2017年浙江省温岭市初中学业水平模拟考试数学试卷及答案

合集下载

2017年初中数学模拟卷参考答案

2017年初中数学模拟卷参考答案

2017年初中毕业班质量自测试题数学参考答案一、选择题(每题4分,共40分)二、填空题(每题5分,共30分) 11.)2)(2(-+x x 12.15 13.31 14. 222=+y x 15. 32或62 16.22+三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(1)解:原式=221121=++ ………………4分 (2) 511=x ………………4分18.解:(1)150 ………………2分(2)图略 ………………2分(3)最喜爱科普类书籍的学生人数1800×=480人………………4分19.(1)2=m ………………4分(2) B 的坐标为(1,3)或(﹣3,﹣1)………………4分20.解:如图作CM ∥AB 交AD 于M ,MN ⊥AB 于N .由题意=,得 CM=1, ………………2分在RT △AMN 中,∵∠ANM=90°,MN=BC=3,∠AMN=60°, ∴AN=33 ………………2分 ∵MN ∥BC ,AB ∥CM , ∴四边形MNBC 是平行四边形, ∴BN=CM=1∴AB=AN+BN=(331+)米. ………………4分NM21.(1)证明:连接OD,如图,∵∠1=∠2,而∠2=∠3,∴∠3=∠1,∵OC⊥AB,∴∠3+∠C=90°,∴∠1+∠C=90°,而OC=OD,∴∠C=∠4,∴∠1+∠4=90°,即∠ODE=90°,∴OD⊥DE,∴GE是⊙O的切线;………………4分(2)解:设OF=x,则OC=3x,∴BF=2x,∵∠1=∠2,∴ED=EF=2x+4,在Rt△ODE中,∵OD2+DE2=OE2,∴(3x)2+(2x+4)2=(4+3x)2,解得x=2,………………4分∴OD=6,DE=8,OE=10又∵△AGE∽△DOE,AE=16,可得AG=12 ………………2分22. (1)假设甲、乙两种商品的进货单价各为x ,y 元 ……………………………1分根据题意可得:33(1)2(21)12x y x y +=⎧⎨++-=⎩………………………………………2分解得:12x y =⎧⎨=⎩…………………………………………………………………………2分 甲、乙零售单价分别为2元和3元;………………………………………………1分 (2)根据题意得出:1000500)1.0100500(-1=+⨯+mm )( ………………………………………3分 即2m 2﹣m=0,解得m =0.5或m =0(舍去), …………………………………………………2分 答:当m 定为0.5元才能使商店每天销售甲、乙两种商品获取的利润共1000元.……1分23.(1)① √ ………………1分 ② √ ………………1分 (2)设P 到AB 的距离为h ,则6321521421=⋅⨯-⋅⨯+⋅⨯h h h 解得h =2 ………………4分(3) ① 70° ………………2分②作AD 边上的高AH ,设AD=AE=5k ,则HE=4k ,AH=3k , DH=2k , tan ∠DEH=21,可得tan ∠DAP= tan ∠DEH=21,∵AP=4,∴DP=EP=2, 可证△DBP ∽△EPC ,∴4=•=•EP DP CE BD ………………4分24.(1)b=2 c=3- 直线AC 的解析式为3--=x y ………………3分 (2)①HE=3t +,EF=3+t ,FP=342---t t ,由题意可得563342=+---t t t , 解得31-=t (舍), 2.22-=t ………………4分 ②当3-<t 时,∠PEC=135°,而∠ACB>45°,所以△PEC 中不存在有一个角等于∠ACB ; ……………1分当3->t 时,∠PEC=45°=∠BAC ,若△PEC 中有一个角等于∠ACB , 则这两个三角形相似 ∴△PEC ∽△CAB 时,23-=t ………………3分 △PEC ∽△BAC 时,35-=t ………………3分。

温岭中考一模数学试卷

温岭中考一模数学试卷

一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 下列各数中,无理数是()A. 2.5B. √9C. πD. -1/32. 已知函数f(x) = 2x + 1,若f(2) = 5,则f(x)的图象经过()A. 第一、二、四象限B. 第一、三、四象限C. 第一、二、三象限D. 第二、三、四象限3. 在直角坐标系中,点A(2, 3),点B(-3, 2)关于直线y = x对称的点分别是()A. A(-3, 2),B(2, 3)B. A(2, 3),B(-3, -2)C. A(-3, -2),B(2, 3)D. A(-3, 2),B(2, -3)4. 已知等腰三角形ABC中,AB = AC,∠BAC = 60°,则∠B =()A. 60°B. 120°C. 30°D. 45°5. 在平面直角坐标系中,点P(m, n)在直线y = 2x + 1上,则m和n之间的关系是()B. m = n/2C. m = n - 2D. m = 2n - 16. 若a > 0,b < 0,则下列不等式中正确的是()A. a + b > 0B. a - b > 0C. a - b < 0D. a + b < 07. 在△ABC中,AB = AC,∠B = 45°,则△ABC是()A. 等腰三角形B. 等边三角形C. 直角三角形D. 锐角三角形8. 已知一元二次方程x^2 - 4x + 3 = 0,下列选项中,正确的解法是()A. 因式分解法B. 完全平方公式法C. 配方法D. 迭代法9. 下列函数中,为奇函数的是()A. y = x^2B. y = |x|C. y = x^310. 已知数列{an}的通项公式an = 2n - 1,则数列的前5项之和S5 =()A. 9B. 10C. 11D. 12二、填空题(本大题共10小题,每小题3分,共30分。

2017年浙江省初中模拟考试数学试卷(5)及答案

2017年浙江省初中模拟考试数学试卷(5)及答案

2018年浙江省初中模拟考试5九年级 数学试题卷<满分150分,考试用时120分钟)一、选择题:<本大题共10小题,每小题4分,满分40分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不不给分)Rv1Prloapz 1.-3的绝对值是< )A .3B . -3C .31 D .31-2.下列计算中,不正确的是 < )A . 23a a a -+=B . ()2555xy xy xy -÷= C .()326326x y x y -=- D . ()22233ab a a b ∙-=-3 某户家庭今年1-5月的用电量分别是:72,66,52,58,68,这组数据的中位数是( >A .52B .58C .66D .684.抛物线A .直线x=-2B .直线 x=2C .直线x=-3D .直线x=3Rv1Prloapz 5.下列运算中,结果正确的是 < )A .a a a 34=-B .5210a a a =÷C .532a a a =+D .1243a a a =⋅(第7题图> (第6题图>6.如图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画出它的三视图,那么他所画的三视图中的俯视图应该是< )dcdfFkycot A .两个相交的圆 B .两个内切的圆 C .两个外切的圆 D .两个外离的圆7.一把大遮阳伞,伞面撑开时可近似地看成是圆锥形,如图,它的母线长是2. 5M ,底面半径为2M ,则做这把遮阳伞需用布料的面积是< )平方M<接缝不计)dcdfFkycot A . π3 B .π4 C .π5 D .π4258.已知C B A ,,是⊙O 上不同的三个点,︒=∠50AOB ,则=∠ACB < )A .︒50B .︒25C .︒50或︒130D .︒25或︒1559.将抛物线122--=x y 向上平移若干个单位,使抛物线与坐标轴有三个交点,如果这些交点能构成直角三角形,那么平移的距离为< )dcdfFkycot A .23个单位 B .1个单位 C .21D .2个单位dcdfFkycot 10.如图,在Rt △ABC 中,AB=CB ,BO ⊥AC 于点O ,把△使AB(第10题图>落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AD 交BO 于点F ,连结DE 、EF.下列结论:①tan ∠ADB=2;②图中有4对全等三角形;③若将△DEF 沿EF 折叠,则点D 不一定落在AC 上;④BD=BF ; ⑤S 四边形DFOE= S △AOF ,上述结论中错误的个数是< ) A .1个 B .2个 C .3个 D .4个dcdfFkycot二、填空题:<本大题共6小题,每小题5分,满分11.直线x y 2=经过点<-1,b ),则b 12.一元二次方程0)32(=+x x 的解为 13.如图,平行四边形ABCD 中,AE 平分BAD ∠.若∠D =︒110,则∠DAE 的度数为 .14.已知双曲线2y x =,ky x =的部分图象如图所示,P 是y 轴正半轴上一点,过点P 作AB ∥x 轴,分别交两个图象于点,A B .若2PB PA =,则=k .dcdfFkycot 15.已知a ≠0,12S a =,212S S =,322S S =,…,201220112S S =,则2012S =(用含a 的代数式表示>.16.如图,在边长为3的正方形ABCD 中,E ,F ,O 分别是AB ,CD ,AD 的中点,以O 为<第14题图)圆心,以OE 为半径画弧EFP 是上的一个动点,连结OP , 并延长OP 交线段BC 于点K ,过点P 作⊙O的切线,分别交射线AB 于点M ,交直线BC 于点G. 若4=BMBG,则BK ﹦ .三、解答题:<本题共8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)dcdfFkycot 17.计算:345tan )21(2--︒+-.18.已知:如图,菱形ABCD 中,E F ,分别是上的点,且CE=CF .求证:AE AF =.19.如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45º降为30º,已知原滑滑板AB 的长为5M ,点D 、B 、C 在同一水平地面上.dcdfFkycot <1)改善后滑滑板会加长多少?<精确到0.01)<2)若滑滑板的正前方能有3M 长的空地就能保证安全,原滑滑板的前方有6M 长的空地,像这样改造是否可行?说明理由。

2017年浙江中考数学模拟试题(含答案)

2017年浙江中考数学模拟试题(含答案)

(D)
(D) 7 (D)123° A
l

h
C
(第 9 题) (第 10 题) B (第 8 题) 9.如图,某游乐场一山顶滑梯的高为 h ,滑梯的坡角为 ,那么滑梯长 l 为 C (A)
h sin
(B)
h tan
(C)
h cos
(D) h sin
10.如图,Rt△ ABC 中,∠ACB=90°, AC BC 2 2 ,若把 Rt△ ABC 绕边 AB 所在直线旋 转一周,则所得几何体的表面积为 (A) 4 (B) 4 2 (C) 8 (D) 8 2 11.如图,⊙O1 的半径为1,正方形 ABCD 的边长为 6,点 O2 为正方形 ABCD 的中心,
15.甲、乙、丙三位选手各 10 次射击成绩的平均数和方差,统计如下表: 选手 平均数 方差
2
甲 9.3 0.026
乙 9.3 0.015
丙 9.3 0.03 2 ▲ .
则射击成 绩最稳定的选手是
▲ . (填“甲” 、 “乙” 、 “丙”中的一个)
16.将抛物线 y=x 的图象向上平移 1 个单位,则平移后的抛物线的解析式为 若 BE=6cm,DE=2cm,则 BC= ▲ cm.
一、选择题 1.下列各数中是正整数的是 (A) 1 2.下列计算正确的是 (A) (a ) a
2 3 6
(B ) 2 (B) a a a
2 2 4
(C)0.5 (C) (3a ) ( 2a ) 6a
(D) 2 (D) 3a a 3
3.不等式 x 1 在数轴上 表示正确的是 -1 0 (A) 0 (C) 1 2 -1 1 0 (B) 1 0 (D) 2
100 80 60 40 20 0

浙江省2017年数学中考模拟卷(三)及参考答案

浙江省2017年数学中考模拟卷(三)及参考答案

(1) 求二次函数y=﹣
+bx+c的表达式;
(2) 连接AB,求AB的长;
(3) 连接AC,M是线段AC的中点,将点B绕点M旋转180°得到点N,连接AN,CN,判断四边形ABCN的形状,并证明你的
结论.
参考答案 1. 2. 3. 4.
5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17
16. 如图,在平面直角坐标系中,点A(8,0),点P(0,m),将线段PA绕着点P逆时针旋转90°,得到线段PB,连接A B,OB,则BO+BA的最小值为________.
三、解答题:
17. 计算:
18. 先化简,再求值:
,其中 是不等式组
的整数解
19. 某学校为了解该校七年级学生的身高情况,抽样调查了部分同学,将所得数据处理后,制成扇形统计图和频数分布 直方图(部分)如下(每组只含最低值不含最高值,身高单位:cm,测量时精确到1cm):
两个二次函数的最大值之和等于( )
A. B. C.3D.4
二、填空题:
13. 若 14. 已知
,则代数式
的值为________.
,则 =________.
15. 如图,点A在双曲线y= 的第一象限的那一支上,AB⊥y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段 AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为 ,则k的值为________.
无解,则m的值为( )
A . -1.5 B . 1 C . -1.5或2 D . -0.5或-1.5
12. 如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1 和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这

2017年初中学业水平考试数学全真模拟试题一

2017年初中学业水平考试数学全真模拟试题一

绝密★启用前试卷类型:A 2017年初中学业水平考试全真模拟试题数学试题(一)注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;共120分.考试时间为120分钟.2.答卷前务必将试题密封线内和答题卡上的项目填写清楚.所有答案均填写在答题卡上,答在本试卷上一律无效.第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来。

