浙江省2019年中考数学复习题型四新定义与阅读理解题类型一新法则运算学习型针对演练108
2019-2020年中考数学复习第二部分题型研究题型四新定义与阅读理解题类型二新概念学习型针对演练
2019-2020年中考数学复习第二部分题型研究题型四新定义与阅读理解题类型二新概念学习型针对演练针对演练1. 若x 1,x 2是关于x 的方程x 2+bx +c =0的两个实数根,且|x 1|+|x 2|=2|k |(k 是整数),则称方程x 2+bx +c =0为“偶系二次方程”.如方程x 2-6x -27=0,x 2-2x -8=0,x 2+3x -274=0,x 2+6x -27=0, x 2+4x +4=0都是“偶系二次方程”.(1)判断方程x 2+x -12=0是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b ,是否存在实数c ,使得关于x 的方程x 2+bx +c =0是“偶系二次方程”,并说明理由.2. 设二次函数y 1,y 2的图象的顶点分别为(a ,b )、(c ,d ),当a =-c ,b =2d ,且开口方向相同时,则称y 1是y 2的“反倍顶二次函数”.(1)请写出二次函数y =x 2+x +1的一个“反倍顶二次函数”;(2)已知关于x 的二次函数y 1=x 2+nx 和二次函数y 2=nx 2+x ;函数y 1+y 2恰是y 1-y 2的“反倍顶二次函数”,求n .3. 函数y =k x 和y =-k x (k ≠0)的图象关于y 轴对称,我们定义函数y =k x 和y =-k x(k ≠0)相互为“影像”函数:(1)请写出函数y =2x -3的“影像”函数:________;(2)函数________的“影像”函数是y =x 2-3x -5;(3)若一条直线与一对“影像”函数y =2x (x >0)和y =-2x(x <0)的图象分别交于点A 、B 、C (点A 、B 在第一象限),如图,如果CB ∶BA =1∶2,点C 在函数y =-2x(x <0)的“影像”函数上的对应点的横坐标是1,求点B 的坐标.第3题图4. 如图,在平面直角坐标系中,已知点P 0的坐标为(1,0),将线段OP 0按逆时针方向旋转45°,再将其长度伸长为OP 0的2倍,得到线段OP 1,又将线段OP 1按逆时针方向旋转45°,长度伸长为OP 1的2倍,得到线段OP 2,如此下去,得到线段OP 3,OP 4…,OP n (为正整数).(1)求点P 3的坐标;(2)我们规定:把点P n (x n ,y n )(n =0,1,2,3…)的横坐标x n 、纵坐标y n 都取绝对值后得到的新坐标(|x n |,|y n |)称为点P n 的“绝对坐标”,根据图中P n 的分布规律,求出点P n的“绝对坐标”.第4题图考向2) 几何类(杭州:2015.19;台州:2016.23,2015、2013.24;绍兴:2017.22,2013.22,2012.21)针对训练1. (2017绍兴)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图①,等腰直角四边形ABCD,AB=BC,∠ABC=90°.①若AB=CD=1,AB∥CD,求对角线BD的长;②若AC⊥BD,求证:AD=CD.(2)如图②,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形.求AE的长.第1题图2. 阅读下面的材料:如果一个三角形和一个平行四边形满足条件:三角形的一边与平行四边形的一边重合,三角形这边所对的顶点在平行四边形这边的对边上,则称这样的平行四边形为三角形的“友好平行四边形”,如图①,▱ABEF即为△ABC的“友好平行四边形”.请解决下列问题:(1)仿照以上叙述,说明什么是一个三角形的“友好矩形”;(2)若△ABC是钝角三角形,则△ABC显然只有一个“友好矩形”,若△ABC是直角三角形,其“友好矩形”有______个;(3)若△ABC是锐角三角形,且AB<AC<BC,如图②,请画出△ABC的所有“友好矩形”,指出其中周长最小的“友好矩形”,并说明理由.第2题图)3. (2017常州)如图①,在四边形ABCD中,如果对角线AC和BD相交并且相等,那么我们把这样的四边形称为等角线四边形.(1)①在“平行四边形、矩形、菱形”中,________一定是等角线四边形(填写图形名称);②若M、N、P、Q分别是等角线四边形ABCD四边AB、BC、CD、DA的中点,当对角线AC、BD还需要满足________时,四边形MNPQ是正方形;(2)如图②,已知△ABC中,∠ABC=90°,AB=4,BC=3,D为平面内一点.①若四边形ABCD 是等角线四边形,且AD =BD ,则四边形ABCD 的面积是________; ②设点E 是以C 为圆心,1为半径的圆上的动点,若四边形ABED 是等角线四边形,写出四边形ABED 面积的最大值,并说明理由.第3题图4. (2017黄石)在现实生活中,我们经常会看到许多“标准”的矩形,如我们的课本封面、A4的打印纸等,其实这些矩形的长与宽之比都为2∶1,我们不妨就把这样的矩形称为“标准矩形”.在“标准矩形”ABCD 中,P 为DC 边上一定点,且CP =BC ,如下图所示.(1)如图①,求证:BA =BP ;(2)如图②,点Q 在DC 上,且DQ =CP ,若G 为BC 边上一动点,当△AGQ 的周长最小时,求CG GB的值;(3)如图③,已知AD =1,在(2)的条件下,连接AG 并延长交DC 的延长线于点F ,连接BF ,T 为BF 的中点,M 、N 分别为线段PF 与AB 上的动点,且始终保持PM =BN ,请证明:△MNT 的面积S 为定值,并求出这个定值.第4题图5. 对于一个四边形给出如下定义:如一组对角相等且有一组邻边相等,则称这个四边形为奇特四边形,如图①中,∠B =∠D ,AB =AD ;如图②中,∠A =∠C ,AB =AD 则这样的四边形均为奇特四边形.(1)在图①中,若AB =AD =4,∠A =60°,∠C =120°,请求出四边形ABCD 的面积; (2)在图②中,若AB =AD =4,∠A =∠C =45°,请直接写出四边形ABCD 面积的最大值; (3)如图③,在正方形ABCD 中,E 为AB 边上一点,F 是AD 延长线上一点,且BE =DF ,连接EF ,取EF 的中点G ,连接CG 并延长交AD 于点H ,若EB +BC =m ,问四边形BCGE 的面积是否为定值?如果是,请求出这个定值(用含m 的代数式表示);如果不是,请说明理由.第5题图6. 类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)如图①,在四边形ABCD 中,添加一个条件使得四边形A B CD 是“等邻边四边形”.请写出你添加的一个条件;(2)小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由;(3)如图②,小红作了一个Rt △ABC ,其中∠ABC =90°,AB =2,BC =1,并将Rt △ABC 沿∠ABC 的平分线BB ′方向平移得到△A′B′C′,连接AA ′,BC ′.小红要使平移后的四边形ABC ′A′是“等邻边四边形”,应平移多少距离(即线段BB ′的长)?第6题图7. (2017江西)我们定义:如图①,在△ABC 中,把AB 绕点A 顺时针旋转α(0°<α<180°)得到AB ′,把AC 绕点A 逆时针旋转β得到AC ′,连接B′C′.当α+β=180°时,我们称△AB′C ′是△ABC 的“旋补三角形”,△AB ′C ′边B′C′上的中线AD 叫做△ABC 的“旋补中线”,点A 叫做“旋补中心”.特例感知 (1)在图②,图③中,△AB′C′是△ABC 的“旋补三角形”,AD 是△ABC 的“旋补中线”. ①如图②,当△ABC 为等边三角形时,AD 与BC 的数量关系为AD =____BC ; ②如图③,当∠BAC =90°,BC =8时,则AD 长为________. 猜想论证(2)在图①中,当△A B C 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明. 拓展应用 (3)如图④,在四边形ABCD 中,∠C =90°,∠D =150°,BC =12,CD =23,DA =6.在四边形内部是否存在点P ,使△PDC 是△PAB 的“旋补三角形”?若存在,给予证明,并求△PAB 的“旋补中线”长;若不存在,说明理由.第7题图 答案1. 解:(1)不是.理由如下:∵解方程x 2+x -12=0,得x 1=-4,x 2=3, ∴|x 1|+|x 2|=4+3=2×|3.5|, ∵3.5不是整数,∴方程x 2+x -12=0不是“偶系二次方程”; (2)存在.理由如下:∵方程x 2-6x -27=0,x 2+6x -27=0是“偶系二次方程”,∴假设c =mb 2+n ,当b =-6,c =-27时,有-27=36m +n , ∵x 2=0是“偶系二次方程”,∴n =0,m =-34,∴c =-34b 2.又∵x 2+3x -274=0也是“偶系二次方程”,当b =3时,c =-274=-34×32,∴可设c =-34b 2,对任意一个整数b ,当c =-34b 2时,b 2-4ac =b 2-4c =4b 2,∴x =-b±2|b|2,∴x 1=-32b ,x 2=12b ,∴|x 1|+|x 2|=32|b |+12|b |=2|b |.∵b 是整数,∴对于任意一个整数b ,存在实数c ,当且仅当c =-34b 2时,关于x 的方程,x 2+bx +c=0是“偶系二次方程”.2. 解:(1)∵y =x 2+x +1,∴y =(x +12)2+34,∴二次函数y =x 2+x +1的顶点坐标为(-12,34),∴二次函数y =x 2+x +1的一个“反倍顶二次函数”的顶点坐标为(12,32),∴反倍顶二次函数的解析式为y =(x -12)2+32=x 2-x +74;(2)y 1+y 2=x 2+nx +nx 2+x =(n +1)x 2+(n +1)x =(n +1)(x 2+x )=(n +1)(x +12)2-n +14, ∴顶点的坐标为(-12,-n +14),y 1-y 2=x 2+nx -nx 2-x =(1-n )x 2+(n -1)x =(1-n )(x 2-x)=(1-n)(x -12)2-1-n4, ∴顶点的坐标为(12,-1-n4),由于函数y 1+y 2恰是y 1-y 2的“反倍顶二次函数”, 则-2×1-n 4=-n +14, 解得n =13.3. 解:(1)y =-2x -3;【解法提示】令-x =x 得y =-2x -3.(2)y =x 2+3x -5;【解法提示】令-x =x 得y =x 2+3x -5.(3) 如解图,作CC ′⊥x 轴,BB ′⊥x 轴,AA ′⊥x 轴垂足分别为C′、B′、A′,第3题解图设点B (m ,2m ),A (n ,2n),其中m >0,n >0, 由题意,将x =-1代入y =-2x中解得y =2,∴点C (-1,2),∴CC ′=2,BB ′= 2m ,AA ′=2n,又∵A′B′=n -m ,B ′C ′=m +1,CC ′∥BB ′∥AA ′,CB ∶AB =1∶2, 则B′C′∶A′B′=1∶2,则⎩⎪⎨⎪⎧n -m =2(m +1)2m -2n =23(2-2n ),消去n 化简得到3m 2-2m -3=0,解得m =1+103或1-103(舍弃),∴2m =21+103=-2+2103,∴点B 坐标为(1+103,-2+2103).4. 解:(1)根据题意,得OP 3=2OP 2=4OP 1=8OP 0=8,根据等腰直角三角形的性质,得P 3(-42,42); (2)由题意知,旋转8次之后回到轴的正半轴,在这8次旋转中,点分别落在坐标象限的角平分线上或x 轴或y 轴上, 但各点“绝对坐标”的横、纵坐标均为非负数, 因此,各点的“绝对坐标”可分三种情况:①当P n 的n =0,4,8,12…,则点在x 轴上,则“绝对坐标”为(2n,0) ,②当P n 的n =2,6,10,14…,则点在y 轴上,则“绝对坐标”为(0,2n) ; ③当P n 的n =1,3,5,7,9…,则点在各象限的角平分线上,则“绝对坐标”为(2n -12,2n -12).考向2 几何类针对演练1. 解:(1)①∵AB =CD =1,AB ∥CD , ∴四边形ABCD 是平行四边形, 又∵AB =BC ,∴▱ABCD 是菱形. 