高等代数与解析几何 第二版 (陈志杰 著) 高等教育出版社
新版河海大学数学考研经验考研真题考研参考书
考研已落下帷幕考研虽然已经结束好长时间,而它对于我来说,就像是昨天刚发生一样,清晰且深刻。
回首考研的这段经历,我收获了很多,也成长了许多。
开始基础复习的时候,是在网上找了一下教程视频,然后跟着教材进行学习,先是对基础知识进行了了解,在5月-7月的时候在基础上加深了理解,对于第二轮的复习,自己还根据课本讲义画了知识构架图,是自己更能一目了然的掌握知识点。
8月以后一直到临近考试的状态,开始认真的刷真题,并且对那些自己不熟悉的知识点反复的加深印象,这也是一个自我提升的过程。
考研一路走来,真的很辛苦,考研帮里学长学姐们分享的宝贵经验不仅能让我打起精神背水一战,还使我的复习有条不紊地进行。
初试成绩出来的这两天,酝酿了一下,我也想为将要参加下一届考研的的学弟学妹们写一篇文章,希望你们从复习的开始就运筹帷幄,明年的这个时候旗开得胜。
文章字数很多,大家有时间可以阅读,文末有真题和资料下载分享,谢谢大家。
河海大学数学的初试科目为:(101)思想政治理论(201)英语一(616)数学分析和(861)高等代数参考书目为:《数学分析》,华东师大,高等教育出版社,2001年;《数学分析》,陈纪修等,高等教育出版社,2004年。
《高等代数与解析几何》(第二版),陈志杰编,高等教育出版社。
关于英语复习。
我提一个建议,考研单词主要是用于阅读,所以知道意思即可,建议背单词书的同学不要死啃单词书,以“过单词”的方式背单词,每个单词记忆时间不要太长,不然很容易走神,效率也会很低,背诵单词应利用好零碎的时间,如吃饭之前半个小时,饭后半个小时,也可以穿插在复习专业课期间学累了的时候。
我大概早上会有半个小时的时间来背单词,考研单词大多数是不要求掌握拼写的,在阅读中见到能认出即可,所以速度可以快一点,多重复几遍。
早上大概背一到两个单元,晚上睡觉之前再听一遍录音,第二天再迅速的复习一下,效果还不错。
阅读还是要多读多看,一遍一遍地过。
大家应该也都报了相应的辅导班,老师会有自己的节奏,跟着走就好。
《高等代数与解析几何》
《高等代数与解析几何》教学大纲学时数:192 学分:12适用专业:数学与应用数学、信息与计算科学一、课程说明高等代数与解析几何是高校数学系课程中联系十分密切的两门的基础课.作为高等代数的主要内容,线性代数是由二维、三维几何空间中的向量代数进一步抽象推广得来的,高等代数的多数概念和方法都有着很强的几何背景.而解析几何的研究对象则是用代数的方法研究空间的几何问题.因此,高等代数与解析几何有着紧密的联系,它们的关系可归纳为“代数为几何提供研究方法,几何为代数提供直观背景.”本课程的主要任务是使学生获得代数的基本思想方法和行列式、矩阵、向量代数、线性方程组、多项式理论、二次型、向量空间、线性变换、欧氏空间、二次型、常见曲面等方面的系统知识.它一方面为后继课程(如近世代数、离散数学、计算方法、微分方程、泛涵分析)提供一些所需的基础理论和知识;另一方面还对提高学生的思维能力,开发学生智能、加强“三基”(基础知识、基本理论、基本理论)及培养学生创造型能力等重要作用.二、与其它课程的关系本课程作为一门基础课,是学习近世代数、离散数学、计算方法、微分方程、泛涵分析等课程的基础.三、大纲部分以下按各章具体写出第一章预备知识(6学时)本章的内容为介绍性质的,主要是为本课程的学习所做的预备工作,因而其中的内容基本相对独立.教学目的与要求理解数环与数域的定义;突出三个常用的数域,即有理数域、实数域和复数域,理解整数的整除性;理解第二归纳法原理;理解映射的定义、满射、单射和双射.数学重点数域的定义,映射的定义和性质.教学难点对映射定义的理解;对满射的理解和应用.新知识点数域性质的应用;整数整除性质的推广.教学方法与手段以“细读——精讲——习作”这一现代教学方法完成本章的主要内容.教学内容1.数环和数域12.整数和整除性3.数学归纳法4.映射课堂训练方案充分利用“习作”这一环节,补充有关数域的性质例题和独立思考题.课外训练指导方案1.首先组成课外学习小组;2.以数域和整数的整除性以及双射等内容补充相关的练习题;3.由教师指导以及相互讨论的方式完成上述难度大的练习题.自学指导方案本章将以映射为自学内容,先由教师给出自学提纲,让学生带着问题读书,以达到能充分理解映射的定义和性质.考试设计本章以数域和映射为主要测试试点;主要测试分析问题和解决问题的能力.参考书目1.北大编,高等代数,高教出版社(1988);2.北师大编,高等代数,高教出版社(1983).课时安排共6学时,讲授6学时.第二章行列式(14学时)教学目的与要求掌握行列式的定义与性质,能熟练应用行列式的定义及性质计算并证明行列式,掌握用行列式解线性方程组的方法.教学重点行列式的定义与性质.教学难点行列式的定义与性质.新知识点排列,n阶行列式的定义与性质,行列式依行依列展开,克莱姆法则,拉普拉斯定理.教学方法与手段教师讲解与师生集体讨论相结合.教学内容1.二阶与三阶行列式2.排列3.n阶行列式的定义4.行列式的性质5.行列式依行依列展开6.克莱姆法则7.拉普拉斯定理课堂训练方案师生集体讨论例题——学生独立思考课后习题——适当补充练习题—简要介绍本章内容的发展概况及应用.2课外训练指导方案复习学过的知识——独立完成课后作业——思考指定参考书中有关的题目.自学指导方案列出本部分的知识点——新知识点——重点——难点——处理课后习题与复习题——学习指定参考书中有关的内容,找出其区别与联系——思考指定参考书中有关的题目——找出本章内容与初等数学的联系与区别——找出新学知识与前面所学知识的联系与区别,进一步体会本课程的系统性——写出学习本章知识的心得.考试设计学完前四节进行一次开卷测验,学完后三节进行一次开卷测试,学完整章内容进行一次闭卷测验.参考书目1.北京大学数学系几何与代数教研室代数小组,《高等代数》(第二版),高等教育出版社,2001;2.廖家藩,《高等代数》,电子科技大学出版社,1995;3.叶伯成,《高等代数》,青岛海洋大学出版社,1989;4.孙宗明,《高等代数的内容与方法》,兰州大学出版社,1990;5.王品超,《高等代数新方法》,山东教育出版社,1989.课时安排共14学时,讲授12学时,习题课2学时.第三章向量代数(30学时)本章内容主要介绍几何空间的向量及运算性质,作为应用解决几何空间中有关平面、直线等几何问题.教学目的与要求透彻理解有关向量的一些基本概念,牢固掌握向量的各种运算性质和规律,能熟练地运用向量的坐标进行运算,掌握一些几何度量的向量、坐标表示,能熟练地求出平面、直线的方程,掌握点、直线、平面的位置关系与度量关系.教学重点向量的各种运算,几何度量,平面、直线方程,点、直线、平面间的关系.教学难点向量的分解与仿射坐标、向量积.新知识点仿射坐标(系)、正交投影教学方法与手段精讲、细读、自学相结合方法,加强课内外训练为手段.教学内容1.向量及线性运算2.仿射坐标系与直角坐标系3.向量的数量积4.向量的向量积6.混合积与复合积7.平面的方程8.直线的方程9.点、平面、直线的关系10.平面束3课堂训练方案充分调动学生的思维机器,以典型例题为突破,独立思考的问题加以诱导,加深内容掌握的深度.课外训练指导方案1.补充思考的问题;2.典型题目的课外作业;3.相关学习内容的学习指导书的参考.自学指导方案1.列出自学提纲;2.让学生提出自学中的问题.考试设计测试向量运算规律的应用,几何度量,平面、直线方程,及点、直线、平面的关系.参考书目1.吕林根编:《解析几何》,1982;2.南开大学:高等代数与解析几何,2000;3.陈志杰:《高等代数与解析几何》,2001.课时安排共32学时,讲授28学时,习题课 2学时,复习课2学时.第四章矩阵(14学时)教学目的与要求掌握矩阵的概念与运算,掌握可逆矩阵的概念、性质及判别方法,会用初等矩阵求可逆矩阵,并会用分块矩阵的方法求某些可塑矩阵的逆矩阵.教学重点可逆矩阵的概念及判别方法.教学难点可逆矩阵的概念及判别方法.新知识点矩阵的运算,可逆矩阵,矩阵和等价,初等矩阵,分块矩阵.教学方法与手段教师讲解与师生集体讨论相结合.教学内容1.矩阵的运算2.可逆矩阵矩阵的秩3.初等矩阵4.矩阵的分块课堂训练方案师生集体讨论例题——学生独立思考课后习题——适当补充练习题——简要介绍本章内容的发展概况及应用.课外训练指导方案复习学过的知识——独立完成课后作业——思考指定参考书中有关的题目.