河北省张家口市第四中学高一数学限时训练24

合集下载

2023-2024学年河北省张家口市高一(上)期中数学试卷【答案版】

2023-2024学年河北省张家口市高一(上)期中数学试卷【答案版】

2023-2024学年河北省张家口市高一(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U ={1,2,3,4},集合A ={1,2},集合B ={2,3},则∁U (A ∪B )=( ) A .{4}B .{3}C .{1,3,4}D .{3,4}2.已知集合A ={﹣1,0,1,2},B ={x |x <1},则如图中阴影部分所表示的集合为( )A .{1}B .{2}C .{﹣1,0}D .{1,2}3.若实数α,β满足﹣13<α<β<﹣12,则α﹣β的取值范围是( ) A .﹣13<α﹣β<﹣12 B .﹣25<α﹣β<0 C .﹣1<α﹣β<0D .﹣1<α﹣β<14.在R 上定义运算“⊙”:a ⊙b =ab +b ,则满足x ⊙(x ﹣1)<0的x 的取值范围为( ) A .(0,1)B .(﹣1,1)C .(﹣∞,﹣1)∪(1,十∞)D .(﹣1,0)5.设x ∈R ,则“x 2>x ”是“|x |>1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知函数f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=x 2+2x ,则当x >0时,函数f (x )的解析式是( ) A .f (x )=﹣x 2+2x B .f (x )=﹣x 2﹣2xC .f (x )=x 2+2xD .f (x )=x 2﹣2x7.已知偶函数f (x )在区间[0,+∞)上单调递增,则不等式f (2x ﹣1)<f (1)的解集是( ) A .(﹣∞,1) B .(﹣1,1)C .(0,1)D .(﹣∞,0)∪(1,+∞)8.已知函数f (x )={(a −2)x +52,x ≤2a x ,x >2是R 上的减函数,则实数a 的取值范围是( )A .(0,2)B .(1,2)C .[1,2)D .(0,1]二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列集合中,可以表示为{2,3}的是( ) A .{x ∈Z |2≤x ≤3}B .{x |x 2﹣5x +6=0}C .{(x ,y)|x +y =5x −y =−1}D .不等式组{x >22x −6<0的解集10.下列函数既是偶函数,在(0,+∞)上又是增函数的是( ) A .y =x 2+1B .y =2xC .y =|x |D .y =|1x−x|11.下列结论正确的是( )A .“x ∈N ”是“x ∈Q ”的充分不必要条件B .“∃x ∈R ,使得x 2﹣3x +40≤0”是假命题C .命题“∀x >0,x 2﹣3>0”的否定是“∃x >0,x 2﹣3≤0”D .△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,则a 2+b 2=c 2是“△ABC 是直角三角形”的充要条件12.下列命题为真命题的是( ) A .若a >b ,则ac 2>bc 2 B .若a >b >0,则ba <b+2a+2C .若a >1,则a 2−4a+7a−1的最小值是2D .若a >0,b >0,3a+1b=1,则3a +b 的最小值是16 三、填空题:本题共4小题,每小题5分,共20分。

人教版数学高一人教B版必修4课时作业24两角和与差的余弦

人教版数学高一人教B版必修4课时作业24两角和与差的余弦

课时分层作业(二十四) 两角和与差的余弦(建议用时:40分钟)[学业达标练]一、选择题1.cos 78°cos 18°+sin 78°sin 18°的值为( )A.12B.13C.32 D.33A [原式=cos(78°-18°)=cos 60°=12.]2.在△ABC 中,若sin A sin B <cos A cos B ,则△ABC 一定为() A .等边三角形 B .直角三角形C .锐角三角形D .钝角三角形D [∵sin A sin B <cos A cos B ,∴cos A cos B -sin A sin B >0,即cos(A +B )>0,∴cos C =cos[π-(A +B )]=-cos(A +B )=cos C <0,∴角C 为钝角,∴△ABC 一定为钝角三角形.]3.若a =(cos 60°,sin 60°),b =(cos 15°,sin 15°),则a ·b =() A.22 B.12 C.32 D .-12A [a ·b =cos 60°cos 15°+sin 60°·sin 15°=cos(60°-15°)=cos 45°=22.]4.sin 44°cos 14°-sin 46°cos 76°的值是( ) A.12 B.33C.22D.32A [∵44°+46°=90°,14°+76°=90°∴原式=cos 46°·cos 14°-sin 46°·sin 14°=cos (46°+14°)=cos 60°=12.]5.已知cos(α+β)=45,cos(α-β)=-45,则cos α·cos β=( )【导学号:79402114】A .1B .-1 C.12D .0 D [由题意得:⎩⎪⎨⎪⎧ cos αcos β-sin αsin β=45,cos αcos β+sin αsin β=-45,两式相加得:cos α·cos β=0,故选D.]二、填空题6.已知sin θ=-513,且θ∈⎝ ⎛⎭⎪⎫π,32π,那么cos ⎝ ⎛⎭⎪⎫θ-π4=________. [解析] ∵θ∈⎝ ⎛⎭⎪⎫π,3π2,且sin θ=-513, ∴cos θ=-1-sin 2θ=-1213, ∴cos ⎝ ⎛⎭⎪⎫θ-π4=cos θ·cos π4+sin θ·sin π4 =-1213×22+⎝ ⎛⎭⎪⎫-513×22 =-17226.[答案] -172267.已知cos ⎝ ⎛⎭⎪⎫π3-α=18,则cos α+3sin α的值为________.[解析] 因为cos ⎝ ⎛⎭⎪⎫π3-α=cos π3cos α+sin π3sin α =12cos α+32sin α=18,所以cos α+3sin α=14.[答案] 148.在△ABC 中,sin A =45,cos B =-1213,则cos(A -B )=________.[解析] 因为cos B =-1213,且0<B <π,所以π2<B <π,所以sin B =1-cos 2 B =1-⎝ ⎛⎭⎪⎫-12132=513,且0<A <π2, 所以cos A =1-sin 2 A =1-⎝ ⎛⎭⎪⎫452=35, 所以cos(A -B )=cos A cos B +sin A sin B ,=35×⎝ ⎛⎭⎪⎫-1213+45×513=-1665. [答案] -1665三、解答题9.如图3-1-1,在平面直角坐标系中,锐角α,β的终边分别与单位圆交于A ,B两点,如果点A 的纵坐标为35,点B 的横坐标为513,求cos(α-β)的值.图3-1-1[解] 因为A 点的纵坐标为35,点B 的横坐标为513,所以sin α=35,cos β=513.因为α,β为锐角,所以cos α=45,sin β=1213.所以cos(α-β)=cos α·cos β+sin αsin β=45×513+35×1213=5665.10.已知cos(α-β)=-1213,cos(α+β)=1213,且α-β∈⎝ ⎛⎭⎪⎫π2,π,α+β∈⎝ ⎛⎭⎪⎫3π2,2π.求角β的值.[解] 由α-β∈⎝ ⎛⎭⎪⎫π2,π且cos(α-β)=-1213,得 sin(α-β)=513.由α+β∈⎝ ⎛⎭⎪⎫32π,2π,且cos(α+β)=1213,得sin(α+β)=-513. cos 2β=cos [(α+β)-(α-β)]=cos (α+β)cos (α-β)+sin (α+β)sin (α-β)=1213×⎝ ⎛⎭⎪⎫-1213+⎝ ⎛⎭⎪⎫-513×513=-1. 又因为α-β∈⎝ ⎛⎭⎪⎫π2,π,α+β∈⎝ ⎛⎭⎪⎫3π2,2π, 所以2β∈⎝ ⎛⎭⎪⎫π2,32π. 所以2β=π,则β=π2.[冲A 挑战练]1.已知sin α+sin β=45,cos α+cos β=35,则cos(α-β)的值为( )【导学号:79402115】A.925B.1625C.12 D .-12D [由已知得(sin α+sin β)2=1625,①(cos α+cos β)2=925,②①+②得:2+2sin αsin β+2cos αcos β=1,∴cos αcos β+sin αsin β=-12,即cos(α-β)=-12.]2.若α∈(0,π),且cos ⎝ ⎛⎭⎪⎫α+π3=45,则cos α等于( ) A.4-3310 B.-4-3310 C.4+3310 D.-4+3310C [∵α∈(0,π),∴⎝ ⎛⎭⎪⎫α+π3∈⎝ ⎛⎭⎪⎫π3,4π3. 又cos ⎝ ⎛⎭⎪⎫α+π3=45>0, ∴⎝ ⎛⎭⎪⎫α+π3∈⎝ ⎛⎭⎪⎫0,π2. ∴sin ⎝ ⎛⎭⎪⎫α+π3=1-⎝ ⎛⎭⎪⎫452=35, ∴cos α=cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π3-π3 =45×12+35×32=4+3310.3.若cos(α+β)=15,cos(α-β)=35,则tan αtan β=________.[解析] 因为cos(α+β)=cos αcos β-sin αsin β=15,cos (α-β)=cos αcos β+sinαsin β=35,所以cos (α+β)cos (α-β)=cos αcos β-sin αsin βcos αcos β+sin αsin β=1-tan αtan β1+tan αtan β=13,所以tan αtan β=12.[答案] 124.函数f (x )=12sin 2x +32cos 2x 的最小正周期是________.[解析] 由于f (x )=cos 2x cos π6+sin 2x sin π6=cos ⎝ ⎛⎭⎪⎫2x -π6,所以T =2π2=π. [答案] π5.已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫ωx +π6(其中ω>0,x ∈R)的最小正周期为10π. (1)求ω的值;(2)设α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝ ⎛⎭⎪⎫5α+53π=-65, f ⎝ ⎛⎭⎪⎫5β-56π=1617,求cos(α+β)的值; (3)求f (x )的单调递增区间.[解] (1)因为T =2πω=10π,所以ω=15.(2)f ⎝ ⎛⎭⎪⎫5α+53π =2cos ⎣⎢⎡⎦⎥⎤15⎝⎛⎭⎪⎫5α+53π+π6 =2cos ⎝ ⎛⎭⎪⎫α+π2=-2sin α=-65, 所以sin α=35.f ⎝ ⎛⎭⎪⎫5β-56π=2cos ⎣⎢⎡⎦⎥⎤15⎝⎛⎭⎪⎫5β-56π+π6 =2cos β=1617,所以cos β=817,因为α,β∈⎣⎢⎡⎦⎥⎤0,π2, 所以cos α=1-sin 2α=45, sin β=1-cos 2β=1517,所以cos(α+β)=cos αcos β-sin αsin β =45×817-35×1517=-1385.(3)f (x )=2cos ⎝ ⎛⎭⎪⎫x 5+π6,由2k π-π≤x 5+π6≤2k π,k ∈Z , 得10k π-35π6≤x ≤10k π-5π6,k ∈Z ,所以单调递增区间为⎣⎢⎡⎦⎥⎤10k π-35π6,10k π-5π6(k ∈Z).。

河北省张家口市第四中学2024年物理高一下期末达标检测模拟试题含解析

河北省张家口市第四中学2024年物理高一下期末达标检测模拟试题含解析

河北省张家口市第四中学2024年物理高一下期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:(1-6题为单选题7-12为多选,每题4分,漏选得2分,错选和不选得零分)1、(本题9分)已知太阳到地球与地球到月球的距离的比值约为390,月球绕地球旋转的周期约为27天.利用上述数据以及日常的天文知识,可估算出太阳对月球与地球对月球的万有引力的比值约为A.0.2 B.2 C.20 D.2002、(本题9分)如图所示,绕地球做匀速圆周运动的卫星P的角速度为ω,对地球的张角为θ弧度,万有引力常量为G。

则下列说法正确的是()A.卫星的运动属于匀变速曲线运动B.张角θ越小的卫星,其角速度ω越大C.根据已知量可以求地球质量D.根据已知量可求地球的平均密度3、如图所示,在电场强度为E的匀强电场中,将电荷量为+q的点电荷从电场中A点经B点移动到C点,其中AB⊥BC,AB=4d,BC=3d,则此过程中静电力所做的功为A.3qEd B.4qEdC.5qE d D.7qEd4、下面说法正确的是A.曲线运动不可能是匀变速运动B.做圆周运动物体的合外力一定指向圆心C.两个直线运动的合运动不可能是曲线运动D.做曲线运动的物体所受合外力不可能为零5、如图所示为远距离交流输电的简化电路图.发电厂的输出电压是U,用等效总电阻是r的两条输电线输电,输电线路中的电流是I1,其末端间的电压为U1.在输电线与用户间连有一理想变压器,流入用户端的电流是I2.则()A.用户端的电压为I1U1/I2B.输电线上的电压降为UC.理想变压器的输入功率为I12rD.输电线路上损失的电功率为I1U6、下列关于开普勒行星运动规律的认识正确的是()A.所有行星绕太阳运动的轨道是椭圆B.所有行星绕太阳做匀速圆周运动C.所有行星的轨道的半长轴的二次方跟公转周期的三次方的比值都不同D.所有行星的公转周期与行星的轨道半径成正比7、一木块静止在光滑水平面上,一颗子弹沿水平方向射入木块中,并留在了木块里。

河北张家口市第四中学期末精选专题练习(word版

河北张家口市第四中学期末精选专题练习(word版

河北张家口市第四中学期末精选专题练习(word版一、第一章运动的描述易错题培优(难)1.一个质点做方向不变的直线运动,加速度的方向始终与速度方向相同,但加速度大小逐渐减小直至为零,在此过程中()A.速度逐渐减小,当加速度减小到零时,速度达到最小值B.速度逐渐增大,当加速度减小到零时,速度达到最大值C.位移逐渐增大,当加速度减小到零时,位移将还要增大D.位移逐渐减小,当加速度减小到零时,位移将不再减少【答案】BC【解析】【分析】【详解】AB.一个质点做方向不变的直线运动,加速度的方向始终与速度方向相同,但加速度大小逐渐减小直至为零,在此过程中,由于加速度的方向始终与速度方向相同,所以速度逐渐增大,当加速度减小到零时,物体将做匀速直线运动,速度不变,而此时速度达到最大值,故A错误,B正确。

CD.由于质点做方向不变的直线运动,所以位移逐渐增大,当加速度减小到零时,速度不为零,所以位移继续增大,故C正确,D错误。

故选BC。

2.物体沿一条东西方向的水平线做直线运动,取向东为运动的正方向,其速度—时间图象如图所示,下列说法中正确的是A.在1 s末,物体速度为9 m/sB.0~2 s内,物体加速度为6 m/s2C.6~7 s内,物体做速度方向向西的加速运动D.10~12 s内,物体做速度方向向东的加速运动【答案】AC【解析】【分析】【详解】A.由所给图象知,物体1 s末的速度为9 m/s,选项A正确;B.0~2 s内,物体的加速度a=1262vt∆-=∆m/s2=3m/s2选项B错误;C.6~7 s内,物体的速度、加速度为负值,表明它向西做加速直线运动,选项C正确;D.10~12 s内,物体的速度为负值,加速度为正值,表明它向西做减速直线运动,选项D 错误.3.一个质点做方向不变的直线运动,加速度的方向始终与速度方向相同,但加速度大小逐渐减小直至为零,在此过程中()A.速度逐渐减小,当加速度减小到零时,速度达到最小值B.速度逐渐增大,当加速度减小到零时,速度达到最大值C.位移逐渐增大,当加速度减小到零时,位移将不再增大D.位移逐渐减小,当加速度减小到零时,位移达到最小值【答案】B【解析】【分析】【详解】AB.由于加速度方向与速度方向相同,质点始终做加速运动,速度一直增大,加速度减小,使速度增加的越来越慢(如图所示,v-t图图象斜率越来越小),当加速度减小为零时,速度达到最大值, B正确,A错误;CD.由于速度一直增大,位移一直增大,当加速度减小到零时,速度达到最大值,以后位移继续增大,如图所示,v-t图象的线下面积随着时间增大一直增大,即位移一直增大,CD 错误。

