北师大版八年级数学上册第七章 7.5.2三角形的外角 同步练习题( 教师版)

合集下载

八年级数学上册第七章三角形内角外角关系应用的七种常见题型习题pptx课件新版北师大版

八年级数学上册第七章三角形内角外角关系应用的七种常见题型习题pptx课件新版北师大版
∠ DAE 的度数.(直接写出结论)


解:(3)∠ DAE = (α-β).
1
2
34Biblioteka 567第七章 平行线的证明
专项突破19
三角形内角、外角关系应用
的七种常见题型
题型1三角形内角和在叠放中的应用
1. [2024舟山中学月考] 如图,有一块直角三角尺 DEF 放置
在△ ABC 上,三角尺 DEF 的两条直角边 DE , DF 恰好分
别经过点 B , C . 请写出∠ BDC 与∠ A +∠ ABD +
∠ ACD 之间的数量关系,并说明理由.
1
2
3
4
5
6
7
解:∠ BDC =∠ A +∠ ABD +∠ ACD . 理由如下:
∵∠ BDC +∠ DBC +∠ DCB =180°,∠ A +∠ ABC +
∠ ACB =∠ A +∠ ABD +∠ ACD +∠ DBC +∠ DCB =
180°,
∴∠ BDC =∠ A +∠ ABD +∠ ACD .
∴∠ BAC =180°-100°=80°.


∵ AE 平分∠ BAC ,∴∠ BAE = ∠ BAC =40°.
∴∠ DAE =∠ BAE -∠ BAD =40°-20°=20°.
1
2
3
4
5
6
7
7. [教材P185复习题T9变式]如图,在△ ABC 中, AD ⊥
BC , AE 平分∠ BAC ,∠ B =70°,∠ C =30°.
∵ AE 平分∠ BAC ,




∴∠ BAE = ∠ BAC = (180°-∠ B -∠ C )

北师大版八年级数学上册第七章 7.5.1三角形内角和定理的证明 同步练习题( 教师版)

北师大版八年级数学上册第七章 7.5.1三角形内角和定理的证明 同步练习题( 教师版)

北师大版八年级数学上册第七章 7.5.1三角形内角和定理的证明 同步练习题 一、选择题1.如图,在△ABC 中,∠A =60°,∠B =40°,则∠C 等于(B)A .100°B .80°C .60°D .40°2.在下列条件中:①∠A+∠B=∠C;②∠A∶∠B∶∠C=1∶2∶3;③∠A=90°-∠B;④∠A=∠B=12∠C 中,能确定△ABC 是直角三角形的条件有(D)A .1个B .2个C .3个D .4个3.如图,AD 是△ABC 的高,BE 是△ABC 的角平分线,BE ,AD 相交于点F ,已知∠BAD =42°,则∠BFD=(D)A .45°B .54°C .56°D .66° 4.如图,在△ABC 中,∠BAC =90°,AD 是△ABC 的高,则(C)A .∠B =∠C B .∠BAD =∠B C .∠C =∠BAD D .∠DAC =∠C5.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE∥BC 交AC 于点E.若∠A =54°,∠B =48°,则∠CDE 的大小为(C)A.44° B.40° C.39° D.38°二、填空题6.如图,AB∥CD,AE交CD于点C,DE⊥AE于点E.若∠A=42°,则∠D=48°.7.在△ABC中,∠A∶∠B∶∠C=2∶3∶4,则∠A的度数为40°.8.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于点D,DF⊥CE,则∠CDF=74°.72°.FAE=19°,则∠C=24°.134°,∠D=88°.12.在△ABC中,∠ACB=50°,CE为△ABC的角平分线,AC边上的高BD与CE所在的直线交于点F.若∠ABD∶∠ACF=3∶5,则∠BEC的度数为100°或130°三、解答题13.在△ABC中,∠A+35°=∠B,∠C=∠B-25°,求△ABC的各个内角的度数.解:∵∠A+35°=∠B,∴∠A=∠B-35°.∵∠C=∠B-25°,∠A+∠B+∠C=180°,∴∠B-35°+∠B+∠B-25°=180°.∴∠B=80°.∴∠A=45°,∠C=55°.14.已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.证明:过点A作EF∥BC,∵EF∥BC,∴∠EAB=∠B,∠FAC=∠C.∵∠EAB+∠FAC+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即∠A+∠B+∠C=180°.15.如图,已知将一块直角三角板DEF放置在△ABC上,使得该三角板的两条直角边DE,DF恰好分别经过点B,C.(1)∠DBC+∠DCB=90度;(2)过点A作直线MN∥DE,若∠ACD=20°,试求∠CAM的大小.解:在△ABC中,∠ABC+∠ACB+∠BAC=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠BAC=180°.而∠DBC+∠DCB=90°,∴∠ABD+∠ACD=90°-∠BAC.∴∠ABD+∠BAC=90°-∠ACD=70°.又∵MN∥DE,∴∠ABD=∠BAN.而∠BAN+∠BAC+∠CAM=180°,∴∠ABD+∠BAC+∠CAM=180°.∴∠CAM=180°-(∠ABD+∠BAC)=110°.16.已知:如图1,线段AB,CD相交于点O,连接AD,CB,我们把形如图1的图形称为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD,AB分别相交于点M,点N.试解答下列问题:(1)在图1中,请直接写出∠A,∠B,∠C,∠D之间的数量关系:∠A+∠D=∠C+∠B;(2)在图2中,若∠D=40°,∠B=36°,试求∠P的度数;(3)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D,∠B之间存在着怎样的数量关系?(直接写出结论即可)解:(2)∵∠D+∠1+∠2=∠B+∠3+∠4,∠1=∠2,∠3=∠4, ∴40°+2∠2=36°+2∠4. ∴∠4-∠2=2°. ∵∠B +∠4=∠P+∠2,∴∠P =∠B+∠4-∠2=36°+2°=38°. (3)由(2)知,∠D +2∠2=∠B+2∠4, 2∠B +2∠4=2∠P+2∠2,∴∠D +2∠2+2∠B+2∠4=∠B+2∠4+2∠P +2∠2. ∴∠D +2∠B=∠B+2∠P. ∴∠P =∠D+∠B2.17.(1)如图1,已知在△ABC 中,AB =AC ,BD ⊥AC ,垂足为D ,∠A =40°,则∠DBC=20°;(2)若把(1)中∠A=40°改为∠A=n °,其他条件不变,请用含n 的式子表示∠DBC,并证明你的结论;(3)如图2,在四边形ABCD 中,AD ∥BC ,点E 在四边形ABCD 内部,在△CDE 中,∠DEC =90°,且AD =BC =DE =CE ,连接AE ,BE ,求∠AEB 的度数.解:(2)∠DBC=12n °.证明:∵AB=AC ,∴∠B =∠C=180°-∠A 2=180°-n °2.∵BD ⊥AC ,∴∠DBC =90°-∠C=90°-180°-n °2=12n °.(3)过点E 作EF⊥AD 于点F ,延长FE 交BC 于点G ,则∠AFG=90°. ∵AD ∥BC ,∴∠BGF =180°-∠AFG=90°. ∴EG ⊥BC.在△DEC 中,∠1+∠2=180°-∠DEC=90°. ∵AD ∥BC ,∴∠3+∠4=180°-(∠1+∠2)=90°. 在△ADE 中,AD =DE ,EF ⊥AD. 在△BCE 中,BC =CE ,EG ⊥BC. 由(2)得∠AEF=12∠3,∠BEG =12∠4.∴∠AEF +∠BEG=12(∠3+∠4)=45°.∴∠AEB =180°-(∠AEF+∠BEG)=135°.。

八年级数学上册第7章精选《三角形的外角》知识点训练(基础)(北师大版)

八年级数学上册第7章精选《三角形的外角》知识点训练(基础)(北师大版)

