24.2.2弦、弧、圆心角、 弦心距之间的关系
九年级数学下 第24章 圆24.2 圆的基本性质第4课时 圆心角、弧、弦、弦心距间的关系说课
圆心角、弧、弦、弦心距间的关系教材分析:本课是沪科版九年级下册第24章第二节圆的有关性质,它是在学习了垂径定理后进而要学习的圆的又一个重要性质。
主要研究弧,弦,圆心角的关系。
教材中充分利用圆的对称性,通过观察,实验探究出性质,再进行证明,体现图形的认识,图形的变换,图形的证明的有机结合。
在证明圆的许多重要性质时都运用了圆的旋转不变性。
同时弧,弦,圆心角的关系定理在后继证明线段相等,角相等,弧相等提供了又一种方法。
重点:圆心角、弧、弦之间的相等关系难点:从圆的旋转不变性出发,得到圆心角,弦,弧之间的相等关系。
目的分析:知识与技能目标:(1)让学生在实际操作中发现并理解圆的旋转不变性。
(2)结合图形让学生理解圆心角的概念,学会辨别圆心角。
(3)引导学生发现圆心角、弧、弦之间相等关系,并初步学会运用这些关系解决有关问题。
过程与方法目标:培养学生观察,分析,归纳的能力,渗透旋转变化的思想及有特殊到一般的变化规律。
情感与态度目标:进一步培养学生的合情推理能力,发展学生的逻辑思维能力和推理论证的表达能力,同时对学生渗透事物之间是可相互转化的辨证唯物主义教育。
教法分析:1.学情:由于圆的知识是轴对称及旋转知识的后续学习,学生又有一定圆的相关概念,计算的知识储备,因此学习本节难度不是太大。
由于学生对圆的旋转不变性不甚了解,所以在探讨圆心角、弧、弦之间的相等关系时可能感到困难,另外对等弧等的理解可能不透彻,我会做直观的示范;初始阶段在证明角相等,线段相等等有关问题时受思维定势的影响,学生往往会走利用“三角形全等”的老路,这时我会有意识引导,针对性训练构建学生头脑中新的知识网络。
2.教学活动是教与学双边互动过程,必须充分发挥学生的主体和教师的主导作用,因此教学目标的达成,需优选教学法,根据学生的学情,本节课在探究圆心角,弦,弧之间的相等关系我采用发现模式,基本程序是:观察实践——概括归纳——重点研讨——推理反思。
这种教学模式注重知识的形成过程,有利于体现学生的主体地位和分析问题的方法,例题教学时采用讲授模式,一方面通过新知识的讲解练习,及时反馈,查缺补漏,使学生树立信心,培养学习能力,另一方面对大面积提高教学质量也是有意的。
圆心角、弧、弦、弦心距之间的关系
圆心角、弧、弦、弦心距之间的关系
1、与圆心角、弧、弦、弦心距相关的定理和推理:
在上例中,若∠DOC=∠AOB,则CD=AB,弧CD=弧AB,弦心距OE=弦心距OF;若CD=AB,则∠DOC=∠AOB,弧CD=弧AB,弦心距OE=弦心距OF;若弧CD=弧AB,则∠DOC=∠AOB,CD=AB,弦心距OE=弦心距OF;若弦心距OE=弦心距OF,则∠DOC=∠AOB,CD=AB,弧CD=弧AB.(特别的对于弦心距而言,要么指出“弦心距”三字,要么指出(OE⊥DC或OF⊥AB).2、典型例题及常见辅助线的添线方法:
解法分析:本题主要利用的推论是同圆中,相等的弦心距所对的弦相等。
(1)(2)两问的添线方法一致,只是根据点在圆外、圆上、圆内分类讨论而已。
因此常见的辅助线的添线方法为作弦心距。
3、与四边形相关的综合练习:
解法分析:本题综合利用了同圆的半径相等、矩形的对角线相等且互相平分,X型基本图形、锐角三角比、三角形的内外角和知识,是一道比较综合的简单综合题。
解法分析:本题综合利用了全等三角形的判定和性质定理,勾股定理,平行四边形的性质定理。
第3问稍有难度,构造全等的直角三角形,利用垂直平分线性质定理解决问题。
解法分析:本题的第1问利用了子母三角形相似得到解析式;本题的第2问分类讨论,利用X型基本图形,列比例关系求解.
