形,连接,AC BD ,先根据正方形的性质可得,AC BD AC BD =⊥,再根据三角形中位线定理可得11,,,22EF AC EF AC EH BD EH BD ==,从而可得,EF EH EF EH =⊥,同样的方法可得,EF FG FG HG ⊥⊥,然后根据正方形的判定即可得出答案.【详解】解:如图,连接,AC BD ,四边形ABCD 是正方形,,AC BD AC BD ∴=⊥,点,,E F H 分别是,,AB BC AD 的中点,11,,,22EF AC EF AC EH BD EH BD ∴==, ,EF EH EF EH ∴=⊥,同理可得:,EF FG FG HG ⊥⊥,∴四边形EFGH 是正方形,故选:D .【点睛】本题考查了正方形的判定与性质、三角形中位线定理,熟练掌握正方形的判定与性质是解题关键.4、A【解析】【分析】根据作图信息可以判断出OP 平分AOB ∠,由此可以逐一判断即可.【详解】解:由作图可知,,,OC OD PC PD OP ==平分AOB ∠∴OP 垂直平分线段CD∴∠AOP =∠BOP ,CD ⊥OP故选项C ,D 正确;由作图可知,CD CP PD ==∴PCD ∆是等边三角形,∴60CPD ∠=︒∵OP 垂直平分线段CD∴30CPQ ∠=︒∴CP =2QC故选项B 正确,不符合题意;由作图可知,,OC OD PC PD ==,不能确定四边形OCPD 是菱形,故选项A 符合题意,故选:A【点睛】本题考查了基本作图,解题的关键是熟练掌握作图的依据.5、B【解析】【分析】根据正方形的性质以及HL 判定,可得出△ABF ≌△AGF ,故有∠BAF =∠GAF ,再证明△AGE ≌△ADE ,有∠GAE =∠DAE ,即可求∠EAF =45°【详解】解:在正方形ABCD 中,∠B =∠D =∠BAD =90°,AB =AD ,∵AG ⊥EF ,∴∠AGF =∠AGE =90°,∵AG =AB ,∴AG =AB=AD ,在Rt △ABF 与Rt △AGF 中,AB AG AF AF =⎧⎨=⎩∴△ABF ≌△AGF ,∴∠BAF =∠GAF ,同理可得:△AGE ≌△ADE ,∴∠GAE =∠DAE ;∴∠EAF =∠EAG +∠FAG 1452BAD ︒=∠=, ∴∠EAF =45°故选:B【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质、解题的关键是得出△ABF ≌△AGF .6、A【解析】【分析】根据矩形的判定方法解题.【详解】解:A 、三个角都是直角的四边形是矩形,∴选项A 符合题意;B 、对角线互相平分的四边形是平行四边形,∴选项B 不符合题意,C 、两组对边分别相等的四边形是平行四边形,∴选项C 不符合题意;D 、一组对角是直角的四边形不是矩形,∴选项D 不符合题意;故选:A .【点睛】本题考查矩形的判定方法,是重要考点,掌握相关知识是解题关键.7、A【解析】【分析】利用等式的性质以及矩形、正方形、菱形的判定方法分别判断后即可确定正确的选项.【详解】解:A 、若a b =,则33a b =,故此命题正确;B 、四条边相等的四边形是菱形,故原命题不正确;C 、有一组邻边相等的平行四边形是菱形,故原命题不正确;D 、如果2a ab =,a ≠0时,则a b =,若0a =时,此命题不正确,故选:A .【点睛】本题考查了命题与定理以及等式的性质等知识,解题的关键是了解矩形及菱形的判定方法.8、A【解析】【分析】根据矩形、菱形、正方形的判定可以判断题目中的各个小题的结论是否正确,从而可以解答本题.【详解】 解:四边形ABCD 是平行四边形,A 、当AB BC =时,它是菱形,选项不符合题意,B 、当AC BD ⊥时,它是菱形,选项不符合题意,C 、当90ABC ∠=︒时,它是矩形,选项不符合题意,D 、当AC BD =时,它是矩形,不一定是正方形,选项符合题意,故选:A .【点睛】本题考查正方形、菱形、矩形的判定,解答本题的关键是熟练掌握矩形、菱形、正方形的判定定理.9、B【解析】【分析】先画出图形,再根据三角形中位线定理得到所得四边形的对边平行且相等,那么其必为平行四边形,然后根据邻边互相垂直得出四边形是矩形.【详解】解:如图,∵E 、F 、G 、H 分别是AB 、BC 、CD 、AD 的中点,∴EH BD FG ,EF AC HG ,11,22FG BD EF AC ==, ∴四边形EFGH 是平行四边形,∵AC BD ⊥,∴EF FG ⊥,∴平行四边形EFGH 是矩形,又AC与BD不一定相等,∴与FG不一定相等,EF∴矩形EFGH不一定是正方形,故选:B.【点睛】本题考查了三角形中位线定理、矩形的判定等知识点,熟练掌握三角形中位线定理是解题关键.10、D【解析】【分析】由折叠得:FA=FC=5,∠CFE=∠AFE,再由矩形的性质,得出△DCF是直角三角形,利用勾股定理可计算出DF点长,后可得出结论.【详解】解:由折叠得:FA=FC=5,∵四边形ABCD是矩形,CD=4,∴△CDF是直角三角形,∴DF ,∴BC =AD =AF +DF =8;故选:D .【点睛】本题考查了矩形的性质,旋转的性质,勾股定理,熟练掌握性质,准确使用勾股定理是解题的关键.二、填空题1【解析】【分析】由菱形的性质可得AD CD =,//AD BC ,60ABC ADC ∠=∠=︒,由“AAS ”可证AEO CFO ∆≅∆,可得AO CO =,由面积的和差关系可求解.【详解】解:连接CE ,四边形ABCD 是菱形,AD CD ∴=,//AD BC ,60ABC ADC ∠=∠=︒,ADC ∴∆是等边三角形,DAC ACB ∠=∠,2ADC S AD ∆∴= 14DE AD =,14BF BC =, AE CF ∴=,在AEO ∆和CFO ∆中,AOE COF EAC BCA AE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AEO CFO AAS ∴∆≅∆,AO CO ∴=, 14DE AD =,14CDE ADC S S ∆∆∴=ACE S ∆= AO CO =,AOE COE S S ∆∆∴== ∴阴影部分面积=.【点睛】 本题考查了菱形的性质,等边三角形的性质,灵活运用这些性质解决问题是解题的关键.2、 直角 相等【解析】略3、菱形【解析】【分析】由已知条件得出GF是△ADC的中位线,GE是△ABC的中位线,EH是△ABD的中位线,由三角形中位线定理得出GF∥EH,GF=EH,得出四边形EGFH是平行四边形,再证出GE=EH,即可得出四边形EHFG 是菱形.【详解】∵点E、F、G、H分别是AB、CD、AC、BD的中点,∴GF是△ADC的中位线,GE是△ABC的中位线,EH是△ABD的中位线,∴GF∥AD,GF=12AD,GE=12BC,EH∥AD,EH=12AD,∴GF∥EH,GF=EH,∴四边形EGFH是平行四边形,又∵AD=BC,∴GE=EH,∴四边形EGFH是菱形.故答案是:菱形【点睛】本题考查了三角形中位线定理、平行四边形的判定、菱形的判定方法;解题的关键是熟练掌握菱形的判定方法,由三角形中位线定理得出线段之间的关系.4、8【解析】【分析】根据矩形的性质可得三角形AOB为等边三角形,在直角三角形ABC中,根据直角三角形的两个锐角互余可得∠ACB为30°,根据30°角所对的直角边等于斜边的半径,由AB的长可得出AC的长.【详解】解:∵四边形ABCD为矩形,∴OA=OC,OB=OD,且AC=BD,∠ABC=90°,∴OA=OB=OC=OD,又∵∠AOB=60°,∴△AOB为等边三角形,∴∠BAO=60°,在直角三角形ABC中,∠ABC=90°,∠BAO=60°,∴∠ACB=30°,∵AB=4cm,则AC=2AB=8cm.故答案为:8.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,以及含30°角直角三角形的性质,矩形的性质有:矩形的四个角都为直角;矩形的对边平行且相等;矩形的对角线互相平分且相等,熟练掌握矩形的性质是解本题的关键.5、22.5°【解析】【分析】根据折叠的性质可知,∠A=∠EFB=90°,AB=BF,以及纸片ABCD为矩形可得,∠AEF为直角,进而可以判断四边形ABFE为正方形,进而通过∠AEB,∠BEG的角度计算出∠FEG的大小.【详解】解:由折叠可知△AEB ≌△FEB ,∴∠A =∠EFB =90°,AB =BF ,∵纸片ABCD 为矩形,∴AE ∥BF ,∴∠AEF =180°-∠BFE =90°,∵AB =BF ,∠A =∠AEF=∠EFB =90°,∴四边形ABFE 为正方形,∴∠AEB =45°,∴∠BED =180°-45°=135°,∴∠BEG =135°÷2=67.5°,∴∠FEG =67.5°-45°=22.5°.【点睛】本题考查折叠的性质,矩形的性质,正方形的判定与性质,以及平行的相关性质,能够将正方形与矩形的性质相结合是解决本题的关键.三、解答题1、 (1)见解析(2)①6n n-【解析】【分析】(1)过点作DP AF ⊥交AB 于点P ,先证四边形DGEP 是平行四边形,得DP EG =,再由ASA 证ABF DAP ∆≅∆,得AF DP =,即可得出结论;(2)①过点H 作AD 的平行线交AB 于N ,交CD 于Q ,则3NQ AD AB ===,::EH HG NH HQ =,证NH 是ABF ∆的中位线,得1122NH BF n ==,则132HQ n =-,即可得出答案;②先由菱形的性质得3HF FC n ==-,再证262AF AH n ==-,在Rt ABF 中,由勾股定理得出方程,解方程即可.(1)解:在正方形ABCD 中,E 、F 、G 分别是AB 、BC 、CD 边上的点,AF 和EG 交于点H ,且AF EG ⊥;求证:AF EG =.证明:过点D 作DP AF ⊥交AB 于点P ,如图1所示:则90ADP DAF ∠+∠=︒.AF EG ⊥,//DP EG ∴,四边形ABCD 是正方形,90B BAD BAF DAF ∴∠=∠=∠+∠=︒,AB AD =,//AB CD ,ABF ADP ∴∠=∠,四边形DGEP 是平行四边形,DP EG ∴=,在ABF ∆与DAP ∆中,BAF ADP AB DA B DAP ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ABF DAP ASA ∴∆≅∆,AF DP ∴=,AF EG ∴=;(2)解:①过点H 作AD 的平行线交AB 于N ,交CD 于Q ,如图2所示:则3NQ AD AB ===,::EH HG NH HQ =, EG 垂直平分AF ,N ∴、H 分别为AB 、AF 的中点,NH ∴是ABF ∆的中位线,1122NH BF n ∴==, 132HQ n ∴=-, 12::1632n n EH HG NH HQ nn ∴===--; ②如图3所示:四边形CPHF是菱形,∴==-,HF FC n3EG垂直平分AF,AH HF n∴==-,3∴==-,262AF AH n在Rt ABF中,由勾股定理得:222AB BF AF+=,即222n n+=-,3(62)解得:4n=,n=4n∴=4【点睛】本题是四边形综合题目,考查了正方形的性质、菱形的性质、平行四边形的判定与性质、全等三角形的判定与性质、勾股定理、三角形中位线定理、平行线分线段成比例定理等知识;本题综合性强,解题的关键是熟练掌握正方形的性质和菱形的性质.2、 (1)AE=t,AD=12﹣2t,DF=t(2)见解析(3)3,理由见解析【解析】【分析】(1)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;(2)根据对边平行且相等的四边形是平行四边形证明;(3)根据矩形的定义列出方程,解方程即可.