自学指导方案列出本部分的知识点——新知识点——重点——难点——处理课后习题与复习题——学习指定参考书中有关的内容,找出其区别与联系——思考指定参考书中有关题目——找出本章内容与初等教学的联系与区别——找出新学知识与前面所学知识的联系与区别,进一步体会本课程的系统性——写出学习本章知识的心得.4考试设计学完前三节进行一次开卷测验,学完整章内容进行一次闭卷测验.参考书目1.北京大学数学系几何与代数教研室代数小组,《高等代数》(第二版),高等教育出版社,2001;2.廖家藩,《高等代数》,电子科技大学出版社,1995;3.叶伯成,《高等代数》,青岛海洋大学出版社,1989;4.张禾瑞,郝炳新,《高等代数》,高等教育出版社,1983;5.孙宗明,《高等代数的内容与方法》,兰州大学出版社,1990.课时安排共14学时,讲授12学时,习题课 2学时.第五章线性方程组(10学时)教学目的与要求掌握矩阵秩的概念及线性方程有解的判别方法,会用矩阵的初等变换解线性方程组.教学重点矩阵秩的概念及线性方程组有解的判别方法.教学难点矩阵秩的概念及线性方程组有解的判别方法.新知识点线性方程组的初等变换,矩阵的秩,线性方程组有解的判别方法.教学方法与手段教师讲解与师生集体讨论相结合.教学内容1.消元法;2.矩阵的初等变换;3.矩阵的秩线性方程组有解的判别方法;4.齐次线性方程组.课堂训练方案师生集体讨论例题——学生独立思考课后习题——适当补充练习题——简要介绍本章内容的发展概况及应用.课外训练指导方案复习学过的知识——独立完成课后作业——思考指定参考书中有关题目.自学指导方案列出本部分的知识点——新知识点——重点——难点——处理课后习题与复习题——学习指定参考书中有关的内容,找出其区别与联系——思考指定参考书中有关的题目——找出本章内容与初等数学的联系与区别——找出新学知识与前面所学知识的联系与区别,进一步会体本课程的系统性——写出学习本章知识的心得.考试设计学完整内容进行一次开卷测验.参考书目1.北京大学数学系几何与代数教研室代数小组,《高等代数》(第二版),高等教育出版社,2001;2.廖家藩,《高等代数》,电子科技大学出版社,1995;3.叶伯成,《高等代数》,青岛海洋大学出版社,1989;4.张禾瑞,郝炳新,《高等代数》,高等教育出版社,1983;5.孙宗明,《高等代数的内容与方法》,兰州大学出版社,1990;6.王品超,《高等代数新方法》,山东教育出版社,1989.5课时安排共8学时,讲授6学时,习题课2学时.第六章多项式(24学时)教学目的与要求掌握多项式的整除、最大公因式及根的概念,熟练掌握求两个多项式的最大公因式的方法,掌握有理系数不可约式项式的方法.教学重点多项式的整除及最大公因式,有理系数多项式的根的求法及有理系数不可约多项式的判定.教学难点多项式的最大公因式,有理系数多项式的根的求法及有理系数不可约多项式的判定.新知识点多项式的整除性,多项式的最大公因式、重因式,多项式的根,不可约多项式,因式分解.教学方法与手段教师讲解与师生集体讨论相结合.教学内容1.一元多项式的定义和运算2.多项式的整除性3.多项式的最大公因式4.多项式的因式分解5.多项式的重因式6.多项式函数与多项式的根7.复数域与实数域的上的多项式8.有理数域上的多项式9.多元多项式课堂训练方案师生集体讨论题——学生独立思考课后习题——适当补充练习题——简要介绍本章内容的发展概况及应用课外训练指导方案复习学过的知识——独立完成课后作业——思考指定参考书中有关题目自学指导方案列出本部分的知识点——新知识点——重点——难点——处理课后习题与复习题——学习指定参考书中有关的内容,找出其区别与联系——思考指定参考书中有关的题目——找出本章内容与初等数学的联系与区别——找出新学知识与前面所学知识的联系与区别,进一步体会本课程的系统性——写出学习本章知识的心得.考试设计学完前三节进行一次开卷测验,学完后六节进行一次开卷测试,学完整章内容进行一次闭卷测验.参考书目1.北京大学数学系几何与代数教研室代数小组,《高等代数》(第二版),高等教育出版社,2001;2.廖家藩,《高等代数》,电子科技大学出版社,1995;3.叶伯成,《高等代数》,青岛海洋大学出版社,1989;4.张禾瑞,郝炳新,《高等代数》,高等教育出版社,1983;65.孙宗明,《高等代数的内容与方法》,兰州大学出版社,1990;6.王品超,《高等代数新方法》,山东教育出版社,1989.课时安排共30学时,26学时,习题课2学时, 复习课2学时.第七章向量空间(20学时)教学目的与要求掌握线性空间的概念、向量的线性相关性及线性空间的基、维数与坐标的概念,会求齐次线性方程组的解空间.教学重点向量的线性相关性及线性空间的基、维数与坐标.教学难点向量的线性相关性.新知识点向量的线性相关性及线性空间的基、维数与坐标,子空间的和,齐次线性方程组的解空间.教学方法与手段教师讲解与师生集体讨论相结合.教学内容1.线性空间的定义2.向量的线性相关性3.基维数坐标4.子空间5.子空间的直和6.线性空间的同构7.齐次线性方程组的解空间课堂训练方案师生集体讨论例题——学生独立思考课后习题——适当补充练习题——简要介绍本章内容的发展概况及应用课外训练指导方案复习学过的知识——独立完成课后作业——思考指定参考书中有关题目自学指导方案列出本部分的知识点——新知识点——重点——难点——处理课后习题与复习题——学习指定参考书中有关的内容,找出其区别与联系——思考指定参考书中有关的题目——找出本章内容与初等数学的联系与区别——找出新学知识与前面所学知识的联系与区别,进一步体会本课程的系统性——写出学习本章知识的心得.考试设计学完前三节进行一次开卷测验,学完后四节进行一次开卷测试,学完整章内容进行一次闭卷测验.参考书目1.北京大学数学系几何与代数教研室代数小组,《高等代数》(第二版),高等教育出版社,2001;2.廖家藩,《高等代数》,电子科技大学出版社,1995;3.叶伯成,《高等代数》,青岛海洋大学出版社,1989;4.张禾瑞,郝炳新,《高等代数》,高等教育出版社,1983;5.孙宗明,《高等代数的内容与方法》,兰州大学出版社,1990;76.王品超,《高等代数新方法》,山东教育出版社,1989.课时安排共20学时,讲授16学时,习题课 4学时.第八章线性变换(18学时)线性变换是线性代数的主要研究对象,主要研究向量空间中间量的内在联系.教学目的和要求理解线性变换的定义和运算;掌握线性变换的矩阵表示法;会求矩阵的特征根和特征向量;能熟练的将一个可以对角化的矩阵化成对角形;会求矩阵的最小多项式.教学重点线性变换和矩阵的对应关系;特征根和特征向量;矩阵的对角化.教学难点特征子空间;矩阵可以对角化的判别.新知识点矩阵的最小多项式;求特征子空间的新方法.教学方法和手段采用“细读——精细——习作”这一新的教学方法.教学内容1.定义和性质2.线性变换的运算3.线性变换和矩阵4.不变子空间5.特征值和特征向量6.可以对角化矩阵7.最小多项式课堂训练方案1.针对得出的定义,给出着干思考题,目的主要是巩固定义,加课对概念和理解;2.针对引出或证明的结论,给出若干应用题,目的在于理论联系实际,便抽象的理论具体化.课外训练方案1.针对课堂内容,给出适量的课外练习题;2.分成若干课外学习小组,以5人为一组,选出组长一人;3.由组长组织课外讨论,教师定期指导.自学指导方案1.选定内容并提出问题,让同学带着问题读书本章以第一节和第二节为自学内容;2.及时指导,并侧重点和难点和分析讲解.考试设计1.考试分为单元考试,期中考试和期末考试,期末考试多引入外校试题;2.考试分为开卷和闭卷,平时考试以开卷为主,期末考试以闭卷为主.参考书目1.北京大学编,《高等代数》,高教出版社;2.北师大编,《高等代数》,高教出版社.8共14学时讲授12学时,复习2学时.第九章若当(Jordan)标准形(12学时)研究λ-矩阵,可进一步解决矩阵的化简问题可以给出矩阵的各种标准形,建立完备的理论.教学目的与要求理解λ-矩阵的概念;会用初等变换将λ-矩阵化成标准形,会求不变因子和初等因子;会求若当形.教学重点1.λ-矩阵的标准形;2.不变因子和初等因子以及若当形.教学难点若当标准形的理论推导新知识点1.求标准形的初等变换法;2.理论推导的新方法.教学方法与手段采用新的教学方法,即“细读——精讲——习作”,此方法的目的是培养能力.教学内容1.λ-矩阵的概念2.标准形3.不变因子4.矩阵相似的判定5.初等因子6.矩阵的若当标准形课堂训练方案1.