高一期末考试立体几何复习题
高一年级期末复习专题 立体几何大题综合原卷版
1期末专题立体几何大题综合1.(梅州·高一统考期末)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为菱形,6AB =,6ABC π∠=,5PA =,点E 、F 分别为棱PD 、AB的中点.(1)证明:AE //平面PCF ;(2)求三棱锥E PCF -的体积.2.(高一统考期末)如图,已知三棱锥-P ABC ,PA ⊥平面ABC ,90ACB ∠= ,60BAC ∠= ,2PA AC ==,M 、N 分别是PB 、AB的中点.(1)求证:MN //平面PAC ;(2)求直线CM 与平面ABC 所成角的正弦值.3.(珠海·高一统考期末)如图,在三棱柱111ABC A B C -中,1,BC AC BC CC ⊥⊥,点D 是AB 的中点.(1)求证:1//AC 平面1CDB ;(2)若侧面11AAC C 为菱形,求证:1AC ⊥平面1A BC .4.(韶关·高一统考期末)如图,已知正方体1111ABCD A B C D -的棱长为2,E ,F 分别是AB ,1AA的中点.(1)求直线1B E 与直线11C D 所成角的正切值;(2)求三棱锥1D B EF -的体积.5.(湛江·高一统考期末)四棱锥A BCDE -的侧面ABC 是等边三角形,EB ⊥平面ABC ,DC ⊥平面ABC ,1BE =,2BC CD ==,F 是棱AD 的中点.(1)证明:EF ∥平面ABC ;(2)求四棱锥A BCDE -的体积.6.(韶关·高一校考期末)如图,PA 垂直于⊙O 所在的平面,AC 为⊙O 的直径,3AB =,4BC =,PA =AE PB ⊥,点F 为线段BC上一动点.(1)证明:平面AEF ⊥平面PBC ;(2)当点F 与C 点重合,求PB 与平面AEF 所成角的正弦值.7.(江门·高一统考期末)如图,在正方体1111ABCD A B C D -中,点E 为1DD的中点.(1)求证:1//BD 平面ACE ;(2)若2AB =,从正方体中截去三棱锥D ACE -后,求剩下的几何体的体积.8.(肇庆·高一统考期末)如图,在三棱柱111ABC A B C -中,侧面11AAC C 为菱形,160A AC ∠=︒,且1AB AA ⊥,11BC A C ^.(1)证明:平面ABC ⊥平面11A ACC ;(2)若AB AC =,求二面角1A BC A --的余弦值.9.(肇庆·高一统考期末)如图,四棱锥P ABCD -的底面ABCD 是边长为2的正方形,E,F ,M 分别为边PD ,PB ,PC 的中点,N 为BF 的中点.(1)证明:MN ∥平面AEF ;(2)若PA PD =,11PC ,直线PA 与平面ABCD 所成的角为60°,求三棱锥P FEA -的体积.10.(揭阳·高一统考期末)如图在直三棱柱111ABC A B C -中,90ABC ∠=︒,2BC =,14CC =,E 是1BB 上的一点,且11EB =,D 、F 、G 分别是1CC 、11B C 、11AC 的中点,EF 与1B D 相交于H .(1)求证:1B D ⊥平面ABD ;(2)求平面EGF 与平面ABD 的距离.11.(高一统考期末)如图,在三棱锥S—ABC 中,SC ⊥平面ABC ,点P 、M 分别是SC 和SB 的中点,设PM=AC =1,∠ACB =90°,直线AM 与直线SC 所成的角为60°.(1)求证:平面MAP ⊥平面SAC .(2)求二面角M—AC—B 的平面角的正切值;12.(韶关·高一学校考期末)如图,直三棱柱ABC ﹣A 'B 'C '中,D 是AB 的中点.(1)求证:直线BC ′∥平面A 'CD ;(2)若AC =CB ,求异面直线AB '与CD 所成角的大小.13.(广州·高一华南师大附中校考期末)已知平面四边形ABCD ,2AB AD ==,60BAD ∠=︒,30BCD ∠=︒,现将ABD △沿BD 边折起,使得平面ABD ⊥平面BCD ,2此时AD CD ⊥,点P 为线段AD 的中点.(1)求证:BP ⊥平面ACD ;(2)若M 为CD 的中点,求MP 与平面BPC 所成角的正弦值;(3)在(2)的条件下,求二面角P BM D --的平面角的余弦值.14.(广州·高一校联考期末)如图,把正方形纸片ABCD 沿对角线AC 折成直二面角,点E ,F 分别为AD ,BC 的中点,点O 是原正方形ABCD 的中心.(1)求证:AB 平面EOF ;(2)求直线CD 与平面DOF 所成角的大小.15.(广州·高一统考期末)如图,在正三棱柱111ABC A B C -中,已知13AB AA ==,且D 为11AC的中点.(1)求证:1//A B 平面1B CD ;(2)求1A B 与平面11BCC B 所成角的余弦值.16.(广州·高一统考期末)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,122AB BC AD ===,90BAD ABC ∠=∠=︒,O 是AD的中点.(1)求证:平面PAC ⊥平面POB ;(2)点M 在棱PC 上,满足(01)PM PC λλ=<>,且三棱锥P ABM -的体积为3,求λ的值及二面角M AB D --的正切值.17.(东莞·高一统考期末)如图,在圆柱12O O 中,AB 是圆2O 的直径,CD 和EF 分别是圆柱轴截面上的母线.(1)证明:1//O D 平面ABF ;(2)若4DE EF ==,AF BF =,证明AB ⊥平面CDEF ,求点D 到平面ABF 的距离.18.(惠州·高一统考期末)如图,在Rt ABC △中.90C ∠=︒,3BC =,6AC =,D ,E 分别是AC ,AB 上的点,且//DE BC ,将ADE V 沿DE 折起到1A DE △的位置,使1A D CD ⊥,如图.(1)求证:BC ⊥平面1A DC ;(2)若2CD =,F 为1A D 的中点,作出过F 且与平面1A BC 平行的截面,并给出证明;19.(清远·高一统考期末)如图,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别为棱1DD 、1CC的中点.(1)证明:平面1//AEC 平面BDF ;(2)求异面直线1AC 与BF 所成角的余弦值.20.(佛山·高一统考期末)如图,四棱锥P ABCD -中,//AB CD ,90BAD ∠=︒,12PA AD AB CD ===,侧面PAD ⊥底面ABCD ,E 为PC的中点.(1)求证:BE ⊥平面PCD ;(2)若PA PD =,求二面角P BC D --的余弦值.21.(汕尾·高一统考期末)在直三棱柱111ABC A B C -中,D ,E 分别是1AA ,11B C 的中点,12AA =,1AC BC ==,AB =1DC BD ⊥.(1)求证:1//A E 平面1C BD ;(2)求点1A 到平面1C BD 的距离.22.(韶关·高一统考期末)如图,在四棱锥S -ABCD 中,底面ABCD 是直角梯形,AD BC ∥,AB BC ⊥,侧面SAB ⊥底面ABCD ,3BC =,1AD =,M 是棱SB 上靠近点S的一个三等分点.(1)求证:平面SBC ⊥平面SAB ;(2)求证://AM 平面SCD ;(3)若△SAB 是边长为2的等边三角形,求直线SC 与平面ABCD 所成角的正弦值.23.(广州·高一校联考期末)如图,在四棱锥P ABCD -中,平面PAD ⊥平面,ABCD BC ∥平面1,2PAD BC AD =,90ABC ∠=︒,E 是PD的中点.(1)求证:BC AD ∥;(2)求证:平面PAB ⊥平面PAD ;(3)若M 是线段CE 上任意一点,试判断线段AD 上是否存在点N ,使得MN ∥平面PAB ?请说明理由.。
高一数学立体几何复习试卷(含答案)
2019-2020高一数学立体几何复习试卷定义定理图形(1)定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条斜线和这个平面所成的角.(2)线面角θ的范围:θ∈]2,0[π.6.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:过二面角棱上的一点,在两个半平面内分别作与棱垂直的射线,则两射线所成的角叫做二面角的平面角.(二)考点剖析题型一:定理与性质的判断1. 设α,β,γ为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题:①若α⊥γ,β⊥γ,则α//β;②若m ⊂α,n ⊂α,m//β,n//β,则α//β; ③若α//β,l ⊂α,则l//β;④若α∩β=l ,β∩γ=m ,γ∩α=n ,l//γ,则m//n . 其中真命题的个数是( ) A. 1 B. 2 C. 3 D. 4 2. 下列命题错误的是( )A. 不在同一直线上的三点确定一个平面B. 两两相交且不共点的三条直线确定一个平面C. 如果两个平面垂直,那么其中一个平面内的直线一定垂直于另一个平面D. 如果两个平面平行,那么其中一个平面内的直线一定平行于另一个平面3.设m、n是两条不同的直线,α、β为两个不同的平面,则下列四个命题中不正确的是()A. m⊥α,n⊥β且α⊥β,则m⊥nB. m⊥α,n//β且α//β,则m⊥nC. m//α,n⊥β且α⊥β,则m//nD. m⊥α,n⊥β且α//β,则m//n4.设l为直线,α,β是两个不同的平面,下列命题中正确的是()A.若l//α,l//β,则α//βB. 若l⊥α,l⊥β,则α//βC. 若l⊥α,l//β,则α//βD. 若α⊥β,l//α,则l⊥β题型二:异面直线5.如图所示,在正方体ABCD−A1B1C1D1中,O是底面正方形ABCD的中心,M是D1D的中点,N是A1B1的中点,则直线NO,AM的位置关系是()A. 平行B. 相交C. 异面且垂直D. 异面不垂直6.如图,三棱柱ABC−A 1B1C1中,侧棱AA1⊥底面A1B1C1,△A1B1C1是正三角形,E是BC中点,则下列叙述正确的是()A. CC1与B1E是异面直线B. AE,B1C1为异面直线,且AE⊥B1C1C. AC⊥平面ABB1A1D. A1C1//平面AB1E7.如图所示,在正方体ABCD—A 1B1C1D1中,E,F分别是AB1,BC1的中点,则异面直线EF与C1D所成的角为()A.30°B. 45°C. 60°D. 90°题型三:表面积与体积8.某简单几何体的三视图(俯视图为等边三角形)如图所示(单位:cm),则该几何体的体积(单位:cm3)为()A. 18B. 6√3C. 3√3D. 2√39.某三棱锥的三视图如图所示(单位:cm),则该三棱锥的表面积(单位:cm2)是()A.16B. 32C. 44D. 6410.如图,在圆锥SO中,O是底面圆的圆心,AB为一条直径,且AB=4,SA=4,C为SB的中点,则在圆锥SO的侧面上,从点A到点C 的最短路径为()A. 2√2B. 4C. 2√5D. 2√6题型四:线面、面面平行的判定及性质11.如图,在四棱锥P−ABCD中,PA⊥平面ABCD,底面ABCD是菱形,∠BAD=π,3 AB=2,PC=2√7,E,F分别是棱PC,AB的中点.(1)证明:EF//平面PAD;(2)求三棱锥C−AEF的体积.12.如图,在四棱锥P−ABCD中,底面ABCD是矩形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.求证:(1)PA//平面EDB;(2)DE⊥平面PBC.13.如图所示,在三棱柱ABC−A1B1C1中H是A1C1的中点,D1,D分别为B1C1,BC的中点,,求证:(1)求证:HD//平面A1B1BA.(见图1)(2求证:平面A 1BD1//平面AC1D.(图2)14.如图,在多面体ABCDEF中,四边形ABCD是正方形,BF⊥平面ABCD,DE⊥平面ABCD,BF=DE,M为棱AE的中点.(1)求证:平面BDM//平面EFC;(2)若AB=1,BF=2,求三棱锥A−CEF的体积.15.如图,在长方体ABCD−A1B1C1D1中,E,F,G分别是AD,AB,C1D1的中点,求证:(1)平面D1EF//平面BDG;(2)若AB=BB1=1,BC=2,P为BC的中点,求异面直线BC1与FP所成角的余弦值.题型五:线面、面面垂直的判定与性质16.如图,在四棱锥P−ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD=2,AB=3,点E为线段PD的中点.(1)求证:AE⊥PC;(2)求三棱锥P−ACE的体积.17.如图所示,在四棱锥P−ABCD中,AD⊥AB,AD//BC,△PDA,△PAB都是边长为1的正三角形.(1)证明:平面PDB⊥平面ABCD;(2)求点C到平面PAD的距离.18.如图,三棱锥P−ABC中,点D,E分别为AB,BC的中点,且平面PDE⊥平面ABC.(1)求证:AC//平面PDE;(2)若PD=AC=2,PE=√3,求证:平面PBC⊥平面ABC.题型六:线面夹角与二面角19.如图,在四棱锥P−ABCD中PA⊥底面ABCD,∠DAB为直角,AB//CD,AD=CD=2AB=2PA=2,E,F分别为PC,CD的中点.(1)试证:CD⊥平面BEF;(2)求BC与平面BEF所成角的大小;(3)求三棱锥P−DBE的体积.20.如图,在四棱锥P−ABCD中,PD⊥平面ABCD,PD=2,DC=BC=1,AB=2,AB//DC,∠BCD=90°.(1)求证:AD⊥PB;(2)求平面DAP与平面BPC所成锐二面角的余弦值.21.如图,直三棱柱ABC−A1B1C1中,AB⊥AC,AB=1,AC=2,AA1=2,D,E分别为BC,A1C1的中点.(1)证明:C 1D//平面ABE;(2)求CC1与平面ABE所成角的正弦值.22.如图,在五边形ABCDE中,AB⊥BC,AE//BC//FD,F为AB的中点,AB=FD=2BC=2AE.现把此五边形ABCDE沿FD折成一个60∘的二面角.(1)求证:直线CE//平面ABF;(2)求二面角E−CD−F的平面角的余弦值.2019-2020高一数学立体几何复习试卷答案1.【答案】B【解答】解:①中α⊥γ,β⊥γ,则α与β相交或α//β,故①不正确; ②不正确,α与β有可能相交; ③正确;④中利用线面平行的性质定理可知其正确.2.解:由公理3可得,不在同一直线上的三点确定一个平面,故A 正确;由公理3和公理1可得,两两相交且不共点的三条直线确定一个平面,故B 正确; 由面面垂直的性质定理可得,如果两个平面垂直,那么其中一个平面内的直线若与交线垂直,则垂直于另一个平面,故C 错误;由面面平行的性质可得,如果两个平面平行,那么其中一个平面内的直线一定平行于另一个平面,故D 正确. 故选:C .3.解:A ,分别垂直于两个垂直的平面的两条直线一定垂直,故该命题正确; B ,由m ⊥α,α//β可得出m ⊥β,再由n//β可得出m ⊥n ,故该命题正确;C ,m//α,n ⊥β且α⊥β成立时,m ,n 两直线的关系可能是相交、平行、异面,故该命题错误;D ,n ⊥β且α//β,可得出n ⊥α,再由m ⊥α,可得出m//n ,故该命题正确. 故选C .4.解:对于A 项,在长方体中,任何一条棱都有和它相对的两个平面平行,但这两个平面相交,所以A 不对;对于B 项,若l ⊥α,l ⊥β,由线面垂直的性质可得α//β ,故B 正确;对于C 项,l ⊥α,l//β,由线面平行的性质可得β内存在一直线m ,使得l//m ,再由线面垂直的判定定理得m ⊥α,从而由面面垂直的判定定理得α⊥β,所以C 不对; 对于D 项,在长方体中,令下底面为β,左边侧面为α,此时α⊥β,在右边侧面中取一条对角线l ,则l//α,但l 与β不垂直,故D 不对; 故选B . 5.【答案】C【解答】解:建立如图所示的空间直角坐标系,连接BD , 设正方体的棱长为2,则A(2,0,0),M(0,0,1),O(1,1,0),N(2,1,2),则NO ⃗⃗⃗⃗⃗⃗ =(−1,0,−2),AM ⃗⃗⃗⃗⃗⃗ =(−2,0,1),NO ⃗⃗⃗⃗⃗⃗ ⋅AM ⃗⃗⃗⃗⃗⃗ =0, 易知直线NO ,AM 不相交,所以直线NO ,AM 的位置关系是异面且垂直, 故选C .6.【答案】B解:由三棱柱ABCA 1B 1C 1中,侧棱AA 1垂直底面A 1B 1C 1, 底面三角形A 1B 1C 1是正三角形,E 是BC 中点,知:在A 中,因为CC 1与B 1E 在同一个侧面中,故CC 1与B 1E 不是异面直线,故A 错误;在B 中,因为AE ,B 1C 1为在两个平行平面中且不平行的两条直线,故它们是异面直线,又底面三角形A 1B 1C 1是正三角形,E 是BC 中点,故AE ⊥B 1C 1,故B 正确;在C 中,由题意知,上底面ABC 是一个正三角形,故不可能存在AC ⊥平面ABB 1A 1,故C 错误;在D 中,因为A 1C 1所在的平面与平面AB 1E 相交,且A 1C 1与交线有公共点,故A 1C 1//平面AB 1E 不正确,故D 错误.故选B .7.【答案】C解:如下图:连接A1C1,A1D.取A1B1、B1C1的中点分别为G、H,连接EG、GH、HF,则GH//A1C1.