(1)解:由题意得,AE=t,CD=2t,则AD=AC﹣CD=12﹣2t,∵DF⊥BC,∠C=30°,CD=t;∴DF=12(2)解:∵∠ABC=90°,DF⊥BC,∴AB DF∥,∵AE=t,DF=t,∴AE=DF,∴四边形AEFD是平行四边形;(3)解:当t=3时,四边形EBFD是矩形,理由如下:∵∠ABC=90°,∠C=30°,AC=6cm,∴AB=12∵BE DF∥,∴BE=DF时,四边形EBFD是平行四边形,即6﹣t=t,解得,t=3,∵∠ABC=90°,∴四边形EBFD是矩形,∴t=3时,四边形EBFD是矩形.【点睛】此题考查了30度角的性质,平行四边形的判定及性质,矩形的定义,一元一次方程,三角形与动点问题,熟练掌握四边形的知识并综合应用是解题的关键.3、见解析【解析】【分析】作斜边AB的中垂线可以求得中点D,连接CD,根据直角三角形斜边上的中线等于斜边的一半,可得12CD AD DB BC===.【详解】如解图,直线AD即为所求.【点睛】此题主要考查了应用设计与作图,关键在于用中垂线求得中点和运用直角三角形中,斜边上的中线等于斜边的一半,把RtΔABC分割成两个等腰三角形.4、 (1)见解析(2)①2∠;②EOC∆;③OF;④平行四边形;⑤对角线互相垂直的平行四边形是菱形【解析】【分析】(1)分别以A 、D 为圆心,大于AD 的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l 1于E ,交l 2于F ,直线EF 为线段AD 的垂直平分线,连接ED 、DF 、FA 、AE 即可;(2):根据12l l ∥,内错角相等得出1∠=∠2①,根据EF 垂直平分BC ,得出OB OC =,90EOC FOB ︒∠=∠=,可证②△EOC FOB ∆≌,根据全等三角形性质得出OE =OF ③,再证OA OD =,根据对角线互相平分的四边形是平行四边形判定四边形AEDF 是平行四边形④,根据对角线互相垂直EF AD ⊥即可得出四边形AEDF 是菱形(对角线互相垂直的平行四边形是菱形⑤). (1)解:分别以A 、D 为圆心,大于AD 的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l 1于E ,交l 2于F ,直线EF 为线段AD 的垂直平分线,连接ED 、DF 、FA 、AE 即可;如图所示(2)证明:12l l ∥,1∴∠=∠2①, EF 垂直平分BC ,OB OC ∴=,90EOC FOB ︒∠=∠=,∴②△EOC FOB ∆≌,OE ∴=OF ③,AB CD=,OB AB OC DC+=+∴,OA OD∴=,∴四边形AEDF是平行四边形④,EF AD⊥,∴四边形AEDF是菱形(对角线互相垂直的平行四边形是菱形⑤),故答案为:①2∠;②EOC∆;③OF;④平行四边形;⑤对角线互相垂直的平行四边形是菱形.【点睛】本题考查尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定,掌握尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定是解题关键.5、10cm【解析】【分析】根据矩形性质得出∠ABC=90°,AC=BD,OA=OC=12AC,OB=OD=12BD,推出OA=OB,求出等边三角形AOB,求出OA=OB=AB=5,即可得出答案.【详解】解:∵∠BOC=120°,∴∠AOB=180°﹣120°=60°,∵四边形ABCD是矩形,∴∠ABC=90°,AC=BD,OA=OC=12AC,OB=OD=12BD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=5cm,∴OA=OB=AB=5cm,∴AC=2AO=10cm,BD=AC=10cm.【点睛】本题考查了矩形的性质和等边三角形的性质和判定的应用,解此题的关键是求出OA、OB的长,题目比较典型,是一道比较好的题目.。

2022年最新精品解析鲁教版(五四制)八年级数学下册第六章特殊平行四边形专题测评试卷(含答案详解)

2022年最新精品解析鲁教版(五四制)八年级数学下册第六章特殊平行四边形专题测评试卷(含答案详解)

鲁教版(五四制)八年级数学下册第六章特殊平行四边形专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、正方形具有而矩形不一定具有的性质是()A.四个角相等B.对角线互相垂直C.对角互补D.对角线相等2、如图,已知正方形ABCD的边长为6,点E,F分别在边AB,BC上,BE=CF=2,CE与DF交于点H,点G为DE的中点,连接GH,则GH的长为()A B C.4.5 D.4.33、下列命题中是真命题的是().A.有一组邻边相等的平行四边形是菱形B.对角线互相垂直且相等的四边形是菱形C.对角线相等的四边形是矩形D.有一个角为直角的四边形是矩形△中,CD是斜边AB上的中线,则以下判断正确的是()4、在Rt ABCA .2BC CD =B .2CD AB =C .2AC CD = D .CD BD =5、如图,点E 、F 分别在正方形ABCD 的边DC 、BC 上,AG ⊥EF ,垂足为G ,且AG =AB ,则∠EAF =( )度A .30°B .45°C .50°D .60°6、已知菱形ABCD 的对角线交于原点O ,点A 的坐标为()-,点B 的坐标为(1,-,则点D 的坐标是( )A .(B .()1-C .()-D .(2, 7、下列说法中正确的是( )A .矩形的对角线平分每组对角;B .菱形的对角线相等且互相垂直;C .有一组邻边相等的矩形是正方形;D .对角线互相垂直的四边形是菱形.8、已知锐角∠AOB ,如图.(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径画弧,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,两弧交于点P ,连接CP ,DP ;(3)作射线OP 交CD 于点Q .根据以上作图过程及所作图形,下列结论中错误的是( )A .四边形OCPD 是菱形B .CP =2QC C .∠AOP =∠BOPD .CD ⊥OP9、菱形周长为20,其中一条对角线长为6,则菱形面积是( )A .48B .40C .24D .1210、如图,已知正方形ABCD 的边长为4,P 是对角线BD 上一点,PE BC ⊥于点E ,PF CD ⊥于点F ,连接AP ,EF .给出下列结论:①PD =;②四边形PECF 的周长为8;③AP EF =;④EF 的最小值为2222PB PD PA +=;⑥AP EF ⊥.其中正确结论有几个( )A .3B .4C .5D .6第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将两个直角三角板如图放置,其中AB =AC ,∠BAC =∠ECD =90°,∠D =60°.如果点A 是DE 的中点,CE 与AB 交于点F ,则∠BFC 的度数为 _____°.2、在菱形ABCD 中,60A ∠=︒,其所对的对角线长为2,则菱形ABCD 的面积是__.3、如图,AC 为正方形ABCD 的对角线,E 为AC 上一点,连接EB ,ED ,当126BED ∠=︒时,EDA ∠的度数为______.4、长方形纸片ABCD 按图中方式折叠,其中,EF EC 为折痕,如果折叠后',',A B E 在一条直线上,那么CEF ∠的大小是________度.5、如图,在矩形ABCD 中,DE ⊥CE ,AE <BE ,AD =4,AB =10,则DE 长为________.三、解答题(5小题,每小题10分,共计50分)1、(1)【发现证明】如图1,在正方形ABCD 中,点E ,F 分别是BC ,CD 边上的动点,且45EAF ∠=︒,求证:EF DF BE =+.小明发现,当把ABE △绕点A 顺时针旋转90°至ADG ,使AB 与AD 重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形ABCD 中,如果点E ,F 分别是CB ,DC 延长线上的动点,且45EAF ∠=︒,则(1)中的结论还成立吗?若不成立,请写出EF ,BE ,DF 之间的数量关系______(不要求证明) ②如图3,如果点E ,F 分别是BC ,CD 延长线上的动点,且45EAF ∠=︒,则EF ,BE ,DF 之间的数量关系是______(不要求证明)(3)【联想拓展】如图1,若正方形ABCD的边长为6,AE=AF的长.2、已知:如图,在△ABC中,AD是BC边上的高,CE是中线,F是CE的中点,12CD AB=,求证:DF⊥CE.3、已知:如图,在▱ABCD中,AE⊥BC,CF AD⊥,点E,F分别为垂足.(1)求证:△ABE≌△CDF;(2)求证:四边形AECF是矩形.4、在△ABC中,BC=AC,∠C=90°,D是BC边上一个动点(不与点B,C重合),连接AD,以AD为边作正方形ADEF(点E,F都在直线BC的上方),连接BE.(1)根据题意补全图形,并证明∠CAD =∠BDE ;(2)用等式表示线段CD 与BE 的数量关系,并证明;(3)用等式表示线段AD ,AB ,BE 之间的数量关系(直接写出).5、在矩形ABCD 的CD 边上取一点E ,将BCE 沿BE 翻折,得到BFE △.(1)如图1,点F 恰好在AD 上,若75FEB ∠=︒,求出AB :BC 的值.(2)如图2,E 从C 到D 的运动过程中.①若5AB =,8BC =,ABF ∠的角平分线交EF 的延长线于点M ,求M 到AD 的距离:②在①的条件下,E 从C 到D 的过程中,直接写出M 运动的路径长.-参考答案-一、单选题1、B【解析】略2、A【解析】【分析】根据正方形的四条边都相等可得BC =DC ,每一个角都是直角可得∠B =∠DCF =90°,然后利用“边角边”证明△CBE ≌△DCF ,得∠BCE =∠CDF ,进一步得∠DHC =∠DHE =90°,从而知GH =12DE ,利用勾股定理求出DE 的长即可得出答案.【详解】解:∵四边形ABCD 为正方形,∴∠B =∠DCF =90°,BC =DC ,在△CBE 和△DCF 中,BC CC B DCF BE CF =⎧⎪∠=∠⎨⎪=⎩, ∴△CBE ≌△DCF (SAS ),∴∠BCE =∠CDF ,∵∠BCE +∠DCH =90°,∴∠CDF +∠DCH =90°,∴∠DHC =∠DHE =90°,∵点G 为DE 的中点,∴GH =12DE ,∵AD =AB =6,AE =AB ﹣BE =6﹣2=4,∴DE===∴GH故选A.【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.3、A【解析】【分析】根据平行线四边形的性质得到对边相等,加上一组邻边相等,可得到四边都相等,根据菱形的定义对A、B进行判断;根据矩形的判定方法对C、D进行判断.【详解】解:A、平行四边形的对边相等,若有一组邻边相等,则四边都相等,所以该选项正确;B、对角线互相平分且垂直的四边形是菱形,所以该选项不正确;C、对角线互相平分且相等的四边形为矩形,所以该选项不正确;D、有三个角是直角的四边形是矩形,所以该选项不正确.故选:A.【点睛】本题考查了命题与定理:判断事情的语句叫命题;正确的命题叫真命题;经过证明其正确性的命题称为定理.