对每一个新的定义,增加一定量的思考题,以巩固定义,指出定义的实质内容.2.对于每一个结论,分析其应用,并给切实的应用题,以达到理论与实际相结合之目的.课外训练方案1.对每一个知识点,补充相应的课外练习题;2.根据各自的志趣,组成相对独立的课外研究小组,各抒己见,以达到问题解决之目的.自学指导方案本章以第三节和第四节为自学内容,其指导方案为:1.教师先提出有代表性的问题;2.让学生为解决这些问题而读书.3.选部分同学讲个别问题,以提高演讲能力,将来成为一名优秀教师.考试设计本章的考试,以λ-矩阵的标准形为主线,达到能准确的求出不变因子和初等因子,进而求出任意λ-矩阵的标准形.91.北京大学编,《高等代数》,高教出版社;2.北师大编,《高等代数》,高教出版社.课时安排共10学时,讲授8学时,习题课2学时.第十章欧氏空间(12学时)欧氏空间是实数域上定义了内积的向量空间,是几何空间的推广,是线性代数的主要内容之一.教学目的和要求理解内积和欧氏空间的定义;能由线性无关组求出标准正交组;理解正交换变换的定义;会证明有关正交换和正交矩阵的等价命题;理解对称变换的定义;会证明有关对称变换和对称矩阵的等价命题;能将实对称矩阵化成对角形.教学重点1. 标准正交基和构造;2. 正交变换和正交矩阵;3. 对称变换和对称矩阵;4. 度量矩阵和性质.教学难点正交变换和对称变换的系列命题的证明.新知识点度量矩阵的性质和应用教学方法与手段加强新知识点的教学和讨论,对旧的知识点进行革命化清理,但要顾及考研的要求,充分体现由“现代教学方法研究”提出的新观点,使“细读——精讲——习作”这一改革方案得以更好的施行.教学内容1.欧氏空间的定义2.标准正交基3.正交变换与正交矩阵4.对称变换与对称矩阵课堂训练方案1.在定义之后,给出2—3个思考题,借以巩固定义,找出定义的核心内容;2.做到理论与实际相联系,即引出重要结论之后,随即给出其应用,主要解决有一定难度的习题.自学指导方案本章以第一节为自学内容,指导方案为:1.以“内积”为主线,把握住内积为实数,知道整个欧氏空间就是由此展开讨论的;2.抓住柯——布不等式证明的关键,即向量α,β的线性相关性;3 柯——布不等式在具体欧氏空间中的应用.考试设计本章的考试,以正交变换和对称变换的相关问题进行命题.10参考书目1.北京大学编,《高等代数》,高教出版社;2.北师大编,《高等代数》,高教出版社.课时安排共12学时,讲授 10学时,习题课 2学时.第十一章二次型(12学时)二次型的理论是线性代数的主要研究对象,同时也是中学教学内容的深入与提高.教学目的与要求理解二次型和对称矩阵的对应关系;掌握矩阵的合同关系;会将二次型化为标准形;掌握实二次型和复二次型标准形的唯一性;掌握正定二次型的判别.教学重点1.标准形和规范形;2.二次型的正定性.教学难点1.惯性定律的证明;2.有关正定性绪论的证明.新知识点正定二次型判别条件的新证明方法.教学方法与手段坚持“细读——精讲——习作”的现代教学教学方法,这是一种灵活的教学手段.教学内容1.二次型的定义及其矩阵表示2.二次型的标准形3.复数域和实数域上的二次型4.正定二次型课堂训练方案1.由定义绘出思考题,如:由二次型写出矩阵,由对称矩阵写二次型;2.理论的应用,坚持理论与实际相结合,如:正定二次型的判别条件,给出带有文字的练习题进行巩固.3.以化二次型形和习题作为课外练习题;以学习小组为单位,采用集体讨论或解决重点而有代表性的习题.自学指导方案本章主要以复数域和实数域上的二次型作为自学内容,具体方案:1.给出自学提纲;2.重点要解决的问题;3.检查对主要问题的掌握情况如何.考试设计1.方法方向主要测试化二次型为标准形的方法;112.理论方向涉及惯性定律和二次型正定的问题.参考书目1.北京大学编,《高等代数》,高教出版社;2.北师大编,《高等代数》,高教出版社.课时安排共12学时,讲授10学时,习题课 2学时.第十二章常见曲面(20学时)本章学习的常见曲面在数学、物理和工程中都有广泛应用,它也是空间解析几何的基本内容,首先导出柱面、锥面、旋转曲面的方程,然后根据二次曲面的标准方程研究它们的性质、形状、直纹性,最后给出利用正交变换给出化简一般二次面面的方法.教学目的与要求1.掌握几种常见曲面的形成规律,并很好地由已知条件导出曲面的方程;2.能根据都有球面、双曲面、抛物面的标准方程利用平行截线法来研究其形状与性质;3.熟练掌握求直母线的方法,应用直母线的性质计算证明直母线的有关问题;4.会利用正交变换化简二次曲面方程.教学重点1.柱面、锥面、旋转曲面方程求法;2.利用平行截线法来研究椭球面、双曲面、抛物面的形状与性质;3.直纹面直母线的求法.教学难点1.柱面、锥面、旋转曲面的形成;2.直母线的性质;3.正交变换化简二次曲面方程;4.注意方程在仿射坐标系下,还是在直解坐标系下.新知识点正交变换在二次曲面方程化简中的应用.教学方法与手段1.从曲面的显著几何特点来求方程,从标准方程的研究图形的性质;2.从局部研究整体的方法;3.借助教具加深对平行截线法的理解和增强直观性,加强多媒体的应用;4.通过精讲、深入、自学相结合完成此章内容.教学内容1.曲面、曲线方程2.柱面3.锥面4.旋转曲面125.椭球面6.双曲面7.抛物面(包括正交变换在二次曲面方程化简中的应用)8.二次曲面的直纹性课堂训练方案充分利用静与动的关系加强曲面的形成及平行截线法的教学,提出思考的问题,通过典型例题加深问题的理解.课外训练指导方案加强所学内容的练习与复习,补充深入理解的内容,增加大难度习题及讨论,提高问题的解决方案,增加参考文献,充分理解与练习平面截曲面问题.自学指导方案1.出示自学提纲,带着问题去自学;2.提出学习中的问题;3.平面截曲面的截线问题的方法(参阅有关文献).考试设计抓住曲面方程求法和曲面的性质,平面截曲面问题来设计考试题.参考书目1.《新编解析几何教学辅导》,石油大学出版社,1994;2.陈志杰,《高等代数与解析几何》,高等教育出版社,2001.课时安排共20学时, 讲授16学时,习题课 2学时,复习2学时.四、实践性教学要求本课程是数学专业的基础课,与中学数学联系很大,本课程上课时制作部分模型,教学过程利用模型,使学生能直接观察,觉察出图形的各种特征,帮助思考,讲授是可以根据具体情况对内容作适当的调整,讲授要循序渐进,由浅入深,使学生真正体会到数学的奥妙.指导性的列出自学提纲与自学部分内容,成立课外学习小组,练习巩固所学内容,完成课下作业,了解问题的发展与延拓.13。
河海大学研究生考试大纲
中国传统伦理思想史 科学技术学 当代中国政治分析 社会学综合 人口学综合 马克思主义原著选读 教育社会学 应用心理学综合 文艺(文化)新态势 传播学理论与应用 行政管理综合 社会保障综合 土地管理综合 水文 10294 河海大学 959 10294 河海大学 960 10294 河海大学 961 10294 河海大学 962 10294 河海大学 963 10294 河海大学 964 10294 河海大学 965 10294 河海大学 966 10294 河海大学 968 10294 河海大学 969 10294 河海大学 970 10294 河海大学 971 10294 河海大学 972 10294 河海大学 973 10294 河海大学 999 10294 河海大学 998 10294 河海大学 997 10294 河海大学 996 10294 河海大学 995 10294 河海大学 994 10294 河海大学 993 10294 河海大学 992 10294 河海大学 991 10294 河海大学 990 10294 河海大学 989 10294 河海大学 988 10294 河海大学 987 10294 河海大学 986 10294 河海大学 985 10294 河海大学 984 10294 河海大学 033 10294 河海大学 034 10294 河海大学 035 10294 河海大学 036 10294 河海大学 037 10294 河海大学 038 10294 河海大学 040 10294 河海大学 041 10294 河海大学 042 10294 河海大学 043 10294 河海大学 044 10294 河海大学 045 10294 河海大学 720 10294 河海大学 721 10294 河海大学 974 10294 河海大学 883 10294 河海大学 975 10294 河海大学 976 10294 河海大学 977 10294 河海大学 978 10294 河海大学 979 10294 河海大学 980 10294 河海大学 981 10294 河海大学 982 10294 河海大学 983