每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.计算:20•2﹣3=()A.﹣B.C.0 D.82.下列科学计算器的按键中,其上面标注的符号是轴对称图形但不是中心对称图形的是()3.如图,几何体是由底面圆心在同一条直线上的三个圆柱构成的,其俯视图是()第3题图4.近日,记者从潍坊市统计局获悉,2016年第一季度潍坊全市实现生产总值1256.77亿元,将1256.77亿用科学记数法可表示为(精确到百亿位)()A.1.2×1011B.1.3×1011C.1.26×1011D.0.13×10125.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b第5题图C.﹣b D.b6.关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,则锐角α等于()A.15°B.30°C.45°D.60°7.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A .B .C .D .8.将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1 B.a2+aC.a2+a﹣2 D.(a+2)2﹣2(a+2)+19.如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B (0,4)和点C(0,16),则圆心M到坐标原点O的距离是()A.10 B.8C.4D.210.若关于x 的方程+=3的解为正数,则m的取值范围是()A.m <B.m <且m ≠C.m >﹣D.m >﹣且m≠﹣11.如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是()A .﹣B .﹣C .﹣D .﹣第11题图.12.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作Array如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23C.11<x≤23 D.x≤23第Ⅱ卷(非选择题共84分)说明:第Ⅱ卷请用0.05mm的黑色中性笔直接在试卷上作答.二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分)13.计算:(+)=.14.若3x2n y m与x4﹣n y n﹣1是同类项,则m+n=.15.超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如表:测试项目创新能力综合知识语言表达测试成绩(分数)70 80 92将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是分.16.已知反比例函数y=(k≠0)的图象经过(3,﹣1),则当1<y<3时,自变量x的取值范围是.17.已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是.18.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l 上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是.第18题图三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或推演步骤)19.(本题满分6分)关于x的方程3x2+mx﹣8=0有一个根是,求另一个根及m的值.20.(本题满分9分)今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.评估成绩n(分)评定等级频数90≤n≤100 A 280≤n<90 B70≤n<80 C 15n<70 D 6根据以上信息解答下列问题:(1)求m的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.第20题图21.(本题满分8分)正方形ABCD内接于⊙O ,如图所示,在劣弧上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:(1)四边形EBFD是矩形;(2)DG=BE.第21题图22.(本题满分9分)如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)第22题图23.(本题满分10分)旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?24.(本题满分12分)如图,在菱形ABCD中,AB=2,∠BAD=60°,过点D作DE⊥AB于点E,DF⊥BC于点F.(1)如图1,连接AC分别交DE、DF于点M、N,求证:MN=AC;(2)如图2,将△EDF以点D为旋转中心旋转,其两边DE′、DF′分别与直线AB、BC 相交于点G、P,连接GP,当△DGP的面积等于3时,求旋转角的大小并指明旋转方向.第24题图25.(本题满分12分)如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP 的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.第25题图11 / 132017年初中学业水平考试全真模拟试题数学试题(一)答题卡试题编辑:王欣武13 / 13。

2017年初中学业数学模拟试卷及答案

2017年初中学业数学模拟试卷及答案

2017年初中学业模拟考试数学试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,共8页.满分120分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将区县、毕业学校、姓名、考试号、座号填写在答题卡和试卷规定的位置上,并核对监考教师粘贴的考号条形码是否与本人信息一致.2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能写在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;需要在答题卡上作图时,可用2B铅笔,但必须把所画线条加黑.4.答案不能使用涂改液、胶带纸、修正带修改.不按以上要求作答的答案无效.不允许使用计算器.第Ⅰ卷(选择题共48分)一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题4分,共48分,错选、不选或选出的答案超过一个,均记0分.1、观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有A .1个B .2个C .3个D .4个2、小明将一个直角三角板(如左图)绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是A .B .C .D . 3、下列计算正确的是A .+=B .1)(11=C . 1211()()24xy xy xy -=D .﹣(﹣a )4÷a 2=a 24、如图,一束光线与水平面成︒60 的角度照射地面,现在地面AB 上支放一个平面镜CD ,使这束光线经过平面镜反射后成水平光线,则平面镜CD 与地面AB 所成角DCB ∠的度数等于A .︒30B .︒45C .︒50D .︒60 5、甲、乙两人5次射击命中的环数如下:则以下判断中,正确的是 A .‾x 甲=‾x 乙,S 甲2=S 乙2 B .‾x 甲=‾x 乙,S 甲2>S 乙2C .‾x 甲=‾x 乙,S 甲2 <S 乙2D .‾x 甲<‾x 乙,S 甲2<S 乙26、一只盒子中有红球m 个,白球8个,黑球n 个,每个球除颜色外都相同,从中任取一个球,取得是白球的概率与不是白球的概率相同,那么m 与n 的大小关系是 A .m + n = 8 B .m + n = 4 C . m = n = 4 D . m = 3,n =57、在下图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是A .点AB .点BC .点CD .点D 8、用计算器计算时,下列说法错误的是A .“计算431-21B .“计算281035-⨯C .“已知SinA=0.3,求锐角AD .“计算521⎪⎭⎫ ⎝⎛”的按键顺序是9、如图,AB 是⊙的直径,弦CD 垂直平分OB ,则∠BDC 的度数为A .15°B .20°C .30°D .45°10、已知一列数:1,―2,3,―4,5,―6,7,… 将这列数排成下列形式:第1行 1 第2行 -2 3第3行 -4 5 -6第4行 7 -8 9 -10 第5行 11 -12 13 -14 15 …… ……按照上述规律排下去,那么第100行从左边数第5个数是 A .-4955 B .4955 C .-4950 D .495011、函数x y 4=和x y 1=在第一象限内的图象如图,点P 是xy 4=的图象上一动点,PC ⊥x 轴于点C ,交x y 1=的图象于点A ,PD ⊥y 轴于D ,交xy 1=的图象于点B ,给出如下4个结论:①△ ODB 与△OCA 的面积相等;②线段PA 与PB 始终相等;③四边形PAOB 的面积大小不会发生变化;④CA=31AP .其中正确的结论是A .①②③B .①②④C .②③④D .①③④12、如图,在矩形ABCD 中,BC=8,AB=6,经过点B 和点D 的两个动圆均与AC 相切,且与AB 、BC 、AD 、DC 分别交于点G 、H 、E 、F ,则EF+GH 的最小值是A .6B .8C .9.6D .10第Ⅱ卷(非选择题 共72分)二、填空题:本题共5小题,每小题4分,共20分,只要求填写最后结果. 13、分解因式()()11+---++b a b a b a =.14、已知022=--a a ,则代数式111--a a 的值为. 15、 如图,已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若ABC ∆与△111A B C 是位似图形,且顶点都在格点上,则位似中心的坐标是.16、如图,三角板ABC 的两直角边AC ,BC 的长分别为40cm 和30cm ,点G 在斜边A B 上,且BG =30cm ,将这个三角板以G 为中心按逆时针旋转90°至△A′B′C′的位置,那么旋转前后两个三角板重叠部分(四边形EFGD )的面积为____________.17、如图,在以AB 为直径的半圆中,有一个边长为1的内接正方形CDEF ,则以AC 和BC 的长为两根的二次项为1的一元二次方程是 .三、解答题:本大题共7小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤.18、(本题满分5分)如图,直线a ∥b ,RtABC 的顶点B 在直线a 上,∠C =90°, ∠β=55°,求∠α的度数.19、(本题满分6分)某校对九年级学生进行了一次数学学业水平测试,成绩评定分为A、B、C、D四个等级(注:等级A、B、C、D分别代表优秀、良好、合格、不合格),学校从九年级学生中随机抽取50名学生的数学成绩进行统计分析,并绘制成扇形统计图(如图所示).根据图中所给的信息回答下列问题:(1)随机抽取的九年级学生数学学业水平测试中,D等级人数的百分率和D等级学生人数分别是多少?(2)这次随机抽样中,学生数学学业水平测试成绩的中位数落在哪个等级?(3)若该校九年级学生有800名,请你估计这次数学学业水平测试中,成绩达合格以上(含合格)的人数大约有多少人?20、(本题满分6分)已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.21、(本题满分8分) 已知:一元二次方程04522=--x x 的某个根,也是一元二次方程 049)2(2=++-x k x 的根,求k 的值.22、(本题满分8分)如图,王刚在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB 为3.2m ,在入口的一侧安装了停止杆CD ,其中AE 为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C 恰好与地面接触,此时CA 为0.7m .在此状态下,若一辆货车高3m ,宽2.5m ,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过计算说明.(参考数据:3≈1.7)23、(本题满分9分)已知抛物线的顶点为(1,0),且经过点(0,1).(1)求该抛物线对应的函数的解析式; (2)将该抛物线向下平移个单位,设得到的抛物线的顶点为A ,与轴的两个交点为B 、C ,若△ABC 为等边三角形.①求的值;②设点A 关于轴的对称点为点D ,在抛物线上是否存在点P ,使四边形CBDP 为菱形?若存在,写出点P 的坐标;若不存在,请说明理由.24、(本题满分10分)在Rt △ABC 中,∠ACB =90°,BC =30,AB =50.点P 是AB 边上任意一点,直线PE ⊥AB ,与边AC 或BC 相交于E .点M 在线段AP 上,点N 在线段BP 上,EM =EN ,sin ∠EMP =1213. (1)如图1,当点E 与点C 重合时,求CM 的长;(2)如图2,当点E 在边AC 上时,点E 不与点A 、C 重合,设AP =x ,BN =y ,求y 关于x 的函数关系式,并写出x 的取值范围;(3)若△AME ∽△ENB ,求AP 的长.图1 图2 备用图初中学业模拟考试数学参考答案及评分标准一.选择题(每小题4分,共48分) 1--12:BDCAB ABDCB DC 二.填空题(每小题4分,共20分) 13、 (a +b -1)214、2115、 (9,0) 16、 144cm 217、x 2﹣5x+1=0 三.解答题18、解:过点C作CE∥a,……………………………………………………………………………………1分∵a∥b,∴CE∥a∥b,∴∠BCE=∠α,∠ACE=∠β=55°,………………………………………………………………………3分∵∠C=90°,∴∠α=∠BCE=∠ABC﹣∠ACE=35°.…………………………………………………………………5分19、解:(1)∵1-30%-48%-18% = 4%,∴D等级人数的百分率为4%,………………………………………………………………………………1分∵4%×50 = 2,∴D等级学生人数为2人,…………………………………………………………………2分(2) ∵A等级学生人数为30%×50 = 15人,B等级学生人数为48%×50 = 24人,C等级学生人数为18%×50 = 9人,D等级学生人数为4%×50 = 2人,∴中位数落在B等级.………………………………………………………………………………………4分(3) 800×(30%+48%+18%)= 768,∴成绩达合格以上(含合格)的人数大约有768人.………………………………………………………6分20、解:(1)证明:∵AB=AC,AD是BC边上的中线,∴AD⊥BC,BD=CD.∵AE∥BC,CE⊥AE,∴四边形ADCE是矩形.∴AD=CE.在Rt△ABD与Rt△CAE中,AD CEAB CA=⎧⎨=⎩, ∴Rt △ABD ≌Rt △CAE (HL).………………………………………………………………………………3分 (2) DE ∥AB ,DE=AB .………………………………………………………………………………4分 证明:∵四边形ADCE 是矩形, ∴AE=CD=BD ,AE ∥BD , ∴四边形ABDE 是平行四边形,∴DE ∥AB ,DE=AB .……………………………………………………………………………………………6分 21、解:由25204x x --=,得212951(1),,422x x x -===-,………………………………………………2分 当152x =是29(2)04x k x -++=的根时, 21119204x x kx --+=,11404kx -+=,5722k =,75k =…………………………………………………………………………………………………5分 当212x =-是29(2)04x k x -++=的根时,22229204x x kx --+=, 21404kx -+=, 1722k -=,7k =-. ……………………………………………………………………………………………8分 22、解:如图,在AB 之间找一点F ,使BF =2.5m ,过点F 作GF ⊥AB 交CD 于点G ,…………………………………2分∵AB =3.2m ,CA =0.7m ,BF =2.5m ,∴CF =AB -BF +CA =1.4m ,………………………………………………………………………………4分分 ∵2.38<3,∴这辆货车在不碰杆的情况下,不能从入口内通过.………………………………………… 8分(或者设GF=3,求出BF ,再与2.5去比较)23.解:(1)由题意可得,解得∴抛物线对应的函数的解析式为.…………………………….…………….……3分 (2)①将向下平移个单位得:-=,可知A (1,-),B (1-,0),C (1+,0),BC =2.………………………………….……….…….……5分 由△ABC 为等边三角形,得,由>0,解得=3.…………….……….……6分 ②不存在这样的点P .………….………………………………………….………………………7分∵点D 与点A 关于轴对称,∴D (1,3).由①得BC =2.要使四边形CBDP 为菱形,需DP ∥BC ,DP =BC .由题意,知点P 的横坐标为1+2, 当=1+2时-m ==,故不存在这样的点P .………….……………………….…………………9分24、解:(1)如图1,∵∠ABC=90°,BC=30,AB=50,∴AC=40,∵PE ⊥AB ,∴∠EPM=90°,∴sin ∠A=AB BC =AC CP ,∴405030CP =,∴24=CP , ∴在RT ΔCMP 中,sin ∠EMP=CM CP ,即131224=CM ,∴CM=26.…………………2分图1 图2(2)如图2,∠EPM=90°,∠ABC=90°∴tan ∠A=AC BC =APEP , ∴x EP =4030,∴x EP 43=, ∴在RT ΔEMP 中,sin ∠EMP=EM EP ,即131243=EM x , ∴x EM 4839=,∴x PM 4815=,∵EM=EN ,∴x PM PN 4815==, ∴x x y 481550--==x 162150-…………………………………………….…4分 如图1,点E 与点C 重合时,32==x AP ,又∵点E 不与点A 、C 重合∴320<<x ……………5分(3)∵EM=EN ,∴∠EMP=∠ENP ,∴∠EMA=∠ENB ,当点E 在线段AC 上,∴如图3,△AME 的顶点A 、M 、E 分别与△ENB 的顶点E 、N 、B 对应,图3 图4 ∴BNEM EN AM =, ∴(x x 4815-):(x 4839)=(x 4839):(x 162150-) ∴22=x ,………………………………………………………………………………7分当点E 在线段BC 上,∴如图4,△AME 的顶点A 、M 、E 分别与△ENB 的顶点E 、N 、B 对应, ∴BNEM EN AM =, ∵BP=x -50,∴EP=)50(34x -∴EM=)50(913x -,MP=)50(95x -, ∴BN=)50(9550x x ---,∴[)50(95x x --]:)50(913x -=)50(913x -:[)50(9550x x ---], ∴42=x . ……………………………………………………………………………9分 综上AP 的长为22或42.…………………………………………………………10分。