因为E,F分别是AB1,BC1的中点,所以GE=//12A1A,HF=//12B1B,而ABCD−A1B1C1D1是正方体,因此GE=//HF,即四边形GEFH是平行四边形,所以EF//GH,因此EF//A1C1,所以异面直线EF与C1D所成的角就是直线A1C1与C1D所成的角(或补角),即∠A1C1D.又因为ABCD−A1B1C1D1是正方体,所以ΔA1C1D是正三角形,因此∠A1C1D=60°,即异面直线EF与C1D所成的角为60°.故选C.8.【答案】C解:由题意可知几何体是底面为正三角形的三棱柱,底面边长为2,高为3,所以几何体的体积为:√34×22×3=3√3.故选C.9.【答案】B解:根据三视图知:该几何体是三棱锥,底面是直角三角形,PA⊥平面ABCD,BC⊂平面ABCD,∴PA⊥BC,又AC⊥BC,PA,AC⊂平面PAC,PA∩AC=A,∴BC⊥平面PAC,又PC⊂平面PAC,∴BC⊥PC,∴该几何体的表面积为S=12×(3×4+5×4+3×4+4×5)=32,故选B.10.【答案】C解:由题得圆锥底面圆半径为2,将圆锥的侧面展开得到一个扇形,连接AC,则AC即A到C的最短路径.扇形中弧AB的长为2π,∠ASB=2π4=π2,则AC=√SA2+SC2=√42+22=2√5.故选C.11.【答案】(1)证明:如图,取PD中点为G,连结EG,AG,则EG//CD,EG=12CD,AF//CD,AF=12CD,所以EG与AF平行并且相等,所以四边形AGEF是平行四边形,所以EF//AG,AG⊂平面PAD,EF⊄平面PAD.所以EF//平面PAD.(2)连结AC,BD交于点O,连结EO,因为E为PC的中点,所以EO为△PAC的中位线,又因为PA⊥平面ABCD,所以EO⊥平面ABCD,即EO为三棱锥E−AFC的高.在菱形ABCD中可求得AC=2√3,在Rt△PAC中,PC=2√7,所以PA=√PC2−AC2=4,EO=2,所以S▵ACF=12S▵ABC=12×12×AB×BCsin∠ABC=√32,所以V C−AEF=V E−ACF=13S▵ACF×EO=13×√32×2=√33.12.【答案】证明:(1)连接AC交BD于O,连接OE.∵E是PC的中点,O是AC的中点,∴PA//EO,又PA⊄平面BED,EO⊂平面BED,∴PA//平面BED.(2)∵侧棱PD⊥底面ABCD,BC⊂底面ABCD,∴PD⊥BC,∵底面ABCD是矩形,∴DC⊥BC,∵PD∩DC=D,PD⊂平面PDC,DC⊂平面PDC,∴BC⊥平面PDC,又DE⊂平面PDC,∴BC⊥DE,∵PD=DC,E是PC的中点.∴DE⊥PC,∵BC∩PC=C,BC⊂平面PBC,PC⊂平面PBC,∴DE⊥平面PBC.13.【答案】证明:(1)如图所示,连接HD,A1B,∵D为BC1的中点,H为A1C1的中点,∴HD//A1B.又HD⊄平面A1B1BA,A1B⊂平面A1B1BA,∴HD//平面A1B1BA.(2)如图所示,连接A1C交AC1于点M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B//DM.∵A1B⊂平面A1BD1,DM⊄平面A1BD1,∴DM//平面A1BD1,又由三棱柱的性质知,D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1//BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1//平面A1BD1.又∵DC1∩DM=D,DC1,DM⊂平面AC1D,∴平面A1BD1//平面AC1D.14.【答案】(1)证明:如图,设AC与BD交于点N,则N为AC的中点,连结MN,又M为棱AE的中点,∴MN//EC.∵MN⊄平面EFC,EC⊂平面EFC,∴MN//平面EFC.∵BF⊥平面ABCD,DE⊥平面ABCD,且BF=DE,∴BF//DE且BF=DE,∴四边形BDEF为平行四边形,∴BD//EF.∵BD⊄平面EFC,EF⊂平面EFC,∴BD//平面EFC.又MN∩BD=N,MN,BD⊂平面BDM,∴平面BDM//平面EFC.(2)连结EN,FN.在正方形ABCD中,AC⊥BD,又BF⊥平面ABCD,∴BF⊥AC.又BF∩BD=B,BF,BD⊂平面BDEF,∴AC⊥平面BDEF,又N是AC的中点,∴V三棱锥A−NEF =V三棱锥C−NEF,∴V三棱锥A−CEF =2V三棱锥A−NEF=2×13×AN×S△NEF=2×13×√22×12×√2×2=23,∴三棱锥A−CEF的体积为23.15.【答案】(1)证明:∵E,F分别是DA,AB的中点,∴EF//BD,又EF不在平面BDG内,∴EF//平面BDG,∵D1G//FB,且D1G=FB,∴四边形D1GBF是平行四边形,则D1F//GB,又D1F不在平面BDG内,GB⊂平面BDG,∴D1F//平面BDG,∴EF∩D1F=F,∴平面D1EF//平面BDG;(2)解:连接AC,AD1,∵F,P分别是AB,BC的中点,∴AC//FP,∵D 1C 1//DC ,DC//AB ,∴D 1C 1//AB ,∵D 1C 1=DC ,DC =AB ,∴D 1C 1=AB ,∴AD 1C 1B 是平行四边形,∴AD 1//BC 1,∠D 1AC(或其补角)为所求角, ∴AC =√5, AD =√5,CD 1=√2.16.【答案】解:(1)证明:∵PA ⊥平面ABCD ,∴PA ⊥CD ,又在矩形ABCD 中,CD ⊥AD ,∴CD ⊥平面PAD ,∵AE ⊂平面PAD ,∴CD ⊥AE ,又∵PA =AD ,E 为PD 中点,∴AE ⊥PD ,∴AE ⊥平面PCD ,∴AE ⊥PC ;(2)∵点E 为线段PD 的中点.∴V P−ACE =V E−PAC =12V P−ACD =12×13×2×12×2×3=1.17.【答案】解析:(1)证明:∵△PAB ,△PAD 都是正三角形, ∴AD =AB =PD =PB =1.设O 为BD 的中点,连接AO ,PO ,如图,∴PO ⊥BD ,AO ⊥BD .在Rt △ADB 中,AD =AB =1,∴BD =√2.∵O 为BD 的中点,∴OA =12BD =√22. 在等腰△PDB 中,PD =PB =1,BD =√2,∴PO =√22. 在△POA 中,PO =√22,OA =√22,PA =1, ∴PO 2+OA 2=PA 2,∴PO ⊥OA .又∵BD ∩OA =O ,BD ,OA ⊂平面ABCD ,∴PO ⊥平面ABCD .又∵PO ⊂平面PDB ,∴平面PDB ⊥平面ABCD .(2)由(1)知PO ⊥平面ABCD ,且PO =√22.设点C到平面PAD的距离为d,则V C−PAD=V P−ACD,即13SΔPAD⋅d=13SΔCAD⋅PO,所以√34⋅d=12×1×1×√22,解得d=√63,∴点C到平面PAD的距离为√63.18.【答案】证明:(1)因为点D,E分别为AB,BC的中点,所以DE为△ABC的中位线,所以DE//AC.因为AC⊄平面PDE,DE⊂平面PDE,所以AC//平面PDE.(2)因为点D,E分别为AB,BC的中点,所以DE=12AC.又因为AC=2,所以DE=1,因为PD=2,PE=√3,所以PD2=PE2+DE2,因此在△PDE中,PE⊥DE.又平面PDE⊥平面ABC,且平面PDE∩平面ABC=DE,PE⊂平面PDE,所以PE⊥平面ABC,又因为PE⊂平面PBC,所以平面PBC⊥平面ABC.19.【答案】(1)证明:∵AB//CD,CD=2AB,F为CD的中点,∴四边形ABFD为平行四边形,又∠DAB为直角,∴四边形ABFD为矩形,∴DC⊥BF,DC⊥AD,又PA⊥底面ABCD,CD⊂平面ABCD,∴DC⊥PA,∵PA⊂平面PAD,AD⊂平面PAD,且PA∩AD=A,∴DC⊥平面PAD,又PD⊂平面PAD,∴DC⊥PD,在△PCD内,E、F分别是PC、CD的中点,∴EF//PD,∴DC⊥EF,又EF∩BF=F,EF,BF⊂平面BEF由此得CD⊥平面BEF.(2)解:由(1)知,DC⊥平面BEF,则∠CBF 为BC 与平面BEF 所成角,在Rt △BFC 中,BF =AD =2,CF =12CD =1, ∴tan∠CBF =12, 则BC 与平面BEF 所成角的大小为. (3)由(1)知,CD ⊥平面PAD ,则平面PDC ⊥平面PAD , 在Rt △PAD 中,设A 到PD 的距离为h ,即A 到平面PCD 的距离为h , 则PA ·AD =PD ·ℎ,得ℎ=PA⋅ADPD =2√5=2√55, ∴A 到平面PDC 的距离为2√55, ∵AB//CD ,,∴AB//平面PCD ,即A 、B 到平面PCD 的距离相等,∴B 到平面PDC 的距离为2√55, ∵E 是PC 的中点,∴S △PDE =12S △PDC =12×√5×22=√52, ∴V P−DBE =V B−PDE =13×√52×2√55=13. 20.【答案】解:(1)在四边形ABCD 中,连接BD ,由DC =BC =1,AB =2,,在△ABD 中,BD =AD =√2,又AB =2,因此AD ⊥BD ,又PD ⊥面ABCD ,AD ⊂面ABCD ,∴PD ⊥AD ,PD ∩BD =D,PD,BD ⊂面PBD ,从而AD ⊥面PBD . 而PB ⊂面PBD ∴AD ⊥PB .(2)延长BC 和AD 交于点E ,连接PE ,又AB 平行于CD ,则CE =BC =1,DE =AD =√2.过C 点作CM ⊥PE 交于PE 上一点M ,过C 作CH ⊥面PDE 于点H , 则∠CMH 为二面角C −PE −D 的平面角α.在直角三角形PCE 中,CM =1×√5√6. 又V C−PDE =V P−DCE ,12×(12×1×1)=CH ·(12×2×√2),CH =√22. sinα=CH CM =√155,cosα=√105, 所求二面角的余弦值为√105. 21.【答案】证明:(1)取AB 中点H ,连接EH,HD ,在直三棱柱ABC −A 1B 1C 1中,EC 1//__12AC .∵D 为BC 中点,H 为AB 中点,∴HD //̲̲̲12AC, HD //̲̲̲EC 1,∴四边形DHEC 1为平行四边形,∴DC 1//HE.∵EH ⊂平面ABE ,C 1D ⊈平面ABE ,∴C 1D//平面ABE .(2)直三棱柱ABC −A 1B 1C 1中,AA 1⊥平面ABC ,∴AA 1⊥AB . 又∵AB ⊥AC ,且AC ∩AA 1=A ,∴AB ⊥平面ACC 1A 1.过A 1作A 1F ⊥AE 于F.∵A 1F ⊂平面ACC 1A 1,∴AB ⊥A 1F .又AB ∩AE =A, ∴A 1F ⊥平面ABE .又CC 1//AA 1, ∴∠A 1AE 即为CC 1与平面ABE 所成的角.∵AA 1=2, A 1E =1, ∴AE =√5, ∴sin∠A 1AE =1√5=√55. 22.【答案】解:(Ⅰ)证明:∵AE//DF ,BC//FD ,∴AE//BC , 又∵BC =AE ,∴四边形ABCE 为平行四边形,∴CE//AB .又因为CE ⊄平面ABF ,AB ⊂平面ABF ,所以直线CE//平面ABF ;(Ⅱ)解:如图,取FD 得中点G ,连接EG 、CG ,在△CEG 中,作EH ⊥CG ,垂足为H ,在平面BCDF 中,作HI ⊥CD ,垂足为I ,连接EI .∵AE =FG =BC ,AE//FG//BC ,∴AF//EG ,BF//CG .又因为DF ⊥AF ,DF ⊥BF ,故DF ⊥平面ABF ,所以DF ⊥平面ECG , ∵EH ⊥CG ,DF ⊥EH ,∴EH ⊥平面CGD ,∴EH ⊥CD ,又∵HI ⊥CD ,∴CD ⊥平面EHI ,所以CD ⊥EI ,从而∠EIH 为二面角E −CD −F 的平面角.设BC =AE =1,则FG =GD =CG =GE =1,由于∠EGC 为二面角C −FD −E 的平面角,即∠EGC =60°,所以在△CEG 中,HG =CH =12,EH =√32,HI =CHsin45°=√24, 所以EI =√144,所以cos∠EIH =√77.。
高一数学立体几何练习题及部分答案大全.docx
立体几何试题一.选择题(每题 4 分,共 40 分)1. 已知 AB3003001500空间,下列命题正确的个数为()(1)有两组对边相等的四边形是平行四边形, (2)四边相等的四边形是菱形(4)有两边及其夹角对应相等的两个三角(3)平行于同一条直线的两条直线平行 ;形全等A 1B 2C 3D 43.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是()A平行B相交C在平面内D平行或在平面内4. 已知直线 m过平面外一点,作与平行的平面,则这样的平面可作()A 1 个或 2 个B 0个或1个C1个 D 0个6.如图 , 如果 MC 菱形 ABCD 所在平面 , 那么 MA与 BD的位置关系是 ( )A平行B垂直相交C异面D相交但不垂直7. 经过平面外一点和平面内一点与平面垂直的平面有()A 0 个B 1个C无数个 D 1个或无数个8.下列条件中 , 能判断两个平面平行的是 ( )B一个平面内的两条直线平行于另一个平面C一个平面内有无数条直线平行于另一个平面D一个平面内任何一条直线都平行于另一个平面9. 对于直线m ,n 和平面,, 使成立的一个条件是 ( )A m // n, n, mB m // n, n,mC m n,I m, nD m n, m //, n //)10 . 已知四棱锥 , 则中 , 直角三角形最多可以有 (A 1个B2个 C 3个D4个二.填空题(每题 4 分,共16 分)11. 已知ABC的两边 AC,BC分别交平面于点M,N,设直线AB与平面交于点O,则点 O与直线 MN的位置关系为 _________12.过直线外一点与该直线平行的平面有 ___________个,过平面外一点与该平面平行的直线有_____________条13. 一块西瓜切 3 刀最多能切 _________块14.将边长是 a 的正方形 ABCD沿对角线 AC 折起 , 使得折起后 BD得长为 a, 则三棱锥D-ABC的体积为 ___________三、解答题15(10 分)如图,已知 E,F 分别是正方形ABCD A1B1C1 D1的棱 AA1和棱 CC1上的点,且 AE C1 F 。
高一数学立体几何练习题及答案
高一数学立体几何练习题及答案一、选择题1. 下列哪个图形不是立体图形?A. 立方体B. 圆锥C. 圆柱D. 正方形答案:D2. 已知一个立方体的边长为5cm,求它的表面积和体积分别是多少?A. 表面积:150cm²,体积:125cm³B. 表面积:100cm²,体积:125cm³C. 表面积:150cm²,体积:100cm³D. 表面积:100cm²,体积:100cm³答案:A3. 以下哪个选项可以形成一个正方体?A. 六个相等的长方体B. 一个正方形和一个长方体C. 六个相等的正方形D. 一个正方形和一个正方体答案:C4. 以下哪个图形可以形成一个圆柱?A. 一个正方形和一个长方体B. 一个圆和一个长方体C. 一个长方形和一个长方体D. 一个正方形和一个正方体答案:C5. 以下哪个选项可以形成一个圆锥?A. 一个圆和一个长方体B. 一个圆和一个正方体C. 一个正方形和一个长方体D. 一个正方形和一个正方体答案:B二、填空题1. 已知一个正方体的表面积为96cm²,求它的边长是多少?答案:4cm2. 已知一个圆柱的半径为3cm,高为10cm,求它的表面积和体积分别是多少?答案:表面积:198cm²,体积:90π cm³3. 以下哪个选项可以形成一个长方体?A. 六个相等的正方形B. 一个圆和一个长方形C. 六个相等的长方形D. 一个正方形和一个正方体答案:C三、解答题1. 某长方体的长、宽、高分别为3cm、4cm、5cm,请回答以下问题:(1)它的表面积是多少?(2)它的体积是多少?答案:(1)表面积 = 2(长×宽 + 长×高 + 宽×高)= 2(3×4 + 3×5 + 4×5)= 2(12 + 15 + 20)= 2(47)= 94cm²(2)体积 = 长×宽×高= 3×4×5= 60cm³2. 某圆锥的半径是5cm,高是12cm,请回答以下问题:(1)它的表面积是多少?(2)它的体积是多少?答案:(1)斜面积= π×半径×斜高= π×5×13≈ 204.2cm²(2)体积= (1/3)π×半径²×高= (1/3)π×5²×12≈ 314.2cm³四、解析题某正方体的表面积是96cm²,它的边长是多少?解答:设正方体的边长为x,由表面积的计算公式可得:表面积 = 6x²96 = 6x²16 = x²x = 4所以,该正方体的边长为4cm。
高中数学立体几何大题练习与答案