高等代数与解析几何第二章相关知识点与题目
高等代数与解析几何第二章相关知识点与题目篇一:高等代数与解析几何教学大纲附件1教学大纲课程编号:课程英文名:Advanced Algebra and Analytic Geometry课程性质:学科基础课课程类别:必修课先修课程:高中数学学分:4+4总学时数:72+72周学时数:4+4适用专业:统计学适用学生类别:内招生开课单位:信息科学技术学院数学系一、教学目标及教学要求1.本课程是统计学专业的一门重要基础课。
它不仅是学习后继课程及在各个学科领域进行理论研究和实际应用的必要基础,同时还为培养学生的独立工作能力提供必要的训练。
学生学好这门课程的基本内容和方法,对今后的提高和发展有着深远的影响。
2.通过本课程的学习,要使学生了解高等代数与解析几何的概貌、各部分内容的结构和知识的内在联系;学会代数与几何方法,培养学生抽象思维能力、逻辑推理能力、想象能力、运算能力和综合应用能力。
3.要求学生熟练掌握本课程的基本概念、基本理论、基本运算及方法。
通过课堂教学及进行大量的习题训练等各个教学环节,使得学生做到概念清晰、推理严密、运算准确,并且学会应用这些基本理论及方法去处理实际问题。
二、本课程的重点和难点(略。
由课任教师自行掌握)三、主要实践性教学环节及要求精讲、细读、自学相结合方法,加强课内外训练为手段。
四、教材与主要参考文献教材:(上、下)(第二版),孟道骥编著,科学出版社,2004年。
参考书: 1. ,陈志杰编著,高等教育出版社,2000年;2.,张君达主编,北京科学技术出版社,2002年。
五、考核形式与成绩计算考核形式:闭卷考试。
成绩计算:平时成绩(包括平时作业、小测验、考勤等)占30%,期末考试占70%。
六、基本教学内容第二学期第一周—第二周:(8课时)第一章:向量代数与解析几何基础1. 代数与几何发展概述。
2. 向量的线性运算及几何意义:定义与性质、向量的共线、共面与线性关系3. 坐标系:标架、向量和点的坐标、n维向量空间。
高等代数与解析几何_第二版_陈志杰_课后答案(上册)
BC
− → (3) AF ;
F C1
− − → (4) EF .
A1 D → − c− → b
B1 C E
A
− → a
B
1
: (1) − − → − − → BC = AD, − → − − → − CC1 = AA1 , − − → − − → − − → − − → AC1 = AB + BC + CC1 ,
§1
·3·
: .
− → − − → − − → AL, BM , CN − − → 1 − − → − − → BM = (BA + BC ), 2
, − − → 1 − → − − → CN = (CA + CB ), 2
− → 1 − − → − → AL = (AB + AC ), 2
→ − − → − − → − : AL + BM + CN = 0.
5
·4·
F O E
C A G B
A
D
B
C
6
7
→ − − → − − − → − → − → − − → a + 2 b , BC = −4− a − b , CD = 8. ABCD , AB = → → → − − → → −5− a − 3 b (− a, b ). ABCD . → − − − → − − → − − → − − → − − → − − → − − → → − : AD = AB + BC + CD = −8 a − 2 b = 2BC , AD//BC . − → − − → − |AD | = 2|BC |, ABCD . 9. A, B, C, D , M, N AB , CD . : − − → − − → − → 1 − M N = (AD + BC ). 2 : , − → − − → − → 1 − CM = (CA + CB ), 2 − − → 1− − → CN = CD, 2
《高等代数与解析几何》教学大纲
《咼等代数与解析几何》课程教学大纲一、课程基本信息1、课程名称:高等代数与解析几何(上、下)2、课程编号:03030001/23、课程类别:学科基础课4、总学时/学分:160/105、适用专业:信息与计算科学6、开课学期:第一、二学期二、课程与人才培养标准实现矩阵说明掌握自然科学基础知识和数学专业所需的技术基础及专业知识,掌握分析问题、解决问题的科学方法;通过所学专业基础知识,获取数学专业知识的能力,更新知识和应用知识的能力。
三、课程的地位性质与目的本课程是数学与应用数学专业学生的重要的基础课程,是现代信息科学中不可缺少的数学工具。
高等代数与解析几何最突出的特点就是代数与几何在知识与理论上的有机结合,在思想和方法上的融会贯通。
主要目的是掌握本门课程的基本理论和基本方法;同时通过本课程的教学,锻炼和提高学生的思维能力,培养学生分析问题和解决问题的能力,培养学生创新能力,提高学生的数学素养。
四、学时分配表五、课程教学内容和基本要求总的目标:通过本课程的学习要求学生对高等代数与解析几何的基本概念、基本定理有比较全面、系统认识,能把几何的观点与代数的方法结合起来,“代数为几何提供研究方法,几何为代数提供直观背景”,逐步培养学生运用几何与代数相结合的方法分析问题、解决问题的能力,培养学生抽象的思维能力及空间想象能力。
本课程各章的教学内容和基本要求如下:第一章向量代数【教学内容】1、向量的线性运算2、向量的共线与共面3、用坐标表示向量4、线性相关性与线性方程组5、n维向量空间6、几何空间向量的内积7、几何空间向量的外积8、几何空间向量的混合积【基本要求】理解向量的概念,掌握向量的线性运算、内积、外积、混合积运算;熟悉向量间垂直、共线、共面的条件;会用坐标进行向量的运算。
【教学重点及难点】重点:向量的概念,向量的线性运算、内积、外积、混合积运算;用坐标进行向量的运算。
难点:向量间垂直、共线、共面的条件。
第二章行列式【教学内容】1、映射与变换2、置换的奇偶性3、矩阵4、行列式的定义理解n阶行列式的概念及性质,掌握常见类型的行列式的计算;熟悉克拉默法则。
近三年的教学参考资料及向图书馆推荐的书目
近三年的教学参考资料及向图书馆推荐的书目由于高等代数课程属于基础课,教学参考资料较多,各种辅导材料也较多,同时由于代数学的发展,可供学习的资料也很多。
此处只提供一部分。
1, 高等代数与解析几何(上、下册)(第二版), 孟道骥, 科学出版社2, Linear Algebra, Janich, Springer出版社3, Introductory Mathematics:Algebra and Analysis, Smith, Springer出版社4, Linear Algebra, Stephen H.Friedberg, 高等教育出版社5, 高等代数习题课参考书, 张均本, 高等教育出版社6, 高等代数(第4版), 张禾瑞、郝炳新, 高等教育出版社7, 高等代数解题方法与技巧, 李师正, 高等教育出版社8, 高等代数, 施武杰、戴桂生, 高等教育出版社9, Introductory Linear Algebra An Applied First Course, Bernard Kolman, 高等教育出版社10, 等代数新方法, 王品超, 中国矿大出版社11, 代数学引论(第2版), 聂灵沼、丁石孙, 高等教育出版社12, 高等代数(第2版)(上下), 丘维声, 高等教育出版社13, 微分流形初步(第2版), 陈维桓, 高等教育出版社14, 高等代数与解析几何, 同济大学应用数学系, 高等教育出版社15, 高等代数与解析几何(上、下), 陈志杰, 高等教育出版社16, 数学及其认识, 高隆昌, 高等教育出版社17, 近世代数基础, 刘绍学, 高等教育出版社18, 初等数论(第3版), 闵嗣鹤、严士健, 高等教育出版社19, 近世代数初步(第2版), 石生明, 高等教育出版社20, 代数学基础与有限域, 林东岱, 高等教育出版社21, 应用近世代数, 胡冠章,王殿军, 清华大学出版社22, 高等代数, 牛凤文,等, 高等教育出版社23, 近世代数学习辅导与习题选解, 杨子胥, 高等教育出版社24, 高等代数学, 姚慕生, 复旦大学出版社25, 高等代数简明教程(上下), 蓝以中, 北京大学出版社26, 近世代数引论, 冯克勤等, 中国科大出版社27, 高等代数与几何, 潘晏仲,李洪军, 西安交大出版社28, 代数学辞典, 樊恽, 华中师大出版社29, 高等代数学(第2版), 张贤科,许甫华, 清华大学出版社30, 代数导引, 万哲先, 科学出版社31, 体上矩阵理论导引, 庄瓦金, 科学出版社32, 高等代数典型问题研究, 蒋忠樟, 高等教育出版社33, 群与代数表示引论, 冯克勤,章璞,李尚志, 中国科大出版社34, 代数数论导引, 张贤科, 高等教育出版社35, 同调论, 姜伯驹, 北京大学出版社36, 抽象代数学, 姚慕生, 复旦大学出版社37, 高等代数学习方法与解题指导, 李晓等, 东北大学出版社38, 矩阵理论, 苏育才,姜翠波等, 科学出版社39, 高等代数辅导及习题全解, 杨富云,孙杯东, 人民日报出版社40, 抽象代数-理论.