2017年浙江省数学中考模拟卷(一)

2017年浙江省数学中考模拟卷(一)

2017年浙江省数学中考模拟卷(一)一、选择题。

1.一粒芝麻约有0.000002千克,0.000002用科学记数学法表示为()千克.A、2×10﹣4B、0.2×10﹣5C、2×10﹣7D、2×10﹣6+2.随着我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是()A、B、C、D、+3.下列计算正确的是()A、(a4)3=a7B、3﹣2=﹣32C、(2ab)3=6a3b3D、﹣a5?a5=﹣a10+4.若关于x的一元二次方程x2﹣2x﹣k+1=0有两个不相等的实数根,则一次函数y=k x﹣k的大致图象是()A、B、C、D、+5.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是(??)A、y=x+5B、y=x+10C、y=﹣x+5D、y=﹣x+10+6.下列命题中,真命题的个数是()①同位角相等②经过一点有且只有一条直线与这条直线平行③长度相等的弧是等弧④顺次连接菱形各边中点得到的四边形是矩形.A、1个B、2个C、3个D、4个+7.在今年的中招体育考试中,我校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:S甲2=8.5,S乙2=21.7,S丙2=15,S丁2=17.2,则四个班体考成绩最稳定的是()A、甲班B、乙班C、丙班D、丁班+8.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为(??)A、B、C、4D、5+9.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A、甲种方案所用铁丝最长B、乙种方案所用铁丝最长C、丙种方案所用铁丝最长D、三种方案所用铁丝一样长+10.梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上( 不含10千克)的种子,超过10千克的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如图所示.下列四种说法:①一次购买种子数量不超过10千克时,销售价格为5元/千克;②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过10千克的那部分种子的价格打五折:④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱.其中正确的个数是( ).A 、1个B 、2个C 、3个D 、4个 +11.在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文的26个字母a 、b 、c ,…,z 依次对应1、2、3,…,26 这26个自然数(见表格),当明码对应的序号x 为奇数时,密码对应的序号y=;当明码对应的序号x 为偶数时,密码对应的序号y=.字母 a 序号 1 字母 n 序号 14 b c d e f g h i j k l m 13 z2 3 4 5 6 7 8 9 10 w 2311 x12 yo p q r s t u v 151617181920212224 25 26按上述规定,将明码“bird”译成密码是( ) A 、bird B 、nove C 、sdri D 、nevo +12.已知函数 ,则下列函数图象正确的是( )A、B、C、D、+二、填空题。

2017年学业考试数学模拟试题(含答案)

2017年学业考试数学模拟试题(含答案)

2017年初中学业水平模拟考试数学试题(考试时间120分钟,满分120分)一、选择题:本大题共12个小题,每小题3分,满分36分.1. 如果和互为倒数,那么的相反数等于A.5 B.5-C.15D.15-23.国家统计局发布2015年中国经济数据中指出,全年国内生产总值676708亿元.这里的676708亿用科学记数法可表示为A.126.7670810⨯ B. 136.7670810⨯ C. 146.7670810⨯ D. 156.7670810⨯4. 某十字路口的交通信号灯每分钟红灯亮30秒,黄灯亮5秒,绿灯亮25秒.当行人随机到达该路口时恰好是绿灯的概率是A.112B.13C.512D.125. 某城市4月份前5天的最高气温是(单位:℃):27,30,24,30,31.对这组数据,下列说法正确的是A.平均数是28 B.众数为30 C.中位数为24 D.方差为56. 在平面直角坐标系中,P的坐标是(2,-4),将OP绕原点O逆时针旋转90°得到OP',则点P'的坐标是A.(4,2) B. (2,4) C.(-4,-2)D. (-2,-4)7. 下列图案中,不是..中心对称图形的是8. 现定义运算“★”:对于任意实数a、b,都有a★b=23a a b-+,例如4★5=54342+⨯-.若x★2=6,则实数x的值是A.4-或2B.42-或C.41--或D.41-或9. 已知四边形ABCD 的两条对角线AC 与BD 互相垂直,则下列结论正确的是A.当AC =BD 时,四边形ABCD 是矩形B.当AB =AD =BC 时,四边形ABCD 是菱形C.当AB =AD ,CB =CD 时,四边形ABCD 是菱形D.当AC =BD ,AD =AB 时,四边形ABCD 是正方形 10.如图,在ABC ∆中,点D 、E 分别在边AB 、AC 上,如果DE ∥BC ,且DCE B ∠=∠,那么下列说法中,错误的是 A .ADE ∆∽ABC ∆ B .ADE ∆∽ACD ∆ C .ADE ∆∽DCB ∆ D .DEC ∆∽CDB ∆ 11.如图,AB 是O 的直径,弦CD ⊥AB ,∠CDB =30°,CD=,则阴影部分的面积为 A.23πB. πC. 2πD.4π12.如图,∠MON =90°,ABC ∆的顶点A 、B 分别在OM ,ON 上,其中90BAC ∠=︒,2AB AC ==.当B 在边ON 上运动时,A 随之在边OM 上运动,Rt ABC ∆的形状保持不变,运动过程中,点C 到点O 的最大距离为 A.1二、填空题:本大题共6个小题,每小题4分,满分24分. 13.已知2(253)0a b +-+,则14.不等式组2(1)<5,2133x x x -⎧⎪⎨-≤⎪⎩15.如图,AC AD =,CAE DAB∠=∠,增加下列一个条件:(1)AB AE =;(2)BC ED =;(3)C D ∠=∠;(4)ABC AED ∠=∠.其中能使ABC ∆≌AED ∆的条件有 .(填序号) 16.已知二次函数2(,,0)y ax bx c a b c a =++≠是常数,中,x 与y 的部分对应值如下表所示:(第12题图)ANM(第11题图)B(第10题图)A那么不等式20ax bx c ++<的解集是 .17.如图,AB 是O 的直径,过AB 延长线上的一点D 作O 的切线,切点为C .若A ∠=28°, 则D ∠= . 18.如图,反比例函数1y x=在第一象限的图象上有两点11(,)A x y ,22(,)B x y ,且12710x x -=,12176y y +=,则OAB ∆的面积等于 .三、解答题:本大题共7个小题,满分60分. 19.(本小题满分8分)先化简,再求值:222421()4422a a a a a a a a -++÷-+--,其中101()(2016)3a π-=-+.20.(本小题满分9分)如图,为了测量某建筑物CD 的高度,先在地面上用测角仪自A 处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m ,此时自B 处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m ,请你计算出该建筑物的高度.1.732,结果精确到1m )21.(本小题满分9分)随着新教育在各个学校的开展,为了完善“晨诵、午读、暮省”,不断深化“书香校园”建设,我市育人学校决定举办首届“校园文化节学生诵读大赛”,经选拔后有多名学生进入决赛,根据参赛学生的综合成绩(得分为整数,满分为100分)分成四组,绘制了如下尚不完整的统计图表.根据图表信息,回答下列问题:(1)参加的学生共有 人;表中m = ,n = ;(2)若将各组的组中值视为该组的平均值,请你估算参加选拔学生的平均成绩;(3)将第一组中的4名学生记为A 、B 、C 、D ,由于这4名学生的综合水平相差不大,现决定随机挑选其中两名学生代表学校参赛,试通过画树状图或列表的方法求恰好选中A 和B 的概率.(第21BAD (第17题图)(第20题图)(第18题图)22.(本小题满分10分)如图,在四边形ABCD 中,90ABC DCB ∠+∠=︒,1AB DC ==,E 、F 分别是AD 、BC 的中点,G 、H 分别是对角线BD 、AC 的中点. 求四边形EGFH 的面积.23.(本小题满分10分)如图,O 是△ABC 的外接圆,HM 是O 的切线,切点为F ,AF 平分∠BAC .连接AF 交BC于E ,连接BF . (1)求证:FM ∥BC ;(2)若在AF 上存在一点D ,使得FB FD =,试说明点D 是△ABC 的内心. 24.(本小题满分14分)如图,抛物线24(0)y ax bx a =+-≠与y 轴交于点C ,与x 轴交于A (1m ,0)和B (2m ,0)两点,其中12m m ,是方程24120m m --=的两个根,且12m m <.(1)求抛物线的解析式;(2)点M 是线段AB 上的一个动点,过点M 作MN ∥BC ,交AC 于点N ,连接CM ,当CMN △的面积最大时,求点M 的坐标; (3)点()4,D k 在(1)中抛物线上,点E 为抛物线上一动点,在x 轴上是否存在点F ,使以A D E F 、、、为顶点的四边形是平行四边形,如果存在,请直接写出所有满足条件的点F 的坐标,若不存在,请简要说明理由.(第24题图)(第23题图) (第22题图) BH2017年初中学业水平模拟考试数学试题参考答案一、选择题(每小题3分,共36分)13. 1 ; 14. 0 ; 15.(1),(3),(4) ;16. 13x x <->或 ; 17. 34°;18. 119120. 三、解答题(共60分)19.解:222421()4422a a a a a a a a -++÷-+--=2(2)221a a a a a a +--⨯-+ ………………………………………3分 =221aa +. ………………………………………5分∵101()(2016)3a π-=-+=3-1=2 ………………………………………7分∴原式=221a a +=2242215⨯=⨯+. ………………………………………8分20.解:设CE =x m ,则由题意可知BE =x m ,AE =(x +100)m . …………………………1分 在Rt △AEC 中,tan ∠CAE =CE AE ,即tan30°=100+x x…………………………3分 ∴33100=+x x ,3x =3(x +100) …………………………4分 解得x =50+503=136.6 …………………………6分 经检验x =136.6是原方程的解,且符合题意. ∴CE =136.6m. …………………………7分 ∴CD CE ED =+=136.6+1.5=138.1≈138(m) …………………………8分 答:该建筑物的高度约为138m . …………………………9分21. 解:(1)50;10,15; ………………………………………………3分 (2)4.74503720501365112585038050216515751085495==+++=⨯+⨯+⨯+⨯=x ……5分(3)画树状图如下:开始AB C D BC D第1名第2名或列表如下:……………………………………7分可知随机挑选其中两名学生所有可能出现的结果共有12种,且这些结果出现的可能性相等,其中恰好选中A 和B 的情况有(A,B)、(B,A)两种,所以P(选中A 和B )=61122=. ……………………………………9分 22. 证明:∵E 、F 分别是AD 、BC 的中点,G 、H 分别是对角线BD 、AC 的中点,1AB DC ==∴1111,,,2222EG AB FH AB EH CD GF CD ==== …………………………2分 HF ∥AB ,GF ∥CD ………………………… 3分又1AB DC ==∴0.5EG FH EH GF ====, ……………………………4分 ,HFC ABC GFB DCB ∠=∠∠=∠ ……………………………5分 ∴四边形EGFH 是菱形 ……………………………6分 ∵,HFC ABC GFB DCB ∠=∠∠=∠,90ABC DCB ∠+∠=︒∴90HFC GFB ∠+∠=︒ ……………………………7分 ∴180()1809090GFH HFC GFB ∠=︒-∠+∠=︒-︒=︒ ……………………………8分 ∴四边形EGFH 是正方形 …………………………… 9分 ∴四边形EGFH 的面积为:220.50.25EG ==. ……………………………10分 23. 解:(1)证明:如图,过点F 作直径FN ,连接BN .∴90,NBF N BAF ∠=︒∠=∠,∴∠N+∠NFB=900, ………………………………………1分 ∵FM 是O 的切线, ∴FN FM ⊥,∴90BFH NFB ∠+∠=︒,∴BFH N ∠=∠, ………………………………………3分 ∵AF 平分∠BAC , ∴BAF FAC ∠=∠, 又∵FAC FBC ∠=∠, ∴BFH FBC ∠=∠,A B C D A (B ,A ) (C ,A ) (D ,A ) B (A ,B ) (C ,B ) (D ,B ) C (A ,C ) (B ,C ) (D ,C ) D (A ,D )(B ,D )(C ,D )第1名 第2名∴FM ∥BC …………………………………………5分 (2)连接BD . ∵FB FD =,∴FBD FD B ∠=∠,又∵,,FBD FBC DBC FDB FAB ABD FAB FBC ∠=∠+∠∠=∠+∠∠=∠,∴DBC ABD ∠=∠, …………………………………………7分 ∴BD 平分ABC ∠,同理可证:CD 平分ACB ∠, …………………………………………8分 又AF 平分∠BAC ,所以点D 是△ABC 的内心. …………………………………………10分 24.解:(1)解24120m m --=得12m =-,26m =∴(2,0)A -,(6,0)B . ……………2分将,A B 坐标分别代入24y ax bx =+-,得4240,36640a b a b --=⎧⎨+-=⎩解得1,34.3a b ⎧=⎪⎪⎨⎪=-⎪⎩…………………………………………4分∴抛物线的解析式为214433y x x =--. …………………………………………5分 (2)设点M 的坐标为(n ,0),过点N 作NH x ⊥轴于点H .∵A (2-,0),B (6,0),(0,4)C -∴8AB =,2AM n =+,4CO =. ∵MN BC ,∴AMN ∆∽ABC ∆.∴NH AM CO AB =,∴248NH n +=, ∴22n NH +=. ……………7分∴1122CMN ACM AMN S S S AM CO AM NH =-=- △△△ 2121(2)(4)3224n n n n +=+-=-++ 21(2)44n =--+. …………………………………………9分∴当2n =时,CMN S △有最大值4.此时,点M 的坐标为(2,0). ………………10分 (3)存在满足条件的点F ,分别是:1(6,0)F -,2(2,0)F,3(8F -,4(8F +. …………………………14分。

