压力容器设计万宝箱(计算公式)
压力容器常见结构的设计计算方法
压力容器常见结构的设计计算方法一、静态强度计算方法:静态强度计算方法主要针对压力容器在正常工作状态下的静载荷进行计算,其主要目标是确保容器在最大工作压力下不发生破坏。
静态强度计算方法一般包括以下几个步骤:1.基本假设和假设条件:在进行静态强度计算时,需要基于一定的假设和假设条件来简化实际工作状态,如假设容器时刚体、内外压力均匀分布、材料具有均匀强度等。
2.最大应力计算:通过应力分析计算出压力容器各部位的最大应力。
一般情况下,最大应力发生在容器支座、法兰连接处、沟槽和焊接缺陷等处。
3.材料强度计算:根据容器所使用的材料及其强度参数,计算出材料的强度。
根据所处环境不同,一般会对容器进行分析、判断和选择不同材料。
4.安全裕度计算:根据最大应力和材料强度的计算结果,计算出安全裕度。
安全裕度可以通过破坏条件下材料的强度与容器内外压力之比来衡量。
二、疲劳强度计算方法:疲劳强度计算方法主要用于疲劳载荷下的压力容器设计。
工作过程中,容器可能会受到频繁的循环应力作用,从而导致疲劳破坏。
疲劳强度计算方法的主要步骤如下:1.循环载荷分析:通过实测数据或估算,分析容器在工作循环过程中所受到的应力载荷情况。
考虑到载荷的方向、大小、频率和载荷历史等因素。
2.应力集中分析:针对容器中的主要应力集中部位进行应力集中分析,计算出特定位置的应力集中系数。
3.疲劳寿命计算:基于极限疲劳荷载下的循环应力进行计算。
通过应力循环次数和材料疲劳寿命曲线,计算出容器的疲劳寿命。
4.安全裕度计算:根据疲劳寿命与容器使用寿命的比值,得出安全裕度的计算结果。
三、稳定性计算方法:稳定性计算方法用于分析压力容器在压力作用下的稳定性问题,即容器是否会发生屈曲或侧翻。
稳定性计算方法的主要步骤如下:1.稳定性分析模型:根据压力容器的几何形状和支撑方式,构建相应的稳定性模型。
常见的模型有圆筒形、球形、圆锥形等。
2.屈曲载荷计算:通过对应力分析,计算出容器发生屈曲时的承载力。
压力容器上常见几何体计算公式,在网站上自己总结的,请珍藏!
压力容器上常见几何体计算公式,在网站上自己总结的,请珍藏!在网站上自己总结的,请珍藏!望大家互传1.钢板重量计算公式公式:7.85×长度(m)×宽度(m)×厚度(mm)例:钢板6m(长)×1.51m(宽)×9.75mm(厚)计算:7.85×6×1.51×9.75=693.43kg2.钢管重量计算公式公式:(外径-壁厚)×壁厚mm×0.02466×长度m例:钢管114mm(外径)×4mm(壁厚)×6m(长度)计算:(114-4)×4×0.02466×6=65.102kg3.圆钢重量计算公式公式:直径mm×直径mm×0.00617×长度m例:圆钢Φ20mm(直径)×6m(长度)计算:20×20×0.00617×6=14.808kg4.方钢重量计算公式公式:边宽(mm)×边宽(mm)×长度(m)×0.00785例:方钢 50mm(边宽)×6m(长度)计算:50×50×6×0.00785=117.75(kg)5.扁钢重量计算公式公式:边宽(mm)×厚度(mm)×长度(m)×0.00785例:扁钢 50mm(边宽)×5.0mm(厚)×6m(长度)计算:50×5×6×0.00785=11.7.75(kg)6.六角钢重量计算公式公式:对边直径×对边直径×长度(m)×0.00068例:六角钢 50mm(直径)×6m(长度)计算:50×50×6×0.0068=102(kg)7.螺纹钢重量计算公式公式:直径mm×直径mm×0.00617×长度m 例:螺纹钢Φ20mm(直径)×12m(长度)计算:20×20×0.00617×12=29.616kg8.扁通重量计算公式公式:(边长+边宽)×2×厚×0.00785×长m 例:扁通100mm×50mm×5mm厚×6m(长) 计算:(100+50)×2×5×0.00785×6=70.65kg 9.方通重量计算公式公式:边宽mm×4×厚×0.00785×长m例:方通50mm×5mm厚×6m(长)计算:50×4×5×0.00785×6=47.1kg10.