一、解答题1.(2023高一下·重庆沙坪坝·百强名校期末)如图,有一个正四棱柱,E 、F 高中数学立体几何大题练习与答案分别为底面棱A D 11,D C 11的中点,=AB 4,=AA 61,点G 在AA 1上,且=AA AG 321.(1)判断直线BG 是否在平面BEF 内?说明理由; (2)求二面角A EF G −−1的余弦值.【答案】(1)直线BG 在平面BEF 内,理由见解析【分析】(1)建立空间直角坐标系,求平面BEF 的法向量,根据法向量与BG 的关系可判断;(2)运用几何法,得到二面角的平面角即可求解.【详解】(1)以D 为坐标原点,DA ,DC ,DD 1分别为x ,y ,z 轴建立空间直角坐标系 则E F B G (2,0,6),(0,2,6),(4,4,0),(4,0,4)所以(2,2,0)EF =−,(2,4,6)BE =−−,(0,4,4)BG =−设平面BEF 的法向量为(,,)n x y z =,则(1,1,1)n ⇒=⎩−−+=⎨⎧−++=x y z x y z 24602200所以其0BG n ⋅=且点B 在平面BEF 内,故直线BG 在平面BEF 内.(2)连接B D 11交EF 于O ,连接BO因为平面EFG 与平面BEF 是同一平面,平面A EF 1与平面B EF 1是同一平面, 则BOB 1为二面角−−B EF B 1的平面角,记为又==B O B D 43111,=BB 61所以==BO所以==θBO B O cos 12.(2023·江苏·百强名校期末)如图,在直三棱柱ABC-A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且⊥B D A F 11 ,⊥AC A B 1111.求证:(1)直线DE 平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F. 【答案】(1)详见解析(2)详见解析【详解】试题分析:(1)利用线面平行判定定理证明线面平行,而线线平行的寻找往往结合平面几何的知识,如中位线的性质等;(2)利用面面垂直判定定理证明,即从线面垂直出发给予证明,而线面垂直的证明,往往需要多次利用线面垂直性质定理与判定定理. 试题解析:证明:(1)在直三棱柱111ABC A B C 中,A C 11,AC 在三角形ABC 中,因为D ,E 分别为AB ,BC 的中点, 所以DE AC ,于是11DE AC ,又因为DE ⊄平面⊂AC F AC ,1111平面AC F 11, 所以直线DE//平面AC F 11.(2)在直三棱柱111ABC A B C 中,面平⊥AA A B C 1111 因为⊂AC 11平面A B C 111,所以⊥AA AC 111,又因为面平面平,⊥⊂⊂⋂=AC A B AA ABB A A B ABB A A B AA A ,,111111*********, 所以⊥AC 11平面ABB A 11.因为⊂B D 1平面ABB A 11,所以⊥AC B D 111.又因为面平面平,⊥⊂⊂⋂=B D A F AC AC F A F AC F AC A F A ,,1111111111111, 所以面平⊥B D AC F 111.因为直线面平⊂B D B DE 11,所以面平B DE 1面平⊥AC F .11 【考点】直线与直线、直线与平面、平面与平面的位置关系【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直;(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.3.(2023高一下·吉林长春·百强名校期末)在四棱锥−P ABCD 中,底面ABCD 是边长为2的菱形,∠=︒BAD 60,若==PA PD ∠=PAB 10cos .(1)证明:平面⊥PAD 平面ABCD ; (2)求二面角−−B PD A 的正切值.【答案】(1)证明见解析;(2 【分析】(1)取AD 中点O ,连结PO ,BO ,BD ,推导出⊥PO AD ,及⊥PO BO ,从而⊥PO 平面ABCD 由此得到平面⊥PAD 平面ABCD .(2)由面面垂直的性质得到⊥BO 平面ABCD ,作⊥OE PD 于E ,由三垂线定理,得⊥BE PD ,从而∠BEO 就是二面角−−B PD A 的平面角,在POD Rt 中,计算各数据,得到所求角的正切值.【详解】(1)证明:取AD 中点O ,连结PO ,BO ,BD ,在PAD 中,=PA PD=AD 2,则⊥PO AD ,===PO 2.在菱形ABCD 中,∠=︒BAD 60,==AB AD 2,∴===AB AD BD 2,∴⊥BO AD ,且===BO PAB 中,∠=PAB cos ,∴=+−⋅⋅∠=+−=PB PA AB PA AB PAB 2cos 54227222. 在POB 中,+=+==OB PO PB 347222,∴⊥PO BO ,且ADBO O =∴⊥PO 平面ABCD .又⊂PO 平面PAD ∴平面⊥PAD 平面ABCD .(2)由(1)知平面⊥PAD 平面ABCD ,且平面⋂PAD 平面=ABCD AD ,且⊥BO AD , ∴⊥BO 平面ABCD ,作⊥OE PD 于E ,由三垂线定理,得⊥BE PD . ∴∠BEO 就是二面角−−B PD A 的平面角,在POD Rt 中,⊥OE PD ,有⋅=⋅PD OE PO OD =⨯OE 21,∴=OE在BOE Rt 中,∠===OE BEO OBtan∴二面角−−B PD A4.(2023高一下·吉林长春·百强名校期末)如图.已知正三棱柱111ABC A B C 的底面边长=AB 6,D ,E 分别是CC 1,BC 的中点,=AE DE .(1)三棱锥−A ECD 的体积; (2)正三棱柱111ABC A B C 的表面积.【答案】(2)【分析】(1)依题意可得⊥AE BC ,在由正三棱柱的性质得到⊥CC BC 1,利用勾股定理求出线段的长度,最后由A ECD D AEC AECV V SCD ==⋅−−31计算可得;(2)求出上下底面积及侧面积,即可求出棱柱的表面积.【详解】(1)因为E 是BC 的中点,ABC 为等边三角形,所以⊥AE BC , 在正三棱柱111ABC A B C 中⊥CC 1平面ABC ,⊂BC 平面ABC ,所以⊥CC BC 1,又=AB 6,所以=EC 3,AE ===AE DE ,所以==CD所以AECS=⨯⨯=231所以33A ECD D AEC AECV V SCD ==⋅=⨯=−−11.(2)由(1)可知==CC CD 211112ABC A B C S S ==⨯⨯=61ABCS CCC =⋅=⨯⨯=侧366210821,所以棱柱的表面积=⨯=S 25.(2023高一下·四川成都·百强名校期末)如图,在四棱锥−P ABCD 中,⊥PC 底面ABCD ,在直角梯形ABCD 中,⊥AB AD ,BC AD //,==AD AB BC 22,E 是PD 中点.求证:(1)CE //平面PAB ; (2)平面⊥PCD 平面ACE . 【答案】(1)证明见解析 (2)证明见解析【分析】(1)取线段AP 的中点F ,可证得四边形BCEF 为平行四边形,从而得到CE BF //,由线面平行的判定可证得结论;(2)由线面垂直性质和勾股定理可分别证得⊥PC AC ,⊥AC CD ,由线面垂直和面面垂直的判定可证得结论.【详解】(1)取线段AP 的中点F ,连接EF BF ,,,E F 分别为PD AP ,中点,∴EF AD //,=EF AD 21, 又BC AD //,=BC AD 21,∴EF BC //,=EF BC , ∴四边形BCEF 为平行四边形,∴CE BF //,BF ⊂平面PAB ,⊄CE 平面PAB ,∴CE //平面PAB . (2)PC ⊥平面ABCD ,⊂AC 平面ABCD ,∴⊥PC AC ; 设=AD 2,则==AB BC 1,//BC AD ,⊥AB AD ,∴⊥AB BC ,∴=AC ==CD∴+=AC CD AD 222,∴⊥AC CD ;PCCD C =,⊂PC CD ,平面PCD ,∴⊥AC 平面PCD ,AC ⊂平面ACE ,∴平面⊥PCD 平面ACE .6.(2023高一下·安徽六安·百强名校期末)在正三角形ABC 中,E ,F ,P 分别是AB 、AC 、BC 边上的点,满足===AE EB CF FA CP PB :::1:2(如图1).将△AEF 沿EF 折起到的1A EF 位置,使平面⊥A EF 1平面BEF ,连结A B 1,P A 1(如图2).(1)求证:FP //平面A EB 1;(2)求直线A E 1与平面A BP 1所成角的大小. 【答案】(1)证明见解析(2)︒60.【分析】(1)依题意可得FP BA //,即FP BE //,从而得证;(2)法一:设E 到面A BP 1距离为h ,根据=−−V V A BPE E A BP 11,即可求得h 的值,进而求解即可.法二:在图1中过点F 作FD BC //交AB 于点D ,即可得到△ADF 为等边三角形,则⊥FE A E 1,再由面面垂直的性质得到⊥A E 1平面BEP ,设A E 1在平面A BP 1内的射影为A Q 1,且A Q 1交BP 于点Q ,则可得⊥BP 平面A EQ 1,则∠E AQ 1就是A E 1与平面A BP 1所成的角,再由锐角三角函数计算可得.【详解】(1)∵=CP PB CF FA ::,∴FP BA //, ∴FP BE //,∵⊂BE 平面A EB 1,⊄FP 平面A EB 1,∴BP //平面A EB 1; (2)法一:在图1中过点F 作FD BC //交AB 于点D ,因为===AE EB CF FA CP PB :::1:2, 所以==BD AD CF AF ::1:2,即D 、E 为AB 的三等分点,所以E 为AD 的中点,又ABC 为等边三角形,所以△ADF 也为等边三角形, 所以⊥FE AD ,则⊥FE A E 1,又平面⊥A EF 1平面BEF ,平面A EF 1平面=BEF FE ,⊂A E 1平面A EF 1,所以在图2中,⊥A E 1平面BEP ,又⊂BP 平面BEP ,∴⊥A E BP 1,设A E 1在平面A BP 1内的射影为A Q 1,且A Q 1交BP 于点Q , 则可得⊥BP 平面A EQ 1,又⊂AQ 1平面A EQ 1,∴⊥BP AQ 1,则∠E AQ 1就是A E 1与平面A BP 1所成的角,设=AB 3,在△EBP 中,∵==BE BP 2,60=︒∠EBP , ∴△EBP 是等边三角形,∴=BE EP ,又⊥A E 1平面BEP ,∴=A B A P 11,∴Q 为BP 的中点,且=EQ又=A E 11,在1A EQ Rt ,∠==A EEA Q EQtan 11601∠=︒EA Q , 所以直线A E 1与平面A BP 1所成的角为︒60.法二:同法一可得⊥A E 1平面BEP ,设E 到面A BP 1距离为h ,设=AB 3,则==A B A P 11,则=−−V V A BPE E A BP 11,∴△△⋅=⋅S A E S h BPE A BP 331111,∴△△⨯===⋅⨯S h S A E A BP BPE 221221111,设A E 1与面A BP 1所成角为θ,则=θA E h sin 1︒≤≤︒θ090,∴=︒θ60. 所以直线A E 1与平面A BP 1所成的角为︒60.7.(2023高一下·重庆沙坪坝·百强名校期末)如图,四边形ABCD 是圆柱下底面的内接四边形,AC 是圆柱底面的直径,PC 是圆柱的一条母线,=AB AD ,∠=BAD 60,点F 在线段AP 上,=PA PF 4.(1)求证:平面⊥PCD 平面PAD ;(2)若==CP CA 4,求直线AC 与平面FCD 所成角的正弦值. 【答案】(1)证明见解析【分析】(1)先证⊥AD 平面PCD ,再根据面面垂直的判定定理可证平面⊥PCD 平面PAD ;(2)以C 为原点,CA 所在直线为x 轴,过C 且垂直于平面APC 的直线为y 轴,CP 所在直线为z 轴,建立空间直角坐标系,利用线面角的向量公式可求出结果. 【详解】(1)因为PC 是圆柱的一条母线,所以⊥PC 底面ABCD , 又⊂AD 底面ABCD ,所以⊥PC AD , 因为AC 是圆柱底面的直径,所以⊥AD CD , 因为⊂PC CD ,平面PCD ,⋂=PC CD C , 所以⊥AD 平面PCD ,又因为⊂AD 平面PAD ,所以平面⊥PCD 平面PAD .(2)以C 为原点,CA 所在直线为x 轴,过C 且垂直于平面APC 的直线为y 轴,CP 所在直线为z 轴,建立空间直角坐标系, 因为=AB AD ,=AC AC ,∠=∠=ADC ABC 2π, 所以R R t ADC t ABC ≅,又∠=BAD 60,所以π6DAC BAC ==, 因为==CP CA 4,=PA PF 4,所以==CD AC221,=AD所以C (0,0,0),A (4,0,0), D ,F (1,0,3), 所以(4,0,0)AC =−,(1,3,0)CD =,(1,0,3)CF =, 设平面FCD 的一个法向量为(,,)n x y z =,则n CD x y n CF x z ⋅=+=⋅=+=⎩⎪⎨⎪⎧3030,取=−x 3,得y =z 1,则(3,3,1)n =−,设直线AC 与平面FCD 所成角为θ,则sin cos ,||||AC n AC n AC n ⋅=<>=θ==.即直线AC 与平面FCD 所成角的正弦值为13.8.(2023高一下·重庆沙坪坝·百强名校期末)如图,在四棱锥−P ABCD 中,底面ABCD 是正方形,侧棱⊥PD 底面ABCD ,=PD DC ,E 、F 分别是PC 、AD 中点.(1)求证:DE //平面PFB ;(2)求PC 与面PFB 所成角的正弦值.【答案】(1)见解析;(2【分析】(1)取PB 的中点为G ,连接EG FG ,,可证四边形DEGF 为平行四边形,从而可证DE //平面PFB ;(2)利用等积法可求C 到平面PFB 的距离,从而可求PC 与面PFB 所成角的正弦值. 【详解】(1)取PB 的中点为G ,连接EG FG ,, 因为E G ,分别为所在棱的中点,故=EG BC EG BC 2//,1, 而=DF AD 21,=AD BC AD BC //,,故=EG DF EG DF //,, 故四边形DEGF 为平行四边形,所以FG DE //, 而⊂FG 平面PBF ,⊄DE 平面PBF ,故DE //平面PFB .(2)设=DC a ,连接CF ,设C 到平面PBF 的距离为h .因为⊥PD 底面ABCD ,⊂CD 平面ABCD ,故⊥PD CD ,同理⊥⊥PD AD PD BC ,, 而=PD DC,故PC .故=PF a 2,同理=BF a 2. 因为⊥BC CD ,而⋂=PD DC D ,故⊥BC 平面PCD , 而⊂PC 平面PCD ,故⊥BC PC,所以==PB ,故△==S a PFB 2412, 又△=⨯⨯=S a a a FCB2212, 因为=−−V V P FCB C PFB,故⨯⨯=⨯a a h 32311122,故=h ,设PC 与面PFB 所成角为θ,则=θsin9.(2023高一·全国·课后作业)如图,在三棱锥P ABC −中,∠=︒ACB 90,⊥PA 底面ABC(1)证明:平面⊥PBC 平面P AC(2)若==AC BC PA ,M 是PB 中点,求AM 与平面PBC 所成角的正切值 【答案】(1)证明见解析【分析】(1)由∠=︒ACB 90,得到⊥AC CB ,再根据⊥PA 底面ABC ,得到⊥PA CB ,然后利用线面垂直和面面垂直的判定定理证明;(2)作⊥AO PC ,连接OM ,由平面⊥PBC 平面P AC ,得到⊥AO 平面PBC , 则∠AMO 即为AM 与平面PBC 所成的角求解. 【详解】(1)证明:因为∠=︒ACB 90, 所以⊥AC CB ,又⊥PA 底面ABC , 所以⊥PA CB ,又⋂=AC PA A , 所以⊥BC 平面P AC , 因为⊂BC 平面PBC , 所以平面⊥PBC 平面P AC ; (2)如图所示:作⊥AO PC ,连接OM ,因为平面⊥PBC 平面P AC ,平面⋂PBC 平面P AC=PC , 所以⊥AO 平面PBC ,则∠AMO 即为AM 与平面PBC 所成的角,设===AC BC PA t ,则==AB PB ,,所以=AM 2,又=AO 2,所以==OM t 21,所以AM 与平面PBC 所成角的正切值为∠==OMAMO AOtan10.(2023高一下·重庆北碚·百强名校期末)如图,四棱锥S —ABCD 中,底面ABCD 为菱形,602ABC SA SD AB ====,∠,侧面SAB ⊥侧面SBC ,M 为AD 的中点.