4、圆周角相关性质定理的补充:。
03 圆心角、弧、弦、弦心距之间关系
三.圆心角、弧、弦、弦心距之间的关系【知识要点】(1)圆的对称性:圆是以圆心为对称中心的中心对称图形.圆不仅是轴对称图形,而且还是 图形,圆独有的性质是 . (2)概念:弦、弦心距弦:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直线。
直径是圆中最大的弦。
弦心距:圆心到弦的距离叫做弦心距。
【典型例题】例1.(1)过已知⊙O 中一已知点P 的弦中,最短的弦是 ;最长的弦是 .(2)已知⊙O 中,AB 是直径,长10cm ,点M 为⊙O 内的一点,OM=4cm ,则⊙O 中过点M 的弦中,最长的弦等于 .(3)在⊙O 中,弦AB ∥弦CD ,且AB 、CD 的度数分别为︒120和︒60,⊙O 的半径为6cm ,则AB 与CD 之间的距离是 .(4)如图1,⊙O 中,弦CD 与直径AB 交于E ,且∠AEC=︒30,AE=1cm ,BE=5cm ,则弦CD 的弦心距OF= cm ,弦CD 的长为 cm.(3)概念:弧,圆心角弧:圆上任意两点间的部分叫做弧。
弧分为半圆,优弧、劣弧三种。
圆心角 :顶点在圆心的角叫圆心角,圆心角的度数等于它所对的弧的度数。
例2.(1)如图2,在△ABC 中,︒=∠︒=∠25,90B BCA ,以C 为圆心,CA 为半径的圆交· A C FE ODB 图1· O 图4AB C图2CBDD A图3· OECAB 于D ,则AD 的度数是 .(2)在⊙O 中,弦AB 与过B 点的半径夹角为︒55,那么弦AB 所对的优弧AMB 的度数为 。
(3)一条弦的弦心距等于它所在圆的直径的41,则这条弦所对的劣弧的度数是 。
(4)已知⊙O 中,AB=2CD ,则弦AB 2CD .(填“〉”、“〈”或“=” ) (5)如图3所示,已知C 是⊙O 直径AB 上一点,过C 作弦DE ,使CD=CO ,若AD 的度数为︒40,BE 的度数 。
(6)如图4,在⊙O 中,AB 的度数是︒50,∠OBC=︒40,那么∠OAC 等于 。
圆心角、弧、弦、弦心距之间的关系
11.如图,已知AB是⊙ 的弦,且AC=BD,半径OE、OF分别过C、D两点.求证: .
12.如图,已知⊙ 的半径OA、OB,C在 上, 于D, 于E, .
求证: .
13.如图,在⊙ 中,AB是直径, ,D是CO的中点,DE∥AB.求证: .
14.如图,已知AB是⊙ 的直径,M、N分别是AO、BO的中点, 于M, 于N.
图5
图3图4
【家庭作业】
一、选择题
1.下列说法: 直径是弦; 弦是直径; 半圆是弧,但弧不一定是半圆; 长度相等的两条弧是等弧.其中正确的命题有()个.
A. 1 B. 2 C. 3 D. 4
2.下列说法正确的是()
A.弦是直径B.半圆是弧
C.过圆心的线段是直径D.圆心相同,半径相等的两个圆是同心圆
3.在⊙ 中,圆心角 是圆心角 的两倍,则下列式子中能成立的是()
A. B. C. D.
4.在⊙ 中,圆心角 ,点O到弦AB的距离为4,则⊙ 的直径长为()
A. B. C. 24 D. 16
二、填空题
5.(1)圆上任意两点之间的部分叫做________;(2)连结圆上任意两点的线段叫做_________;过圆心的弦就是__________;(3)圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做_____________;
【圆中相关圆心角的求解】
例4、如图所示,在 中,∠A= ,⊙O截 的三条边长所得的三条弦等长,求∠BOC.
例5、如图,在⊙O中,弦AB=CB,∠ABC= ,OD⊥AB于D,OE⊥BC于E.
求证: 是等边三角形.
【巩固练习】
1.如图,在⊙O中,AB的度数是 ,∠OBC= ,那么∠OAC等于()
圆心角、弧、弦、弦心距之间的关系
圆心角、弧、弦、弦心距之间的关系在几何学中,圆是一种特殊的图形,由一组在同一平面上距离相等的点组成。
在圆周上有许多重要的概念,其中包括圆心角、弧、弦和弦心距。
本文将介绍这些概念之间的关系。
圆心角圆心角是指以圆心为顶点的角。
以弧上两点为端点的弧度被称为圆心角。
通常用希腊字母θ表示圆心角的大小。
圆心角可以用度数或弧度来度量。
弧在圆周上,弧是连接两个点的曲线部分。
弧的长度取决于圆的半径和弧所对应的圆心角。
根据弧的长度可以将其分类为小弧和大弧。
当弧的长度等于或小于半径的时候,称为小弧;当弧的长度大于半径时,称为大弧。
弦弦是连接圆周上任意两点的线段。
弦的长度也取决于圆的半径和弦所对应的圆心角。
弦可以划分为直径和非直径弦。
直径是通过圆心的弦,其长度等于圆的直径。
弦心距弦心距是指从圆心到弦的垂直距离。
当弦垂直于半径时,弦心距最短。
弦心距的长度也与圆的半径和弦所对应的圆心角有关。
圆心角、弧、弦、弦心距之间的关系圆心角、弧、弦和弦心距之间存在一些重要的关系。
下面将分别介绍它们之间的关系。
1.圆心角和弧的关系:圆心角等于它所对应的弧的角度。
换句话说,如果一个圆心角的度数为θ,则对应的弧度长度为θ。
2.弦和圆心角的关系:当圆心角是一个锐角时,弦的长度小于半径,而当圆心角变为直角或钝角时,弦的长度会增加。
特别地,当圆心角为180度时,对应的弦称为直径,其长度等于圆的直径。
3.弦心距和圆心角的关系:弦心距等于2倍的半径乘以正弦(θ/2),其中θ是对应的圆心角的度数。
对于同一弧度角,弦心距不受弦的位置影响。
综上所述,圆心角、弧、弦和弦心距之间存在着密切的关系。
它们的长度和大小相互影响,同时还与圆的半径有关。
理解这些关系有助于我们更好地理解和运用圆周几何学。
结论在圆周几何学中,圆心角、弧、弦和弦心距是重要的概念。
它们之间的关系非常密切,彼此之间的角度和长度相互耦合,同时又与圆的半径有关。
通过研究和理解这些关系,我们能够更好地解决与圆相关的问题,以及在实际应用中运用这些概念。
圆心角、弧、弦、弦心距之间的关系
C
3、如图,⊙O中弦AB, CD相交于P,且AB=CD.