等边角钢重量计算公式公式:边宽mm×厚×0.015×长m(粗算) 例:角钢50mm×50mm×5厚×6m(长)计算:50×5×0.015×6=22.5kg(表为22.62) 11.不等边角钢重量计算公式公式:(边宽+边宽)×厚×0.0076×长m(粗算)例:角钢100mm×80mm×8厚×6m(长)计算:(100+80)×8×0.0076×6=65.67kg(表65.676)其他有色金属12.黄铜管重量计算公式公式:(外径-壁厚)×厚×0.0267×长m例:黄铜管20mm×1.5mm厚×6m(长)计算:(20-1.5)×1.5×0.0267×6=4.446kg13.紫铜管重量计算公式公式:(外径-壁厚)×厚×0.02796×长m例:紫铜管20mm×1.5mm厚×6m(长)计算:(20-1.5)×1.5×0.02796×6=4.655kg14.铝花板重量计算公式公式:长m×宽m×厚mm×2.96例:铝花板 1m宽×3m长×2.5mm厚计算:1×3×2.5×2.96=22.2kg黄铜板:比重8.5紫铜板:比重8.9锌板:比重7.2铅板:比重11.37计算方式:比重×厚度=每平方的重量注:公式中长度单位为米,面积单位为平方米,其余单位均为毫米长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积=底×高÷2平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的面积=圆周率×半径×半径长方体的表面积= (长×宽+长×高+宽×高)×2长方体的体积 =长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体(正方体、圆柱体)的体积=底面积×高平面图形周长—C,面积—S,正方形:a—边长C=4a ;S=a2长方形:a、b—边长C=2(a+b) ;S=ab三角形:a、b、c—三边长, H—a边上的高,s—周长的一半,A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2·sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)四边形:d,D-对角线长,α-对角线夹角S=dD/2·sinα平行四边形:a,b-边长,h-a边的高,α-两边夹角S=ah=absinα菱形:a-边长,α-夹角,D-长对角线长,d-短对角线长S=Dd/2=a2sinα梯形:a和b-上、下底长,h-高,m-中位线长S=(a+b)h/2=mh圆:r-半径,d-直径 C=πd=2πr=πd2/4扇形:r—扇形半径,a—圆心角度数C=2r+2πr×(a/360)S=πr2×(a/360)弓形:l-弧长,b-弦长,h-矢高,r-半径,α-圆心角的度数S=r2/2·(πα/180-sinα)=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2=παr2/360 - b/2·[r2-(b/2)2]1/2=r(l-b)/2 + bh/2≈2bh/3圆环:R-外圆半径,r-内圆半径,D-外圆直径,d-内圆直径S=π(R2-r2)=π(D2-d2)/4椭圆:D-长轴,d-短轴S=πDd/4立方图形:面积S和体积Va-边长 S=6a2V=a3长方体:a-长,b-宽,c-高S=2(ab+ac+bc)V=abc棱柱:S-底面积,h-高V=Sh棱锥:S-底面积,h-高V=Sh/3棱台:S1和S2-上、下底面积,h-高V=h[S1+S2+(S1S1)1/2]/3拟柱体:S1-上底面积,S2-下底面积,S0-中截面积,h-高V=h(S1+S2+4S0)/6圆柱:r-底半径,h-高,C—底面周长,S底—底面积,S侧—侧面积,S表—表面积C=2πrS底=πr2S侧=ChS表=Ch+2S底V=S底h=πr2h空心圆柱:R-外圆半径,r-内圆半径,h-高V=πh(R2-r2)直圆锥:r-底半径,h-高V=πr2h/3圆台:r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3球:r-半径,d-直径