问题与方法, 张广祥, 科学出版社41, 高等代数学习指导书(上下), 丘维声, 清华大学出版社42, 代数与通信, 冯克勤, 高等教育出版社43, 高等代数选讲, 陈利国, 中国矿大出版社44, 高等代数--辅导及习题精解(上下), 滕加俊等, 陕西师大出版社高等代数读书活动书目。
大学所有课程课后答案
天天learn为大家收集了大学所有课程的课后答案,这里只列出了一部分,要想找到更多的答案,请到 查找。
资料打开方法:按住 Ctrl键,在你需要的资料上用鼠标左键单击资料搜索方法:Ctrl+F 输入关键词查找你要的资料【数学】∙01-08数值分析清华大学出版社第四版课后答案∙01-08微分几何第三版梅向明黄敬之主编课后答案∙01-07高等代数与解析几何陈志杰主编第二版课后答案∙01-07高等代数第三版北京大学数学系主编高等教育出版社出版课后答案∙01-07数学分析陈纪修主编第二版课后答案∙01-07数学分析华东师大第三版课后答案∙12-27高等数学同济大学出版社第五版课后答案∙12-08积分变换(第四版)东南大学数学系张元林编高等教育出版社课后答案∙11-30微积分复旦大学出版社曹定华主编课后答案∙11-21人大-吴赣昌-高等数学/微积分(经管类)课后答案∙11-09概率统计简明教程同济版课后答案∙11-09复变函数钟玉泉课后答案∙11-09微积分范培华章学诚刘西垣中国商业出版社课后答案∙11-09线性代数同济大学第四版课后答案∙11-08概率论与数理统计浙大版盛骤谢式千课后答案∙11-08复变函数西安交通大学第四版高等教育出版社课后答案∙11-07离散数学教程肖新攀编著课后习题答案∙11-07离散数学(第三版)清华大学出版社(耿素云,屈婉玲,张立昂)课后习题答案∙11-04高等数学同济大学出版社第六版课后答案∙10-27高等数学北大版课后答案∙【通信/电子/电气/自动化】∙01-08信号与线性系统分析吴大正第4版课后答案∙01-08信号与系统刘泉主编课后答案∙01-08信号与系统奥本海姆英文版课后答案∙01-08数字信号处理吴镇扬高等教育出版社课后答案∙01-08通信原理樊昌信第六版国防大学出版社课后答案∙01-08通信原理北京邮电大学课后答案∙12-10数字逻辑第四版(毛法尧著) 高等教育出版社∙12-10数字逻辑第二版(毛法尧著) 高等教育出版社课后答案∙12-08电路第五版邱关源罗先觉高等教育出版社课后答案∙12-03数字信号处理教程(程佩青第二版) 清华大学出版社课后答案∙12-02数字信号处理教程程佩青(第三版)清华大学出版社课后答案∙11-09模拟电子技术基础童诗白第三版习题答案∙11-09数字电子技术基础阎石第五版课后答案∙11-06信号与系统郑君里主编第二版课后答案∙11-06信号与系统哈工大课后答案∙10-31模拟电子技术基础(第四版童诗白、华成英主编)习题答案∙10-29模拟电路康华光【计算机/网络/信息】∙01-08数据结构(C语言版) 李春葆主编课后答案∙12-05计算机网络教程第五版谢希仁电子工业出版社课后答案∙11-09c程序设计谭浩强主编清华大学出版社习题答案及上机指导∙10-26C语言程序设计教程习题参考答案∙10-26MATLAB程序设计与应用(第二版)刘卫国主编实验答案【经济/金融/营销/管理/电子商务】∙01-06现代西方经济学(宏观)尹伯平主编课后答案∙01-06现代西方经济学(微观经济学) 宋承先主编第3版笔记和课后习题详解∙01-06微观经济学:现代观点范里安主编第5版课后答案∙01-05微观经济学平狄克主编第4和5版笔记和课后习题详解∙01-05宏观经济学曼昆主编第五版课后答案∙01-05宏观经济学多恩布什主编课后习题答案∙01-05企业会计学赵惠芳主编课后答案∙12-05市场调研与预测习题与实例陈启杰上海财经大学出版社课后答案∙11-28西方经济学高鸿业第四版(微观宏观)课后答案∙11-10中级财务会计刘兵初宜红山东人民出版社课后答案∙11-09经济法概论课后答案∙11-08中级财务会计(第二版)刘永泽东北财经大学课后答案【物理/光学/声学/热学/力学】∙01-19机电传动控制华中科技大学出版社邓星钟主编课后答案∙01-05量子力学张永德主编课后答案∙01-04量子力学导论曾谨言著第二版课后答案∙01-04量子力学曾谨言著高等教育出版社第三版第一卷课后答案∙01-04量子力学教程周世勋著高等教育出版社课后答案∙01-04量子力学教程曾谨言著课后答案∙01-04电动力学郭硕鸿主编第三版课后答案∙01-04理论力学卢圣治著课后答案∙01-03理论力学周衍柏著第二版课后答案∙11-09普通物理学程守洙江之咏第五版习题分析与解答∙11-09物理学马文蔚(第五版) 习题分析与解答∙11-09大学基础物理学.2版.清华.张三慧习题答案∙11-06大学物理学赵近芳主编第二版课后答案【土建/机械/车辆/制造/材料】∙01-08机械设计基础(第五版) 高等教育出版社课后答案∙01-07材料力学单辉祖主编课后答案∙01-06材料力学刘鸿文主编哈工大第四版课后答案∙11-11机械原理第六版课后答案【化学/环境/生物/医学/制药】∙01-03高分子化学潘祖仁著第四版课后答案∙01-03物理化学辅导与习题详解第五版傅献彩著∙01-02物理化学南开大学第五版课后答案∙01-02物理化学周亚平天津大学第四版课后答案∙01-02分析化学武汉大学第四版思考题答案∙01-02分析化学武汉大学第四版课后答案∙01-02基础有机化学邢其毅著课后答案∙01-01有机化学莫里森著课后答案∙12-31有机化学(第四版)高鸿宾著课后答案∙12-31有机化学(汪小兰著) 课后答案∙12-31无机化学第三版武汉大学吉林大学编高等教育出版社课后答案∙12-31中级无机化学(朱文祥著) 高等教育出版社课后答案∙12-31无机化学第三版(宋天佑著) 高等教育出版社课后答案∙12-30生物化学解题指导与测验张楚富高等教育出版社课后答案∙12-30生物化学简明教程第四版(张丽萍著) 高等教育出版社课后答案∙12-30生物化学原理(张洪渊著) 科学出版社课后答案∙12-30生物化学第三版(沈同王镜岩著) 高等教育出版社课后答案∙10-31有机化学第三版(胡宏纹著) 高等教育出版社课后答案∙10-29有机化学第四版答案曾昭琼主编高等教育出版社【法学/哲学/心理学/政治学】∙12-29实验心理学杨治良版练习题及答案07年心理学考研∙12-29《心理学》考试题库及答案程素萍浙江大学出版社∙12-29教育心理学第三版(皮连生著) 上海教育出版社课后答案∙12-04毛邓三(2007 华中科技大学版)(毛邓三编写组著) 高等教育出版社课后答案∙11-07毛邓三课后简答题答案∙10-29逻辑学参考答案∙10-26思想道德修养与法律基础罗国杰主编高教版课后答案∙10-26毛泽东思想和中国特色社会主义理论体系概论(吴树青等著) 高等教育出版社课后答案∙10-25马克思主义基本原理概论左伟清华南理工大学出版社课后答案∙10-25毛邓三思考题课后答案【英语/文学/史学/外语/教育】∙01-30step_by_step 2000 第四册听力答案课后答案∙01-30step_by_step 2000 第三册听力答案课后答案∙01-30step_by_step 2000 第二册听力答案课后答案∙01-30step_by_step 2000 