求证:PB=PD
P
O
A D
B
思考题:
已知AB和CD是⊙O的两条弦,OM和ON 分别是AB和CD的弦心距,如果AB>CD, 那么OM和ON有什么关系?为什么? 圆中弧、圆心角、弦、弦心距的不等关系
1、在同圆或等圆中,大弦的弦心距较小;
AOB COD AB=CD ,_____________ . AB = CD ,那么____________ AB=CD AB = CD ,_________ (3)如果∠AOB=∠COD,那么_____________ .
(2)如果
(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相等吗? 为什么? OE﹦OF
┌ O
M
A
顶点在圆心的角称为圆心角,把以点A和点 B的端点的弧AB称为圆心角∠AOB所对的 弧,把象OM这样的以圆心O到弦AB的距 离称为弦AB的弦的弦心距.
(
练习:判别下列各图中的角是不是圆心角,
并说明理由。
O
①
O ②
O
O
③
④
圆心角、弧、弦、弦心距之间的关系
在等圆中
B O A
两位同学先作一个度数相同的圆心角!
A
O
·
A
根据旋转的性质,将圆心角∠AOB绕圆心O旋转到∠A′OB′的 位置时, ∠AOB=∠A′OB′,射线 OA与OA′重合,OB与OB′重 合.而同圆的半径相等,OA=OA′,OB=OB′,∴点 A与 A′重 合,B与B′重合.
∴ AB 与 A ' B '. 重合,AB与A′B′重合.
︵
24.2.2弦、弧、圆心角、 弦心距之间的关系
在同圆或等圆中,如果两个圆心角、两条弧、 弦或两条弦的弦心距中有一组量相等,那么 所对应的其余各组量都分别相等。
已知:如图,点P在⊙O上,点O在∠EPF的平分 线上,∠ EPF的两边交⊙O于点A和B。 求证:PA=PB.
E B
P
O
A F
已知:如图,点O在∠EPF的平分线上,⊙O和 ∠ EPF的两边分别交于点A,B和C,D。
C
A
E
O
B
D
如图,AB、CD是⊙O的两条弦,
OE、OF为AB、CD的弦心距,
如果AB=CD,那么 , ,
;
如果OE=OF,那么 , ,
;
如果弧AB=弧CD,那么 , , ;
如果∠AOB=∠COD,那么 , , 。
A
注意前提:
在同圆或等圆中
E
O
B
下列说法正确吗?为什么?
C
D
F
在⊙O和⊙O’中,∵∠AOB=∠A’O’B’∴AB=A’B’
在⊙O和⊙O’中,∵AB=A’B’,∴弧AB=弧A’B’
把顶点在圆心的周角等分成360份时,每一 份的圆心角是1°的角。1°的圆心角所对的弧 叫做1°的弧。
n°弧
C
一般地,n°的圆
D 心角对着n°的弧。
n°圆心角
圆心角的度数
O
A
1°圆心角 B
1°弧 和它所对的弧 的度数相等。
判断题:在两个圆中,分别有弧AB和弧CD,若弧 AB和弧CD的度数相等,则有:
AB和CD是⊙O的两条弦,OM和ON分 别是AB和CD的弦心距,如果AB>CD, 那么OM和ON有什么关系?为什么?
5、已知:如图, ⊙O的两条直径AB⊥CD,四 条弦AE//FD//CG//HB。
最新沪科版九年级数学下24.2.2弦、弧、圆心角、弦心距间的关系
·
A
O
·
A
根据旋转的性质,将圆心角∠AOB绕圆心O旋转到∠A′OB′的 位置时, ∠AOB=∠A′OB′,射线 OA与OA′重合,OB与OB′重 合.而同圆的半径相等,OA=OA′,OB=OB′,∴点 A与 A′重 合,B与B′重合.
∴ AB 与 A ' B '. 重合,AB与A′B′重合.