V=4/3πr3=πd2/6球缺:h-球缺高,r-球半径a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3a2=h(2r-h)球台:r1和r2-球台上、下底半径,h-高V=πh[3(r12+r22)+h2]/6圆环体:R-环体半径,D-环体直径,r-环体截面半径,d-环体截面直径V=2π2Rr2=π2Dd2/4桶状体:D-桶腹直径,d-桶底直径,h-桶高V=πh(2D2+d2)/12(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)890123456789。
压力容器常见结构的设计计算方法
压力容器常见结构的设计计算方法压力容器是一种常用的装置,用于存储和运输高压流体或气体。
压力容器的设计计算是确保容器在设计压力范围内安全运行的关键步骤。
常见压力容器的设计计算方法主要包括材料选择、壁厚计算、接缝焊缝设计和支撑设计等。
首先,在压力容器的设计计算中,材料选择是非常重要的一步。
根据工作环境和储存介质的性质,应当选择适合的材料,如碳钢、不锈钢、镍合金等。
材料的选择应考虑到其机械性能(强度、韧性)、抗腐蚀性能和焊接性能等。
其次,壁厚计算是压力容器设计计算中的关键步骤。
根据设计压力、储存介质的性质、容器尺寸和形状等因素,可以采用ASMEVIII-1或其他相关设计规范进行壁厚计算。
壁厚计算要确保容器在设计压力下不会发生永久性塑性变形或失稳。
接着,接缝焊缝设计是压力容器设计计算中的另一个关键步骤。
焊缝是容器的弱点,其设计要考虑焊接工艺、焊缝质量要求和应力分布等。
根据相关规范,例如ASMEIX,应对焊缝进行强度计算和疲劳分析,以确保焊缝的可靠性和耐久性。
最后,支撑设计是压力容器设计计算中的重要环节。
支撑结构的设计要考虑到容器的重量、形状和运行条件等因素。
一般常见的支撑结构包括支座、支撑脚和支撑环等。
在设计计算中,应根据容器的重量和载荷进行支撑结构的强度计算和稳定性分析。
需要注意的是,良好的压力容器设计计算不仅要遵循相关规范和标准,还应考虑实际运行条件和安全要求。
因此,在进行设计计算之前,应对工作环境、储存介质的特性、容器的运行周期和压力变化等进行充分的分析和评估。
总之,压力容器的设计计算涉及多个方面,包括材料选择、壁厚计算、接缝焊缝设计和支撑设计等。
在进行设计计算时,需要遵循相关规范和标准,并结合实际情况和安全要求进行综合考虑,以确保设计的压力容器安全可靠地运行。
压力容器质量怎么计算公式
压力容器质量怎么计算公式压力容器质量计算公式。
压力容器是一种用于承受内部压力的容器,通常用于储存气体或液体。
在工业生产中,压力容器的质量是非常重要的,因为它直接影响到容器的安全性和使用寿命。
为了保证压力容器的质量,需要对其进行严格的计算和检验。
压力容器的质量可以通过以下公式进行计算:M = (P V) / (R T)。
其中,M表示压力容器的质量,P表示容器内的压力,V表示容器的体积,R 表示气体常数,T表示气体的温度。
上述公式是根据理想气体状态方程推导出来的,假设气体是理想气体,即气体分子之间没有相互作用力,体积可以忽略不计。
在实际应用中,由于气体的真实状态与理想状态之间存在一定的差异,因此需要进行修正。
修正后的压力容器质量计算公式如下:M = (P V) / (R T) Z。
其中,Z表示修正系数,用于修正理想气体状态方程的偏差。
修正系数的计算需要考虑气体的压缩因子、温度、压力等因素,通常需要借助实验数据或计算软件进行精确计算。
除了上述公式外,压力容器的质量还需要考虑到材料的强度和耐久性。
通常情况下,压力容器的设计和制造需要符合国家相关标准和规范,以确保容器具有足够的强度和安全性。
在实际生产中,压力容器的质量计算和检验是非常重要的环节。
首先,设计人员需要根据使用要求和工作环境确定压力容器的参数,包括压力、温度、体积等。
然后,制造人员需要根据设计要求选择合适的材料,并按照相关标准进行制造和焊接。
最后,对制造好的压力容器进行严格的检验和试压,以确保其质量达到要求。
除了制造和检验外,压力容器的使用和维护也是影响其质量的重要因素。