又∵∠ABC =90°,∴四边形ABCD 为正方形, ∴BD =2;②如解图①,连接AC ,BD ,第1题解图①∵AB =BC ,AC ⊥BD , ∴∠ABD =∠CBD , 又∵BD =BD , ∴△ABD ≌△CBD , ∴AD =CD ;(2)若EF 与BC 垂直,则AE ≠EF ,BF ≠EF ,∴四边形ABFE 不是等腰直角四边形,不符合条件; 若EF 与BC 不垂直,①当AE =AB 时,如解图②,此时四边形ABFE 是等腰直角四边形,第1题解图②∴AE =AB =5;②当BF =AB 时,如解图③,此时四边形ABFE 是等腰直角四边形,第1题解图③∴BF =AB =5. ∵DE ∥BF ,∴△PED ∽△PFB ,∴ED FB =PD PB =12, ∴DE =2.5,∴AE =9-2.5=6.5.综上所述,AE 的长为5或6.5. 2. 解:(1)三角形的一边与矩形的一边重合,三角形这边所对的顶点在矩形这边的对边上;(2)2;【解法提示】如解图①的矩形BCAF 、矩形ABED 为Rt △ABC 的两个“友好矩形”;第2题解图(3)此时共有3个“友好矩形”,如解图②的矩形BCDE 、矩形CAFG 及矩形ABHK ,其中的矩形ABHK 的周长最小.理由如下: ∵矩形BCDE 、矩形CAFG 及矩形ABHK 均为△ABC 的“友好矩形”,∴这三个矩形的面积相等,令其为S ,设矩形BCDE ,矩形CAFG 及矩形ABHK 的周长分别为L 1,L 2,L 3,△ABC 的边长BC =a ,CA =b ,AB =c ,则L 1=2S a +2a ,L 2=2S b +2b ,L 3=2S c+2c ,∴L 1-L 2=(2S a +2a )-(2S b +2b )=2S ab (b -a )+2(a -b )=2(a -b)·ab -S ab,而ab >S ,a >b ,∴L 1-L 2>0,即L 1>L 2,同理可得,L 2>L 3,∴L 3最小,即矩形ABHK 的周长最小. 3. 解:(1)①矩形;【解法提示】平行四边形和菱形的对角线不相等,矩形的对角线相等,故矩形一定是等角线四边形.②垂直;【解法提示】∵四边形ABCD 是等角线四边形,∴AC =BD ,∵M 、N 、P 、Q 分别是边AB 、BC 、CD 、DA 的中点,∴MN =PQ =12AC ,PN =MQ =12BD ,∴MN =PQ =PN =MQ ,∴四边形MNPQ 是菱形,根据“有一个角是直角的菱形是正方形”可知需要四边形MNPQ 有一个角是直角,又易知MN ∥PQ ∥AC ,PN ∥QM ∥BD ,∴要使四边形MNPQ 是正方形需要AC ⊥BD .(2)①3+221; ∵AD =BD ,∴D 在AB 的垂直平分线上,∵四边形ABCD 是等角线四边形, ∴AC =BD ,在Rt △ABC 中,∠ABC =90°,AB =4,BC =3, ∴AC =5, ∴BD =5,如解图①,取AB 的中点为M ,则DM ⊥AB ,第3题解图①在Rt △ADM 中,AD =BD =5,AM =BM =2,由勾股定理得DM =21;∴S 四边形ABCD =S △ABD +S △BCD =12AB ·DM +12BC ·BM=12×4×21+12×3×2=3+221; ②四边形ABED 面积最大值为18,理由如下: 如解图②,设AE 与BD 交于点O ,夹角为α,则第3题解图②S 四边形ABED =S △AED +S △ABE =12AE ·ODsin α+12AE ·OBsin α=12AE ·BDsin α,∵AE =BD ,∴S 四边形ABED =12AE 2sin α,∴当AE 最大,且α=90°时,四边形ABED 的面积最大, 此时延长AC 交圆C 于E ,则AE 最大为5+1=6, ∴四边形ABED 的最大面积为12×62=18.4. (1)证明:如解图①所示,第4题解图①∵PC =BC ,∠BCP =90°, ∴BP =2BC ,又∵矩形ABCD 为“标准矩形”,∴AB =2BC , ∴AB =BP ;(2)解:如解图②,作点Q 关于直线BC 对称的点F ,连接AF 交BC 于点E ,连接QE 、GF ,第4题解图②∵DQ =CP ,∴CQ =DP =CF 且AQ 为定值, ∴EQ =EF ,GQ =GF ,∵AQ 为定值,要使△AGQ 的周长最小时, ∴只需AG +GQ =AG +GF 最小,显然AG +GF ≥AF =AE +EF =AE +EQ ,即当点G 与点E 重合时,△AGQ 的周长最小, 此时CG GB =CE EB =CF AB =DPAB,∵DP AB =CD -CP AB =AB -BC AB =1-BC AB =1-22,∴当△AGQ 的周长最小时,CG GB =1-22; (3)证明:如解图③,MN 交AF 于点K ,连接KT ,第4题解图③由(2)可知,CF =DP , ∴PF =AB 且PF∥AB ,∴四边形ABFP 为平行四边形, 又由PM =BN , ∴MF =AN ,∴△MFK ≌△NAK ,∴点K 为AF 与MN 的中点, 又∵点T 为BF 的中点, ∴KT 为△FAB 的中位线, ∴S △FKT =S △TMK =S △TKN ,∴S △MNT =2S △FKT =12S △FAB =14S 平行四边形ABFP =14×2=24,∴△MNT 的面积S 为定值,这个定值为24. 5. 解:(1)如解图①,设AC 与BD 交于点O ;第5题解图①∵AB =AD ,∠A =60°, ∴△ABD 是等边三角形,∴AB =AD =BD =4, ∠ABD =∠ADB =60°, ∵∠ABC =∠ADC , ∴∠CBD =∠CDB , ∵∠BCD =120°,∴∠CBD =∠CDB =30°, ∴CB =CD , ∵AB =AD , ∴AC ⊥BD ,∴BO =OD =2,OA =AB ·sin60°=23,OC =OB ·tan30°=233,∴S 四边形ABCD =12·BD ·OA +12·BD ·OC =12·BD ·(OA +OC )=1633;(2)2;【解法提示】如解图②,作DH ⊥AB 于H ,过点B 、D 、C 作圆,连接BD ,第5题解图②∵∠C ′=∠C =45°, ∴当C′B =C′D 时,△BDC ′的面积最大,此时四边形ABC ′D 的面积最大, 易证四边形ABC′D 是菱形, 在Rt △AHD 中,∵∠A =45 °,∠AHD =90°,AD =4, ∴AH =HD =22,∴四边形ABC′D 的面积=AB·DH =82, ∴四边形ABCD 的面积的最大值为8 2. (3)四边形BCGE 的面积是定值,理由如下: 如解图③,连接EC 、CF ,作FM ⊥BC 于M .第5题解图③在△BCE 和△DCF 中, ⎩⎪⎨⎪⎧BE =DF ∠EBC =∠FDC,BC =DC∴△BCE ≌△DCF (SAS), ∴CE =CF , ∵EG =GF , ∴S △ECG =S △FCG ,∵四边形CDFM 是矩形,∴BC =DC =MF ,DF =BE =CM , ∴BM =m ,BE +FM =m ,∴△FCM ,△DCF ,△BCE 的面积相等, ∴S 四边形BCGE =12·S 四边形BEFM =12·12·m ·m =14m 2.6. 解:(1)AB =BC 或BC =CD 或CD =AD 或AD =AB ; (2)解:小红的结论正确. 理由如下:∵四边形的对角线互相平分, ∴这个四边形是平行四边形, ∵四边形是“等邻边四边形”, ∴这个四边形有一组邻边相等, ∴这个“等邻边四边形”是菱形;(3)由∠ABC =90°,AB =2,BC =1,得:AC =5, ∵将Rt △ABC 平移得到Rt △A ′B ′C ′,∴BB ′=AA′,A′B′∥AB,A ′B ′=AB =2,B ′C ′=BC =1,A ′C ′=AC =5, (Ⅰ)如解图①,当AA′=AB 时,BB ′=AA′=AB =2;第6题解图①(Ⅱ)如解图②,当AA′=A′C′时,BB ′=AA′=A′C′ =5;第6题解图②(Ⅲ)当A′C′=BC′=5时,如解图③,延长C′B′交AB 与点D ,则C′B ′⊥AB ,第6题解图③∵BB ′平分∠ABC ,∴∠ABB ′=12∠ABC =45°,∴∠BB ′D =∠ABB′=45°, ∴B ′D =BD ,设B′D=BD =x ,则C′D =x +1,BB ′=2x ,∵根据在Rt △BC ′D 中,BC ′2=C′D 2+BD 2即x 2+(x +1)2=5, 解得:x =1或x =-2(不合题意,舍去), ∴BB ′=2x =2;第6题解图④(Ⅳ)当 BC′=AB =2时,如解图④,与(Ⅲ)方法同理可得: x =-1+72或x =-1-72(舍去),∴BB ′=2x =-2+142.故应平移2或5或2或-2+142的距离.7. 解:(1)①12,②4;【解法提示】①如解图①中,第7题解图①∵△ABC 是等边三角形,∴AB =BC =AC =AB′=AC′, ∵DB ′=DC′, ∴A D ⊥B ′C ′,∵∠BAC =60°,∠BAC +∠B′AC ′=180°, ∴∠B ′AC ′=120°, ∴∠B ′=∠C′=30°, ∴AD =12AB ′=12BC .②如解图②中,第7题解图②∵∠BAC =90°,∠BAC +∠B′AC′=180°, ∴∠B ′AC ′=∠BAC =90°, ∵AB =AB′,AC =AC′, ∴△BAC ≌△B ′AC ′, ∴BC =B′C ′, ∵B ′D =DC′,∴AD =12B ′C ′=12BC =4;(2)猜想:AD =12BC .理由:如解图③中,延长AD 到M ,使得AD =DM ,连接B′M,C ′M ,第7题解图③∵B ′D =DC ′,AD =DM ,∴四边形AC′MB′是平行四边形, ∴AC ′=B′M=AC ,∵∠BAC +∠B′AC′=180°, ∠B ′AC ′+∠AB′M =180°, ∴∠BAC =∠MB ′A, ∵AB =AB ′,∴△BAC ≌△AB ′M , ∴BC =AM , ∴AD =12BC ;(3)存在.理由:如解图④中,延长AD 交BC 的延长线于M ,作BE ⊥AD 于E ,作线段BC 的垂直平分线交BE 于P ,交BC 于F ,连接PA 、PD 、PC ,作△PCD 的中线PN ,连接DF 交PC 于O ,第7题解图④∵∠ADC =150°, ∴∠MDC =30°, ∴在Rt △DCM 中,∵CD =23,∠DCM =90°,∠MDC =30°, ∴CM =2,DM =4,∠M =60°, 在Rt △BEM 中,∵∠BEM =90°,BM =BC +CM =14,∠MBE =30°, ∴EM =12BM =7,∴DE =EM -DM =3, ∵AD =6, ∴AE =DE , ∵BE ⊥AD ,∴PA =PD ,PB =PC , 在Rt △CDF 中,∵CD =23,CF =6, ∴∠CDF =∠CPE =60°, 易证△FCP ≌△CFD , ∴CD =PF ,∵CD ∥PF , ∴四边形CDPF 是矩形, ∴∠CDP =90°,∴∠ADP =∠ADC-∠CDP =60°, ∴△ADP 是等边三角形, ∴∠APD =60°,∵∠BPF=∠CPF=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC是△PAB的“旋补三角形”,在Rt△PDN中,∵∠PDN=90°,PD=AD=6,DN=3,∴PN=DN2+PD2=(3)2+62=39.。
浙江省2019年中考数学复习-难题突破题型(三)新定义问题课件浙教版
(1)概念理解:
如图Z3-1①,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是“等高底”三角形,请说明理由;
如图①,过点 A 作 AM⊥直线 BC 于点°.
1
∵∠ACB=30°,AC=6,∴AM= AC=3,
数,如:M{-2,-1,0}=-1,max{-2,-1,0}=0,max{-2,-1,a}=
( ≥ -1),
-1( < -1).
解决问题:
(1)填空:M{sin 45°,cos 60°,tan 60°}=
,如果 max{3,5-3x,2x-6}=3,则 x 的取值范围为
(2)如果 2·M{2,x+2,x+4}=max{2,x+2,x+4},求 x 的值;
∵“等高底”△ABC 的“等底”为 BC,l1∥l2,l1 与 l2 之间的距离为 2,AB= 2BC,
∴BC=AE=2,AB=2 2,∴BE=2,即 EC=4,∴AC=2 5.
∵△ABC 绕点 C 按顺时针方向旋转 45°得到△A'B'C,∴∠DCF=45°.
1
2
2
10.
设 DF=CF=x,∵l1∥l2,∴∠ACE=∠DAF,∴ = = ,即 AF=2x.
( ≥ -1),
-1( < -1).