台州市温岭市中考数学一模试卷含答案解析

台州市温岭市中考数学一模试卷含答案解析

浙江省台州市温岭市中考数学一模试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.在下列实数中,无理数是()A.2 B.3.14 C. D.2.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是()A.B.C.D.3.下列数据是4月5日10时公布的中国六大城市的空气污染指数情况:城市天津合肥南京贵阳成都南昌污染指数342 163 165 45 227 163则这组数据的中位数和众数分别是()A.185和163 B.164和163 C.185和164 D.163和1644.不等式组的解集在数轴上表示为()A.B.C.D.5.下列运算正确的是()A.(a+b)(a﹣b)=a2﹣b2B.a2•a3=a6C.3a+2a=a5D.(a+b)2=a2+b26.已知,圆锥的高h=cm,底面半径r=2cm,则圆锥的侧面积为()cm2.A.4πB.8πC.12πD.(4+4)π7.某商品的进价为120元,8折销售仍赚40元,则该商品标价为()元.A.160 B.180 C.200 D.2208.“过直线外一点作已知直线的垂线”.下列尺规作图中对应的正确作法是()A.B.C.D.9.古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一+a n=()()个三角数记为a1,第二个三角数记为a2,…,第n个三角数记为a n,则a n﹣1A.(n﹣1)2B.n2C.(n+1)2D.(n+2)210.如图,点A(2,n)在反比例函数y=的图象上,点B在第二象限,∠AOB=90°,∠OBA=30°,在小组合作学习中,四位同学发现并提出了以下四个结论,其中正确的有()个.聪聪:在反比例函数y=的图象上任取一个点P,作两坐标轴的垂线,则它们与两坐标轴围成的四边形面积为3;明明:若直线OA的函数解析式为y=kx,则不等式>kx的解集为0<x<2;智智:过点B的反比例函数的解析式为y=﹣;慧慧:若点D(2+,),则以点A,O,B,D为顶点的四边形是一个中心对称图形.A.1 B.2 C.3 D.4二、填空题(本题有6小题,每小题5分,共30分).11.底,台州市汽车数量达到1160000多辆,数据1160000用科学记数法表示为.12.分解因式:8﹣2x2=.13.如果两个变量x、y之间的函数关系如图所示,则自变量x的取值范围是.14.已知关于x2﹣(m+2)x+(2m+1)=0的方程有两个相等的实数根,则m的值为.15.如图,已知菱形ABCD,AC=8,BD=6,将此菱形绕点A逆时针旋转180°,则该菱形扫过的面积为.16.如图,Rt△ABC中,BC=AC=2,D是斜边AB上一个动点,把△ACD沿直线CD折叠,点A落在同一平面内的A′处,当A′D平行于Rt△ABC的直角边时,AD的长为.三、解答题(第17~20题,每题8分,第21题10分,第22~23题,每题12分,第24题14分,共80分)17.计算:(﹣)﹣1﹣2sin60°+(3﹣π)0.18.解方程:.19.如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF ∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.20.为推进多城同创,打造宜业宜居家园,温岭市门一再提醒司机:为了安全,请勿超速,并进一步完善各类监测系统,如图,在泽太一级公路某直线路段MN内限速80千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了4秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:=1.41,=1.73)21.已知菱形ABCD,AB=4,∠B=60°,以点D为圆心作⊙D与直线AB相切于点G,连接DG.(1)求证:⊙D与BC所在的直线也相切;(2)若⊙D与CD相交于E,过E作EF⊥AD于H,交⊙D于F,求EF的长.22.某校为了了解学生大课间活动的跳绳情况,随机抽取了50名学生每分钟跳绳的次数进行统计,把统计结果绘制成如表和直方图.次数70≤x<90 90≤x<110 110≤x<130 130≤x<150 150≤x<170人数8 23 16 2 1根据所给信息,回答下列问题:(1)本次调查的样本容量是;(2)本次调查中每分钟跳绳次数达到110次以上(含110次)的共有的共有人;(3)根据上表的数据补全直方图;(4)如果跳绳次数达到130次以上的3人中有2名女生和一名男生,学校从这3人中抽取2名学生进行经验交流,求恰好抽中一男一女的概率(要求用列表法或树状图写出分析过程).23.如图,直线y=x+4抛物线y=ax+bx+12(a≠0)相交于A(1,5)和B(8,n),点P是线段AB上异于A,B的动点,过点P作PC⊥x轴,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的点P,使△ABC的面积有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)当以线段PC为直径的圆经过点A时,求点P的坐标.24.【定义】若一个四边形恰好关于其中一条对角线所在的直线对称,则我们将这个四边形叫做镜面四边形.【理解】(1)下列说法是否正确(对的打“√”,错的打“×”).①平行四边形是一个镜面四边形.()②镜面四边形的面积等于对角线积的一半.()(2)如图(1),请你在4×4的网格(每个小正方形的边长为1)中画出一个镜面四边形,使它图(1)的顶点在格点上,且有一边长为.【应用】(3)如图(2),已知镜面四边形ABCD,∠BAD=60°,∠ABC=90°,AB≠BC,P是AD上一点,AE丄BP于E,在BP的延长线上取一点F,使EF=BE,连接AF,作∠FAD的平分线AG交BF于G,CM丄BF于M,连接CG.①求∠EAG的度数.②比较BM与EG的大小,并说明理由.③若以线段CB,CG,AG为边构成的三角形是直角三角形,求cos∠CBM的值(直接写出答案).浙江省台州市温岭市中考数学一模试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.在下列实数中,无理数是()A.2 B.3.14 C. D.【考点】无理数.【分析】根据无理数,有理数的定义对各选项分析判断后利用排除法求解.【解答】解:A、2是有理数,故本选项错误;B、3.14是有理数,故本选项错误;C、﹣是有理数,故本选项错误;D、是无理数,故本选项正确.故选D.2.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】俯视图是从物体上面看所得到的图形.从几何体上面看,是左边2个,右边1个正方形.【解答】解:从几何体上面看,是左边2个,右边1个正方形.故选:D.3.下列数据是4月5日10时公布的中国六大城市的空气污染指数情况:城市天津合肥南京贵阳成都南昌污染指数342 163 165 45 227 163则这组数据的中位数和众数分别是()A.185和163 B.164和163 C.185和164 D.163和164【考点】众数;中位数.【分析】根据众数定义:一组数据中出现次数最多的数据叫做众数.中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.可以直接算出答案.【解答】解:把数据从小到大排列:45,163,163,165,227,342,位置处于中间的数是163和165,故中位数是÷2=164;163出现了两次,故众数是163.故选:B.4.不等式组的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【解答】解:,解不等式①得,x≥2,解不等式②得,x<3,故不等式的解集为:2≤x<3,在数轴上表示为:.故选:C.5.下列运算正确的是()A.(a+b)(a﹣b)=a2﹣b2B.a2•a3=a6C.3a+2a=a5D.(a+b)2=a2+b2【考点】平方差公式;合并同类项;同底数幂的乘法;完全平方公式.【分析】根据平方差公式、同底数幂的乘法法则、合并同类项、完全平方公式计算,逐一排除.【解答】解:A、(a+b)(a﹣b)=a2﹣b2,此选项正确;B、a2•a3=a5,此选项错误;C、3a+2a=5a,此选项错误;D、(a+b)2=a2+2ab+b2,此选项错误.故选A.6.已知,圆锥的高h=cm,底面半径r=2cm,则圆锥的侧面积为()cm2.A.4πB.8πC.12πD.(4+4)π【考点】圆锥的计算.【分析】根据圆锥的底面半径和高求出圆锥的母线长,再根据圆锥的底面周长等于圆锥的侧面展开扇形的弧长,最后利用扇形的面积计算方法求得侧面积.【解答】解:由勾股定理得:圆锥的母线长==4,∵圆锥的底面周长为2πr=2π×4=8π,∴圆锥的侧面展开扇形的弧长为8π,∴圆锥的侧面积为:×8π×2=8π.故选B.7.某商品的进价为120元,8折销售仍赚40元,则该商品标价为()元.A.160 B.180 C.200 D.220【考点】一元一次方程的应用.【分析】设该商品的进价为x元,那么售价是120×80%,利润是120×80%﹣x,根据其相等关系列方程得120×80%﹣x=40,解这个方程即可.【解答】解:设该商品的进价为x元,则:120×80%﹣x=40,解得:x=200.则该商品的进价为200元.故选:C.8.“过直线外一点作已知直线的垂线”.下列尺规作图中对应的正确作法是()A.B.C.D.【考点】作图—基本作图.【分析】根据基本作图的步骤对各选项进行逐一分析即可.【解答】解:A、是作角平分线,故本选项错误;B、是作线段的垂直平分线,故本选项错误;C、过直线外一点作已知直线的垂线,故本选项正确;D、是作线段的垂直平分线,故本选项错误.故选C.9.古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一+a n=()()个三角数记为a1,第二个三角数记为a2,…,第n个三角数记为a n,则a n﹣1A.(n﹣1)2B.n2C.(n+1)2D.(n+2)2【考点】规律型:数字的变化类.【分析】先求出:a1+a2=4=22,a2+a3=9=32,a3+a4=16=42,a4+a5=25=52,…根据规律可以写+a n的结果.出a n﹣1【解答】解:∵a1+a2=4=22,a2+a3=9=32,a3+a4=16=42,a4+a5=25=52,…∴a n+a n=n2,﹣1故选B.10.如图,点A(2,n)在反比例函数y=的图象上,点B在第二象限,∠AOB=90°,∠OBA=30°,在小组合作学习中,四位同学发现并提出了以下四个结论,其中正确的有()个.聪聪:在反比例函数y=的图象上任取一个点P,作两坐标轴的垂线,则它们与两坐标轴围成的四边形面积为3;明明:若直线OA的函数解析式为y=kx,则不等式>kx的解集为0<x<2;智智:过点B的反比例函数的解析式为y=﹣;慧慧:若点D(2+,),则以点A,O,B,D为顶点的四边形是一个中心对称图形.A.1 B.2 C.3 D.4【考点】反比例函数的性质;反比例函数系数k的几何意义;待定系数法求反比例函数解析式.【分析】由反比例函数系数k的几何意义可知聪聪的话正确;由反比例函数的对称性可找出直线OA与反比例函数的另一个交点坐标,结合函数图象可得出不等式>kx的解集,从而判断出明明的话不正确;由点A在反比例函数y=的图象上,可求出n的值,从而得出A点的坐标,设点B的坐标为(x,y),结合给定的边角关系可找出关于x、y的二元二次方程组,结合点B的位置可得出点B的坐标,利用待定系数法即可求出过点B的反比例函数的解析式为y=﹣,由此得出智智的话不正确;由A、O、B、D的坐标特征,可得出DA⊥OA,即OB∥DA,结合两点间的距离公式得出OB=DA,由此判断出以点A,O,B,D 为顶点的四边形是平行四边形,即慧慧的话正确.综上即可得出结论.【解答】解:∵在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|,∴聪聪的话正确;∵点A(2,n),反比例函数的对称性可知:在第三象限直线OA与反比例函数y=有另一个交点(﹣2,﹣n),结合函数图象可知:不等式>kx的解集为x<﹣2,或0<x<2,∴明明的话不正确;∵点A(2,n)在反比例函数y=的图象上,∴n=,即点A的坐标为(2,).设点B的坐标为(x,y),过点B的反比例函数解析式为y=,则OA==,OB===,结合已知可得:,解得:.∴点B的坐标为(﹣,2).∵点B在反比例函数y=的图象上,∴2=,解得:m=﹣9.∴过点B的反比例函数的解析式为y=﹣,∴智智的话不正确;∵=﹣,﹣×=﹣1,∴DA⊥OA,∴AD∥BO.∵AD===OB,∴以点A,O,B,D为顶点的四边形为平行四边形,∴以点A,O,B,D为顶点的四边形是一个中心对称图形,即慧慧的话正确.综上可知:聪聪和慧慧的话正确.故选B.二、填空题(本题有6小题,每小题5分,共30分).11.底,台州市汽车数量达到1160000多辆,数据1160000用科学记数法表示为 1.16×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1160000用科学记数法表示为1.16×106.故答案为:1.16×106.12.分解因式:8﹣2x2=2(2+x)(2﹣x).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式,再根据平方差公式进行分解即可.【解答】解:原式=2(4﹣x2)=2(2+x)(2﹣x).故答案为:2(2+x)(2﹣x).13.如果两个变量x、y之间的函数关系如图所示,则自变量x的取值范围是﹣3≤x≤3.【考点】函数自变量的取值范围.【分析】观察函数图象横坐标的变化范围,然后写出即可.【解答】解:由图可知,自变量x的取值范围是﹣3≤x≤3.故答案为:﹣3≤x≤3.14.已知关于x2﹣(m+2)x+(2m+1)=0的方程有两个相等的实数根,则m的值为0或4.【考点】根的判别式.【分析】根据方程有两个相等的实数根可知b2﹣4ac=0,套入数据可得出关于m的一元二次方程,解方程即可得出结论.【解答】解:由已知得:[﹣(m+2)]2﹣4×(2m+1)=m2﹣4m=0,解得:m=0,或m=4.故答案为:0或4.15.如图,已知菱形ABCD,AC=8,BD=6,将此菱形绕点A逆时针旋转180°,则该菱形扫过的面积为32π+24.【考点】扇形面积的计算;菱形的性质.【分析】根据旋转的性质和扇形的面积公式即可得到结论.【解答】解:∵将此菱形绕点A逆时针旋转180°得到菱形AB′C′D′,∴该菱形扫过的面积=×82π+×8×6=32π+24,故答案为:32π+24.16.如图,Rt△ABC中,BC=AC=2,D是斜边AB上一个动点,把△ACD沿直线CD折叠,点A落在同一平面内的A′处,当A′D平行于Rt△ABC的直角边时,AD的长为2或2﹣2.【考点】翻折变换(折叠问题).【分析】在Rt△ABC中,BC=AC=2,于是得到AB=2,∠B=∠A′CB=45°,①如图1,当A′D∥BC,设AD=x,根据折叠的性质得到∠A′=∠A=∠A′CB=45°,A′D=AD=x,推出A′C⊥AB,求得BH=BC=,DH=A′D=x,然后列方程即可得到结果,②如图2,当A′D∥AC,根据折叠的性质得到AD=A′D,AC=A′C,∠ACD=∠A′CD,根据平行线的性质得到∠A′DC=∠ACD,于是得到∠A′DC=∠A′CD,推出A′D=A′C,于是得到AD=AC=2.【解答】解:Rt△ABC中,BC=AC=2,∴AB=2,∠B=∠A′CB=45°,①如图1,当A′D∥BC,设AD=x,∵把△ACD沿直线CD折叠,点A落在同一平面内的A′处,∴∠A′=∠A=∠A′CB=45°,A′D=AD=x,∵∠B=45°,∴A′C⊥AB,∴BH=BC=,DH=A′D=x,∴x+=2,∴x=2﹣2,∴AD=2﹣2;②如图2,当A′D∥AC,∵把△ACD沿直线CD折叠,点A落在同一平面内的A′处,∴AD=A′D,AC=A′C,∠ACD=∠A′CD,∵∠A′DC=∠ACD,∴∠A′DC=∠A′CD,∴A′D=A′C,∴AD=AC=2,综上所述:AD的长为:2或2﹣2.三、解答题(第17~20题,每题8分,第21题10分,第22~23题,每题12分,第24题14分,共80分)17.计算:(﹣)﹣1﹣2sin60°+(3﹣π)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣3﹣2×+1=﹣2﹣.18.解方程:.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣1=2x﹣4,解得:x=3,经检验x=3是分式方程的解.19.如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF ∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.【考点】全等三角形的判定与性质;平行四边形的判定与性质;矩形的判定.【分析】(1)由DF与BE平行,得到两对内错角相等,再由O为AC的中点,得到OA=OC,又AE=CF,得到OE=OF,利用AAS即可得证;(2)若OD=AC,则四边形ABCD为矩形,理由为:由OD=AC,得到OB=AC,即OD=OA=OC=OB,利用对角线互相平分且相等的四边形为矩形即可得证.【解答】(1)证明:∵DF∥BE,∴∠FDO=∠EBO,∠DFO=∠BEO,∵O为AC的中点,∴OA=OC,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,在△BOE和△DOF中,,∴△BOE≌△DOF(AAS);(2)若OD=AC,则四边形ABCD是矩形,理由为:证明:∵△BOE≌△DOF,∴OB=OD,∵OD=AC,∴OA=OB=OC=OD,且BD=AC,∴四边形ABCD为矩形.20.为推进多城同创,打造宜业宜居家园,温岭市门一再提醒司机:为了安全,请勿超速,并进一步完善各类监测系统,如图,在泽太一级公路某直线路段MN内限速80千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了4秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:=1.41,=1.73)【考点】解直角三角形的应用.【分析】根据题意结合锐角三角函数关系得出BH,CH,AB的长,进而求出汽车的速度,进而得出答案.【解答】解:此车没有超速.理由如下:过C作CH⊥MN,垂足为H,∵∠CBN=60°,BC=200米,∴CH=BC•sin60°=200×=100(米),BH=BC•cos60°=100(米),∵∠CAN=45°,∴AH=CH=100米,∴AB=100﹣100≈73(m),∴车速为≈18.25(m/s).∵80千米/小时=m/s,又∵18.25<,∴此车没有超速.21.已知菱形ABCD,AB=4,∠B=60°,以点D为圆心作⊙D与直线AB相切于点G,连接DG.(1)求证:⊙D与BC所在的直线也相切;(2)若⊙D与CD相交于E,过E作EF⊥AD于H,交⊙D于F,求EF的长.【考点】切线的判定与性质;菱形的性质.【分析】(1)作DK⊥BC于K,如图,根据切线的性质得DG⊥AB,再根据菱形的性质得BD平分∠ADC,则根据角平分线的性质得DG=DK,然后根据切线的判断定理即可得到⊙D与边BC也相切;(2)根据菱形的性质和垂径定理解答即可.【解答】(1)(1)证明:作DK⊥BC于K,连结BD,如图,∵AB与⊙D相切于点G,∴DG⊥AB,∵四边形ABCD为菱形,∴BD平分∠ADC,而DG⊥AB,DK⊥BC,∴DG=DK,即DK为⊙D的半径∴⊙D与边BC也相切.(2)解:∵在菱形四边形中,CD=AB=4,CD∥AB,∴∠DCK=∠ABC=60°.又∵∠DKC=90°,∴DK=CD=2,∴DE=DK=2.又∵∠ADC=∠ABC=60°,EF⊥AD,∴EH=DE=3,∴EF=2EH=6.22.某校为了了解学生大课间活动的跳绳情况,随机抽取了50名学生每分钟跳绳的次数进行统计,把统计结果绘制成如表和直方图.次数70≤x<90 90≤x<110 110≤x<130 130≤x<150 150≤x<170人数8 23 16 2 1根据所给信息,回答下列问题:(1)本次调查的样本容量是50;(2)本次调查中每分钟跳绳次数达到110次以上(含110次)的共有的共有19人;(3)根据上表的数据补全直方图;(4)如果跳绳次数达到130次以上的3人中有2名女生和一名男生,学校从这3人中抽取2名学生进行经验交流,求恰好抽中一男一女的概率(要求用列表法或树状图写出分析过程).【考点】频数(率)分布直方图;频数(率)分布表;列表法与树状图法.【分析】(1)根据图表给出的数据可直接得出本次调查的样本容量;(2)把调查中每分钟跳绳次数达到110次以上(含110次)的人数加起来即可;(3)根据图表给出的数据可直接补全直方图;(4)根据题意画出树状图,得出抽中一男一女的情况,再根据概率公式,即可得出答案.【解答】解:(1)本次调查的样本容量是:8+23+16+2+1=50;故答案为:50;(2)本次调查中每分钟跳绳次数达到110次以上(含110次)的共有的共有人数是:16+2+1=19(人);故答案为:19;(3)根据图表所给出的数据补图如下:(4)根据题意画树状图如下:共有6种情况,恰好抽中一男一女的有4种情况,则恰好抽中一男一女的概率是=.23.如图,直线y=x+4抛物线y=ax+bx+12(a≠0)相交于A(1,5)和B(8,n),点P是线段AB上异于A,B的动点,过点P作PC⊥x轴,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的点P,使△ABC的面积有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)当以线段PC为直径的圆经过点A时,求点P的坐标.【考点】二次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得B点坐标,根据待定系数法,可得函数解析式;(2)平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,根据三角形的面积,可得二次函数,根据二次函数的性质,可得答案;(3)根据圆的直径与半径之间的关系,可得关于m的方程,根据解方程,可得m的值,根据自变量与函数值的对应关系,可得答案.【解答】解:(1)∵点B(8,n)在直线y=x+4上,∴n=8+4=12.∵A(1,5),B(8,12)在抛物线y=ax2+bx+12(a≠0)上,∴,解得,故抛物线y=x2﹣8x+12;(2)设动点P的坐标为(m,m+4),则点C的坐标为(m,m2﹣8m+12),∴BC=(m+4)﹣(m2﹣8m+12)=﹣m2+9m﹣8;S△ABC=(8﹣1)(﹣m2+9m﹣8)=﹣(m﹣)2+,当m=时,△ABC的面积最大值,最大值为.(3)∵以线段PC为直径的圆经过点A,∴∠PAC=90°,∴点A到PC的距离为PC,∴m﹣1=(﹣m2+9m﹣8),∴m=6,m=1(不符合题意,舍),∴点P(6,10).24.【定义】若一个四边形恰好关于其中一条对角线所在的直线对称,则我们将这个四边形叫做镜面四边形.【理解】(1)下列说法是否正确(对的打“√”,错的打“×”).①平行四边形是一个镜面四边形.(×)②镜面四边形的面积等于对角线积的一半.(√)(2)如图(1),请你在4×4的网格(每个小正方形的边长为1)中画出一个镜面四边形,使它图(1)的顶点在格点上,且有一边长为.【应用】(3)如图(2),已知镜面四边形ABCD,∠BAD=60°,∠ABC=90°,AB≠BC,P是AD上一点,AE丄BP于E,在BP的延长线上取一点F,使EF=BE,连接AF,作∠FAD的平分线AG交BF于G,CM丄BF于M,连接CG.①求∠EAG的度数.②比较BM与EG的大小,并说明理由.③若以线段CB,CG,AG为边构成的三角形是直角三角形,求cos∠CBM的值(直接写出答案).【考点】四边形综合题.【分析】(1)根据平行四边形的性质和镜面四边形的定义,直接判断;(2)由镜面四边形的意义,得到必有两边是,一个直角,画出图形即可(3)①根据角平分线的定义得到∠EAF=∠BAF,∠GAF=∠FAD计算;②先判断△ABE∽△BCM,通过计算判断出BM=EG,③分两种情况,AG和CG为斜边,利用勾股定理计算即可.【解答】解:(1)①∵平行四边形不关于任何一条对角线对称,∴错误,故答案×;②∵镜面四边形关于对角线对称,∴镜面四边形的两条对角线互相垂直,∴镜面四边形的面积等于对角线积的一半;故答案为√.(2)如图1∵有一边长为.∴镜面四边形必有两边是.(3)①∵AE⊥BP,EF=BE,∴AB=AF,∴∠EAF=∠BAF,∵∠GAF=∠FAD,∴∠EAG=∠EAF﹣∠GAF=∠BAF﹣∠FAD=∠BAD=30°;②BM=EG,理由如下:连接AC,∵∠ABC=90°,∴AB=BC,∵∠ABC=∠AEB=∠CMB=90°,∴∠BAE+∠ABF=∠ABP+∠ABF=90°,∴∠BAE=∠CBF,∴△ABE∽△BCM,∴==,∴AE=BM,∵∠EAG=30°,AE⊥BP,∴AE=EG,∴BM=EG;③cos∠CBM=或设BM=x,BC=y,∴CM=,∵△ABE∽△BCM,∴=,∴AE=BM,AB=BC=y,BE=y=,∴BG=BE+EG=+x,∵EG=BM=xMG=BE=y=,∴CG==2,∵AE⊥BP,∠EAG=30°,∴AG=2EG=2x,由题意得AG>BC,以线段CB,CG,AG为边构成的三角形是直角三角形,只有两种AG为斜边或CG为斜边;①AG为斜边,∴CB2+CG2=AG2,∴y2+(2)2=(2x)2,∴y=x或y=﹣x(舍),∴BM=x,BC=y=x,∴cos∠CBM==,②CG为斜边,∴CB2+AG2=CG2,∴y2+(2x)2=(2)2,∴y=x或y=﹣x(舍),∴BC=y=x,BM=x,∴cos∠CBM==;cos∠CBM=或.8月27日。