第一册听力答案课后答案∙01-09大学体验英语综合教程第四册课后答案及课文翻译∙01-09大学体验英语综合教程第三册课后答案及课文翻译∙01-09大学体验英语综合教程第二册课后答案及课文翻译∙01-09大学体验英语综合教程第一册课后答案及课文翻译∙01-09新视野大学英语第五册课后答案∙01-09新视野大学英语第四册课后答案及课文翻译∙01-09新视野大学英语第三册课后答案及课文翻译∙01-09新视野大学英语第二册课后答案及课文翻译∙01-09新视野大学英语第一册课后答案及课文翻译∙01-05文学理论童庆炳主编修订二版课后答案∙01-05语言学教程胡壮麟主编课后答案[适合背诵]∙11-08中国近代史纲要沙健孙高等教育出版社课后答案∙11-07全新版大学英语综合教程第四册课后答案及课文翻译∙11-07全新版大学英语综合教程第三册课后答案及课文翻译∙11-06全新版大学英语综合教程第二册课后答案及课文翻译∙11-06全新版大学英语综合教程第一册课后答案及课文翻译∙11-06新世纪大学英语综合教程3 课后答案∙11-06新世纪大学英语综合教程2 课后答案∙11-06新世纪大学英语综合教程1 课后答案∙10-25新编大学英语(第一册)习题答案第二版∙10-25新编大学英语(第二册)习题答案∙10-25新编大学英语(第三册)习题答案∙10-25新编大学英语(第四册)课文翻译及课后习题答案。
高等代数书籍
高等代数书籍是指专门针对高等代数这一数学分支进行深入研究和介绍的书籍。
这类书籍通常涵盖了高等代数的基本概念、定理、性质以及应用等内容,适合对数学和代数感兴趣的学生、教师以及研究者阅读和学习。
在我国,比较知名的高等代数书籍有:
1. 北京大学数学系编写的《高等代数》(第二版),高等教育出版社出版,该书是普通高等教育“十一五”国家级规划教材之一,内容全面、系统,注重基础知识的理解和训练。
2. 丘维声编写的《高等代数》(第二版),高等教育出版社出版,该书被列为“面向21世纪课程教材”,内容深入浅出,易于理解。
3. 孟道骥编写的《高等代数》,科学出版社出版,该书是“普通高等教育‘十一五’国家级规划教材”,内容丰富,涵盖了高等代数的主要知识点。
此外,还有许多其他的高等代数书籍可供选择,如张禾瑞的《高等代数》、刘仲奎的《高等代数》等。
在选择时,可以根据自己的学习需求和兴趣进行选择。
在选择高等代数书籍时,有几个方面需要考虑:
1. 内容深度和广度:根据个人需求选择适合自己水平的内容,初学者可以选择基础入门类书籍,而已经有一定基础的学生或研究者可以选择内容更深入的书籍。
2. 作者声誉:选择知名作者编写的书籍,通常内容更为可靠和系统。
3. 出版社品牌:选择知名出版社出版的书籍,通常印刷质量和内容质量都更有保障。
4. 读者评价:可以参考其他读者对书籍的评价,以了解书籍的优缺点,帮助自己做出选择。
除了以上提到的书籍,还有许多其他的高等代数书籍值得一读,可以根据自己的实际需求进行选择。
无论选择哪本书,关键是要认真阅读和练习,加深对高等代数的理解和掌握。
高等代数与解析几何(Higher Algebra and Analytic Geometry)
高等代数与解析几何(Higher Algebra and Analytic Geometry)课程教学大纲一、课程编号:040504,040505二、课程类别:必修课课程学时:160学时适用专业:信息与计算科学先修课程:初等代数、初等几何三、课程的性质与任务《高等代数与解析几何》是数学、通信、计算机、信息等专业学生的重要的基础课程,是现代信息科学中不可缺少的数学工具。
主要目的是掌握本门课程的基本理论和基本方法。
四、教学主要内容及学时分配(一)向量代数(20学时)(二)行列式(14学时)(三)线性方程组与线性子空间(24学时)(四)矩阵(20学时)(五)线性空间与欧几里德空间(20学时)(六)几何空间的常见曲面(12学时)(七)线性变换(16学时)(八)线性空间上的函数(10学时)(九)坐标变换与二次曲线方程的化简(4学时)(十)一元多项式理论(16学时)(十一)多项式矩阵与若当典范形(4学时)五、教学基本要求(一)理解向量的概念,掌握向量的线性运算、内积、外积、混合积运算;熟悉向量间垂直、共线、共面的条件;会用坐标进行向量的运算。
(二)理解n阶行列式的概念及性质,掌握常见类型的行列式的计算;熟悉克兰姆法则。
理解矩阵及初等变换的概念。
(三)理解n维向量的概念、线性相关与线性无关的定义,了解几个相关结论。
理解线性方程组解的结构,熟练掌握求解方法;会用线性方程组理论判别n维向量组的线性相关性;掌握求直线、平面方程的方法;理解线性子空间、基、维数、坐标的概念,了解简单性质。
(四)理解向量组及矩阵的秩,掌握求逆矩阵、秩的方法;熟悉线性方程组有解判别条件;理解线性映射与矩阵的对应关系。
(五)理解线性空间、欧氏空间、同构、和、直和的概念,了解其性质;掌握施密特正交化方法;了解最小二乘法;会求直线或平面的夹角、点到平面的距离;了解正交矩阵的性质。
(六)了解常见二次曲面的方程及形状,会求简单的旋转曲面、柱面、锥面的方程。
东北师范大学数学与统计学院考研参考书目
《数学分析》
欧阳光中、姚允龙、周渊
复旦大学出版社
2003年
初试
《数学分析新讲》
张筑生
北京大学出版社
2003年
初试
《解析几何》(第四版)
吕林根、许子道
高等教育出版社
2006年
初试
《高等代数》(第二版)
丘维声
高等教育出版社
2002年
初试
《高等代数与解析几何》
陈志杰
高等教育出版社
2002年
加试
《实变函数》
高等教育出版社
2006年
初试
《高等代数》(第二版)
丘维声
高等教育出版社
2002年
初试
《高等代数与解析几何》
陈志杰
高等教育出版社
2002年
加试
《实变函数》
周明强
北京大学出版社
2004年
复加
《常微分方程》(第二版)
东北师大数学系微分方程教研室编
高等教育出版社
2005年
复试
《泛函分析讲义》
张恭庆、林源渠
北京大学出版社
东北师范大学数学与统计学院考研参考书目
参考书目
类型
参考书目
作者
出版社
出版日期
121 数学与统计学院
025200 应用统计(专业学位)
加试
《概率论》(第一册)
复旦大学编
高等教育出版社
复加
《数理统计学讲义》(第二版)
陈家鼎、孙山泽、李东风、刘立平
高等教育出版社
2006年
045104 学科教学(数学)(专业学位)
周明强
北京大学出版社
2004年
复加
《泛函分析讲义》
河海大学2020硕士研究生招生考试自命题科目参考范围
2020年硕士研究生招生考试自命题科目参考范围说明:按照教育部规定,学校不提供考试科目参考书,以下书籍仅供参考。
科目代码科目名称参考范围003无机化学请参考相应的本科专业通用教材。
008社会保障基金管理《社会保障基金管理新论》殷俊、赵伟著,武汉大学出版社,2006年。
015新闻传播综合业务新闻传播类参考书同初试参考书目。
024政治学原理(2)《政治学概论》(第二版),孙关宏等主编,复旦大学出版社,2008年。
025生态学请参考相应的本科专业通用教材。
047社会工作概论请参考相应的本科专业通用教材,考试范围为相关领域本科阶段专业基础课的基本知识点。
050地球科学概论《地球科学导论》刘本培等编,高等教育出版社,2000。
211翻译硕士英语请参考相应的本科专业通用教材。
243日语(二外)新版《标准日本语》(初级上、下册)人民教育出版社和光村图书株式会社。
245法语(二外)《法语》第一、二、三册的前八课马晓宏等编(92年版),外语教学与研究出版社。
246法语请参考相应的本科专业通用教材。
247德语(二外)《大学德语》(共4册)高教出版社;考研参考范围1、2、3册为主。
331社会工作原理全国MSW考试专业课考试大纲的基础上,参考下列书籍:《社会工作概论》(第二版),李迎生,中国人民大学出版社,2010年;《社会工作理论》,何雪松,上海人民出版社,2007年。
357英语翻译基础请参考相应的本科专业通用教材。
432统计学《统计学》(第五版),贾俊平,中国人民大学出版社,2014。
科目代码科目名称参考范围437社会工作实务全国MSW考试专业课考试大纲的基础上,参考下列书籍:《个案工作》,许莉娅,高等教育出版社,2004年;《小组工作》,刘梦,高等教育出版社,2004年;《社区工作》,徐永祥,高等教育出版社,2004年;《社会研究方法》(第五版),风笑天,中国人民大学出版社,2018年。
448汉语写作与百科知识请参考相应的本科专业通用教材。
高等代数答案第九章
−1 −1
(3) 10.