类型1 新法则、新运算型
将 M{9,x2,3x-2}中的三个元素分别用三个函数表示,即 y=9,y=x2,y=3x-2,在同一个直角坐标系中表示如下,由
几个交点划分区间,分类讨论:
当 x≤-3 时,可知 M{9,x2,3x-2}=9,max{9,x2,3x-2}=x2,得 x2=9,∴x1=3(舍),x2=-3;
【中考真题】浙江省杭州市2019年中考数学试题(解析版)word【推荐】
浙江省杭州市2019年中考数学试题(解析版)浙江省杭州市2019年中考数学试卷一、选择题(本大题有10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个符合题目要求)1.计算下列各式,值最小的是()A. B. C. D.【答案】A【解析】【分析】根据实数的运算法则,遵循先乘除后加减的运算顺序即可得到答案.【详解】根据实数的运算法则可得:A.;B.;C.;D.;故选A.【点睛】本题考查实数的混合运算,掌握实数的混合运算顺序和法则是解题的关键..2.在平面直角坐标系中,点与点关于y轴对称,则()A. ,B. ,C. ,D. ,【答案】B【解析】【分析】根据点关于y轴对称,其横坐标互为相反数,纵坐标相同即可得到答案.【详解】A,B关于y轴对称,则横坐标互为相反数,纵坐标相同,故选B【点睛】本题考查点坐标的轴对称,解题的关键熟练掌握点坐标的轴对称.3.如图,P为⊙外一点,PA、PB分别切⊙于A、B两点,若,则()A. 2B. 3C. 4D. 5【答案】B【解析】【分析】根据切线长定理即可得到答案.【详解】因为PA和PB与⊙相切,根据切线长定理,所以PA=PB=3,故选B.【点睛】本题考查切线长定理,解题的关键是熟练掌握切线长定理.4.已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x人,则()A. B. C. D.【答案】D【解析】【分析】先设男生x人,根据题意可得.【详解】设男生x人,则女生有(30-x)人,由题意得:,故选D.【点睛】本题考查列一元一次方程,解题关键是读懂题意,得出一元一次方程.5.点点同学对数据26,36,36,46,5■,52进行统计分析,发现其中一个两位数被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A. 平均数B. 中位数C. 方差D. 标准差【答案】B【解析】【分析】根据平均数、中位数、方差和标准差的概念,结合题意即可解答.【详解】因为这组数据的中位数是36和46的平均数,则这组数据中的中位数是41,与涂污数字无关,故选B.【点睛】本题考查平均数、中位数、方差和标准差,解题的关键是熟悉平均数、中位数、方差和标准差的相关计算.6.如图,在中,D、E分别在AB边和AC边上,,M为BC边上一点(不与B、C重合),连结AM交DE于点N,则()A. B. C. D.【答案】C【分析】根据平行线性质和相似三角形的判定可得△ADN∽△ABM,△ANE∽△AMC,再根据相似三角形的性质即可得到答案.【详解】∵,∴△ADN∽△ABM,△ANE∽△AMC,∴,故选C.【点睛】本题考查平行线的性质、相似三角形的判定和性质,解题的关键是熟练掌握平行线的性质、相似三角形的判定和性质.7.在中,若一个内角等于另外两个角的差,则()A. 必有一个角等于B. 必有一个角等于C. 必有一个角等于D. 必有一个角等于【答案】D【解析】【分析】先设三角形的两个内角分别为x,y,则可得(180°-x-y),再分三种情况讨论,即可得到答案.【详解】设三角形的一个内角为x,另一个角为y,则三个角为(180°-x-y),则有三种情况:①②③综上所述,必有一个角等于90°故选D.【点睛】本题考查三角形内角和的性质,解题的关键是熟练掌握三角形内角和的性质,分情况讨论.8.已知一次函数和,函数和的图象可能是()A. B. C. D.【答案】A【解析】根据一次函数图形的性质,结合题意和,即可得到答案.【详解】①当,、的图象都经过一、二、三象限②当,、的图象都经过二、三、四象限③当,的图象都经过一、三、四象限,的图象都经过一、二、四象限④当,的图象都经过一、二、四象限,的图象都经过一、三、四象限满足题意的只有A.故选A.【点睛】本题考查一次函数图像,解题的关键是熟练掌握一次函数图像的性质.9.如图,一块矩形木板ABCD斜靠在墙边,(,点A、B、C、D、O在同一平面内),已知,,.则点A到OC的距离等于()A. B. C. D.【答案】D【解析】【分析】根据矩形的性质可得BC=AD=b,∠ABC=90°,再根据三角函数可得答案.【详解】过点A作AE⊥OB于点E,因为四边形ABCD是矩形,且AB=a,AD=b所以BC=AD=b,∠ABC=90°所以∠ABE=∠BCO=x因为,所以,所以点A到OC的距离故选D.【点睛】本题考查矩形的性质和三角函数,解题的关键是熟练掌握矩形的性质和三角函数.10.在平面直角坐标系中,已知,设函数的图像与x轴有M个交点,函数的图像与x轴有N个交点,则()A. 或B. 或C. 或D. 或【答案】C【解析】【分析】先根据函数的图像与x轴有M个交点解得,再对a,b分情况讨论,求得答案.【详解】对于函数,当时,函数与x轴两交点为(-a,0)、(-b,0),∵,所以有2个交点,故对于函数①,交点为,此时②,交点为,此时③,交点为,此时综上所述,或故选C.【点睛】本题考查二次函数与坐标轴的交点,解题的关键是分情况讨论a,b.二、填空题(本大题有6小题,每小题4分,共24分)11.因式分解:________.【答案】(1+x)(1-x)【解析】【分析】根据平方差公式即可得到答案.【详解】对用平方差公式,得【点睛】本题考查因式分解,解题的关键是熟练掌握因式分解的方法.12.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这个数据的平均数等于______.【答案】.【解析】【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】平均数等于总和除以个数,所以平均数.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的基本求法.13.如图,一个圆锥形冰激凌外壳(不计厚度).已知其母线长为,底面圆半径为,则这个冰激凌外壳的侧面积等于______(计算结果精确到个位).【答案】113.【解析】【分析】根据圆锥侧面积公式,代入题中数据,即可得到答案.【详解】根据题中数据,结合圆锥侧面积公式得:【点睛】本题考查求圆锥侧面积,解题的关键是熟练掌握圆锥侧面积公式.14.在直角三角形ABC中,若,则_______.【答案】或.【解析】【分析】对AC分两种情况讨论,根据三角函数即可得到答案.【详解】如图所示,分两种情况讨论,AC可以是直角边,也可以是斜边①当AC是斜边,设AB=x,则AC=2x,由勾股定理可得:BC=x,则②当AC是直角边,设AB=x,则AC=2x,由勾股定理可得:BC=x,则综上所述,或.【点睛】本题考查三角函数,解题的关键是对AC分情况讨论.15.某函数满足当自变量时,函数值;当自变量时,函数值,写出一个满足条件的函数表达式_____.【答案】或或等.【解析】【分析】由于题中没有指定是什么具体的函数,可以从一次函数,二次函数等方面考虑,只要符合题中的两个条件即可.【详解】符合题意的函数解析式可以是或或等,(本题答案不唯一)故答案为:如或或等.【点睛】本题考查一次函数、二次函数的解析式,解题的关键是知道一次函数、二次函数的定义.16.如图,把某矩形纸片ABCD沿EF、GH折叠(点E、H在AD边上,点F、G在BC边上),使得点B、点C落在AD边上同一点P处,A点的对称点为点,D点的对称点为点,若,的面积为4,的面积为1,则矩形ABCD的面积等于_____.【答案】.【解析】【分析】根据相似三角形的判断得到△A'EP~△D'PH,由三角形的面积公式得到S△A'EP,再由折叠的性质和勾股定理即可得到答案.【详解】∵A'E∥PF∴∠A'EP=∠D'PH又∵∠A=∠A'=90°,∠D=∠D'=90°∴∠A'=∠D'∴△A'EP~△D'PH又∵AB=CD,AB=A'P,CD=D'P∴A'P= D'P设A'P=D'P=x∵S△A'EP:S△D'PH=4:1∴A'E=2D'P=2x∴S△A'EP=∵∴∴A'P=D'P=2∴A'E=2D'P=4∴∴∴∴∴∴【点睛】本题考查矩形的性质、折叠的性质,解题的关键是掌握矩形的性质、折叠的性质.三、解答题(本大题有7个小题,共66分)17.化简:圆圆的解答如下:圆圆的解答正确吗?如果不正确,写出正确的解答.【答案】圆圆的解答不正确.正确解为,解答见解析.【解析】【分析】根据完全平方差公式先对分式进行通分,再化简,即可得到答案.【详解】圆圆的解答不正确.正确解答如下:原式.【点睛】本题考查分式化简,解题的关键是掌握完全平方差公式.18.称重五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称重读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克)实际称量读数折线统计图 记录数据折线统计图⑴补充完整乙组数据的折线统计图; ⑵①甲、乙两组数据的平均数分别为、,写出与之间的等量关系; ②甲、乙两组数据的平均数分别为、,比较与的大小,并说明理由.【答案】(1)补全折线统计图,如图所示.见解析;(2)①,②,理由见解析.【解析】【分析】(1)根据统计表中的信息即可得出答案;(2)①先求出甲、乙的平均数,即可得出与之间的等量关系; ②先计算、,再对与的大小进行比较.【详解】(1)补全折线统计图,如图所示.(2)①. ②,理由如下: 因为222221[(4850)(5250)(4750)(4950)(5450)]5x x x x x =--+--+--+--+--乙乙乙乙乙, 所以 【点睛】本题结合折线统计图和统计表考查平均数和方差,解题的关键是读懂题中统计图表所给出的信息.19.如图,在中,.⑴已知线段AB的垂直平分线与BC边交于点P,连结AP,求证:;⑵以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连结AQ,若,求的度数.【答案】(1)见解析;(2)∠B=36°.【解析】【分析】(1)根据垂直平分线的性质,得到PA=PB,再由等腰三角形的性质得到∠PAB=∠B,从而得到答案;(2)根据等腰三角形的性质得到∠BAQ=∠BQA,设∠B=x,由题意得到等式∠AQC=∠B+∠BAQ=3x,即可得到答案.【详解】(1)证明:因为点P在AB的垂直平分线上,所以PA=PB,所以∠PAB=∠B,所以∠APC=∠PAB+∠B=2∠B.(2)根据题意,得BQ=BA,所以∠BAQ=∠BQA,设∠B=x,所以∠AQC=∠B+∠BAQ=3x,所以∠BAQ=∠BQA=2x,在△ABQ中,x+2x+2x=180°,解得x=36°,即∠B=36°.【点睛】本题考查垂直平分线的性质、等腰三角形的性质,解题的关键是掌握垂直平分线的性质、等腰三角形的性质.20.方方驾驶小汽车匀速地从A地行使到B地,行驶里程为480千米,设小汽车的行使时间为t(单位:小时),行使速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.⑴求v关于t的函数表达式;⑵方方上午8点驾驶小汽车从A出发①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v范围.②方方能否在当天11点30分前到达B地?说明理由.【答案】(1);(2)①,②方方不能在11点30分前到达B地.【解析】【分析】(1)根据题意,得,由题意,得,从而得到答案;(2)①根据一元一次不等式,结合题意即可得到答案;②根据不等式,即可求解答案.【详解】(1)根据题意,得,所以,因为,所以当时,,所以(2)①根据题意,得,因为,所以,所以②方方不能在11点30分前到达B地.理由如下:若方方要在11点30分前到达B地,则,所以,所以方方不能在11点30分前到达B地.【点睛】本题考查反比例函数的解析式、一元一次不等式,解题的关键是掌握反比例函数、一元一次不等式.21.如图,已知正方形ABCD的边长为1,正方形CEFG的面积为,点E在CD边上,点G 在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为,且.⑴求线段CE的长;⑵若点H为BC边的中点,连结HD,求证:.【答案】(1)CE=;(2)见解析.【解析】【分析】根据正方形的性质,(1)先设CE=x(0<x<1),则DE=1-x,由S1=S2,列等式即可得到答案.(2)根据勾股定理得到HD,再由H,C,G在同一直线上,得证HD=HG.【详解】根据题意,得AD=BC=CD=1,∠BCD=90°.(1)设CE=x(0<x<1),则DE=1-x,因为S1=S2,所以x2=1-x,解得x=(负根舍去),即CE=(2)因为点H为BC边的中点,所以CH=,所以HD=,因为CG=CE=,点H,C,G在同一直线上,所以HG=HC+CG=+=,所以HD=HG【点睛】本题考查正方形的性质、勾股定理和一元二次函数,解题的关键是根据题意列出一元二次函数.22.设二次函数(、是实数).⑴甲求得当时,;当时,,乙求得当时,.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由;⑵写出二次函数的对称轴,并求出该函数的最小值(用含、的代数式表示);⑶已知二次函数的图像经过,两点(m、n是实数),当时,求证:.【答案】(1)乙求得的结果不正确,理由见解析;(2)对称轴为,;(3)见解析.【解析】【分析】(1)将当时,;当时,的数据代入二次函数,列方程得到二次函数解析式,再代入乙得数据,即可得出答案;(2)根据二次函数轴对称公式,判断函数最低点,即可解答;(3)由题意得到,,则得到的等式,由,并结合函数的图象,得到.【详解】(1)乙求得的结果不正确,理由如下:根据题意,知图象经过点(0,0),(1,0),所以,当时,,所以乙求得的结果不正确.(2)函数图象的对称轴为,当时,函数有最小值M,(3)因为,所以,,所以因为,并结合函数的图象,所以,所以,因为,所以【点睛】本题考查二次函数综合,解题的关键是熟练掌握二次函数的相关概念和计算.23.如图,已知锐角内接于⊙O,于点D,连结AO.⑴若.①求证:;②当时,求面积的最大值;⑵点E在线段OA上,,连接DE,设,(m、n是正数),若,求证:【答案】(1)①见解析;②△ABC面积的最大值是;(2)见解析.【解析】【分析】(1)①连接OB,OC,由圆的性质可得答案;②先作AF⊥BC,垂足为点F,要使得面积最大,则当点A,O,D在同一直线上时取到再根据三角形的面积公式即可得到答案;(2)先设∠OED=∠O DE=α,∠COD=∠BOD=β,由锐角三角形性质得到即,再结合题意及三角形内角和的性质得到两式联立即可得到答案.【详解】(1)①证明:连接OB,OC,因为OB=OC,OD⊥BC,所以∠BOD=∠BOC=×2∠BAC=60°,所以OD=OB=OA②作AF⊥BC,垂足为点F,所以AF≤AD≤AO+OD=,等号当点A,O,D在同一直线上时取到由①知,BC=2BD=,所以△ABC的面积即△ABC面积的最大值是(2)设∠OED=∠ODE=α,∠COD=∠BOD=β,因为△ABC是锐角三角形,所以∠AOC+∠AOB+2∠BOD=360°,即(*)又因为∠ABC<∠ACB,所以∠EOD=∠AOC+∠DOC因为∠OED+∠ODE+∠EOD=180°,所以(**)由(*),(**),得,即【点睛】本题综合考查圆的性质、三角形内角和的性质勾股定理,解题的关键是熟练掌握圆的性质、三角形内角和的性质勾股定理.2019年浙江省杭州市中考语文试题()浙江省杭州市2019年中考语文试题一、积累(20分)阅读下面的文字,完成1—3题。