也考查了平行四边形、矩形和菱形的判定与性质.4、D【解析】【分析】直接利用直角三角形的性质得出斜边长即可.【详解】解:在Rt ABC 中,CD 是斜边AB 上的中线,2AB CD ∴=,AD BD =,CD BD ∴=,故选:D .【点睛】本题主要考查直角三角形的性质,解题的关键是熟练掌握直角三角形斜边上的中线的性质.5、B【解析】【分析】根据正方形的性质以及HL 判定,可得出△ABF ≌△AGF ,故有∠BAF =∠GAF ,再证明△AGE ≌△ADE ,有∠GAE =∠DAE ,即可求∠EAF =45°【详解】解:在正方形ABCD 中,∠B =∠D =∠BAD =90°,AB =AD ,∵AG ⊥EF ,∴∠AGF =∠AGE =90°,∵AG =AB ,∴AG =AB=AD ,在Rt △ABF 与Rt △AGF 中,AB AG AF AF=⎧⎨=⎩ ∴△ABF ≌△AGF ,∴∠BAF =∠GAF ,同理可得:△AGE ≌△ADE ,∴∠GAE=∠DAE;∴∠EAF=∠EAG+∠FAG1452BAD︒=∠=,∴∠EAF=45°故选:B【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质、解题的关键是得出△ABF≌△AGF.6、A【解析】【分析】根据菱形是中心对称图形,菱形ABCD的对角线交于原点O,则点D与点B关于原点中心对称,根据中心对称的点的坐标特征进行求解即可【详解】解:∵菱形是中心对称图形,菱形ABCD的对角线交于原点O,∴D与点B关于原点中心对称,点B的坐标为(1,-,∴点D的坐标是(故选A【点睛】本题考查了菱形的性质,求关于原点中心对称的点的坐标,掌握菱形的性质是解题的关键.7、C【解析】【分析】根据矩形及菱形的性质,菱形及正方形的判定定理依次判断即可得.【详解】解:A 、矩形的对角线不平分每组对角,故选项错误;B 、菱形的对角线互相垂直但不相等,故选项错误;C 、有一组邻边相等的矩形是正方形,故选项正确;D 、对角线互相垂直的平行四边形是菱形,故选项错误;故选:C .【点睛】题目主要考查特殊四边形的判定和性质,熟练掌握特殊四边形的判定和性质是解题关键.8、A【解析】【分析】根据作图信息可以判断出OP 平分AOB ∠,由此可以逐一判断即可.【详解】解:由作图可知,,,OC OD PC PD OP ==平分AOB ∠∴OP 垂直平分线段CD∴∠AOP =∠BOP ,CD ⊥OP故选项C ,D 正确;由作图可知,CD CP PD ==∴PCD ∆是等边三角形,∴60CPD ∠=︒∵OP 垂直平分线段CD∴30CPQ ∠=︒∴CP =2QC故选项B 正确,不符合题意;由作图可知,,OC OD PC PD ==,不能确定四边形OCPD 是菱形,故选项A 符合题意,故选:A【点睛】本题考查了基本作图,解题的关键是熟练掌握作图的依据.9、C【解析】【分析】由菱形对角线互相垂直且平分的性质、结合勾股定理解得4OA =,继而解得AC 的长,最后根据菱形的面积公式解题.【详解】解:如图,6BD =,菱形的周长为20,5AB ∴=,四边形ABCD 是菱形,132OB DB ∴==,OA OC =,AC BD ⊥,由勾股定理得4OA =,则8AC =, 所以菱形的面积11682422AC BD =⋅=⨯⨯=. 故选:C .【点睛】本题考查菱形的性质、勾股定理等知识,是重要考点,掌握相关知识是解题关键.10、D【解析】【分析】如图,过点P 作PM AB ⊥于点M ,连接PC ,可说明四边形AMFD 为矩形,AM DF =,BM CF =,MPB △是等腰直角三角形,=BM PM ;①中PF MF MP AB BM AM DF =-=-==,=90PFD ∠︒可得PDF ∆为等腰直角三角形,进而求PD ,由于四边形PECF 是平行四边形,=PF CE ,故可知PD ==;②90BCD ∠=︒,四边形PECF 为矩形,进而可求矩形的周长;③证明ADP CDP △≌△,由全等可知AP PC =,进而可说明AP EF =;④==EF PC AP ,当AP 最小时,EF 最小,即AP BD ⊥时,AP 最小,计算即可;⑤在Rt PBM △和Rt PDF 中,勾股定理求得222PB PM MB =+,222PD PF FD =+将线段等量替换求解即可;⑥如图1,延长AP 与EF 交于点H ,证明APM △FEP ≌,得MAP PFE ∠=∠,90MAP MPA MPA HPF ∠+∠=︒∠=∠,,90PFE HPF ∠+∠=︒,=90PHF ∠︒进而可说明AP EF ⊥.【详解】解:如图,过点P 作PM AB ⊥于点M ,连接PC ,由题意知FM AD DF AB ∥,∥∴四边形AMFD 为平行四边形∵90MAD ∠=︒∴四边形AMFD 为矩形∴AM DF AD MF ==,∵BM AB AM CF CD DF =-=-,∴BM CF =∵4590ABD BMP ∠=︒∠=︒,∴45MPB ∠=︒∴MPB △是等腰直角三角形∴=BM PM①∵PF MF MP AB BM AM DF =-=-==,=90PFD ∠︒∴PDF ∆为等腰直角三角形∴PD =PE BC ⊥,PF CD ⊥∴PE CD PF BC ∥,∥∴四边形PECF 是平行四边形∴=PF CE∴PD =故①正确;②∵90BCD ∠=︒∴四边形PECF 为矩形∴四边形PECF 的周长222228CE PE CE BE BC =+=+==故②正确;③四边形PECF 为矩形PC EF ∴=∵在ADP △和CDP 中∵45AD CD ADP CDP PD PD =⎧⎪∠=∠=︒⎨⎪=⎩∴()ADP CDP SAS ≌△△∴AP PC =∴AP EF =故③正确;④∵EF PC AP ==∴当AP 最小时,EF 最小∴当AP BD ⊥时,即1122AP BD ==⨯=EF的最小值等于故④正确;⑤在Rt PBM △和Rt PDF 中,22222PB PM MB PM =+=,2222222PD PF FD FD AM ===+ ∴22222222PB PD PM AM AP +=+=故⑤正确;⑥如图1,延长AP 与EF 交于点H∵在APM △和FEP 中∵AP EF AM PF MP PE =⎧⎪=⎨⎪=⎩∴APM △()FEP SSS ≌∴MAP PFE ∠=∠∵90MAP MPA MPA HPF ∠+∠=︒∠=∠,∴90PFE HPF ∠+∠=︒∴=90PHF ∠︒AP EF ∴⊥故⑥正确;综上,①②③④⑤⑥正确,故选:D .【点睛】本题考查了正方形,矩形的判定与性质,勾股定理,等腰直角三角形,三角形全等.解题的关键在于对知识的灵活综合运用.二、填空题1、120【解析】【分析】先根据直角三角形斜边上的中线等于斜边的一半得出AC =AD =AE =12DE ,由∠D =60°,得到△ACD 是等边三角形,那么∠ACD =60°,∠ACF =30°,再由三角形的外角性质可求出∠BFC 的度数.【详解】解:∵∠DCE=90°,点A是DE的中点,DE,∴AC=AD=AE=12∵∠D=60°,∴△ACD是等边三角形,∴∠ACD=60°,∴∠ACF=∠DCE-∠ACD=30°,∵∠FAC=90°,∴∠BFC=∠FAC+∠ACF=90°+30°=120°故答案为:120【点睛】本题主要考查了直角三角形的性质,等边三角形的判定与性质,三角形外角和定理等知识,求出∠ACF=30°是解题的关键.2、【解析】【分析】根据菱形的性质证得△ABD是等边三角形,得到OB,利用勾股定理求出OA,由菱形的性质求出菱形的面积.【详解】解:如图所示:在菱形ABCD 中,60BAD ∠=︒,其所对的对角线长为2,AD AB ∴=,AC BD ⊥,BO DO =,AO CO =,ABD ∴∆是等边三角形,则2AB AD ==,故1BO DO ==,则AO =AC =则菱形ABCD的面积122=⨯⨯故答案为:【点睛】此题主要考查了菱形的性质以及勾股定理,正确得出菱形的另一条对角线的长是解题关键. 3、18°##18度【解析】【分析】由“SAS ”可证△DCE ≌△BCE ,可得∠CED =∠CEB =12∠BED =63°,由三角形的外角的性质可求解.【详解】证明:∵四边形ABCD 是正方形,∴AD =CD =BC =AB ,∠DAE =∠BAE =∠DCA =∠BCA =45°,在△DCE 和△BCE 中,CD BC BCE DCE CE CE =⎧⎪∠=∠⎨⎪=⎩,∴△DCE≌△BCE(SAS),∠BED=63°,∴∠CED=∠CEB=12∵∠CED=∠CAD+∠ADE,∴∠ADE=63°-45°=18°,故答案为:18°.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,证明△DCE≌△BCE是本题的关键.4、90【解析】【分析】根据折叠的性质,∠1=∠2,∠3=∠4,利用平角,计算∠2+∠3的度数即可.【详解】如图,根据折叠的性质,∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°,=90°,∴CEF故答案为:90.【点睛】本题考查了折叠的性质,两个角的和,熟练掌握折叠的性质,灵活运用两个角的和是解题的关键.5、【解析】【分析】设AE=x,则BE=10﹣x,由勾股定理得AD2+AE2=DE2,BC2+BE2=CE2,DE2+CE2=CD2,则AD2+AE2+BC2+BE2=CD2,即42+x2+42+(10﹣x)2=102,解得:x=2或x=8(舍去),则AE=2,然后由勾股定理即可求解.【详解】解:设AE=x,则BE=10﹣x,∵四边形ABCD是矩形,∴CD=AB=10,∠A=∠B=90°,∴AD2+AE2=DE2,BC2+BE2=CE2,∵DE⊥CE,∴∠DEC=90°,∴DE2+CE2=CD2,∴AD2+AE2+BC2+BE2=CD2,即42+x2+42+(10﹣x)2=102,解得:x=2或x=8(不合题意,舍去),∴AE=2,∴DE故答案为:【点睛】本题考查了矩形的性质,勾股定理,掌握勾股定理是解题的关键.三、解答题1、(1)见解析;(2)①不成立,结论:EF DF BE =-;②BE EF DF =+,见解析;(3)【解析】【分析】(1)证明EAF GAF ∆≅∆,可得出EF FG =,则结论得证;(2)①将ABE ∆绕点A 顺时针旋转90︒至ADM ∆根据SAS 可证明EAF MAF ∆≅∆,可得EF FM =,则结论得证;②将ADF ∆绕点A 逆时针旋转90︒至ABN ∆,证明AFE ANE ∆≅∆,可得出EF EN =,则结论得证;(3)求出2DG =,设DF x =,则3EF FG x ==+,6CF x =-,在Rt EFC ∆中,得出关于x 的方程,解出x 则可得解.【详解】(1)证明:把ABE ∆绕点A 顺时针旋转90︒至ADG ∆,如图1,BAE DAG ∴∠=∠,AE AG =,90B ADG ∠=∠=︒,180ADF ADG ∴∠+∠=︒,F ∴,D ,G 三点共线,45EAF ∠=︒,45BAE FAD ∴∠+∠=︒,45DAG FAD ∴∠+∠=︒,EAF FAG ∴∠=∠,AF AF =,()EAF GAF SAS ∴∆≅∆,EF FG DF DG ∴==+,EF DF BE ∴=+;(2)①不成立,结论:EF DF BE =-;证明:如图2,将ABE ∆绕点A 顺时针旋转90︒至ADM ∆,EAB MAD ∴∠=∠,AE AM =,90EAM =︒∠,BE DM =,45FAM EAF ∴∠=︒=∠,AF AF =,()EAF MAF SAS ∴∆≅∆,EF FM DF DM DF BE ∴==-=-;②如图3,将ADF ∆绕点A 逆时针旋转90︒至ABN ∆,∴=,90AN AF∠=︒,NAFEAF∠=︒,45∴∠=︒,NAE45∴∠=∠,NAE FAEAE AE=,∴∆≅∆,()AFE ANE SAS∴=,EF EN∴=+=+.BE BN NE DF EF即BE EF DF=+.