河北省张家口市第四中学2022-2023学年高一上学期期中考试数学试卷

河北省张家口市第四中学2022-2023学年高一上学期期中考试数学试卷

张家口四中2022-2023学年度高一期中考试数学试卷一、选择题(本大题共8小题,每小题5分。

在每小题列出的选项中,只有一项符合题目要求)1.已知全集}5,4,3,2,1{=U ,集合}5,3,1{=A ,集合}5,4,2{=B 则(p ∪(p 等于()A.{5 }B.{2,3}C.{1,2,3}D.{1,2,3,4}2.设∈,则“|x −1|<1”是“x 2−2x ≤0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.下列命题中真命题的是()A.若a b >,则22ac bc >B.若b a >,则44b a >C.若,a b c d >>,则ac bd> D.若2a b >>,则11102a b <<<4.不等式2−4−52+1>0的解集是()A.−1<<5B.<−1或>5C.0<<5D.−1<<05.下列各组函数表示同一个函数的是()A.op =2,op =(p 2;B.op =3(+1)3,op =+1.C.op =(+2)(−2),op =+2⋅−2.D.op =3,op =22.6.若不等式230mx nx ++>的解集是{}13x x -<<,则不等式210nx mx --<的解集是()A.{}13x x -<< B.{}32x x -<< C.112x x ⎧⎫-<<⎨⎬⎩⎭D.{}31x x -<<7.奇函数f (x )是定义域为(-2,2)上的增函数,且f (3a -1)+f (a -1)>0,则a 的取值范围是()A.(-1,32) B.(-23,32)C.(12,1)D .(23,32)8.定义在R 上的偶函数f (x ),满足f 0,且在(0,+∞)上单调递减,则xf (x )<0的解集为()|0<x <12或-12<x <0|x <-12或x >12|0<x <12或x <-12|-12<x <0或x >12二、选择题(本大题共4小题,每小题5分。

人教A版高中数学必修四双基限时练24.docx

人教A版高中数学必修四双基限时练24.docx

双基限时练(二十四)1.cos17°等于( ) A .cos20°cos3°-sin20°sin3° B .cos20°cos3°+sin20°sin3° C .sin20°sin3°-sin20°cos3° D .cos20°sin20°+sin3°cos3° 解析 cos17°=cos(20°-3°) =cos20°cos3°+sin20°sin3°. 答案 B2.cos(α+30°)cos α+sin(α+30°)sin α等于( ) A.12 B.32 C.22D .-12解析 原式=cos(α+30°-α) =cos30°=32. 答案 B3.满足cos αcos β=32-sin αsin β的一组α,β的值是( )A .α=1312π,β=3π4 B .α=π2,β=π3 C .α=π2,β=π6D .α=π3,β=π4解析 ∵cos αcos β=32-sin αsin β, ∴cos αcos β+sin αsin β=32, 即cos(α-β)=32, 经验证可知选项B 正确. 答案 B4.已知cos α=55,则cos ⎝ ⎛⎭⎪⎫α-π4的值为( )A.31010 B .-1010 C.255D.31010或-1010解析 ∵cos α=55,∴sin α=±1-cos 2α=±255.∴cos ⎝ ⎛⎭⎪⎫α-π4=cos αcos π4+sin αsin π4=55·22+22·⎝ ⎛⎭⎪⎫±255=⎩⎨⎧31010,-1010,有两解,应选D.答案 D5.⎝ ⎛⎭⎪⎫cos π12-sin π12⎝ ⎛⎭⎪⎫cos π12+sin π12=( ) A .-32B .-12C.12D.32答案 D答案 D6.在△ABC 中,∠C =90°,AC =3,BC =4,则cos(A -B )的值是( )A.35B.45C.2425D.725解析 在△ABC 中,∠C =90°,AC =3,BC =4, ∴斜边AB =5.sin A =BC AB =45,cos A =AC AB =35, sin B =AC AB =35,cos B =BC AB =45, ∴cos(A -B )=cos A cos B +sin A sin B =35×45+45×35=2425. 答案 C7.已知平面向量a =(cos α,sin α),b =(cos β,sin β)(α,β∈R ),当α=5π12,β=π4时,a ·b =________.解析 a ·b =cos αcos β+sin αsin β=cos(α-β)=cos ⎝ ⎛⎭⎪⎫5π12-π4=cos π6=32.答案 328.若cos αcos β=1,则cos(α-β)的值为________. 解析 由cos αcos β=1,知cos α=cos β=-1,或cos α=cos β=1. ∴sin α=sin β=0.∴cos(α-β)=cos αcos β+sin αsin β=1. 答案 19.已知cos(α+β)=45,cos(α-β)=-45,则cos αcos β的值为________.答案 010.已知α,β均为锐角,满足cos α=255,sin β=1010,则cos(α-β)=________.解析 因为α,β均为锐角,所以sin α=1-cos 2α=55,cos β=1-sin 2β=31010.所以cos(α-β)=cos αcos β+sin αsin β=255×31010+55×1010=7210.答案 721011.若x ∈⎣⎢⎡⎦⎥⎤π2,π,且sin x =45,求2cos ⎝ ⎛⎭⎪⎫x -23π+2cos x 的值.解 ∵x ∈⎣⎢⎡⎦⎥⎤π2,π,sin x =45,∴cos x =-35.∴2cos ⎝ ⎛⎭⎪⎫x -23π+2cos x=2⎝ ⎛⎭⎪⎫cos x cos 23π+sin x sin 23π+2cos x =2⎝ ⎛⎭⎪⎫-12cos x +32sin x +2cos x=3sin x +cos x=435-35 =43-35.12.已知向量a =(cos α,sin α),b =(cos β,sin β),|a -b |=255,求cos(α-β).解 因为a =(cos α,sin α),b =(cos β,sin β),所以a -b =(cos α-cos β,sin α-sin β).所以|a -b |=(cos α-cos β)2+(sin α-sin β)2=cos 2α-2cos αcos β+cos 2β+sin 2α-2sin αsin β+sin 2β =2-2cos (α-β)=255, 所以2-2cos(α-β)=45, 所以cos(α-β)=35.13.已知sin α+sin β=310,cos α+cos β=9110,求cos(α-β). 解 ∵sin α+sin β=310,cos α+cos β=9110, 两式平方相加,得2+2(cos αcos β+sin αsin β)=1, ∴cos(α-β)=-12.。

河北省张家口市第四中学2023-2024学年高一上数学期末经典模拟试题含解析

河北省张家口市第四中学2023-2024学年高一上数学期末经典模拟试题含解析

河北省张家口市第四中学2023-2024学年高一上数学期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.) 1.函数y x=中,自变量x 的取值范围是() A.2x > B.2x ≥ C.2x ≥且0x ≠D.0x ≠2.已知()y f x =在定义域()1,1-上是减函数,且()()211f a f a -<-,则a 的取值范围为()A.(0,1)B.(-2,1)C.(0)D.(0,2)3.已知圆22(3)9x y -+=与直线y x m =+交于A ,B 两点,过A ,B 分别作x 轴的垂线,且与x 轴分别交于C ,D 两点,若||2CD ,则m =A.7-或1B.7或1-C.7-或1-D.7或14.已知函数317(),3()28log ,03x x f x x x ⎧+≥⎪=⎨⎪<<⎩,若函数()()=-g x f x k 恰有两个零点,则实数k 的取值范围是 A.7(,1)8B.7[,1)8C.7[,1]8D.(0,1)5.在空间中,直线AB 平行于直线EF ,直线BC 与EF 为异面直线,若150ABC ∠=,则异面直线BC 与EF 所成角的大小为() A.30 B.60C.120D.1506.函数()cos lg f x x x =-零点的个数为() A.4B.3C.2D.07.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f 13⎛⎫ ⎪⎝⎭的x 的取值范围是( )A.12,33⎛⎫⎪⎝⎭B.12,33⎡⎫⎪⎢⎣⎭ C.12,23⎛⎫⎪⎝⎭D.12,23⎡⎫⎪⎢⎣⎭8.在直角坐标系xOy 中,已知43sin ,cos 55αα=-=,那么角α的终边与单位圆O 坐标为() A.34,55⎛⎫-⎪⎝⎭ B.43,55⎛⎫-⎪⎝⎭ C.34,55⎛⎫- ⎪⎝⎭D.43,55⎛⎫- ⎪⎝⎭9.下列命题中正确的是( )A.若两个向量相等,则它们的起点和终点分别重合B.模相等的两个平行向量是相等向量C.若a 和b 都是单位向量,则a =bD.两个相等向量的模相等 10.将函数2cos 23y x π⎛⎫=-⎪⎝⎭的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移3π个单位,所得函数图象的一条对称轴是() A.3x π=B.6x π=C.23x π=D.x π=二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知向量a ,b 满足a =(3,-4),|b |=2,|a +b |=19,则a ,b 的夹角等于______ 12.过点()16,8C ,()4,4D -的直线的倾斜角为___________.13.已知函数()()2log ,23,2x x f x f x x >⎧=⎨+≤⎩,则()1f 的值等于______14.已知函数()f x 定义域为D ,若满足①()f x 在D 内是单调函数;存在[],a b D ⊆使()f x 在[],a b 上的值域为,22a b ⎡⎤⎢⎥⎣⎦,那么就称()y f x =为“半保值函数”,若函数()()2(0x a f x log a t a =+>且1)a ≠ 是“半保值函数”,则t 的取值范围为________15.中国南宋大数学家秦九韶提出了“三斜求积术”,即已知三角形的三条边长分别为a 、b 、c ,则三角形的面积S 可由公式()()()S p p a p b p c =---求得,其中p 为三角形周长的一半,这个公式也被称为海伦—秦九韶公式,现有一个三角形的边长满足6a =,10b c +=,则此三角形面积的最大值为______ 三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.) 16.已知函数()12f x x x=+-. (1)存在[]1,1x ∈-,使得不等式()220xxf k -⋅≥成立,求实数k 的取值范围;(2)方程()2213021xxf k ⎛⎫⎪-+-= ⎪-⎝⎭有负实数解,求实数k 的取值范围. 17.旅游社为某旅游团包飞机去旅游,其中旅行社的包机费为15 000元.旅游团中每人的飞机票按以下方式与旅行社结算:若旅游团人数在30人或30人以下,飞机票每张收费900元;若旅游团人数多于30人,则给予优惠,每多1人,机票费每张减少10元,但旅游团人数最多为75人 (1)写出飞机票的价格关于旅游团人数的函数; (2)旅游团人数为多少时,旅行社可获得最大利润? 18.(1)计算:2log 3351log 125lgln e 21000-+++; (2)化简:sin(2)cos()sin()223sin()cos()cos()2πππαααππαααπ-++-++--. 19.如图,角α的终边与单位圆交于点310,10P x ⎛⎫⎪ ⎪⎝⎭,且0x <.(1)求tan α;(2)求()()cos cos 32sin sin 2πααππαα⎛⎫--+ ⎪⎝⎭⎛⎫++- ⎪⎝⎭.20.已知集合{}230A x x x =-≤,lg 1x B x y ⎧⎫+⎪==⎨⎪⎩. (1)求A B ;(2)求RAB .21.已知集合{}|124A x a x a =-<<+,2{|4120}=--≤B x x x . (1)当2a =时,求A B ;(2)在①AB A =,②()R A B A ⋂=,③A B =∅这三个条件中任选一个,补充在(2)问中的横线上,并求解.若___________,求实数a 的取值范围.(注:如果选择多个条件分别解答,按第一个解答计分)参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.) 1、B【解析】根据二次根式的意义和分式的意义可得200x x -≥⎧⎨≠⎩,解之即可.【详解】由题意知,200x x -≥⎧⎨≠⎩,解得2x ≥, 即函数y x=的定义域为[2,)+∞. 故选:B 2、A【解析】根据函数的单调性进行求解即可.【详解】因为()y f x =在定义域()1,1-上是减函数,所以由()()222111111110111a f a f a a x a a -<-<⎧⎪-<-⇒-<-<⇒<<⎨⎪->-⎩,故选:A 3、A【解析】由题可得出||2AB == 【详解】因为直线y x m =+的倾斜角为45︒,||2CD ,所以||2AB =,利用圆心到直线的距离可得=7m =-或1m =. 【点睛】本题考查直线与圆的位置关系,属于一般题 4、A【解析】因为317703,log (,1);3,()(,1]288xx y x x y <<=∈-∞≥=+∈ ,且各段单调, 所以实数k 的取值范围是7,18⎛⎫⎪⎝⎭,选A.点睛:已知函数零点求参数的范围的常用方法,(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,作出函数的图象,然后数形结合求解 5、A【解析】根据异面直线所成角的定义与范围可得结果.【详解】因为//AB EF 且150ABC ∠=,故异面直线BC 与EF 所成角的大小为ABC ∠的补角,即为30. 故选:A. 6、A【解析】由()cos lg 0f x x x =-=,得cos lg x x =,则将函数()f x 零点的个数转化为cos ,lg y x y x ==图象的交点的个数,画出两函数的图象求解即可【详解】由()cos lg 0f x x x =-=,得cos lg x x =,所以函数()f x 零点的个数等于cos ,lg y x y x ==图象的交点的个数, 函数cos ,lg y x y x ==的图象如图所示,由图象可知两函数图象有4个交点,所以()f x有4个零点,故选:A7、A【解析】根据函数的奇偶性和单调性,将不等式进行等价转化,求解即可.【详解】∵f(x)为偶函数,∴f(x)=f(|x|).则f(|2x-1|)<f13⎛⎫ ⎪⎝⎭.又∵f(x)在[0,+∞)上单调递增,∴|2x-1|<13,解得13<x<23.故选:A.【点睛】本题考查利用函数奇偶性和单调性解不等式,属综合基础题.8、A【解析】利用任意角的三角函数的定义求解即可【详解】因为43 sin,cos55αα=-=,所以角α的终边与单位圆O坐标为34,55⎛⎫-⎪⎝⎭,故选:A9、D【解析】考查所给的四个选项:向量是可以平移的,则若两个向量相等,则它们的起点和终点不一定分别重合,A说法错误;向量相等向量模相等,且方向相同,B说法错误;若a和b都是单位向量,但是两向量方向不一致,则不满足a b=,C说法错误;两个相等向量的模一定相等,D说法正确.本题选择D选项.10、D【解析】根据三角形函数图像变换和解析式的关系即可求出变换后函数解析式,从而根据余弦函数图像的性质可求其对称轴.【详解】将函数2cos 23y x π⎛⎫=- ⎪⎝⎭的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),则函数解析式变为2cos 3y x π⎛⎫=- ⎪⎝⎭;向左平移3π个单位得2cos 2cos 33y x x ππ⎛⎫=-+=⎪⎝⎭, 由余弦函数的性质可知,其对称轴一定经过图象的最高点或最低点,故对称轴为:x k π=,k ∈Z , k =1时,x π=. 故选:D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、120【解析】利用•··cos ,a b a b a b =求解向量间的夹角即可 【详解】因为()3,4a =-,所以5a =, 因为19a b +=,所以2222?19a b a a b b +=++=,即252?419a b ++=,所以•·cos ,52cos ,5a b a b a b a b ==⨯⨯=-, 所以1cos ,=2a b -, 因为向量夹角取值范围是0,180⎡⎤⎣⎦,所以向量a 与向量b 的夹角为120【点睛】本题考查向量的运算,这种题型中利用•··cos ,a b a b a b =求解向量间的夹角同时需注意22a a = 12、4π##45 【解析】设直线的倾斜角为α,求出直线的斜率即得解. 【详解】解:设直线的倾斜角为α, 由题得直线的斜率为841tan 164CD k α+===-,因为[0,)απ∈,所以4πα=. 故答案为:4π 13、2【解析】由分段函数可得()()14f f =,从而可得出答案.【详解】解:由()()2log ,23,2x x f x f x x >⎧=⎨+≤⎩,得()()()21134log 42f f f =+===. 故答案为:2. 14、11(,0)(0,)22-【解析】根据半保值函数的定义,将问题转化为()2x a y log a t=+与12y x =的图象有两个不同的交点,即1220x xa at -+=有两个不同的根,换元后转化为二次方程的实根的分布可解得.【详解】因为函数()()2(0xa f x log a ta =+>且1)a ≠是“半保值函数”,且定义域为R ,由1a >时,2x z a t =+在R 上单调递增,a y log z =在(0,)+∞ 单调递增, 可得()f x 为R 上的增函数;同样当01a <<时,()f x 仍为R 上的增函数,()f x ∴ 在其定义域R 内为增函数,因为函数()()2(0xa f x log a ta =+>且1)a ≠是“半保值函数”,所以()2x a y log a t =+与12y x =的图象有两个不同的交点, 所以()212x a log a t x +=有两个不同的根, 即122x xa t a+=有两个不同的根,即1220x x a a t -+=有两个不同的根, 可令12x u a =,0>u ,即有220u u t -+=有两个不同正数根, 可得2140t ->,且20t >,解得t ∈11(,0)(0,)22-. 【点睛】本题考查函数的值域的求法,解题的关键是正确理解“半保值函数”,解题时要认真审题,仔细解答,注意合理地进行等价转化 15、12【解析】计算得出8p =,利用海伦—秦九韶公式可得出S =S 的最大值.【详解】82a b cp ++==,所以,884122b cS -+-==≤⨯=.当且仅当5b c ==时,等号成立,且此时三边可以构成三角形. 因此,该三角形面积的最大值为12. 故答案为:12.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.) 16、(1)1k ≤(2)()4,0,9∞∞⎛⎤--⋃+ ⎥⎝⎦【解析】(1)令12,22xt ⎡⎤=∈⎢⎥⎣⎦,然后分离参数k ,求出函数的最大值即可得答案;(2)由题意,令21xt =-,则01t <<,原问题等价于:12230kt k t t+-+-=在0,1上有解,即()223210t k t k -+++=在0,1上有解,利用一元二次方程根的分布即可求解.【小问1详解】解:由题意,令12,22xt ⎡⎤=∈⎢⎥⎣⎦,则原不等式等价于:存在1,22t ⎡⎤∈⎢⎥⎣⎦,使120t kt t +--成立,即存在1,22t ⎡⎤∈⎢⎥⎣⎦,使2212111k t t t ⎛⎫-+=- ⎪⎝⎭成立,由二次函数的性质知,当12t =,即12t =时,2121t t -+取得最大值1,所以1k ≤ 【小问2详解】解:由题意,因为方程有负实数根,则令21xt =-,有01t <<, 原问题等价于:12230kt k t t+-+-=在0,1上有解,即()223210t k t k -+++=在0,1上有解 令()()223210g t t k t k =-+++=,01t <<,则()()223421023012k k k⎧∆=+-+=⎪⎨+<<⎪⎩或()()()()223421023020010k k kg g ⎧∆=+-+>⎪+⎪≤⎪⎨⎪<⎪⎪>⎩ 或()()()()223421023120010k k k g g ⎧∆=+-+>⎪+⎪≥⎪⎨⎪>⎪⎪<⎩或()()2Δ23421023012(0)0k k k g ⎧=+-+>⎪+⎪<<⎨⎪>⎪⎩或()()2Δ23421023012(1)0k k k g ⎧=+-+>⎪+⎪<<⎨⎪>⎪⎩,解得49k =-或23k ≤-或0k >或1429k -<<-或2439k -<<-,即实数k 的取值范围为()4,0,9∞∞⎛⎤--⋃+ ⎥⎝⎦.17、(1).(2) 旅游团人数为60时,旅行社可获得最大利润 【解析】(1)根据自变量 的取值范围,分0或,确定每张飞机票价的函数关系式;(Ⅱ)利用所有人的费用减去包机费就是旅行社可获得的利润,结合自变量的取值范围,可得利润函数,结合自变量的取值范围,分段求出最大利润,从而解决问题【详解】(1)设旅游团人数为人,飞行票价格为元,依题意,当,且时,,当,且时,y =900-10(x -30)=-10x +1 200.所以所求函数为 y =(2)设利润为元,则当,且时, (元), 当,且时,元,因为21 000元>12 000元,所以旅游团人数为60时,旅行社可获得最大利润【点睛】此题考查了分段函数以及实际问题中的最优化问题,培养学生对实际问题分析解答能力,属于中档题18、(1)23;(2)1 【解析】(1)由题意利用对数的运算性质,计算求得结果(2)由题意利用诱导公式,计算求得结果【详解】解:(1)2log 3351112log 125lg e 2331000333-++=-++= (2)sin(2)cos()sin()sin (sin )cos 2213sin sin (cos )sin()cos()cos()2πππααααααπαααπαααπ-++-⋅-⋅==-⋅⋅--++-- 19、(1)3-;(2)12- 【解析】(1)根据三角函数的定义,平方关系以及点P 的位置可求出sin ,cos αα,再由商数关系即可求出tan α; (2)利用诱导公式即可求出【小问1详解】 由三角函数定义知310sin α=,所以221cos 1sin 10αα=-=, 因cos 0x α=<,所以10cos 10α=-,所以sin tan 3cos ααα==-. 【小问2详解】 原式sin cos tan 11cos sin 1tan 2αααααα++===---. 20、(1){}23A B x x =<≤(2){}3RA B x x =≤ 【解析】(1)分别求两个集合,再求交集;(2)先求B R ,再求R A B .【小问1详解】230x x -≤,解得:03x ≤≤, 即{}03A x x =≤≤, 21040x x +>⎧⎨->⎩,解得:2x >,即{}2B x x =>, {}23A B x x ∴=<≤;【小问2详解】 {}2R B x x =≤{}03A x x =≤≤,{}3R A B x x ∴=≤.21、(1){}28A B x x ⋃=-≤<(2)选①5a ≤-或11a -≤≤.选②③3a ≤-或7a ≥.【解析】(1)分别求出两个集合,再根据并集的运算即可得解; (2)选①,根据AB A =,得A B ⊆,分A =∅和A ≠∅两种情况讨论即可得解. 选②,根据()R A B A ⋂=,得R A B ⊆,分A =∅和A ≠∅两种情况讨论即可得解. 选③,根据A B =∅,分A =∅和A ≠∅两种情况讨论即可得解.【小问1详解】解:当2a =时,{}{}|12418A x a x a x x =-<<+=<<, {}2{|4120}26B x x x x x =--≤=-≤≤,所以{}28A B x x ⋃=-≤<;【小问2详解】解:选①,因为A B A =,所以A B ⊆,当A B =∅⊆时,124a a -≥+,解得5a ≤-;当A ≠∅时,因为A B ⊆,所以12412246a a a a -<+⎧⎪-≥-⎨⎪+≤⎩,解得11a -≤≤,综上所述,5a ≤-或11a -≤≤.选②,因为()R A B A ⋂=,所以R A B ⊆,{2R B x x =<-或}6x >, 当A =∅时,124a a -≥+,解得5a ≤-,符合题意; 当A ≠∅时,因为R A B ⊆,所以12416a a a -<+⎧⎨-≥⎩或124242a a a -<+⎧⎨+≤-⎩,解得7a ≥或53a -<≤-, 综上所述,3a ≤-或7a ≥.选③,当A =∅时,124a a -≥+,解得5a ≤-,符合题意; 当A ≠∅时,因为A B =∅,所以12416a a a -<+⎧⎨-≥⎩或124242a a a -<+⎧⎨+≤-⎩,解得7a ≥或53a -<≤-, 综上所述,3a ≤-或7a ≥.。