f (α, α) = 0. α = (1, 1, 1, 1), 4 V = K , α = (x1 , x2 , x3 , x4 ), β = (y1 , y2 , y3 , y4 ), f (α, β ) = 3x1 y2 − 5x2 y1 + x3 y4 − 4x4 y3 .
11. :
f
n
V f (α, β ) = 0,
, α ∈ V,
: f
β = 0. : (⇒) W1 = {α ∈ V | f (α, β ) = 0, ∀β ∈ V }, W2 = {α ∈ V | f (β, α) = 0, ∀β ∈ V }. , 1.3 W1 W1 = 0, α = 0. f (α, β ) = 0∀α ∈ V α = 0, (⇐) f (α, β ) = 0 ∀α ∈ V W1 = 0, 1.3 W1 f . V 12. A ∈ Mm (K ), V = Mm,n (K ). f (X, Y ) = Tr(X T AY ), X, Y ∈ V. ; f 6 W2 = 0, f : W2 = 0.
本文档由天天learn提供,查看其他章节请点击/html/25/n-125.html
高等代数与解析几何 陈志杰主编 第二版 课后答案
§1
· 61 ·
(α1 , α2 , α3 ) = (η1 , η2 , η3 )A, 1 1 −1 A = −2 0 1 . 1 1 1
(η1 , η2 , η3 ) = (α1 , α2 , α3 )A−1 ,
x1 f (x1 η1 + x2 η2 + x3 η3 ) = (f (η1 ), f (η2 ), f (η3 )) x2 x3 x1 −1 = (f (α1 ), f (α2 ), f (α3 ))A x2 x3 −1 −2 1 x1 1 1 3 = (2, 2, −1) · 3 2 1 x2 = x1 + x3 . 4 2 2 −2 0 2 x3 3. V η1 , η2 , η3 . g,
高等代数与解析几何(Higher Algebra and Analytic Geometry)
高等代数与解析几何(Higher Algebra and Analytic Geometry)课程教学大纲一、课程编号:040504,040505二、课程类别:必修课课程学时:160学时适用专业:信息与计算科学先修课程:初等代数、初等几何三、课程的性质与任务《高等代数与解析几何》是数学、通信、计算机、信息等专业学生的重要的基础课程,是现代信息科学中不可缺少的数学工具。
主要目的是掌握本门课程的基本理论和基本方法。
四、教学主要内容及学时分配(一)向量代数(20学时)(二)行列式(14学时)(三)线性方程组与线性子空间(24学时)(四)矩阵(20学时)(五)线性空间与欧几里德空间(20学时)(六)几何空间的常见曲面(12学时)(七)线性变换(16学时)(八)线性空间上的函数(10学时)(九)坐标变换与二次曲线方程的化简(4学时)(十)一元多项式理论(16学时)(十一)多项式矩阵与若当典范形(4学时)五、教学基本要求(一)理解向量的概念,掌握向量的线性运算、内积、外积、混合积运算;熟悉向量间垂直、共线、共面的条件;会用坐标进行向量的运算。
(二)理解n阶行列式的概念及性质,掌握常见类型的行列式的计算;熟悉克兰姆法则。
理解矩阵及初等变换的概念。
(三)理解n维向量的概念、线性相关与线性无关的定义,了解几个相关结论。
理解线性方程组解的结构,熟练掌握求解方法;会用线性方程组理论判别n维向量组的线性相关性;掌握求直线、平面方程的方法;理解线性子空间、基、维数、坐标的概念,了解简单性质。
(四)理解向量组及矩阵的秩,掌握求逆矩阵、秩的方法;熟悉线性方程组有解判别条件;理解线性映射与矩阵的对应关系。
(五)理解线性空间、欧氏空间、同构、和、直和的概念,了解其性质;掌握施密特正交化方法;了解最小二乘法;会求直线或平面的夹角、点到平面的距离;了解正交矩阵的性质。
(六)了解常见二次曲面的方程及形状,会求简单的旋转曲面、柱面、锥面的方程。
高等代数与解析几何
高等代数与解析几何
参考书目录
[1] 陈志杰, 陈咸平, 林磊, 瞿森荣, 韩士安编. 高等代数与解析几何习题精解. 北京: 科学出版社, 2002年2月
[2] 北京大学数学系编. 高等代数. 第2版. 北京: 高等教育出版社, 1988年
[3] 丘维声编著. 高等代数. 北京: 高等教育出版社, 1996年
[4] 丘维声编. 解析几何. 第2版. 北京: 北京大学出版社, 1996年
[5] 吕林根, 许子道等编. 解析几何. 第3版. 北京: 高等教育出版社, 1987年
[6] 孟道骥著. 高等代数与解析几何. 北京: 科学出版社, 1998年
[7] 邱森主编. 高等代数. 武汉: 武汉大学出版社, 1991年
[8] 吴文俊论数学机械化. 济南: 山东教育出版社, 1995年
[9] 石赫著. 机械化数学引论. 长沙: 湖南教育出版社, 1998年
[10] 何青编著. 计算代数. 北京: 北京师范大学出版社, 1997年
[11] 中国大百科全书《数学》. 北京: 中国大百科全书出版社, 1988年
[12] Bruce W. Char et al. First leaves: A tutorial introduction to Maple V. New York, Berlin, Heidelberg, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest: Springer-Verlag, 1992。
高等代数与解析几何 第二版 (陈志杰 著) 高等教育出版社
#$
NO>P P3(n) =
n(n2 − 6
7)
.
P3(n) − P3(n − 1) =
(n
−
2)(n 2
+
1)
,
2–3
d :O V W 1.
)
# Y:
m (1) a31a12a23a44; o : (1) +.
(2) a31a23a14a42a65a56.
.c (2) +.
: ) iy : 67W 2. ( "
................
n 0 0 ··· 0 0
: (1) acf h + bdeg − adeh − bcf g. (2) 0.
0 0 0 ··· n
(3) a5 + x5.
(4)
(−1)
n
(6) n!.
2–4
! F] g(s ) = s , g - .
T T F] T T F] T T 3. f " S
S >
,g" S
S >
, J gf " S
F] S >
, ? (gf )−1 = f −1g−1.
T F] : !" f B g m> , #$ f −1g−1
S S Hf
,?
(f −1g−1)(gf ) = f −1(g−1g)f = f −11S f = f −1f = 1S,
1234567 5631274
, p−1qp =
1234567 7541326
, p = (13)(34)(47)(25)(56),
, h q = (12)(25)(56)(64)(47)(73). ( 7f)U H).