2017年学业水平考试数学模拟试卷

2017年学业水平考试数学模拟试卷

2017年初中学业水平模拟考试数 学 试 卷(全卷三个大题,共23个小题,共 3 页;满分120分,考试时间120分钟)一、填空题(本大题共6个小题,每小题3分,共18分) 1、-2017的倒数是 。

2、如图,AB ∥CD ,EF ⊥CD 于点E ,EF 交AB 于点F ,已知∠2=20°则∠1等于 。

3、分解因式:2χ2-4χ+2= 。

4、一元二次方程χ2-χ+m=0有两个相等的实数根,则m= 。

5、如图,⊙0是△ABC 的外接圆,若∠C=30°,则∠AOB= 。

6、观察下列等式: 第一行:3=4-1 第二行:5=9-4 第三行:7=16-9 第四行:9=25-16 ……按照上述规律,第n 行的等式为 。

二、选择题。

(本大题共8个小题,每小题只有一个正确选项,每小题4分,共32分)7、下列运算中正确的是( )。

A 、a 0.=1B 、2-2=-41C 、(-2)2=4D 、a 2·a 3=a 68、宁洱哈尼族彝族自治县林业用地面积为284103.4公顷,284103.4这个数用科学记数法可表示为( )。

A 、2.841034×105B 、2.841034×106C 、0.2841034×105D 、0.2841034×1069、不等式组3χ-5<4 的解集是( ) 2χ-1>3(χ-1)A 、χ<3B 、χ<2C 、χ>2D 、2<χ<3 10、函数y=7-χ 1的自变量χ的取值范围是( )。

A 、χ>7 B 、χ≥7 C 、χ≠7 D 、χ≥0 11、已知:如图在矩形ABCD 中,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 、的中点,若AB=4,AD=8,则图中阴影部分的面积为:( )。

A 、6B 、32C 、12D 、1612、如图,已知点A 是一次函数y=χ的图像与反比例函数y=2的图像在第一象限内的交点,点B 在χ轴的负半轴上,OA=OB ,则B 点坐标为:( )。