故答案为:BE EF DF=+.(3)解:由(1)可知AE AG==正方形ABCD的边长为6,6DC BC AD ∴===,∴3==DG .3BE DG ∴==,633CE BC BE ∴=-=-=,设DF x =,则3EF FG x ==+,6CF x =-,在Rt EFC 中,222CF CE EF +=,222(6)3(3)x x ∴-+=+,解得:2x =.2DF ∴=,AF ∴=【点睛】本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.2、见解析【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半可得DE =12AB ,再求出DE =CD ,然后根据等腰三角形三线合一的性质证明即可.【详解】证明: 在△ACB 中,CE 是中线,∴点E 为AB 边的中点∵AD 是BC 边上的高,∴△ADB 是直角三角形∴DE =12AB ,∵CD =12AB ,∴DC =DE ,∵F 是CE 中点,∴DF ⊥CE .【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并作辅助线构造出等腰三角形是解题的关键.3、 (1)证明见解析(2)证明见解析【解析】【分析】(1)先根据平行四边形的性质可得,AB CD B D =∠=∠,再根据垂直的定义可得90AEB CFD ∠=∠=︒,然后根据三角形全等的判定定理(AAS 定理)即可得证;(2)先根据平行四边形的性质可得AD BC ∥,再根据平行线的性质可得90EAF ∠=︒,然后根据矩形的判定即可得证.(1) 证明:四边形ABCD 是平行四边形,,AB CD B D ∴=∠=∠,,AE BC CF AD ⊥⊥, 90AEB CFD ∴∠=∠=︒,在ABE △和CDF 中,90B D AEB CFD AB CD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ()ABE CDF AAS ∴≅.(2)证明:,AE BC CF AD ⊥⊥,90AEC AFC ∴∠=∠=︒,四边形ABCD 是平行四边形,AD BC ∴,18090EAF AEC ∴∠=︒-∠=︒,∴在四边形AECF 中,90AEC AFC EAF ∠=∠=∠=︒,∴四边形AECF 是矩形.【点睛】本题考查了平行四边形的性质、三角形全等的判定定理、矩形的判定等知识点,熟练掌握各判定定理与性质是解题关键.4、 (1)见解析(2)BE =,证明见解析(3)2222AB BE AD +=【解析】【分析】(1)证明∠CAD 和∠BDE 都与∠ADC 互余即可;(2)过E 作EG ⊥CB 于G ,利用△ACD ≌△DGE 可得CD =EG ,AC =DG ,从而可证明△BGE 是等腰直角三角形,即可得到BE;(3)由AB 2=AC 2+BC 2=2AC 2,AC 2=AD 2−CD 2可得AB 2=2(AD 2−CD 2),再根据BE即可得到线段AD,AB,BE之间的数量关系.(1)解:(1)补全图形如图所示.证明:∵正方形ADEF,∴∠ADE=90°,∴∠BDE=180°−∠ADE−∠ADC=90°−∠ADC,∵∠C=90°,∴∠CAD=90°−∠ADC,∴∠CAD=∠BDE;(2)解:BE .证明:过E作EG⊥CB于G,如图:∵四边形ADEF 是正方形,∴AD =DE ,∵EG ⊥CB ,∴∠G =90°=∠C ,在△ACD 和△DGE 中,C D CAD GDE AD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△DGE (AAS ),∴CD =EG ,AC =DG ,∵AC =BC ,∴DG =BC ,∴DG −DB =BC −DB ,即BG =CD ,∴BG =EG ,∴△BGE 是等腰直角三角形,∴BEBG ,∴BECD ;(3)解:2222AB BE AD+=.理由如下:∵∠C=90°,AC=BC,∴AB2=AC2+BC2=2AC2,AC2=AD2−CD2,∴AB2=2(AD2−CD2),而BE,∴CD2=12BE2,∴AB2=2(AD2−12BE2),即AB2=2AD2−BE2.【点睛】本题考查等腰直角三角形、正方形、全等三角形的性质及应用,解题的关键是构造全等三角形,熟练掌握勾股定理的应用.5、 (1)12(2)①3,②80 13【解析】【分析】(1)①设DF=m,解直角三角形求出AB,AD(用m表示即可);(2)①如图,过点M作MK⊥AD于K,MH⊥BA交BA的延长线于H,交CD的延长线于G.证明△BMH≌△BMF(AAS),推出BH=BF=8,可得结论.②如图3-2中,当点E与D重合时,求出MG的长,可得结论.(1)如图,设DF=m.∵四边形ABCD是矩形,∴∠A=∠D=∠C=90°,AB=CD,AD=BC,由翻折的性质可知,∠BEF=∠BEC=75°,∠C=∠BFE=90°,EF=EC,∴∠FED=180°-75°-75°=30°,∴EF=EC=2DF=2m,DE,∴∠AEFD=60°,∠AFB=30°,AB=CD=2m,∵AF+3m,∴BC=AD+4m,∴12 ABBC==.(2)①如图,过点M作MK⊥AD于K,MH⊥BA交BA的延长线于H,交CD的延长线于G.∵四边形ABCD是矩形,∴∠C=∠BAD=∠ABD=∠ADC=90°,AB=CD=5,AD=BC=8,∵MH⊥AB,MK⊥AD,∴∠H=∠HAK=∠AKM=90°,∴四边形AKMH是矩形,∴AH=MK,∵BM平分∠ABF,∴∠MBH=∠MBF,∵∠H=∠AFM=90°,BM=BM,∴△BMH≌△BMF(AAS),∴BH=BF,∵BF=BC=8,∴BH=BC=8,∴MK=AH=BH-AB=8-5=3,∴M到AD的距离为3.②如图,当点E与D重合时,∵△BMH≌△BMF,∴MH=MF,设MH=MF=m,∵四边形AHGD是矩形,∴AH=DG=3,GH=AD=8,∠G=90°,∵CD=DF=5,GM=GH-HM=8-m,在Rt△DGM中,则有(8-m)2+32=(5+m)2,解得m=24 13,∴GM=8-2413=8013,观察图象可知,当E从C到D的过程中,点M运动的路径是线段MG,∴点M的运动的路径的长为80 13.【点睛】本题考查了矩形的性质,全等三角形的判定与性质,直角三角形的性质,折叠的性质,角平分线的性质,勾股定理等知识,判断出BH=BF=BC是解题的关键.。

2021-2022学年鲁教版(五四制)八年级数学下册第六章特殊平行四边形专题测评试卷(含答案解析)

2021-2022学年鲁教版(五四制)八年级数学下册第六章特殊平行四边形专题测评试卷(含答案解析)

鲁教版(五四制)八年级数学下册第六章特殊平行四边形专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、顺次连接对角线互相垂直的四边形的各边中点,所形成的新四边形是( )A .菱形B .矩形C .正方形D .三角形2、已知四边形ABCD 是平行四边形,下列结论:①当AB =BC 时,它是菱形;②当AC ⊥BD 时,它是菱形;③当∠ABC =90°时,它是矩形;④当AC =BD 时,它是正方形,其中错误的有( )A .1个B .2个C .3个D .4个3、将一长方形纸条按如图所示折叠,255∠=︒,则1∠=( )A .55°B .70°C .110°D .60°4、如图.在长方形纸片ABCD 中,AB =12,AD =20,所示,折叠纸片,使点A 落在BC 边上的A ′处,折痕为PQ ,当点A ′在BC 边上移动时,折痕的端点P 、Q 也随之移动.点P ,Q 分别在边AB 、AD 上移动,则点A ′在BC 边上可移动的最大距离为( )A .8B .10C .12D .165、如图,已知菱形OABC 的顶点O (0,0),B (2,2),菱形的对角线的交于点D ;若将菱形OABC 绕点O 逆时针旋转,每秒旋转45°,从如图所示位置起,经过60秒时,菱形的对角线的交点D 的坐标为( )A .(1,1)B .(﹣1,﹣1)C .(-1,1)D .(1,﹣1)6、将一张长方形纸片按如图所示的方式折叠,BD 、BE 为折痕,则∠EBD 的度数( )A .80°B .90°C .100°D .110°7、下列关于ABCD 的叙述,正确的是( )A .若AC BD =,则ABCD 是矩形B .若AB AD =,则ABCD 是正方形C .若AB BC ⊥,则ABCD 是菱形 D .若AC BD ⊥,则ABCD 是正方形8、已知锐角∠AOB,如图.(1)在射线OA上取一点C,以点O为圆心,OC长为半径画弧,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,两弧交于点P,连接CP,DP;(3)作射线OP交CD于点Q.根据以上作图过程及所作图形,下列结论中错误的是()A.四边形OCPD是菱形B.CP=2QCC.∠AOP=∠BOP D.CD⊥OP9、陈师傅应客户要求加工4个长为4cm、宽为3cm的矩形零件.在交付客户之前,陈师傅需要对4个零件进行检测.根据零件的检测结果,下图中有可能不合格的零件是()A.B.C.D.10、下列选项中,不能被边长为2的正方形及其内部所覆盖的图形是()A.长度为B.边长为2的等边三角形C.斜边为2的直角三角形D.面积为4的菱形第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,四边形ABCD是菱形,AC与BD相交于点O,添加一个条件:________,可使它成为正方形.2、已知:如图,正方形ABCD中,AB=2,AC,BD相交于点O,E,F分别为边BC,CD上的动点(点E,F不与线段BC,CD的端点重合)且BE=CF,连接OE,OF,EF.在点E,F运动的过程中,有下列四个结论:①△OEF是等腰直角三角形;②△OEF面积的最小值是1;③至少存在一个△ECF,使得△ECF的周长是2④四边形OECF的面积是1.所有正确结论的序号是_________________________3、矩形的两边长分别为3 cm和4 cm,则矩形的对角线长为_____.4、有一组邻边________并且有一个角是________的平行四边形叫做正方形.正方形的四条边都相等,四个角都是直角.因此,________既是矩形,又是菱形.5、如图,E是正方形ABCD的对角线BD上一点,连接CE,过点E作EF AD⊥,垂足为点F.若AF=,53EC=,则正方形ABCD的面积为______.三、解答题(5小题,每小题10分,共计50分)1、在等腰Rt△ABC中,∠ACB=90°,D,E是边AC,BC上的点,且满足AD=CE,连接DE,过点C作DE的垂线,垂足为F,交AB于点G.(1)点D如图所示.①请依题意在下图中补全图形;②猜想DE与CG的数量关系,并证明;(2)连接DG,GE,若AB=2,直接写出四边形CDGE面积的最小值.⊥,点E,F分别为垂足.2、已知:如图,在▱ABCD中,AE⊥BC,CF AD(1)求证:△ABE≌△CDF;(2)求证:四边形AECF是矩形.3、如图,在▱ABCD中,点O是对角线的交点,且AB=AO,∠OCD=120°.(1)求∠AOB的度数;(2)过点A作AE⊥OB,垂足为点E,点G、F分别是OA、BC的中点,连接EF、FG,求证:四边形AEFG 是菱形.4、尺规作图并回答问题:(保留作图痕迹)已知:如图,四边形ABCD是平行四边形.