︵
B
AOE 180 3 35
75
在同圆或等圆中,如果①两个圆心,②两条弧,
③两条弦,④两条弦心距中。 有一组量相等,那么它们所对应的其余各组量 都分别相等.
拓展练习
2.如图,点O在∠CAE的平分线上,以O为 圆心的圆分别交∠CAE的两边于点B、C和 D、E。则AB与AD有怎样的大小关系?试 证明。
︵
AB A ' B '.
︵
︵
AB A ' B '.
归纳小结
D B C
B O A O'
B' A'
O A
前提条件
在同圆或等圆中, 相等的圆心角所对的弧相等, 所对的弦相等,所对弦的弦心B = CD
?!
O'
D 在同圆或等圆中, 相等的圆心角所对的弧相等, 所对的弦相等,所对弦的弦心距相等
(已知)
图 23.1.5
∴ AC-BC=BD-BC (等式的性质) ∴ AB=CD
∴ ∠1=∠2=45° (在同圆中,相等的弧所对的 圆心角相等)
例 3:
如图,AB是⊙O 的直径,BC = CD ∠COD=35°,求∠AOE 的度数. 解:
E D C A ∵
= DE
BC = CD
24.2圆的基本性质(3)-圆心角、弧、弦、弦心距间的关系
Eቤተ መጻሕፍቲ ባይዱ
B
· O
D
F C
(1)如果AB=CD, 那么_________,_______,_______;
(2)如果OE=OF, 那么_________,________,_______;
(3)如果A⌒B = C⌒D,那么________,_________,_______;
(4)如果∠AOB=∠COD,那么_______,_______,________.
A
O C
B
1、顶点在 圆心上 的角叫做圆心角。 2、在 同圆或等圆 中,相等的圆心 角所对的弦 相等 ,所对的弧 相等 。
3、在同圆或等圆中,如果两条弧、两条 弦、两个圆心角中有一组量相等,那么其余 各组量也 相等 。
请同学们认真学习课本第18页至第19页的内容, 回答下面的问题:
1、什么样的角是圆心角?
2、你能说出圆心角∠AOB, ∠A′OB′所
对的弦,弧吗?
3、将圆心角∠AOB 绕圆心O 旋转到 ∠A′OB′的位置,你能发现哪些等量关
系?为什么?
顶点在圆心上的角叫做圆心角。
︵ 如图所示,∠AOB叫作圆心角,AB 叫作圆心 角∠AOB所对的弧。
A.这两个圆心角所对的弦相等;
B.这两个圆心角所对的弧相等
C.这两个圆心角所对的弦的弦心距相等;
D.以上说法都不对
2.在同圆中,圆心角∠AOB=2∠COD,则两条弧AB与
CD关系是
( A)
A. »AB 2C»D
C.»AB <2C»D
B.»AB >2C»D D.不能确定
3.如图1,⊙O中,如果 »AB 2C»D,那么 ( C ) A.AB=2AC B.AB=AC
圆的确定,圆心角、圆周角、弧、弦、弦心距之间的关系
儒洋教育学科教师辅导讲义6、多边形与圆如果一个圆经过一个多边形的各顶点,那么这个圆叫做这个多边形的外接圆,这个多边形叫做这个圆的内接多边形,提示:1、与圆的确定有关的两个图形一定要学生重点理解。
2、补充两个知识点:线段垂直平分线的性质和角平分线的性质3、和学生一起重点分析课本例题1和2,理解题目考察的细节和解题方法。
二、例题分析:1、以线段AB为弦的圆的圆心的轨迹是___________。
cm。
2、已知扇形的圆心角为120°,半径为2cm,则扇形的弧长是cm,扇形的面积是23、点和圆的位置关系有三种:点在圆,点在圆,点在圆;例1:已知圆的半径r等于5厘米,点到圆心的距离为d,(1)当d=2厘米时,有d r,点在圆(2)当d=7厘米时,有d r,点在圆(3)当d=5厘米时,有d r,点在圆4、下列四边形:①平行四边形,②菱形;③矩形;④正方形。
其中四个顶点一定能在同一个圆上的有()A、①②③④B、②③④C、②③D、③④5、(07上海中考)小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块 B.第②块C.第③块 D.第④块6、三角形的外接圆的圆心是(),A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三条边的垂直平分线的交点7、直角三角形的两条直角边分别为5cm和12cm,则其外接圆半径长为。
(三)巩固练习1、圆是轴对称图形,其对称轴是任意一条的直线;圆是中心对称图形,对称中心为.2、三角形的外接圆的圆心——三角形的外心——三角形的交点;三角形的内切圆的圆心——三角形的内心——三角形的交点;3、三角形的外心一定在该三角形上的三角形()(A)锐角三角形(B)钝角三角形(C)直角三角形(D)等腰三角形,第7题 (第2题) 7、如图,AB 和DE 是⊙O 的直径,弦AC ∥DE ,若弦BE=3,则弦CE=_______8、如图,OE ⊥AB 、OF ⊥CD ,如果OE=OF ,那么_______(只需写一个正确的结论)B A CEDOF(第8题) (第11题)9、已知,如图所示,点O 是∠EPF 的平分线上的一点,以O 为圆心的圆和角的两边分别交于点A 、B和C 、D 。