《三角形的外角》基础训练知识点1 三角形的一个外角等于和它不相邻的两个内角的和1.(1)如图1,P 是ABC V 中BC 边延长线上一点,5070A B ︒︒∠=∠=,, 则ACP ∠=___________;(2)如图2,已知14272ABE C ︒︒∠=∠=,,则A ∠=__________,ABC ∠=_______;(3)如图3,已知3120︒∠=,则12=∠-∠____________.2.(广西中考)如图,ACD ∠是ABC V 的外角,CE 平分ACD ∠.若60A ︒∠=,40B ︒∠=,则ECD ∠等于( ).40︒A .45︒B C.50︒ D.55︒3.(宿迁中考)如图,点D 在ABC V 的边AB 的延长线上,//DE BC .若35A ︒∠=,24C ︒∠=,则D ∠的度数是( ).24︒A .59︒B C.60︒ D.69︒4.如图,平面上直线a ,b 分别经过线段OK 两端点(数据如图),则a ,b 相交所成的锐角是____________.5.(漯河临颍县期中)将一副三角尺如图所示叠放在一起,则=AEC ∠____________度.6.(商丘虞城求实学校月考)如图,点F 是ABC V 的边BC 延长线上一点DF AB ⊥,3040A F ︒︒∠=∠=,,求ACF ∠的度数.7.(宝丰县期末)如图所示,E 为BA 延长线上一点,F 为CA 延长线上一点,AD 平分EAC ∠.(1)图中ABC V 的外角有哪几个?(2)若B C ∠=∠,求证://AD BC .知识点2 三角形的一个外角大于任何一个和它不相邻的内角8.(长沙中考)下列各图中,∠1大于∠2的是( )9.如图,D 点是ABC V 的边AC 延长线上的一点,E 点是BC 上一点,连接DE . 求证:BED A ∠>∠.易错点对三角形外角相关性质理解不透彻10.下列命题正确的是()A.三角形的一个外角等于该三角形的两个内角之和B.三角形的一个外角大于任何一个内角C.三角形的一个外角等于和它不相邻的两个内角之和D.三角形的任意两个外角都不可能相等参考答案1.(1)120︒(2) 708 3︒︒(3)60︒2.C 3B 4.30︒ 5.756.解:在DFB V 中,,90.40DF AB FDB F ︒︒⊥∴∠=∠=Q Q , 180FDB F B ︒∠+∠+∠=,50B ︒∴∠=.在ABC V 中, 30,50,305080A B ACF A B ︒︒︒︒︒∠=∠=∴∠=∠+∠=+=Q .7.解:(1)ABC V 的外角有:FAB EAC ∠∠,.(2)证明:AD Q 平分EAC ∠,1.2EAD EAC EAC ∴∠=∠∠Q 是ABC V 的外角, EAC B C ∴∠=∠+∠.B C ∠=∠Q ,2..//EAC B EAD B AD BC ∴∠=∠∴∠=∠∴. 8.D9.证明:ECD ∠Q 是ABC V 的外角,.ECD A BED ∴∠>∠∠Q 是ECD V 的外角,.BED ECD BED A ∴∠>∠∴∠>∠.10.C。

北师大版八年级数学上册:7.5.2《三角形的外角》

北师大版八年级数学上册:7.5.2《三角形的外角》

-������ ,������ < 0.
基础自主导学
考点梳理
自主测试
考点三 平方根、算术平方根、立方根 1.平方根 (1)定义:如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a 的平方根(也叫二次方根),数a的平方根记作___________ ± ������(������ ≥ 0) . (2)一个正数有两个平方根,它们互为相反数;0只有一个平方根, 它是0本身;负数没有平方根. 2.算术平方根
基础自主导学
考点梳理
自主测试
考点二 实数的有关概念 1.数轴 (1)数轴的三要素:原点、正方向、单位长度; (2)实数与数轴上的点是一一对应的. 2.相反数 (1)实数a的相反数是-a,0的相反数是0; (2)a与b互为相反数⇔a+b=0. 3.倒数 1 (1)实数a的倒数是 ������ (a≠0),0没有倒数; (2)a与b互为倒数⇔ab=1. 4.绝对值 (1)数轴上表示数a的点与原点的距离,叫做数a的绝对值,记作|a|. ������,������ > 0, (2)|a|= 0,������ = 0,
答案
轻松尝试应用 1 2 3 4 5 6
4.如图,已知直线 AB∥CD,∠C=115°,则∠A+∠E=
.
关闭
115°
答案
轻松尝试应用 1 2 3 4 5 6
5.如图,已知△ABC 中,∠A=40°,剪去∠A 后成四边形,则∠1+∠ 2= .
关闭
220°
答案
轻松尝试应用 1 2 3 4 5 6
6.如图,在 Rt△ABC 中,CD 是斜边 AB 上的高,∠BCD=35°. (1)求∠EBC 的度数; (2)求∠A 的度数.