(1)求证:平面SMC ⊥平面SBC ;(2)若AB 与平面SBC 成30角时,求二面角−−A SC D 的大小, 【答案】(1)证明见解析 (2)︒90【分析】(1)由线面垂直与面面垂直的判定定理求解即可;(2)取BS 的中点N ,连接AN ,由题意可得=BS CS 的中点E ,连接AE DE ,,可证明∠AED 是二面角−=A SC D 的平面角,求出角∠AED 的大小即可求解 【详解】(1)因为=SD SA ,又M 为AD 的中点, 所以⊥SM AD , 又BC AD //, 所以⊥SM BC ,又M 为AD 的中点,底面ABCD 为菱形,∠=︒ABC 60, 所以⊥CM AD AD BC ,//, 所以⊥CM BC ,因为⊥CM BC ,⊥SM BC ,⊥=SM CM M ,⊂SM 平面SCM ,⊂CM 平面SCM ,所以⊥BC 平面SCM ,因为⊂BC 平面SBC , 所以平面⊥SBC 平面SCM ,(2)取BS 的中点N ,连接AN ,又=SA AB , 所以⊥AN BS ,又平面⊥SAB 平面SBC ,平面SAB 平面=SBC SB ,⊂AN 平面SAB ,所以⊥AN 平面SBC ,又AB 与平面SBC 所成的角为︒30, 所以∠=︒ABN 30, 又=⊥AB AN BN 2,,所以===AN BN BS 1,由(1)知⊥BC 平面SCM ,又⊂SC 平面SBC , 所以⊥BC SC ,又==BS BC 2,所以==CS 取CS 的中点E ,连接AE DE ,, 因为===SA AC CD SD , 所以⊥⊥AE CS DE CS ,,所以∠AED 是二面角−=A SC D 的平面角,又====AC CD CE CS 22,1所以==AE 又+=+==AE DE AD 224222, 所以⊥AE DE ,即∠=︒AED 90, 所以二面角−=A SC D 的大小为︒90,11.(2023高一下·重庆北碚·百强名校期末)如图,三棱柱ABC —A B C 111的底面是等腰直角三角形,侧面BB 1C 1C 是矩形,∠=CAB 90,==AB AC AA 1 ,点P 是棱A B 11的中点,且P 在平面ABC 内的射影O 在线段BC 上,=BO BC 41,点M ,N 分别是线段CP ,CA 的中点(1)求证: MN //平面AA B B 11 (2)求二面角−−M AC B 的正切值. 【答案】(1)见解析【分析】(1)连接AP ,则由三角形中位线定理可得MN ∥AP ,然后利用线面平行的判定定理可证得结论,(2)连接OB 1,取CO 的中点E ,连接ME ,过点E 作⊥EF AC 于F ,连接MF ,可证得∠MFE 为 二面角−−M AC B 的平面角,然后计算即可 【详解】(1)证明:连接AP ,因为M ,N 分别是线段CP ,CA 的中点, 所以MN ∥AP ,因为⊄MN 平面AA B B 11,⊂AP 平面AA B B 11, 所以MN ∥平面AA B B 11,(2)解:连接OB 1,取CO 的中点E ,连接ME ,过点E 作⊥EF AC 于F ,连接MF , 因为M ,是线段CP 的中点,所以ME ∥OP ,=ME OP 21,因为⊥OP 平面ABC ,所以⊥ME 平面ABC , 因为⊂AC 平面ABC ,所以⊥ME AC , 因为⋂=ME EF E , 所以⊥AC 平面MEF ,因为⊂MF 平面MEF ,所以⊥AC MF , 所以∠MFE 为 二面角−−M AC B 的平面角, 设===AB AC AA 21,因为∠=CAB 90,所以=BC所以==BO BC 41==CO BC 43,所以==CE CO 21,=︒==EF CE 4sin 453, 在1OBB Rt 中,=+=+=OB OB BB 2241911222, 因为⊥OP 平面ABC ,平面ABC ∥平面A B C 111, 所以⊥OP 平面A B C 111, 因为⊂A B 11平面A B C 111, 所以⊥OP A B 11,所以===OP 2,所以==ME OP 21,在MEF Rt 中,∠===EF MEF ME 43tan 4,所以二面角−−M AC B 的正切值为312.(2023高一下·重庆渝中·百强名校期末)如图;正四棱柱−ABCD A B C D 1111中;=AA AB 21;点P 为DD 1的中点.(1)求证:直线∥BD 1平面PAC ;(2)求直线BC 1与平面APC 所成线面角的正弦值. 【答案】(1)证明见解析(2)15【分析】(1)设AC 和BD 交于点O ,则O 为BD 的中点,连接PO ,可得PO BD //1,可得直线BD //1平面PAC ;(2)设==AA AB 241,利用等体积法可求点D 到平面APC 的距离为d ,进而利用直线BC 1与平面APC 所成线面角与直线AD 1与平面APC 所成线面角相等,可求直线BC 1与平面APC 所成线面角的正弦值.【详解】(1)证明:设AC 和BD 交于点O ,则O 为BD 的中点,连接PO ,P 是DD 1的中点,∴PO BD //1,又PO ⊂平面PAC ,⊂BD 1平面PAC ,∴直线BD //1平面PAC ,(2)设==AA AB 241,则三角形APC为正三角形,===AP AC PC ,APCSAP ==42 设点D 到平面APC 的距离为d ,由等体积法:=−−V V P ADC D APC , 所以1133ADC APCPD Sd S ⋅=⋅,则ADC APC PD S S ===⋅d 233423,由点P 为中点,所以点D ,D 1到平面APC 距离相等,由AD BC //11,所以直线BC1与平面APC 所成线面角与直线AD 1与平面APC 所成线面角相等, 设直线AD1与平面APC 所成线面角为θ,所以==θAD d sin 1∴直线BC 1与平面APC 所成线面角的正弦值为15.13.(2023高一下·重庆沙坪坝·百强名校期末)如图,在直三棱柱111ABC A B C 中,∠=︒BAC 90,===AB AC AA 21,M 为AB 的中点,点G 为△A B C 111的重心.(1)证明:BG 平面ACM 1(2)求三棱锥−G A MC 1的体积. 【答案】(1)证明见解析; (2)32.【分析】(1)先证明平面BGN //平面ACM 1,再由面面平行的性质可得线面平行; (2)利用等体积法求解即可.【详解】(1)连接C G 1并延长交A B 11于点N ,连接BN CM BG ,,,如图,在直三棱柱111ABC A B C 中,点G 为△A B C 111的重心, 所以C N CM //1,又⊄C N 1平面ACM 1,⊂CM 平面ACM 1, 所以C N //1平面ACM 1,因为A N BM A N BM //,=11,所以四边形BMA N 1是平行四边形, 所以BN A M //1,又⊄BN 平面ACM 1,⊂A M 1平面ACM 1, 所以BN //平面ACM 1,又1=BN C N N ,所以平面BGN //平面ACM 1, 又⊂BG 平面BGN ,所以BG 平面ACM 1.(2)由(1)知BG平面ACM 1, 所以==−−−V V V G A MC B A MC A BMC 111, 三棱锥−A BMC 1的高=A A 21,△=⋅=⨯⨯=S BM AC BMC 2212111, 所以△==⋅=⨯⨯=−−V V AA S G A MC A BMC BMC 33321112111. 14.(2023高一下·重庆沙坪坝·百强名校期末)在直三棱柱111ABC A B C 中,=AB 3,=BC 4,=AA 21,︒∠=ABC 90,点D 为AC 的中点.(1)求证:AB 1//平面C BD 1; (2)求三棱锥−B BDC 11的体积. 【答案】(1)证明见详解 (2)2【分析】(1)根据线面平行的判定定理分析证明;(2)根据题意可证⊥AB 平面BCC B 11,再利用转换顶点法求体积. 【详解】(1)连接B C 1交BC 1于点O ,连接DO , 因为BCC B 11为平行四边形,则O 为B C 1的中点, 且点D 为AC 的中点,则AB 1//DO ,又因为⊄AB 1平面C BD 1,⊂DO 平面C BD 1, 所以AB 1//平面C BD 1.(2)因为⊥BB 1平面ABC ,⊂AB 平面ABC ,所以⊥BB AB 1, 又因为⊥AB BC , 且BB BC B =1,⊂BB BC ,1平面BCC B 11,所以⊥AB 平面BCC B 11,且点D 为AC 的中点,故三棱锥−D BB C 11的高为=AB 2213,所以三棱锥−B BDC 11的体积==⨯⨯⨯⨯=−−V V B BDC D BB C 3222421311111.15.(2023·江苏苏州·百强名校期末)如图,在三棱锥P ABC −中,ABC 是边长为等边三角形,且===PA PB PC 6,⊥PD 平面ABC ,垂足为⊥D DE ,平面PAB ,垂足为E ,连接PE 并延长交AB 于点G .(1)求二面角P AB C 的余弦值;(2)在平面PAC 内找一点F ,使得⊥EF 平面PAC ,说明作法及理由,并求四面体PDEF 的体积.【答案】(2)答案见解析,34.【分析】(1)根据条件确定∠PGD 就是二面角PAB C 的平面角,构造三角形求解;(2)根据给定的条件知⊥PB 平面PAC ,过点E 作PB 的平行线与P A 交于F ,则⊥EF 平面P AC ,再求出三棱锥−P EFD 的底面积和高即可.【详解】(1)PA PB PC ==,并且ABC 是等边三角形,∴三棱锥P ABC −是正三棱锥,D 是ABC 的中心,点G 是AB 边的中点;由⊥PD 平面ABC , ⊥DE 平面PAB ,⊂AB 平面PAB ,可知⊥⊥⋂=AB PD AB DE PD DE D ,,,⊂PD 平面PDG ,⊂DE 平面PDG ,所以⊥AB 平面PDG ,进而得⊥⊥AB PG AB DG ,, 所以∠PGD 就是二面角PAB C 的平面角,又ABC 是边长为===PA PB PC 6,+=PA PB AB 222,PAB ∴是等腰直角三角形,同理△△PAC PBC ,都是等腰直角三角形;∴==PG AB 21===GD CG 3311∠==PG PGD GD cos P AB C ;(2),,,PB PC PB PA PA PC P PA ⊥⊥=⊂平面PAC ,⊂PC 平面PAC , ∴⊥PB 平面PAC ,同理⊥PC 平面PAB ,又⊥DE 平面PAB ,∴ED PC //,∴E 与点P ,D ,C 共面,即E 点在线段PG 上,又,2EDGPGC ED PC ∴==31,===PG CG PE PE CD 3,2∠=APG 4π,过E 点在平面P AB 内作PB 的平行线,与P A 交于F ,则⊥EF 平面PAC , PEF 也是等腰直角三角形,==EF2, 又⊥DE 平面P AB ,⊂EF 平面P AB ,∴⊥DE EF ,将PEF 作为底面,则ED 是三棱锥−D PEF 的高,11143323P DEF D PEF PEFV V SDE ∴===⨯⨯⨯⨯=−−222,即四面体PDEF 的体积为34.16.(2023·上海嘉定·百强名校期末)在长方体−ABCD A B C D 1111中,==AD DD 11,=AB E 、F 、G 分别为AB 、BC 、C D 11的中点.(1)求三棱锥−A GEF 的体积;(2)点P 在矩形ABCD 内,若直线D P //1平面EFG ,求线段D P 1长度的最小值.【答案】【分析】(1)等体积由=−−V V A GEF G AEF 可得.(2)先证平面EFG //平面ACD 1,则由直线D P //1平面EFG 可得点P 在直线AC 上,进而可得线段D P 1长度的最小值【详解】(1)依题意有AEFSAE BF =⋅⋅=⋅=22228111,所以三棱锥−A GEF 的体积1133A GEF G AEF AEFV V SDD ==⋅⋅==−−11 (2)如图,连结D A D C AC ,,11,∵E F G ,,分别为AB BC C D ,,11的中点,∴⊄AC EF EF //,平面ACD 1,⊂AC 平面ACD 1, ∴EF //平面ACD ,1∵⊄EG AD EG //,1平面ACD 1,⊂AD 1平面ACD 1,∴EG //平面ACD 1, ∵EFEG E =,∴平面EFG //平面ACD 1,∵D P //1平面EFG ,∴点P 在直线AC 上,在△ACD 1中,AD AC CD ===2,211,1AD CS==21∴当⊥D P AC 1时,线段D P 1的长度最小,最小值为△⨯⨯AC S AD C 22211=21=2. 17.(2023高一下·安徽合肥·百强名校期末)在多面体ABCDE 中,=BC BA ,DE BC //,AE ⊥平面BCDE ,=BC DE 2,F 为AB 的中点.(1)求证:EF //平面ACD ;(2)若==EA EBCD ,求二面角−−B AD E 的平面角正弦值的大小. 【答案】(1)证明见解析【分析】(1)取AC 中点G ,连接DG FG ,,由已知得四边形DEFG 是平行四边形,由此能证明EF //平面ACD .(2)过点B 作BM 垂直DE 的延长线于点M ,过M 作⊥MH AD ,垂足为H ,连接BH ,则∠BHM 是二面角−−B AD E 的平面角,由此即可求出二面角−−B AD E 的正弦值的大小.【详解】(1)证明:取AC 中点G ,连接DG ,FG .因为F 是AB 的中点,所以FG 是ABC 的中位线, 则∥FG BC ,=FG BC 21,所以∥FG DE ,=FG DE , 则四边形DEFG 是平行四边形,所以∥EF DG ,又⊄EF 平面ACD ,⊂DG 平面ACD ,故∥EF 平面ACD . (2)过点B 作BM 垂直DE 的延长线于点M ,因为AE ⊥平面BCDE ,⊂BM 平面ADE ,所以⊥AE BM , 且⊥BM DE ,、DE AE平面ADE ,DEAE E =,则⊥BM 平面ADE ,⊂AD 平面ADE ,⊥BM AD , 过M 作⊥MH AD ,垂足为H ,连接BH ,、⊂BM MH 平面BMH ,BM MH M =,则⊥AD 平面BMH ,所以⊥AD BH ,则∠BHM 是二面角−−B AD E 的平面角.设=DE a ,则==BC AB a 2,在△BEM 中,=EM a2,=BE ,所以=BM .又因为△△∽ADE MDH ,所以=HM ,则∠=BHM 6tan∴∠=BHM 13sin . 18.(2023高一下·浙江绍兴·百强名校期末)如图,四棱锥−P ABCD 中,∠=∠=︒ABC BCD 90,∆PAD 是以AD 为底的等腰直角三角形,===AB BC CD 224,E为BC 中点,且=PE(Ⅰ)求证:平面⊥PAD 平面ABCD ; (Ⅱ)求直线PE 与平面PAB 所成角的正弦值.【答案】(Ⅰ)见解析(Ⅱ【分析】(Ⅰ) 过P 作AD 垂线,垂足为F ,由=+PE PF FE 222得,︒∠=PFE 90.又⊥PF AD ,可得⊥PF 平面ABCD ,即可证明.(Ⅱ)易得E 到平面PAB 距离等于F 到平面PAB 距离.过F 作AB 垂线,垂足为G ,在∆PFG 中,过F 作PG 垂线,垂足为Q ,可证得:⊥FQ 平面PAB .求得:FQ ,从而==θPE FQ sin ,即可求解. 【详解】(Ⅰ) 过P 作AD 垂线,垂足为F ,由=+PE PF FE 222得,︒∠=PFE 90. 又⊥PF AD ,∴⊥PF 平面ABCD , ∴平面⊥PAD 平面ABCD ;(Ⅱ)∵EF AB //,∴E 到平面PAB 距离等于F 到平面PAB 距离. 过F 作AB 垂线,垂足为G ,在∆PFG 中,过F 作PG 垂线,垂足为Q , 可证得:⊥FQ 平面PAB .求得:=FQ ,从而=θPE FQ sin即直线PE 与平面PAB【点睛】本题考查面面垂直的证明,考查线面角的求解、是中档题.19.(2023高一下·湖南长沙·百强名校期末)已知正三棱柱111ABC A B C 中,=AB 2,M是B C 11的中点.(1)求证:AC //1平面A MB 1;(2)点P 是直线AC 1上的一点,当AC 1与平面ABC 所成的角的正切值为2时,求三棱锥−P A MB 1的体积. 【答案】(1)证明见解析【分析】(1)连接AB 1交A B 1于点N ,连接MN ,利用中位线的性质可得出MN AC //1,再利用线面平行的判定定理可证得结论成立;(2)利用线面角的定义可求得CC 1的长,分析可知点P 到平面A MB 1的距离等于点C 1到平面A MB 1的距离,可得出==−−−V V V P A MB C A MB B A C M 11111,结合锥体的体积公式可求得结果. 【详解】(1)证明:连接AB 1交A B 1于点N ,连接MN ,因为四边形AA B B 11为平行四边形,⋂=AB A B N 11,则N 为AB 1的中点, 因为M 为B C 11的中点,则MN AC //1,1AC ⊄平面A MB 1,⊂MN 平面A MB 1,故AC //1平面A MB 1.(2)解:因为⊥CC 1平面ABC ,∴AC 1与平面ABC 所成的角为∠CAC 1, 因为ABC 是边长为2的等边三角形,则=AC 2,1CC ⊥平面ABC ,⊂AC 平面ABC ,∴⊥CC AC 1,则∠==ACCAC CC tan 211, 所以,==CC AC 241,1//AC 平面A MB 1,∈P AC 1,所以,点P 到平面A MB 1的距离等于点C 1到平面A MB 1的距离,因为M 为B C 11的中点,则△△===S S A MC A B C 22211211111则△===⋅=⨯−−−V V V BB S P A MB C A MB B A C M A C M 3341111111111. 20.(2023高一下·湖南长沙·百强名校期末)如图,在棱长为3的正方体ABCD −A'B'C'D'中,M 为AD 的中点.(1)求证:'DB //平面'BMA ;(2)在体对角线'DB 上是否存在动点Q ,使得AQ ⊥平面'BMA ?若存在,求出DQ 的长;若不存在,请说明理由. 【答案】(1)证明见解析 (2)【分析】(1)连接'AB 交'BA 于点E ,连接EM ,证得'EM DB //,结合线面平行的判定定理,即可证得'DB //面'BMA .