2017年浙江省初中毕业升学考试(温州市卷)数学试卷及答案

2017年浙江省初中毕业升学考试(温州市卷)数学试卷及答案

2017年浙江省初中毕业升学考试(温州市及答案)数学试题卷姓名: 准考证号: 亲爱的同学:欢迎参加考试!请你认真审题,积极思考,细心答题,发挥最佳水平.答题时,请注意以下几点:1.全卷共4页,有三大题,24小题.全卷满分150分.考试时间120分钟.2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效.3.答题前,认真阅读答题纸上的《注意事项》,按规定答题. 祝你成功!卷Ⅰ一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分) 1.-6的相反数是( ▲ )A .6B .1C .0D .-62.某校学生到校方式情况的统计图如图所示.若该校步行到校的学生有100人,则乘公共汽车到校的学生有( ▲ ) A .75人 B .100人 C .125人 D .200人3.某运动会颁奖台如图所示,它的主视图是( ▲ )4.下列选项中的整数,与17最接近的是( ▲ )A .3B .4C .5D .65.温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表.表中表示零件个数的数据中,众数是( ▲ )A .5个B .6个C .7个D .8个6.已知点(-1,y 1),(4,y 2)在一次函数y =3x -2的图象上,则y 1,y 2,0的大小关系是( ▲ ) A .0<y 1<y 2 B .y 1<0<y 2 C .y 1<y 2<0 D . y 2<0<y 1 7.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知12cos 13α=,则小车上升的高度是( ▲ ) A .5米 B .6米 C .6.5米 D .12米零件个数(个) 5 6 7 8人数(人) 3 15 22 10主视方向(第3题) (第7题)A BC D某校学生到校方式情况统计图(第2题)骑自行车25% 其他15% 步行 20%乘公共汽 车40%8.我们知道方程2230x x +-=的解是1213x x ==-,.现给出另一个方程2(2+3)2(2+3)30x x +-=,它的解是( ▲ )A .121,3x x ==B .121,3x x ==-C .121,3x x =-=D .121,3x x =-=- 9.四个全等的直角三角形按图示方式围成正方形ABCD ,过各较长直角边的中点作垂线,围成面积为S 的小正方形EFGH .已知AM 为Rt △ABM 较长直角边,AM =22EF ,则正方形ABCD 的面积为( ▲ ) A .12SB .10SC .9SD .8S 10.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列.为了进一步研究,依次以这列数为半径作90°圆弧¼12PP ,¼23P P ,¼34P P ,…得到斐波那契螺旋线,然后顺次连结12PP ,23P P ,34P P ,…得到螺旋折线(如图).已知点P 1(0,1),P 2(-1,0),P 3(0,-1),则该折线上点9P 的坐标为( ▲ ) A .(-6,24) B .(-6,25) C .(-5,24) D .(-5,25) 卷Ⅱ二、填空题(本题有6小题,每小题5分,共30分) 11.分解因式:24m m += ▲ .12.数据1,3,5,12,a ,其中整数a 是这组数据的中位数,则该组数据的平均数是 ▲ . 13.已知扇形的面积为3π,圆心角为120°,则它的半径为 ▲ . 14.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x 米,根据题意可列出方程: ▲ .15.如图,矩形OABC 的边OA ,OC 分别在x 轴、y 轴上,点B 在第一象限,点D 在边BC上,且∠AOD =30°,四边形OA ′B ′D 与四边形OABD 关于直线OD 对称(点A ′和A ,B ′和B 分别对应).若AB =1,反比例函数ky x=(k ≠0)的图象恰好经过点A ′,B ,则k 的值为 ▲ .16.小明家的洗手盆上装有一种抬启式水龙头(如图1).完全开启后,水流路线呈抛物线,把手端点A 、出水口B 和落水点C 恰好在同一直线上,点A 到出水管BD 的距离为12cm ,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm 的圆柱型水杯去接水,若水流所在抛物线经过点D 和杯子上底面中心E ,则点E 到洗手盆内侧的距离EH 为 ▲ cm .x yD A'B'B O A C(第15题) (第9题)(第16题)图1 图2 单位:cm141261030H E C AB D (第10题)xyP 3P 2OP 1P 6P 4P 5三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程) 17.(本题10分)(1)计算:22(3)(1)⨯-+-(2)化简:(1)(1)(2)a a a a +-+-.18.(本题8分)如图,在五边形ABCDE 中,∠BCD =∠EDC =90°,BC =ED ,AC =AD . (1)求证:△ABC ≌△AED .(2)当∠B =140°时,求∠BAE 的度数.19.(本题8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门). (1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A ,B ,C 三个班,小聪、小慧都选择了“数学故事”.已知小聪不在A 班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)20.(本题8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A (2,3),B (4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△P AB ,使点P 的横、纵坐标之和等于点A 的横坐标. (2)在图2中画一个△P AB ,使点P ,B 横坐标的平方和等于它们纵坐标和的4倍.注:图1,图2在答题纸上.21.(本题10分)如图,在△ABC 中,AC =BC ,∠ACB =90°,⊙O (圆心O 在△ABC 内部)经过B ,C 两点,交AB 于点E ,过点E 作⊙O 的切线交AC 于点F ,延长CO 交AB 于点G ,作ED ∥AC 交CG 于点D .(1)求证:四边形CDEF 是平行四边形. (2)若BC =3,tan ∠DEF =2,求BG 的值.B(第18题)(第20题)(第19题) 某校七年级部分学生选课巧解故事数独魔方人数22.(本题10分)如图,过抛物线2124y x x =-上一点A 作x 轴的平行线,交抛物线于另一点B ,交y 轴于点C .已知点A 的横坐标为-2.(1)求抛物线的对称轴和点B 的坐标.(2)在AB 上任取一点P ,连结OP ,作点C 关于直线OP 的对称点D .①连结BD ,求BD 的最小值.②当点D 落在抛物线的对称轴上,且在x 轴上方时,求直线PD 的函数表达式.23.(本题12分)小黄准备给长8m ,宽6m 的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD 区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ ∥AD ,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/ m 2,面积为S (m 2),区域Ⅱ的瓷砖均价为200元/ m 2,且两区域的瓷砖总价不超过12000元,求S 的最大值. (2)若区域Ⅰ满足AB ﹕BC =2﹕3,区域Ⅱ四周宽度相等.①求AB ,BC 的长.②若甲、丙瓷砖单价之和为300元/m 2,乙、丙瓷砖单价之比为5﹕3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.24.(本题14分)如图,已知线段AB =2,MN ⊥AB 于点M ,且AM =BM .P 是射线MN 上一动点,E ,D 分别是P A ,PB 的中点,过点A ,M ,D 的圆与BP 的另一交点为C (点C 在线段BD 上),连结AC ,DE .(1)当∠APB =28°时,求∠B 和¼CM的度数. (2)求证:AC =AB .(3)在点P 的运动过程中.①当4MP =时,取四边形ACDE 一边的两端点和线段MP 上一点Q ,若以这三点为顶点的三角形是直角三角形,且Q 为锐角顶点,求所有满足条件的MQ 的值. ②记AP 与圆的另一个交点为F ,将点F 绕点D 旋转90°得点G ,当点G 恰好落在MN 上时,连结AG ,CG ,DG ,EG ,直接写出△ACG 与△DEG 的面积之比.(第24题) NC DEABM P (第23题) (第22题)xyDA BC OP2017年浙江省初中毕业升学考试(温州市卷)数学参考答案和评分标准一、选择题(本题有10小题,每小题4分,共40分)二、填空题(本题有6小题,每小题5分,共30分)11.)4(+m m 12.245或5或265 13.3 14.1602005x x =+ 15.334 16.2824-三、解答题(本题有8小题,共80分) 17.(本题10分)解 (1)原式=61-++5=-+ (5分)(2)原式=2212a a a -+-12.a =- (5分)18.(本题8分)(1)证明 ∵AC =AD ,∴∠ACD =∠ADC .∵∠BCD =∠EDC =90°, ∴∠ACB =∠ADE .∵BC =ED ,∴△ABC ≌△AED (SAS ). (4分)(2)解 由(1)得△ABC ≌△AED ,∴∠B =∠E =140°.∵五边形ABCDE 的内角和为540°,∴∠BAE=()=︒+︒⨯-︒90140254080°. (4分) 19.(本题8分)解 (1)903618271518480=+++⨯(人).答:估计该校七年级学生选“数学故事”的人数为90人. (4分)(2)画树状图如下:∴1.3P =(同班) (4分) 20.(本题8分)解 (1)如图1或图2.(4分) (2)如图3或图4.(4分)A B CB C A CB 小慧小聪(第20题)21.(本题 10分)解 (1)连结OE .∵AC=BC ,∠ACB =90°,∴∠B =45°,∴∠COE =90°.∵EF 与⊙O 相切, ∴∠FEO =90°, ∴∠COE +∠FEO =180°,∴EF ∥CO . ∵DE ∥CF ,∴四边形CDEF 是平行四边形. (5分)(2)过点G 作GH ⊥CB 于点H .∵∠ACB =90°, ∴AC ∥GH ,∴∠FCD =∠CGH .在□CDEF 中,∠DEF =∠FCD ,∴∠DEF =∠CGH , ∴tan ∠CGH =tan ∠DEF =2,∴CH GH=2.∵∠B =45°,∴GH =BH ,∴CH =2BH .∵BC =3,∴BH =GH =1,∴BG(5分)22.(本题10分)解 (1)对称轴是直线=2b x a-2124-=-⨯=4. ∵点A ,B 关于直线x =4对称,点A 的横坐标为-2, ∴点B 的横坐标为10. 当x =10时,y =5,∴点B 的坐标为(10,5).(4分)(2)①如图1,连结OD ,OB . ∵点C ,D关于直线OP 对称, ∴OD =OC =5. ∵OD +BD ≥OB ,∴BD ≥OB -OD 5=-, ∴当点D 在线段OB 上时,BD 有最小值5. (2分)②如图2,设抛物线的对称轴交x 轴于点F ,交BC 于点H . ∵ OD =5,OF =4 ,∴DF =3, ∴D (4,3),DH =HF -DF =2. 设CP =a ,则PD =PC =a ,PH =4-a , 在Rt △PHD 中,(4-a )2+22=a 2, ∴a =52,∴5 52P (,).设直线PD 的函数表达式为 y =kx +b (k ≠0),∴5=524=3.k b k b ⎧+⎪⎨⎪+⎩, 解得4325.3k b ⎧=-⎪⎪⎨⎪=⎪⎩, (第22题) 图2 图1∴直线PD 的函数表达式为425.33y x =-+ (4分)23.(本题12 分)解 (1)由题意得3002004812000S S +-()≤,∴S ≤24,∴S 的最大值为24. (4分) (2)①设AB =2a (m ),则BC =3a (m ),由题意得6-2a =8-3a ,∴a =2,∴AB =4m ,BC =6m . (4分)②解法一:设丙瓷砖的单价为3x 元/m 2,乙的面积为S (m 2).由PQ ∥AD 得甲的面积为12m 2,∴()()12300353124800x xS x S -++-=,∴600.x S= ∵012S <<,∴50x >,∴3150x >.又∵3300x <,∴1503300x <<,∴丙瓷砖单价大于150元/m 2且小于300元/m 2. (4分)解法二:设丙瓷砖的单价为x 元/m 2,丙的面积为S (m 2). 由题意得()()5123001248003x x S xS -+-+=,∴180012x S=-.∵012S <<,∴150x >.又∵300x <,∴150300x <<. 24.(本题14分)解 (1)∵MN ⊥AB ,AM =BM ,∴P A =PB ,∴∠P AB =∠B . ∵∠APB =28°,∴∠B =76°.如图1,连结MD .∵MD 为△P AB 的中位线,∴MD ∥AP ,∴∠MDB =∠APB =28°, ∴¼m CM 2∠MDB =56°. (4分)(2)∵∠BAC =∠MDC =∠APB ,又 ∵∠BAP =180°-∠APB -∠B ,∠ACB =180°-∠BAC -∠B , ∴∠BAP =∠ACB . ∵∠BAP =∠B , ∴∠B =∠ACB , ∴AC =AB . (4分) (3)①如图2,记MP 与圆的另一个交点为R .∵MD 是Rt △MBP 的中线, ∴DM =DP ,∴∠DPM =∠DMP =∠RCD ,∴RC =RP . 图1∵∠ACR =∠AMR =90°,∴22222AM MR AR AC CR +==+. ∴22221+=2+MR PR ,∴22221+=2+PR PR (4-),∴138PR =,∴MR =198.Ⅰ.当∠ACQ =90°时,AQ 为圆的直径,∴Q 与R 重合,∴MQ =MR =198. Ⅱ.如图3,当QCD ∠=90°时,在Rt △QCP 中,1324PQ PR ==, ∴34MQ =. Ⅲ.如图4,当QDC ∠=90°时,∵BM=1,MP=4,∴,∴DP = ∵cos MP DPMPB PB PQ∠==, ∴178PQ =,∴158MQ =.Ⅳ.如图5,当AEQ ∠=90°时, 由对称性得∠AEQ =∠BDQ =90°, ∴158MQ =.综上所述,MQ 的值为198或34或158. (4分)(2分)提示:如图6,∵ DM ∥AF ,∴DF=AM=DE =1,可得△DEG 为正三角形. 易得∠GMD =∠GDM =15°,得MG=DG =1. 作CH ⊥AB 于点H ,由∠BAC =30°得CH =1=MG ,CG=MH -1,∴S △ACG∵S △DEG ,∴S △ACG ﹕S △DEG图5图3图6 (第24题)。

2017年浙江省温州市初中毕业生学业考试数学试题(附答案解析)

2017年浙江省温州市初中毕业生学业考试数学试题(附答案解析)