北师大版初中数学八年级上册《7.5 三角形内角和定理》同步练习卷(含答案解析

北师大版初中数学八年级上册《7.5 三角形内角和定理》同步练习卷(含答案解析

北师大新版八年级上学期《7.5 三角形内角和定理》同步练习卷一.选择题(共23小题)1.如图,在△ABC中,∠C=78°,若沿图中虚线截去∠C,则∠1+∠2=()A.282°B.180°C.258°D.360°2.如图,BE、CF是△ABC的角平分线,∠A=50°,BE、CF相交于D,则∠BDC 的度数是()A.115°B.110°C.100°D.90°3.如图,在△ABC中,AD和BE是角平分线,其交点为O,若∠BOD=70°,则∠ACB的度数为()A.10°B.20°C.30°D.40°4.如图,BD,CD分别是内角∠ABC和外角∠ACE的平分线,若∠A=70°,则∠D=()A.30°B.35°C.40°D.45°5.如图,∠ABC和∠ACB的外角平分线相交于点D,设∠BDC=β,那么∠A等于()A.180°﹣B.180°﹣2βC.90°﹣βD.90°﹣6.如图,△ABC中,∠A=60°,点E、F在AB、AC上,沿EF向内折叠△AEF,得△DEF,则图中∠1+∠2的和等于()A.60°B.90°C.120°D.150°7.如图,将△ABC纸片沿DE折叠,使点A落在四边形BCDE外点A'的位置,则下列结论正确的是()A.∠1+∠2=∠A B.∠1+∠2=2∠A C.∠1﹣∠2=∠A D.∠1﹣∠2=2∠A 8.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30,∠2=20°,则∠B=()A.20°B.30°C.40°D.50°9.已知:如图,在△ABC中,AD是∠BAC的平分线,E为AD上一点,且EF⊥BC于点F.若∠C=35°,∠DEF=15°,则∠B的度数为()A.60°B.65°C.75°D.85°10.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°11.如图△ABC中,∠C=∠ABC=2∠A,BD是边AC上的高,则∠DBC的度数是()A.36°B.26°C.18°D.16°12.如图,△ABC中,AD平分∠BAC,DE平分∠ADC,∠B=45°,∠C=35°,则∠AED=()A.80°B.82.5°C.90°D.85°13.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠ADE度数为()A.71°B.64°C.38°D.45°14.如图,△ABC中,BD为△ABC的角平分线,CE为△ABC的高,CE交BD于点F,∠A=80°,∠BCA=50°,那么∠BFC的度数是()A.110°B.l15°C.120°D.125°15.在△ABC中,∠A=150°.第一步:在△ABC上方确定一点A1,使∠A1BA=∠ABC,∠A1CA=∠ACB,如图1.第二步:在△A1BC上方确定一点A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA,如图2.照此下去,至多能进行()步.A.3B.4C.5D.616.如图,∠ABD、∠ACD的角平分线交于点P,若∠A=55°,∠D=15°,则∠P 的度数为()A.15°B.20°C.25°D.30°17.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中∠E=90°,∠C=90°,∠A=45°,∠D=30°,则∠1+∠2等于()A.150°B.180°C.210°D.270°18.如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=100°,则∠C的度数为()A.40°B.41°C.42°D.43°19.如图,乐乐将△ABC沿DE,EF分别翻折,顶点A,B均落在点O处,且EA 与EB重合于线段EO,若∠DOF=139°,∠C为()A.38°B.39°C.40°D.41°20.如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH ⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC﹣∠C;④∠BGH=∠ABE+∠C.其中正确个数是()A.4个B.3个C.2个D.1个21.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG 于G,下列结论:①∠CEG=2∠DCB;②∠DFB=∠CGE;③∠ADC=∠GCD;④CA平分∠BCG.其中正确的个数是()A.1B.2C.3D.422.如图,△ABC,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=128°,∠BGC=114°,则∠A的度数为()A.64°B.62°C.70°D.78°23.如图,将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C,若∠A=50°,则∠ABD+∠ACD的值为()A.60°B.50°C.40°D.30°二.填空题(共17小题)24.如图,在△ABC中,BD平分∠ABC,CE平分∠ACB,BD与CE交于点M.若MN⊥BC于N,∠A=60°,则∠1﹣∠2=度.25.如图所示,在△ABC中,∠A=52°,若∠ABC与∠ACB的角平分线交于点D1,得到∠D1,∠ABD1与∠ACD1的角平分线交于点D2,得到∠D2;依此类推,∠ABD4与∠ACD4的角平分线交于点D5,得到∠D5,则∠D5的度数是.26.如图,三角形纸片ABC中,∠A=75°,∠B=60°,将纸片的一个角折叠,使点C落在△ABC内,∠α=25°,则∠β=.27.如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=55°,∠1=95°,则∠2的度数为.28.如图,将△ABC沿着平行于BC的直线折叠,点A落到点A′,若∠C=135°,∠A=15°,则∠A′DB的度数为.29.如图,在△ABC中,D、E分别是边AB、AC上一点,将△ABC沿DE折叠,使点A落在边BC上.若∠A=55°,则∠1+∠2+∠3+∠4=度.30.如图,将△ABC纸片沿DE折叠,使点A落在点A′处,且A′B平分∠ABC,A′C 平分∠ACB,若∠BA′C=110°,则∠1+∠2=.31.如图,在△ABC中,点D是BC边上的一点,∠B=48°,∠BAD=28°,将△ABD 沿AD折叠得到△AED,AE与BC交于点F,则∠AFC=°.32.如图,已知AB、CD相交于点O,且∠A=38°,∠B=58°,∠C=44°,则∠D=.33.如图,在△ABC中,CD,BE分别是AB,AC边上的高,且CD,BE相交于点P,若∠A=70°,则∠BPC=°.34.如图,△ABE和△ACD是△ABC分别沿着AB、AC翻折而成的,若∠1=140°,∠2=25°,则∠α度数为.35.如图,点D、E、F、G、H分别是△ABC的边上一点,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在△ABC内点O处,则∠1+∠2为°.36.如图,BE平分∠ABD,CF平分∠ACD,BE、CF交于G,若∠BDC=140°,∠BGC=110°,则∠A=.37.如图,是一个不规则的五角星,则∠A+∠B+∠C+∠D+∠E=.(用度数表示)38.如图,在△ABC中,点D、E分别在边BC、AC上,∠DCE=∠DEC,点F在AC、点G在DE的延长线上,∠DFG=∠DGF.若∠EFG=35°,则∠CDF的度数为.39.如图,在△ABC中,∠ABC=100°,∠ACB的平分线交AB边于点E,在AC边取点D,使∠CBD=20°,连接DE,则∠CED的大小=(度).40.如图,在△ABC中,∠A=70°∠B=50°,点D,E分别为AB,AC上的点,沿DE折叠,使点A落在BC边上点F处,若△EFC为直角三角形,则∠BDF的度数为.三.解答题(共9小题)41.如图,在△ABC中,AD是高线,AE、BF是角平分线,它们相交于点O,∠BAC=50°,∠C=70°,求∠EAD与∠BOA的度数.42.在△ABC中,点D在边BA或BA的延长线上,过点D作DE∥BC,交∠ABC 的角平分线于点E.(1)如图1,当点D在边BA上时,点E恰好在边AC上,求证:∠ADE=2∠DEB;(2)如图2,当点D在BA的延长线上时,请直接写出∠ADE与∠DEB之间的数量关系,并说明理由.43.动手操作:一个三角形的纸片ABC,沿DE折叠,使点A落在点Aˊ处.观察猜想(1)如图1,若∠A=40°,则∠1+∠2=°;若∠A=55°,则∠1+∠2=°;若∠A=n°,则∠1+∠2=°.探索证明:(2)利用图1,探索∠1、∠2与∠A有怎样的关系?请说明理由.拓展应用(3)如图2,把△ABC折叠后,BA′平分∠ABC,CA′平分∠ACB,若∠1+∠2=108°,利用(2)中结论求∠BA′C的度数.44.在△ABC中,BM平分∠ABC交AC于点M,点P是直线AC上一点,过点P 作PH⊥BM于点H.(1)如图1,当∠ACB=110°,∠BAC=30°,且点P与点C重合时,∠APH=°;(2)如图2,当点P在AC的延长线上时,求证:2∠APH=∠ACB﹣∠BAC;(3)如图3,当点P在线段AM上(不含端点)时,①补全图形;②直接写出∠APH、∠ACB、∠BAC之间的数量关系:.45.如图,在△ABC中,∠CAB=∠CBA,过点A向右作AD∥BC,点E是射线AD 上的一个动点,∠ACE的平分线交BA的延长线于点F.(1)若∠ACB=40°,∠ACE=38°,求∠F的度数;(2)在动点E运动的过程中,的值是否发生变化?若不变,求它的值;若变化,请说明理由.46.在△ABC中,∠C>∠B,AE平分∠BAC,F为射线AE上一点(不与点E重合),且FD⊥BC于D.(1)如图①,当点F与点A重合,且∠C=50°,∠B=30°时,求∠EFD的度数,并直接写出∠EFD与(∠C﹣∠B)之间的数量关系.(2)如图②,当点F在线段AE上(不与点A重合),∠EFD与∠C﹣∠B有怎样的数量关系?并说明理由.(3)当点F在△ABC外部时,在图③中画出符合题意的图形,并直接写出∠EFD 与∠C﹣∠B的数量关系.47.已知:如图,AM,CM分别平分∠BAD和∠BCD.①若∠B=32°,∠D=38°,求∠M的度数;②探索∠M与∠B、∠D的关系并证明你的结论.48.△ABC中,AD是∠BAC的平分线,AE⊥BC,垂足为E,作CF∥AD,交直线AE于点F.设∠B=α,∠ACB=β.(1)若∠B=30°,∠ACB=70°,依题意补全图1,并直接写出∠AFC的度数;(2)如图2,若∠ACB是钝角,求∠AFC的度数(用含α,β的式子表示);(3)如图3,若∠B>∠ACB,直接写出∠AFC的度数(用含α,β的式子表示).49.(1)如图1的图形我们把它称为“8字形”,则∠A,∠B,∠C,∠D四个角的数量关系是;(2)如图2,若∠BCD,∠ADE的角平分线CP,DP交于点P,则∠P与∠A,∠B的数量关系为∠P=;(3)如图3,CM,DN分别平分∠BCD,∠ADE,当∠A+∠B=80°时,试求∠M+∠N的度数(提醒:解决此问题可以直接利用上述结论);(4)如图4,如果∠MCD=∠BCD,∠NDE=∠ADE,当∠A+∠B=n°时,试求∠M+∠N的度数.