(2)根据题意,证得BA ⊥'平面'ADB ,得到平面⊥'BMA 平面'ADB ,作⊥'AQ DB ,利用面面垂直的性质,证得⊥AQ 平面'BMA ,再由△△∽'ADB QDA Rt Rt ,即可求得DQ 的长. 【详解】(1)证明:连接'AB ,交'BA 于点E ,连接EM . 因为四边形''ABB A 是正方形,所以E 是'AB 的中点, 又M 是AD 的中点,所以'EM DB //,因为⊂EM 面'BMA ,/⊂'DB 面'BMA ,所以'DB //面'BMA .(2)在对角线'DB 上存在点Q ,且=DQ ⊥AQ 平面'BMA , 证明如下:因为四边形''ABB A 是正方形,所以⊥''AB BA , 因为⊥AD 平面''ABB A ,⊂'BA 面''ABB A ,所以⊥'AD BA , 因为AB AD A =',且⊂'AB AD ,平面'ADB ,所以BA ⊥'平面'ADB ,因为⊂'BA 平面'BMA ,所以平面⊥'BMA 平面'ADB , 作⊥'AQ DB 于Q ,因为'EM DB //,所以⊥AQ EM ,因为⊂AQ 平面'ADB ,平面'ADB 平面='BMA EM ,所以⊥AQ 平面'BMA ,由△△∽'ADB QDA Rt Rt ,可得'==DB DQ AD 2所以当=DQ ⊥AQ 平面'BMA .21.(2023高一下·湖南长沙·百强名校期末)如图,在四棱锥P −中,底面ABCD 为正方形,侧面ADP 是正三角形,侧面ADP ⊥底面ABCD ,M 是DP 的中点.(1)求证:AM ⊥平面CDP ;(2)求直线BP 与底面ABCD 所成角的正弦值. 【答案】(1)证明见解析【分析】(1)先证得⊥AM DP ,由⊥CD AD ,结合面面垂直的性质,证得⊥CD 平面ADP ,进而得到⊥CD AM ,利用线面垂直的判定定理,即可证得⊥AM 平面CDP ; (2)取AD 的中点E ,连BE ,EP ,证得⊥PE 平面ABCD ,得到∠EBP 是所求直线与平面所成角,在直角△BEP 中,即可求解.【详解】(1)证明:因为侧面ADP 为正三角形,且M 为DP 中点,所以⊥AM DP , 又因为底面ABCD 为正方形,所以⊥CD AD .因为平面⊥ADP 平面ABCD 且平面⋂ADP 平面=ABCD AD ,⊂CD 平面ABCD , 所以⊥CD 平面ADP ,又因为⊂AM 平面ADP ,所以⊥CD AM , 因为CDDP D =,且⊂CD DP ,平面CDP ,所以⊥AM 平面CDP .(2)解:取AD 的中点E ,连BE ,EP ,因为△ADP 为正三角形,且E 为AD 中点,所以⊥PE AD ,又因为平面⊥ADP 平面ABCD ,平面⋂ADP 平面=ABCD AD ,且⊂PE 平面PAD , 所以⊥PE 平面ABCD ,所以∠EBP 是所求直线与平面所成角,不妨设=AD a 2,则在等边△ADP 中,可得EP =,在直角ABE 中,==BE ;在直角中,=BP ,故∠==BP EBP EP sin所以直线与底面22.(2023高一下·浙江·百强名校期末)如图,正三棱柱的底面边长为2,高,过的截面与上底面交于PQ ,且点是棱A C 11的中点,点在棱上.(1)试在棱上找一点,使得QD //平面,并加以证明;(2)求四棱锥−C ABQP 的体积. 【答案】(1)点为棱的中点,证明见解析;(2)43.【分析】(1)证法1:取的中点,连接DM ,B M 1,可得A B //11平面ABQP ,再由线面平行的性质可得A B PQ //11,则可得是棱的中点,由三角形中位线定理结合已知可得四边形DMB Q 1是平行四边形,可得QD B M //1,然后由线面平行的判定定理可证得结论;证法2:由已知条件可证得PQ //平面,从而得PDAA 1是平行四边形,PD AA //1,由线面平行的判定可得PD //面,从而得面PDQ //面,再由面面平行的性质可得结论; (2)解法一:连接,四棱锥−C ABQP 可视为三棱锥−C BPQ 和−C ABP 组合而成,然后分别求出两个三棱锥的体积即可;解法二:分别取和的中点,,连接,CM ,连接C N 1交PQ 于点,连接MG ,CG ,可证得平面⊥ABQP 平面CMNC 1,则⊥CG 平面ABQP ,然后结合已知条件求出等腰梯形ABQP 的面积,从而可求得四棱锥的体积【详解】(1)证法1:点为棱的中点,证明如下:取的中点,连接DM ,B M 1.∵AB A B //11,平面ABQP ,⊄A B 11平面ABQP ,∴A B //11平面ABQP ,∵平面,平面ABQP 平面=A B C PQ 111,∴A B PQ //11.又是棱A C 11的中点,∴是棱的中点,∴QB 1∥,=QB BC 211 ∵,分别为棱,的中点,∴DM ∥,=DM BC 21∴QB 1∥DM ,=QB DM 1∴四边形DMB Q 1是平行四边形,∴QD B M //1, ∵⊂B M 1平面,⊄OD 平面,∴QD //平面.证法2:为的中点时,QD //平面.证明如下: ∵AB //平面,平面ABQP ,平面ABQP 平面=A B C PQ 111,∴PQ AB //,⊄PQ 平面,平面,所以PQ //平面,又∵为的中点,为A C 11的中点,∴PDAA 1是平行四边形,∴PD AA //1,又∵⊄PD 平面,⊂AA 1平面,∴PD //面,又∵与PQ 在平面PDQ 内相交,∴面PDQ //面,又∵⊂QD 面PDQ ,∴DQ //平面.(2)解法一:连接,四棱锥−C ABQP 可视为三棱锥−C BPQ 和−C ABP 组合而成,三棱锥−C ABP 可视为,底面积ABCS==22,设=−V V C BAP 1,体积为==V 32111.三棱锥−C BPQ 与−C ABP 等高,体积比为底面积之比,设=−V V C BPQ 2,则△△===V V S S PQ AB BPQ BAP :::1:221,故==V V 241121,因此,=+=−V V V C ABPQ 4312,即为所求. 解法二:分别取和的中点,,连接,CM ,连接C N 1交PQ 于点,连接MG ,CG . ∵和是正三角形,且,分别是和的中点, ∴⊥CM AB ,且CM ∥C N 1,=CM C N 1,则,,,四点共面.∵平面,平面,∴⊥CC AB 1,又平面CMNC 1,⊂CC 1平面CMNC 1,⋂=CM CC C 1,∴平面CMNC 1,∵平面ABQP ,∴平面⊥ABQP 平面CMNC 1.在矩形CMNC 1中,==MN CC 1===CN CM AB 1∴===C G NG CC MN 11,∴∠=∠=︒C GC NGM 451,且==CG 1,∴∠=︒CGM 90,即⊥CG MG .又平面⊥ABQP 平面CMNC 1,平面ABQP 平面=CMNC MG 1,⊂CG 平面CMNC 1,∴⊥CG 平面ABQP .在等腰梯形ABQP 中,==PQ A B 21111,,===BQ AP∴等腰梯形ABQP 的高=h , ∴四棱锥−C ABQP 的体积形梯=⋅=⨯+⨯V CG S CG PQ AB hABQP 332111)(=+=32412113)(.23.(2023高一下·广西玉林·百强名校期末)在如图所示的七面体AA B C D C 1111中,四边形A B C D 1111为边长为2的正方形, ⊥AA 1平面A B C D 1111,∥CC AA 11,且==CC AA 211,,,分别是C C 1,,的中点.(1)求点到平面MNP 的距离;(2)若直线A C 11交PN 于点,直线交平面MNP 于点,证明:,,三点共线.【答案】(1)(2)证明见解析【分析】(1)利用三棱锥体积转换思想,先求三棱锥−C MNP 1的体积,再确定底面积△MNP ,最后得点到平面MNP 的距离即可【详解】(1)解:==⨯⨯⨯⨯=−−V V C MNP M C NP 32611111111记到平面MNP 的距离为d ,在△MNP 中,===MN NP MP △==S MNP 2221,∴△==−S d V MNPC 31MNP 1,(2)证明:∵∥AA CC 11, ∴与确定平面AA C C 11,∵,∈E 平面AA C C 11,且,∈E 平面MNP ,∴平面AAC C11平面=PMN ME ,∵⋂AC 1平面=MPN F ,∴∈F 平面PMN ,∈F 平面AA C C 11, ∴点在直线上,则,,三点共线.24.(2023高一下·福建泉州·百强名校期末)如图所示,在四棱锥中,已知P A ⊥底面ABCD ,且底面ABCD 为梯形,,,====PA AD BC AB 33,点E 在线段PD 上,=PD PE 3.(1)求证:CE //平面P AB ; (2)求证:平面P AC ⊥平面PCD . 【答案】(1)证明见解析 (2)证明见解析【分析】(1)由线面平行的判定定理证明即可; (2)由线面垂直与面面垂直的判定定理证明即可【详解】(1)(1)过E 作EF AD //交P A 于点F ,连接BF , 因为,所以EF BC //.又=PD PE 3,所以=AD EF 3. 又=AD BC 3,所以所以四边形BCEF 为平行四边形, 所以CE BF //,又CE ⊄平面P AB ,BF ⊂平面P AB , 所以CE //平面P AB .。
高中数学复习题(7套)立体几何
立体几何练习题(1)1.A 、B 为球面上相异两点,则通过A 、B 两点可作球的大圆有 ( ) A .一个 B .无穷多个 C .零个 D .一个或无穷多个 2.长方体三条棱长分别是AA ′=1,AB=2,AD=4,则从A 点出发,沿长方体的表面到C ′的最短矩离是( )A .5B .7C .29D .373.已知集合A={正方体},B={长方体},C={正四棱柱},D={直四棱柱},E={棱柱},F={直平行六面体},则 ( ) A .E F D C B A ⊂⊂⊂⊂⊂ B .A C B F D E ⊂⊂⊂⊂⊂ C .C A B D F E ⊂⊂⊂⊂⊂ D .它们之间不都存在包含关系4.在一个侧置的正三棱锥容器内放入一个钢球,钢球恰与棱锥的四个面都接触,过棱锥的 一条侧棱和高作截面,正确的截面图形是 ( )A B C D 5.(12分)画出下列空间几何体的三视图.立体几何练习题(1)参考答案:1.D2.A3.B4.B5.解:(1)的三视图如下:正视图 侧视图 俯视图(2)的三视图如下:正视图 侧视图 俯视图立体几何练习题(2)1.如右图所示,该直观图表示的平面图形为( )A .钝角三角形B .锐角三角形C .直角三角形D .正三角形2.一个三角形在其直观图中对应一个边长为1正三角形,原三角形的面积为 ( )A .46 B .43 C .23D .26 3.说出下列三视图表示的几何体是( )A .正六棱柱B .正六棱锥C .正六棱台D .正六边形4.长方体ABCD —A 1B 1C 1D 1中,AB=2,BC=3,AA 1=5,则一只小虫从A 点沿长方体的表面爬到C 1点的最短距离是 .5.(12分)说出下列三视图所表示的几何体:正视图 侧视图 俯视图立体几何练习题(2)参考答案1.C2.A3.A 4.52.5.分析: 从给定的信息来看,该几何体是一个正四棱台.答:该三视图表示的是一个正四棱台.立体几何练习题(3)1.球的体积与其表面积的数值相等,则球的半径等于( )A .21B .1C .2D .32.将一个边长为a 的正方体,切成27个全等的小正方体,则表面积增加了 ( )A .26aB .12a 2C .18a 2D .24a 23.与正方体各面都相切的球,它的表面积与正方体的表面积之比为( )A .2π B .6πC .4πD .3π 4.中心角为135°的扇形,其面积为B ,其围成的圆锥的全面积为A ,则A :B 为( ) A .11:8 B .3:8 C .8:3 D .13:8 5.(14分)已知:一个圆锥的底面半径为R ,高为H ,在其中有一个高为x 的内接圆柱. (1)求圆柱的侧面积;(2)x 为何值时,圆柱的侧面积最大.立体几何练习题(3)参考答案1.D2.B3.B4.A 5.解:(1)设内接圆柱底面半径为r . ②①圆柱侧)(2x H HRr Hx H R r x r S -=∴-=⋅=π ②代入①())0(2)(22H x Hx x HR x H H R x S <<+-=-⋅=ππ圆柱侧 (2)()S R H x H x 圆柱侧=-+22π⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛--=42222H H x H R π 22RHS H x π==∴圆柱侧最大时立体几何练习题(4)1.已知平面α内有无数条直线都与平面β平行,那么 ( ) A .α∥β B .α与β相交 C .α与β重合 D .α∥β或α与β相交2.如图所示,点S 在平面ABC 外,SB ⊥AC ,SB =AC =2, E 、F 分别是SC 和AB 的中点,则EF 的长是( )A .1B .2C .22D .21 3.已知ABCD 是空间四边形形,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,如果对 角线AC =4,BD =2,那么EG 2+HF 2的值等于 ( )A .10B .15C .20D .254.如图所示,A 是△BCD 所在平面外一点,M 、N 分别是△ABC 和△ACD 的重心,若BD =6,则MN =___________. 5.(14分)如图所示,四棱锥P -ABCD 中,底面ABCD 是矩形, PA ⊥平面ABCD ,M 、N 分别是AB 、PC 的中点,PA =AD =a . (1)求证:MN ∥平面PAD ;(2)求证:平面PMC ⊥平面PCD .立体几何练习题(4)参考答案1.D2.B3.A 4.25.证明:如答图所示,⑴设PD 的中点为E ,连结AE 、NE ,由N 为PD 的中点知EN =//21DC ,又ABCD 是矩形, ∴DC =//AB ,∴EN =//21AB 又M 是AB 的中点,∴EN =//AN , ∴AMNE 是平行四边形 ∴MN ∥AE ,而AE ⊂平面PAD ,NM ⊄平面PAD ∴MN ∥平面PAD 证明:⑵∵PA =AD ,∴AE ⊥PD ,又∵PA ⊥平面ABCD ,CD ⊂平面ABCD , ∴CD ⊥PA ,而CD ⊥AD ,∴CD ⊥平面PAD∴CD ⊥AE , ∵PD ∩CD =D ,∴AE ⊥平面PCD , ∵MN ∥AE ,∴MN ⊥平面PCD , 又MN ⊂平面PMC , ∴平面PMC ⊥平面PCD.P NCB MAD E立体几何练习题(5)1.已知直线a 、b 与平面α、β、γ,下列条件中能推出α∥β的是 ( ) A .a ⊥α且a ⊥β B .α⊥γ且β⊥γ C .a ⊂α,b ⊂β,a ∥b D .a ⊂α,b ⊂α,a ∥β,b ∥β 2.如图所示,用符号语言可表达为( ) A .α∩β=m ,n ⊂α,m ∩n =A B .α∩β=m ,n ∈α,m ∩n =A C .α∩β=m ,n ⊂α,A ⊂m ,A ⊂ n D .α∩β=m ,n ∈α,A ∈m ,A ∈ n 3.已知m 、l 是直线, αβ、是平面, 给出下列命题: ①若l 垂直于α内的两条相交直线, 则l ⊥α; ②若l 平行于α, 则l 平行α内所有直线; ③若m l lm ⊂⊂⊥⊥αβαβ,,,且则;④若l l ⊂⊥⊥βααβ,且,则; ⑤若m l m ⊂⊂αβαβ,,,且∥则∥l . 其中正确的命题的序号是 (注: 把你认为正确的命题的序号都填上). 4.面积为Q 的正方形,绕其一边旋转一周,则所得几何体的侧面积为 ( ) A .πQ B .2πQ C . 3πQ D . 4πQ 5.(12分)三棱锥S-ABC 的三条侧棱两两垂直,SA =5,SB =4,SC =3,D 为AB 中点,E 为AC 中点,求四棱锥S-BCED 的体积.立体几何练习题(5)参考答案1.A2.A3.B 4.①④5.解: 中点、分别是、AC AB E DABC S BCED S ABC BCED ABC ADE V V S S S S --∆∆∆=∴=∴=∴434341A SB S A SC S B S C S S ⊥⊥=,,21510434310342153131=⨯==∴=⨯⨯⨯⨯===∴⊥∴--∆--ABC S BCED S BSC BSC A ABC S V V S AS V V BSCAS ·面1、一个球的外切正方体的全面积等于6 cm 2,则此球的体积为 ( ) A.334cm π B.386cm π C. 361cm π D. 366cm π2、一个体积为38cm 的正方体的顶点都在球面上,则球的表面积是A .28cm πB .212cm πC .216cm πD .220cm π3、一个正方体的顶点都在球面上,此球与正方体的表面积之比是( )A. 3πB. 4πC. 2π D. π4、已知正方体1111ABCD A BC D -,O 是底ABCD 对角线的交点. 求证:(1)1C O 面11AB D ;(2 )1AC ⊥面11AB D . (10分)立体几何练习题(6)参考答案1.C2.B3.C4、证明:(1)连结11AC ,设11111AC B D O =连结1AO , 1111ABCD A BC D -是正方体 11A ACC ∴是平行四边形11AC AC ∴ 且 11AC AC = 2分又1,O O 分别是11,AC AC 的中点,11O C AO ∴ 且11O C AO =11AOC O ∴是平行四边形 4分 111,C O AO AO ∴⊂ 面11AB D ,1C O ⊄面11AB D∴1C O 面11AB D 6分(2)1CC ⊥ 面1111A B C D 11!CC B D ∴⊥ 7分又1111AC B D ⊥ , 1111B D AC C ∴⊥面 , 111AC B D ⊥即 同理可证11AC AB ⊥, 又1111D B AB B = ∴1AC ⊥面11AB D D 1ODB AC 1B 1A 1C1、已知,圆O所在的平面为α,AB为圆O 的直径,C 为圆周上的一点,PAα⊥,E,F分别为PB,PC的中点,求证:(20分)(1)BC PAC⊥面(2)面AEF⊥面PAC2、如图,P是矩形ABCD所在平面外一点,PA ABCD⊥面,E,F 分别是PD,BC的中点。