求作:菱形AECF,使点E,F分别在BC,AD上.请回答:在你的作法中,判定四边形AECF是菱形的依据是.5、求作:Rt△ABC,使∠A=45°,斜边AB=a.-参考答案-一、单选题1、B【解析】【分析】先画出图形,再根据三角形中位线定理得到所得四边形的对边平行且相等,那么其必为平行四边形,然后根据邻边互相垂直得出四边形是矩形.【详解】解:如图,∵E、F、G、H分别是AB、BC、CD、AD的中点,∴EH BD FG,EF AC HG,11,22FG BD EF AC==,∴四边形EFGH是平行四边形,∵AC BD⊥,∴EF FG⊥,∴平行四边形EFGH是矩形,又AC与BD不一定相等,EF∴与FG不一定相等,∴矩形EFGH不一定是正方形,故选:B.【点睛】本题考查了三角形中位线定理、矩形的判定等知识点,熟练掌握三角形中位线定理是解题关键.2、A【解析】【分析】根据矩形、菱形、正方形的判定可以判断题目中的各个小题的结论是否正确,从而可以解答本题.【详解】 解:四边形ABCD 是平行四边形,A 、当AB BC =时,它是菱形,选项不符合题意,B 、当AC BD ⊥时,它是菱形,选项不符合题意,C 、当90ABC ∠=︒时,它是矩形,选项不符合题意,D 、当AC BD =时,它是矩形,不一定是正方形,选项符合题意,故选:A .【点睛】本题考查正方形、菱形、矩形的判定,解答本题的关键是熟练掌握矩形、菱形、正方形的判定定理.3、B【解析】【分析】从折叠图形的性质入手,结合平行线的性质求解.【详解】解:由折叠图形的性质结合平行线同位角相等可知,221180∠+∠=︒,255∠=︒,170∴∠=︒.【点睛】本题考查折叠的性质及平行线的性质,解题的关键是结合图形灵活解决问题.4、A【解析】【分析】根据翻折的性质,可得BA′与AP的关系,根据线段的和差,可得A′C,根据勾股定理,可得A′C,根据线段的和差,可得答案.【详解】解:①在长方形纸片ABCD中,AB=12,AD=20,∴BC=AD=20,当p与B重合时,BA′=BA=12,CA′=BC-BA′=20-12=8,②当Q与D重合时,由折叠得A′D=AD=20,由勾股定理,得CA,CA′最远是16,CA′最近是8,点A′在BC边上可移动的最大距离为16-8=8,故选:A.【点睛】本题考查了矩形的性质,翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.5、B【分析】分别过点D 和点B 作DE x ⊥轴于点E ,作BF x ⊥轴于点F ,根据菱形的性质以及中位线的性质求得点D 的坐标,进而计算旋转的度数,7.5周,进而根据中心对称求得点旋转后的D 坐标【详解】如图,分别过点D 和点B 作DE x ⊥轴于点E ,作BF x ⊥轴于点F ,∴DE BF ∥,∵四边形OABC 为菱形,∴点D 为OB 的中点,∴点E 为OF 的中点, ∴12DE BF =,12OE OF =, ∵(2,2)B ,∴(1,1)D ;由题意知菱形OABC 绕点O 逆时针旋转度数为:45602700︒⨯=︒, ∴菱形OABC 绕点O 逆时针旋转27003607.5︒÷︒=周,∴点D 绕点O 逆时针旋转7.5周,∴旋转60秒时点D 的坐标为()1,1--.故选B【点睛】根据菱形的性质及中点的坐标公式可得点D 坐标,再根据旋转的性质可得旋转后点D 的坐标,熟练掌握菱形的性质及中点的坐标公式、中心对称的性质是解题的关键.6、B【解析】【分析】根据翻折的性质可知,∠ABE =∠A ′BE ,∠DBC =∠DBC ′,又∠ABE +∠A ′BE +∠DBC +∠DBC ′=180°,且∠EBD =∠A ′BE +∠DBC ′,继而即可求出答案.【详解】解:根据翻折的性质可知,∠ABE =∠A ′BE ,∠DBC =∠DBC ′,又∵∠ABE +∠A ′BE +∠DBC +∠DBC ′=180°,∴∠EBD =∠A ′BE +∠DBC ′=180°×12=90°.故选B .【点睛】此题考查翻折变换的性质,三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE =∠A ′BE ,∠DBC =∠DBC ′是解题的关键.7、A【解析】【分析】由菱形的判定方法、矩形的判定方法、正方形的判定方法得出选项A 、B 、D 错误,C 正确;即可得【详解】解:ABCD 中,AC BD =,∴四边形ABCD 是矩形,选项A 符合题意; ABCD 中,AB AD =,∴四边形ABCD 是菱形,不一定是正方形,选项B 不符合题意; ABCD 中,AB BC ⊥,∴四边形ABCD 是矩形,不一定是菱形,选项C 不符合题意; ABCD 中,AC BD ⊥,∴四边形ABCD 是菱形,选项D 不符合题意;故选:A .【点睛】本题考查了平行四边形的性质、菱形的判定方法、矩形的判定方法、正方形的判定方法;熟练掌握矩形、菱形、正方形的判定方法是解决问题的关键.8、A【解析】【分析】根据作图信息可以判断出OP 平分AOB ∠,由此可以逐一判断即可.【详解】解:由作图可知,,,OC OD PC PD OP ==平分AOB ∠∴OP 垂直平分线段CD∴∠AOP =∠BOP ,CD ⊥OP故选项C ,D 正确;由作图可知,CD CP PD ==∴PCD ∆是等边三角形,∴60CPD ∠=︒∵OP 垂直平分线段CD∴30CPQ ∠=︒∴CP =2QC故选项B 正确,不符合题意;由作图可知,,OC OD PC PD ==,不能确定四边形OCPD 是菱形,故选项A 符合题意,故选:A【点睛】本题考查了基本作图,解题的关键是熟练掌握作图的依据.9、C【解析】【分析】根据矩形的判定定理判断即可.【详解】∵A 满足的条件是有一个角是直角的平行四边形是矩形,∴A 合格,不符合题意;∵B 满足的条件是三个角是直角的四边形是矩形,∴B 合格,不符合题意;∵C 满足的条件是有一个角是直角的四边形,∴无法判定,C 不合格,符合题意;∵D满足的条件是有一个角是直角的平行四边形是矩形,∴D合格,不符合题意;故选C.【点睛】本题考查了矩形的判定定理,正确理解题意,熟练掌握矩形的判定定理是解题的关键.10、D【解析】【分析】先计算出正方形的对角线长,即可逐项进行判定求解.【详解】解:A、正方形的边长为2,∴对角线长为∴长度为2的正方形及其内部所覆盖,故A不符合题意;B、边长为2的等边三角形能被边长为2的正方形及其内部所覆盖,故B不符合题意;C、斜边为2的直角三角形能被边长为2的正方形及其内部所覆盖,故C不符合题意;D、而面积为4的菱形对角线长可以为8,故不能被边长为2的正方形及其内部所覆盖,故D符合题意,故选:D.【点睛】本题主要考查正方形的性质,等边三角形的性质,菱形的性质等知识,解题的关键是掌握相关图形的特征进行判断.二、填空题1、90∠=BAD【解析】【分析】根据“有一个角是直角的菱形是正方形”可得到添加的条件.【详解】解:由于四边形ABCD是菱形,如果90∠=,BAD那么四边形ABCD是正方形.故答案为:90∠=.BAD【点睛】本题考查了正方形的判定,解决本题的关键是熟练掌握正方形的判定定理.2、①③④【解析】【分析】①易证得△OBE≌△OCF(SAS),则可证得结论①正确;②由OE的最小值是O到BC的距离,即可求得OE的最小值1,根据三角形面积公式即可判断选项②错误;≤EF<2,即可求得选项③正确;④证明△OBE≌△OCF,根据正方形被对角线将面积四等分,即可得出选项④正确.【详解】解:①∵四边形ABCD是正方形,AC,BD相交于点O,∴OB=OC,∠OBC=∠OCD=45°,在△OBE和△OCF中,OB OC OBE OCF BE CF =⎧⎪∠=∠⎨⎪=⎩, ∴△OBE ≌△OCF (SAS ),∴OE =OF ,∵∠BOE =∠COF ,∴∠EOF =∠BOC =90°,∴△OEF 是等腰直角三角形;故①正确;②∵当OE ⊥BC 时,OE 最小,此时OE =OF =12BC =1,∴△OEF 面积的最小值是12×1×1=12,故②错误;③∵BE =CF ,∴CE +CF =CE +BE =BC =2,假设存在一个△ECF ,使得△ECF 的周长是2则EF由①得△OEF 是等腰直角三角形,∴OE=,OE 的最小值是1,∴存在一个△ECF ,使得△ECF 的周长是2故③正确;④由①知:△OBE≌△OCF,∴S 四边形OECF =S △COE +S △OCF =S △COE +S △OBE =S △OBC =14S 正方形ABCD =14×2×2=1, 故④正确;故答案为:①③④.【点睛】此题属于四边形的综合题.考查了正方形的性质,全等三角形的判定与性质、勾股定理以及等腰直角三角形的性质.注意掌握全等三角形的判定与性质是解此题的关键.3、5cm【解析】略4、 相等 直角 正方形【解析】略5、49【解析】【分析】延长FE 交AB 于点M ,则EM BC ⊥,3AF BM ==,由正方形的性质得45CDB ∠=︒,推出BME 是等腰直角三角形,得出3EM BM ==,由勾股定理求出CM ,故得出BC ,由正方形的面积公式即可得出答案.【详解】如图,延长FE 交AB 于点M ,则EM BC ⊥,3AF BM ==,∵四边形ABCD 是正方形,∴45CDB ∠=︒,∴BME 是等腰直角三角形,∴3EM BM ==,在Rt EMC 中,4CM =,∴347BC BM CM =+=+=,∴22749ABCD S BC ===正方形.故答案为:49.【点睛】本题考查正方形的性质以及勾股定理,掌握正方形的性质是解题的关键.三、解答题1、 (1)①作图见解析;②DE =CG ,证明见解析; (2)12【解析】【分析】(1)①按照题意作图即可;②如图1过点D 作DH ⊥AC 交AB 于H ,连接CH 交DE 于O ,连接EH ,∠A =∠B =45°,∠ADH =90°,∠A =∠DHA =45°,DA =DH = CE ,四边形DHEC 是平行四边形,∠DCE =90°,四边形DHEC 是矩形,矩形对角线相等且互相平分可知,DE =CH ,OD =OC ,∠ODC =∠OCD ,证明∠CDE =∠BCG =∠ACH ,△ACH ≌△BCG ,进而可说明DE =CG .(2)如图2,由(1)可知DE =CG ,CG ⊥DE ,S 四边形CDGE 12=•DE •CG 12=•CG 2;可知面积最小即CG 的值最短;根据垂线段最短可知,当CG ⊥AB 时,CG 的值最短,由AG =GB ,∠ACB =90°,可知CG 12=AB =1,进而可求四边形面积的最小值.(1)解:①图形如图1所示.②结论:DE =CG .证明:如图1中,过点D 作DH ⊥AC 交AB 于H ,连接CH 交DE 于O ,连接EH .∵AC =BC ,∠ACB =90°∴∠A =∠B =45°∵AD ⊥DH∴∠ADH =90°∴∠A =∠DHA =45°∴DA =DH∵AD =CE∴DH =CE∵∠ADH =∠ACB =90°∴DH ∥BC∴四边形DHEC 是平行四边形∵∠DCE =90°∴四边形DHEC 是矩形∴DE =CH ,OD =OC =OE =OH∴∠ODC =∠OCD∵CG ⊥DE∴∠CDE +∠DCG =90°,∠DCG +∠BCG =90° ∴∠CDE =∠BCG =∠ACH在△ACH 和△BCG 中∵45ACH BCG CA CB A B ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴△ACH ≌△BCG (ASA )∴CH =CG∴DE =CG .