北师大新版八年级上学期《7.5 三角形内角和定理》同步练习卷参考答案与试题解析一.选择题(共23小题)1.如图,在△ABC中,∠C=78°,若沿图中虚线截去∠C,则∠1+∠2=()A.282°B.180°C.258°D.360°【分析】先利用三角形内角与外角的关系,得出∠1+∠2=∠C+(∠C+∠3+∠4),再根据三角形内角和定理即可得出结果.【解答】解:如图,∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=78°+180°=258°.故选:C.【点评】此题主要考查了三角形内角和定理及外角的性质,三角形内角和是180°;三角形的任一外角等于和它不相邻的两个内角之和.2.如图,BE、CF是△ABC的角平分线,∠A=50°,BE、CF相交于D,则∠BDC 的度数是()A.115°B.110°C.100°D.90°【分析】根据三角形内角和定理得到∠ABC+∠ACB=130°,根据角平分线的定义,三角形内角和定理计算.【解答】解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵BE、CF是△ABC的角平分线,∴∠EBC=∠ABC,∠FCB=∠ACB,∴∠EBC+∠FCB=×(∠ABC+∠ACB)=65°,∴∠BDC=180°﹣65°=115°,故选:A.【点评】本题考查的是三角形内角和定理,掌握三角形内角和等于180°是解题的关键.3.如图,在△ABC中,AD和BE是角平分线,其交点为O,若∠BOD=70°,则∠ACB的度数为()A.10°B.20°C.30°D.40°【分析】依据三角形外角性质,即可得到∠ABO+∠BAO=∠BOD=70°,再根据角平分线的定义,即可得到∠ABC+∠BAC=140°,进而得出∠C的度数.【解答】解:∵∠BOD是△ABO的外角,∴∠ABO+∠BAO=∠BOD=70°,又∵AD和BE是角平分线,∴∠ABC+∠BAC=2(∠ABO+∠BAO)=2×70°=140°,∴∠ACB=180°﹣140°=40°,故选:D.【点评】本题主要考查了三角形内角和定理的运用,解题时注意:三角形内角和是180°.4.如图,BD,CD分别是内角∠ABC和外角∠ACE的平分线,若∠A=70°,则∠D=()A.30°B.35°C.40°D.45°【分析】根据角平分线的定义得到∠DCE=∠ACE,∠DBC=∠ABC,根据三角形的外角的性质计算即可.【解答】解:∵BD,CD分别是∠ABC与外角∠ACE的平分线,∴∠DCE=∠ACE,∠DBC=∠ABC,∵∠ACE﹣∠ABC=∠A=70°,∴∠D=∠DCE﹣∠DBC=∠A=35°,故选:B.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.5.如图,∠ABC和∠ACB的外角平分线相交于点D,设∠BDC=β,那么∠A等于()A.180°﹣B.180°﹣2βC.90°﹣βD.90°﹣【分析】在△BCD中利用三角形内角和定理可求出∠BCD+∠CBD的度数,由角平分线的定理可得出∠CBE+∠BCF的度数,由邻补角互补可求出∠ABC+∠ACB 的度数,再在△ABC中利用三角形内角和定理即可求出∠A的度数.【解答】解:∵∠BCD+∠CBD+∠D=180°,∠D=β,∴∠BCD+∠CBD=180°﹣β.∵BD平分∠CBE,CD平分∠BCF,∴∠CBE+∠BCF=2(∠BCD+∠CBD)=360°﹣2β,∴∠ABC+∠ACB=180°﹣∠CBE+180°﹣∠BCF=360°﹣(∠CBE+∠BCF)=2β.又∵∠A+∠ABC+∠ACB=180°,∴∠A=180°﹣2β.故选:B.【点评】本题考查了三角形内角和定理、邻补角以及角平分线的性质,利用三角形内角和定理、角平分线的性质及邻补角互补求出∠ABC+∠ACB的度数是解题的关键.6.如图,△ABC中,∠A=60°,点E、F在AB、AC上,沿EF向内折叠△AEF,得△DEF,则图中∠1+∠2的和等于()A.60°B.90°C.120°D.150°【分析】根据三角形的内角和等于180°求出∠AEF+∠AFE的度数,再根据折叠的性质求出∠AED+∠AFD的度数,然后根据平角等于180°解答.【解答】解:∵∠A=60°,∴∠AEF+∠AFE=180°﹣60°=120°,∵沿EF向内折叠△AEF,得△DEF,∴∠AED+∠AFD=2(∠AEF+∠AFE)=2×120°=240°,∴∠1+∠2=180°×2﹣240°=360°﹣240°=120°.故选:C.【点评】本题考查了三角形的内角和定理,翻转变换的性质,整体思想的利用是解题的关键.7.如图,将△ABC纸片沿DE折叠,使点A落在四边形BCDE外点A'的位置,则下列结论正确的是()A.∠1+∠2=∠A B.∠1+∠2=2∠A C.∠1﹣∠2=∠A D.∠1﹣∠2=2∠A 【分析】根据折叠的性质和三角形的外角的性质解答即可.【解答】解:∵△A′DE是△ADE沿DE折叠得到,∴∠A′=∠A,∵∠1=∠A+∠3,∠3=∠A′+∠2,∴∠1=∠A+∠A′+∠2,∴∠1﹣∠2=2∠A,故选:D.【点评】本题考查的是三角形的外角性质和图形的翻折变换,理清图中角与角的关系是解决问题的关键.8.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30,∠2=20°,则∠B=()A.20°B.30°C.40°D.50°【分析】利用角平分线的定义结合∠1的度数可得出∠CAE的值,进而可得出∠DAE、∠BAD的值,在△ABD中利用三角形内角和定理可求出∠B的值,此题得解.【解答】解:∵AE平分∠BAC,∠1=30,∴∠CAE=∠1=30°,∴∠DAE=∠CAE﹣∠2=10°,∴∠BAE=∠1+∠DAE=40°.∵AD⊥BC,∴∠ADB=90°,∴∠B=180°﹣∠BAD﹣∠ADB=50°.故选:D.【点评】本题考查了三角形内角和定理,牢记三角形内角和是180°是解题的关键.9.已知:如图,在△ABC中,AD是∠BAC的平分线,E为AD上一点,且EF⊥BC于点F.若∠C=35°,∠DEF=15°,则∠B的度数为()A.60°B.65°C.75°D.85°【分析】先根据EF⊥BC,∠DEF=15°可得出∠ADB的度数,再由三角形外角的性质得出∠CAD的度数,根据角平分线的定义得出∠BAC的度数,由三角形内角和定理即可得出结论.【解答】解:∵EF⊥BC,∠DEF=15°,∴∠ADB=90°﹣15°=75°.∵∠C=35°,∴∠CAD=75°﹣35°=40°.∵AD是∠BAC的平分线,∴∠BAC=2∠CAD=80°,∴∠B=180°﹣∠BAC﹣∠C=180°﹣80°﹣35°=65°.故选:B.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.10.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°【分析】依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.【解答】解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.【点评】本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.11.如图△ABC中,∠C=∠ABC=2∠A,BD是边AC上的高,则∠DBC的度数是()A.36°B.26°C.18°D.16°【分析】根据三角形内角和定理求出∠A和∠C,根据垂直的定义得到∠BDC=90°,计算即可.【解答】解:∵∠A+∠C+∠ABC=180°,∠C=∠ABC=2∠A,∴2∠A+2∠A+∠A=180°,解得,∠A=36°,则∠C=72°,∵BD是边AC上的高,∴∠BDC=90°,∴∠DBC=90°﹣∠C=18°,故选:C.【点评】本题考查的是三角形内角和定理,掌握三角形内角和等于180°是解题的关键.12.如图,△ABC中,AD平分∠BAC,DE平分∠ADC,∠B=45°,∠C=35°,则∠AED=()A.80°B.82.5°C.90°D.85°【分析】根据三角形的内角和定理可得∠BAC=100°,再利用角平分线的性质得到∠EDC=47.5°,最后利用三角形外角的性质得出结果.【解答】解:∵∠B=45°,∠C=35°,∴∠BAC=180°﹣45°﹣35°=100°,∵AD平分∠BAC,∴∠BAD═50°,∵∠ADC=∠B+∠BAD=50°+45°=95°,∵DE平分∠ADC,∴∠EDC═47.5°,∵∠AED=∠C+∠EDC,∴∠AED=35°+47.5°=82.5°.故选:B.【点评】本题考查了三角形的内角和定理、角平分线的性质及三角形外角的性质,解题的关键是熟练掌握三角形的内角和及三角形外角的性质.13.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠ADE度数为()A.71°B.64°C.38°D.45°【分析】由折叠的性质可求得∠ACD=∠BCD,∠BDC=∠CDE,在△ACD中,利用外角可求得∠BDC,即可解决问题.【解答】解:由折叠可得∠ACD=∠BCD,∠BDC=∠CDE,∵∠ACB=90°,∴∠ACD=45°,∵∠A=26°,∴∠BDC=∠A+∠ACD=26°+45°=71°,∴∠ADE=180°﹣71°﹣71°=38°故选:C.【点评】本题主要考查折叠的性质,掌握折叠前后图形的对应线段和对应角相等是解题的关键.14.如图,△ABC中,BD为△ABC的角平分线,CE为△ABC的高,CE交BD于点F,∠A=80°,∠BCA=50°,那么∠BFC的度数是()A.110°B.l15°C.120°D.125°【分析】依据三角形内角和定理,即可得到∠ABC=50°,依据BD为△ABC的角平分线,可得∠ABD=25°,根据CE为△ABC的高,即可得到∠BEF=90°,再根据三角形外角性质,即可得到∠BFC=∠BEF+∠ABD.【解答】解:∵∠A=80°,∠BCA=50°,∴∠ABC=50°,又∵BD为△ABC的角平分线,∴∠ABD=25°,∵CE为△ABC的高,∴∠BEF=90°,∴∠BFC=∠BEF+∠ABD=90°+25°=115°,故选:B.【点评】本题考查了三角形的内角和定理、三角形外角的性质以及角平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.15.在△ABC中,∠A=150°.第一步:在△ABC上方确定一点A1,使∠A1BA=∠ABC,∠A1CA=∠ACB,如图1.第二步:在△A1BC上方确定一点A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA,如图2.照此下去,至多能进行()步.A.3B.4C.5D.6【分析】由三角形内角和定理可得出∠ABC+∠ACB=30°,由∠A1BA=∠ABC、∠A1CA=∠ACB结合三角形内角和定理可求出∠A1=120°,同理可求出∠A2=90°、∠A3=60°、…、∠A n=180°﹣30°•(n+1),令∠A n>0°,求出n的最大值即可.【解答】解:∵∠A=150°,∴∠ABC+∠ACB=180°﹣∠A=30°.∵∠A1BA=∠ABC,∠A1CA=∠ACB,∴∠A1BC+∠A1CB=2(∠ABC+∠ACB)=60°,∴∠A1=180°﹣(∠A1BC+∠A1CB)=120°.