河北省张家口市第四中学高一数学限时训练11缺答案

河北省张家口市第四中学高一数学限时训练11缺答案

数学限时训练11一、选择题1、若函数y log x 的图象如下图,实数 a 的可能取值为()1A. 5B. 1C.1D.15 e 2b f ( log 31) ,2、已知 f ( x) 是定义在R 上的偶函数,且在( 0 , ) ,是增函数,设4 2a f ( 3 ) , c f ( )) ,则a ,b , c的大小关系是(3A. a c bB. b a cC. b c aD.c b a 的值为()3、设 a log 3 6 , a log 5 10 , a log 7 14 ,则()A. a c bB. b a cC. b c aD. c b a4、抽气机每次抽出容器内的空气60% ,要使容器内剩下的空气少于本来的0.1% ,则起码要抽(参照数据:lg 2 0.301 , lg 3 0.4771 )()A.15 次B. 14次C. 9次D. 8次5、函数 f ( x) lg(1 ) 的奇偶性是()x 2 1 xA. 奇函数B. 偶函数否C. 既是奇函数又是偶函数D. 非奇非偶函数二、填空题6、若函数y log a (x b) c ( a 0,且 a 1) 的图象恒过定点( 3, 2) ,则实数 b ,c 的值是7、设方程x 2 x 4 的根为 m ,方程 x log 2 x 4 的根为 n ,则m n答题卡班级姓名1、 2 、 3 、 4 、 5 、6、7 、三、解答题8、已知f (x) 2 log 3 x , x 1 , 9 ,求函数 y f ( x) 2 f ( x 2 ) 的最大值和此时的的值9、已知 f ( x) log 2 (x 1) ,当点( x, y) 在函数y f ( x) 的图象上时,点( x,y) 在函数3 2 y g (x) 的图象上.(1)写出y g (x) 的分析式;(2)求方程 f (x) g( x)0 的根.第一次批阅月日第二次批阅月日。