(2)解:如图2由(1)可知DE =CG ,CG ⊥DE∴S 四边形CDGE 12=•DE •CG 12=•CG 2 根据垂线段最短可知,当CG ⊥AB 时,CG 的值最短∵CA =CB ,CG ⊥AB∴AG =GB∴CG 12=AB =1 ∴四边形CDGE 的面积的最小值为12.【点睛】本题考查了垂线段,矩形的判定与性质,三角形全等,等腰三角形的判定与性质.解题的关键在于对知识的灵活综合运用.2、 (1)证明见解析(2)证明见解析【解析】【分析】(1)先根据平行四边形的性质可得,AB CD B D =∠=∠,再根据垂直的定义可得90AEB CFD ∠=∠=︒,然后根据三角形全等的判定定理(AAS 定理)即可得证;(2)先根据平行四边形的性质可得AD BC ∥,再根据平行线的性质可得90EAF ∠=︒,然后根据矩形的判定即可得证.(1) 证明:四边形ABCD 是平行四边形,,AB CD B D ∴=∠=∠,,AE BC CF AD ⊥⊥,90AEB CFD ∴∠=∠=︒,在ABE △和CDF 中,90B D AEB CFD AB CD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ()ABE CDF AAS ∴≅.(2)证明:,AE BC CF AD ⊥⊥,90AEC AFC ∴∠=∠=︒,四边形ABCD 是平行四边形,AD BC ∴,18090EAF AEC ∴∠=︒-∠=︒,∴在四边形AECF 中,90AEC AFC EAF ∠=∠=∠=︒,∴四边形AECF 是矩形.【点睛】本题考查了平行四边形的性质、三角形全等的判定定理、矩形的判定等知识点,熟练掌握各判定定理与性质是解题关键.3、 (1)∠AOB =30°;(2)见解析【解析】【分析】(1)利用平行四边形的性质得到∠OCD =∠OAB =120°,再利用等腰三角形的性质即可求解;(2)利用等腰三角形的性质得到点E 为OB 中点,再利用三角形中位线的性质得到EF =AG ,EF ∥AG ,推出四边形AEFG 是平行四边形,再利用30度角的直角三角形的性质得到AE =12OA ,即可证明四边形AEFG 是菱形.(1)解:在▱ABCD中,∵∠OCD=120°,∴∠OCD=∠OAB=120°,∵AB=AO,∴∠ABO=∠AOB,∴∠AOB=1801202︒-︒=30°;(2)证明:∵AB=AO,AE⊥OB,∴BE=EO,∵F是BC的中点,∴EF=12OC,EF∥OC,在▱ABCD中,∵点G是OA的中点,∴AG=12OA=12OC,∴EF=AG,且EF∥AG,∴四边形AEFG是平行四边形,在Rt△AEO中,∠AOB=30°,∴AE=12 OA,∴AE= AG,∴四边形AEFG是菱形.【点睛】本题考查了平行四边形的性质和判定,菱形的判定,三角形中位线定理,等腰三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.4、证明见解析;邻边相等的平行四边形是菱形,对角线垂直的平行四边形是菱形.【解析】【分析】根据邻边相等的平行四边形是菱形或对角线垂直的平行四边形是菱形证明即可.【详解】解:如图,四边形AECF 即为所求作.理由:四边形ABCD 是平行四边形,∴AE ∥CF ,∴∠EAO =∠FCO ,∵EF 垂直平分线段AC ,∴OA =OC ,在△AEO 和△CFO 中,EAO FCO AO OCAOE COF ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△AEO ≌△CFO (ASA ),∴AE =CF ,∴四边形AECF是平行四边形,∵EA=EC或AC⊥EF,∴四边形AECF是菱形.故答案为:邻边相等的平行四边形是菱形,对角线垂直的平行四边形是菱形.【点睛】本题考查作图-复杂作图,平行四边形的性质,菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5、见解析【解析】【分析】作射线AD,在AD上截取AB a,作AB的垂直平分线EF,交线段AB于点G,在射线GC上截取CA CB,则ABC即为所求.GC GA=,连接,【详解】如图所示,作射线AD,在AD上截取AB a,作AB的垂直平分线EF,交线段AB于点G,在射线CA CB,则ABC即为所求.GC上截取GC GA=,连接,【点睛】本题考查了作等腰直角三角形,掌握基本作图以及等腰直角三角形的性质是解题的关键.。

鲁教版(五四制)八年级下册数学单元试卷第六章特殊的平行四边形

鲁教版(五四制)八年级下册数学单元试卷第六章特殊的平行四边形

…………○…………○…学名:___________班级:…………装…………………○…………线……绝密★启用前 鲁教版(五四制)八年级下册数学单元试卷 第六章特殊的平行四边形 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.本卷25题,答卷时间100分钟,满分120分1.(本题3分)菱形,矩形,正方形都具有的性质是( ) A. 四条边相等,四个角相等 B. 对角线相等 C. 对角线互相垂直 D. 对角线互相平分 2.(本题3分)矩形的一个内角平分线把矩形的一条边分成3cm 和5cm 两部分,则矩形的周长( ) A. 16cm B. 22cm 和16cm C. 26cm D. 22cm 和26cm 3.(本题3分)若矩形的一条对角线与一边的夹角是40°,•则两条对角线所夹的锐角的度数为( ) A. 80° B. 60° C. 45° D. 40° 4.(本题3分)如图,菱形ABCD 的周长为48cm ,对角线AC 、BD 相交于O 点,E 是AD 的中点,连接OE ,则线段OE 的长等于( ) A. 4cm B. 5cm C. 6cm D. 8cm 5.(本题3分)菱形的两条对角线长分别为9cm 与4cm ,则此菱形的面积为( )cm 2. A. 12 B. 18 C. 20 D. 36 6.(本题3分)如图,在正方形ABCD 的外侧作等边三角形ADE ,AC ,BE 相交于点F ,则∠BFC 为( )…………外……………装……○…………订…○…………………○……请※※不※※要※※在※※※订※※线※※内※※答……………线………………A. 45°B. 55°C. 60°D. 105°7.(本题3分)如图,矩形ABCD 的两条对角线相交于点O ,∠AOD =60°,AD =4,则AC 的长是( )8.(本题3分)如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,∠DHO=20°,则∠CAD 的度数是( )A. 20°B. 25°C. 30°D. 40°9.(本题3分)如图,在△ABC 中,∠BAC=90°,AD 是BC 边上的高,E 、F 分别是AB 、AC 边的中点,若AB=8,AC=6,则△DEF 的周长为( )A. 12B. 13C. 14D. 1510.(本题3分)如图,正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形,连接AC 交EF 于G ,下列结论:①BE=DF ,②∠DAF=15°,③AC 垂直平分EF ,④BE+DF=EF ,⑤ 2CEF ABE S S ∆∆=,其中正确结论有( )个A. 2B. 3C. 4D. 5○…………外…………○………装…………………订………○…………线…学__________姓名:_____________________考号:_______ ………内…………○……装……………………订…………○…………………○………………………………内…………○…二、填空题(计32分) 11.(本题4分)菱形的面积为24,其中的一条对角线长为6,则此菱形的周长为_____. 12.(本题4分)如图,四边形ABCD 是菱形,AC=24,BD=10,DH ⊥AB 于点H ,则线段BH 的长为______.13.(本题4分)如图,△ABC 中,AD 是高,E 、F 分别是AB 、AC 的中点.若AB=8,AC=6,则四边形AEDF 的周长为. 14.(本题4分)如图,在平面直角坐标系中,四边形OABC 是边长为2的正方形,顶点A 、C 分别在x 轴、y 轴的正半轴上,点Q 在对角线OB 上,若OQ=OC ,则点Q 的坐标为_____. 15.(本题4分)如图所示,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB=90°,若AB=5,BC=8,则EF 的长为________. 16.(本题4分)16.(本题4分)如图,已知菱形ABCD 的两条对角线分别是6和8,M 、N 分别是BC 、CD 的中点,点P 是对角线BD 上一点,则PM+PN 的最小值是________.…装…………不※※要※※在※※装………18.(本题4分)如图,将n 个边长都为1cm 的正方形按如图所示摆放,点A 1、A 2、…、An 分别是正方形的中心,则n 个这样的正方形重叠部分的面积和为____________(用n 的代数式表示);三、解答题(计58分)19.(本题8分)如图,在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,BD 与AE 、AF 交于G 、H .(1)求证:△ABE ∽△ADF ;(2)若AG=AH ,求证:四边形ABCD 是菱形.…………○……………线……名:___________班级:………○…………线………内…………○………… 20.(本题8分)如图是一块在电脑屏幕上出现的长方形色块图,它是由6个不同颜色的正方形组成的,已知中间最小的正方形的边长是1cm,则这块长方形色块图的总面积是多少?21.(本题8分)如图,在△ABC 中,AB=AC ,D 是边BC 上的一点,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,EF ∥BC . (1)求证:△BDE ≌△CDF ; (2)若BC=2AD ,求证:四边形AEDF 是正方形.装…………○…………线…※※要※※在※※装※※………○22.(本题8分)平行四边形ABCD 的对角线AC 和BD 交于O 点,分别过顶点B ,C 作两对角线的平行线交于点E ,得平行四边形OBEC .(1)如果四边形ABCD 为矩形(如图),四边形OBEC 为何种四边形?请证明你的结论;(2)当四边形ABCD 是 形时,四边形OBEC 是正方形.23.(本题8分)如图,△ABC 中,AB =AC ,AD 、AE 分别是∠BAC 与∠BAC 的外角的平分线,BE ⊥AE .求证:AB =DE.…………装………线…………校:___________姓名:____○…………订…………○…………○…………装…… 24.(本题9分)如图,平行四边形ABCD 中,点E 、F 、G 、H 分别在AB 、BC 、CD 、AD 边上且AE=CG ,AH=CF . (1)求证:四边形EFGH 是平行四边形; (2)如果AB=AD ,且AH=AE ,求证:四边形EFGH 是矩形. 25.(本题9分)如图,在正方形ABCD 中,E 为CD 边上一点,F 为BC 延长线上一点,且CE =CF. 求证:△BCE ≌△DCF ;参考答案1.D【解析】试题解析:A、不正确,矩形的四边不相等,菱形的四个角不相等;B、不正确,菱形的对角线不相等;C、不正确,矩形的对角线不垂直;D、正确,三者均具有此性质;故选D.2.D【解析】试题解析:∵四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AB=AE,当AE=3cm时,AB=AE=3=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=3cm+8cm+3cm+8cm=22cm;当AE=5cm时,AB=AE=5cm=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=5cm+8cm+5cm+8cm=26cm;故选D.