同理可得:∠A2=90°,∠A3=60°,…,∠A n=180°﹣30°•(n+1),∴当∠A n>0°时,180°﹣30°•(n+1)>0°,解得n<5,∴至多能进行4步.故选:B.【点评】本题考查了三角形内角和定理,根据三角形内角和定理找出∠A n=180°﹣30°•(n+1)是解题的关键.16.如图,∠ABD、∠ACD的角平分线交于点P,若∠A=55°,∠D=15°,则∠P 的度数为()A.15°B.20°C.25°D.30°【分析】延长PC交BD于E,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据三角形的内角和定理可得∠A+∠1=∠P+∠3,然后根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠5,整理可得∠P=(∠A﹣∠D),然后代入数据计算即可得解.【解答】解:如图,延长PC交BD于E,∵∠ABD,∠ACD的角平分线交于点P,∴∠1=∠2,∠3=∠4,由三角形的内角和定理得,∠A+∠1=∠P+∠3①,在△PBE中,∠5=∠2+∠P,在△DCE中,∠5=∠4﹣∠D,∴∠2+∠P=∠4﹣∠D②,①﹣②得,∠A﹣∠P=∠P+∠D,∴∠P=(∠A﹣∠D),∵∠A=55°,∠D=15°,∴∠P=(55°﹣15°)=20°.故选:B.【点评】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线然后整理出∠A、∠D、∠P三者之间的关系式是解题的关键.17.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中∠E=90°,∠C=90°,∠A=45°,∠D=30°,则∠1+∠2等于()A.150°B.180°C.210°D.270°【分析】根据三角形的内角和定理和三角形外角性质解答即可.【解答】解:如图:∵∠1=∠D+∠DOA,∠2=∠E+∠EPB,∵∠DOA=∠COP,∠EPB=∠CPO,∴∠1+∠2=∠D+∠E+∠COP+∠CPO=∠D+∠E+180°﹣∠C=30°+90°+180°﹣90°=210°,故选:C.【点评】此题考查三角形内角和,关键是根据三角形的内角和定理和三角形外角性质解答.18.如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=100°,则∠C的度数为()A.40°B.41°C.42°D.43°【分析】连接AO、BO.由题意EA=EB=EO,推出∠AOB=90°,∠OAB+∠OBA=90°,由DO=DA,FO=FB,推出∠DAO=∠DOA,∠FOB=∠FBO,推出∠CDO=2∠DAO,∠CFO=2∠FBO,由∠CDO+∠CFO=100°,推出2∠DAO+2∠FBO=100°,推出∠DAO+∠FBO=50°,由此即可解决问题.【解答】解:如图,连接AO、BO.由题意EA=EB=EO,∴∠AOB=90°,∠OAB+∠OBA=90°,∵DO=DA,FO=FB,∴∠DAO=∠DOA,∠FOB=∠FBO,∴∠CDO=2∠DAO,∠CFO=2∠FBO,∵∠CDO+∠CFO=100°,∴2∠DAO+2∠FBO=100°,∴∠DAO+∠FBO=50°,∴∠CAB+∠CBA=∠DAO+∠OAB+∠OBA+∠FBO=140°,∴∠C=180°﹣(∠CAB+∠CBA)=180°﹣140°=40°,故选:A.【点评】本题考查三角形内角和定理、直角三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用这些知识,学会把条件转化的思想.19.如图,乐乐将△ABC沿DE,EF分别翻折,顶点A,B均落在点O处,且EA 与EB重合于线段EO,若∠DOF=139°,∠C为()A.38°B.39°C.40°D.41°【分析】根据翻折的性质得出∠A=∠DOE,∠B=∠FOE,进而得出∠DOF=∠A+∠B,利用三角形内角和解答即可.【解答】解:∵将△ABC沿DE,EF翻折,∴∠A=∠DOE,∠B=∠FOE,∴∠DOF=∠DOE+∠EOF=∠A+∠B=139°,∴∠C=180°﹣∠A﹣∠B=180°﹣139°=41°,故选:D.【点评】本题考查三角形内角和定理、翻折的性质等知识,解题的关键是灵活运用这些知识解决问题,学会把条件转化的思想,属于中考常考题型.20.如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH ⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC﹣∠C;④∠BGH=∠ABE+∠C.其中正确个数是()A.4个B.3个C.2个D.1个【分析】①根据BD⊥FD,FH⊥BE和∠FGD=∠BGH,证明结论正确;②根据角平分线的定义和三角形外角的性质证明结论正确;③证明∠DBE=∠BAC﹣∠C,根据①的结论,判断出错误;④根据角平分线的定义和三角形外角的性质证明结论正确.【解答】解:①∵BD⊥FD,∴∠FGD+∠F=90°,∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,①正确;②∵BE平分∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,②正确;③∠ABD=90°﹣∠BAC,∠DBE=∠ABE﹣∠ABD=∠ABE﹣90°+∠BAC=∠CBD﹣∠DBE﹣90°+∠BAC,∵∠CBD=90°﹣∠C,∴∠DBE=∠BAC﹣∠C﹣∠DBE,由①得,∠DBE=∠F,∴∠F=∠BAC﹣∠C﹣∠DBE,③错误;④∵∠AEB=∠EBC+∠C,∵∠ABE=∠CBE,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=∠FEB,∴∠BGH=∠ABE+∠C,④正确,∴正确的有①②④,共三个,故选:B.【点评】本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键21.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG 于G,下列结论:①∠CEG=2∠DCB;②∠DFB=∠CGE;③∠ADC=∠GCD;④CA平分∠BCG.其中正确的个数是()A.1B.2C.3D.4【分析】根据平行线、角平分线、垂直的性质及三角形内角和定理依次判断即可得出答案.【解答】解:①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;④无法证明CA平分∠BCG,故错误;③∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;②∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+(∠ABC+∠ACB)=135°,∴∠DFE=360°﹣135°﹣90°=135°,∴∠DFB=45°=∠CGE,∴∠CGE=2∠DFB,∴∠DFB=∠CGE,故正确.∴正确的为:①②③,故选:C.【点评】本题主要考查的是三角形内角和定理,熟知直角三角形的两锐角互余是解答此题的关键.22.如图,△ABC,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=128°,∠BGC=114°,则∠A的度数为()A.64°B.62°C.70°D.78°【分析】设∠GBC=x,∠DCB=y,在△BFC和△BGC中,根据三角形内角和定理列方程,相加可得:3x+3y的值,即可求结论.【解答】解:设∠GBC=x,∠DCB=y,在△BFC中,2x+y=180°﹣128°=52°①,在△BGC中,x+2y=180°﹣114°=66°②,解得:①+②:3x+3y=118°,∴∠A=180°﹣(3x+3y)=180°﹣118°=62°,故选:B.【点评】本题考查了三角形的内角和定理、三等分线的定义,利用整体的思想解决问题比较简便.23.如图,将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C,若∠A=50°,则∠ABD+∠ACD的值为()A.60°B.50°C.40°D.30°【分析】根据三角形内角和定理可得∠ABC+∠ACB=180°﹣∠A=130°,∠DBC+∠DCB=180°﹣∠DBC=90°,进而可求出∠ABD+∠ACD的度数.【解答】解:在△ABC中,∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,在△DBC中,∵∠BDC=90°,∴∠DBC+∠DCB=180°﹣90°=90°,∴∠ABD+∠ACD=130°﹣90°=40°;故选:C.【点评】本题考查了三角形的内角和定理,解题的关键是熟练掌握三角形的内角和为180°,此题难度不大.二.填空题(共17小题)24.如图,在△ABC中,BD平分∠ABC,CE平分∠ACB,BD与CE交于点M.若MN⊥BC于N,∠A=60°,则∠1﹣∠2=30度.【分析】利用三角形内角和和角平分线的定义,构建方程组即可解决问题;【解答】解:∵BD平分∠ABC,CE平分∠ACB,∴∠MBC=∠ABC,∠MCB=∠ACB,∴∠BMC=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A=120°,∴∠1+∠BMN=120°①,∵MN⊥BC,∴∠2+∠BMN=90°②,①﹣②得:∠1﹣∠2=30°.故答案为:30【点评】此题考查了三角形内角和定理、角平分线的性质,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.25.如图所示,在△ABC中,∠A=52°,若∠ABC与∠ACB的角平分线交于点D1,得到∠D1,∠ABD1与∠ACD1的角平分线交于点D2,得到∠D2;依此类推,∠ABD4与∠ACD4的角平分线交于点D5,得到∠D5,则∠D5的度数是56°.【分析】根据角平分线的性质和三角形的内角和定理可得.【解答】解:∵∠A=52°,∴∠ABC+∠ACB=180°﹣52°=128°,又∠ABC与∠ACB的角平分线交于D1,∴∠ABD1=∠CBD1=∠ABC,∠ACD1=∠BCD1=∠ACB,∴∠CBD1+∠BCD1=(∠ABC+∠ACB)=×128°=64°,∴∠BD1C=180°﹣(∠ABC+∠ACB)=180°﹣64°=116°,同理∠BD2C=180°﹣(∠ABC+∠ACB)=180°﹣96°=84°,依此类推,∠BD5C=180°﹣(∠ABC+∠ACB)=180°﹣124°=56°.故答案为:56°.【点评】此题主要考查角平分线的性质和三角形的内角和定理,解决本题的关键是利用三角形内角和定理.26.如图,三角形纸片ABC中,∠A=75°,∠B=60°,将纸片的一个角折叠,使点C落在△ABC内,∠α=25°,则∠β=65°.【分析】首先根据四边形内角和定理可得:∠α+∠β+(180°﹣∠C)+∠A+∠B=360°,再算出∠C的度数,代入相应数值,即可算出∠β.【解答】解:根据四边形内角和定理可得:∠α+∠β+(180°﹣∠C)+∠A+∠B=360°,∵∠A=75°,∠B=60°,∴∠C=45°,∵∠α=25°,∴25°+∠β+180°﹣45°+75°+60°=360°,解得∠β=65°.