272圆心角、弧、弦、弦心距之间的关系(很好-很全-很详细)
奋飞教育---您值得信赖的一对一个性化辅导学校咨询:27.2 圆心角、弧、弦、弦心距之间的关系【学习目标】1.通过观察实验,使学生了解圆心角的概念.2.掌握在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等,以及它们在解题中的应用.【主要概念】【1】圆心角定义在纸上任意画一个圆,任意画出两条不在同一条直线上的半径,构成一个角,这样的角就是圆心角.如图所示,∠AOB的顶点在圆心,像这样,顶点在圆心的角叫做圆心角.【2】圆心角、弧、弦之间的关系定理在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等.【定理拓展】1在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角,•所对的弦也分○别相等2在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,•所对的弧也分○别相等综上所述,同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等.【经典例题】【例1】下列说法中,正确的是( )A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等【解析】根据弧、弦、圆心角的关系知:等弦所对的弧不一定相等,圆心角相等,所对的弦相等缺少等圆或同圆的条件,所以也不对;弦相等所对的圆心角相等 1奋飞教育---您值得信赖的一对一个性化辅导学校咨询:缺少等圆或同圆的条件,弦所对的弧也不一定是同弧,所以不正确;等弧所对的弦相等是成立的.【答案】B【例2】如图2,同心圆中,大圆的弦AB交小圆于C、D,已知AB=4,CD=2,AB的弦心距等于1,那么两个同心圆的半径之比为( )图2A.3∶2B.∶2C.∶2D.5∶4【解析】作OE⊥CD于E,则CE=DE=1,AE=BE=2,OE=1.在Rt△ODE中,OD=2+12=2.在Rt△OEB中,OB=BE2+OE2=4+1=.∴OB∶OD=∶2.【答案】C【例3】半径为R的⊙O中,弦AB=2R,弦CD=R,若两弦的弦心距分别为OE、OF,则OE∶OF等于( )A.2∶1B.3∶2C.2∶3D.0【解析】∵AB为直径,∴OE=0.∴OE∶OF=0.【答案】D【例4】一条弦把圆分成1∶3两部分,则弦所对的圆心角为_____________. 【解析】1×360°=90°,∴弦所对的圆心角为90°. 4【答案】90°【例5】弦心距是弦的一半时,弦与直径的比是____________,弦所对的圆心角是____________.【解析】OD⊥AB,OD=DB=AD.设OD=x,则AD=DB=x.在Rt△ODB中,∵OD=DB,OD⊥AB,奋飞教育---您值得信赖的一对一个性化辅导学校咨询:∴∠DOB=45°.∴∠AOB=2∠DOB=90°, OB=OD2+DB2+x2+x2=2 x.∴AB∶BC=1∶2=2∶2. ∴弦与直径的比为2∶2,弦所对的圆心角为90°. 【答案】2∶2 90°【例6】如图6,已知以点O为公共圆心的两个同心圆,大圆的弦AB交小圆于C、D.图6(1)求证:AC=DB;(2)如果AB=6 cm,CD=4 cm,求圆环的面积.【分析】求圆环的面积不用求出OA、OC,应用等量代换的方法.事实上,OA、OC的长也求不出来.(1)证明:作OE⊥AB于E,∴EA=EB,EC=ED.∴EA-EC=EB-ED,即AC=BD.(2)解:连结OA、OC.∵AB=6 cm,CD=4 cm,∴AE=11AB=3 cm.CE=CD=2 cm. 22∴S环=π·OA2-π·OC2=π(OA2-OC2)=π[(AE2+OE2)-(CE2+OE2)]=π(AE2-CE2)=π(32-22)=5π( cm2).【例7】如图7所示,AB是⊙O的弦(非直径),C、D是AB上的两点,并且AC=BD.求证:OC=OD.图7【分析】根据弧、弦、圆心角的关系得出.证法一:如图(1),分别连结OA、OB.∵OA=OB,∴∠A=∠B.又∵AC=BD,∴△AOC≌△BOD.∴OC=OD.奋飞教育---您值得信赖的一对一个性化辅导学校咨询:证法二:如图(2),过点O作OE⊥AB于E,∴AE=BE.