高一数学立体几何期末复习练习题
F H GEA BC Dp 高一数学立体几何期末复习练习题班级: 学号 姓名一、填空题;(每题7分,共70分)1、一条直线与一个平面平行,过该直线且与这个平面平行的平面有 ▲ 个。
2、夹在两个平行平面间的平行线段 ▲ 。
3、R t A B C ∆中,D 是斜边AB 的中点,AC=6,BC=8,EC ABC ⊥面,且EC=12,则ED= ▲ 。
4、已知l α⊥,则过l 与α垂直的平面有 ▲ 个5、已知空间四边形ABCD 中,AB=AD ,BC=CD ,则对角线BD 与AC 所成的角为 ▲ 。
6、共点的三条线段OA 、OB 、OC 两两垂直,则OA 与BC 所成角是 ▲ 。
7、P 在平面ABC 外,若到A B C ∆三个顶点的距离相等,则P 在平面ABC 上的射影是A B C ∆的 ▲ 心。
8、若斜线,a b 在面α上的射影是两条平行线,则,a b 的位置关系是 ▲ 。
9、若PA ABCD ⊥矩形,在面PAB 、PBC 、PCD 、PDA 中相互垂直的平面称为一对,则共有 ▲ 对。
10,则这个长方体对角线长为 ▲ 。
二、解答题:(每题15分,共30分)11、已知四棱锥P-ABCD 的底面为直角梯形,//,90A B D C D A B ∠= ,PA ABCD ⊥面,且1P A =A D =D C =12A B =, (1)求证:PAD PCD ⊥面面; (2)求AC 与PB 所成角的余弦值。
12、在正方体1111ABC D -A B C D 中棱长a ,M 、N 分别为1A B AC 和上的点,且1A M AN =, (1)求证:11//M N BB C C 面; (2)求线段MN 的最小值。
FH GEABCDp 高一数学立体几何期末复习练习题参考答案一、填空题;(每题7分,共70分)1、 12、 相等3、 134、 无数5、 906、 907、 外8、 平行、异面9、 3 10、二、解答题:(每题15分,共30分)11、,; (1):PA C D PA ABC D AD C D C D ⊥⎫⊥⇒⎬⊥⎭⇒⊥⇒⊥证明面面PAD 面PAD 面PCD(2)作AC 、PA 、AB 、PC 的中点G 、H 、E 、F 连结HF 、HE 、EF 、FG 、EG////////11112222H F AC H E PB FG PA EG BC H F AC H E PB FG PA EG BC ∴====EH F ∴∠(或其补角)即为AC 与PB 所成的角11,2P A A D D C A B ==== 且ABCD 是直角梯形B C A C P ∴12222FG EG H F EH ∴====2PA FG E EF ⊥∴⊥∴∆∴=面ABCD FG 面ABCD 是直角三角形222905FH EF FHEH EFH C O S EH F EH∴+=∴∠=∴∠==12、(1)证明: 分别过1M N //,//BB E BC F 1111、作ME A B 交于NF A B 交于 111111111111////ABC D A B C D A M AN BM C N AB A B AB A B M E BM C N N F A B A BACABM E N F M E N F-=∴==∴===∴= 正方体////A B C D M N E FM N E F M N A B C D∴∴=∴四边形为平行四边形面(2)解:设正方体棱长为,a BF b = 由(1)知:1B E b M N EF == 在90EBF EBF BE a b BF b ∆∠==-=中,EF ∴==222a b EF EF a M N a ==∴时,最小,即最小值。
高一立体几何期末考试卷
高一立体几何期末考试卷一、选择题(每题3分,共30分)1. 空间中,点A、B、C不共线,点D、E、F共面,若AB与DE平行,AC与DF平行,BC与EF平行,则下列结论正确的是:A. 平面ABC与平面DEF平行B. 平面ABC与平面DEF相交C. 线段AB与线段DE平行D. 线段AB与线段DE共面2. 若正方体ABCD-A1B1C1D1中,点E为CC1的中点,点F为BB1的中点,则EF与下列哪条线段平行?A. ABB. BCC. A1D1D. DD13. 在空间直角坐标系中,点P(1,2,3)与点Q(4,5,6)的连线段PQ与坐标平面xOy平行,那么点R(a,b,c)在PQ上的投影点的坐标是:A. (1,2,c)B. (a,b,1)C. (4,5,c)D. (a,b,3)4. 已知圆锥的底面半径为r,高为h,圆锥的体积是:A. πr²hB. 1/3πr²hC. πrhD. 1/3πrh5. 已知空间四边形ABCD中,AB=CD,AD=BC,且AC⊥BD,若AB=2,AC=2√2,BD=2√3,则该空间四边形是:A. 平行四边形B. 矩形C. 菱形D. 梯形6. 正四面体的四个顶点在同一球面上,若正四面体的棱长为a,则该球的表面积为:A. 4πa²B. √3πa²C. 2πa²D. √2πa²7. 已知圆锥的母线长为l,底面半径为r,圆锥的侧面展开图是一个扇形,该扇形的圆心角为:A. 360°B. 180°C. 90°D. 60°8. 空间中,直线a与直线b不共面,点P在直线a上,点Q在直线b 上,若PQ与a、b都垂直,则PQ是:A. a与b的公垂线B. a与b的公垂线段C. a与b的中线D. a与b的角平分线9. 已知球的半径为R,球面上一点A到球心O的距离为d,点A在球面上的切线与球心O的距离为r,则下列关系正确的是:A. R² = d² + r²B. R² = d² - r²C. R² = 2d² - r²D. R² = 2d² + r²10. 若空间四边形ABCD中,AB=CD=2,AD=BC=2√2,且AC⊥BD,则该空间四边形的面积为:A. 4B. 2√2C. 4√2D. 8二、填空题(每题2分,共20分)11. 若三棱锥的四个顶点分别为A、B、C、O,且AB=AC=BC=a,则该三棱锥的体积为________。
(完整版)立体几何期末复习(含详细答案)
立体几何单元复习卷(一)1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是() A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体2.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.3.已知正三角形ABC的边长为2,那么△ABC的直观图△A′B′C′的面积为________.4.已知圆锥的表面积等于12πcm2,其侧面展开图是一个半圆,则底面圆的半径为________cm.5.(2018·苏州零模)鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根等长的正四棱柱体分成三组,经90°榫卯起来.若正四棱柱的高为5,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积至少为________。
(容器壁的厚度忽略不计,结果保留π)6.一个圆台上、下底面的半径分别为3 cm和8 cm,若两底面圆心的连线长为12 cm,则这个圆台的母线长为________cm.7.已知正四棱锥V-ABCD中,底面面积为16,一条侧棱的长为211,则该棱锥的高为________.8.如图,一立在水平地面上的圆锥形物体的母线长为4 m,一只小虫从圆锥的底面圆上的点P出发,绕圆锥表面爬行一周后回到点P处.若该小虫爬行的最短路程为4 3 m,则圆锥底面圆的半径等于________ m.9.正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 的中点,则三棱锥A -B 1DC 1的体积为________.10.已知直三棱柱ABC -A 1 B 1 C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1 =12,则球O 的半径为( )A.3172 B .210 C.132D .310 11.(2017·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.12.已知正三棱锥的高为1,底面边长为23,内有一个球与四个面都相切,则棱锥的内切球的半径为( )A.52B.3-1C.12D.2-113.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________.14.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.15.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛16.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为_______.17.一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.18.在三棱锥A -BCD中,侧棱AB,AC,AD两两垂直,△ABC,△ACD,△ADB的面积分别为22,32,62,则该三棱锥外接球的表面积为()A.2πB.6πC.46πD.24π19.如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC.(1)求证:PC⊥AB;(2)求点C到平面APB的距离.20.如图所示,在正方体ABCD-A1B1C1D1中,(1)求AC与A1D所成角的大小;(2)若E,F分别为AB,AD的中点,求A1C1与EF所成角的大小.立体几何单元复习卷(二)21.到空间不共面的四点距离相等的平面的个数为()A.1 B.4C.7 D.822.如图,平面α∥平面β,△PAB所在的平面与α,β分别交于CD,AB,若PC=2,CA=3,CD=1,则AB=________.23.在三棱锥P-ABC中,PB=6,AC=3,G为△PAC的重心,过点G作三棱锥的一个截面,使截面平行于PB和AC,则截面的周长为________.24.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥βC.若α⊥γ,β⊥γ,则α∥βD.若m⊥α,n⊥α,则m∥n25.已知m,n是两条不同的直线,α,β为两个不同的平面,则下列四个命题中正确的是()A.若m⊥α,n⊥β,m⊥n,则α⊥βB.若m∥α,n∥β,m⊥n,则α∥βC.若m⊥α,n∥β,m⊥n,则α∥βD.若m⊥α,n∥β,α∥β,则m∥n26.如图,在直三棱柱ABC-A′B′C′中,△ABC是边长为2的等边三角形,AA′=4,E,F,G,H,M分别是边AA′,AB,BB′,A′B′,BC的中点,动点P在四边形EFGH内部运动,并且始终有MP∥平面ACC′A′,则动点P的轨迹长度为()A.2 B.2πC.2 3 D.427.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是() A.若m⊂β,α⊥β,则m⊥αB.若m⊥α,m∥n,n∥β,则α⊥βC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若α∥β,m⊂α,n⊂β,则m∥n28.在直三棱柱ABC-A1B1C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC 1B1;③平面α⊥平面BCFE.其中正确命题的序号是________.29.如图,在直三棱柱ABC-A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D 是A 1B 1的中点,F 是BB 1上的动点,AB 1,DF 交于点E .要使AB 1⊥平面C 1DF ,则线段B 1F 的长为( ) A.12B .1 C.32 D .230.如图,在Rt △ABC 中,∠ABC =90°,P 为△ABC 所在平面外一点,PA ⊥平面ABC ,则四面体P -ABC 中直角三角形的个数为( )A .4B .3C .2D .131.如图,在正方形ABCD 中,E ,F 分别是BC ,CD 的中点,G是EF 的中点,现在沿AE ,AF 及EF 把这个正方形折成一个空间图形,使B ,C ,D 三点重合,重合后的点记为H ,那么,在这个空间图形中必有( )A .AG ⊥平面EFHB .AH ⊥平面EFHC .HF ⊥平面AEFD .HG ⊥平面AEF32.如图,PA ⊥⊙O 所在平面,AB 是⊙O 的直径,C 是⊙O 上一点,AE ⊥PC ,AF ⊥PB ,给出下列结论:①AE ⊥BC ;②EF ⊥PB ;③AF ⊥BC ;④AE ⊥平面PBC ,其中真命题的序号是________.33.如图,四边形ABCD 与四边形ADEF 为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点,求证:(1)BE ∥平面DMF ;(2)平面BDE ∥平面MNG .34.(2017·江苏高考)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.35.如图,S是Rt△ABC所在平面外一点,且SA=SB=SC,D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.36.如图,在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E-BCD的体积.37.如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到如图2所示的三棱锥A-BCF,其中BC=2 2.(1)求证:DE∥平面BCF;(2)求证:CF⊥平面ABF;(3)当AD=23时,求三棱锥F-DEG的体积.立体几何单元复习卷(一)1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是() A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体解析:选C截面是任意的且都是圆面,则该几何体为球体.2.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.解析:①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体ABCD-A1B1C1D1中的三棱锥C1-ABC,四个面都是直角三角形.答案:②③④3.已知正三角形ABC的边长为2,那么△ABC的直观图△A′B′C′的面积为________.解析:如图,图①、图②分别表示△ABC的实际图形和直观图.从图②可知,A′B′=AB=2,O′C′=12OC=32,C′D′=O′C′sin 45°=32×22=64.所以S△A′B′C′=12A′B′·C′D′=12×2×64=64.答案:6 44.已知圆锥的表面积等于12πcm2,其侧面展开图是一个半圆,则底面圆的半径为________cm.解析:S表=πr2+πrl=πr2+πr·2r=3πr2=12π,∴r2=4,∴r=2 cm.6.(2018·苏州零模)鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根等长的正四棱柱体分成三组,经90°榫卯起来.若正四棱柱的高为5,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积至少为________。
高一立体几何期末题汇编
又平面 平面 ,
则 即等于平面 与平面 所成的角,所以 ,
即 ;
取 中点为 ,连接 , ,因为 为 的中点,则 ,
又 ,则 ,即 , , , 四点共面,
即梯形 即为过点 , , 的平面截该正方体所得截面,
因为正方体棱长为 ,则 , ,
所以 , , ,
即梯形 为等腰梯形,分别作 于点 , 于点 ,
所以直线 与平面 所成角的正弦值为 .