故答案为:65°.【点评】本题主要考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.27.如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=55°,∠1=95°,则∠2的度数为15°.【分析】首先根据三角形内角和定理可得∠AEF+∠AFE=125°,再根据邻补角的性质可得∠FEB+∠EFC=360°﹣125°=235°,再根据由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=235°,然后计算出∠1+∠2的度数,进而得到答案.【解答】解:∵∠A=55°,∴∠AEF+∠AFE=180°﹣55°=125°,∴∠FEB+∠EFC=360°﹣125°=235°,∵由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=235°,∴∠1+∠2=235°﹣125°=110°,∵∠1=95°,∴∠2=110°﹣95°=15°,故答案为:15°.【点评】本题考查了三角形的内角和定理,翻折变换的性质,四边形的内角和等于360°,熟记定理并准确识图是解题的关键.28.如图,将△ABC沿着平行于BC的直线折叠,点A落到点A′,若∠C=135°,∠A=15°,则∠A′DB的度数为120°.【分析】根据三角形的内角和等于180°求出∠B,根据两直线平行,同位角相等可得∠ADE=∠B,再根据翻折变换的性质可得∠A′DE=∠ADE,然后根据平角等于180°列式计算即可得解.【解答】解:∵∠C=135°,∠A=15°,∴∠B=180°﹣∠A﹣∠C=180°﹣15°﹣135°=30°,∵△ABC沿着平行于BC的直线折叠,点A落到点A′,∴∠ADE=∠B=30°,∠A′DE=∠ADE=30°,∴∠A′DB=180°﹣30°﹣30°=120°.故答案为120°.【点评】本题考查了平行线的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.29.如图,在△ABC中,D、E分别是边AB、AC上一点,将△ABC沿DE折叠,使点A落在边BC上.若∠A=55°,则∠1+∠2+∠3+∠4=235度.【分析】依据三角形内角和定理,可得△ABC中,∠B+∠C=125°,再根据∠1+∠2+∠B=180°,∠3+∠4+∠C=180°,即可得出∠1+∠2+∠3+∠4=360°﹣(∠B+∠C)=235°.【解答】解:∵∠A=55°,∴△ABC中,∠B+∠C=125°,又∵∠1+∠2+∠B=180°,∠3+∠4+∠C=180°,∴∠1+∠2+∠3+∠4=360°﹣(∠B+∠C)=360°﹣125°=235°,故答案为:235.【点评】本题主要考查了三角形的内角和定理,综合运用各定理是解答此题的关键.30.如图,将△ABC纸片沿DE折叠,使点A落在点A′处,且A′B平分∠ABC,A′C 平分∠ACB,若∠BA′C=110°,则∠1+∠2=80°.【分析】连接AA′.首先求出∠BAC,再证明∠1+∠2=2∠BAC即可解决问题.【解答】解:连接AA′.∵A'B平分∠ABC,A'C平分∠ACB,∠BA'C=110°,∴∠A′BC+∠A′CB=70°,∴∠ABC+∠ACB=140°,∴∠BAC=180°﹣140°=40°,∵∠1=∠DAA′+∠DA′A,∠2=∠EAA′+∠EA′A,∵∠DAA′=∠DA′A,∠EAA′=∠EA′A,∴∠1+∠2=2(∠DAA′+∠EAA′)=2∠BAC=80°,故答案为80°.【点评】本题考查三角形的内角和定理、角平分线的定义、三角形的外角的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识,属于中考常考题型.31.如图,在△ABC中,点D是BC边上的一点,∠B=48°,∠BAD=28°,将△ABD 沿AD折叠得到△AED,AE与BC交于点F,则∠AFC=104°.【分析】根据折叠的性质求出∠FAD=∠BAD=28°,根据三角形外角性质求出∠ADF,再根据三角形外角性质求出∠AFC即可.【解答】解:∵∠BAD=28°,将△ABD沿AD折叠得到△AED,AE与BC交于点F,∴∠BAD=∠FAD=28°,∵∠B=48°,∴∠ADF=∠B+∠BAD=48°+28°=76°,∴∠AFC=∠FAD+∠ADF=28°+76°=104°,故答案为:104.【点评】本题考查了折叠的性质和三角形外角的性质,能根据折叠的性质求出∠FAD的度数是解此题的关键.32.如图,已知AB、CD相交于点O,且∠A=38°,∠B=58°,∠C=44°,则∠D= 64°.【分析】根据三角形内角和定理即可求出答案.【解答】解:∵∠A+∠D=∠C+∠B,∴∠D=64°,故答案为:64°【点评】本题考查三角形内角和定理,解题的关键是熟练运用三角形内角和定理,本题属于基础题型.33.如图,在△ABC中,CD,BE分别是AB,AC边上的高,且CD,BE相交于点P,若∠A=70°,则∠BPC=110°.【分析】根据四边形的内角和等于360°,求出∠DPE的度数,再根据对顶角相等解答.【解答】解:∵CD、BE分别是AB、AC边上的高,∴∠DPE=360°﹣90°×2﹣70°=110°,∴∠BPC=∠DPE=110°.故答案为:110°.【点评】本题考查了多边形的内角和,对顶角相等的性质,熟记定理并准确识图理清图中各角度之间的关系是解题的关键.34.如图,△ABE和△ACD是△ABC分别沿着AB、AC翻折而成的,若∠1=140°,∠2=25°,则∠α度数为80°.【分析】依据∠1=140°,∠2=25°,可得∠3=15°,利用翻折变换前后对应角不变,得出∠2=∠EBA,∠3=∠ACD,进而得出∠BCD+∠CBE的度数,再根据三角形外角性质,即可得到∠α的度数.【解答】解:∵∠1=140°,∠2=25°,∴∠3=15°,由折叠可得,∠2=∠EBA=25°,∠3=∠ACD=15°,∴∠EBC=50°,∠BCD=30°,∴由三角形外角性质可得,∠α=∠EBC+∠DCB=80°,故答案为:80°.【点评】此题主要考查了翻折变换的性质以及三角形外角的性质的运用,利用翻折变换前后对应角不变得出是解题关键.35.如图,点D、E、F、G、H分别是△ABC的边上一点,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在△ABC内点O处,则∠1+∠2为180°.【分析】根据折叠的性质得:∠A=∠DOE,∠B=∠GOH,∠C=∠EOF,中间以O 的顶点的周角为360°,和三角形内角和定理可得结论.【解答】解:由折叠的性质得:∠A=∠DOE,∠B=∠GOH,∠C=∠EOF,∵∠A+∠B+∠C=180°,∴∠DOE+∠GOH+∠EOF=180°,∴∠1+∠2=360°﹣180°=180°,故答案为;180.【点评】本题考查了三角形内角和定理和折叠的性质,熟练掌握折叠前后的两个角相等是关键.36.如图,BE平分∠ABD,CF平分∠ACD,BE、CF交于G,若∠BDC=140°,∠BGC=110°,则∠A=80°.【分析】根据三角形的内角和定理,及角平分线上的性质先计算∠ABC+∠ACB 的度数,从而得出∠A的度数.【解答】解:如图,连接BC.∵BE是∠ABD的平分线,CF是∠ACD的平分线,∴∠ABE=∠DBE=∠ABD,∠ACF=∠DCF=∠ACD,又∠BDC=140°,∠BGC=110°,∴∠DBC+∠DCB=40°,∠GBC+∠GCB=70°,∴∠EBD+∠FCD=70°﹣40°=30°,∴∠ABE+∠ACF=30°,∴∠ABE+∠ACF+∠GBC+∠GCB=70°+30°=100°,即∠ABC+∠ACB=100°,∴∠A=80°.故答案为:80°.【点评】本题考查角平分线的性质及三角形的内角和定理,根据题意作出辅助线,构造出三角形是解答此题的关键.37.如图,是一个不规则的五角星,则∠A+∠B+∠C+∠D+∠E=180°.(用度数表示)【分析】根据三角形外角性质,可得∠1=∠C+∠2,∠2=∠A+∠D,那么有∠1=∠C+∠A+∠D,再根据三角形内角和定理有∠1+∠B+∠E=180°,从而易求∠A+∠B+∠C+∠D+∠E=180°.【解答】解:如右图所示,∵∠1=∠C+∠2,∠2=∠A+∠D,∴∠1=∠C+∠A+∠D,又∵∠1+∠B+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°.故答案是:180°.【点评】本题考查了三角形内角和定理、三角形外角的性质.三角形的外角等于和它不相邻的两个内角的和.38.如图,在△ABC中,点D、E分别在边BC、AC上,∠DCE=∠DEC,点F在AC、点G在DE的延长线上,∠DFG=∠DGF.若∠EFG=35°,则∠CDF的度数为70°.【分析】根据三角形内角和定理求出x+y=145,在△FDC中,根据三角形内角和定理求出即可.【解答】解:∵∠DCE=∠DEC,∠DFG=∠DGF,∴设∠DCE=∠DEC=x°,∠DFG=∠DGF=y°,则∠FEG=∠DEC=x°,∵在△GFE中,∠EFG=35°,∴∠FEG+∠DGF=x°+y°=180°﹣35°=145°,即x+y=145,在△FDC中,∠CDF=180°﹣∠DCE﹣∠DFC=180°﹣x°﹣(y°﹣35°)=215°﹣(x°+y°)=70°,故答案为:70°.【点评】本题考查了三角形内角和定理,能求出x+y=145是解此题的关键.39.如图,在△ABC中,∠ABC=100°,∠ACB的平分线交AB边于点E,在AC边取点D,使∠CBD=20°,连接DE,则∠CED的大小=10(度).【分析】根据题意和图象,通过作辅助线,可以求得∠CED的度数,本题得以解决.【解答】解:延长CB到F,∵在△ABC中,∠ABC=100°,∠CBD=20°,∴∠ABF=80°,∠ABD=80°,∴AB平分∠FBD,又∵∠ACB的平分线交AB边于点E,∴点E到边BF,BD,AC的距离相等,∴点E在∠ADB的平分线上,即DE平分∠ADB,∵∠DBC=∠ADB﹣∠ACB,∠DBC=20°,∴,∴10°=,∵∠DEC=∠ADE﹣∠ACE=,∴∠DEC=10°,故答案为:10.【点评】本题考查三角形内角和定理,解答本题的关键是明确题意,利用数形结合的思想解答.40.如图,在△ABC中,∠A=70°∠B=50°,点D,E分别为AB,AC上的点,沿DE折叠,使点A落在BC边上点F处,若△EFC为直角三角形,则∠BDF的度数为110°或50°.【分析】由内角和定理得出∠C=60°,根据翻折变换的性质知∠DFE=∠A=70°,再分∠EFC=90°和∠FEC=90°两种情况,先求出∠DFC度数,继而由∠BDF=∠DFC ﹣∠B可得答案.【解答】解:∵△ABC中,∠A=70°、∠B=50°,∴∠C=180°﹣∠A﹣∠B=60°,由翻折性质知∠DFE=∠A=70°,当∠EFC=90°时,∠DFC=∠DFE+∠EFC=160°,则∠BDF=∠DFC﹣∠B=110°;当∠FEC=90°时,∠EFC=180°﹣∠FEC﹣∠C=30°,∴∠DFC=∠DFE+∠EFC=100°,∠BDF=∠DFC﹣∠B=50°;综上,∠BDF的度数为110°或50°,故答案为:110°或50°.【点评】本题考查的是图形翻折变换的性质及三角形内角和定理,熟知折叠的性质、三角形的内角和定理、三角形外角性质是解答此题的关键.。