∵AC=BD,∴CE=DE.∴OC=OD. (1) (2)【例8】如图8,⊙O的直径AB和弦CD相交于点E,已知AE=6 cm,EB=2 cm,∠CEA=30°,求CD的长.图8【分析】如何利用∠CEA=30°是解题的关键,若作弦心距OF,构造直角三角形,问题就容易解决.【解】过O作OF⊥CD于F,连结CO.∵AE=6 cm,EB=2 cm,∴AB=8 cm.∴OA=在Rt△OEF中,∵∠CEA=30°,∴OF=1OE=1(cm). 21AB=4(cm),OE=AE-AO=2(cm). 2 在Rt△CFO中,OF=1 cm,OC=OA=4(cm),∴CF=OC2 OF2=(cm). 又∵OF⊥CD,∴DF=CF.∴CD=2CF=2( cm).【例9】如图9,AB是⊙O的直径,CD是弦,AE⊥CD,垂足为E,BF⊥CD,垂足为F,我们知道EC和DF相等.若直线EF平移到与直径AB相交于P(P不与A、B重合),在其他条件不变的情况下,结论是否依然成立?为什么?当EF∥AB时,情况又怎样?奋飞教育---您值得信赖的一对一个性化辅导学校咨询:图9【分析】考查垂径定理及三角形、梯形相关知识.可适当添加辅助线.【解】当EF交AB于P时,过O作OM⊥CD于M,则CM=DM.通过三角形,梯形知识或构造矩形可证明AM=MF,∴EC=DF.当EF∥AB时,同理作OM⊥CD于M,可证四边形AEFB为矩形.所以EF=AB.且EM=MF,又由垂径定理有CM=MD,∴EC=DF.【例10】如图10所示,AB、CD是⊙O的两条直径,弦BE=BD,则弧AC与弧BE是否相等?为什么?图10【分析】欲求两弧相等,结合图形,可考虑运用“圆心角、弧、弦、弦心距”四量之间的“等对等”关系,可先求弧AC与弧BE所对的弦相等,也可利用“等量代换”的思想,先找一条弧都与弧AC以及弧BE相等.【解】弧AC=弧BE.原因如下:法一:连结AC,∵AB、CD是直径,∴∠AOC=∠BOD.∴AC=BD.又∵BE=BD,∴AC=BE.∴弧AC=弧BE.法二:∵AB、CD是直径,∴∠AOC=∠BOD.∴弧AC=弧BD.奋飞教育---您值得信赖的一对一个性化辅导学校咨询:∵BE=BD,∴弧BE=弧BD.∴弧AC=弧BE.【例11】如图11所示,AB是⊙O的弦,C、D为弦AB上两点,且OC=OD,延长OC、OD,分别交⊙O于点E、F.试证:弧AE=弧BF.图11【分析】欲求弧相等,结合图形,可先求弧所对的圆心角相等,即求∠AOE=∠BOF.【证明】∵OC=OD,∴∠OCD=∠ODC.∵AO=OB,∴∠A=∠B.∴∠OCD-∠A=∠ODC-∠B,即∠AOC=∠BOD,即∠AOE=∠BOF.∴弧AE=弧BF.【例12】如图12,AB、CD、EF都是⊙O的直径,且∠1=∠2=∠3,弦AC、EB、DF是否相等?为什么?图12【分析】应用圆心角、弧、弦的关系解决.证明弦相等往往转化成圆心角相等. 【解】在⊙O中,∵∠1=∠2=∠3,又∵AB、CD、EF都是⊙O的直径,∴∠FOD=∠AOC=∠BOE.∴弧DF=弧AC=弧BE.∴AC=EB=DF.奋飞教育---您值得信赖的一对一个性化辅导学校咨询:【例13】为美化校园,学校准备在一块圆形空地上建花坛,现征集设计方案,要求设计的方案由圆和三角形组成(圆和三角形个数不限),并且使整个图案成对称图形,请你画出你的设计方案图(至少两种).【解析】设计的基本思路是等分圆心角,或等分圆周,取得轴(或中心)对称的对应点,适当画圆或连线,设计出一些适合要求的图案.【答案】根据题意画出如下方案供选用,如图,本题答案不唯一,只要符合条件即可.【例14】如图14,已知在⊙O中,AD是⊙O的直径,BC是弦,AD⊥BC,E为垂足,由这些条件你能推出哪些结论?(要求:不添加辅助线,不添加字母,不写推理过程,只写出6条以上的结论)图14【解析】因AD⊥BC,且AD为直径,所以可以利用垂径定理得到一些结论,同时可证得AD垂直平分BC,据此又能得到许多结论.本题是2000年新疆建设兵团的模拟题,是一个开放性试题,开放到可以不写步骤,但它比书写证明一个结论步骤的题考查面更广,因为写出六个结论考生需要证明六个题.本题是一个考查考生发散思维能力和创新意识的好题.【答案】(1)BE=CE;(2)弧BD=弧CD;(3)弧AB=弧AC(4)AB=AC;(5)BD=DC;(6)∠ABC=∠ACB;(7)∠DBC=∠DCB;(8)∠ABD=∠ACD;(9)AD是BC的中垂线;奋飞教育---您值得信赖的一对一个性化辅导学校咨询:(10)△ABD≌△ACD;(11)O为△ABC的外心等等.【例15】如图15,AB为⊙O的弦,P是AB上一点,AB=10 cm,OP=5 cm,PA=4 cm,求⊙O的半径.