河北张家口市第四中学数列多选题试题含答案

河北张家口市第四中学数列多选题试题含答案

河北张家口市第四中学数列多选题试题含答案一、数列多选题1.设数列{}n a 的前n 项和为n S ,若存在实数A ,使得对任意*n N ∈,都有n S A <,则称数列{}n a 为“T 数列”.则以下结论正确的是( )A .若{}n a 是等差数列,且10a >,公差0d <,则数列{}n a 是“T 数列”B .若{}n a 是等比数列,且公比q 满足||1q <,则数列{}n a 是“T 数列”C .若12(1)2n n n a n n ++=+,则数列{}n a 是“T 数列”D .若2241n n a n =-,则数列{}n a 是“T 数列 【答案】BC 【分析】写出等差数列的前n 项和结合“T 数列”的定义判断A ;写出等比数列的前n 项和结合“T 数列”的定义判断B ;利用裂项相消法求和判断C ;当n 无限增大时,n S 也无限增大判断D . 【详解】在A 中,若{}n a 是等差数列,且10a >,公差0d <,则2122n d d S n a n ⎛⎫=+- ⎪⎝⎭,当n 无限增大时,n S 也无限增大,所以数列{}n a 不是“T 数列”,故A 错误. 在B 中,因为{}n a 是等比数列,且公比q 满足||1q <, 所以()11111112111111n nn n a q a a q a a q aS qq q q q q-==-+<------,所以数列{}n a 是“T 数列”,故B 正确. 在C 中,因为11211(1)22(1)2n n n n n a n n n n +++==-+⋅+⋅,所以122311111111111||122222322(1)22(1)22n n n n S n n n ++=-+-++-=-<⨯⨯⨯⨯⋅+⋅+⋅∣∣.所以数列{}n a 是“T 数列”,故C 正确.在D 中,因为22211141441n n a n n ⎛⎫==+ ⎪--⎝⎭,所以222111114342143141n S n n ⎛⎫=+++++⎪⨯-⨯--⎝⎭,当n 无限增大时,n S 也无限增大,所以数列{}n a 不是“T 数列”,故D 错误. 故选:BC. 【点睛】方法点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()122121n n n +--()()()()1121212121n n n n ++---=--1112121n n +=---;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.2.已知数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, n S 是数列1 n a ⎧⎫⎨⎬⎩⎭的前n 项和,则下列结论中正确的是( ) A .()21121n nS n a -=-⋅ B .212n n S S =C .2311222n n n S S ≥-+ D .212n n S S ≥+【答案】CD 【分析】根据数列{} n a 满足11a =,121++=+n n a a n ,得到1223+++=+n n a a n ,两式相减得:22n n a a +-=,然后利用等差数列的定义求得数列{} n a 的通项公式,再逐项判断.【详解】因为数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, 所以1223+++=+n n a a n , 两式相减得:22n n a a +-=,所以奇数项为1,3,5,7,….的等差数列; 偶数项为2,4,6,8,10,….的等差数列; 所以数列{} n a 的通项公式是n a n =, A. 令2n =时, 311111236S =++=,而 ()1322122⨯-⋅=,故错误; B. 令1n =时, 213122S =+=,而 11122S =,故错误;C. 当1n =时, 213122S =+=,而 31132222-+=,成立,当2n ≥时,211111...23521n n S S n =++++--,因为221n n >-,所以11212n n >-,所以111111311...1 (352148222)n n n ++++>++++=--,故正确; D. 因为21111...1232n n S S n n n n-=+++++++,令()1111...1232f n n n n n=+++++++,因为()111111()021*******f n f n n n n n n +-=+-=->+++++,所以()f n 得到递增,所以()()112f n f ≥=,故正确; 故选:CD 【点睛】本题主要考查等差数列的定义,等比数列的前n 项和公式以及数列的单调性和放缩法的应用,还考查了转化求解问题的能力,属于较难题.3.设n S 是等差数列{}n a 的前n 项和,且12a =,38a =则( ) A .512a = B .公差3d =C .()261n S n n =+D .数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为64nn + 【答案】BCD 【分析】根据已知条件求出等差数列{}n a 的通项公式和前n 项和公式,即可判断选项A 、B 、C ,再利用裂项求和即可判断选项D. 【详解】因为数列{}n a 是等差数列,则312228a a d d =+=+=,解得:3d =,故选项B 正确; 所以()21331n a n n =+-⨯=-,对于选项A :535114a =⨯-=,故选项A 不正确;对于选项C :()()2222132612n n S n n n ++-⨯⎡⎤⎣⎦=⨯=+,所以故选项C 正确; 对于选项D :()()111111313233132n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭, 所以前n 项和为111111111325588113132n n ⎛⎫-+-+-++-⎪-+⎝⎭()611132322324n n n n n ⎛⎫=-== ⎪++⎝⎭+,故选项D 正确, 故选:BCD. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.4.已知等差数列{}n a 中,59a a =,公差0d >,则使得前n 项和n S 取得最小值的正整数n 的值是( ) A .5 B .6C .7D .8【答案】BC 【分析】分析出数列{}n a 为单调递增数列,且70a =,由此可得出结论. 【详解】在等差数列{}n a 中,59a a =,公差0d >,则数列{}n a 为递增数列,可得59a a <,59a a ∴=-,可得5975202a a a a +==>,570a a ∴<=,所以,数列{}n a 的前6项均为负数,且70a =, 因此,当6n =或7时,n S 最小. 故选:BC. 【点睛】方法点睛:本题考查等差数列前n 项和最大值的方法如下:(1)利用n S 是关于n 的二次函数,利用二次函数的基本性质可求得结果; (2)解不等式0n a ≥,解出满足此不等式的最大的n 即可找到使得n S 最小.5.记数列{}n a 的前n 项和为n S ,*n ∈N ,下列四个命题中不正确的有( ) A .若0q ≠,且对于*212,n n n n a a a ++∀∈=N ,则数列{}n a 为等比数列B .若nn S Aq B =+(非零常数q ,A ,B 满足1q ≠,0A B +=),则数列{}n a 为等比数列C .若数列{}n a 为等比数列,则232,,,n n n n n S S S S S --仍为等比数列D .设数列{}n a 是等比数列,若123a a a <<,则{}n a 为递增数列 【答案】AC 【分析】若0n a =,满足对于*212,n n n n a a a ++∀∈=N ,但数列{}n a 不是等比数列,可判断A ;利用n a 与n S 的关系,可求得数列{}n a 的通项公式,可判断B ;若数列{}n a 为等比数列,当公比1q =-,且n 为偶数时,此时232,,,n n n n n S S S S S --均为0,可判断C ;设数列{}n a 是等比数列,且公比为q ,若123a a a <<,即1211a a q a q <<,分类讨论10a >与10a <两种情况,可判断D ; 【详解】对于A ,若0n a =,满足对于*212,n n n n a a a ++∀∈=N ,但数列{}n a 不是等比数列,故A 错误;对于B ,当2n ≥时,()111(1)nn n n n n a S S Aq B AqB Aq q ---=-=+-+=-且1q ≠;当1n =时,0A B +=,则()111a S Aq B A q ==+=-符合上式,故数列{}n a 是首项为()1A q -公比为q 的等比数列,故B 正确;对于C ,若数列{}n a 为等比数列,当公比1q =-,且n 为偶数时,此时232,,,n n n n n S S S S S --均为0,不为等比数列,故C 错误;对于D ,设数列{}n a 是等比数列,且公比为q ,若123a a a <<,即1211a a q a q <<,若10a >,可得21q q <<,即1q >,则{}n a 为递增数列;若10a <,可得21q q >>,即01q <<,则{}n a 为递增数列;故D 正确;故选:AC 【点睛】结论点睛:本题考查等比数列通项公式及和的性质,等比数列和的性质:公比为1q ≠-的等比数列{}n a 的前n 项和为n S ,则232,,,n n n n n S S S S S --仍成等比数列,其公比为n q ;同理等差数列和的性质:公差为d 的等差数列{}n a 的前n 项和为n S ,数列232,,,m m m m m S S S S S --构成等差数列,公差为md ,考查学生的分析能力,属于中档题.6.(多选)在递增的等比数列{}n a 中,已知公比为q ,n S 是其前n 项和,若1432a a =,2312a a +=,则下列说法正确的是( )A .1q =B .数列{}2n S +是等比数列C .8510S =D .数列{}lg n a 是公差为2的等差数列【答案】BC 【分析】 计算可得2q,故选项A 错误;8510S =,122n n S ++=,所以数列{}2n S +是等比数列,故选项,B C 正确;lg lg 2n a n =⋅,所以数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误.【详解】∵142332,12,a a a a =⎧⎨+=⎩∴23142332,12,a a a a a a ==⎧⎨+=⎩ 解得234,8a a =⎧⎨=⎩或238,4a a =⎧⎨=⎩,∵{}n a 为递增数列,∴234,8a a =⎧⎨=⎩∴322a q a ==,212a a q ==,故选项A 错误; ∴2nn a =,()12122212nn nS +⨯-==--,∴9822510S =-=,122n n S ++=,∴数列{}2n S +是等比数列,故选项,B C 正确; 又lg 2lg 2lg nn n a ==⋅,∴数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误. 故选:BC. 【点睛】方法点睛:证明数列的性质,常用的方法有:(1)定义法;(2)中项公式法.要根据已知灵活选择方法证明.7.下面是关于公差0d >的等差数列{}n a 的几个命题,其中正确的有( ) A .数列{}n a 递增B .n S 为{}n a 的前n 项和,则数列n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列 C .若n a n =,n S 为{}n a 的前n 项和,且n S n c ⎧⎫⎨⎬+⎩⎭为等差数列,则0c D .若70a =,n S 为{}n a 的前n 项和,则方程0n S =有唯一的根13n =【答案】ABD 【分析】选项A. 由题意10n n a a d +-=>可判断;选项B.先求出112n S n a d n -=+⨯,根据1012n n S S dn n +-=>+可判断;选项C. 若n a n =,则()12n n n S +=,则0c 或1c =时n S n c ⎧⎫⎨⎬+⎩⎭为等差数列可判断;选项D.由1602n n S dn -⎛⎫=--= ⎪⎝⎭可判断. 【详解】选项A. 由题意10n n a a d +-=>,则1n n a a +>,所以数列{}n a 递增,故A 正确. 选项B. ()112n n n S na d -=+⨯,则112n S n a d n -=+⨯ 所以1012n n S S d n n +-=>+,则11n n S S n n +>+,所以数列n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列. 故B 正确. 选项C. 若n a n =,则()12n n n S +=,则()()12n n n S n c n c =+++当0c时,12+n S n c n =+为等差数列. 当1c =时,2n S n c n=+为等差数列.所以选项C 不正确.选项D. 70a =,即7160a a d =+=,则16a d =- 又()()1111660222n n n n n n S na d dn d dn ---⎛⎫=+⨯=-+⨯=--= ⎪⎝⎭ 由0,0d n >>,所以1602n --=,得13n =,故选项D 正确. 故选:ABD 【点睛】关键点睛:本题考查等差数列的判定和单调性的单调,解答本题的关键是利用等差数列的定义和前n 项和公式进行判断,求出162n n S dn -⎛⎫=-+⎪⎝⎭,从而判断,属于中档题.8.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( ) A .2d =- B .122a =C .3430a a +=D .当且仅当11n =时,n S 取得最大值【答案】AC 【分析】先根据题意得等差数列{}n a 的公差2d =-,进而计算即可得答案. 【详解】解:设等差数列{}n a 的公差为d ,则52318312a a d d =+=+=,解得2d =-.所以120a =,342530a a a a +=+=,11110201020a a d =+=-⨯=, 所以当且仅当10n =或11时,n S 取得最大值. 故选:AC 【点睛】本题考查等差数列的基本计算,前n 项和n S 的最值问题,是中档题. 等差数列前n 项和n S 的最值得求解常见一下两种情况:(1)当10,0a d ><时,n S 有最大值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +<且0n a >的n 的取值范围确定;(2)当10,0a d <>时,n S 有最小值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +>且0n a <的n 的取值范围确定;二、平面向量多选题9.在平行四边形ABCD 中,2AB =,1AD =,2DE EC =,AE 交BD 于F 且2AE BD ⋅=-,则下列说法正确的有( )A .1233AE AC AD =+B .25DF DB =C .,3AB AD π=D .2725FB FC ⋅=【答案】BCD 【分析】根据向量的线性运算,以及向量的夹角公式,逐一判断四个选项的正误即可得正确选项. 【详解】对于选项A :()22233133AE AD DE AD DC AD AD D C A A A C =+=+=+-=+,故选项A 不正确;对于选项B :易证DEF BFA ,所以23DF DE BF AB ==,所以2235DF FB DB ==,故选项B 正确;对于选项C :2AE BD ⋅=-,即()223AD A B D AB A ⎛⎫+-=- ⎪⎝⎭,所以 2221233AD AD AB AB -⋅-=-,所以1142332AD AB -⋅-⨯=-,解得:1AB AD ⋅=,11cos ,212AB AD AB AD AB AD⋅===⨯⨯,因为[],0,AB AD π∈,所以,3AB AD π=,故选项C 正确; 对于选项D :()()332555AB FB FC DB FD DC AD BD AB ⎛⎫⋅=⋅+=-⋅+ ⎪⎝⎭()()()3233255555AD AD AB AB AD A AB AB B AD ⎡⎤⎛⎫=-⋅-+=-⋅+ ⎪⎢⎥⎣⎦⎝⎭22969362734252525252525AB AB AD AD =⨯-⋅-⨯=⨯--=,故选项D 正确. 故选:BCD 【点睛】关键点点睛:选项B 的关键点是能得出DEF BFA ,即可得23DF DE BF AB ==,选项D 的关键点是由于AB 和AD 的模长和夹角已知,故将FB 和FC 用AB 和AD 表示,即可求出数量积.10.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=,2QA QB =,记APQ 的面积为S ,则下列说法正确的是( )A .//PB CQ B .1233BP BA BC =+ C .0PA PC ⋅> D .4S =【答案】BD 【分析】利用向量的共线定义可判断A ;利用向量加法的三角形法则以及向量减法的几何意义即可判断B ;利用向量数量积的定义可判断C ;利用三角形的面积公式即可判断D. 【详解】由20PA PC +=,2QA QB =,可知点P 为AC 的三等分点,点Q 为AB 延长线的点,且B 为AQ 的中点,如图所示:对于A ,点P 为AC 的三等分点,点B 为AQ 的中点, 所以PB 与CQ 不平行,故A 错误; 对于B ,()22123333BP BA AP BA AC BA BC BA BA BC =+=+=+-=+, 故B 正确;对于C ,cos 0PA PC PA PC PA PC π⋅==-<,故C 错误; 对于D ,设ABC 的高为h ,132ABCS AB h ==,即6AB h =, 则APQ 的面积1212226423233APQS AQ h AB h =⋅=⋅⋅=⨯=,故D 正确; 故选:BD 【点睛】本题考查了平面向量的共线定理、共线向量、向量的加法与减法、向量的数量积,属于基础题。

河北省张家口市第四中学高一数学限时训练20缺答案

河北省张家口市第四中学高一数学限时训练20缺答案

数学限时训练 20一、选择题1、以下函数中, 同时知足①在 ( 0, )内是增函数 ②为奇函数③以为最小正周期的是 ()2xA 、 y=tanxB 、y=cosxCD、y= sin x、 y=tan2、假如 x (0,2), 函数 y= sin xtan x 的定义域是()2A 、 x 0 xB 、 xx C 、x D 、 x3x 22223、函数 y=tanx,x(-3 , )的值域是()4A 、,1 B 、, C 、3,1 D 、3,4、以下不等式中,正确的选项是()A 、tantan(4 tan 3 B 、tan 2tan 3C 、tan( 13 ) tan(15 )D、7 7 5 5 7813 )tan(124 )55、函数 y= tan2x 是()A 、周期为 的奇函数B 、周期为 的偶函数C 、周期为的奇函数D、周期为的偶函数2 2二、填空题6、在同一坐标系中,直线 y=m(m 为常数 ) 与函数 y=tan x (>0) 的图像相邻的交点的距离为7、 y=tanx知足的条件有(只填序号)2①在( 0, )②为奇函数③以为最小正周期④定义域为k , k zx x224三、解答题8、求函数 y=3tan (3x) 的定义域、单一区间和周期。

39、作出函数 y=tanx+ tan x 的图像,并求其值域和周期。

第一次批阅月 日 第二次批阅 月 日数学限时训练 21一、选择题1、要获得 f(x)=tan2x的图像,只要将 f(x)=tan2x 的图像( )3A 、向右平移个单位长度 B、向左平移 个单位长度33C 、向左平移个单位长度D、向右平移个单位长度662、要获得 y=sin(1x ) 的图像,只要将 y=sin( 1 x ) 的图像( )226A 、向左平移个单位长度B、向右平移个单位长度33C 、向左平移个单位长度 D、向右平移 个单位长度663、要获得 y=sinx 的图像,只要将函数y=cos( x) 的图像 ( )3A 、向右平移个单位长度 B、向右平移 个单位长度63C 、向左平移个单位长度D、向左平移 个单位长度364、设点 P 是函数 f(x)=sinx 的图像 C 的一个对称中心, 若点 P 到图像 C 的距离的最小值是,4则 f (x) 的最小正周期是()A 、 2B、C 、D 、4225、设函数 f (x)Asin(x )( A 0,0,) 的图像对于直线 x对称, 他的周23期是 ,则()A 、 f (x) 的图像过点(0, 1) B 、 f (x) 在 5 ,2上算是减函数2123C 、 f ( x) 的一个对称中心是(5,0 )D 、 f ( x) 的最大值是 412二、填空题6、将函数 ysin 2x 的图像向右平移个单位,再向上平移 1 个单位,所得图像的分析式是1sin(3x47、将函数 y) 的图像上各点的纵坐标伸长为本来呃 4 倍(横坐标不变) ,所得24的图像对应的分析式为三、解答题8 、 已 知 函 数 y s i n2x 的 图 像 为,问需要经过如何的平移变换获得函数Cy cos(2 x 7) 的图像 C ,并使平移的行程最短?49、已知函数f ( x) Asin( x ) , x R (此中 A 0, 0,0),的图像与 x 轴2的交点中,相邻两个交点之间的距离为,且图像上一个最低点为 M ( 2 ,2)。