北师版八年级上册数学习题课件第7章题型特训三角形内外角关系应用的六种常见题型

北师版八年级上册数学习题课件第7章题型特训三角形内外角关系应用的六种常见题型
训 (2)若∠EDC=50°,求∠A的度数;
解:∵∠EDC=50°,
∴∠DBC+∠DCB=50°.
∵BD,CD分别为∠ABC,∠ACB的平分线,
∴∠DBC=
1∠ABC,∠DCB= 2
12 ∠ACB.
∴∠ABC+∠ACB=2(∠DBC+∠DCB)=100°.
∴∠A=180°-(∠ABC+∠ACB)=80°.
题型特训 (3)设∠B=α,∠C=β(α>β),请用含α,β的式子表示∠DAE
的度数(直接写出结论).
解:∠DAE=12(α-β).
题型特训 3.如图,在折纸活动中,小明制作了一张△ABC纸片,点
D,E分别在边AB,AC上,将△ABC沿着DE所在直线折 叠压平,使点A与点N重合. (1)若∠B=35°,∠C=60°,求∠A的度数;
题型特训
(2)若∠B=50°,∠CAD∶∠E=1∶3,求∠E的度数.
解:设∠CAD=x,则∠E=3x. 由(1)知∠EAC=∠B=50°, ∴∠EDA=∠EAD=x+50°. 在△EAD中,∵∠E+∠EAD+∠EDA=180°, ∴3x+2(x+50°)=180°,解得x=16°. ∴3x=48°,即∠E=48°.
题型特训 7.如图,在△ABC中,∠ABC,∠ACB的平分线交于点O,D是
外角∠ACH与内角∠ABC的平分线的交点,∠BOC=120°. (1)求∠A的度数;
解:∵∠BOC=120°,∴∠OBC+∠OCB=60°. ∵∠ABC,∠ACB的平分线交于点O, ∴∠ABC=2∠OBC,∠ACB=2∠OCB, ∴∠ABC+∠ACB=2(∠OBC+∠OCB)=120°, ∴∠A=180°-(∠ABC+∠ACB)=60°.
题型特训 4.如图,点E在AC上,点F在AB上,BE,CF交于点O,且

北师版初中八上数学第七章 平行线的证明 第2课时 三角形的外角

北师版初中八上数学第七章 平行线的证明 第2课时 三角形的外角
第七章 平行线的证明
7.5 三角形内角和定理 第2课时 三角形的外角
知识点一 认识三角形的外角 1.下列各图中,∠1是△ABC的外角的是( D )
A
B
C
D
2.如图,以∠AEB为外角的三角形是 △ACE .
第2题图
知识点二 三角形的一个外角等于和它不相邻的两个内角的和
3.如图,∠A=40°,∠CBD是△ABC的外角,∠CBD=120°,则∠C的度数是
B.∠1>∠A D.∠3>∠A
第10题图
易错点 等腰三角形的顶角不确定时未分类讨论导致漏解 11.等腰三角形的一个外角是110°,则它的底角的度数是 55°或70° .
12.如图,∠1,∠2,∠3,∠4恒满足的关系式是( D )
A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4-∠3 C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2-∠3
D.105°
第5题图
6.如图,在△ABC中,AD平分∠BAC.如果∠B=80°,∠C=40°,那么∠ADC 的度数为 110° .
第6题图
7.如图,在△ABC中,∠A=63°,直线MN∥BC,且分别与AB,AC相交于点D, E.若∠AEN=133°,则∠B的度数为 70° .
第7题图
8.如图,F是△ABC的边BC延长线上一点,DF⊥AB,∠A=30°,∠F=40°,求 ∠ACF的度数. 解:∵DF⊥AB, ∴∠BDF=90°. 在△BDF中, ∵∠F=40°, ∠BDF+∠F+∠B=180°, ∴∠B=180°-∠BDF-∠F=50°, ∴∠ACF=∠A+∠B=80°.
13.如图,五角星的顶点为A,B,C,D,E,则∠A+∠B+∠C+∠D+∠E的 度数为 180° .
第13题图 如图,∠A+∠B+∠C+∠D+∠E的度数为 180° .