图15【分析】圆中的有关计算,大多都是通过构造由半径、弦心距、弦的一半组成的直角三角形,再利用勾股定理来解决.【解】过O作OC⊥AB于C,连结OA,则AB=2AC=2BC.在Rt△OCA和△OCP中,OC2=OA2-AC2,OC2=OP2-CP2,∴OA2-AC2=OP2-CP2.∵AB=10,PA=4,AB=2AC=2BC,∴CP=AB-PA-BC=1,AC=5.∴OA2-52=52-1.∴OA=7,即⊙O的半径为7 cm.【例16】⊙O的直径为50 cm,弦AB∥CD,且AB=40 cm,CD=48 cm,求弦AB和CD之间的距离.【分析】(1)图形的位置关系是几何的一个重要方面,应逐步加强位置感的培养.(2)本题往往会遗忘或疏漏其中的一种情况.(1)【解】(1)当弦AB和CD在圆心同侧时,如图(1),作OG⊥AB于G,交CD于E,连结OB、OD.∵AB∥CD,OG⊥AB,∴OE⊥CD.∴EG即为AB、CD之间的距离.∵OE⊥CD,OG⊥AB,∴BG=11AB=×40=20(cm), 22奋飞教育---您值得信赖的一对一个性化辅导学校咨询:DE=11CD=×48=24(cm). 22在Rt△DEO中,OE=OD2-DE2=252-242=7(cm).在Rt△BGO中,OG=OB2-BG2=252-202=15(cm).∴EG=OG-OE=15-7=8(cm).(2)(2)当AB、CD在圆心两侧时,如图(2),同理可以求出OG=15 cm,OE=7 cm,∴GE=OG+OE=15+7=22(cm).综上所述,弦AB和CD间的距离为22 cm或7 cm.【1】已知:AB交圆O于C、D,且AC=BD.你认为OA=OB吗?为什么?【2】如图所示,是一个直径为650mm的圆柱形输油管的横截面,若油面宽AB=600mm,求油面的最大深度。
圆心角、弧、弦、弦心距之间的关系
圆心角、弧、弦、弦心距之间的关系第一课时圆心角、弧、弦、弦心距之间的关系(一)教学目标:(1)理解圆的旋转不变性,把握圆心角、弧、弦、弦心距之间关系定理推论及应用;(2)培育同学试验、观看、发觉新问题,探究和解决问题的力量;(3)通过教学内容向同学渗透事物之间可相互转化的辩证唯物主义教育,渗透圆的内在美(圆心角、弧、弦、弦心距之间关系),激发同学的求知欲.教学重点、难点:重点:圆心角、弧、弦、弦心距之间关系定理的推论.难点:从感性到理性的熟识,发觉、归纳力量的培育.教学活动设计教学内容设计(一)圆的对称性和旋转不变性同学动手画圆,对折、观看得出:圆是轴对称图形和中心对称图形;圆的旋转不变性.引出圆心角和弦心距的概念:圆心角定义:顶点在圆心的角叫圆心角.弦心距定义:从圆心到弦的距离叫做弦心距.(二)圆心角、弧、弦、弦心距之间的关系应用电脑动画(试验)观看,在同圆等圆中,圆心角变化时,圆心角所对应的弧、弦、弦心距之间的关系,得出定理的内容.这样既培育同学观看、比较、分析和归纳学问的力量,又可以充分调动同学的学习的乐观性.定理:在同圆等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等. (三)剖析定理得出推论问题1:定理中去掉“在同圆或等圆中”这个前提,否则也不肯定有所对的弧、弦、弦心距相等这样的结论.(同学分小组争论、沟通)举出反例:如图,∠aob=∠cod,但ab cd, .(强化对定理的理解,培育同学的思维批判性.)问题2、在同圆等圆中,若圆心角所对的弧相等,将又怎样呢?(同学分小组争论、沟通,老师与同学沟通对话),归纳出推论.推论:在同圆或等圆中,假如两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.(推论包含了定理,它是定理的拓展)(四)应用、巩固和反思例1、如图,点o是∠epf的平分线上一点,以o为圆心的圆和角的两边所在的直线分别交于点a、b和c、d,求证:ab=cd.解(略,教材87页)例题拓展:当p点在圆上或圆内是否还有ab=cd呢?(让同学自主思索,并使图形运动起来,让同学在运动中学习和讨论几何问题)练习:(教材88页练习)1、已知:如图,ab、cd是∠o的两条弦,oe、of为ab、cd的弦心距,依据本节定理及推论填空: .(1)假如ab=cd,那么______,______,______;(2)假如oe=og,那么______,______,______;(3)假如= ,那么______,______,______;(4)假如∠aob=∠cod,那么______,______,______.(目的:巩固基础学问)共3页,当前第1页123。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M
A
P
O D
B
N
已知:如图,AD=BC.