2019年【浙教版】中考数学难题突破:专题三-新定义问题(含答案)
数学精品复习资料难题突破专题三 新定义问题所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近 年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力.解决“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其解决问题的思想方法;二是根据问题情境的变化,通过认真思考,合理进行思想方法的迁移.类型1 新法则、新运算型1 [2017·枣庄] 我们知道,任意一个正整数n 都可以进行这样的分解:n =p ×q (p ,q 是正整数,且p ≤q ).在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解.并规定:F (n )=p q.例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F (12)=34.(1)如果一个正整数m 是另外一个正整数n 的平方,我们称正整数m 是完全平方数,求证:对任意一个完全平方数m ,总有F (m )=1;(2)如果一个两位正整数t ,t =10x +y (1≤x ≤y ≤9,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”;(3)在(2)所得的“吉祥数”中,求F (t )的最大值. 例题分层分析(1)对任意一个完全平方数m ,设m =n 2(n 为正整数),找出m 的最佳分解为________,所以F (m )=________=________;(2)设交换t 的个位上的数与十位上的数得到的新数为t ′,则t ′=________,根据“吉祥数”的定义确定出x 与y 的关系式为________,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F (t )的最大值即可.解题方法点析此类问题在于读懂新定义,然后仿照范例进行运算,细心研读定义,细致观察范例是解题的关键. 类型2 新定义几何概念型2 [2017·金华] 如图Z 3-1,将△ABC 纸片沿中位线EH 折叠,使点A 的对称点D 落在BC 边上,再将纸片分别沿等腰△BED 和等腰△DHC 的底边上的高线EF ,HG 折叠,折叠后的三个三角形拼合形成一个矩形.类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.图Z 3-1(1)将▱ABCD 纸片按图Z 3-2①的方式折叠成一个叠合矩形AEFG ,则操作形成的折痕分别是线段________,________;S 矩形AEFG ∶S ▱ABCD =________.(2)▱ABCD 纸片还可以按图Z 3-2②的方式折叠成一个叠合矩形EFGH ,若EF =5,EH =12,求AD 的长.(3)如图Z 3-2③,四边形ABCD 纸片满足AD ∥BC ,AD <BC ,AB ⊥BC ,AB =8,CD =10.小明把该纸片折叠,得到叠合正方形....请你帮助画出叠合正方形的示意图,并求出AD ,BC 的长.图Z 3-2例题分层分析(1)观察图形直接得到操作形成的折痕,根据矩形和平行四边形的面积公式与折叠的轴对称性质可得S 矩形AEFG ∶S ▱ABCD=________;(2)由矩形的性质和勾股定理可求得FH =________,再由折叠的轴对称性质可知HD =________,FC =______,∠AHE =12______,∠CFG =12________,从而可得∠________=∠________,再证得△AEH ≌△CGF ,可得________,进而求得AD 的长;(3)根据叠合矩形定义,画出叠合正方形,然后再求AD ,BC 的长.解题方法点析解决此类问题的关键在于仔细研读几何新概念,将新的几何问题转化为已知的三角形、四边形或圆的问题,从而解决问题.对于几何新概念弄清楚条件和结论是至关重要的.专 题 训 练1.[2017·潍坊] 定义[x ]表示不超过实数x 的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数y =[x ]的图象如图Z 3-3所示,则方程[x ]=12x 2的解为( )图Z 3-3A .0或 2B .0或2C .1或- 2D .2或- 22.[2017·莱芜] 对于实数a ,b ,定义符号min{a ,b },其意义为:当a ≥b 时,min{a ,b }=b :当a <b 时,min{a ,b }=a .例如min{2,-1}=-1.若关于x 的函数y =min{2x -1,-x +3},则该函数的最大值为( )A.23 B .1 C.43 D .533.[2017·成都] 在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点P (x ,y ),我们把点P ′(1x ,1y)称为点P 的“倒影点”.直线y =-x +1上有两点A ,B ,它们的倒影点A ′,B ′均在反比例函数y =kx的图象上.若AB =2 2,则k =________.4.[2017·齐齐哈尔] 经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图Z 3-4,线段CD 是△ABC 的“和谐分割线”,△ACD 为等腰三角形,△CBD 和△ABC 相似,∠A =46°,则∠ACB 的度数为________.图Z 3-45.[2017·湖州] 对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a -b .例如:5⊗2=2×5-2=8,(-3)⊗4=2×(-3)-4=-10.(1)若3⊗x =-2011,求x 的值; (2)若x ⊗3<5,求x 的取值范围.6.[2017·义乌] 定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形. (1)如图Z 3-5①,等腰直角四边形ABCD 中,AB =BC ,∠ABC =90°. ①若AB =CD =1,AB ∥CD ,求对角线BD 的长. ②若AC ⊥BD ,求证:AD =CD .(2)如图Z 3-5②,在矩形ABCD 中,AB =5,BC =9,点P 是对角线BD 上一点,且BP =2PD ,过点P 作直线分别交边AD ,BC 于点E ,F ,使四边形ABFE 是等腰直角四边形.求AE 的长.图Z 3-57.[2017·宁波] 有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图Z 3-6①,在半对角四边形ABCD 中,∠B =12∠D ,∠C =12∠A ,求∠B 与∠C 的度数之和;(2)如图Z 3-6②,锐角三角形ABC 内接于⊙O ,若边AB 上存在一点D ,使得BD =BO ,∠OBA 的平分线交OA 于点E ,连结DE 并延长交AC 于点F ,∠AFE =2∠EAF ,求证:四边形DBCF 是半对角四边形;(3)如图Z 3-6③,在(2)的条件下,过点D 作DG ⊥OB 于点H ,交BC 于点G ,当DH =BG 时,求△BGH 与△ABC 的面积之比.图Z 3-6参考答案类型1 新法则、新运算型 例1 【例题分层分析】 (1)m =n ×n nn 1(2)10y +x y =x +4解:(1)证明:对任意一个完全平方数m , 设m =n 2(n 为正整数),∵|n -n |=0,∴n ×n 是m 的最佳分解,∴对任意一个完全平方数m ,总有F (m )=nn=1.(2)设交换t 的个位上的数与十位上的数得到的新数为t ′,则t ′=10y +x , ∵t 是“吉祥数”,∴t ′-t =(10y +x )-(10x +y )=9(y -x )=36, ∴y =x +4,∵1≤x ≤y ≤9,x ,y 为自然数,∴满足“吉祥数”的为15,26,37,48,59.(3)F (15)=35,F (26)=213,F (37)=137,F (48)=68=34,F (59)=159.∵34>35>213>137>159,∴所有“吉祥数”中,F (t )的最大值是34.类型2 新定义几何概念型 例2 【例题分层分析】 (1)1∶2(2)13 HN FN ∠AHF ∠CFH AHE CFG FC =AH 解:(1)AE ,GF ;1∶2.提示:由折叠的性质,得AD =2AG . ∵S 矩形AEFG =AE ·AG ,S ▱ABCD =AE ·AD , ∴S 矩形AEFG ∶S ▱ABCD =AE·AGAE·AD=1∶2.(2)∵四边形EFGH 是叠合矩形,∴∠FEH =90°, ∴FH =EF 2+EH 2=52+122=13.由折叠的性质可知,HD =HN ,FC =FN ,∠AHE =12∠AHF ,∠CFG =12∠CFH .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∠A =∠C ,∴∠AHF =∠CFH ,∴∠AHE =∠CFG . ∵EH =FG ,∴△AEH ≌△CGF ,∴FC =AH , ∴AD =AH +HD =FC +HN =FN +HN =FH =13. (3)本题有以下两种基本折法,如图①,图②.①按图①的折法的解法:由折叠的性质可知,AD =BF ,BE =AE =4,CH =DH =5,FG =CG .∵四边形EBGH 是叠合正方形,∴HG =BG =4, ∴CG =3,∴FG =CG =3,∴BF =BG -FG =1,BC =BG +CG =4+3=7, ∴AD =1,BC =7. ②按图②的折法的解法: 设AD =x .由折叠的性质可知,AE =EM =BE =4,MH =AD =x ,DN =HN ,HG =CG ,FC =FH . 由DN =HN ,HG =CG ,则GN =12CD =5.∵四边形EFGN 是叠合正方形, ∴EF =FG =GN =5,∴MF =BF =3, ∴FC =FH =x +3.∵∠B =∠EFG =∠CGF =90°,∴∠BEF +∠BFE =∠BFE +∠CFG =90°, ∴∠BEF =∠CFG ,∴△GFC ∽△BEF , ∴FG BE =FC EF ,即54=x +35,解得x =134, ∴AD =134,BC =BF +FC =3+134+3=374.专题训练1.A [解析] 由函数图象可知,当-2≤x <-1时,y =-2,即有[x ]=-2,此时方程无解;当-1≤x <0时,y =-1,即有[x ]=-1,此时方程无解;当0≤x <1时,y =0,即有[x ]=0,此时方程为0=12x 2,解得x =0;当1≤x<2时,y =1,即有[x ]=1,此时方程为1=12x 2,解得x =2或x =-2(不在x 的取值范围内,舍去).综上可知,方程[x ]=12x 2的解为0或 2.2.D [解析] 当2x -1≥-x +3时,x ≥43,y =min {2x -1,-x +3}=-x +3,最大值为53.当2x -1<-x +3时,x <43,y =min {2x -1,-x +3}=2x -1,y 的值都小于53.综上,该函数的最大值为53.3.-43 [解析] A ,B 两点在直线y =-x +1上,设A (a ,-a +1),B (b ,-b +1),∴AB 2=(a -b )2+(-a +1+b -1)2=2(a -b )2=(2 2)2,∴(a -b )2=4,∴a -b =±2.A ,B 两点的“倒影点”分别为A ′(1a ,11-a ),B ′(1b ,11-b). ∵点A ′,B ′均在反比例函数y =k x 的图象上,∴1a ·11-a =k =1b ·11-b ,∴a (1-a )=b (1-b ),变形得(a -b )(1-a -b )=0,∵a -b =±2,∴1-a -b =0.由⎩⎪⎨⎪⎧a -b =2,1-a -b =0解得⎩⎪⎨⎪⎧a =32,b =-12,∴k =1a ·11-a =23×(-2)=-43; 由⎩⎪⎨⎪⎧a -b =-2,1-a -b =0解得⎩⎪⎨⎪⎧a =-12,b =32,∴k =1a ·11-a =(-2)×23=-43.综上,k =-43.4.113°或92° [解析] ∵△CBD 和△ABC 相似, ∴∠BCD =∠A =46°.设∠ACB =x ,则∠ACD =x -46°.∵△ACD 是等腰三角形,又∠ADC >∠BCD ,∴∠ADC >∠A ,即AC ≠CD . ①若AC =AD ,则∠ACD =∠ADC =x -46°, ∵46°+x -46°+x -46°=180°, ∴x =113°.②若AD =CD ,则∠ACD =∠A , 即46°=x -46°, ∴x =92°.综上所述,∠ACB 的度数为113°或92°. 5.解:(1)根据题意,得2×3-x =-2011, 解这个方程,得x =2017. (2)根据题意,得2x -3<5, 解得x <4,即x 的取值范围是x <4.6.解:(1)①∵AB =CD =1且AB ∥CD ,∴四边形ABCD 是平行四边形, 又∵AB =BC ,∴四边形ABCD 是菱形. ∵∠ABC =90°,∴四边形ABCD 是正方形, ∴BD =AC =12+12= 2. ②证明:如图①中,连结AC ,BD . ∵AB =BC ,AC ⊥BD ,∴∠ABD =∠CBD , ∵BD =BD ,∴△ABD ≌△CBD ,∴AD =CD .(2)若EF ⊥BC ,则AE ≠EF ,BF ≠EF ,∴四边形ABFE 不表示等腰直角四边形,故不符合条件. 若EF 与BC 不垂直,①当AE =AB 时,如图②,此时四边形ABFE 是等腰直角四边形,∴AE =AB =5.②当BF =AB 时,如图③,此时四边形ABFE 是等腰直角四边形,∴BF =AB =5,∵DE ∥BF ,BP =2PD ,∴BF ∶DE =2∶1,∴DE =2.5,∴AE =9-2.5=6.5.综上所述,满足条件的AE 的长为5或6.5.7.解:(1)在半对角四边形ABCD 中,∠B =12∠D ,∠C =12∠A ,∵∠A +∠B +∠C +∠D =360°,∴3∠B +3∠C =360°,∴∠B +∠C =120°, 即∠B 与∠C 的度数之和为120°. (2)证明:在△BED 和△BEO 中, ⎩⎪⎨⎪⎧BD =BO ,∠EBD =∠EBO,BE =BE ,∴△BED ≌△BEO (SAS ), ∴∠BDE =∠BOE .又∵∠BCF =12∠BOE ,∴∠BCF =12∠BDE .如图,连结OC ,设∠EAF =α,则∠AFE =2α,∴∠EFC =180°-∠AFE =180°-2α. ∵OA =OC ,∴∠OAC =∠OCA =α, ∴∠AOC =180°-2α, ∴∠ABC =12∠AOC =12∠EFC ,∴四边形DBCF 是半对角四边形. (3)如图,作OM ⊥BC 交BC 于点M . ∵四边形DBCF 是半对角四边形,∴∠ABC +∠ACB =120°,∴∠BAC =60°,∴∠BOC =2∠BAC =120°. ∵OB =OC ,∴∠OBC =∠OCB =30°, ∴BC =2BM =3BO =3BD . ∵DG ⊥OB ,∴∠HGB =∠BAC =60°.∵∠DBG =∠CBA ,∴△DBG ∽△CBA , ∴△DBG的面积△ABC的面积=(BD BC )2=13. ∵DH =BG ,BG =2HG , ∴DG =3HG , ∴△BHG的面积△BDG的面积=13, ∴△BHG的面积△ABC的面积=19.。