一、高等代数与解析几何之间的关系
利用几何直观理解高等代数中抽象的定义和定理一、高等代数与解析几何的关系代数为几何的发展提供了研究方法,几何为代数提供直观背景。
解析几何中的很多概念、方法都是应用线性代数的知识、定义来刻画、描述和表达的.例如,解析几何中的向量的共线、共面的充分必要条件就是用线性运算的线性相关来刻画的,最终转化为用行列式工具来表述,再如,解析几何中的向量的外积(向量积)、混合积也是行列式工具来表示的典型事例。
高等代数中的许多知识点的引入、叙述和刻画亦用到解析几何的概念或定义.例如线性空间的概念表述就是以解析几何的二维、三维几何空间为实例模型.“如果代数与几何各自分开发展,那它的进步十分缓慢,而且应用范围也很有限,但若两者互相结合而共同发展,则就会相互加强,并以快速的步伐向着完善化的方向猛进。
”-———-—-—拉格朗日二、目前将高等代数与解析几何合并开课的大学中国科大:陈发来,陈效群,李思敏,线性代数与解析几何,高等教育出版社,北京:2011.南开大学:孟道骥,高等代数与解析几何(上下册)(第二版),科学出版社,北京:2007.华东师大:陈志杰,高等代数与解析几何 (上下册) (第2版),高等教育出版社,北京:2008。
华中师大:樊恽,郑延履,线性代数与几何引论,科学出版社,北京:2004.同济大学:高等代数与解析几何同济大学应用数学系高等教育出版社(2005-05出版)兰州大学,广西大学,西南科技大学,成都理工大学三、高等代数的特点1、逻辑推理的严密性;2、研究方法的公理性;3、代数系统的结构性.四、高等代数一些概念的引入对于刚上大学的一年级新生,大多数难以适应高等代数的抽象概念的引入、推导和应用。
通过一些实例,特别是几何实例,引入高等代数的相关概念,一方面可以让学生了解抽象概念的来龙去脉,另一方面可以让学生找到理解抽象概念的思维立足点。
五、高等代数的一些概念的几何解析高等代数中相关概念和定理的几何解析,可以使学生更容易把握这些概念和定理的几何本质,更容易直观地理解这些抽象的概念和定理,从而可以提高学生运用这些抽象的概念和定理去解题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
? : (1)
9, .
课后答案网 ? (2)
18, .
? (3)
10, .
? (4)
36, .
4. d i h k, '
K (1) 237i864k5* ; : (1) i = 1, k = 9.
K (2) 469k1i752 * .
(2) i = 8, k = 3.
课后答案网 您最真诚的朋友
网团队竭诚为学生服务,免费提供各门课后答案,不用积分,甚至不用注 册,旨在为广大学生提供自主学习的平台! 课后答案网: 视频教程网: PPT课件网:
课后答案网
................
n 0 0 ··· 0 0
: (1) acf h + bdeg − adeh − bcf g. (2) 0.
0 0 0 ··· n
(3) a5 + x5.
(4)
(−1)
n(n−1) 2
n!.
(5) (−1)n−1n!.
(6) n!.
2–4
4 −16
0
−11 38 0
−1 5 0
5 −23
0
.
2 −3 1 −9 7
0 0 1 −1 2
1
2
m −3 o 6
;
khdaw.c −7
\ =J ]^= ]^ 0 0 0 0 0 0
2. V v
"456 :
·4·
若侵犯了您的版权利益,敬请来信通知我们! ℡
2 1 −30 5
;
(2)
0 3
0 0
2 0
2 3
;
a g 0 0 h
4004
ax000
0 0 ··· 0 1
d0 a x 0 0
0 0 ··· 2 0
h(3) 0 0 a x 0 ;
(4) . . . . . . . . . . . . . . . . . . . . ;
k0 0 0 a x
0 n−1 ··· 0 0
K YJ *j o{S K d : N B ,
e, >.
K ?.c K K J ( ! ? b k = 1 R, !
" 1 m>$N 123 · · · n 7fe
" 1 f V< P1(n) = n − 1.
yK w yK T ! ? K N< H n m>$N n − 1
4 6
5 1
6 2
;
·1·
若侵犯了您的版权利益,敬请来信通知我们! ℡
(2)
1 6
4 8
5 5
6 4
3 7
2 2
8 1
7 3
;
m (3)
2 6
5 3
4 1
3 2
9 7
8 9
6 8
7 5
1 4
;
? .co (4)
1 2
3 4
5 6
··· ···
2n − 1 2n
2 1
4 3
(2) 48.
(3) 12.
(4) 160.
(5) a2b2.
(6) (a − a1)(a − a2)(a − a3)(a − a4).
#$
NO>P P3(n) =
n(n2 − 6
7)
.
P3(n) − P3(n − 1) =
(n
−
2)(n 2
+
1)
,
2–3
d :O V W 1.
)
# Y:
m (1) a31a12a23a44; o : (1) +.
(2) a31a23a14a42a65a56.
.c (2) +.
: ) iy : 67W 2. ( "
x000a
n 0 ··· 0 0
课后答案网 0 1 0 ··· 0 0
0 0 2 ··· 0 0 (5) . . . . . . . . . . . . . . . . . . . . . . . . ;
1 a a ··· a 0 2 a ··· a (6) 0 0 3 · · · a .
0 0 0 ··· 0 n−1
3 1 6
0 14 0
27 0 0 0
0 0 0
0 0 0
.
k 3 −4 −14 0 0
课后答案网 2–5
xg 1.
):
ab ac ae
(1) bd −cd ed ; bf cf −ef
3111
(2)
1 1
3 1
1 3
1 1
;
1113
11 1 1
1234
(3)
1 1
F] F] (2) " gf - , J g "- .
: (1)
F] ! C s1, s2 ∈ S, f (s1) = f (s2), J gf (s1) = gf (s2). ! gf
, s1 = s2,
% f F].
(2)
F] !1 C s ∈ S , ! gf - ,
k s ∈ S, ' gf (s) = s , % s = f (s) ∈ S , '
m (1)
1 −3
0 −2
4 10
−1 −11
;
−1 1 −15 8
.co 2 0
0 0
1 −1 2 3 4
(2)
2 −1 1
1 2 5
−1 1 −8
2 1 −5
0 3 −12
.
3 −7 8 9 13
:
(1)
1 −3
19 −35
0 −54
0 0
.
w −1 −30 a 1 0 0
hd (2)
2 −1 1
5. xgK ? :
(1) 135 · · · (2n − 1)(2n)(2n − 2) · · · 642;
(2) (2n + 1)(2n)(2n − 1) · · · 321.
: (1) n(n − 1).
(2) n(2n + 1).
YJ ? ? 6.
p
" a, s p−1
.
: a.
6 5
··· ···
2n 2n − 1
.
: (1)
8, .
? (2)
20, .
? w (3)
11, .
? a & & (4)
n,
Cn
.
xg dK ? d< & 3.
,W
:
h(1) 5317246;
(2) 384576192;
k(3) 246813579;
(4) 987654321.
P2(3) = 1+P1(2)+P2(2),
kl U# #$ P2(n) = (n − 2) + (n − 1) + · · · + 2 =
(n
−
2)(n 2
+
1)
.
b n = 3 R, <y , >P
P3(n) = 1 + P1(n − 1) + P2(n − 1) + P3(n − 1),
F]?
(3) f : N −→ N
课后答案网 n −→ n+1
: (1) n , n-, U> .
(2) , -, > .
(2) , n-, U> .
T T F] T 2. f" S
S ,g" S
(1) gf "F], J f "F];
T S F] , ST:
2) −→ i1i2 · · · in−1 n.
k ? K #$
" 2 f "
%P , "2
>N
NO>P
P2(n) = 1 + P1(n − 1) + P2(n − 1).
课后答案网 P2(n − 1) = 1 + P1(n − 2) + P2(n − 2),
................................
n %P . b k = 2 R,
S@ )P :
a (a) 12 · · · n − 2 n − 1 −→ 12 · · · n − 3 n n − 2 n − 1;
d ? (b) i1i2 · · · in−1 (
1) −→ i1i2 · · · in−2 n in−1;
h ? (c) i1i2 · · · in−1 (
.com 2–1
aw 1. |F]GHF], GH-F], GH>
(1) f : C −→ R
hd' pq I / F] a −→ |a|
(2) V "
, −→e "H ,
σ : V −→ V
k −→a −→ σ(−→a ) = −→a − 2(−→a · −→e )−→e
1234567 5631274
, p−1qp =
1234567 7541326
, p = (13)(34)(47)(25)(56),
, h q = (12)(25)(56)(64)(47)(73). ( 7f)U H).
xg YJ ? d< & k 2.
,W
:
(1)
1 3
2 4
3 5
i1 · · · ir−1ir+1irir+2 · · · in,