求证:AB=CD
C
E A
B
O D
如图,AB、CD是⊙O的两条弦, OE、OF为AB、CD的弦心距,
如果AB=CD,那么 , , ; 如果OE=OF,那么 , , ; 如果弧AB=弧CD,那么 , , ; 如果∠AOB=∠COD,那么 , , 。
1、如图,在⊙O中,弦AB所对的劣弧为
圆的 1 ,圆的半径为4cm,求AB的长
3
O
A
C
B
2、已知AB和CD为⊙O的两条直径,弦EC//AB, 弧EC的度数为40°,求∠BOD的度数。
E A O D C
B
3、已知:如图, PB=PD. 求证: AB=CD 。
C A
P
B O D
4、已知:如图, ⊙O的两条半径 OA⊥OB,C、D是弧AB的三等分点。 求证:CD=AE=BF。
A E
C
F DOBFra bibliotek弧、弦、弦心距之间的不等量关系
在同圆或等圆中,是不是弧越长,它所
对的弦越长?是不是弦越长,它所对的 弧越长? AB和CD是⊙O的两条弦,OM和ON分别是 AB和CD的弦心距,如果AB>CD,那么OM 和ON有什么关系?为什么?
5、已知:如图, ⊙O的两条直径AB⊥CD,四 条弦AE//FD//CG//HB。
(如:OC)
B
O
C
练习:判别下列各图中的角是不是圆心角, 并说明理由。
①
②
③
④
探究
如图,将圆心角∠AOB绕圆心O旋转到∠A’OB’ 的位置,你能发现哪些等量关系?为什么? A′
A′ B B′ B′
B
O
·
A
O
·
A
根据旋转的性质, ︵ ︵ 重合,AB与A′B′重合. AB=A′B′
︵ ︵ ∴AB=A′B′
求证:E、F、H、G四等分圆周。
E
D G
A
O
B
F
C
H
谈一谈
通过本节学习你有哪些收获呢?还有 什么问题?
圆的旋转不变性 圆心角的定义 圆心角定理 圆心角定理的应用 弧的度数 学生练习
作业
1、课本P19-20:阅读与思考
2、名师大课堂:P11-12 3、(月考后)课本P20-21:练习、习题 25.2
A E O B
注意前提:
在同圆或等圆中
下列说法正确吗?为什么?
D
F
C
在⊙O和⊙O’中,∵∠AOB=∠A’O’B’∴AB=A’B’ 在⊙O和⊙O’中,∵AB=A’B’,∴弧AB=弧A’B’
把顶点在圆心的周角等分成360份时,每一份 的圆心角是1°的角。1°的圆心角所对的弧 叫做1°的弧。
n°弧
B
E
P
O A
F
已知:如图,点O在∠EPF的平分线上,⊙O和 ∠ EPF的两边分别交于点A,B和C,D。 求证:AB=CD
B
A P O C D
E
F
已知:如图, ⊙O的弦AB,CD相交于点P, ∠DPO=∠ BPO 。 A 求证:AB=CD
C P
O D
B
已知:如图, ⊙O的弦AB,CD相交于点P,过 P、O的直径为MN,∠APO=∠ CPO 。 求证:PB=PD
24.2.2弦、弧、圆心角、 弦心距之间的关系
圆的性质
圆是轴对称图形,每一条直径所在的直线
都是对称轴。 圆是以圆心为对称中心的中心对称图形。 圆还具有旋转不变性,即圆绕圆心旋转任 意一个角度α,都能与原来的图形重合。
圆心角:顶点在圆心的角。
(如:∠AOB)
A
弦心距:从圆心到弦的距离。
AB A ' B '.
学法指导
认真阅读课本P17-18内容,会解决下列问题:
1、圆心角、弧、弦和弦心距的关系定理是 什么?题设和结论是什么? 结合图形用符号表示出来。能否去掉条 件“同圆或等圆”呢? 2、定理的推论是什么? 3、看例4、例5:先做后对照;能说出每步 的根据。
(若有困难,同伴交流) 时间:8分钟
( )
( 条 件 )
结论
圆 心 角 相 等
圆心角所对的弧相等, 圆心角所对的弦相等, 圆心角所对弦的弦心距相等。
在同圆或等圆中,如果两个圆心角、两条弧、 弦或两条弦的弦心距中有一组量相等,那么 所对应的其余各组量都分别相等。
已知:如图,点P在⊙O上,点O在∠EPF的平分 线上,∠ EPF的两边交⊙O于点A和B。 求证:PA=PB.
如图,∠AOB=∠A`OB`,OC⊥AB, OC`⊥A`B`。
猜想:弧AB与弧A`B`,弦AB与弦A`B`, OC与OC`之间的关系,并证明你的猜想。 定理 在同圆或等圆中, 相等的圆心角所对的弧相等, 所对的弦相等,所对的弦的 弦心距相等。
A C
O
B C' A'
B'
题设 在 同 圆 前 提 或 等 圆 中
C D
一般地,n°的圆 心角对着n°的弧。
圆心角的度数 和它所对的弧 的度数相等。
n°圆心角
O A
1°圆心角
B
1°弧
判断题:在两个圆中,分别有弧AB和弧CD,若弧AB 和弧CD的度数相等,则有: (1)弧AB和弧CD相等; ( )
(2)弧AB所对的圆心角和弧CD所对的圆心角相等。 ( )
注意:等弧的度数一定相等,但度 数相等的弧不一定是等弧!