浙江省2019届中考数学总复习专题训练(共8个专题16份含答案)
专题一选择题的解题策略与应试技巧类型一直选法(2018·浙江宁波中考)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE,若∠ABC=60°,∠BAC=80°,则∠1的度数为( )A.54° B.40° C.30° D.20°【分析】直接利用三角形内角和定理得出∠BCA的度数,再利用三角形中位线定理结合平行线的性质得出答案.得出EO是△DBC的中位线是解题关键.【自主解答】1.(2018·浙江嘉兴中考)2018年5月25日,中国探月工程的“鹊桥号”中继星成功运行于地月拉格朗日L2点,它距离地球约1 500 000 km.数1 500 000用科学记数法表示为( ) A.15×105B.1.5×106C.0.15×107D.1.5×1052.(2018·浙江湖州中考) 尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是( )A.3rB .(1+22)r C .(1+32)r D.2r类型二 排除法(或筛选法、淘汰法)(2018·甘肃定西中考)如图是二次函数y =ax 2+bx +c(a ,b ,c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x =1.对于下列说法:①ab <0;②2a+b =0;③3a+c >0;④a+b≥m(am+b)(m 为实数);⑤当-1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴判定b 与0的关系以及2a +b 与0的关系;当x =-1时,y =a -b +c ;然后由图象确定当x 取何值时,y >0. 【自主解答】3.(2018·浙江舟山中考)某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是( ) A .甲 B .甲与丁 C .丙D .丙与丁4.(2018·四川南充中考)如图,正方形ABCD 的边长为2,P 为CD 的中点,连结AP ,过点B 作BE⊥AP 于点E ,延长CE 交AD 于点F ,过点C 作CH⊥BE 于点G ,交AB 于点H ,连结HF.下列结论正确的是( )A .CE = 5B .EF =22C .cos ∠CEP=55D .HF 2=EF·CF类型三 特殊值法(2018·湖北十堰中考)如图,直线y =-x 与反比例函数y =kx 的图象交于A ,B 两点,过点B 作BD∥x 轴,交y 轴于点D ,直线AD 交反比例函数y =k x 的图象于另一点C ,则CBCA 的值为( )A .1∶3B .1∶2 2C .2∶7D .3∶10【分析】 联立直线AB 与反比例函数表达式组成方程组,通过解方程组可求出点A ,B 的坐标,由BD∥x 轴可得出点D 的坐标,由点A ,D 的坐标利用待定系数法可求出直线AD 的表达式,联立直线AD 与反比例函数表达式组成方程组,通过解方程组可求出点C 的坐标,再结合两点间的距离公式即可求出CBCA 的值.【自主解答】5.(2018·四川内江中考)已知:1a -1b =13,则abb -a 的值是( )A.13B .-13C .3D .-36.(2018·山东聊城中考)如图,将一张三角形纸片ABC 的一角折叠,使点A 落在△ABC 外的A′处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA′=γ,那么下列式子中正确的是( )A .γ=2α+βB .γ=α+2βC .γ=α+βD .γ=180°-α-β类型四 逆推代入法(2018·江苏泰州中考)如图,平面直角坐标系xOy 中,点A 的坐标为(9,6),AB⊥y 轴,垂足为B ,点P 从原点O 出发向x 轴正方向运动,同时,点Q 从点A 出发向点B 运动,当点Q 到达点B 时,点P ,Q 同时停止运动,若点P 与点Q 的速度之比为1∶2,则下列说法正确的是( )A .线段PQ 始终经过点(2,3)B .线段PQ 始终经过点(3,2)C .线段PQ 始终经过点(2,2)D .线段PQ 不可能始终经过某一定点【分析】 当OP =t 时,点P 的坐标为(t ,0),点Q 的坐标为(9-2t ,6).设直线PQ 的表达式为y =kx +b(k≠0),利用待定系数法求出PQ 的表达式即可判断. 【自主解答】将选项中给出的答案或其特殊值代入题干,逐一验证是否满足题设条件,然后选择符合题设条件的选项.在运用验证法解题时,若能根据题意确定代入顺序,则能较大提高解题速度.7.(2018·湖北襄阳中考) 下列语句所描述的事件是随机事件的是( ) A .任意画一个四边形,其内角和为180° B .经过任意两点画一条直线 C .任意画一个菱形,是中心对称图形 D .过平面内任意三点画一个圆 类型五 图解法(2018·贵州毕节中考) 不等式组⎩⎪⎨⎪⎧2x +1≥-3,x <1 的解集在数轴上表示正确的是( )A BC D【分析】先解不等式组,再判断其解集在数轴上的正确表示.【自主解答】8.(2018·山东潍坊中考)已知二次函数y=-(x-h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为-1,则h的值为( )A.3或6 B.1或6C.1或3 D.4或6类型六动手操作法(2017·河北中考)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是( )A.1.4 B.1.1 C.0.8 D.0.5【分析】画图即可判断.【自主解答】与剪、折操作有关或者有些关于图形变换的试题是各地试题热点题型,只凭想象不好确定,处理时要根据剪、折顺序动手实践操作一下,动手可以直观得到答案,往往能达到快速求解的目的.9.(2018·广西南宁中考)如图,矩形纸片ABCD ,AB =4,BC =3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE ,DE 分别交AB 于点O ,F ,且OP =OF ,则cos ∠ADF 的值为( )A.1113B.1315C.1517D.1719类型七 整体代入法(2018·浙江宁波中考)在矩形ABCD 内,将两张边长分别为a 和b(a >b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S 1,图2中阴影部分的面积为S 2.当AD -AB =2时,S 2-S 1的值为( )图1 图2A .2aB .2bC .2a -2bD .-2b【分析】 利用面积的和差分别表示出S 1和S 2,然后利用整式的混合运算计算它们的差. 【自主解答】整体思想也是初中数学中的重要思想之一,它是把题目分散的条件整合起来视为一个整体,从而实现整体代入使其运算得以简化.10.(2018·吉林中考改编)若a +b =4,ab =1,则a 2b +ab 2=( ) A .1B .3C .4D .511.(2018·云南中考)已知x +1x =6,则x 2+1x 的值是( )A .38B .36C .34D .32类型八 构造法(2018·山东枣庄中考)如图,AB 是⊙O 的直径,弦CD 交AB 于点P ,AP =2,BP =6,∠APC=30°,则CD 的长为( )A.15B .2 5C .215D .8【分析】 作OH⊥CD 于H ,连结OC ,如图,根据垂径定理由OH⊥CD 得到HC =HD ,再利用AP =2,BP =6可计算出半径OA =4,则OP =OA -AP =2,接着在Rt △OPH 中根据含30度的直角三角形的性质计算出OH =12OP =1,然后在Rt △OHC 中利用勾股定理计算出CH =15,所以CD =2CH =215. 【自主解答】综合运用各种知识,依据问题给出的条件和结论给出的信息,把问题作适当的加工处理,构造出与问题相关的数学模型,揭示问题的本质,从而沟通解题思路,是一种思维创造.12.(2018·山西中考)如图,在Rt △ABC 中,∠ACB=90°,∠A=60°,AC =6,将△ABC 绕点C 按逆时针方向旋转得到△A′B′C,此时点A′恰好在AB 边上,则点B′与点B 之间的距离为( )A .12B .6C .6 2D .6 313.(2018·江苏苏州中考)如图,在△ABC 中,延长BC 至D ,使得CD =12BC ,过AC 中点E作EF∥CD(点F 位于点E 右侧),且EF =2CD ,连结DF.若AB =8,则DF 的长为( )A .3B .4C .2 3D .3 2类型九 转化法(2018·湖南郴州中考)如图,A ,B 是反比例函数y =4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .1【分析】 先根据反比例函数图象上点的坐标特征及A ,B 两点的横坐标,再过A ,B 两点分别作AC⊥x 轴于C ,BD⊥x 轴于D ,根据反比例函数系数k 的几何意义得出S △AOC =S △BOD =12×4=2.根据S四边形AODB=S △AOB +S △BOD =S △AOC +S梯形ABDC,得出S △AOB =S梯形ABDC,利用梯形面积公式即可得出S △AOB . 【自主解答】常言道:“兵无常势,题无常形”,面对千变万化的中考新题型,当我们在思维受阻时,运用思维转化策略,换一个角度去思考问题,常常能打破僵局,解题中不断调整,不断转化,可以使我们少一些“山穷水复疑无路”的尴尬,多一些“柳暗花明又一村”的喜悦.14. (2018·湖北宜昌中考)如图,正方形ABCD 的边长为1,点E ,F 分别是对角线AC 上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G ,I ,H ,J.则图中阴影部分的面积等于 ( )A .1B.12C.13D.14参考答案【专题类型突破】 类型一【例1】 ∵∠ABC=60°,∠BAC=80°, ∴∠BCA=180°-60°-80°=40°.∵对角线AC 与BD 相交于点O ,E 是边CD 的中点, ∴EO 是△DBC 的中位线,∴EO∥BC,∠1=∠ACB=40°.故选B. 变式训练 1.B 2.D 类型二【例2】 ①∵对称轴在y 轴右侧, ∴a,b 异号,∴ab<0,故正确; ②∵对称轴x =-b2a =1,∴2a+b =0,故正确; ③∵2a+b =0,∴b=-2a , ∵当x =-1时,y =a -b +c <0, ∴a-(-2a)+c =3a +c <0,故错误; ④根据图示知,当m =1时,有最大值; 当m≠1时,有am 2+bm +c≤a+b +c , 所以a +b≥m(am+b)(m 为实数).故正确. ⑤当-1<x <3时,y 不只是大于0.故错误. 故选A. 变式训练 3.B 4.D 类型三【例3】 联立直线AB 及反比例函数表达式组成方程组⎩⎪⎨⎪⎧y =-x ,y =k x,解得⎩⎨⎧x 1=--k ,y 1=-k ,⎩⎨⎧x 2=-k ,y 2=--k ,∴点B 的坐标为(--k ,-k),点A 的坐标为(-k ,--k). ∵BD∥x 轴,∴点D 的坐标为(0,-k). 设直线AD 的表达式为y =mx +n.将A(-k ,--k),D(0,-k)代入y =mx +n ,⎩⎨⎧-km +n =--k ,n =-k ,解得⎩⎨⎧m =-2,n =-k , ∴直线AD 的表达式为y =-2x +-k. 联立直线AD 及反比例函数表达式成方程组,⎩⎪⎨⎪⎧y =-2x +-k ,y =kx, 解得⎩⎪⎨⎪⎧x 3=--k 2,y 3=2-k ,⎩⎨⎧x 4=-k ,y 4=--k , ∴点C 的坐标为(--k2,2-k). ∴CBCA= [--k -(--k 2)]2+(-k -2-k )2[-k -(--k 2)]2+(--k -2-k )2=13.故选A. 变式训练 5.C 6.A 类型四【例4】 当OP =t 时,点P 的坐标为(t ,0),点Q 的坐标为(9-2t ,6). 设直线PQ 的表达式为y =kx +b(k≠0), 将P(t ,0),Q(9-2t ,6)代入y =kx +b , ⎩⎪⎨⎪⎧kt +b =0,(9-2t )k +b =6,解得⎩⎪⎨⎪⎧k =23-t ,b =2t t -3, ∴直线PQ 的表达式为y =23-t x +2tt -3.∵x=3时,y =2,∴直线PQ 始终经过(3,2).故选B. 变式训练 7.D 类型五【例5】 解不等式2x +1≥-3得x≥-2. ∵x<1,∴不等式组的解集为-2≤x<1. 将其正确表示在数轴上为选项D.故选D. 变式训练 8.B 类型六【例6】 如图,在这样连续6次旋转的过程中,点M 的运动轨迹是图中的弧线,观察图象可知点B ,M 间的距离大于等于2-2小于等于1,故选C.变式训练 9.C 类型七【例7】 S 1=(AB -a)·a+(CD -b)(AD -a)=(AB -a)·a+(AB -b)(AD -a), S 2=AB(AD -a)+(a -b)(AB -a),∴S 2-S 1=AB(AD -a)+(a -b)(AB -a)-(AB -a)·a-(AB -b)(AD -a)=(AD -a)(AB -AB +b)+(AB -a)(a -b -a)=b·AD-ab -b·AB+ab =b(AD -AB)=2b.故选B. 变式训练 10.C 11.C 类型八【例8】 如图,作OH⊥CD 于H ,连结OC.∵OH⊥CD,∴HC=HD. ∵AP=2,BP =6,∴AB=8, ∴OA=4,∴OP=OA -AP =2. 在Rt△OPH 中,∵∠OPH=30°, ∴∠POH=60°,∴OH=12OP =1.在Rt △OHC 中,∵OC=4,OH =1, ∴CH=OC 2-OH 2=15, ∴CD=2CH =215.故选C. 变式训练 12.D 13.B类型九【例9】 ∵A,B 是反比例函数y =4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,∴当x =2时,y =2,即A(2,2), 当x =4时,y =1,即B(4,1).如图,过A ,B 两点分别作AC⊥x 轴于C ,BD⊥x 轴于D ,则S △AOC =S △BOD =12×4=2.∵S 四边形AODB=S △AOB +S △BOD =S △AOC +S 梯形ABDC , ∴S△AOB =S 梯形ABDC .∵S 梯形ABDC =12(BD +AC)·CD=12(1+2)×2=3,∴S △AOB =3.故选B. 变式训练 14.B专题一选择题的解题策略与应试技巧类型一直选法(2018·浙江宁波中考)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE,若∠ABC=60°,∠BAC=80°,则∠1的度数为( )A.54° B.40° C.30° D.20°【分析】直接利用三角形内角和定理得出∠BCA的度数,再利用三角形中位线定理结合平行线的性质得出答案.得出EO是△DBC的中位线是解题关键.【自主解答】1.(2018·浙江嘉兴中考)2018年5月25日,中国探月工程的“鹊桥号”中继星成功运行于地月拉格朗日L2点,它距离地球约1 500 000 km.数1 500 000用科学记数法表示为( ) A.15×105B.1.5×106C.0.15×107D.1.5×1052.