考点:矩形的性质.3.A【解析】试题分析:如图:根据题意可得:∠1=40°,∵四边形ABCD是矩形,∴OB=OC,∴∠OBC=∠1=40°,则∠AOB=2∠1=80°.故选A.考点:矩形的性质.4.C【解析】试题分析:∵菱形ABCD的周长为48cm,∴AD=12cm,AC⊥BD,∵E是AD的中点,∴OE=12AD=6(cm).故选:C.考点:菱形的性质;三角形中位线定理.5.B【解析】试题分析:根据对角线的长可以求得菱形的面积,根据S=12ab=12×4cm ×9cm=18cm 2, 故选B .考点:菱形的性质.6.C【解析】∵四边形ABCD 是正方形,∴AB =AD ,又∵△ADE 是等边三角形,∴AE =AD =DE ,∠DAE =60°,∴AB =AE ,∴∠ABE =∠AEB ,∠BAE =90°+60°=150°,∴∠ABE =(180°−150°)÷2=15°,又∵∠BAC =45°,∴∠BFC =45°+15°=60°.故选C.7.B【解析】因为∠AOD =60°,AD =4,,矩形ABCD ,AC=BD, ,∠BDA =60°,所以AO=DO=AD 所以AC=8.故选B.8.A【解析】试题解析:∵四边形ABCD 是菱形,∴OB=OD ,AC ⊥BD ,∵DH ⊥AB ,∴OH=OB=12BD , ∵∠DHO=20°,∴∠OHB=90°-∠DHO=70°,∴∠ABD=∠OHB=70°,∴∠CAD=∠CAB=90°-∠ABD=20°.故选A.9.A【解析】试题解析:在ABC 中,由勾股定理可得: 10.BC == AD 是BC 边上的高,E 、F 分别是AB 、AC 边的中点,则: 1115,4, 3.222EF BC DE AB DF AC ====== DEF 的周长为: 45312.DE EF DF ++=++=点睛:直角三角形的性质:直角三角形斜边的中线等于斜边的一半.10.C【解析】∵四边形ABCD 是正方形,△AEF 是等边三角形,∴AB=BC=CD=AD ,AE=AF=EF ,∠B=∠D=∠BCD=90°,∠EAF=60°,∴△ABE ≌△ADF ,∠BAE+∠DAF=90°-60°=30°,∴∠BAE=∠DAF=15°,BE=DF ,(即①②正确);∴BC-BE=DC-DF ,即CE=CF ,又∵AE=AF ,∴点A 、C 都在线段EF 的垂直平分线上,∴AC 垂直平分EF.(即③正确);如下图,在AB 上取点P 连接PE ,使PE=PA ,则由∠BAE=15°可知∠BPE=30°,设BE=DF=1,则PE=PA=2,在Rt △PEB 中由勾股定理可得:∴2,∴1,∴∵BE+DF=2,∴BE+DF ≠EF.(即④错误);∵S △CEF =12CE 2=)21122=2S △ABE =122⨯AB ·BE=)212⨯= ∴S △CEF =2S △ABE (即⑤正确);综上所述,上述5个结论中,正确的有4个.故选C.11.20【解析】试题解析:如图所示:∵四边形ABCD 是菱形,11322AB BC CD AD OA AC OB BD AC BD ∴======⊥,,,, 90AOB ∴∠=︒, ∵菱形的面积为24,1242AC BD ∴⋅=,即16242AC ⨯⨯=, 解得: 8AC =,4OA ∴=, 在Rt AOB 中,由勾股定理得:5AB =,∴菱形的周长=4×5=20;故答案为:20.12.5013【解析】解:∵四边形ABCD 是菱形,AC =24,BD =10,∴AO =12,OD =5,AC ⊥BD ,∴AD =AB =,∵DH ⊥AB ,∴AO ×BD =DH ×AB ,∴12×10=13×DH ,∴DH =12013,∴BH =5013.故答案为: 5013. 13.14【解析】试题解析:∵AD 是高,90ADB ADC ∴∠=∠= ,∵E 、F 分别是AB 、AC 的中点,11,22ED EB AB DF FC AC ∴====, ∵AB =8,AC =6,∴AE +ED =8,AF +DF =6,∴四边形AEDF 的周长为8+6=14,故答案为:14.14.【解析】如图,过点Q 作QD ⊥OA 于点D ,∴∠QDO=90°.∵四边形OABC 是正方形,且边长为2,OQ=OC ,∴∠QOA=45°,OQ=OC=2,∴△ODQ 是等腰直角三角形,∴∴点Q 的坐标为.15.3 2【解析】试题解析:∵∠AFB=90°,D为AB的中点,∴DF=12AB=2.5,∵DE为△ABC的中位线,∴DE=12BC=4,∴EF=DE-DF=1.5,故答案为:1.5.点睛:直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.16.5【解析】试题分析:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP 的值最小,连接AC,求出CP、PB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,∵四边形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,∴NQ=BC,∵四边形ABCD是菱形,∴CP=AC=3,BP=BD=4,在Rt△BPC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,故答案为:5考点:1. 轴对称-最短路线问题;2.菱形的性质.视频17.28.【解析】试题解析:由勾股定理,得6=将五个小矩形的所有上边平移至AD,所有下边平移至BC,所有左边平移至AB,所有右边平移至CD,∴五个小矩形的周长之和=2(AB+BC)=2×(6+8)=28.考点:平移的性质.18.14n-cm2.【解析】试题分析:根据题意可得,阴影部分的面积是正方形的面积的14,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为n-1阴影部分的和.试题解析:由题意可得阴影部分面积等于正方形面积的14,即是14,5个这样的正方形重叠部分(阴影部分)的面积和为14×4,n个这样的正方形重叠部分(阴影部分)的面积和为14×(n-1)=14n-cm2.考点:正方形的性质.19.(1)证明见解析;(2)菱形,证明见解析.【解析】试题分析:(1)根据平行四边形的对角相等,以及垂直的定义可得△ABE和△ADF的两角对应相等,则两个三角形相似;(2)证明△ABG≌△ADH,则AB=AD,从而证得四边形是菱形.试题解析:(1)证明:∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°,∵四边形ABCD是平行四边形,∴∠ABE=∠ADF,∴△ABE∽△ADF(有两角相等的三角形是相似三角形)(2)∵△ABE∽△ADF,∴∠BAG=∠DAH,∵AG=AH,∴∠AGH=∠AHG,从而∠AGB=∠AHD,∴△ABG≌△ADH(ASA),∴AB=AD,∵四边形ABCD是平行四边形,∴四边形ABCD是菱形(一组邻边相等的平行四边形是菱形)20.长方形的面积为143cm2.【解析】试题分析:首先设第二小的正方形的边长为xcm,然后根据长方形的长相等得出一元一次方程,从而求出x的值,得出长方形的长和宽,求出长方形的面积.试题解析:设第二小的正方形的边长为xcm.则有x+x+(x+1)=(x+2)+(x+3)解得:x=4所以长方形的长为13,宽为11,面积=13×11=143㎝考点:一元一次方程的应用21.(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)用ASA证明△BDE≌△CDF;(2)由BC=2AD,得∠BAC=90°,从而四边形AEDF是矩形,再由AE=AF即可得证.试题解析:证明:(1)∵AB=AC,∴∠B=∠C,∵EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴∠AEF=∠AFE,∴AE=AF,∴BE=CF,∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,在△BED和△CFD中,,∴△BDE≌△CDF.(2)∵△BDE≌△CDF,∴BD=DC,DE=DF,∵BC=2AD,∴AD=BC,∴∠BAC=90°,∵DE⊥AB,DF⊥AC,∴∠EAF=∠AED=∠AFD=90°,∴四边形AEDF是矩形,∵AE=AF,∴四边形AEDF是正方形.22.(1)证明见解析;(2)正方【解析】(1)根据矩形的性质:两条对角线相等且互相平分,即可得到结论;(2)根据正方形的性质:对角线相等且互相垂直平分,即可得到结论.解:(1)四边形OBEC是菱形.理由如下:∵BE∥OC,CE∥OB,∴四边形OBEC为平行四边形.又∵四边形ABCD是矩形,∴OC=12AC; OB=12BD;AC=BD∴OC=OB,∴平行四边形OBEC为菱形;(2) 四边形ABCD是正方形时,四边形OBEC是正方形. 理由如下:四边形OBEC是菱形.∵BE∥OC,CE∥OB,∴四边形OBEC为平行四边形.又∵四边形ABCD是正方形,∴OC=12AC; OB=12BD;AC=BD且AC⊥BD∴OC=OB,∠BOC=90º,∴平行四边形OBEC为正方形;即:当四边形ABCD是正方形时,四边形OBEC是正方形.23.证明见解析.【解析】试题分析:先由角平分线和等腰三角形的性质证明AE∥BD,再由AD、AE分别是∠BAC与∠BAC的外角的平分线可证得DA⊥AE,可得AD∥BE,可证得四边形ADBE为矩形,可得结论.试题解析:证明:∵AD、AE分别是∠BAC与∠BAC的外角的平分线,∴∠BAD+∠EAB=1 2(∠BAC+∠FAB)=90°,∵BE⊥AE,∴DA∥BE,∵AB=AC,∴∠ABC=∠ACB,∵∠FAB=∠ABC+∠ACB=2∠ABC,且∠FAB=2∠EAB,∴∠ABC=∠EAB,∴AE∥BD,∴四边形AEBD为平行四边形,且∠BEA=90°,∴四边形AEBD为矩形,∴AB=DE.点睛:本题主要考查矩形的判定和性质,由角平分线及等腰三角形的性质证明AE∥BD 是解题的关键.24.(1)证明见解析.(2)证明见解析.【解析】试题分析:(1)易证得△AEH≌△CGF,从而证得BE=DG,DH=BF.故有,△BEF ≌△DGH,根据两组对边分别相等的四边形是平行四边形而得证.(2)由题意知,平行四边形ABCD是菱形,连接AC,BD,则有AC⊥BD,由AB=AD,且AH=AE可证得HE∥BD,同理可得到HG∥AC,故HG⊥HE,又由(1)知四边形HGFE是平行四边形,故四边形HGFE是矩形.试题解析:证明:(1)在平行四边形ABCD中,∠A=∠C,又∵AE=CG,AH=CF,∴△AEH≌△CGF.∴EH=GF.在平行四边形ABCD中,AB=CD,AD=BC,∴AB-AE=CD-CG,AD-AH=BC-CF,即BE=DG,DH=BF.又∵在平行四边形ABCD中,∠B=∠D,∴△BEF≌△DGH.∴GH=EF.∴四边形EFGH是平行四边形.(2)在平行四边形ABCD中,AB∥CD,AB=CD.设∠A=α,则∠D=180°-α.∵AE=AH,∴∠AHE=∠AEH=1809022a a︒-=︒-.