在使用过程中,需要定期对压力容器进行检查和保养,确保其处于良好的工作状态。
同时,需要遵守相关的安全操作规程,避免因操作不当而导致的事故发生。
总之,压力容器的质量计算是一个复杂而重要的工作。
只有严格按照相关标准和规范进行设计、制造、检验和使用,才能保证压力容器的质量达到要求,确保工业生产的安全和稳定。
压力容器计算公式
压力容器计算
在合格的基础上,我们为什么不能作得更好一些!1压力容器计算
一、符号及计算公式:
(1)设计温度下厚度计算:适用范围c p ≤0.4[]t
s φ。
[]C t i
C p
D p -=j s d 2(3-1)[]C
t O
C p
D p +=j s d 2(3-2)
(2)设计温度下圆筒应力:
e e δ2)
δ(+=i c t D p s (3-3)e
e δ2)
δ(-=O c t D p s (3-4)
(3)设计温度下最大允许工作压力:
[]e e δδ2+=i t W D P j s (3-6)[]e
t W Do P δδ2e -=
j s (3-7)
P —设计压力,Mpa ;
P W —筒体允许的最大工作压力,Mpa ;Pc—计算压力,Mpa ;
P T —试验压力最低值,Mpa ;
Di --筒体内直径;mm
Do --筒体外直径(D O = Di+2δn);mm
δ—计算厚度(理想状态下得出),mm ;δd—设计厚度(计算厚度+腐蚀裕量C 2),mm ;δn—名义厚度(设计厚度+钢板厚度负偏差+C 1腐蚀裕量C 2),mm ;δe—有效厚度(名义厚度-钢板厚度负偏差-C 1腐蚀裕量C 2),mm ;C —厚度附加量,mm ;
C 1—厚度负偏差,按4.3.6.1,mm ;
C 2—腐蚀裕量,按4.3.6.2,mm ;
[σ] t--设计温度下材料许用应力;Mpa σs--屈服极限;Mpa
σt—设计温度下计算应力;Mpa
φ-焊接接头系数;。
压力容器常见结构的设计计算方法
第三章 压力容器常见结构的设计计算方法常见结构的设计计算方法4.1 圆筒4.2 球壳 4.3 封头4.4 开孔与开孔补强 4.5 法兰4.6 检验中的强度校核4.1.1 内压圆筒 1)GB150中关于内压壳体的强度计算考虑的失效模式是结 构在一次加载下的塑性破坏,即弹性失效设计准则。
2)壁厚设计釆用材料力学解(中径公式)计算应力,利用第一强度理论作为控制。
轴向应力:环向应力:(取单位轴向长度的半个圆环)校核:σ1=σθ,σ2=σz ,σ1=0 σθ≤[σ]t ·φ对应的极限压力:2)弹性力学解(拉美公式)讨论:1)主应力方向?应力分布规律?径向、环向应力非线形分布(内壁应力绝对值最大),轴向应力均布; 2)K 对应力分布的影响?越大分布越不均匀,说明材料的利用不充分; 例如,k =1.1时,R =1.1内外壁应力相差10%; K =1.3时,R =1.35内外壁应力相差35%; 4 常见结构的设计计算方法 962)弹性力学解(拉美公式)主应力:σ1=σθ,σ2=σz ,σ3=σr 屈服条件:σⅠ=σ1=σθ=σⅡ=σ1-μ(σ2+σ3)=σⅢ=σ1-σ3=σⅣ=3)GB150规定圆筒计算公式(中径公式)的使用范围为:p/[σ]·φ≤0.4(即≤1.5)4.1.2 外压圆筒1)GB150中关于外压壳体的计算所考虑的失效模式:弹性失效准则和失稳失效准则(结构在横向外压作用下的横向端面失去原来的圆形,或轴向载荷下的轴向截面规则变化)2)失稳临界压力的计算长圆筒的失稳临界压力(按Bresse公式):长圆筒的失稳临界压力(按简化的Misse公式):失稳临界压力可按以下通用公式表示:圆筒失稳时的环向应力和应变:定义——外压应变系数于是取稳定系数m=3,有·应变系数A的物理意义-系数A是受外压筒体刚失稳时的环向应变,该系数仅与筒体的几何参数L、D。
、δe 有关,与材料性能无关·应力系数B的物理意义:与系数A之间反映了材料的应力和应变关系(应力),可将材料的δ-ε曲线沿σ轴乘以2/3而得到B-A曲线。
压力容器常用计算公式
传热管的排列和分程方法
管板利用率 η
0.75
间隙pt/mm
32
mm
壳体直径 D 折流板高度H