(2018·浙江湖州中考) 尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是( )A.3rB .(1+22)r C .(1+32)r D.2r类型二 排除法(或筛选法、淘汰法)(2018·甘肃定西中考)如图是二次函数y =ax 2+bx +c(a ,b ,c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x =1.对于下列说法:①ab <0;②2a+b =0;③3a+c >0;④a+b≥m(am+b)(m 为实数);⑤当-1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴判定b 与0的关系以及2a +b 与0的关系;当x =-1时,y =a -b +c ;然后由图象确定当x 取何值时,y >0. 【自主解答】3.(2018·浙江舟山中考)某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是( ) A .甲 B .甲与丁 C .丙D .丙与丁4.(2018·四川南充中考)如图,正方形ABCD 的边长为2,P 为CD 的中点,连结AP ,过点B 作BE⊥AP 于点E ,延长CE 交AD 于点F ,过点C 作CH⊥BE 于点G ,交AB 于点H ,连结HF.下列结论正确的是( )A .CE = 5B .EF =22C .cos ∠CEP=55D .HF 2=EF·CF类型三 特殊值法(2018·湖北十堰中考)如图,直线y =-x 与反比例函数y =kx 的图象交于A ,B 两点,过点B 作BD∥x 轴,交y 轴于点D ,直线AD 交反比例函数y =k x 的图象于另一点C ,则CBCA 的值为( )A .1∶3B .1∶2 2C .2∶7D .3∶10【分析】 联立直线AB 与反比例函数表达式组成方程组,通过解方程组可求出点A ,B 的坐标,由BD∥x 轴可得出点D 的坐标,由点A ,D 的坐标利用待定系数法可求出直线AD 的表达式,联立直线AD 与反比例函数表达式组成方程组,通过解方程组可求出点C 的坐标,再结合两点间的距离公式即可求出CBCA 的值.【自主解答】5.(2018·四川内江中考)已知:1a -1b =13,则abb -a 的值是( )A.13B .-13C .3D .-36.(2018·山东聊城中考)如图,将一张三角形纸片ABC 的一角折叠,使点A 落在△ABC 外的A′处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA′=γ,那么下列式子中正确的是( )A .γ=2α+βB .γ=α+2βC .γ=α+βD .γ=180°-α-β类型四 逆推代入法(2018·江苏泰州中考)如图,平面直角坐标系xOy 中,点A 的坐标为(9,6),AB⊥y 轴,垂足为B ,点P 从原点O 出发向x 轴正方向运动,同时,点Q 从点A 出发向点B 运动,当点Q 到达点B 时,点P ,Q 同时停止运动,若点P 与点Q 的速度之比为1∶2,则下列说法正确的是( )A .线段PQ 始终经过点(2,3)B .线段PQ 始终经过点(3,2)C .线段PQ 始终经过点(2,2)D .线段PQ 不可能始终经过某一定点【分析】 当OP =t 时,点P 的坐标为(t ,0),点Q 的坐标为(9-2t ,6).设直线PQ 的表达式为y =kx +b(k≠0),利用待定系数法求出PQ 的表达式即可判断. 【自主解答】将选项中给出的答案或其特殊值代入题干,逐一验证是否满足题设条件,然后选择符合题设条件的选项.在运用验证法解题时,若能根据题意确定代入顺序,则能较大提高解题速度.7.(2018·湖北襄阳中考) 下列语句所描述的事件是随机事件的是( ) A .任意画一个四边形,其内角和为180° B .经过任意两点画一条直线 C .任意画一个菱形,是中心对称图形 D .过平面内任意三点画一个圆 类型五 图解法(2018·贵州毕节中考) 不等式组⎩⎪⎨⎪⎧2x +1≥-3,x <1 的解集在数轴上表示正确的是( )A BC D【分析】先解不等式组,再判断其解集在数轴上的正确表示.【自主解答】8.(2018·山东潍坊中考)已知二次函数y=-(x-h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为-1,则h的值为( )A.3或6 B.1或6C.1或3 D.4或6类型六动手操作法(2017·河北中考)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是( )A.1.4 B.1.1 C.0.8 D.0.5【分析】画图即可判断.【自主解答】与剪、折操作有关或者有些关于图形变换的试题是各地试题热点题型,只凭想象不好确定,处理时要根据剪、折顺序动手实践操作一下,动手可以直观得到答案,往往能达到快速求解的目的.9.(2018·广西南宁中考)如图,矩形纸片ABCD ,AB =4,BC =3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE ,DE 分别交AB 于点O ,F ,且OP =OF ,则cos ∠ADF 的值为( )A.1113B.1315C.1517D.1719类型七 整体代入法(2018·浙江宁波中考)在矩形ABCD 内,将两张边长分别为a 和b(a >b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S 1,图2中阴影部分的面积为S 2.当AD -AB =2时,S 2-S 1的值为( )图1 图2A .2aB .2bC .2a -2bD .-2b【分析】 利用面积的和差分别表示出S 1和S 2,然后利用整式的混合运算计算它们的差. 【自主解答】整体思想也是初中数学中的重要思想之一,它是把题目分散的条件整合起来视为一个整体,从而实现整体代入使其运算得以简化.10.(2018·吉林中考改编)若a +b =4,ab =1,则a 2b +ab 2=( ) A .1B .3C .4D .511.(2018·云南中考)已知x +1x =6,则x 2+1x 的值是( )A .38B .36C .34D .32类型八 构造法(2018·山东枣庄中考)如图,AB 是⊙O 的直径,弦CD 交AB 于点P ,AP =2,BP =6,∠APC=30°,则CD 的长为( )A.15B .2 5C .215D .8【分析】 作OH⊥CD 于H ,连结OC ,如图,根据垂径定理由OH⊥CD 得到HC =HD ,再利用AP =2,BP =6可计算出半径OA =4,则OP =OA -AP =2,接着在Rt △OPH 中根据含30度的直角三角形的性质计算出OH =12OP =1,然后在Rt △OHC 中利用勾股定理计算出CH =15,所以CD =2CH =215. 【自主解答】综合运用各种知识,依据问题给出的条件和结论给出的信息,把问题作适当的加工处理,构造出与问题相关的数学模型,揭示问题的本质,从而沟通解题思路,是一种思维创造.12.(2018·山西中考)如图,在Rt △ABC 中,∠ACB=90°,∠A=60°,AC =6,将△ABC 绕点C 按逆时针方向旋转得到△A′B′C,此时点A′恰好在AB 边上,则点B′与点B 之间的距离为( )A .12B .6C .6 2D .6 313.(2018·江苏苏州中考)如图,在△ABC 中,延长BC 至D ,使得CD =12BC ,过AC 中点E作EF∥CD(点F 位于点E 右侧),且EF =2CD ,连结DF.若AB =8,则DF 的长为( )A .3B .4C .2 3D .3 2类型九 转化法(2018·湖南郴州中考)如图,A ,B 是反比例函数y =4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .1【分析】 先根据反比例函数图象上点的坐标特征及A ,B 两点的横坐标,再过A ,B 两点分别作AC⊥x 轴于C ,BD⊥x 轴于D ,根据反比例函数系数k 的几何意义得出S △AOC =S △BOD =12×4=2.根据S四边形AODB=S △AOB +S △BOD =S △AOC +S梯形ABDC,得出S △AOB =S梯形ABDC,利用梯形面积公式即可得出S △AOB . 【自主解答】常言道:“兵无常势,题无常形”,面对千变万化的中考新题型,当我们在思维受阻时,运用思维转化策略,换一个角度去思考问题,常常能打破僵局,解题中不断调整,不断转化,可以使我们少一些“山穷水复疑无路”的尴尬,多一些“柳暗花明又一村”的喜悦.14. (2018·湖北宜昌中考)如图,正方形ABCD 的边长为1,点E ,F 分别是对角线AC 上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G ,I ,H ,J.则图中阴影部分的面积等于 ( )A .1B.12C.13D.14参考答案【专题类型突破】 类型一【例1】 ∵∠ABC=60°,∠BAC=80°, ∴∠BCA=180°-60°-80°=40°.∵对角线AC 与BD 相交于点O ,E 是边CD 的中点, ∴EO 是△DBC 的中位线,∴EO∥BC,∠1=∠ACB=40°.故选B. 变式训练 1.B 2.D 类型二【例2】 ①∵对称轴在y 轴右侧, ∴a,b 异号,∴ab<0,故正确; ②∵对称轴x =-b2a =1,∴2a+b =0,故正确; ③∵2a+b =0,∴b=-2a , ∵当x =-1时,y =a -b +c <0, ∴a-(-2a)+c =3a +c <0,故错误; ④根据图示知,当m =1时,有最大值; 当m≠1时,有am 2+bm +c≤a+b +c , 所以a +b≥m(am+b)(m 为实数).故正确. ⑤当-1<x <3时,y 不只是大于0.故错误. 故选A. 变式训练 3.B 4.D 类型三【例3】 联立直线AB 及反比例函数表达式组成方程组⎩⎪⎨⎪⎧y =-x ,y =k x,解得⎩⎨⎧x 1=--k ,y 1=-k ,⎩⎨⎧x 2=-k ,y 2=--k ,∴点B 的坐标为(--k ,-k),点A 的坐标为(-k ,--k). ∵BD∥x 轴,∴点D 的坐标为(0,-k). 设直线AD 的表达式为y =mx +n.将A(-k ,--k),D(0,-k)代入y =mx +n ,⎩⎨⎧-km +n =--k ,n =-k ,解得⎩⎨⎧m =-2,n =-k , ∴直线AD 的表达式为y =-2x +-k. 联立直线AD 及反比例函数表达式成方程组,⎩⎪⎨⎪⎧y =-2x +-k ,y =kx, 解得⎩⎪⎨⎪⎧x 3=--k 2,y 3=2-k ,⎩⎨⎧x 4=-k ,y 4=--k , ∴点C 的坐标为(--k2,2-k). ∴CBCA= [--k -(--k 2)]2+(-k -2-k )2[-k -(--k 2)]2+(--k -2-k )2=13.故选A. 变式训练 5.C 6.A 类型四【例4】 当OP =t 时,点P 的坐标为(t ,0),点Q 的坐标为(9-2t ,6). 设直线PQ 的表达式为y =kx +b(k≠0), 将P(t ,0),Q(9-2t ,6)代入y =kx +b , ⎩⎪⎨⎪⎧kt +b =0,(9-2t )k +b =6,解得⎩⎪⎨⎪⎧k =23-t ,b =2t t -3, ∴直线PQ 的表达式为y =23-t x +2tt -3.∵x=3时,y =2,∴直线PQ 始终经过(3,2).故选B. 变式训练 7.D 类型五【例5】 解不等式2x +1≥-3得x≥-2. ∵x<1,∴不等式组的解集为-2≤x<1. 将其正确表示在数轴上为选项D.故选D. 变式训练 8.B 类型六【例6】 如图,在这样连续6次旋转的过程中,点M 的运动轨迹是图中的弧线,观察图象可知点B ,M 间的距离大于等于2-2小于等于1,故选C.变式训练 9.C 类型七【例7】 S 1=(AB -a)·a+(CD -b)(AD -a)=(AB -a)·a+(AB -b)(AD -a), S 2=AB(AD -a)+(a -b)(AB -a),∴S 2-S 1=AB(AD -a)+(a -b)(AB -a)-(AB -a)·a-(AB -b)(AD -a)=(AD -a)(AB -AB +b)+(AB -a)(a -b -a)=b·AD-ab -b·AB+ab =b(AD -AB)=2b.故选B. 变式训练 10.C 11.C 类型八【例8】 如图,作OH⊥CD 于H ,连结OC.∵OH⊥CD,∴HC=HD. ∵AP=2,BP =6,∴AB=8, ∴OA=4,∴OP=OA -AP =2. 在Rt△OPH 中,∵∠OPH=30°, ∴∠POH=60°,∴OH=12OP =1.在Rt △OHC 中,∵OC=4,OH =1, ∴CH=OC 2-OH 2=15, ∴CD=2CH =215.故选C. 变式训练 12.D 13.B类型九【例9】 ∵A,B 是反比例函数y =4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,∴当x =2时,y =2,即A(2,2), 当x =4时,y =1,即B(4,1).如图,过A ,B 两点分别作AC⊥x 轴于C ,BD⊥x 轴于D ,则S △AOC =S △BOD =12×4=2.∵S 四边形AODB=S △AOB +S △BOD =S △AOC +S 梯形ABDC , ∴S△AOB =S 梯形ABDC .∵S 梯形ABDC =12(BD +AC)·CD=12(1+2)×2=3,∴S △AOB =3.故选B. 变式训练 14.B专题二 填空题的解题策略与应试技巧类型一 直接推演法(2018·湖北黄石中考)在Rt △ABC 中,∠C=90°,CA =8,CB =6,则△ABC 内切圆的周长为________.【分析】先利用勾股定理计算出AB 的长,再利用直角三角形内切圆的半径的计算方法求出△ABC 的内切圆的半径,然后利用圆的周长公式求解. 【自主解答】直接推演法是解填空题的基本方法,它是直接从题设条件出发,利用定义、定理、公式等知识,通过变形、推理、运算等过程,直接得到结果,它是解填空题的最基本、最常用的方法.1.(2018·浙江舟山中考)小明和小红玩抛硬币游戏,连续抛两次,小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我赢.”小红赢的概率是____,据此判断该游戏__________(填“公平”或“不公平”).2.(2016·浙江衢州中考)如图,正方形ABCD 的顶点A ,B 在函数y =kx(x >0)的图象上,点C ,D 分别在x 轴,y 轴的正半轴上,当k 的值改变时,正方形ABCD 的大小也随之改变. (1)当k =2时,正方形A′B′C′D′的边长等于____.(2)当变化的正方形ABCD 与(1)中的正方形A′B′C′D′有重叠部分时,k 的取值范围是______________.类型二 特殊元素法(2018·江苏连云港中考改编)已知A(-4,y 1),B(-1,y 2)是反比例函数y =kx (k <0)图象上的两个点,则y 1与y 2的大小关系为________.【分析】可用特殊值法,根据反比例函数的表达式可以求出y 1与y 2的大小,从而可以解答本题. 【自主解答】当填空题的结论唯一或题目条件中提供的信息暗示答案是一个定值时,而已知条件中含有某些不确定的量,可以将题中变化的不定量选取一些符合条件的恰当特殊值(或特殊函数、特殊角、图形的特殊位置、特殊点、特殊方案、特殊模型等)进行处理,从而得到探求的结论,这样可大大地简化推理、论证的过程.3.