2017年浙江省温州市初中毕业生学业考试数学试题一、选择题(共10小题,每小题4分,共40分):1.(4分)﹣6的相反数是()A.6 B.1 C.0 D.﹣62.(4分)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人3.(4分)某运动会颁奖台如图所示,它的主视图是()A.B.C.D.4.(4分)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.65.(4分)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个)5678人数(人)3152210表中表示零件个数的数据中,众数是()A.5个B.6个C.7个D.8个6.(4分)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y17.(4分)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知co sα=,则小车上升的高度是()A .5米B .6米C .6.5米D .12米8.(4分)我们知道方程x 2+2x ﹣3=0的解是x 1=1,x 2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是( )A .x 1=1,x 2=3B .x 1=1,x 2=﹣3C .x 1=﹣1,x 2=3D .x 1=﹣1,x 2=﹣39.(4分)四个全等的直角三角形按图示方式围成正方形ABCD ,过各较长直角边的中点作垂线,围成面积为S 的小正方形EFGH .已知AM 为Rt △ABM 较长直角边,AM=2EF ,则正方形ABCD 的面积为( )A .12SB .10SC .9SD .8S10.(4分)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P 1P 2,P 2P 3,P 3P 4,…得到螺旋折线(如图),已知点P 1(0,1),P 2(﹣1,0),P 3(0,﹣1),则该折线上的点P 9的坐标为( )A .(﹣6,24)B .(﹣6,25)C .(﹣5,24)D .(﹣5,25)二、填空题(共6小题,每小题5分,共30分):11.(5分)分解因式:m2+4m= .12.(5分)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是.13.(5分)已知扇形的面积为3π,圆心角为120°,则它的半径为.14.(5分)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:.15.(5分)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD 对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.16.(5分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A 至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为cm.三、解答题(共8小题,共80分):17.(10分)(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).18.(8分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.19.(8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)20.(8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.21.(10分)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO 交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.22.(10分)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.23.(12分)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.24.(14分)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C 在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.参考答案一、选择题(共10小题,每小题4分,共40分):1.(4分)(2017•温州)﹣6的相反数是()A.6 B.1 C.0 D.﹣6分析:根据相反数的定义求解即可.解答:解:﹣6的相反数是6,故选:A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(4分)(2017•温州)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人分析:由扇形统计图可知,步行人数所占比例,再根据统计表中步行人数是100人,即可求出总人数以及乘公共汽车的人数;解答:解:所有学生人数为 100÷20%=500(人);所以乘公共汽车的学生人数为 500×40%=200(人).故选D.点评:此题主要考查了扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.3.(4分)(2017•温州)某运动会颁奖台如图所示,它的主视图是()A. B.C.D.分析:根据从正面看得到的图形是主视图,可得答案.解答:解:从正面看,故选:C.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(4分)(2017•温州)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.6分析:依据被开放数越大对应的算术平方根越大进行解答即可.解答:解:∵16<17<20.25,∴4<<4.5,∴与最接近的是4.故选:B.点评:本题主要考查的是估算无理数的大小,掌握算术平方根的性质是解题的关键.5.(4分)(2017•温州)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个) 5 6 7 8人数(人) 3 15 22 10表中表示零件个数的数据中,众数是()A.5个B.6个C.7个D.8个分析:根据众数的定义,找数据中出现最多的数即可.解答:解:数字7出现了22次,为出现次数最多的数,故众数为7个,故选C.点评:本题考查了众数的概念.众数是数据中出现次数最多的数.众数不唯一.6.(4分)(2017•温州)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2 B.y1<0<y2 C.y1<y2<0 D.y2<0<y1分析:根据点的横坐标利用一次函数图象上点的坐标特征,即可求出y1、y2的值,将其与0比较大小后即可得出结论.解答:解:∵点(﹣1,y1),(4,)在一次函数y=3x﹣2的图象上,∴y1=﹣5,y2=10,∵10>0>﹣5,∴y1<0<y2.故选B.点评:本题考查了一次函数图象上点的坐标特征,根据点的横坐标利用一次函数图象上点的坐标特征求出y1、y2的值是解题的关键.7.(4分)(2017•温州)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米B.6米C.6.5米D.12米分析:在Rt△ABC中,先求出AB,再利用勾股定理求出BC即可.解答:解:如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC==132﹣122=5,∴小车上升的高度是5m.故选A.点评:此题主要考查解直角三角形,锐角三角函数,勾股定理等知识,解题的关键是学会构造直角三角形解决问题,属于中考常考题型.8.(4分)(2017•温州)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3分析:先把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,利用题中的解得到2x+3=1或2x+3=﹣3,然后解两个一元一次方程即可.解答:解:把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,所以2x+3=1或2x+3=﹣3,所以x1=﹣1,x2=﹣3.故选D.点评:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.(4分)(2017•温州)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S分析:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2,由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,由此即可解决问题.解答:解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵AM=2EF,∴2a=2b,∴a=b,∵正方形EFGH的面积为S,∴b2=S,∴正方形ABCD的面积=4a2+b2=9b2=9S,故选C.点评:本题考查正方形的性质、勾股定理、线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.10.(4分)(2017•温州)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)分析:观察图象,推出P9的位置,即可解决问题.解答:解:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离=21+5=26,所以P9的坐标为(﹣6,25),故选B.点评:本题考查规律型:点的坐标等知识,解题的关键是理解题意,确定P9的位置.二、填空题(共6小题,每小题5分,共30分):11.(5分)(2017•温州)分解因式:m2+4m= m(m+4).分析:直接提提取公因式m,进而分解因式得出答案.解答:解:m2+4m=m(m+4).故答案为:m(m+4).点评:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.(5分)(2017•温州)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是 4.8或5或5.2 .分析:根据中位数的定义确定整数a的值,由平均数的定义即可得出答案.解答:解:∵数据1,3,5,12,a的中位数是整数a,∴a=3或a=4或a=5,当a=3时,这组数据的平均数为=4.8,当a=4时,这组数据的平均数为=5,当a=5时,这组数据的平均数为=5.2,故答案为:4.8或5或5.2.点评:本题主要考查了中位数和平均数,解题的关键是根据中位数的定义确定a的值.13.(5分)(2017•温州)已知扇形的面积为3π,圆心角为120°,则它的半径为 3 .分析:根据扇形的面积公式,可得答案.解答:解:设半径为r,由题意,得πr2×=3π,解得r=3,故答案为:3.点评:本题考查了扇形面积公式,利用扇形面积公式是解题关键.14.(5分)(2017•温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:=.分析:设甲每天铺设x米,则乙每天铺设(x+5)米,根据铺设时间=和甲、乙完成铺设任务的时间相同列出方程即可.解答:解:设甲工程队每天铺设x米,则乙工程队每天铺设(x+5)米,由题意得:=.故答案是:=.点评:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.15.(5分)(2017•温州)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.分析:设B(m,1),得到OA=BC=m,根据轴对称的性质得到OA′=OA=m,∠A′OD=∠AOD=30°,求得∠A′OA=60°,过A′作A′E⊥OA于E,解直角三角形得到A′(m,m),列方程即可得到结论.解答:解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函数y=(k≠0)的图象恰好经过点A′,B,∴m•m=m,∴m=,∴k=.故答案为:.点评:本题考查了反比例函数图象上点的坐标特征,矩形的性质,轴对称的性质,解直角三角形,正确的作出辅助线是解题的关键.16.(5分)(2017•温州)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD 的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为24﹣8cm.分析:先建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,根据△ABQ ∽△ACG,求得C(20,0),再根据水流所在抛物线经过点D(0,24)和B(12,24),可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得抛物线为y=﹣x2+x+24,最后根据点E的纵坐标为10.2,得出点E的横坐标为6+8,据此可得点E到洗手盆内侧的距离.解答:解:如图所示,建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,由题可得,AQ=12,PQ=MD=6,故AP=6,AG=36,∴Rt△APM中,MP=8,故DQ=8=OG,∴BQ=12﹣8=4,由BQ∥CG可得,△ABQ∽△ACG,∴=,即=,∴CG=12,OC=12+8=20,∴C(20,0),又∵水流所在抛物线经过点D(0,24)和B(12,24),∴可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得,解得,∴抛物线为y=﹣x2+x+24,又∵点E的纵坐标为10.2,∴令y=10.2,则10.2=﹣x2+x+24,解得x1=6+8,x2=6﹣8(舍去),∴点E的横坐标为6+8,又∵ON=30,∴EH=30﹣(6+8)=24﹣8.故答案为:24﹣8.点评:本题以水龙头接水为载体,考查了二次函数的应用以及相似三角形的应用,在运用数学知识解决问题过程中,关注核心内容,经历测量、运算、建模等数学实践活动为主线的问题探究过程,突出考查数学的应用意识和解决问题的能力,蕴含数学建模,引导学生关注生活,利用数学方法解决实际问题.三、解答题(共8小题,共80分):17.(10分)(2017•温州)(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).分析:(1)原式先计算乘方运算,化简二次根式,再计算乘法运算,最后算加减运算即可得到结果.(2)运用平方差公式即可解答.解答:解:(1)原式=﹣6+1+2=﹣5+2;(2)原式=1﹣a2+a2﹣2a=1﹣2a.点评:本题考查了平方差公式,实数的运算以及单项式乘多项式.熟记实数运算法则即可解题,属于基础题.18.(8分)(2017•温州)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.分析:(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.解答:解:(1)∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);(2)当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.点评:本题主要考查了全等三角形的判定与性质的运用,解题时注意:两边及其夹角对应相等的两个三角形全等.19.(8分)(2017•温州)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)分析:(1)利用样本估计总体,用480乘以样本中选“数学故事”的人数所占的百分比即可估计该校七年级480名学生选“数学故事”的人数;(2)画树状图展示所有6种等可能的结果数,再找出他和小慧被分到同一个班的结果数,然后根据概率公式求解.解答:解:(1)480×=90,估计该校七年级480名学生选“数学故事”的人数为90人;(2)画树状图为:共有6种等可能的结果数,其中他和小慧被分到同一个班的结果数为2,所以他和小慧被分到同一个班的概率==.点评:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.\20.(8分)(2017•温州)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.分析:(1)设P(x,y),由题意x+y=2,求出整数解即可解决问题;(2)设P(x,y),由题意x2+42=4(4+y),求出整数解即可解决问题;解答:解:(1)设P(x,y),由题意x+y=2,∴P(2,0)或(1,1)或(0,2)不合题意舍弃,△PAB如图所示.(2)设P(x,y),由题意x2+42=4(4+y),整数解为(2,1)或(0,0)等,△PAB如图所示.点评:本题考查作图﹣应用与设计、二元方程的整数解问题等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.21.(10分)(2017•温州)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC 内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.分析:(1)连接CE,根据等腰直角三角形的性质得到∠B=45°,根据切线的性质得到∠FEO=90°,得到EF∥OD,于是得到结论;(2)过G作GN⊥BC于N,得到△GMB是等腰直角三角形,得到MB=GM,根据平行四边形的性质得到∠FCD=∠FED,根据余角的性质得到∠CGM=∠ACD,等量代换得到∠CGM=∠DEF,根据三角函数的定义得到CM=2GM,于是得到结论.解答:解:(1)连接CE,∵在△ABC中,AC=BC,∠ACB=90°,∴∠B=45°,∴∠COE=2∠B=90°,∵EF是⊙O的切线,∴∠FEO=90°,∴EF∥OC,∵DE∥CF,∴四边形CDEF是平行四边形;(2)过G作GN⊥BC于N,∴△GMB是等腰直角三角形,∴MB=GM,∵四边形CDEF是平行四边形,∴∠FCD=∠FED,∵∠ACD+∠GCB=∠GCB+∠CGM=90°,∴∠CGM=∠ACD,∴∠CGM=∠DEF,∵tan∠DEF=2,∴tan∠CGM==2,∴CM=2GM,∴CM+BM=2GM+GM=3,∴GM=1,∴BG=GM=.点评:本题考查了切线的性质,平行四边形的判定和性质,等腰直角三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.22.(10分)(2017•温州)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.分析:(1)首先确定点A的坐标,利用对称轴公式求出对称轴,再根据对称性可得点B坐标;(2)①由题意点D在以O为圆心OC为半径的圆上,推出当O、D、B共线时,BD的最小值=OB﹣OD;②当点D在对称轴上时,在Rt△OD=OC=5,OE=4,可得DE===3,求出P、D的坐标即可解决问题;解答:解:(1)由题意A(﹣2,5),对称轴x=﹣=4,∵A、B关于对称轴对称,∴B(10,5).(2)①如图1中,由题意点D在以O为圆心OC为半径的圆上,∴当O、D、B共线时,BD的最小值=OB﹣OD=﹣5=5﹣5.②如图2中,图2当点D在对称轴上时,在Rt△ODE中,OD=OC=5,OE=4,∴DE===3,∴点D的坐标为(4,3).设PC=PD=x,在Rt△PDK中,x2=(4﹣x)2+22,∴x=,∴P(,5),∴直线PD的解析式为y=﹣x+.点评:本题考查抛物线与X轴的交点、待定系数法、最短问题、勾股定理等知识,解题的关键是熟练掌握二次函数的性质,学会利用辅助圆解决最短问题,属于中考常考题型.23.(12分)(2017•温州)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.分析:(1)根据题意可得300S+(48﹣S)200≤12000,解不等式即可;(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,由此即可解决问题;②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,由PQ∥AD,可得甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,由0<s<12,可得0<<12,解不等式即可;解答:解:(1)由题意300S+(48﹣S)200≤12000,解得S≤24.