河北省张家口市第四中学数列的概念中难题训练 百度文库

河北省张家口市第四中学数列的概念中难题训练 百度文库

一、数列的概念选择题1.已知数列{a n }满足112,0,2121, 1.2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若a 1=35,则a 2019 = ( )A .15B .25C .35D .452.已知数列{}ij a 按如下规律分布(其中i 表示行数,j 表示列数),若2021ij a =,则下列结果正确的是( )A .13i =,33j =B .19i =,32j =C .32i =,14j =D .33i =,14j =3.已知数列{}n a 前n 项和为n S ,且满足*112(N 3)33n n n n S S S S n n --+≤+∈≥+,,则( )A .63243a a a ≤-B .2736+a a a a ≤+C .7662)4(a a a a ≥--D .2367a a a a +≥+4.已知数列{}n a 的通项公式为23nn a n ⎛⎫= ⎪⎝⎭,则数列{}n a 中的最大项为( )A .89B .23C .6481D .1252435.数列1,3,6,10,…的一个通项公式是( )A .()21n a n n =-- B .21n a n =-C .()12n n n a +=D .()12n n n a -=6.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( ) A .1(1)n n a a n n --=> B .20210a =C .1024是三角形数D .123111121n n a a a a n +++⋯+=+ 7.数列{}n a 的前n 项和记为n S ,()*11N ,2n n n a a a n n ++=-∈≥,12018a =,22017a =,则100S =( )A .2016B .2017C .2018D .20198.已知数列{}n a 中,11a =,122nn n a a a +=+,则5a 等于( ) A .25B .13 C .23D .129.3……,则 ) A .第8项B .第9项C .第10项D .第11项10.已知数列{}n a 的首项为2,且数列{}n a 满足111n n n a a a +-=+,数列{}n a 的前n 项的和为n S ,则1008S 等于( ) A .504B .294C .294-D .504-11.数列{}n a 满足:12a =,111nn na a a ++=-()*n N ∈其前n 项积为n T ,则2018T =( ) A .6-B .16-C .16D .612.已知数列{}n a 满足11a =,122n n a a n n+=++,则10a =( ) A .259B .145 C .3111D .17613.定义:在数列{}n a 中,若满足211n n n na a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则20202018a a 等于( ) A .4×20162-1B .4×20172-1C .4×20182-1D .4×2018214.数列{}n a 满足1111,(2)2n n n a a a n a --==≥+,则5a 的值为( )A .18B .17 C .131D .1615.已知定义在R 上的函数()f x 是奇函数,且满足3()(),(1)32f x f x f -=-=,数列{}n a 满足11a =,且21n nS a n n=-,(n S 为{}n a 的前n 项和,*)n N ∈,则56()()f a f a +=( )A .1B .3C .-3D .016.数列1111,,,57911--,…的通项公式可能是n a =( ) A .1(1)32n n --+B .(1)32n n -+C .1(1)23n n --+D .(1)23nn -+17.数列12,16,112,120,…的一个通项公式是( ) A .()11n a n n =-B .()1221n a n n =-C .111n a n n =-+ D .11n a n=-18.已知数列{}n a 满足1N a *∈,1,2+3,nn n n n a a a a a +⎧⎪=⎨⎪⎩为偶数为奇数,若{}n a 为周期数列,则1a 的可能取到的数值有( ) A .4个B .5个C .6个D .无数个19.已知数列{}n a 满足00a =,()11i i a a i +=+∈N ,则201kk a=∑的值不可能是( ) A .2B .4C .10D .1420.在数列{}n a 中,12a =,111n n a a -=-(2n ≥),则8a =( ) A .1-B .12C .1D .2二、多选题21.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数C .2020201820223a a a =+D .123a a a +++…20202022a a +=22.已知数列{}n a 满足()*111n na n N a +=-∈,且12a =,则( ) A .31a =-B .201912a =C .332S =D . 2 01920192S =23.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记S n 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .733S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 24.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足11140(2),4n n n a S S n a -+=≥=,则下列说法正确的是( ) A .数列{}n a 的前n 项和为1S 4n n= B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1{}nS 为递增数列 25.已知数列{}n a 是等差数列,前n 项和为,n S 且13522,a a S +=下列结论中正确的是( ) A .7S 最小B .130S =C .49S S =D .70a =26.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-B .180S =C .当0d >时,6140a a +>D .当0d <时,614a a >27.已知数列{}n a 满足:12a =,当2n ≥时,)212n a =-,则关于数列{}n a 的说法正确的是 ( )A .27a =B .数列{}n a 为递增数列C .221n a n n =+-D .数列{}n a 为周期数列28.已知递减的等差数列{}n a 的前n 项和为n S ,57S S =,则( ) A .60a > B .6S 最大 C .130S > D .110S >29.已知数列{}2nn a n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6D .a 1,a 2,a 3可能成等差数列30.记n S 为等差数列{}n a 前n 项和,若81535a a = 且10a >,则下列关于数列的描述正确的是( ) A .2490a a += B .数列{}n S 中最大值的项是25S C .公差0d >D .数列{}na 也是等差数列31.等差数列{}n a 的前n 项和记为n S ,若10a >,717S S =,则( ) A .0d < B .120a > C .13n S S ≤D .当且仅当0nS <时,26n ≥32.设d 为正项等差数列{}n a 的公差,若0d >,32a =,则( ) A .244a a ⋅<B .224154a a +≥C .15111a a +> D .1524a a a a ⋅>⋅33.下列命题正确的是( )A .给出数列的有限项就可以唯一确定这个数列的通项公式B .若等差数列{}n a 的公差0d >,则{}n a 是递增数列C .若a ,b ,c 成等差数列,则111,,a b c可能成等差数列 D .若数列{}n a 是等差数列,则数列{}12++n n a a 也是等差数列34.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a > B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列 C .0nS <时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项 35.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .当9n =或10时,n S 取最大值 C .911a a <D .613S S =【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.B 解析:B 【分析】根据数列的递推公式,得到数列的取值具备周期性,即可得到结论. 【详解】∵112,02121,12n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩,又∵a 135=,∴a 2=2a 1﹣1=235⨯-115=,a 3=2a 225=, a 4=2a 3=22455⨯=, a 5=2a 4﹣1=245⨯-135=, 故数列的取值具备周期性,周期数是4, 则2019a =50443a ⨯+=325a =, 故选B . 【点睛】本题主要考查数列项的计算,根据数列的递推关系是解决本题的关键.根据递推关系求出数列的取值具备周期性是解决本题的突破口.2.C解析:C 【分析】可以看出所排都是奇数从小到大排起.规律是先第一列和第一行,再第二列和第二行,再第三列第三行,并且完整排完n 次后,排出的数呈正方形.可先算2021是第几个奇数,这个奇数在哪两个完全平方数之间,再去考虑具体的位置. 【详解】每排完n 次后,数字呈现边长是n 的正方形,所以排n 次结束后共排了2n 个数.20211110112-+=,说明2021是1011个奇数. 而22961311011321024=<<=,故2021一定是32行,而从第1024个数算起,第1011个数是倒数第14个,根据规律第1024个数排在第32行第1列,所以第1011个数是第32行第14列,即2021在第32行第14列. 故32,14i j ==. 故选:C. 【点睛】本题考查数列的基础知识,但是考查却很灵活,属于较难题.3.C解析:C 【分析】由条件可得出11n n n n a a a a -+-≤-,然后可得3243546576a a a a a a a a a a -≤-≤-≤-≤-,即可推出选项C 正确.【详解】因为*112(N 3)33n n n n S S S S n n --+≤+∈≥+,,所以12133n n n n S S S S -+-≤--,所以113n n n n a a a a +-≤++ 所以11n n n n a a a a -+-≤-,所以3243546576a a a a a a a a a a -≤-≤-≤-≤-所以()6232435465764a a a a a a a a a a a a -=-+-+-+-≤- 故选:C 【点睛】本题主要考查的是数列的前n 项和n S 与n a 的关系,解答的关键是由条件得到11n n n n a a a a -+-≤-,属于中档题.4.A解析:A 【分析】由12233nn n n a a +-⎛⎫-=⋅ ⎪⎝⎭,当n <2时,a n +1-a n >0,当n <2时,a n +1-a n >0,从而可得到n =2时,a n 最大. 【详解】解:112222(1)3333n n nn n n a a n n ++-⎛⎫⎛⎫⎛⎫-=+-=⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当n <2时,a n +1-a n >0,即a n +1>a n ; 当n =2时,a n +1-a n =0,即a n +1=a n ; 当n >2时,a n +1-a n <0,即a n +1<a n . 所以a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,所以数列{}n a 中的最大项为a 2或a 3,且2328239a a ⎛⎫==⨯= ⎪⎝⎭. 故选:A . 【点睛】此题考查数列的函数性质:最值问题,属于基础题.5.C解析:C 【分析】首先根据已知条件得到410a =,再依次判断选项即可得到答案. 【详解】由题知:410a =,对选项A ,()2444113a =--=,故A 错误;对选项B ,244115a =-=,故B 错误;对选项C ,()4441102a ⨯+==,C 正确; 对选项D ,()444162a ⨯-==,故D 错误. 故选:C 【点睛】本题主要考查数列的通项公式,属于简单题.6.C解析:C 【分析】对每一个选项逐一分析得解. 【详解】∵212a a -=,323a a -=,434a a -=,…,由此可归纳得1(1)n n a a n n --=>,故A 正确;将前面的所有项累加可得1(1)(2)(1)22n n n n n a a -++=+=,∴20210a =,故B 正确; 令(1)10242n n +=,此方程没有正整数解,故C 错误; 1211111111212231n a a a n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦122111n n n ⎛⎫=-= ⎪++⎝⎭,故D 正确. 故选C 【点睛】本题主要考查累加法求通项,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.7.A解析:A 【分析】根据题意,由数列的递推公式求出数列的前8项,分析可得数列{}n a 是周期为6的数列,且1234560a a a a a a +++++=,进而可得1001234S a a a a =+++,计算即可得答案. 【详解】解:因为12018a =,22017a =,()*11N ,2n n n a a a n n +-=-∈≥,则321201720181a a a =-=-=-,432(1)20172018a a a =-=--=-,543(2018)(1)2017a a a =-=---=-,654(2017)(2018)1a a a =-=---=, 76511(2017)2018a a a a =-=--==, 8762201812017a a a a =-=-==,…,所以数列{}n a 是周期数列,周期为6, 因为12560a a a a ++⋅⋅⋅++=,所以()100125697989910016S a a a a a a a a =++⋅⋅⋅++++++12342016a a a a =+++=.故选:A . 【点睛】本题考查数列的递推公式的应用,关键是分析数列各项变化的规律,属于基础题.8.B解析:B 【分析】根据数列{}n a 的递推公式逐项可计算出5a 的值. 【详解】在数列{}n a 中,11a =,122n n n a a a +=+,则12122122123a a a ⨯===++,2322221322223a a a ⨯===++, 3431222212522a a a ⨯===++,4542221522325a a a ⨯===++. 故选:B. 【点睛】本题考查利用递推公式写出数列中的项,考查计算能力,属于基础题.9.D解析:D 【解析】 【分析】根据根号下的数字规律,可知为等差数列.利用等差数列性质求得通项公式,即可判断为第几项. 【详解】根据数列中的项,…由前几项可知,根式下的数列是以5为首项, 4为公差的等差数列 则根式下的数字组成的等差数列通项公式为()51441n a n n =+-⨯=+而=所以4541n =+ 解得11n = 故选:D 【点睛】本题考查了等差数列通项公式的求法及简单应用,属于基础题.10.C解析:C 【分析】根据递推公式,算出数列前4项,确定数列周期,即可求出结果. 【详解】∵12a =,111n n n a a a +-=+,∴213a =,311131213a -==-+,41123112a --==--+, 又121111111111n n n n n n n n a a a a a a a a +++---+===--+++,所以421n n n a a a ++=-=, ∴数列{}n a 的周期为4,且123476a a a a +++=-, ∵10084252÷=,∴100872522946S ⎛⎫=⨯-=- ⎪⎝⎭. 故选:C. 【点睛】本题主要考查数列周期性的应用,属于常考题型.11.A解析:A 【分析】根据递推公式推导出()4n n a a n N *+=∈,且有12341a a a a=,再利用数列的周期性可计算出2018T 的值. 【详解】12a =,()*111++=∈-nn n a a n N a ,212312a +∴==--,3131132a -==-+,411121312a -==+,51132113a +==-,()4n n a a n N *+∴=∈,且()12341123123a a a a ⎛⎫=⨯-⨯-⨯= ⎪⎝⎭,201845042=⨯+,因此,()5042018450421211236T T a a ⨯+==⨯=⨯⨯-=-.故选:A. 【点睛】本题考查数列递推公式的应用,涉及数列周期性的应用,考查计算能力,属于中等题.12.B解析:B 【分析】 由122n n a a n n +=++转化为11121n n a a n n +⎛⎫-=- ⎪+⎝⎭,利用叠加法,求得23n a n =-,即可求解. 【详解】 由122n n a a n n +=++,可得12112(1)1n n a a n n n n +⎛⎫-==- ⎪++⎝⎭,所以()()()()11223211n n n n n n n a a a a a a a a a a -----=-+-+-++-+11111111222*********n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+ ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭⎝⎭122113n n ⎛⎫=-+=- ⎪⎝⎭,所以102143105a =-=. 故选:B. 【点睛】数列的通项公式的常见求法:1、对于递推关系式可转化为1()n n a a f n +-=的数列,通常采用叠加法(逐差相加法)求其通项公式;2、对于递推关系式可转化为1()n na f n a +=的数列,并且容易求数列{()}f n 前n 项积时,通常采用累乘法求其通项公式; 3、对于递推关系式形如1n n a pa q +=+的数列,可采用构造法求解数列的通项公式.13.C解析:C【分析】根据“等差比”数列的定义,得到数列1n n a a +⎧⎫⎨⎬⎩⎭的通项公式,再利用202020202019201820192019a a a a a a =⨯求解.【详解】由题意可得:323a a =,211a a = ,32211a a a a -=, 根据“等差比数列”的定义可知数列1n n a a +⎧⎫⎨⎬⎩⎭是首先为1,公差为2的等差数列, 则()111221n na n n a +=+-⨯=-, 所以20202019220191220181a a =⨯-=⨯+,20192018220181aa =⨯-, 所以()()2202020202019201820192019220181220181420181a a a a a a =⨯=⨯+⨯-=⨯-. 故选:C 【点睛】本题考查数列新定义,等差数列,重点考查理解题意,转化思想,计算能力,属于中档题型.14.C解析:C 【分析】根据条件依次算出2a 、3a 、4a 、5a 即可. 【详解】 因为1111,(2)2n n n a a a n a --==≥+,所以211123a ==+,31131723a ==+,411711527a ==+,51115131215a ==+ 故选:C 15.C解析:C 【分析】判断出()f x 的周期,求得{}n a 的通项公式,由此求得56()()f a f a +. 【详解】依题意定义在R 上的函数()f x 是奇函数,且满足3()()2f x f x -=, 所以()333332222f x f x f x fx ⎛⎫⎛⎫⎛⎫⎛⎫+=---=--=-+ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()()()32f x f x f x ⎛⎫=---=--= ⎪⎝⎭,所以()f x 是周期为3的周期函数.由21n n S a n n=-得2n n S a n =-①, 当1n =时,11a =,当2n ≥时,()1121n n S a n --=--②,①-②得11221,21n n n n n a a a a a --=--=+(2n ≥),所以21324354213,217,2115,2131a a a a a a a a =+==+==+==+=,652163a a =+=.所以56()()f a f a +=()()()()()()()316331013211013f f f f f f f +=⨯++⨯=+=--=-故选:C 【点睛】如果一个函数既是奇函数,图象又关于()0x a a =≠对称,则这个函数是周期函数,且周期为4a .16.D解析:D 【分析】根据观察法,即可得出数列的通项公式. 【详解】因为数列1111,,,, (57911)--可写成 ()()()()2342322311111,1,1,12,..24.333-⨯-⨯-⨯+⨯+⨯+⨯+-⨯, 所以其通项公式为(1)(1)23213nnn a n n -=-=++⨯. 故选:D.17.C解析:C 【分析】根据选项进行逐一验证,可得答案.【详解】 选项A. ()11n a n n =-,当1n =时,无意义.所以A 不正确.选项B. ()1221n a n n =-,当2n =时,()211122221126a ==≠⨯⨯⨯-,故B 不正确. 选项C.11122=-,111162323==-⨯,1111123434==-⨯,1111204545==-⨯ 所以111n a n n =-+满足.故C 正确. 选项D. 11n a n =-,当1n =时, 1111012a =-=≠,故D 不正确. 故选:C18.B解析:B 【分析】讨论出当1a 分别取1、2、3、4、6时,数列{}n a 为周期数列,然后说明当19a ≥时,分1a 为正奇数和正偶数两种情况分析出数列{}n a 不是周期数列,即可得解. 