∵AD=AB=CD,AH=AE=CG,∴AD-AH=CD-CG,即DH=DG.∴∠DHG=∠DGH=() 18018022a a︒--=.∴∠EHG=180°-∠DHG-∠AHE=90°.又∵四边形EFGH是平行四边形,∴四边形EFGH是矩形.考点:1.矩形的判定与性质;2.全等三角形的判定与性质;3.平行四边形的判定与性质.25.证明见解析【解析】试题分析:由正方形的性质得出BC=DC,∠BCE=∠DCF=90°,由SAS证明△BCE≌△DCF.试题解析:证明:在正方形ABCD中BC=DC,∠BCE=∠DCF=90°,在△BCE与△DCF中,∴△BCE≌△DCF.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年(新课标)鲁教版五四制八年级下册第六章 特殊平行四边形 测试题一、选择题(每小题3分,共30分)1. 矩形、菱形、正方形都具有的性质是( ) A.每一条对角线平分一组对角 B.对角线相等C.对角线互相平分D.对角线互相垂直2.小刚和小东在做一道习题,若四边形ABCD 是平行四边形,请补充条件,使得四边形ABCD 是矩形.小刚补充的条件是:∠A=∠B ;小东补充的条件是:∠A+∠C=180°.你认为下列说法正确的是( )A.小刚和小东都正确B.仅小刚正确C.仅小东正确D.小刚和小东都错误3. (2015年玉林、防城港)如图1,在□ABCD 中,BM 平分∠ABC ,交CD 于点M ,且MC=2,□ABCD 的周长是14,则DM 的长为( ) A .1 B .2 C .3D .44. (2015年徐州)如图2,在菱形ABCD 中,对角线AC ,BD 交于点O ,E 为边AD 的中MCD BA图1图2图3点,菱形ABCD 的周长为28,则OE 的长为( ) A .3.5B .4C .7D .145. (2015年日照)小明在学习了正方形之后,给同桌小文出了道题.从下列四个条件:①AB =BC ;②∠ABC =90°;③AC =BD ;④AC ⊥BD 中选两个作为补充条件,使□ABCD 成为正方形(如图3).现有下列四种选法,你认为其中错误..的是( ) A .①② B .②③ C .①③ D .②④6. (2015年安顺)如图4,点O 是矩形ABCD 对角线的交点,E 是AB 上的点,折叠后,点B 恰好与点O 重合,若BC=3,则折痕CE 的长为( ) A .23 B .323C .3D .67. 如图5,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM=CN ,MN 与AC 交于点O ,连接BO .若∠DAC=28°,则∠OBC 的度数为( ) A .28° B .52° C .62°D .72°8.如图6,在△ABC 中,BD ,CE 是△ABC 的中线,BD 与CE 相交于点O ,点F ,G 分别是BO ,CO 的中点,连接AO.若AO=6 cm ,BC=8 cm ,则四边形DEFG 的周长是( ) A.14 cmB.18 cmC.24 cmD.28 cm图6图5 图49. 如图7,两条笔直的公路l 1,l 2相交于点O ,村庄C 的村民在公路的旁边建三个加工厂 A ,B ,D ,已知AB=BC=CD=DA=5 km ,村庄C 到公路l 1的距离为4 km ,则村庄C 到公路l 2的距离是( ) A. 3 km B. 4 km C. 5 km D. 6 km10. (2015年丹东)如图8,过矩形ABCD 的对角线AC 的中点O 作EF ⊥AC ,交BC 边于点E ,交AD 边于点F ,分别连接AE ,CF .若AB=3,∠DCF=30°,则EF 的长为( ) A. 2B. 3C.23 D.3二、填空题(每小题4分,共32分)11.如图9,四边形ABCD 是菱形,对角线AC 和BD 相交于点O ,AC=4 cm ,BD=8 cm ,则这个菱形的面积是cm 2.12.如图10,□ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中图7O DCBA图9图4FE ODCBA 图10图11点.若AC +BD =24 cm ,△OAB 的周长是18 cm ,则EF =cm .13.如图11,矩形ABCD 的对角线相交于O ,AB=2,∠AOB=60°,则对角线AC 的长为. 14.如图12,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以A 和B 为圆心,大于12AB 的长为半径画弧,两弧相交于C ,D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是______.15.如图13,平行四边形ABCD 的对角线AC ,BD 相交于点O ,BC=9,AC=8,BD=14,则△AOD 的周长为________.16.(2015年吉林)如图14,在菱形ABCD 中,点A 在x 轴上,点B 的坐标为(8,2),点D 的坐标为(0,2),则点C 的坐标为_______.17.(2015年贵港)如图15,在正方形ABCD 的外侧,作等边三角形CDE ,连接AE ,BE ,则∠AEB 的度数为.18. 如图16,将矩形ABCD 沿对角线AC 剪开,再把△ACD 沿CA 方向平移得到△A 1C 1D 1,连接AD 1,BC 1.若∠ACB =30°,AB =1,CC 1=x ,则下列结论:①△A 1AD 1≌△CC 1B ;②当x =1时,四边形ABC 1D 1是菱形;③当x =2时,△BDD 1为等边三角形.其中正确的是.(填序号)三、解答题(共58分)19. (8分)如图17,四边形ABCD 是矩形,E 是AB 上一点,且DE =AB ,过点C 作CF ⊥DE 于点F . (1)猜想AD 与CF 的大小关系;y OxCD AB图14图15图12图13(2)请证明上面的结论.20. (9分)(2015年河北)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图18所示的四边形ABCD,并写出了如下不完整的已知和求证.(1)在方框中填空,补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为______________________.21. (9分)(2015年郴州)如图19,AC是□ABCD的一条对角线,过AC中点O的直线分别交AD,BC于点E,F.⑴求证:△AOE≌△COF;⑵当EF与AC满足什么条件时,四边形AFCE是菱形?并说明理由.图1922.(10分)如图20,矩形ABCD 的对角线相交于点O ,DE ∥CA ,AE ∥BD . (1)求证:四边形AODE 是菱形;(2)若将题设中“矩形ABCD ”这一条件改为“菱形ABCD ”,其余条件不变,则四边形AODE 是矩形吗?为什么?23.(10分)在一张长12 cm 、宽5 cm 的长方形纸片内,要折出一个菱形.小颖同学按照取两组对边中点的方法折出菱形EFGH (如图21-①),小明同学沿长方形的对角线AC 折出∠CAE =∠CAD ,∠ACF =∠ACB 的方法得到菱形AECF (如图21-②).请问小颖和小明同学的折法中,哪个菱形面积较大?24. (12分)如图22-①,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图22-②,在正方形ABCD中,M,N,P,Q分别是边AB,BC,CD,DA上的点,且MP⊥NQ,那么MP与NQ是否相等?并说明理由.附加题(15分,不计入总分)如图,在△ABC中,点O是边AC上一个动点,过点O作直线MN∥BC,设MN交∠BCA 的平分线于点E,交∠BCA的外角平分线于点F.(1)探究线段OE与OF的数量关系并加以证明;(2)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,请说明理由;(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?参考答案一、1. C 2.A 3. C 4. A 5. B 6. A 7. C 8. A9. B 10. A二、11. 16 12. 3 13. 4 14. 菱形15.2016.(4,4)17. 30°18. ①②③三、19.(1)解:AD=CF.(2)证明:因为四边形ABCD是矩形,所以AB∥DC.所以∠AED=∠FDC,AB=CD.又DE =AB,所以DE=CD.因为CF⊥DE,所以∠CFD=∠A=90°.所以△ADE≌△FCD.所以AD=CF.20. 解:(1)CD 平行(2)证明:如图,连接BD.在△ABD和△CDB中,AB=CD,AD=CB,BD=DB,所以△ABD≌△CDB.所以∠1=∠2,∠3=∠4.所以AB∥CD,AD∥CB.所以四边形ABCD是平行四边形.(3)平行四边形的对边相等21.(1)证明:因为四边形ABCD是平行四边形,所以AD∥BC.所以∠EAO=∠FCO.因为O是AC的中点,所以AO=CO.又∠EOA=∠FOC,所以△AOE≌△COF.(2)解:当EF⊥AC时,四边形AFCE是菱形.理由:由(1)知△AOE≌△COF,所以OE=OF.又AO=CO,所以四边形AFCE是平行四边形.所以当EF⊥AC时,平行四边形AFCE是菱形.22.(1)证明:因为DE∥CA,AE∥BD,所以四边形AODE是平行四边形. 因为四边形ABCD是矩形,所以OA=OC,OD=OB,AC=BD.所以OA=OD.所以四边形AODE是菱形.(2)解:四边形AODE是矩形.理由:因为DE∥CA,AE∥BD,所以四边形AODE是平行四边形.因为四边形ABCD 是菱形,所以AC ⊥BD ,即∠AOD=90°. 所以四边形AODE 是矩形. 23. 解:小颖的折法:S 菱形EFGH =21×12×5=30(cm 2); 小明的折法:设BE =x cm ,则AE =CE=(12-x )cm. 在Rt △ABE 中,由勾股定理,得(12-x )2=52+x 2,解得x =24119,则EC =24169. 所以S 菱形AECF =24169×5=24845(cm 2). 因为30<24845,所以小明折出的菱形面积较大. 24.(1)证明:在正方形ABCD 中,AB=AD ,∠BAE=∠D=90°.所以∠DAF+∠BAF=90°.因为AF ⊥BE ,所以∠ABE+∠BAF=90°.所以∠ABE=∠DAF.所以△ABE ≌△DAF.所以AF=BE. (2)解:MP=NQ .理由:过点A 作AF ∥MP 交CD 于点F ,过点B 作BE ∥NQ 交AD 于点E ,则与(1)的情况完全相同,可得AF=BE ,从而MP=NQ. 附加题解:(1)OE =OF .证明:因为CE 是∠ACB 的平分线,所以∠1=∠2.因为MN ∥BC ,所以∠1=∠3.所以∠2=∠3.所以OE =OC .同理可证OC =OF .所以OE =OF . (2)四边形BCFE 不可能是菱形.理由:若四边形BCFE 为菱形,则BF ⊥EC ,而由已知易得FC ⊥EC ,在平面内过同一点F 不可能有两条直线同时垂直于一条直线,所以四边形BCFE 不可能是菱形.(3)当点O 运动到AC 中点时,OE =OF ,OA =OC ,则四边形AECF 为平行四边形,易证∠ECF =90°,所以四边形AECF 为矩形.要使AECF 为正方形,必须EF ⊥AC .因为EF ∥BC ,所以只要AC ⊥BC 即可,所以△ABC 应是以∠ACB 为直角的直角三角形.所以当点O为AC中点且△ABC是以∠ACB为直角的直角三角形时,四边形AECF是正方形.。

相关文档
最新文档