285 mm
≈ 400
100 mm 传热管长度
6
折流板间距 BD
120 mm
折流板数量
49 mm
壳程流体进口接管内气体流速
1
m/s
进接管直径 D1 0.041 m
壳程流体出口接管内气体流速
2.5 m/s
出接管直径 D2 0.178 m
2
层
54
根
换热器核算(管程传热膜系数核算)
0.0085 ㎡
1.17 m/s
17912 9.53 4111 0.0105
w/m3
12.6
黏度校正 0.95
1190.6 w/m2.℃
527.1 25.4 1.19
w/m2.℃ ㎡
心到管中心距离F/mm 19 22 26 30
注意:以下各公式黑色部分为公式,不可修改,不要填入数值,否则会造成错误,无法正确使用
盘管计算
列管计算
求面积
计算面积
盘管外径
38
管外径
盘管中径
340
根数
盘管圈数
8
长度
换热面积
1.02
换热面积
求圈数 换热面积
管外径 中径
圈数
0.68 25 250
11.02
计算根数 换热面积
管外径 长度
根数
求管径 换热面积
10 28.80 35791
℃ ℃ Kg/H
8.6
℃
0.10 ℃
0.9
26
℃
0.4
18371
压力容器设计常用计算
压力容器设计常用计算一、强度计算强度计算是压力容器设计中最基本的计算,其目的是通过计算容器的应力和应变,判断容器在承受工作压力时是否会发生破坏。
根据不同的容器形状和材料性质,常用的强度计算方法有以下几种:1.束缚应力法:根据容器的材料属性,计算容器各部位的允许最大内、外应力和总应力,然后与工作过程中的应力进行比较,判断容器是否会发生破坏。
2.等效应力法:将容器内、外表面上的应力用一个等效应力来代替,然后与容器的抗拉极限强度进行比较,以判断容器是否会发生破坏。
3.具体应力分析法:针对特定形状的容器,通过具体的应力分布分析,计算出容器各部位的应力和应变,进而判断容器是否会发生破坏。
二、蠕变计算蠕变是指材料在高温和长时间作用下发生的塑性变形,其对压力容器的安全性和可靠性产生较大的影响。
常用的蠕变计算方法有以下几种:1.应力分析法:根据容器的材料性质和工作条件,计算容器各部位的蠕变应力,然后与容器材料的蠕变强度进行比较,以判断容器在工作过程中是否会发生蠕变破坏。
2.强度工作时间积法:将容器的工作时间乘以其工作温度下的应力值,得到强度工作时间积,然后与容器材料的蠕变强度工作时间积进行比较来判断容器是否会发生蠕变破坏。
三、疲劳计算在压力容器的使用过程中,往往会受到不断重复的循环载荷,这会导致容器材料的疲劳破坏。
常用的疲劳计算方法有以下几种:1.安全系数法:根据容器的工作周期和载荷特性,计算容器的疲劳安全系数,然后与容器要求的疲劳安全系数进行比较,以判断容器是否会发生疲劳破坏。
2.极限状态法:根据容器的应力分布和载荷变化情况,通过计算容器的疲劳极限状态,判断容器在使用过程中是否会发生疲劳破坏。
四、稳定性计算容器的稳定性计算主要是为了防止在工作过程中容器发生失稳和挤压变形等现象,影响容器的安全性和稳定性。
常用的稳定性计算方法有以下几种:1.柱稳定计算:根据容器的几何形状和材料性质,通过计算容器的柱稳定系数,判断容器在工作过程中是否会发生失稳破坏。
压力容器设计计算
圆柱形设备
Di H An A V R hi h An V Vw mm mm m 2 m 3 m mm mm mm m 3 m 3 m kg
2 2
设备筒体 筒体直径 筒体高度 展开侧面积 截面积 容积 椭圆封头 底圆半径 高度 直边高度 内面积 容积 外表容积 封头重量 数量 下封头数量 合计
2600 135 1.1239 5.3093 0.7168 1300 650 40 7.6545 2.5131 2.9009 135.7587 2 1 16.4328 5.7429 3.2298
圆形平盖 外径 内径 平盖壁厚 材料密度 重量
D Di δ γ W
mm mm mm kg/m3 kg mm MPa mm MPa MPa 0.00
δ 1 复层厚度 复层许用应力 [σ ]t1 δ 2 基层厚度 基层许用应力 [σ ]t2 复合板许用应力 [σ ]t
#DIV/0!