【详解】已知数列{}n a 满足1N a *∈,1,2+3,nn n n n a a a a a +⎧⎪=⎨⎪⎩为偶数为奇数. ①若11a =,则24a =,32a =,41a =,54a =,,以此类推,可知对任意的n *∈N ,3n n a a +=,此时,{}n a 为周期数列;②若12a =,则21a =,34a =,42a =,51a =,,以此类推,可知对任意的n *∈N ,3n n a a +=,此时,{}n a 为周期数列;③若13a =,则26a =,33a =,46a =,,以此类推,可知对任意的n *∈N ,2n n a a +=,此时,{}n a 为周期数列;④若14a =,则22a =,31a =,44a =,52a =,,以此类推,可知对任意的n *∈N ,3n n a a +=,此时,{}n a 为周期数列;⑤若15a =,则28a =,34a =,42a =,51a =,64a =,,以此类推,可知对任意的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列; ⑥若16a =,则23a =,36a =,43a =,,以此类推,可知对任意的n *∈N ,2n n a a +=,此时,{}n a 为周期数列;⑦若17a =,则210a =,35a =,48a =,54a =,,以此类推,可知对任意的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列; ⑧若18a =,则24a =,32a =,41a =,54a =,,以此类推,可知对任意的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列.下面说明,当19a ≥且1N a *∈时,数列{}n a 不是周期数列.(1)当(3412,2a ⎤∈⎦且1N a *∈时,由列举法可知,数列{}n a 不是周期数列;(2)假设当(()112,23,k k a k k N +*⎤∈≥∈⎦且1N a *∈时,数列{}n a 不是周期数列,那么当(()1212,23,k k a k k N ++*⎤∈≥∈⎦时. 若1a 为正偶数,则(1122,22k k a a +⎤=∈⎦,则数列{}n a 从第二项开始不是周期数列,从而可知,数列{}n a 不是周期数列; 若1a 为正奇数,则((121321323,232,2k k k k a a ++++⎤⎤=+∈++⊆⎦⎦且2a 为偶数,由上可知,数列{}n a 从第二项开始不是周期数列,进而可知数列{}n a 不是周期数列.综上所述,当19a ≥且1N a *∈时,数列{}n a 不是周期数列.因此,若{}n a 为周期数列,则1a 的取值集合为{}1,2,3,4,6. 故选:B. 【点睛】本题解题的关键是抓住“数列{}n a 为周期数列”进行推导,对于1a 的取值采取列举法以及数学归纳法进行论证,对于这类问题,我们首先应弄清问题的本质,然后根据数列的基本性质以及解决数列问题时常用的方法即可解决.19.B解析:B 【分析】先由题中条件,得到21221i i i a a a +-=+,由累加法得到202211221k k a a ==-∑,根据00a =,()11i i a a i +=+∈N ,逐步计算出221a 所有可能取的值,即可得出结果.【详解】由11i i a a +=+得()2221121i i i i a a a a +=+=++,则21221i i i a a a +-=+, 所以2221121a a a -=+, 2232221a a a -=+,……,2202022121a a a -=+,以上各式相加可得:()2112022102212 (20202)kk a a a a a a=-=+++++=∑,所以20221211220k k a a a ==--∑,又00a =,所以2120211a a a =++=,则202211221k k a a ==-∑,因为()11i i a a i +=+∈N ,00a =,则0111a a =+=,所以11a =±,则2110a a =+=或2,所以20a =或2±;则3211a a =+=或3,所以31a =±或3±;则4310a a =+=或2或4,所以42a =±或4±或0;则5411a a =+=或3或5,所以51a =±或3±或5±;……,以此类推,可得:211a =±或3±或5±或7±或9±或11±或13±或15±或17±或19±或21±,因此221a 所有可能取的值为222222222221,3,5,7,9,11,13,15,17,19,21,所以221122a -所有可能取的值为10-,6-,2,14,30,50,74,102,134,170,210;则201kk a=∑所有可能取的值为10,6,2,14,30,50,74,102,134,170,210,即ACD 都有可能,B 不可能. 故选:B. 【点睛】 关键点点睛:求解本题的关键在于将题中条件平方后,利用累加法,得到20221211220k k a a a ==--∑,将问题转化为求221a 的取值问题,再由条件,结合各项取值的规律,即可求解.20.B解析:B 【分析】通过递推公式求出234,,a a a 可得数列{}n a 是周期数列,根据周期即可得答案. 【详解】 解:211111=1=22a a =--,3211121a a =-=-=-,4311112a a =-=+=, 则数列{}n a 周期数列,满足3n n a a -=,4n ≥85212a a a ∴===,故选:B. 【点睛】本题考查数列的周期性,考查递推公式的应用,是基础题.二、多选题 21.AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,,,,故A 正确;对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误; 对于C ,,故C 正确; 对于D ,,,, , 各式相加解析:AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确; 对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,32121,a a a a a ⋅⋅⋅=+=,各式相加得()2022202120202021202020192012182a a a a a a a a a ++⋅⋅⋅+=+++⋅⋅⋅++, 所以202220202019201811a a a a a a =++⋅⋅⋅+++,故D 错误. 故选:AC. 【点睛】关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项.22.ACD 【分析】先计算出数列的前几项,判断AC ,然后再寻找规律判断BD . 【详解】由题意,,A 正确,,C 正确; ,∴数列是周期数列,周期为3. ,B 错;,D 正确. 故选:ACD . 【点睛】 本解析:ACD 【分析】先计算出数列的前几项,判断AC ,然后再寻找规律判断BD . 【详解】由题意211122a =-=,311112a =-=-,A 正确,3132122S =+-=,C 正确;41121a =-=-,∴数列{}n a 是周期数列,周期为3. 2019367331a a a ⨯===-,B 错;20193201967322S =⨯=,D 正确.故选:ACD . 【点睛】本题考查由数列的递推式求数列的项与和,解题关键是求出数列的前几项后归纳出数列的性质:周期性,然后利用周期函数的定义求解.23.ABD 【分析】根据,,,计算可知正确;根据,,,,,,累加可知不正确;根据,,,,,,累加可知正确. 【详解】依题意可知,,,, ,,,,故正确; ,所以,故正确; 由,,,,,, 可得,故不解析:ABD 【分析】根据11a =,21a =,21n n n a a a ++=+,计算可知,A B 正确;根据12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,累加可知C 不正确;根据2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,累加可知D 正确. 【详解】依题意可知,11a =,21a =,21n n n a a a ++=+,312112a a a =+=+=,423123a a a =+=+=,534235a a a =+=+=,645358a a a =+=+=,故A 正确; 7565813a a a =+=+=,所以712345671123581333S a a a a a a a =++++++=++++++=,故B 正确;由12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,可得13572019a a a a a +++++=242648620202018a a a a a a a a a +-+-+-++-2020a =,故C 不正确;2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,所以2222212342019a a a a a +++++122312342345342019202020182019a a a a a a a a a a a a a a a a a a =+-+-+-+- 20192020a a =,所以22212201920202019a a a a a +++=,故D 正确. 故选:ABD. 【点睛】本题考查了数列的递推公式,考查了累加法,属于中档题.24.AD 【分析】先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求,最后根据和项与通项关系得. 【详解】因此数列为以为首项,为公差的等差数列,也是递增数列,即D 正确;解析:AD 【分析】先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求S n ,最后根据和项与通项关系得n a . 【详解】11140(2),40n n n n n n n a S S n S S S S ---+=≥∴-+= 11104n n n S S S -≠∴-= 因此数列1{}n S 为以114S =为首项,4为公差的等差数列,也是递增数列,即D 正确; 所以1144(1)44n n n n S S n=+-=∴=,即A 正确; 当2n ≥时111144(1)4(1)n n n a S S n n n n -=-=-=--- 所以1,141,24(1)n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,即B ,C 不正确;故选:AD 【点睛】本题考查由和项求通项、等差数列定义与通项公式以及数列单调性,考查基本分析论证与求解能力,属中档题.25.BCD 【分析】由是等差数列及,求出与的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】设等差数列数列的公差为. 由有,即 所以,则选项D 正确.选项A. ,无法判断其是否有最小解析:BCD 【分析】由{}n a 是等差数列及13522,a a S +=,求出1a 与d 的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】设等差数列数列{}n a 的公差为d .由13522,a a S +=有()1112542252a a a d d ⨯+=++,即160a d += 所以70a =,则选项D 正确. 选项A. ()71176773212S a d a d d ⨯=+=+=-,无法判断其是否有最小值,故A 错误.选项B. 113137131302a S a a +=⨯==,故B 正确. 选项C. 9876579450a a a a S a a S -=++++==,所以49S S =,故C 正确.故选:BCD【点睛】关键点睛:本题考查等差数列的通项公式及求和公式的应用,解答本题的关键是由条件13522,a a S +=得到160a d +=,即70a =,然后由等差数列的性质和前n 项和公式判断,属于中档题.26.ABC【分析】因为是等差数列,由可得,利用通项转化为和即可判断选项A ;利用前项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质即可判断选项C ;由可得且,即可判断选项D ,进而得出正确选项解析:ABC【分析】因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,140a <即可判断选项D ,进而得出正确选项.【详解】因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=, 对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()()118910181818022a a a a S ++===,故选项B 正确;对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <, 所以614a a <,故选项D 不正确,故选:ABC【点睛】关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.27.ABC【分析】由,变形得到,再利用等差数列的定义求得,然后逐项判断.【详解】当时,由,得,即,又,所以是以2为首项,以1为公差的等差数列,所以,即,故C 正确;所以,故A 正确;,解析:ABC【分析】由)212n a =-1=,再利用等差数列的定义求得n a ,然后逐项判断.【详解】当2n ≥时,由)212n a =-,得)221n a +=,1=,又12a =,所以是以2为首项,以1为公差的等差数列,2(1)11n n =+-⨯=+,即221n a n n =+-,故C 正确;所以27a =,故A 正确;()212n a n =+-,所以{}n a 为递增数列,故正确; 数列{}n a 不具有周期性,故D 错误;故选:ABC28.ABD【分析】转化条件为,进而可得,,再结合等差数列的性质及前n 项和公式逐项判断即可得解.【详解】因为,所以,即,因为数列递减,所以,则,,故A 正确;所以最大,故B 正确;所以,故C 错误解析:ABD【分析】转化条件为670a a +=,进而可得60a >,70a <,再结合等差数列的性质及前n 项和公式逐项判断即可得解.【详解】因为57S S =,所以750S S -=,即670a a +=,因为数列{}n a 递减,所以67a a >,则60a >,70a <,故A 正确;所以6S 最大,故B 正确;所以()113137131302a a S a +⨯==<,故C 错误; 所以()111116111102a a S a +⨯==>,故D 正确. 故选:ABD.29.ACD【分析】利用等差数列的性质和通项公式,逐个选项进行判断即可求解【详解】因为,,所以a1=3,an =[1+(n-1)d](n+2n).若d =1,则an =n(n+2n);若d =0,则a2=解析:ACD【分析】利用等差数列的性质和通项公式,逐个选项进行判断即可求解【详解】 因为1112a =+,1(1)2nn a n d n =+-+,所以a 1=3,a n =[1+(n -1)d ](n +2n ).若d =1,则a n =n (n +2n );若d =0,则a 2=6.因为a 2=6+6d ,a 3=11+22d ,所以若a 1,a 2,a 3成等差数列,则a 1+a 3=a 2,即14+22d =12+12d ,解得15d =-. 故选ACD 30.AB【分析】根据已知条件求得的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项.【详解】依题意,等差数列中,即,.对于A 选项,,所以A 选项正确.对于C 选项,,,所以,解析:AB【分析】根据已知条件求得1,a d 的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项.【详解】依题意,等差数列{}n a 中81535a a =,即()()1137514a d a d +=+,1149249,2a d a d =-=-. 对于A 选项,24912490a a a d +=+=,所以A 选项正确. 对于C 选项,1492a d =-,10a >,所以0d <,所以C 选项错误. 对于B 选项,()()149511122n a a n d d n d n d ⎛⎫=+-=-+-=- ⎪⎝⎭,令0n a ≥得51510,22n n -≤≤,由于n 是正整数,所以25n ≤,所以数列{}n S 中最大值的项是25S ,所以B 选项正确. 对于D 选项,由上述分析可知,125n ≤≤时,0n a ≥,当26n ≥时,0n a <,且0d <.所以数列{}na 的前25项递减,第26项后面递增,不是等差数列,所以D 选项错误. 故选:AB【点睛】等差数列有关知识的题目,主要把握住基本元的思想.要求等差数列前n 项和的最值,可以令0n a ≥或0n a ≤来求解.31.AB【分析】根据等差数列的性质及可分析出结果.【详解】因为等差数列中,所以,又,所以,所以,,故AB 正确,C 错误;因为,故D 错误,故选:AB【点睛】关键点睛:本题突破口在于由解析:AB【分析】根据等差数列的性质及717S S =可分析出结果.【详解】因为等差数列中717S S =,所以89161712135()0a a a a a a ++++=+=, 又10a >,所以12130,0a a ><,所以0d <,12n S S ≤,故AB 正确,C 错误; 因为125251325()2502a a S a +==<,故D 错误, 故选:AB【点睛】关键点睛:本题突破口在于由717S S =得到12130a a +=,结合10a >,进而得到12130,0a a ><,考查学生逻辑推理能力.32.ABC【分析】由已知求得公差的范围:,把各选项中的项全部用表示,并根据判断各选项.【详解】由题知,只需,,A 正确;,B 正确;,C 正确;,所以,D 错误.【点睛】本题考查等差数列的性解析:ABC【分析】由已知求得公差d 的范围:01d <<,把各选项中的项全部用d 表示,并根据01d <<判断各选项.【详解】由题知,只需1220010a d d d =->⎧⇒<<⎨>⎩,()()2242244a a d d d ⋅=-⋅+=-<,A 正确;()()2222415223644a a d d d d +=-++=-+>≥,B 正确; 21511111122221a a d d d +=+=>-+-,C 正确; ()()()()2152422222230a a a a d d d d d ⋅-⋅=-⋅+--⋅+=-<,所以1524a a a a ⋅<⋅,D 错误.【点睛】本题考查等差数列的性质,解题方法是由已知确定d 的范围,由通项公式写出各项(用d 表示)后,可判断.33.BCD【分析】根据等差数列的性质即可判断选项的正误.【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知,必是递增数列;C 选项:时,是等差数列,而a = 1,解析:BCD【分析】根据等差数列的性质即可判断选项的正误.【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知0d >,{}n a 必是递增数列;C 选项:1a b c ===时,1111a b c===是等差数列,而a = 1,b = 2,c = 3时不成立; D 选项:数列{}n a 是等差数列公差为d ,所以11112(1)223(31)n n a a a n d a nd a n d ++=+-++=+-也是等差数列;故选:BCD【点睛】本题考查了等差数列,利用等差数列的性质判断选项的正误,属于基础题.34.ACD【分析】由已知得,又,所以,可判断A ;由已知得出,且,得出时,,时,,又,可得出在上单调递增,在上单调递增,可判断B ;由,可判断C ;判断 ,的符号, 的单调性可判断D ;【详解】由已知解析:ACD【分析】由已知得()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,可判断A ;由已知得出2437d -<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,可得出1na 在1,6n n N 上单调递增,1n a 在7n n N ,上单调递增,可判断B ;由()313117713+12203213a a a S a ⨯==<=,可判断C ;判断 n a ,n S 的符号, n a 的单调性可判断D ;【详解】由已知得311+212,122d a a a d ===-,()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,故A 正确;由7161671+612+40+512+3>0+2+1124+7>0a a d d a a d d a a a d d ==<⎧⎪==⎨⎪==⎩,解得2437d -<<-,又()()3+312+3n a n d n d a =-=-,当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d=-,所以[]1,6n ∈时,1>0na ,7n ≥时,10n a <, 所以1n a 在1,6n n N 上单调递增,1n a 在7n n N ,上单调递增,所以数列1n a ⎧⎫⎨⎬⎩⎭不是递增数列,故B 不正确; 由于()313117713+12203213a a a S a ⨯==<=,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]1,12n ∈时,>0n S ,13n ≥时,0n S <,所以当[]7,12n ∈时,0n a <,>0n S ,0n nS a <,[]712n ∈,时,n a 为递增数列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项,故D 正确; 【点睛】 本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题.35.AD【分析】由求出,即,由此表示出、、、,可判断C 、D 两选项;当时,,有最小值,故B 错误.【详解】解:,,故正确A.由,当时,,有最小值,故B 错误.,所以,故C 错误.,,故D 正确.解析:AD【分析】由1385a a S +=求出100a =,即19a d =-,由此表示出9a 、11a 、6S 、13S ,可判断C 、D 两选项;当0d >时,10a <,n S 有最小值,故B 错误.【详解】解:1385a a S +=,111110875108,90,02d a a d a a d a ⨯++=++==,故正确A. 由190a d +=,当0d >时,10a <,n S 有最小值,故B 错误.9101110,a a d d a a d d =-==+=,所以911a a =,故C 错误.61656+5415392d S a d d d ⨯==-+=-, 131131213+11778392d S a d d d ⨯==-+=-,故D 正确. 故选:AD【点睛】考查等差数列的有关量的计算以及性质,基础题.。