143.北师大版八年级数学上册7.5 第2课时 三角形的外角(同步练习)

143.北师大版八年级数学上册7.5  第2课时 三角形的外角(同步练习)

7.5 三角形内角和定理第2课时三角形外角和1.如图所示,∠1为三角形的外角的是()2.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,则这块三角形木板另外一个角的度数为__________.3.如图,D是AB边上的中点,将△ABC沿过D的直线折叠,使点A落在BC上的点F 处,若∠B=50°,则∠BDF=__________.4.如图1,直线a∥b,则∠ACB=__________.5.等腰三角形的一个外角为110°,则这个等腰三角形的三个内角分别为__________.6.已知:如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=120°,求∠DAC的度数.初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180 °18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形21 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形22 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形23 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形24 矩形性质定理 1 矩形的四个角都是直角25 矩形性质定理 2 矩形的对角线相等26 矩形判定定理 1 有三个角是直角的四边形是矩形27 矩形判定定理 2 对角线相等的平行四边形是矩形28 菱形性质定理 1 菱形的四条边都相等29 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角30 菱形面积= 对角线乘积的一半,即S= (a×b )÷231 菱形判定定理1 四边都相等的四边形是菱形32 菱形判定定理2 对角线互相垂直的平行四边形是菱形33 正方形性质定理1 正方形的四个角都是直角,四条边都相等34 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角35 定理1 关于中心对称的两个图形是全等的36 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分37 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称38 等腰梯形性质定理等腰梯形在同一底上的两个角相等。

北师大版初中八年级数学上册第7章5第2课时三角形的外角练习含答案

北师大版初中八年级数学上册第7章5第2课时三角形的外角练习含答案
(第4题图)
5.一个三角形的三个外角中,钝角的个数最少为().
A.0B.1C.2D.3
6.如图,在△ABC中,∠B=66°,∠C=54°,AD是∠BAC的平分线,DE平分∠ADC交AC于点E,则∠BDE=.
7.如图,已知DF⊥AB于点F,交AC于点E,且∠A=45°,∠D=30°,求∠ACB的度数.
8.如图,∠A=90°,∠B=21°,∠C=32°,求∠BDC的度数.
第2课时三角形的外角
【知能
1.B2.C3.B4.B5.C6.132°
7.解:∵DF⊥AB于点F,∴∠EFA=90°,
又∠A=45°,
∴∠AEF=45°,
∴∠CED=∠AEF=45°,
∵∠D=30°,
∴∠ACB=∠CED+∠D=45°+30°=75°.
8.解:如图所示,连接AD并延长AD至点E,
∵∠BDE=∠BAD+∠B,∠CDE=∠CAD+∠C,
∴∠BDC=∠BDE+∠CDE=∠CAD+∠C+∠BAD+∠B=∠BAC+∠B+∠C.
∵∠A=90°,∠B=21°,∠C=32°,
∴∠BDC=90°+21°+32°=143°.

知能பைடு நூலகம்升训练
1.(2021河池)如图,∠A=40°,∠CBD是△ABC的外角,∠CBD=120°,则∠C的大小是().
A.90°B.80°C.60°D.40°
(第1题图)
2.如图,在△ABC中,∠ACB=90°,点D,E是BC上的两点,连接AD,AE,则图中钝角三角形共有().
A.1个B.2个C.3个D.4个
(第2题图)
3.(2021陕西)如图,点D,E分别在线段BC,AC上,连接AD,BE.若∠A=35°,∠B=25°,∠C=50°,则∠1的大小为().
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版八年级数学上册第七章 7.5.2三角形的外角同步练习题
一、选择题
1.如图,点D在△ABC的边AB的延长线上,DE∥BC.若∠A=35°,∠C=24°,则∠D 的度数是(B)
A.24° B.59° C.60° D.69°
2.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是(C)
A.45° B.60° C.75° D.85°
3.如图,在△ABC中,以点B为圆心,BA长为半径画弧交边BC于点D,连接AD.若∠B =40°,∠C=36°,则∠DAC的度数是(C)
A.70° B.44° C.34° D.24°
4.如图,∠ACD是△ABC的外角,CE平分∠ACD.若∠A=60°,∠B=40°,则∠ECD 等于(C)
A.40° B.45° C.50° D.55°
5.如图,∠A,∠1,∠2的大小关系是(B)
A .∠A >∠1>∠2
B .∠2>∠1>∠A
C .∠A >∠2>∠1
D .∠2>∠A>∠1
6.如图,∠ACD 是△ABC 的一个外角,过点D 作直线,分别交AC 和AB 于点E ,H.下列的结论中一定不正确的是(A)
A .∠
B >∠ACD B .∠B +∠ACB=180°-∠A
C .∠B +∠ACB<180°
D .∠HEC >∠B 二、填空题
7.如图是A ,B ,C 三岛的平面图,C 岛在A 岛的北偏东50°方向上,B 岛在A 岛的北偏东80°方向上,C 岛在B 岛的北偏东30°方向上,则从C 岛看A ,B 两岛的视角∠ACB=20°.
8.如图,∠A =∠B,∠C =α,DE ⊥AC 于点E ,FD ⊥AB 于点D.
(1)若∠A=65°,则∠EDF=65°;(2)若α=40°,则∠EDF=70°; (3)∠EDF 与α的关系为90°-1
2
α.
9.如图所示,∠ABC的内角平分线与∠ACB的外角平分线交于点P,已知∠A=78°,则∠P=39°.
10.如图,∠ACD是△ABC的一个外角,CE平分∠ACD,F为CA延长线上的一点,FG∥CE,交AB于点G.若∠1=70°,∠2=30°,则∠3=(B)
A.30° B.40° C.45° D.70°
11.如图是由平面上五个点A,B,C,D,E连接而成的,则∠A+∠B+∠C+∠D+∠E 的度数为180°.
12.如图,在△ABC中,EF∥BC,∠ACG是△ABC的外角,∠BAC的平分线交BC于点D,记∠ADC=α,∠ACG=β,∠AEF=γ,则α,β,γ三者间的数量关系式是2∠α=∠β+∠γ.
13.如图,已知∠1=∠2=∠3,且∠BAC=70°,∠DFE=50°,则∠ABC=60°.
三、解答题
14.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE 交AC的延长线于点E.
(1)求∠CBE 的度数;
(2)过点D 作DF∥BE,交AC 的延长线于点F ,求∠F 的度数.
解:(1)∵在Rt △ABC 中,∠ACB =90°,∠A =40°, ∴∠CBD =∠ACB+∠A=130°. ∵BE 是∠CBD 的平分线, ∴∠CBE =1
2
∠CBD=65°.
(2)∵∠ACB=90°,∠CBE =65°, ∴∠CEB =90°-65°=25°. ∵DF ∥BE ,
∴∠F =∠CEB=25°.
15.如图,在△ABC 中,AB =AC ,D ,E 分别在AC ,AB 边上,且BC =BD ,AD =DE =EB ,求∠A 的度数.
解:∵DE=EB , ∴设∠BDE =∠ABD=x. ∴∠AED =∠BDE+∠ABD=2x. ∵AD =DE , ∴∠AED =∠A=2x. ∴∠BDC=∠A+∠ABD=3x.
∵BD =BC ,∴∠C =∠BDC=3x. ∵AB =AC ,∴∠ABC =∠C=3x. 在△ABC 中,3x +3x +2x =180°, 解得x =22.5°.
∴∠A =2x =22.5°×2=45°.
16.如图,在△ABC 中,AD 是高,AE 是∠BAC 的外角∠FAC 的平分线. (1)∠ABC=40°,∠ACB =70°,求∠EAD 的度数;
(2)∠ABC=α,∠ACB =β,请用α,β表示∠EAD,并写出推导过程.
解:(1)∵∠ABC=40°, ∠ACB =70°,
∴∠FAC =∠ABC+∠ACB=110°. ∵AE 是∠FAC 的平分线, ∴∠CAE =1
2∠FAC=55°.
∵AD ⊥BC ,
∴∠CAD =90°-70°=20°.
∴∠EAD =∠CAD+∠CAE=55°+20°=75°. (2)∠EAD=90°+α-β
2.理由如下:
∵∠B =α,∠C =β, ∴∠FAC =∠B+∠C=α+β. ∵AE 平分∠FAC,
∴∠CAE =12∠CAF=α+β
2.
∵AD ⊥BC ,∠C =β, ∴∠DAC =90°-β.
∴∠DAE =∠DAC+∠CAE=90°-β+α+β2=90°+α-β
2.
17.如下几个图形是五角星和它的变形.
(1)图1是一个五角星,求∠A+∠B+∠C+∠D+∠E 的度数;
(2)图2中的点A 向下移到BE 上时,五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化,说明你的结论的正确性;
(3)把图2中的点C 向上移到BD 上时,如图3所示,五个角的和(即∠CAD+∠B+∠ACE +∠D+∠E)有无变化,说明你的结论的正确性.
解:(1)连接CD.设∠2=∠ECD,∠3=∠BDC.
在△ACD 中,根据三角形内角和定理,得出∠A +∠2+∠3+∠ACE+∠ADB=180°. ∵∠1=∠B+∠E=∠2+∠3,
∴∠A +∠B+∠ACE+∠ADB+∠E=∠A+∠2+∠3+∠ACE+∠ADB= 180°. (2)无变化.证明:根据平角的定义,得出∠BAC +∠CAD +∠DAE=180°. ∵∠BAC =∠C+∠E,∠EAD =∠B+∠D,
∴∠CAD +∠B+∠C+∠D+∠E=∠BAC+∠CAD+∠DAE=180°. (3)无变化.证明:∵∠ACB=∠CAD+∠D,
∠ECD=∠B+∠E,
∴∠CAD+∠B+∠ACE+∠D+∠E=∠ACB+∠ACE+∠ECD=180°.。

相关文档
最新文档