比重(kg/m ) 7930 7850 1050~1080 1160~1350 1350~1600 2100~2300 940~950 910~920 900~910
2
0 50 0.8320 不锈钢 350 291.2 291.2 60 1000 0.0028274 7850 22.20
折边锥形封头 封头内径 高度 直边高度 封头厚度 折边半径 半顶角 半顶角 容积 外容积 材料密度 重量
δ r θ θ 弧度 V m3 Vw m3 γ kg/m3 W kg
圆钢
材料名称 接管 接管外径 接管壁厚 接管长度 材料密度 重量 长度 高度 壁厚 材料密度 重量 D δ L γ W D Di δ γ W mm mm mm kg/m kg mm mm mm kg/m kg
压力容器标准容积计算公式
压力容器标准容积计算公式压力容器是一种用于存储或承受压力的设备,通常用于工业生产中的气体或液体储存。
在设计和制造压力容器时,确定容器的标准容积是非常重要的。
标准容积是指在标准条件下容器内可以容纳的气体或液体的体积。
通过合适的容积计算公式,可以确保压力容器的设计符合安全标准并满足使用要求。
容积计算公式是根据压力容器的几何形状和材料特性来确定的。
不同形状和材料的压力容器,其容积计算公式也会有所不同。
在本文中,我们将讨论几种常见的压力容器形状,并介绍相应的容积计算公式。
圆柱形压力容器。
圆柱形压力容器是最常见的一种压力容器形状。
其容积计算公式如下:V = π r^2 h。
其中,V表示容器的体积,π是圆周率(约为3.14),r是容器的底面半径,h是容器的高度。
如果容器的两端是圆形的,那么容积计算公式可以简化为:V = π r^2 L。
其中,L是容器的长度。
球形压力容器。
球形压力容器通常用于储存气体。
其容积计算公式如下:V = (4/3) π r^3。
其中,V表示容器的体积,π是圆周率,r是球的半径。
椭球形压力容器。
椭球形压力容器在一些特殊的工业领域中也有应用。
其容积计算公式如下:V = (4/3) π a b c。
其中,V表示容器的体积,π是圆周率,a、b、c分别是椭球的三个半轴。
以上是几种常见压力容器形状的容积计算公式。
在实际应用中,还需要考虑到压力容器的工作压力、温度等因素,以确定容器的实际容积。
此外,容积计算公式只是用来计算理论容积的,实际容积还需要考虑到容器内部可能存在的支撑结构、管道等因素。
在设计和制造压力容器时,容积计算公式是非常重要的工具。
通过合适的容积计算公式,可以确保压力容器的设计符合安全标准并满足使用要求。
同时,容积计算公式也可以帮助工程师们在设计阶段就对压力容器的容积有一个清晰的预估,有利于提前规划生产和使用过程中的各项工作。
总之,容积计算公式是压力容器设计和制造中不可或缺的工具,它为工程师们提供了一个简单而有效的方法来确定压力容器的标准容积。
压力容器常用计算公式(破解)
28c 280
86
11.5
12.5
12.5
6.2 51.22 40.21
32a 320
88
8.0
14.0
14.0
7.0 48.7 38.22
32b 320
90
10.0
14.0
14.0
7.0 55.1 43.25
32c 320
92
12.0
14.0
14.0
7.0 61.5 48.28
36a 360
96
9.0
4
7.5
4.547 3.570 0.226
5
5.609 4.403 0.225
热轧普 通工字 钢 [(GB) 706-65]
h-高度;b腿宽;d-腰 厚;t-平均 腿厚;r-内 圆弧半径; r1-腿端圆弧 半径
型号
10 12.6
14 16 18
20a 20b 22a 22b 25a
25b 28a 28b 32a 32b
40c 400 104
14.5
18.0
18.0
9.0 91.05 71.47
注
(1) 普通槽 钢通常 长度: 5~8号 长 5~12m ;
10~18 号长 5~19m ;
20~40 号长
8
6.125 4.808 0.245