∴S的最大值为24.(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,∴AB=6﹣2a=4,CB=8﹣2a=6.②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,∵PQ∥AD,∴甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,∵0<s<12,∴0<<12,又∵300﹣3x>0,综上所述,50<x<100,150<3x<300,∴丙瓷砖单价3x的范围为150<3x<300元/m2.点评:本题考查不等式的应用、矩形的性质等知识,解题的关键是理解题意,学会构建方程或不等式解决实际问题,属于中考常考题型.24.(14分)(2017•温州)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN 上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.分析:(1)根据三角形ABP是等腰三角形,可得∠B的度数,再连接MD,根据MD为△PAB 的中位线,可得∠MDB=∠APB=28°,进而得到=2∠MDB=56°;(2)根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出AC=AB;(3)①记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR=,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ的值为或或;②先判定△DEG是等边三角形,再根据GMD=∠GDM,得到GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=1=MG,即可得到CG=MH=﹣1,进而得出S△ACG=CG×CH=,再根据S△DEG=,即可得到△ACG和△DEG的面积之比.解答:解:(1)∵MN⊥AB,AM=BM,∴PA=PB,∴∠PAB=∠B,∵∠APB=28°,∴∠B=76°,如图1,连接MD,∵MD为△PAB的中位线,∴MD∥AP,∴∠MDB=∠APB=28°,∴=2∠MDB=56°;(2)∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,∴∠ACB=∠B,∴AC=AB;(3)①如图2,记MP与圆的另一个交点为R,∵MD是Rt△MBP的中线,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∴RC=RP,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4﹣PR)2=22+PR2,∴PR=,∴MR=,Ⅰ.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=;Ⅱ.如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=;Ⅲ.如图4,当∠QDC=90°时,∵BM=1,MP=4,∴BP=,∴DP=BP=,∵cos∠MPB==,∴PQ=,∴MQ=;Ⅳ.如图5,当∠AEQ=90°时,由对称性可得∠AEQ=∠BDQ=90°,∴MQ=;综上所述,MQ的值为或或;②△ACG和△DEG的面积之比为.理由:如图6,∵DM∥AF,∴DF=AM=DE=1,又由对称性可得GE=GD,∴△DEG是等边三角形,∴∠EDF=90°﹣60°=30°,∴∠DEF=75°=∠MDE,∴∠GDM=75°﹣60°=15°,∴∠GMD=∠PGD﹣∠GDM=15°,∴GMD=∠GDM,∴GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=AB=1=MG,AH=,∴CG=MH=﹣1,∴S△ACG=CG×CH=,∵S△DEG=,∴S△ACG:S△DEG=.点评:本题属于圆的综合题,主要考查了等腰三角形的性质,等边三角形的判定与性质,三角形中位线定理,勾股定理,圆周角定理以及解直角三角形的综合应用,解决问题的关键是作辅助线构造直角三角形以及等边三角形,运用旋转的性质以及含30°角的直角三角形的性质进行计算求解,解题时注意分类思想的运用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温岭市初中学业水平模拟考试数学试卷1.全卷共4页,满分150分,考试时间120分钟.2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上无效.3.答题前,请认真阅读答题纸上的《注意事项》,按规定答题.4.本次考试不得使用计算器,请耐心解答.祝你成功!一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.如果某天中午的气温是1℃,到傍晚下降了3℃,那么傍晚的气温是( ▲ )A.4℃ B.2℃ C.-2℃D.-3℃2.节约是一种美德.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为( ▲ )A.3.5×107B.3.5×108C.3.5×109D.3.5×1010 3.如图所示的几何体的左视图是( ▲ )(A)(B)(C)(D)4.下列运算正确的是( ▲ )A2= B .020= C .328-= D .()23-=9- 5.不等式组的解集在数轴上表示如图,则该不等式组是( ▲ )A .⎩⎨⎧≤-≥21x x B .⎩⎨⎧≥-21x x < C .⎩⎨⎧-21<>x x D .⎩⎨⎧≤-21x x >6.已知:如图,l ∥m ,等边△ABC 的顶点B 在直线m 上,边BC 与直线m 所夹锐角为25°,则∠α的度数为( ▲ )A .45°D .25°25°第6题第7题第8题7.在如图的正方形网格格点上放三枚棋子,图中已放置了两枚棋子,若第三枚棋子随机放在其他格点上,则以这三枚棋子为顶点的三角形是直角三角形的概率为( ▲ )A .27B .37C .47D .578.一次函数y=kx+b 的图像如图所示,则下列判断正确的是( ▲ )A .|k|<|b|B .|k|≤|b|C .|k|>|b|D .|k|与|b|的大小关系不能确定 9.一张圆形纸片,小芳进行了如下连续操作:(1)将圆形纸片左右对折,折痕为AB ,如图(2).(2)将圆形纸片上下折叠,使A 、B 两点重合,折痕CD 与AB 相交于M ,如图(3).(3)将圆形纸片沿EF 折叠,使B 、M 两点重合,折痕EF 与AB 相交于N ,如图(4).(4)连结AE 、AF 、BE 、BF ,如图(5).第10题 BR H图(1)图(2)C 图(4)C 图(5)C图(3)经过以上操作,小芳得到了以下结论:① CD ∥EF ;②四边形MEBF 是菱形;③△AEF 为等边三角形;④AEBF BEMFS S π=四边形扇形∶.以上结论正确的有( ▲ )A .1个B .2个C .3个D .4个10.如图,四边形ABHK 是边长为8的正方形,点C 、D 在边AB 上,且AC=DB=1,点P 是线段CD 上的一个动点,分别以AP 、PB 为边在线段AB 的同侧作正方形AMNP 和正方形BRQP ,E 、F 分别为MN 、QR 的中点,连接EF ,设EF 的中点为G ,则当点P 从点C 运动到点D 时,点G 移动的路径长为( ▲ )A .2B .3C .3.5D .4二、填空题(本题有6小题,每小题5分,共30分) 11.因式分解:221a a -+= ▲ . 12.已知函数y =x 的取值范围是 ▲ .13.如图,已知AD 是△ABC 的外接圆的直径,AD=13 cm , 135cos =B , 则AC 的长= ▲ .14.已知动点P(1a-,2a ),当a (0a ≠)取不同的实数时,点P 所形成图像的解析式是 ▲ .第13题15.如图(1)将△ABC 绕点A 按逆时针方向旋转θ度,并使各边长变为原来的n 倍得△AB ′C ′ ,∠BAB ′ =θ,AB B C AC n AB BC AC''''===,我们将这种变换记为[θ,n] .如图(2),在△DEF 中,∠DFE=90°,将 △DEF 绕点D 旋转,作变换[60°,n]得△DE ′F ′,如果点E 、F 、F ′恰好在同一直线上,那 么n= ▲ .16.如图,两张边长相等的正方形纸片重合在一起,然后把上面这张正方形纸片绕中心旋转,得到如图所示的每条边都相等的八角星形,若八角星形的面积为8+则以AB 为边的正方形的面积为 ▲ .三、解答题(第17~20题,每题8分,第21题10分,第22~23题,每题12分,第24题14分,共80分)F ′图(2)DE E ′FABC B′C ′图(1)第15题17.计算:°3tan 603+-18.先化简,再求值:22()()()2m n m n m n n +-+--,其中12m n ==-,19.如图,Rt △ABE 与Rt △DCF 关于直线m 对称,若∠B=90C=90°,连结EF ,AD ,且点B ,E ,F ,C 在同一条直线上.求证:四边形ABCD 是矩形.20.自古以来,钓鱼岛及其附属岛屿都是我国固有领土.为了开发利用海洋资源,我勘测飞机测量钓鱼岛附属岛屿之一的北小岛两侧端点A 、B 的距离,如图,飞机在距海平面垂直高度为100米的点C 处测得端点A 的俯角为60°,然后沿着平行于AB 的方向水平飞行了800米,在点D 测得端点B 的俯角为45°,求北小岛两侧端点A 、B 的距离(结果保留根号).21.某商店第一次用600元购进某品牌的笔记本若干本,第二次又用600元购进同样品牌的笔记本,但这次每本的进价是第一次的45,购进数量比第一次少了30本.(1)求第一次每本笔记本的进价是多少元?(2)商店以同一价格全部销售完毕后获利不低于420元,问每本笔记本的售价至少多少元?22.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整). 请根据以上信息回答:(1)本次参加抽样调查的居民有_________人,在扇形统计图中,C 类型所占的圆心角的度数是________; (2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D 粽的人数; (4)若有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小王吃了一个,准备吃第二个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率.人数类型23.在平面直角坐标系中,抛物线2342+-=x ax y 过点B (1,0). (1)求抛物线与y 轴的交点C 的坐标及与x 轴的另一交点A 的坐标; (2)以AC 为边在第二象限画正方形ACPQ ,求P 、Q 两点的坐标; (3)把(2)中的正方形ACPQ 和抛物线沿射线AC 一起运动,当运动到点Q 与y 轴重合时,求运动后的抛物线的顶点坐标.xyCABOxyCAB备用图O24.如图1,点P为四边形ABCD所在平面上的点,如果∠PAD=∠PBC,则称点P为四边形ABCD关于A、B的等角点,以点C为坐标原点,BC 所在直线为x轴建立平面直角坐标系,点B的横坐标为6-.(1)如图2,若A、D两点的坐标分别为A(6-,4)、D(0,4),点P在DC边上,且点P为四边形ABCD关于A、B的等角点,则点P的坐标为________;(2)如图3,若A、D两点的坐标分别为A(2-,4)、D(0,4).①若P在DC边上时,则四边形ABCD关于A、B的等角点P的坐标为________;②在①的条件下,将PB沿x轴向右平移m个单位长度(0<m<6)得到线段P B'',连接P D',B D',试用含m的式子表示22P D B D'+',并求出使22P D B D'+'取得最小值时点P'的坐标;③如图4,若点P为四边形ABCD关于A、B的等角点,且点P坐标为(1,t),求t的值;④以四边形ABCD的一边为边画四边形,所画的四边形与四边形ABCD 有公共部分,若在所画的四边形内存在一点P,使点P分别是各相邻两顶点的等角点,且四对等角都相等,请直接写出所有满足条件的点P的坐标.P图(1)图(2)图(3)图(4)参考答案一、选择题:1、C2、B3、C4、A5、D6、B7、C8、A9、D 10、B二、填空题:11、2(1)a- 12、1x> 13、12 14、2=- 15、yx2 16、8+三、解答题:17.解:原式=3 --------------------------------------------6分(每个算对得2分)=3-------------------------------------------8分18.解:原式=22222++---2()2m mn n m n n ----------------------------------------4分(每个算对得2分) =22222++-+-22m mn n m n n=2mn -------------------------------------------2分当12,时,则原式=4-m n==--------------------------------------------2分19.证明:∵Rt△ABE与Rt△DCF关于直线m对称∴AB=CD-------------------------------------------2分∵∠B=90°,∠C=90°,点B,E,F,C在同一条直线上∴∠B+∠C=180°-------------------------------------------2分∴AB∥CD-------------------------------------------1分∴四边形ABCD是平行四边形-------------------------------------------2分又∵∠B=90°∴平行四边形ABCD是矩形.-------------------------------------------1分(其它证明方法酌情给分)20.解:过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,∵AB ∥CD∴∠AEF=∠EFB=∠ABF=90° ∴四边形ABFE 为矩形-------------------------------------------2分 ∴AB=EF ,AE=BF由题意可知:AE=BF=100米,CD=800米. 在Rt △AEC 中,∠C=60°,AE=100米. ∴CE===(米)-------------------------------------------2分在Rt △BFD 中,∠BDF=45°,BF=100. ∴DF===100(米)-------------------------------------------2分 ∴AB=EF=CD+DF ﹣CE=800+100﹣=(900﹣)米-------------------------------------------1分 答:岛屿两侧端点A 、B 的距离为(900﹣)米. -------------------------------------------1分 21.解:(1)设第一次每本笔记本的进价为x 元-------------------------------------------1分 根据题意得,3045600x600+=x-------------------------------------------2分解得x=4,经检验x=4是原方程的解-------------------------------------------1分+1分答:第一次每本笔记本的进价为4元. -------------------------------------------1分(2)第一次买进笔记本150本,第二次买进笔记本120本,共270本.设每本笔记本的售价为y元,根据题意得,270y-600×2≥420 -------------------------------------------2分∴y≥ 6 -------------------------------------------1分答:每本笔记本的售价至少为6元. -------------------------------------------1分22.解:(1)600,72°-------------------------------------------2分+1分(2)如图;--------------------------------------1分+1分+1分(3)8000×40%=3200(人). -------------------------------------------2分答:该居民区有8000人,估计爱吃D 粽的人有3200人. (4)如图;-------------------------------------------2分(列表方法略,参照给分).P (C 粽)==.答:他第二个吃到的恰好是C 粽的概率是.-------------------------------------------2分 23.解:(1)把B (1,0)代入抛物线2342+-=x ax y 得,23a =-∴224233y x x =--+--------------------------------------------1分当0x =时,2y = ∴与y轴交点C 的坐标为(0,2)--------------------------------------------1分开始A B C DB C D A C D A B D A B C当0y =时,2242033x x --+= 解得121,3x x ==- ∴与x轴的另一个交点A 的坐标为(3,0)---------------------------------------------1分(2)过P 点作PE ⊥y 轴,过点Q 作QF ⊥x 轴 ∵四边形ACPQ 是正方形 ∴AC=CP=AQ ,∠QAC=∠ACP=90° ∴∠ACO+∠PCE=90° ∵∠AOC=90° ∴∠ACO+∠OAC=90° ∴∠OAC=∠PCE又∵∠AOC=∠PEC ,AC=CP ∴△AOC≌△PCE(AAS)--------------------------------------------2分 ∴PE=OC=2,CE=AO=3 ∴OE=OC+CE=5 ∴点P的坐标为(2,5)---------------------------------------------1分同理△AOC ≌△QFA ∴QF=AO=3,AF=OC=2yCABOQPEF∟∴OF=AF+OA=5 ∴点Q的坐标为(5,3)-(3)设直线PQ 的解析式为y kx b =+把P (2,5)-,Q (5,3)-代入y kx b =+得2553k b k b -+=⎧⎨-+=⎩33==∴21933y x =+∴当0x =时,193y =∴直线PQ 与y 轴的交点Q '19(0,)3---------------------1分∴点Q (5,3)-运动到点Q '19(0,)3.∴向右平移了5个单位长度,向上平移了103个单位长度.∵抛物线224233y x x =--+的顶点为8(1,)3-∴运动后的抛物线的顶点坐标为(4,6)--------------------------------------------2分(利用其它解法请酌情给分) 24.解:(1)P (0,2)--------------------------------------------2分 (2)①P (0,3)--------------------------------------------2分②如图3,由题意,易得(6,0)m B'-,P (,3)m '由勾股定理得22P D B D '+'=2222(43)(6)4m m -++-+2′-----------2分∵2>0∴22P D B D '+'有最小值 当12322m -=-=⨯(在0<m <6范围内)时, 22P D B D '+'有最小值,此时P '(3,3)--------------------1分③由题意,知点P 在直线1x =上,延长AD 交直线1x =于M ⅰ)如图,当点P 在线段MN 上时易证△PAM ∽△PBN ∴PM AMPN BN =, 即437t t -=, 解2.8t =ⅱ)如图,当点P 为BA 的延长线与直线1x =的交点时 易证△PAM ∽△PBN ∴PM AM PN BN =, 即437t t -=, 解得7t =--------------------------------------------1分(利用一次函数解析法请酌情给分) 综上 2.8t =或7t =图(4)④因满足题设条件的四边形是正方形故所求P的坐标为(1,3)-,-,(3,3)-,(2,2)---------------------------------------------4分(2,0)。

相关文档
最新文档