河北省张家口市第四中学等比数列中难题训练 百度文库

河北省张家口市第四中学等比数列中难题训练 百度文库

一、等比数列选择题1.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n nn S a b n =---⨯+,*n N ∈,则存在数列{}n b 和{}n c 使得( )A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列C .·n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 2.数列{}n a 是等比数列,54a =,916a =,则7a =( ) A .8B .8±C .8-D .13.已知各项不为0的等差数列{}n a 满足26780a a a -+=,数列{}n b 是等比数列,且77b a =,则3810b b b =( )A .1B .8C .4D .24.中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?此问题中1斗为10升,则牛主人应偿还多少升粟?( ) A .503B .507C .1007D .20075.已知等比数列{}n a 中,1354a a a ⋅⋅=,公比q =,则456a a a ⋅⋅=( ) A .32B .16C .16-D .32-6.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若2(1)0n n n S T λ-->对*n N ∈恒成立,则实数λ的取值范围是( )A .()3,+∞B .()1,3-C .93,5⎛⎫ ⎪⎝⎭D .91,5⎛⎫- ⎪⎝⎭7.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为( ) A .24- B .3-C .3D .88.12的等比中项是( )A .-1B .1C .2D .2±9.记n S 为正项等比数列{}n a 的前n 项和,若2415S S ==,,则7S =( ). A .710S =B .723S =C .7623S =D .71273S =10.已知各项均为正数的等比数列{}n a 的前4项和为30,且53134a a a =+,则3a =( ) A .2 B .4C .8D .1611.题目文件丢失!12.已知数列{}n a ,{}n b 满足12a =,10.2b =,111233n n n a b a ++=+,11344n n n b a b +=+,则使0.01n n a b -<成立的最小正整数n 为( ) A .5B .7C .9D .1113.在流行病学中,基本传染数R 0是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.初始感染者传染R 0个人,为第一轮传染,这R 0个人中每人再传染R 0个人,为第二轮传染,…….R 0一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.假设新冠肺炎的基本传染数0 3.8R =,平均感染周期为7天,设某一轮新增加的感染人数为M ,则当M >1000时需要的天数至少为( )参考数据:lg38≈1.58 A .34B .35C .36D .3714.若一个数列的第m 项等于这个数列的前m 项的乘积,则称该数列为“m 积列”.若各项均为正数的等比数列{a n }是一个“2022积数列”,且a 1>1,则当其前n 项的乘积取最大值时,n 的最大值为( ) A .1009B .1010C .1011D .202015.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,)33,记为第一次操作;再将剩下的两个区间1[0,]3,2[,1]3分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于910,则需要操作的次数n 的最小值为( )(参考数据:lg 20.3010=,lg30.4771=)A .4B .5C .6D .716.已知等比数列{}n a 中,17a =,435a a a =,则7a =( ) A .19B .17C .13D .717.已知1,a ,x ,b ,16这五个实数成等比数列,则x 的值为( ) A .4B .-4C .±4D .不确定18.正项等比数列{}n a 的公比是13,且241a a =,则其前3项的和3S =( ) A .14B .13C .12D .1119.已知等比数列{}n a ,7a =8,11a =32,则9a =( ) A .16B .16-C .20D .16或16- 20.等比数列{}n a 的前n 项积为n T ,且满足11a >,10210310a a ->,102103101a a -<-,则使得1n T >成立的最大自然数n 的值为( )A .102B .203C .204D .205二、多选题21.题目文件丢失! 22.题目文件丢失!23.在数列{}n a 中,如果对任意*n N ∈都有211n n n na a k a a +++-=-(k 为常数),则称{}n a 为等差比数列,k 称为公差比.下列说法正确的是( ) A .等差数列一定是等差比数列 B .等差比数列的公差比一定不为0C .若32nn a =-+,则数列{}n a 是等差比数列D .若等比数列是等差比数列,则其公比等于公差比24.一个弹性小球从100m 高处自由落下,每次着地后又跳回原来高度的23再落下.设它第n 次着地时,经过的总路程记为n S ,则当2n ≥时,下面说法正确的是( ) A .500n S < B .500n S ≤C .n S 的最小值为7003D .n S 的最大值为40025.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )A .数列{}n a 为等比数列B .数列{}n S n +为等比数列C .数列{}n a 中10511a =D .数列{}2n S 的前n 项和为2224n n n +---26.设()f x 是定义在R 上恒不为零的函数,对任意实数x 、y ,都有()()()f x y f x f y +=,若112a =,()()*n a f n n N =∈,数列{}n a 的前n 项和n S 组成数列{}n S ,则有( ) A .数列{}n S 递增,且1n S < B .数列{}n S 递减,最小值为12C .数列{}n S 递增,最小值为12D .数列{}n S 递减,最大值为127.已知等比数列{}n a 公比为q ,前n 项和为n S ,且满足638a a =,则下列说法正确的是( )A .{}n a 为单调递增数列B .639S S = C .3S ,6S ,9S 成等比数列D .12n n S a a =-28.记单调递增的等比数列{a n }的前n 项和为S n ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-= B .12n n aC .21nn S =-D .121n n S -=-29.已知数列是{}n a是正项等比数列,且3723a a +=,则5a 的值可能是( ) A .2B .4C .85D .8330.数列{}n a 对任意的正整数n 均有212n n n a a a ++=,若22a =,48a =,则10S 的可能值为( ) A .1023B .341C .1024D .34231.已知等比数列{}n a 中,满足11a =,2q ,n S 是{}n a 的前n 项和,则下列说法正确的是( )A .数列{}2n a 是等比数列B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列C .数列{}2log n a 是等差数列D .数列{}n a 中,10S ,20S ,30S 仍成等比数列32.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,781a a ⋅>,87101a a -<-,则下列结论正确的是( ) A .01q << B .791a a ⋅> C .n S 的最大值为9SD .n T 的最大值为7T33.已知数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, n S 是数列1 n a ⎧⎫⎨⎬⎩⎭的前n 项和,则下列结论中正确的是( ) A .()21121n nS n a -=-⋅ B .212n n S S =C .2311222n n n S S ≥-+ D .212n n S S ≥+34.已知数列{}n a 前n 项和为n S .且1a p =,122(2)n n S S p n --=≥(p 为非零常数)测下列结论中正确的是( ) A .数列{}n a 为等比数列 B .1p =时,41516S =C .当12p =时,()*,m n m n a a a m n N +⋅=∈ D .3856a a a a +=+ 35.记单调递增的等比数列{}n a 的前n 项和为n S ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-=B .12n naC .21nn S =- D .121n n S -=-【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.D 【分析】由题设求出数列{}n a 的通项公式,再根据等差数列与等比数列的通项公式的特征,逐项判断,即可得出正确选项. 【详解】 解:(21)[(2)22](2)2(2)n n n n S a b n a b bn a b =---⨯+=+-⋅-+,∴当1n =时,有110S a a ==≠;当2n ≥时,有11()2n n n n a S S a bn b --=-=-+⋅, 又当1n =时,01()2a a b b a =-+⋅=也适合上式,1()2n n a a bn b -∴=-+⋅,令n b a b bn =+-,12n n c -=,则数列{}n b 为等差数列,{}n c 为等比数列,故n n n a b c =,其中数列{}n b 为等差数列,{}n c 为等比数列;故C 错,D 正确;因为11()22n n n a a b bn --+=-⋅⋅,0b ≠,所以{}12n bn -⋅即不是等差数列,也不是等比数列,故AB 错. 故选:D.【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力. 2.A 【分析】分析出70a >,再结合等比中项的性质可求得7a 的值. 【详解】设等比数列{}n a 的公比为q ,则2750a a q =>,由等比中项的性质可得275964a a a ==,因此,78a =.故选:A. 3.B 【分析】根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】因为各项不为0的等差数列{}n a 满足26780a a a -+=,所以27720a a -=,解得72a =或70a =(舍);又数列{}n b 是等比数列,且772b a ==,所以33810371178b b b b b b b ===.故选:B. 4.D 【分析】设羊、马、牛的主人应偿还粟的量分别为a 1,a 2,a 3,利用等比数列的前n 项和公式即可求解. 【详解】5斗50=升,设羊、马、牛的主人应偿还粟的量分别为a 1,a 2,a 3,由题意可知a 1,a 2,a 3构成公比为2的等比数列,且S 3=50,则()311212a --=50,解得a 1=507,所以牛主人应偿还粟的量为23120027a a ==故选:D 5.A 【分析】由等比数列的通项公式可计算得出()6456135a a a q a a a ⋅⋅=⋅⋅,代入数据可计算得出结果.【详解】由6326456135135432a a a a q a q a q a a a q ⋅⋅=⋅⋅⋅⋅⋅=⋅⋅⋅=⨯=.故选:A. 6.D 【分析】由2n n S a =-利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,得到数列{}na 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将2(1)0nn n S T λ-->恒成立,转化为()()321(1)210nnnλ---+>对*n N ∈恒成立,再分n 为偶数和n 为奇数讨论求解.【详解】当1n =时,112S a =-,得11a =; 当2n ≥时,由2n n S a =-, 得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=, 所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列, 所以1112211212nn n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nnn T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,由2(1)0n n nS T λ-->,得214141(1)10234n nnλ⎡⎤⎡⎤⎛⎫⎛⎫---⨯->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦, 所以221131(1)1022n n nλ⎡⎤⎡⎤⎛⎫⎛⎫---->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,所以211131(1)110222n n n nλ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫----+>⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.又*n N ∈,所以1102n⎛⎫-> ⎪⎝⎭, 所以1131(1)1022n n nλ⎡⎤⎡⎤⎛⎫⎛⎫---+>⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,即()()321(1)210nnnλ---+>对*n N ∈恒成立,当n 为偶数时,()()321210nnλ--+>,所以()()321321663212121nnn n n λ-+-<==-+++, 令6321n n b =-+,则数列{}n b 是递增数列,所以22693215λb <=-=+; 当n 为奇数时,()()321210nnλ-++>,所以()()321321663212121nnn n n λ-+--<==-+++,所以16332121λb -<=-=-=+, 所以1λ>-.综上,实数λ的取值范围是91,5⎛⎫- ⎪⎝⎭.故选:D. 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题. 7.A 【分析】根据等比中项的性质列方程,解方程求得公差d ,由此求得{}n a 的前6项的和. 【详解】设等差数列{}n a 的公差为d ,由2a 、3a 、6a 成等比数列可得2326a a a =,即2(12)(1)(15)d d d +=++,整理可得220d d +=,又公差不为0,则2d =-, 故{}n a 前6项的和为616(61)6(61)661(2)2422S a d ⨯-⨯-=+=⨯+⨯-=-. 故选:A 8.D利用等比中项定义得解. 【详解】2311()((2-==,的等比中项是 故选:D 9.D 【分析】利用等比数列前n 项和公式列出方程组,求出首项和公比,由此能求出这个数列的前7项和. 【详解】n S 为正项等比数列{}n a 的前n 项和,21S =,45S =,∴21410(1)11(1)51q a q qa q q ⎧⎪>⎪⎪-⎪=⎨-⎪⎪-⎪=-⎪⎩,解得113a =,2q ,771(12)1273123S -∴==-.故选:D . 10.C 【分析】根据等比数列的通项公式将53134a a a =+化为用基本量1,a q 来表示,解出q ,然后再由前4项和为30求出1a ,再根据通项公式即可求出3a . 【详解】设正数的等比数列{}n a 的公比为()0q q >,因为53134a a a =+,所以4211134a q a q a =+,则42340q q --=,解得24q =或21q =-(舍),所以2q,又等比数列{}n a 的前4项和为30,所以23111130a a q a q a q +++=,解得12a =, ∴2318a a q ==.故选:C .11.无12.C令n n n c a b =-,由111233n n n a b a ++=+,11344n n n b a b +=+可知数列{}n c 是首项为1.8,公比为12的等比数列,即11.812n n c -⎛⎫ ⎪⎝⎭=⨯,则110.0121.8n -⎛⎫< ⎪⎝⎭⨯,解不等式可得n 的最小值. 【详解】令n n n c a b =-,则11120.2 1.8c a b =-=-=111113131344444121233343n n n n n n n n n n nn c a b a b a b b a a a b ++++⎛⎫=-=+--=+-- ⎪⎝+⎭111222n n n a b c -== 所以数列{}n c 是首项为1.8,公比为12的等比数列,所以11.812n n c -⎛⎫ ⎪⎝⎭=⨯由0.01n n a b -<,即110.0121.8n -⎛⎫< ⎪⎝⎭⨯,整理得12180n ->由72128=,82256=,所以18n -=,即9n =故选:C. 【点睛】本题考查了等比数列及等比数列的通项公式,解题的关键是根据已知的数列递推关系式,利用等比数列的定义,得到数列{}n c 为等比数列,考查了学生的分析问题能力能力与运算求解能力,属于中档题. 13.D 【分析】假设第n 轮感染人数为n a ,根据条件构造等比数列{}n a 并写出其通项公式,根据题意列出关于n 的不等式,求解出结果,从而可确定出所需要的天数. 【详解】设第n 轮感染人数为n a ,则数列{}n a 为等比数列,其中1 3.8a =,公比为0 3.8R =,所以 3.81000nn a =>,解得 3.8333log 1000 5.17lg3.8lg3810.58n >==≈≈-, 而每轮感染周期为7天,所以需要的天数至少为5.17736.19⨯=. 故选:D . 【点睛】关键点点睛:解答本题的关键点有两个:(1)理解题意构造合适的等比数列;(2)对数的计算. 14.C 【分析】根据数列的新定义,得到122021...1a a a =,再由等比数列的性质得到210111a =,再利用11,01a q ><<求解即可.【详解】根据题意:2022122022...a a a a =, 所以122021...1a a a =,因为{a n }等比数列,设公比为q ,则0q >,所以212021220201011...1a a a a a ====,因为11a >,所以01q <<, 所以1010101110121,1,01a a a >=<<,所以前n 项的乘积取最大值时n 的最大值为1011. 故选:C. 【点睛】关键点睛:本题主要考查数列的新定义以及等比数列的性质,数列的最值问题,解题的关键是根据定义和等比数列性质得出210111a =以及11,01a q ><<进行判断.15.C 【分析】依次求出第次去掉的区间长度之和,这个和构成一个等比数列,再求其前n 项和,列出不等式解之可得. 【详解】第一次操作去掉的区间长度为13;第二次操作去掉两个长度为19的区间,长度和为29;第三次操作去掉四个长度为127的区间,长度和为427;…第n 次操作去掉12n -个长度为13n 的区间,长度和为123n n -,于是进行了n 次操作后,所有去掉的区间长度之和为1122213933nn n n S -⎛⎫=++⋅⋅⋅+=- ⎪⎝⎭,由题意,902131n⎛⎫-≥ ⎪⎝⎭,即21lg lg1031n ≤=-,即()lg3lg21n -≥,解得:115.679lg3lg 20.47710.3010n ≥=≈--,又n 为整数,所以n 的最小值为6. 故选:C . 【点睛】本题以数学文化为背景,考查等比数列通项、前n 项和等知识及估算能力,属于中档题. 16.B【分析】根据等比中项的性质可求得4a 的值,再由2174a a a =可求得7a 的值. 【详解】在等比数列{}n a 中,对任意的n *∈N ,0n a ≠,由等比中项的性质可得24354a a a a ==,解得41a =, 17a =,21741a a a ==,因此,717a =. 故选:B. 17.A 【分析】根据等比中项的性质有216x =,而由等比通项公式知2x q =,即可求得x 的值. 【详解】由题意知:216x =,且若令公比为q 时有20x q =>,∴4x =, 故选:A 18.B 【分析】根据等比中项的性质求出3a ,从而求出1a ,最后根据公式求出3S ; 【详解】解:因为正项等比数列{}n a 满足241a a =,由于2243a a a =,所以231a =. 所以31a =,211a q ∴=,因为13q =,所以19a =. 因此()3131131a q S q-==-.故选:B 19.A 【分析】根据等比数列的通项公式得出618a q =,10132a q=且10a >,再由819a a q ==.【详解】设等比数列{}n a 的公比为q ,则618a q =,10132a q=且10a >则81916a q a ====故选:A 20.C 【分析】由题意可得1021031a a >,1021031,1a a ><,利用等比数列的性质即可求解. 【详解】由10210310a a ->,即1021031a a >,则有21021a q ⨯>,即0q >。