12.如图,正方体ABCD﹣A′B′C′D′的棱长为1,则下列四个命题正确的是( )
A.若点M,N分别是线段 的中点,则MN∥BC′
B点C到平面 的距离为
C.直线BC与平面 所成的角等于
D.三棱柱 的外接球的表面积为3π
【答案】ACD
【解析】A选项:在 中,点M,N分别是线段 的中点,
,
所以当 时内接圆柱侧面积最大.
20.如图,在几何体中,四边形 为菱形, , , 与 相交于点 ,四边形 为直角梯形, , , ,平面 平面 .
(1)证明:平面 平面 ;
(2)求三棱锥 的体积.
【答案】(1)见解析(2)
【解析】
(1)连接 , ,
∵四边形 为菱形, ,
又∵平面 平面 ,平面 平面 ,
因为 为 的中位线,所以 ,
所以在等腰 中, .
故答案为:
16.如图,AB是圆O的直径,点C是圆上异于A、B的点,PO垂直于圆O所在的平面,且PO=OB ,BC=2,点E在线段PB上,则CE+OE的最小值为_____.
【答案】
【解析】
在△POB中,PO=OB ,∠POB=90°,
所以PB 2,
同理PC=2,所以PB=PC=BC,
高一立体几何期末考试卷
高一立体几何期末考试卷一、选择题1. 下列哪个选项可以构成一个四面体?A. 三条平行线段B. 两个相交直线C. 一个平面和一条直线D. 四个不共面的点答案:D. 四个不共面的点2. 一个正方体有多少个顶点?A. 4B. 6C. 8D. 12答案:C. 83. 在一个正六面体中,每个面的角度是多少度?A. 60°B. 90°C. 120°D. 180°答案:A. 60°4. 以下哪个选项描述了两个相互垂直的平面?A. 平行平面B. 立体角C. 交错线D. 垂直平面答案:D. 垂直平面5. 一个正六面体有多少个棱?A. 6B. 8C. 12D. 24答案:C. 12二、简答题1. 什么是棱柱?它有多少个面?多少个顶点?多少条棱?棱柱是一个多边形的底面和与底面平行的另一个多边形连接而成的立体图形。
它有两个平行并相等的底面,由这两个底面的边和它们之间的侧面构成。
一个棱柱有3个面,2个底面和1个侧面;有4个顶点,每个底面一个,侧面两个;有6条棱,底面边和侧面边各连接1条。
2. 请简要说明正方体和正六面体之间的区别。
正方体是一个六个面都是正方形的立体图形,每个面上相邻的两个边是垂直的。
正六面体是一个六个面都是正六边形的立体图形,每个面上相邻的两个边是等边的。
正方体有8个顶点,正六面体有12个顶点。
三、计算题1. 如果一个矩形棱柱的底面长为5cm,宽为3cm,高为4cm,求它的表面积和体积。
表面积 = 2(长×宽 + 长×高 + 宽×高) = 2(5×3 + 5×4 + 3×4) = 2(15 + 20 + 12) = 2(47) = 94平方厘米体积 = 长×宽×高 = 5×3×4 = 60立方厘米2. 一个边长为6cm的正方体,求其表面积和体积。
表面积 = 6 × 6 × 6 = 6 × 6 = 36平方厘米体积 = 6 × 6 × 6 = 6 × 6 = 216立方厘米四、综合题1. 一个四面体的底面是三角形ABC,AB=8cm,BC=6cm,AC=10cm,底面和顶点到底面的高分别是6cm和4cm,求该四面体的体积。
高一数学期末复习卷立体几何
高一数学期末复习卷------立体几何1.一条直线上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是()A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l⊂α2..已知直线l∥平面α,P∈α,那么过点P且平行于l的直线()A.只有一条,不在平面α内B.只有一条,在平面α内C.有两条,不一定都在平面α内D.有无数条,不一定都在平面α内3.三条两两相交的直线最多可确定()个平面.A.1 B.2 C.3 D.无数4.不共面的四点可以确定平面的个数为()A.2个B.3个C.4个D.无法确定5.在空间,下列说法正确的是()A.两组对边相等的四边形是平行四边形B.四边相等的四边形是菱形C.平行于同一直线的两条直线平行D.三点确定一个平面6.若直线a与平面α不垂直,那么在平面α内与直线a垂直的直线()A.只有一条B.无数条C.是平面α内的所有直线D.不存在7.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m8.在下列关于直线l、m与平面α、β的命题中,真命题是()A.若l⊂β,且α⊥β,则l⊥αB.若l⊥β,且α∥β,则l⊥αC.若α∩β=m,且l⊥m,则l∥αD.若l⊥β,且α⊥β,则l∥α9.设m,n表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是()A.m⊥α,m⊥β,则α∥βB.m∥n,m⊥α,则n⊥αC.m⊥α,n⊥α,则m∥n D.m∥α,α∩β=n,则m∥n10.已知m为一条直线,α、β为两个不同的平面,则下列说法正确的是()A.若m∥α,α⊥β,则m⊥βB.若m⊥α,α∥β,则m⊥βC.若m∥α,α∥β,则m∥βD.若m∥α,m∥β,则α∥β11.设l为直线,α,β是两个不同的平面,下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若α∥β,l∥α,则l∥βC.若l⊥α,l∥β,则α⊥βD.若α⊥β,l∥α,则l⊥β12.已知m,n,表示不同直线,α,β表示不同平面.则下列结论正确的是()A.m∥α且n∥α,则m∥n B.m∥α且m∥β,则α∥βC.α∥β且 m⊂α,n⊂β,则m∥n D.α∥β且 a⊂α,则a∥β13.下列命题中正确的是()A.若一条直线垂直平面内的两条直线,则这条直线与这个平面垂直B.若一条直线平行平面内的一条直线,则这条直线与这个平面平行C.若一条直线垂直一个平面,则过这条直线的所有平面都与这个平面垂直D.若一条直线与两条直线都垂直,则这两条直线互相平行14.不同直线m,n和不同平面α,β,给出下列命题:①②③④其中假命题有:()A.0个B.1个C.2个D.3个15.下列条件中,能判断两个平面平行的是()A.一个平面内有无数条直线平行于另一个平面B.一个平面内有两条直线平行于另一个平面C.一个平面内有两条相交直线平行于另一个平面D.两个平面同时垂直于另一个平面16.平面α、β和直线m,给出条件,为使应选择下面四个选项中的条件()A、①⑤B、①④C、②⑤D、③⑤17.如图,将无盖正方体纸盒展开,直线AB,CD在原正方体中的位置关系是()A.平行B.相交且垂直C.异面D.相交成60°18.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为()A .B .C .D.619.一个水平放置的三角形的面积是,则其直观图面积为()A .B .C .D .20.长方体ABCD﹣A1B1C1D1中,异面直线AB,A1D1所成的角等于()A.30°B.45°C.60°D.90°21.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为()A .B.(4+π)C .D .22.一个正四棱锥的所有棱长均为2,其俯视图如图所示,则该正四棱锥的正视图的面积为()A .B . C.2 D.423.如图为某几何体的三视图,则该几何体的表面积为()A.10+B.10+C.6+2+D.6++ 24.一几何体的直观图如图所示,下列给出的四个俯视图中正确的是()A .B .C .D .25.棱长都是1的三棱锥的表面积为()A .B .C .D .26.设甲,乙两个圆柱的底面面积分别为S1,S2,体积为V1,V2,若它们的侧面积相等且,则的值是()A .B .C .D .27.圆锥的高扩大到原来的2倍,底面半径缩短到原来的,则圆锥的体积()A.缩小到原来的一半B.扩大到原来的2倍C.不变D .缩小到原来的28.若一个圆锥的底面半径是母线长的一半,侧面积和它的体积的数值相等,则该圆锥的底面半径为()A .B .C .D .29.已知某几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是()A .B .C.1 D.230.半径R的半圆卷成一个圆锥,则它的体积为()A .πR3B .πR3C .πR3D .πR331.长方体的一个顶点上三条棱长为3、4、5,且它的八个顶点都在一个球面上,这个球的表面积是()A.20π B.25π C.50πD.200πxoz32.点(2,3,4)关于平面的对称点为()A、(2,3,-4)B、(-2,3, 4)C、(2,-3,4)D、(-2,-3,4)33.在空间直角坐标系中,已知三点A(1,0,0),B(1,1,1),C(0,1,1),则三角形ABC 是()A.直角三角形 B.等腰三角形C.等腰直角三角形D.等边三角形34.在空间直角坐标系中,给定点M(2,﹣1,3),若点A与点M关于xOy平面对称,点B与点M关于x轴对称,则|AB|=()A.2 B.4 C.D.35.已知正方体的不在同一表面的两个顶点A(﹣1,2,﹣1),B(3,﹣2,3),则正方体的棱长等于()A.4 B.2 C.D.251.如图,在正方体ABCD﹣A1B1C1D1中,E、F分别为AD,AB的中点.(1)求证:EF∥平面CB1D1;(2)求证:平面CAA1C1⊥平面CB1D1.52.如图,已知正四棱锥V﹣ABCD中,AC与BD交于点M,VM是棱锥的高,若AC=6cm,VC=5cm.(1)求正四棱锥V﹣ABCD的体积;(2)求直线VD与底面ABCD所成角的正弦值.53.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥平面ABCD,E为PD的中点,F为AC和BD的交点.(1)证明:PB∥平面AEC;(2)证明:平面PAC⊥平面PBD.54.(本小题满分12分)如图,已知斜三棱柱ABC-A1B1C1中,AB=AC,D为线段BC的中点、(I)求证院A1B∥平面ADC1(II)若平面ABC⊥平面BCC1B1,求证:AD⊥DC155.长方体ABCD﹣A1B1C1D1中,,AB=BC=2,O是底面对角线的交点.(Ⅰ)求证:B1D1∥平面BC1D;(Ⅱ)求证:A1O⊥平面BC1D;(Ⅲ)求三棱锥A1﹣DBC1的体积.56.如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.57.如图,四棱锥P﹣ABCD的底面是正方形,侧棱PA⊥面ABCD,BD交AC于点E,F是PC 中点,G为AC上一动点.(1)求证:BD⊥FG(2)在线段AC上是否存在一点G使FG∥平面PBD,并说明理由.58.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,O为AD中点,M是棱PC上的点,AD=2BC.(1)求证:平面POB⊥平面PAD;(2)若点M是棱PC的中点,求证:PA∥平面BMO.59.如图所示,正四棱锥P﹣ABCD中,侧棱PA与底面ABCD 所成的角的正切值为.(1)求侧面PAD与底面ABCD所成的二面角的大小;(2)若E是PB的中点,求异面直线PD与AE所成角的正切值;(3)问在棱AD上是否存在一点F,使EF⊥侧面PBC,若存在,试确定点F的位置;若不存在,说明理由.60.如图,在四棱锥P﹣ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD 是边长为2的菱形,∠BAD=60°,N是PB的中点,过A、D、N三点的平面交PC于M,E为AD的中点,求证:(1)EN∥平面PDC;(2)BC⊥平面PEB;(3)平面PBC⊥平面ADMN.51.【解答】(1)证明:连结BD,在△ABD中,E、F分别为棱AD、AB的中点,故EF∥BD,又BD∥B1D1,所以EF∥B1D1,…又B1D1⊂平面CB1D1,EF不包含于平面CB1D1,所以直线EF∥平面CB1D1.…(2)证明:在正方体ABCD﹣A1B1C1D1中,底面A1B1C1D1是正方形,则A1C1⊥B1D1…又CC1⊥平面A1B1C1D1,B1D1⊂平面A1B1C1D1,则CC1⊥B1D1,…又A1C1∩CC1=C1,A1C1⊂平面CAA1C1,CC1⊂平面CAA1C1,所以B1D1⊥平面CAA1C1,又B1D1⊂平面CB1D1,所以平面CAA1C1⊥平面CB1D1.…52.【解答】解:(1)∵正四棱锥V﹣ABCD中,ABCD是正方形,∴MC=AC=BD=3(cm).且S正方形ABCD =AC×BD=18(cm2).Rt△VMC中,VM==4(cm).∴正四棱锥的体积为V==(cm3).(2)∵VM⊥平面ABCD,∴∠VDM是直线VD与底面ABCD所成角,∵VD=VC=5,在RT△VDM中,sin∠VDM=.所以直线VD与底面ABCD 所成角的正弦值为.53.【解答】解:(1)证明:连接EF,∵四边形ABCD是菱形,∴F是BD的中点,又E是PD的中点,∴PB∥EF,又EF⊂平面AEC,PB⊄平面AEC,∴PB∥平面AEC;(2)∵PA⊥平面ABCD,BD⊂平面ABCD,∴PA⊥BD,∵四边形ABCD是菱形,∴BD⊥AC,又AC⊂平面PAC,PA⊂平面PAC,AC∩PA=A,∴BD⊥平面PAC,又∵BD⊂平面PBD,∴平面PAC⊥平面PBD.54.试题解析:(1)证明:连接CA1交1AC于点E,连接DE ∵斜三棱柱中,CCAA11是平行四边形.∴E是CA1的中点.又∵D是BC的中点,∴BADE1//(3分)又∵⊂DE平面1ADC⊄B A 1平面1ADC (5分)∴//1B A 平面1ADC (6分)(2)∵ABC ∆中,D AC AB ,=为BC 的中点. ∴BC AD ⊥(8分)又∵平面⊥ABC 平面11B BCC ,交线为BC⊂AD 平面ABC⊥∴AD 面11B BCC (10分)∵⊂1DC 平面11B BCC1DC AD ⊥∴(12分)55.【解答】解:(Ⅰ) 证明:依题意:B 1D 1∥BD ,且B 1D 1在平面BC 1D 外. ∴B 1D 1∥平面BC 1D (Ⅱ) 证明:连接OC 1 ∵BD ⊥AC ,AA 1⊥BD ∴BD ⊥平面ACC 1A 1又∵O 在AC 上,∴A 1O 在平面ACC 1A 1上 ∴A 1O ⊥BD ∵AB=BC=2∴∴∴Rt △AA 1O 中,同理:OC 1=2∵△A 1OC 1中,A 1O 2+OC 12=A 1C 12 ∴A 1O ⊥OC 1 ∴A 1O ⊥平面BC 1D(Ⅲ)解:∵A 1O ⊥平面BC 1D∴所求体积=56.【解答】证明:(1)∵D、E 为PC 、AC 的中点,∴DE∥PA,又∵PA ⊄平面DEF ,DE ⊂平面DEF , ∴PA∥平面DEF ;(2)∵D、E 为PC 、AC 的中点,∴DE=PA=3;又∵E、F 为AC 、AB 的中点,∴EF=BC=4; ∴DE 2+EF 2=DF 2, ∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC; ∵AC∩EF=E,∴DE⊥平面ABC ;∵DE ⊂平面BDE ,∴平面BDE⊥平面ABC .57.【解答】(1)证明:∵PA ⊥面ABCD ,BD ⊂平面ABCD ,∴PA ⊥BD ,∵四边形ABCD 是正方形,∴AC ⊥BD .