(2018·广西玉林中考)已知ab =a +b +1,则(a -1)(b -1)=______.4.(2018·陕西中考)若一个反比例函数的图象经过点A(m ,m)和B(2m ,-1),则这个反比例函数的表达式为_______. 类型三 数形结合法(2018·山东枣庄中考)如图1,点P 从△ABC 的顶点B 出发,沿B→C→A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是________.【分析】根据图象可知点P 在BC 上运动时,此时BP 不断增大,而从C 向A 运动时,BP 先变小后变大,从而可求出BC 与AC 的长度. 【自主解答】“数缺形时少直观,形缺数时难入微.”数学中大量数的问题后面都隐藏着图形的信息,图形的特征也体现许多数量关系.我们要将抽象、复杂的数量关系,通过形的形象、直观地揭示出来,以达到“形帮数”的目的;同时我们又要运用数的规律和数值的计算来寻找处理形的方法,来达到“数促形”的目的.对于含有几何背景的填空题,若能数中思形,以形助数,则往往可以简化问题,得出准确的结果.类型四等价转化法(2018·吉林长春中考)如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为________.【分析】解方程x2+mx=0得A(-m,0),再利用对称的性质得到点A的坐标为(-1,0),所以抛物线表达式为y=x2+x,再计算自变量为1的函数值得到A′(1,2),接着利用C点的纵坐标为2求出C点的横坐标,然后计算A′C的长.【自主解答】5.(2018·天津中考) 如图,在边长为4的等边△ABC 中,D ,E 分别为AB ,BC 的中点,EF⊥AC 于点F ,G 为EF 的中点,连结DG ,则DG 的长为___________.参考答案类型一【例1】 ∵∠C=90°,CA =8,CB =6, ∴AB=62+82=10, ∴△ABC 的内切圆的半径=6+8-102=2, ∴△ABC 内切圆的周长=2×π×2=4π. 故答案为4π. 变式训练1.14 不公平2.(1) 2 (2)29<k<18 类型二【例2】 不妨取k =-4 ,则反比例函数为y =-4x,∴当x =-4时,y 1=1;当x =-1时,y 2=4, ∴y 1<y 2.故答案为y 1<y 2. 变式训练 3.2 4.y =4x类型三【例3】 根据图象可知点P 在BC 上运动时,此时BP 不断增大, 由图象可知点P 从B 向C 运动时,BP 的最大值为5,即BC =5. 由于M 是曲线部分的最低点, ∴此时BP 最小,即BP⊥AC,BP =4, ∴由勾股定理可知PC =3.由于图象的曲线部分是轴对称图形, ∴PA=3,∴AC=6,∴S △ABC =12×4×6=12.故答案为12.类型四【例4】 当y =0时,x 2+mx =0,解得x 1=0,x 2=-m ,则A(-m ,0). ∵点A 关于点B 的对称点为A′,点A′的横坐标为1, ∴点A 的坐标为(-1,0), ∴抛物线表达式为y =x 2+x.当x =1时,y =x 2+x =2,则A′(1,2), 当y =2时,x 2+x =2,解得x 1=-2,x 2=1,则C(-2,2), ∴A′C 的长为1-(-2)=3.故答案为3. 变式训练 5.192专题二 填空题的解题策略与应试技巧类型一 直接推演法(2018·湖北黄石中考)在Rt △ABC 中,∠C=90°,CA =8,CB =6,则△ABC 内切圆的周长为________.【分析】先利用勾股定理计算出AB 的长,再利用直角三角形内切圆的半径的计算方法求出△ABC 的内切圆的半径,然后利用圆的周长公式求解. 【自主解答】直接推演法是解填空题的基本方法,它是直接从题设条件出发,利用定义、定理、公式等知识,通过变形、推理、运算等过程,直接得到结果,它是解填空题的最基本、最常用的方法.1.(2018·浙江舟山中考)小明和小红玩抛硬币游戏,连续抛两次,小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我赢.”小红赢的概率是____,据此判断该游戏__________(填“公平”或“不公平”).2.(2016·浙江衢州中考)如图,正方形ABCD 的顶点A ,B 在函数y =kx(x >0)的图象上,点C ,D 分别在x 轴,y 轴的正半轴上,当k 的值改变时,正方形ABCD 的大小也随之改变. (1)当k =2时,正方形A′B′C′D′的边长等于____.(2)当变化的正方形ABCD 与(1)中的正方形A′B′C′D′有重叠部分时,k 的取值范围是______________.类型二 特殊元素法。
浙江省2019年中考数学总复习专题提升试题四 以函数为背景的综合运用
专题提升四 以函数为背景的综合运用热点解读函数的综合问题、一般都会用到待定系数法求函数的解析式、涉及比较大小、两个函数图象的交点等、有时会与几何问题结合、利用数形结合巧妙地将图形与数量关系结合起来、使数学问题更直观、更容易解决.该类问题是中考的热点.母题呈现2017·台州)如图、直线l 1:y =2x +1与直线l 2:y =mx +4相交于点P (1、b ). (1)求b 、m 的值;(2)垂直于x 轴的直线x =a 与直线l 1、l 2分别交于点C 、D 、若线段CD 长为2、求a 的值.对点训练1.(2016·江阴模拟)如图、平面直角坐标系中、△ABC 的顶点坐标分别是A (-3、1)、B (-1、1)、C (-2、2)、当直线y =-12x +b 与△ABC 有公共点时、b 的取值范围是( )A .-1≤b≤12B .-1≤b≤1C .-12≤b ≤1D .-12≤b ≤12第1题图2.(2017·金华)在一空旷场地上设计一落地为矩形ABCD 的小屋、AB +BC =10m 、拴住小狗的10m 长的绳子一端固定在B 点处、小狗在不能进入小屋内的条件下活动、其可以活动的区域面积为S (m 2).(1)如图1、若BC =4m 、则S =____________________m 2;(2)如图2、现考虑在(1)中矩形ABCD 小屋的右侧以CD 为边拓展一正△CDE 区域、使之变成落地为五边形ABCED 的小屋、其他条件不变、则在BC 的变化过程中、当S 取得最小值时、边BC 的长为____________________m.第2题图3.如图1、在平面直角坐标系中、点A 、C 分别在y 轴和x 轴上、AB ∥x 轴、sinC =45、点P 从O 点出发、沿边OA 、AB 、BC 匀速运动、点Q 从点C 出发、以1cm/s 的速度沿边 CO 匀速运动.点P 与点Q 同时出发、其中一点到达终点、另一点也随之停止运动.设点 P 运动的时间为t (s )、△CPQ 的面积为S (cm 2), 已知S 与t 之间的函数关系如图2中曲线段 OE 、线段 EF 与曲线段FG 给出.第3题图(1)点P 的运动速度为____________________cm/s, 点B 、C 的坐标分别为____________________、____________________;(2)求曲线FG 段的函数解析式;(3)当t 为何值时、△CPQ 的面积是四边形OABC 的面积的413?4.(2015·宜宾)如图、在平面直角坐标系中、四边形ABCD 是矩形、AD ∥x 轴、A ⎝ ⎛⎭⎪⎫-3,32、AB =1、AD =2.第4题图(1)直接写出B 、C 、D 三点的坐标;(2)将矩形ABCD 向右平移m 个单位、使点A 、C 恰好同时落在反比例函数y =kx (x>0)的图象上、得矩形A′B′C′D′.求矩形ABCD 的平移距离m 和反比例函数的解析式.5.如图、直线y =-43x +8与x 轴交于A 点、与y 轴交于B 点、动点P 从A 点出发、以每秒2个单位的速度沿AO 方向向点O 匀速运动、同时动点Q 从B 点出发、以每秒1个单位的速度沿BA 方向向点A 匀速运动、当一个点停止运动、另一个点也随之停止运动、连结PQ 、设运动时间为t (s )(0<t ≤3).(1)写出A 、B 两点的坐标;(2)设△AQP 的面积为S 、试求出S 与t 之间的函数关系式;并求出当t 为何值时、△AQP 的面积最大?(3)当t 为何值时、以点A 、P 、Q 为顶点的三角形与△ABO 相似、并直接写出此时点Q 的坐标.第5题图参考答案专题提升四 以函数为背景的综合运用【母题呈现】(1)∵点P (1、b )在直线l 1:y =2x +1上、∴b =2×1+1=3;∵点P (1、3)在直线l 2:y =mx +4上、∴3=m +4、∴m =-1. (2)当x =a 时、y C =2a +1;当x =a 时、y D =4-a .∵CD =2、∴|2a +1-(4-a )|=2、解得:a =13或a =53.∴a 的值为13或53.【对点训练】1.C 2.(1)88π (2)523.(1)2 (5、4) (8、0) (2)∵当0≤t ≤2时、S =t 2;当2≤t ≤4.5时、S =2t ;当4.5≤t ≤7时、S =-45t 2+285t ;∴曲线FG 段的函数解析式为S =-45t 2+285t .(3)t =4 或t =5.4.(1)∵四边形ABCD 是矩形、∴AB =CD =1、BC =AD =2、∵A ⎝⎛⎭⎪⎫-3,32、AD ∥x 轴、∴B ⎝⎛⎭⎪⎫-3,12、C ⎝⎛⎭⎪⎫-1,12、D ⎝⎛⎭⎪⎫-1,32. (2)∵将矩形ABCD 向右平移m 个单位、∴A ′⎝ ⎛⎭⎪⎫-3+m ,32、C ′⎝⎛⎭⎪⎫-1+m ,12、∵点A ′、C ′在反比例函数y =k x (x >0)的图象上、∴32(-3+m )=12(-1+m )、解得:m =4、∴A ′⎝ ⎛⎭⎪⎫1,32、∴k =32、∴矩形ABCD 的平移距离m =4、反比例函数的解析式为:y =32x.5.(1)A (6、0)、B (0、8); (2)由勾股定理得、AB =10、∵点P 的速度是每秒2个单位、点Q 的速度是每秒1个单位、∴AP =2t 、AQ =AB -BQ =10-t 、∴点Q 到AP 的距离为AQ ·sin ∠OAB =(10-t )×810=45(10-t )、∴△AQP 的面积S =12×2t ×45(10-t )=-45(t 2-10t )=-45(t -5)2+20、∵-45<0、0<t ≤3、∴当t =3时、 S 最大=-45(3-5)2+20=845;(3)若∠APQ =90°、则cos ∠OAB =AP AQ 、∴2t 10-t =610、得t =3013、若∠AQP =90°、则cos ∠OAB =AQ AP 、∴10-t 2t =610、解得t =5011、∵0<t ≤3、∴t 的值为3013、此时、OP =6-2×3013=1813、PQ =AP ·tan ∠OAB =(2×3013)×86=8013、∴点Q 的坐标为⎝ ⎛⎭⎪⎫1813,8013.。
2019年浙江省杭州市中考数学试题及答案【word解析版】
1 / 4 2019年杭州市各类高中招生文化考试数学试卷分析1.23(2)a a -=()A.312a -B. 36a -C. 312aD. 26a 【答案】:C 【考点】:整式的乘法,属于简单题。
2cm2. 已知某几何体的三视图(单位:cm )则该几何体的侧面积等于( )A. 12π B. 15π C. 24π D. 30π 【答案】:B 【考点】:三视图、圆锥的侧面积计算,=S rl π侧,属于基础题。
3.在RT △ABC 中,已知∠C=90°,∠A=40°,BC=3,则AC=( ) A. 3sin 40︒ B. 3sin50︒ C. 3tan 40︒ D. 3tan50︒【答案】:D 【考点】:解直角三角形,直角三角形中,正切值的概念,属于基础题。
4.已知边长为a 的正方形面积为8,则下列关于a 的说法中,错误的是() A. a 是无理数 B. a 是方程280x -=的解C. a 是8的算术平方根D. a 满足不等式组3040a a ->⎧⎨-<⎩【答案】:D【考点】:数的相关概念和运算,22893a ==<=,所以D 选项错误。
5.下列A .梯形的对角线相等 B. 菱形的对角线不相等C. 矩形的对角线不能互相垂直D. 平行四边形的对角线可以互相垂直 【答案】:D 【考点】:特殊平行四边形的基本性质,平行四边形的对角线是可以互相垂直,如菱形。
6. 函数的自变量x 满足122x ≤≤时,函数值y 满足114y ≤≤,则这个函数可以是() A. 12y x = B. 2y x = C. 18y x= D. 8y x =【答案】:A【考点】:反比例函数的性质与运算,通过自变量的取值范围反推函数解析式,题目有一点创新,也考查数形结合。
7. 若241()142w a a+=--,则w=() A.2(2)a a +≠- B. 2(2)a a -+≠ C. 2(2)a a -≠ D. 2(2)a a --≠-【答案】:D 【考点】:分式方程的运算,注意取值范围即可。
4.题型四 新定义问题
题型四 新定义问题(2020年北京、长沙、常州、河南等地考查)【全国视野解读】新定义问题,主要是在问题中定义了初中数学没有学过的概念,新运算、新符号,要求学生读懂题意并结合已有知识,能力进行了理解.根据新定义进行运算、推理、迁移的一种题型,新定义问题也成为近年来中考的新亮点,特推荐此类题型.1. 对于某个函数,若自变量取实数m ,其函数值恰好也等于m 时,则称m 为这个函数的“等量值”.在函数存在“等量值”时,该函数的最大“等量值”与最小“等量值”的差d 称为这个函数的“等量距离”,特别地,当函数只有一个“等量值”时,规定其“等量距离”d 为0.(1)请分别判断函数y =x -1,y =x1,y =x 2有没有“等量值”?如果有,直接写出其“等量距离”; (2)已知函数y =2x 2-bx .①若其“等量距离”为0,求b 的值;②若1≤b ≤3,求其“等量距离”d 的取值范围;③若“等量距离”d ≥4,直接写出b 的取值范围.2. (2020重庆B卷)在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数——“好数”.定义:对于三位自然数n,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除;643不是“好数”,因为6+4=10,10不能被3整除.(1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.3. 如图①,定义:在四边形ABCD中,若∠ADB+∠BCA=180°,则把四边形ABCD叫做互补四边形.(1)如图②,分别延长互补四边形ABCD两边AD、BC交于点E,求证:∠E=∠CAB+∠DBA;(2)如图③,在等腰△ABE中,AE=BE,D、C分别为AE、BE上的点,四边形ABCD是互补四边形,∠E =2∠CAB,证明:AD2+BD2=AB2.第3题图4. 定义:有一组邻角相等,对角线相等,且对边不相等的凸四边形叫做“等邻对角四边形”.如图①,在四边形ABCD中,∠ABC=∠DCB,AC=DB,AB>CD,四边形ABCD即为“等邻对角四边形”.第4题图①概念理解(1)①如图②,在等边△ABC中,BC=6,点D,E分别在AC,AB上,CD=2,当BE的长为________时,四边形EBCD为“等邻对角四边形”;②如图③,在△ABC中,点E,D在AC上,点F在AB上,BF=CE,四边形FBCD为“等邻对角四边形”,若∠BDC=110°,则∠BFC的度数为________;性质探究(2)根据图①及其条件,探究∠BAC与∠CDB的数量关系;问题解决(3)如图④,在“等邻对角四边形”ABCD中,AB>CD,∠ABC=∠DCB,AB=3,AD=1,AD、BC的延长线相交于点E,若DE=8,求CD的长,并指出∠BDC的度数是否可以等于90°,不必说明理由.第4题图。