河北张家口市第四中学新高中数学平面向量多选题100及答案

河北张家口市第四中学新高中数学平面向量多选题100及答案

河北张家口市第四中学新高中数学平面向量多选题100及答案一、平面向量多选题1.已知边长为4的正方形ABCD 的对角线的交点为O ,以O 为圆心,6为半径作圆;若点E 在圆O 上运动,则( )A .72EA EB EB EC EC ED ED EA ⋅+⋅+⋅+⋅= B .56EA EC EB ED ⋅+⋅= C .144EA EB EB EC EC ED ED EA ⋅+⋅+⋅+⋅= D .28EA EC EB ED ⋅+⋅=【答案】BC 【分析】以O 为坐标原点,线段BC ,AB 的垂直平分线分别为x 、y 轴建立平面直角坐标系xOy ,再利用向量坐标的线性运算以及向量数量积的坐标运算即可求解.【详解】作出图形如图所示,以O 为坐标原点,线段BC ,AB 的垂直平分线分别为x 、y 轴建立平面直角坐标系xOy ; 观察可知,()2,2A --,()2,2B -,()2,2C ,()2,2D -, 设(),E x y ,则2236x y +=,故()2,2EA x y =----,()2,2EB x y =---,()2,2EC x y =--, 故ED =()2,2x y ---,故EA EB EB EC EC ED ED EA ⋅+⋅+⋅+⋅()()24144EA EC EB ED EO =+⋅+==,56EA EC EB ED ⋅+⋅=.故选:BC2.设点A ,B 的坐标分别为()0,1,()1,0,P ,Q 分别是曲线x y e =和ln y x =上的动点,记12,I AQ AB I BP BA =⋅=⋅,则下列命题不正确的是( ) A .若12I I =,则()PQ AB R λλ=∈ B .若12I I =,则AP BQ = C .若()PQ AB R λλ=∈,则12I I = D .若AP BQ =,则12I I =【答案】ABD 【分析】作出两个函数的图象,利用图象结合平面向量共线知识和平面向量数量积的几何意义分析可得答案. 【详解】根据题意,在直线AB 上取点,P Q '',且满足||||AP BQ ''=,过,P Q ''分别作直线AB 的垂线,交曲线xy e =于1P ,2P ,交曲线ln y x =于12,Q Q ,在曲线xy e =上取点3P ,使13||||AP AP =,如图所示:1||||cos I AQ AB AQ AB QAB =⋅=⋅∠,令||cos ||AQ QAB AQ '∠=,则1||||I AQ AB '=⋅,2||||cos I BP BA BP BA PBA =⋅=⋅∠,令||cos ||BP PBA BP '∠=,则2||||I BP BA '=⋅,若||||AP BQ ''=,则||||AQ BP ''=,若12I I =,则||||AQ BP ''=即可,此时P 可以与1P 重合,Q 与2Q 重合,满足题意,但是()PQ AB R λλ=∈不成立,且||||AP BQ ≠,所以A 、B 不正确;对于选项C ,若PQ AB =λ,此时P 与1P 重合,且Q 与1Q 重合,或P 与2P 重合,且Q 与2Q 重合,所以满足12I I =,所以C 正确;对于D ,当P 与3P 重合时,满足13||||AP AP =,但此时3P 在直线AB 上的投影不在P '处,因而不满足||||AQ BP ''=,即12I I ≠,所以D 不正确.故选:ABD 【点睛】关键点点睛:利用图象结合平面向量共线知识和平面向量数量积的几何意义求解是解题关键.3.下列关于平面向量的说法中正确的是( )A .已知,a b 均为非零向量,若//a b ,则存在唯一的实数λ,使得λabB .已知非零向量(1,2),(1,1)a b ==,且a 与a λb +的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭C .若a c b c ⋅=⋅且0c ≠,则a b =D .若点G 为ABC 的重心,则0GA GB GC ++= 【答案】AD 【分析】由向量共线定理可判断选项A ;由向量夹角的的坐标表示可判断选项B ;由数量积的运算性质可判断选项C ;由三角形的重心性质即向量线性运算可判断选项D. 【详解】对于选项A : 由向量共线定理知选项A 正确;对于选项B :()()()1,21,11,2a b λλλλ+=+=++,若a 与a λb +的夹角为锐角,则()()122530a a b λλλλ⋅+=+++=+>解得53λ>-,当a 与a λb +共线时,()221λλ+=+,解得:0λ=,此时(1,2)a =,()1,2a b λ+=,此时a b =夹角为0,不符合题意,所以实数λ的取值范围是()5,00,3⎛⎫-⋃+∞ ⎪⎝⎭,故选项B 不正确; 对于选项C :若a c b c ⋅=⋅,则()0c a b ⋅-=,因为0c ≠,则a b =或c 与a b -垂直, 故选项C 不正确;对于选项D :若点G 为ABC 的重心,延长AG 与BC 交于M ,则M 为BC 的中点,所以()1222AG GM GB GC GB GC ==⨯⨯+=+,所以0GA GB GC ++=,故选项D 正确.故选:AD 【点睛】易错点睛:两个向量夹角为锐角数量积大于0,但数量积大于0向量夹角为锐角或0,由向量夹角为锐角数量积大于0,需要检验向量共线的情况. 两个向量夹角为钝角数量积小于0,但数量积小于0向量夹角为钝角或π.4.在平行四边形ABCD 中,2AB =,1AD =,2DE EC =,AE 交BD 于F 且2AE BD ⋅=-,则下列说法正确的有( )A .1233AE AC AD =+B .25DF DB =C .,3AB AD π=D .2725FB FC ⋅=【答案】BCD 【分析】根据向量的线性运算,以及向量的夹角公式,逐一判断四个选项的正误即可得正确选项. 【详解】对于选项A :()22233133AE AD DE AD DC AD AD D C A A A C =+=+=+-=+,故选项A 不正确; 对于选项B :易证DEF BFA ,所以23DF DE BF AB ==,所以2235DF FB DB ==,故选项B 正确;对于选项C :2AE BD ⋅=-,即()223AD A B D AB A ⎛⎫+-=- ⎪⎝⎭,所以 2221233AD AD AB AB -⋅-=-,所以1142332AD AB -⋅-⨯=-,解得:1AB AD ⋅=,11cos ,212AB AD AB AD AB AD⋅===⨯⨯,因为[],0,AB AD π∈,所以,3AB AD π=,故选项C 正确; 对于选项D :()()332555AB FB FC DB FD DC AD BD AB ⎛⎫⋅=⋅+=-⋅+ ⎪⎝⎭()()()3233255555AD AD AB AB AD A AB AB B AD ⎡⎤⎛⎫=-⋅-+=-⋅+ ⎪⎢⎥⎣⎦⎝⎭22969362734252525252525AB AB AD AD =⨯-⋅-⨯=⨯--=,故选项D 正确. 故选:BCD 【点睛】关键点点睛:选项B 的关键点是能得出DEF BFA ,即可得23DF DE BF AB ==,选项D 的关键点是由于AB 和AD 的模长和夹角已知,故将FB 和FC 用AB 和AD 表示,即可求出数量积.5.正方形ABCD 的边长为1,记AB a =,BC b =,AC c =,则下列结论正确的是( )A .()0a b c -⋅= B .()0a b c a +-⋅= C .()0a c b a --⋅=D .2a b c ++=【答案】ABC 【分析】作出图形,利用平面向量加、减法法则与正方形的性质可判断A 、B 选项的正误;利用平面向量的减法法则与向量的数乘运算可判断C 选项的正误;利用平面向量的加法法则可判断D 选项的正误. 【详解】 如下图所示:对于A 选项,四边形ABCD 为正方形,则BD AC ⊥,a b AB BC AB AD DB -=-=-=,()0a b c DB AC ∴-⋅=⋅=,A 选项正确;对于B 选项,0a b c AB BC AC AC AC +-=+-=-=,则()00a b c a a +-⋅=⋅=,B 选项正确;对于C 选项,a c AB AC CB -=-=,则0a c b CB BC --=-=,则()0a c b a --⋅=,C 选项正确;对于D 选项,2a b c c ++=,222a b c c ∴++==,D 选项错误. 故选:ABC. 【点睛】本题考查平面向量相关命题正误的判断,同时也考查了平面向量加、减法法则以及平面向量数量积的应用,考查计算能力,属于中等题.6.如图所示,设Ox ,Oy 是平面内相交成2πθθ⎛⎫≠⎪⎝⎭角的两条数轴,1e ,2e 分别是与x ,y 轴正方向同向的单位向量,则称平面坐标系xOy 为θ反射坐标系中,若12OM xe ye =+,则把有序数对(),x y 叫做向量OM 的反射坐标,记为(),OM x y =.在23πθ=的反射坐标系中,()1,2a =,()2,1b =-.则下列结论中,正确的是( )A .()1,3a b -=-B .5a =C .a b ⊥D .a 在b 上的投影为3714-【答案】AD 【分析】123a b e e -=-+,则()1,3a b -=-,故A 正确;3a =,故B 错误;32a b ⋅=-,故C错误;由于a在b 上的投影为33727a bb-⋅==-,故D正确.【详解】()()121212223a b e e e e e e-=+--=-+,则()1,3a b-=-,故A 正确;()2122254cos33a e eπ=+=+=,故B错误;()()22121211223222322a b e e e e e e e e⋅=+⋅-=+⋅-=-,故C错误;由于()22227b e e=-=,故a在b上的投影为33727a bb-⋅==-,故D正确。

河北省张家口市2023-2024学年高一下学期期中质量检测数学试卷

河北省张家口市2023-2024学年高一下学期期中质量检测数学试卷

河北省张家口市2023-2024学年高一下学期期中质量检测数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知角α终边经过点()3,4P -,则sin α的值为( )A .35B .35- C .45D .45-2.已知向量(31,1),(1,2)m m a b =-+=-r r ,若//a b r r ,则m =( )A .37-B .17C .15D .353.若i12ia z +=-为实数,则实数=a ( ) A .2B .2-C .12D .12-4.已知π1sin 35α⎛⎫+= ⎪⎝⎭,则πcos 6α⎛⎫-= ⎪⎝⎭( )A .15 BC .15-D.5.已知函数π()3sin(2)6f x x =+在[0,]4a 上单调递增,则实数a 的最大值为( )A .π6B .2π3C .4π3D .5π36.已知向量,a b rr 满足向量b r 在向量a r 上的投影向量为34a r ,且2a =r ,则(2)a ab ⋅-=r r r ( )A .1-B .1C .2-D .27.已知函数π()sin()0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则61π=36f ⎛⎫ ⎪⎝⎭( )AB. CD. 8.已知π1tan 42θ⎛⎫-= ⎪⎝⎭,则sin cos 2π4θθθ=⎛⎫+ ⎪⎝⎭( )A .310-B .35-C .310 D .35二、多选题9.已知平行四边形的三个顶点的坐标分别为(2,2),(2,4),(0,0)-,则另一个顶点的坐标可以是( ) A .(0,6)-B .(0,6)C .(4,2)-D .(4,2)-10.已知z 为复数,则下列说法正确的是( )A .若z 是纯虚数,则20z <B .22||z z =C .若复数2(2i)z =-,则z 在复平面内对应的点在第一象限D .若||1z =,则|i |2z -≤11.在ABC V ,下列说法正确的是( )A .若cos cos a A bB =,则ABC V 为等腰三角形 B .若40,20,25a b B ===︒,则ABC V 必有两解 C .若ABC V 是锐角三角形,则sin cos A B >D .若cos2cos2cos21A B C +-<,则ABC V 为锐角三角形三、填空题12.若z =||z = .13.已知单位向量,a b r r 满足|3||3|a b a b -=+r r r r ,则|4|a b +=r r.14.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,且ABC V 的面积)222S a c b =+-,则223Sa c +的最大值为 .四、解答题15.已知四边形ABCD 为平行四边形,(2,4),(1,3)AB AD ==u u u r u u u r.(1)求平行四边形ABCD 的面积;(2)设点P 满足3BP BC =u u u r u u u r,点Q 为线段AP 上一点,若115AQ AB BC λ=+u u u r u u u r u u u r ,求实数λ的值.16.已知在复数范围内,关于x 的一元二次方程220()x x k k -+=∈R 有两个虚数根1z 和2z ,若122z z -=,且1z 的虚部为正数. (1)求实数k 的值;(2)求23202511112222z z z z z z z z ⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L 的值.17.记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos b cC C a+=,且6a =. (1)求角A ;(2)已知角A 的内角平分线交BC 于点M,若AM =ABC V 的周长.18.如图,某市城建部门计划在一块半径为400m ,圆心角为π2的扇形空地AOB 内设计一个五边形花境,具体方案设计如下:在圆弧AB 上取点P (P 与A ,B 不重合),点M ,N 分别在半径OA ,OB 上,且PM OA ⊥,PN OB ⊥,连接P A ,PB ,MN ,在由PMN V ,PNB V ,PMA △组成的五边形MNBP A 内种植三种花境植物,设POA θ∠=.(1)求22PA PB +的取值范围;(2)已知PMN V 内花境植物种植费用为400元/2m ,PNB V ,PMA △内花境植物种植费用为500元/2m ,试预测此五边形花境最低造价为多少万元?19.设O 为坐标原点,定义非零向量(,)OM a b =u u u u r 的“相伴函数”为()sin cos ()f x a x b x x =+∈R ,向量(,)OM a b =u u u u r称为函数()sin cos ()f x a x b x x =+∈R 的“相伴向量”.(1)已知函数()f x为向量OM =u u u u r 的“相伴函数”,若函数π2y f x t ⎛⎫=- ⎪⎝⎭在80,3x ⎡⎤∈⎢⎥⎣⎦上有两个零点,求实数t 的取值范围;(2)在ABC V中,AB 向量(1,1)OA =u u u r的“相伴函数”为()g x ,且()g x 的最大值为2cos C ,若点T 为ABC V 的外心,求TC AB CA CB ⋅+⋅u u u r u u u r u u u r u u u r的最大值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学限时训练24
一、选择题
1、在ABC ∆中,,,AB c AC b ==若点D 满足2,BD DC =则AD 等于( ) A.2133b c + B. 3253c b - C.2133b c - D.1233
b c + 2、已知P 是ABC ∆所在平面内的一点,若CB PA PB λ=+,其中R λ∈,则P 值( )
A. ABC ∆的内部
B.AC 所在直线上
C.AB 所在直线上
D. BC 所在直线上
3、已知ABC ∆的三个顶点,,A B C 及平面内一点P 满足0PA PB PC ++=,若实数λ 满足,AB AC AP λ+=则λ的值为( ) A.2 B.23
C.3
D. 6 4、已知,a b 不共线,且,,AB a b AC a b λμ=+=+则,,A B C 三点共线应满足( )
A.2λμ+=
B.1λμ-=
C.1λμ=-
D. 1λμ=
5、在ABC ∆中,点D 在边CD 的延长线上,且4CD BD r AB sAC ==-,则s r +等于( )
A.0
B.
45 C.83
D. 3 二、填空题
6、设,a b 是两个不共线的非零向量,若向量2ka b +与8a kb +的方向相反,则k =
7、若2,a b =与a 的方向相反,且8,2,b a b λ==则λ=
答题卡 班级 姓名 1、 2、 3、 4、 5、 6、 7、
三、解答题
8、设,a b 是两个不共线的非零向量,若2,3,3OA a b OB a b OC a b =-=+=-,求证:
,,A B C 三点共线
9、在ABC ∆中,点,D E 分别是,AC AB 边上的一点,1,2CD AE DA EB ==记,,BC a CA b ==求证:1()3DE b a =-
第一次批改 月 日 第二次批改 月 日。

相关文档
最新文档