7.260 5.699 0.245
9.467 7.431 0.244
11.590 9.098 0.244
6.375 5.005 0.255
7.560 5.935 0.255
8.724 6.848 0.255
9.867 7.745 0.254
9
7.212 5.661 0.287
压力容器计算书
软件批准号:DATA SHEET OF PROCESSEQUIPMENT DESIGN设备名称:分气缸EQUIPMENT图号:DWG NO。
设计单位:青岛畅隆电力设备有限公司DESIGNER钢制卧式容器计算单位青岛畅隆电力设备有限公司计算条件简图设计压力p 1 MPa设计温度t300 ℃筒体材料名称Q235-B封头材料名称Q235-B封头型式椭圆形筒体内直径D i800 mm筒体长度L5656 mm筒体名义厚度δn10mm 支座垫板名义厚度δrn6mm 筒体厚度附加量C 2.8mm 腐蚀裕量C1 2 mm 筒体焊接接头系数Φ0.85封头名义厚度δhn8.8mm 封头厚度附加量C h 2.8mm 鞍座材料名称Q235-B鞍座宽度b150mm 鞍座包角θ120°支座形心至封头切线距离A625mm 鞍座高度H 250mm 地震烈度低于七度内压圆筒校核计算单位 青岛畅隆电力设备有限公司计算条件筒体简图计算压力 P c 1.00MPa 设计温度 t 300.00︒ C 内径 D i 800.00mm 材料Q235-B ( 板材 )试验温度许用应力 [σ]116.00MPa 设计温度许用应力 [σ]t81.00MPa 试验温度下屈服点 σs 235.00MPa 钢板负偏差 C 1 0.80mm 腐蚀裕量 C 2 2.00mm 焊接接头系数 φ0.85厚度及重量计算 计算厚度 δ = P D P c it c 2[]σφ- = 5.85mm 有效厚度 δe =δn - C 1- C 2= 7.20 mm 名义厚度 δn = 10.00mm 重量1129.80Kg压力试验时应力校核 压力试验类型 液压试验试验压力值 P T = 1.25P [][]σσt = 1.7901 (或由用户输入)MPa 压力试验允许通过 的应力水平 [σ]T [σ]T ≤ 0.90 σs = 211.50MPa试验压力下 圆筒的应力 σT = p D T i e e .().+δδφ2 = 118.05 MPa校核条件 σT ≤ [σ]T校核结果合格压力及应力计算最大允许工作压力 [P w ]=2δσφδe t i e []()D += 1.22825MPa 设计温度下计算应力 σt= P D c i e e()+δδ2= 56.06 MPa [σ]tφ 68.85 MPa校核条件 [σ]t φ ≥σt 结论 合格左封头计算计算单位青岛畅隆电力设备有限公司计算条件椭圆封头简图计算压力P c 1.00 MPa设计温度 t 300.00 ︒ C内径D i 800.00 mm曲面高度h i 200.00 mm材料 Q235-B (板材)设计温度许用应力[σ]t 81.00 MPa试验温度许用应力[σ] 116.00 MPa钢板负偏差C1 0.80 mm腐蚀裕量C2 2.00 mm焊接接头系数φ 1.00厚度及重量计算形状系数 K = 16222+⎛⎝⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥Dhii= 1.0000计算厚度δ =KP DPc itc205[].σφ- = 4.95mm有效厚度δe =δn - C1- C2= 6.00mm最小厚度δmin = 3.00mm名义厚度δn =8.80mm结论满足最小厚度要求重量51.97 Kg压力计算最大允许工作压力[P w]=205[].