又∵PA ⊂平面PAC ,AC ⊂平面PAC ,PA∩AC=A,∴BD⊥平面APC,∵FG⊂平面PAC,∴BD⊥FG.(2)解:当G为EC 中点,即时,FG∥平面PBD.理由如下:连结PE,由F为PC中点,G为EC中点,知FG∥PE而FG⊄平面PBD,PB⊂平面PBD,故FG∥平面PBD.58【解答】(1)证明:∵AD∥BC,BC=AD,O为AD的中点,∴四边形BCDO为平行四边形,∴CD∥BO.∵∠ADC=90°,∴∠AOB=90° 即OB⊥AD.又∵平面PAD⊥平面ABCD 且平面PAD∩平面ABCD=AD,∴BO⊥平面PAD.∵BO⊂平面POB,∴平面POB⊥平面PAD.(2)证明:连结AC,交BO于N,连结MN,∵AD∥BC,O为AD中点,AD=2BC,∴N是AC的中点,又点M是棱PC的中点,∴MN∥PA,∵PA⊄平面BMO,MN⊂平面BMO,∴PA∥平面BMO.59.【解答】解:(1)取AD中点M,设PO⊥面ABCD,连MO、PM,则∠PMO为二面角的平面角,∠PAO为侧棱PA与底面ABCD 所成的角,,设,PO=AOtan∠PAO=,∴∠PMO=60°.(2)连OE,OE∥PD,∠OEA为异面直线PD与AE所成的角..∵∴(3)延长MO交BC于N,取PN中点G,连EG、MG..又取AM中点F ,∵EG∥MF∴∴EF∥MG.∴EF⊥平面PBC.即F为四等分点60.【解答】解:(1)∵AD∥BC,AD⊂平面ADMN,BC⊄平面ADMN,∴BC∥平面ADMN,∵MN=平面ADMN∩平面PBC,BC⊂平面PBC,∴BC∥MN.又∵AD∥BC,∴AD∥MN.∴ED∥MN∵N是PB的中点,E为AD的中点,底面ABCD是边长为2的菱形,∴ED=MN=1∴四边形ADMN是平行四边形.∴EN∥DM,DM⊂平面PDC,∴EN∥平面PDC;(2)∵侧面PAD是正三角形,且与底面ABCD垂直,E为AD的中点,∴PE⊥AD,PE⊥EB,PE⊥BC∵∠BAD=60°,AB=2,AE=1,由余弦定理可得BE=,由正弦定理可得:BE⊥AD ∴由AD∥BC可得BE⊥BC,∵BE∩PE=E∴BC⊥平面PEB;(3)∵由(2)知BC⊥平面PEB,EN⊂平面PEB ∴BC⊥EN∵PB⊥BC,PB⊥AD∴PB⊥MN∵AP=AB=2,N是PB的中点,∴PB⊥AN,∴MN∩AN=N.PB⊥平面ADMN,∵PB⊂平面PBC∴平面PBC⊥平面ADMN.。
高一上数学期末立体几何专题复习
高一上学期期末立体几何复习3. 一个几何体的三视图如图所示,其中正视图是一个边长为俯视图是一正方形,那么该几何体的体积为5 .将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为A. 2 B , 4 C . 8 D . 166 .某四面体的三视图如右图所示,该四面体四个面的面积中,最大的是A. 8 B , 6J 2C . 10D , 8四7 .已知直线l 1、l 2,平面a , l 1 // l 2, l 1 // a ,则1 2与a 的位置关系是 8 .若m n 表示直线,a 表示平面,则下列命题中,正确命题的个数为()A. 1B. 2C. 3D. 49 .已知直线a // b,平面a// 3, a, a,则b 与3的位置关系是()A. b± 3B. b// 3C. b? 3D. b? 3或 b// 3 b,平面3,则a 与3的关系是B. a// 3C. a? 3・选择题 1.右图是水平放置的 ABC 的直观图,A'B'//y'轴,A'B' A'C',则 ABC 是A.等边三角形B .等腰三角形 C.直角三角形 .等腰直角三角形 2.已知正方体外接球的体积是32 、,―一 一,那么正方体的棱长等于( 3 o' A'C'A.2..2B."C.运 3 3D. 4 3 3正视图 侧视图4 A. 3 B. 2.3 83 C. 34.3 D.3俯视图4.已知等边三角形ABC 的边长为a,那么三角形ABC 的斜二测直观图的面积为( )'.3 2 ——a A. 4 B. C.6 2 ——a 8 6 2 ——aD. 16 A 12// l2" a 或 12 aD 12与 a 相交m// nml an±a ?m/ n;③nu an// J 江 n;ml n? nX a .10.直线a,直线 b,12 .若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为13 .若一个三棱 柱的三视图 如下左图所 示,则这个 正三棱柱的 侧面积等于14 .已知某几何体的三视图如下右图,根据图中标出的尺寸(单位:三.解答题(1)求证:平面PBEL 平面PAB; (2)若H,G 分别为PC,AB 的中点,求证: HG //面PAD(3)求三棱锥B PDE 的体积。
高一立体几何复习卷
高一数学立体几何期末复习卷一、选择题1.下列命题中,结论正确的是 ( ) A.如果一个角的两边与另一个角的两边分别平行,那么这两个角相等B.如果一条直线平行于一个平面,那么这条直线平行于此平面内的任意直线C.一个平面内的一条直线垂直于另一个平面的一条直线,则这两个面相互垂直D.如果两条直线同时平行于第三条直线,那么这两条直线平行2.一个三角形的直观图为边长为1的等边三角形,则原三角形的面积为( )A 3.过半径为2的球O 表面上一点A 作球O 的截面,若OA 与该截面所成的角是60,则该截面的面积是( )A .πB .2πC .3πD .4.圆台的上下底面半径分别为1和2,母线长为2,则圆台的表面积和体积分别为( )A.11π ,143π B.(5π+ ,3 C.11π, 3D.(5π+,143π 5.设A 、B 、C 、D 是空间四个不同的点,在下列命题中,不正确的是( )A .若AC 与BD 共面,则AD 与BC 共面B .若AC 与BD 是异面直线,则AD 与BC 是异面直线 C .若AB =AC ,DB =DC ,则AD =BC D .若AB =AC ,DB =DC ,则AD BC ⊥6.设,αβ是两个不同的平面,,m n 是两条不同的直线,则下列命题正确的是( )A .若//m n ,且,m n αβ⊥⊥,则//αβB .若,m n αβ⊂⊂,且//αβ,则//m nC .若,m n α⊂,且//,//m n ββ,则//αβD .,,m n αβαβ⊥⊂⊂,则m n ⊥7.如右上图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为( ) A.16 B.12 C.13D.1 8.在正方形ABCD 中,E 、F 分别是AB 、BC 的中点,现在沿DE ,DF 及EF 把ADE ∆,CDF ∆和BEF ∆折起,使A 、B 、C 三点重合,重合后的点记作P ,那么在四面体P -DEF 中必有( )BCDA .DP ⊥平面PEFB .DM ⊥平面PEFC .PM ⊥平面DEFD .PF ⊥平面DEF9.正四面体PABC 中,F E D ,,分别是CA BC AB ,,的中点,以下不成立的是( ) A.//BC 平面PDF B.⊥DF 平面PAEC.平面⊥PDF 平面ABCD.平面⊥PAE 平面ABC10.异面直线a 、b 不垂直, a 、b 在平面α上的射影有可能是:①两平行直线; ②两条互相垂直的直线; ③同一直线; ④一条直线及其外一点.所有正确的结论为( ) A.①② B. ①④ C.①②④ D.②④ 二、填空题11.一个正方体的顶点都在球面上,此球与正方体的体积之比为______________ 12. 圆锥的表面积是16π,侧面展开图的圆心角是120,则圆锥的体积为 13.如图,在三棱锥P —ABC 中,PA=PB=PC=BC ,且90BAC ︒∠=,则PA 与底面ABC 所成角为14.设,,αβγ为平面,,,m n l 为直线,则对于下列条件 ①,,l m l αβαβ⊥=⊥②,,m αγαββγ=⊥⊥③,,m αγβγα⊥⊥⊥ ④,,n n m αβα⊥⊥⊥其中能推出m β⊥的条件是 (将你认为正确的所有序号都填上) 三、解答题15. 如图,在四棱锥P ABCD -中,底面为直角梯形,//AD BC ,90BAD ︒∠=,PA ⊥底面ABCD ,且2PA AD AB BC ===,M 、N 分别是PC 、PB 的中点 (1) 求证:PB DM ⊥ (2) 求BD 与平面ADMN 所成的角A1AC16.已知某几何体的俯视图是如图所示长为8、宽为6的矩形,正视图是一个底边长为8、高为4的等腰三角形,侧视图是一个底边长为6、高为4的等腰三角形 (1)求该几何体的体积V (2)求该几何体的表面积S17.在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,ABC ∠1AB BC ==(1)求异面直线11B C 与AC 所成角的大小(2)若直线1AC 与平面ABC 所成角为45,求三棱锥1A ABC-的体积CBD1FA18.如图,在棱长为a 的正方体1111ABCD A BC D -中,,E 分别是 111,,,BC C D AD BD 的中点 (1)求证://PQ 平面11DCC D (2)求证://EF 平面11BB D D19.如图,在矩形ABCD 中,2AB BC =,,P Q 分别为线段,AB CD 的中点,EP ⊥平面ABCD . 求证:(1)DP ⊥平面EPC (2)平面AEQ ⊥平面DEP。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B 1
C 1
A 1D 1B
A
C
D
俯视图侧视图正视图2013—2014学年度下学期高一期末复习试题
数 学 试 卷 (立体几何)
考试时长:120分钟 分值:150分
一、选择题(本大题共10小题,每小题5分,共50分)
1、下列说法正确的是
A 、三点确定一个平面
B 、四边形一定是平面图形
C 、梯形一定是平面图形
D 、平面α和平面β有不同在一条直线上的三个交点 2、在正方体1111ABCD A BC D -中,下列几种说法正确的是
A 、11AC AD ⊥
B 、11D
C AB ⊥ C 、1AC 与DC 成45角
D 、11AC 与1BC
成60角 3、下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行;
(3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行 (5)、垂直于同一条直线的两条直线一定平行.其中正确的个数有
A 、1
B 、2
C 、3
D 、4
4、在空间四边形ABCD 各边AB BC CD DA 、、、上分别取E F G H 、、、四点,如果与EF GH 、能相交于点P ,那么 A 、点必P 在直线AC 上 B 、点P 必在直线BD 上
C 、点P 必在平面ABC 内
D 、点P 必在平面ABC 外 5、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b ⊂M , a ∥b ,则a ∥M ;③若a ⊥c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有
A 、0个
B 、1个
C 、2个
D 、3个 6、一个棱柱是正四棱柱的条件是
A 、底面是正方形,有两个侧面是矩形
B 、底面是正方形,有两个侧面垂直于底面
C 、底面是菱形,且有一个顶点处的三条棱两两垂直
D 、每个侧面都是全等矩形的四棱柱 7、在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是
A 、
23 B 、76 C 、45 D 、56
8、已知二面角AB αβ--的平面角是锐角θ,α内一点C 到β的距离为3,点C 到棱AB 的距离为4,那么tan θ的值等于
A 、
34
B
、
35
C 、
7
D 、7
9、已知点A 是△BCD 所在平面外的一点,且△ABC ,△ACD ,△BCD 均是边长为a 的正三角形,若记异面直线AD ,BC 间的成角为θ,距离为d ,则
(A) a d 21
,60=
︒=θ (B) a d 22,60=
︒=θ
(C) a d 2
1,90=︒=θ (D) a d 2
2,90=
︒=θ 10、如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1和
CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为
A 、
2V B 、3V C 、4V D 、5
V 二、填空题(每小题5分,共25分)
11、等体积的球和正方体,它们的表面积的大小关系是S 球_____S 正方体
(填”大于、小于或等于”).
12、正方体1111ABCD A BC D -中,平面11AB D 和平面1BC D 的位置关系为 13.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如图9-3-14所示,则这个棱柱的体
积为______________.
14、已知PA 垂直平行四边形ABCD 所在平面,若PC BD ⊥,平行则四边形ABCD 一定是 .
15、如图,在直四棱柱A 1B 1C 1 D 1-ABCD 中,当底面四边形ABCD 满足条件_________时,有A 1
B ⊥B 1 D 1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.) 三、解答题:本大题共6个小题,共75分.解答应写出文字说明,证明过程或演算步骤.
16、已知圆台的上下底面半径分别是2、5,且侧面面积等于两底面面积之和,求该圆台的母线长.
Q
P
C'
B'
A'C B
A
17、已知E、F、G、H为空间四边形ABCD的边AB、BC、CD、DA上的点,且EH∥FG.
求证:EH∥BD.
18、如图,在四棱锥P ABCD
-中,底面ABCD是矩形.已知3
AB=,2
AD=,2
PA=
,
PD=60
PAB =
∠.(Ⅰ)证明AD⊥平面PAB
;
(Ⅱ)求异面直线
PC与AD所成的角的大小;
(Ⅲ)求二面角
P BD A
--的正切值.
19、一块边长为10cm的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三
角形加工成一个正四棱锥形容器,试建立容器的容积V与x的函数关系式,并求出函数的定义域.
(12分)
20、已知正方体
1111
ABCD A BC D
-,O是底ABCD对角线的交点.
求证:(1)O
C
1
∥面
11
AB D;(2 )
1
AC⊥面
11
AB D.
21、已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,
∠ADB=60°,E、F分别是AC、AD上的动点,且(01).
AE AF
AC AD
λλ
==<<
(Ⅰ)求证:不论λ为何值,总有平面BEF⊥平面ABC;
(Ⅱ)当λ为何值时,平面BEF⊥平面ACD?
H
G
F
E
D
B
A
C
D1
O
D
B
A
C1
B1
A1
C
F
E
D
B
A
C
A
B C
D
P。