σφδδtei eKD+= 1.21046MPa结论合格右封头计算计算单位青岛畅隆电力设备有限公司计算条件椭圆封头简图计算压力P c 1.00 MPa设计温度 t 300.00 ︒ C内径D i 800.00 mm曲面高度h i 200.00 mm材料 Q235-B (板材)设计温度许用应力[σ]t 81.00 MPa试验温度许用应力[σ] 116.00 MPa钢板负偏差C1 0.80 mm腐蚀裕量C2 2.00 mm焊接接头系数φ 1.00厚度及重量计算形状系数 K = 16222+⎛⎝⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥Dhii= 1.0000计算厚度δ =KP DPc itc205[].σφ- = 4.95mm有效厚度δe =δn - C1- C2= 6.00mm最小厚度δmin = 3.00mm名义厚度δn =8.80mm结论满足最小厚度要求重量51.97 Kg压力计算最大允许工作压力[P w]=205[].σφδδtei eKD+= 1.21046MPa结论合格卧式容器(双鞍座)计算单位青岛畅隆电力设备有限公司计算条件简图计算压力p C 1 MPa设计温度t300 ℃圆筒材料Q235-B鞍座材料Q235-B圆筒材料常温许用应力 [σ] 116 MPa圆筒材料设计温度下许用应力[σ]t 81 MPa圆筒材料常温屈服点σσ235MPa鞍座材料许用应力 [σ]sa147MPa 工作时物料密度Oγ1000kg/m3液压试验介质密度γT1000kg/m3圆筒内直径D i800 mm 圆筒名义厚度δn10mm 圆筒厚度附加量C 2.8mm 圆筒焊接接头系数φ0.85封头名义厚度hnδ8.8mm 封头厚度附加量 C h 2.8mm 两封头切线间距离L5706 mm 鞍座垫板名义厚度δrn6mm 鞍座垫板有效厚度δre6mm 鞍座轴向宽度 b150mm 鞍座包角θ120°鞍座底板中心至封头切线距离A625mm 封头曲面高度h i200mm 试验压力p T 1.79012MPa 鞍座高度H250mm 腹板与筋板组合截面积A sa9500mm2腹板与筋板组合截面断面系数Z r96864.8mm3地震烈度<7圆筒平均半径R a405 mm物料充装系数oφ1一个鞍座上地脚螺栓个数2地脚螺栓公称直径16mm 地脚螺栓根径13.835mm 鞍座轴线两侧的螺栓间距530 mm 地脚螺栓材料Q345。
方箱子计算书-内压
表6-1、容器质量计算表 序号 1 2 3 4 5 6 7 8 9 顶板面积 顶板厚度 顶板质量 短侧板面积 短侧1 t1 m1 A2 t2 m2 A3 t3 m3 A4 t4 m4 L1 m5 L2 m6 L3 m7 L4 m8 m9 Vin m10 m0 mop Ain m
kg kg kg m
2
、容器质量计算表 计算结果
计算结果
mm kg mm kg m
2 2
mm
mm kg m2 mm kg mm m kg mm m kg mm m kg mm m kg kg m
3
10 底板面积 11 底板厚度 12 底板质量 13 顶部加强筋规格 14 顶部加强筋长度 15 顶板加强筋质量 16 底部支撑规格 17 底部支撑长度 18 底部支撑质量 19 短侧板加强筋规格 20 短侧板加强筋长度 21 短侧板加强筋质量 22 长侧板加强筋规格 23 长侧板加强筋长度 24 长侧板加强筋质量 25 附件质量 26 保温材料体积 27 保温材料质量 28 容器干态质量 29 容器操作质量 30 保温蒙皮面积
2
计算公式或来源 A1=LLxLS 给定 m1=7.85LLxLSxt1 A2=2HxLS 给定 m2=7.85HxLSxt2 A3=2HxLL 给定 m3=7.85HxLLxt3 A4=LLxLS 给定 m4=7.85LLxLSxt4 按结构 L1=n1LS+n2LL m5 =单位长度质量xL1 按结构 L2=(n1'+1)LS+(n2'+1)LL m6 =单位长度质量xL2 按结构 L3=2(HN3+N1LS) m7 =单位长度质量xL3 按结构 L4=2(HN2+N1LL) m8 =单位长度质量xL4 按结构 根据计算 按结构 m0=Smi i=1,2,3,.....10 mop=m0+GV 根据计算