2019年浙江省宁波市中考数学真题复习(含答案)
2019年浙江省宁波市中考数学真题复习(含答案)副标题一、选择题(本大题共12小题,共48.0分)1.-2的绝对值为()A. B. 2 C. D.2.下列计算正确的是()A. B. C. D.3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1526000000元人民币.数1526000000用科学记数法表示为()A. B. C. D.4.若分式有意义,则x的取值范围是()A. B. C. D.5.如图,下列关于物体的主视图画法正确的是()A.B.C.D.6.不等式>x的解为()A. B. C. D.7.能说明命题“关于x的方程x2-4x+m=0一定有实数根”是假命题的反例为()A. B. C. D.8.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量S22今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A. 甲B. 乙C. 丙D. 丁9.已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为()A.B.C.D.10.如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为()A. B. 4cm C. D. 5cm11.小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下()A. 31元B. 30元C. 25元D. 19元12.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A. 直角三角形的面积B. 最大正方形的面积C. 较小两个正方形重叠部分的面积D. 最大正方形与直角三角形的面积和二、填空题(本大题共6小题,共24.0分)13.请写出一个小于4的无理数:______.14.分解因式:x2+xy=______.15.袋中装有除颜色外其余均相同的5个红球和3个白球.从袋中任意摸出一个球,则摸出的球是红球的概率为______.16.如图,某海防哨所O发现在它的西北方向,距离哨所400米的A处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B处,则此时这艘船与哨所的距离OB约为______米.(精确到1米,参考数据:≈1.414,≈1.732)17.如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的⊙P与△ABC的一边相切时,AP的长为______.18.如图,过原点的直线与反比例函数y=(k>0)的图象交于A,B两点,点A在第一象限.点C在x轴正半轴上,连结AC交反比例函数图象于点D.AE为∠BAC的平分线,过点B作AE的垂线,垂足为E,连结DE.若AC=3DC,△ADE的面积为8,则k的值为______.三、解答题(本大题共8小题,共78.0分)19.先化简,再求值:(x-2)(x+2)-x(x-1),其中x=3.20.图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)21.今年5月15日,亚洲文明对话大会在北京开幕.为了增进学生对亚洲文化的了解,某学校开展了相关知识的宣传教育活动.为了解这次宣传活动的效果,学校从全校1200名学生中随机抽取100名学生进行知识测试(测试满分100分,得分均为整数),并根据这100人的测试成绩,制作了如下统计图表.由图表中给出的信息回答下列问题:(1)m=______,并补全频数直方图;(2)小明在这次测试中成绩为85分,你认为85分一定是这100名学生知识测试成绩的中位数吗?请简要说明理由;(3)如果80分以上(包括80分)为优秀,请估计全校1200名学生中成绩优秀的人数.22.如图,已知二次函数y=x2+ax+3的图象经过点P(-2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.23.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.24.某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式.(2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)25.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.26.如图1,⊙O经过等边△ABC的顶点A,C(圆心O在△ABC内),分别与AB,CB的延长线交于点D,E,连结DE,BF⊥EC交AE于点F.(1)求证:BD=BE.(2)当AF:EF=3:2,AC=6时,求AE的长.(3)设=x,tan∠DAE=y.①求y关于x的函数表达式;②如图2,连结OF,OB,若△AEC的面积是△OFB面积的10倍,求y的值.答案和解析1.【答案】B【解析】解:-2的绝对值为2,故选:B.根据绝对值的意义求出即可.本题考查了对绝对值的意义的应用,能理解绝对值的意义是解此题的关键.2.【答案】D【解析】解:A、a3与a2不是同类项,故不能合并,故选项A不合题意;B、a3•a2=a5故选项B不合题意;C、(a2)3=a6,故选项C不合题意;D、a6÷a2=a4,故选项D符合题意.故选:D.分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.3.【答案】C【解析】解:数字1526000000科学记数法可表示为1.526×109元.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】B【解析】解:依题意得:x-2≠0,解得x≠2.故选:B.分式有意义时,分母x-2≠0,由此求得x的取值范围.本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.5.【答案】C【解析】解:物体的主视图画法正确的是:.故选:C.根据主视图是从正面看到的图形,进而得出答案.本题考查了三视图的知识,关键是找准主视图所看的方向.6.【答案】A【解析】解:>x,3-x>2x,3>3x,x<1,故选:A.去分母、移项,合并同类项,系数化成1即可.本题考查了解一元一次不等式,注意:解一元一次不等式的步骤是:去分母、去括号、移项、合并同类项、系数化成1.7.【答案】D【解析】解:当m=5时,方程变形为x2-4x+m=5=0,因为△=(-4)2-4×5<0,所以方程没有实数解,所以m=5可作为说明命题“关于x的方程x2-4x+m=0一定有实数根”是假命题的反例.故选:D.利用m=5使方程x2-4x+m=0没有实数解,从而可把m=5作为说明命题“关于x的方程x2-4x+m=0一定有实数根”是假命题的反例.本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.8.【答案】B【解析】解:因为甲组、乙组的平均数丙组、丁组大,而乙组的方差比甲组的小,所以乙组的产量比较稳定,所以乙组的产量既高又稳定,故选:B.先比较平均数得到甲组和乙组产量较好,然后比较方差得到乙组的状态稳定.本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.9.【答案】C【解析】解:设AB与直线n交于点E,则∠AED=∠1+∠B=25°+45°=70°.又直线m∥n,∴∠2=∠AED=70°.故选:C.先求出∠AED=∠1+∠B=25°+45°=70°,再根据平行线的性质可知∠2=∠AED=70°.本题主要考查了平行线的性质以及三角形外角性质,解题的关键是借助平行线和三角形内外角转化角.10.【答案】B【解析】解:设AB=xcm,则DE=(6-x)cm,根据题意,得=π(6-x),解得x=4.故选:B.设AB=xcm,则DE=(6-x)cm,根据扇形的弧长等于圆锥底面圆的周长列出方程,求解即可.本题考查了圆锥的计算,矩形的性质,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.11.【答案】A【解析】解:设每支玫瑰x元,每支百合y元,依题意,得:5x+3y+10=3x+5y-4,∴y=x+7,∴5x+3y+10-8x=5x+3(x+7)+10-8x=31.故选:A.设每支玫瑰x元,每支百合y元,根据总价=单价×数量结合小慧带的钱数不变,可得出关于x,y的二元一次方程,整理后可得出y=x+7,再将其代入5x+3y+10-8x中即可求出结论.本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.12.【答案】C【解析】解:设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得,c2=a2+b2,阴影部分的面积=c2-b2-a(c-b)=a2-ac+ab=a(a+b-c),较小两个正方形重叠部分的长=a-(c-b),宽=a,则较小两个正方形重叠部分底面积=a(a+b-c),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,故选:C.根据勾股定理得到c2=a2+b2,根据正方形的面积公式、长方形的面积公式计算即可.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.13.【答案】【解析】解:∵15<16,∴<4,即为小于4的无理数.故答案为.由于15<16,则<4.本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.也考查了算术平方根.14.【答案】x(x+y)【解析】解:x2+xy=x(x+y).直接提取公因式x即可.本题考查因式分解.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.15.【答案】【解析】解:从袋中任意摸出一个球,则摸出的球是红球的概率=.故答案为.直接利用概率公式求解.本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.16.【答案】456【解析】解:如图,设线段AB交y轴于C,在直角△OAC中,∠ACO=∠CAO=45°,则AC=OC.∵OA=400米,∴OC=OA•cos45°=400×=200(米).∵在直角△OBC中,∠COB=60°,OC=200米,∴OB===400≈456(米)故答案是:456.通过解直角△OAC求得OC的长度,然后通过解直角△OBC求得OB的长度即可.考查了解直角三角形的应用-方向角的问题.此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.17.【答案】6.5或3【解析】解:∵在Rt△ABC中,∠C=90°,AC=12,BD+CD=18,∴AB==6,在Rt△ADC中,∠C=90°,AC=12,CD=5,∴AD==13,当⊙P于BC相切时,点P到BC的距离=6,过P作PH⊥BC于H,则PH=6,∵∠C=90°,∴AC⊥BC,∴PH∥AC,∴△DPH∽△DAC,∴,∴=,∴PD=6.5,∴AP=6.5;当⊙P于AB相切时,点P到AB的距离=6,过P作PG⊥AB于G,则PG=6,∵AD=BD=13,∴∠PAG=∠B,∵∠AGP=∠C=90°,∴△AGP∽△BCA,∴,∴=,∴AP=3,∵CD=5<6,∴半径为6的⊙P不与△ABC的AC边相切,综上所述,AP的长为6.5或3,故答案为:6.5或3.根据勾股定理得到AB==6,AD==13,当⊙P于BC相切时,点P到BC的距离=6,过P作PH⊥BC于H,则PH=6,当⊙P于AB相切时,点P到AB的距离=6,根据相似三角形的性质即可得到结论.本题考查了切线的判定和性质,勾股定理,相似三角形的判定和性质,熟练正确切线的性质是解题的关键.18.【答案】6【解析】解:连接OE,CE,过点A作AF⊥x轴,过点D作DH⊥x轴,过点D作DG⊥AF,∵过原点的直线与反比例函数y=(k>0)的图象交于A,B两点,∴A与B关于原点对称,∴O是AB的中点,∵BE⊥AE,∴OE=OA,∴∠OAE=∠AEO,∵AE为∠BAC的平分线,∴∠DAE=∠AEO,∴AD∥OE,∴S△ACE=S△AOC,∵AC=3DC,△ADE的面积为8,∴S△ACE=S△AOC=12,设点A(m,),∵AC=3DC,DH∥AF,∴3DH=AF,∴D(3m,),∵CH∥GD,AG∥DH,∴△DHC∽△AGD,∴S△HDC=S△ADG,∵S△AOC=S△AOF+S+S△HDC=k+(DH+AF)×FH+S△HDC=k+梯形AFHD×2m+=k++=12,∴2k=12,∴k=6;故答案为6;连接O,CE,过点A作AF⊥x轴,过点D作DH⊥x轴,过点D作DG⊥AF;由AB经过原点,则A与B关于原点对称,再由BE⊥AE,AE为∠BAC的平分线,可得AD∥OE,进而可得S△ACE=S△AOC;设点A(m,),由已知条件AC=3DC,DH∥AF,可得3DH=AF,则点D(3m,),证明△DHC∽△AGD,得到S△HDC=S△ADG,所以S△AOC=S△AOF+S+S△HDC=k++=12;即梯形AFHD可求解;本题考查反比例函数k的意义;借助直角三角形和角平分线,将△ACE的面积转化为△AOC的面积是解题的关键.19.【答案】解:(x-2)(x+2)-x(x-1)=x2-4-x2+x=x-4,当x=3时,原式=x-4=-1.【解析】根据平方差公式、单项式乘多项式的法则把原式化简,代入计算即可.本题考查的是整式的化简求值,掌握整式的混合运算法则是解题的关键.20.【答案】解:(1)如图1所示:6个阴影小等边三角形组成一个轴对称图形;(2)如图2所示:6个阴影小等边三角形组成一个中心对称图形.【解析】(1)直接利用轴对称图形的性质分析得出答案;(2)直接利用中心对称图形的性质分析得出答案.此题主要考查了中心对称图形以及轴对称图形,正确把握相关定义是解题关键.21.【答案】20【解析】解:(1)m=100-(10+15+40+15)=20,补全图形如下:故答案为:20;(2)不一定是,理由:将100名学生知识测试成绩从小到大排列,第50、51名的成绩都在分数段80≤a≤90中,当他们的平均数不一定是85分;(3)估计全校1200名学生中成绩优秀的人数为1200×=660(人).(1)由总人数为100可得m的值,从而补全图形;(2)根据中位数的定义判断即可得;(3)利用样本估计总体思想求解可得.本题考查条形统计图、用样本估计总体、统计量的选择,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.【答案】解:(1)把点P(-2,3)代入y=x2+ax+3中,∴a=2,∴y=x2+2x+3,∴顶点坐标为(-1,2);(2)①当m=2时,n=11,②点Q到y轴的距离小于2,∴|m|<2,∴-2<m<2,∴2≤n<11;【解析】(1)把点P(-2,3)代入y=x2+ax+3中,即可求出a;(2)①把m=2代入解析式即可求n的值;②由点Q到y轴的距离小于2,可得-2<m<2,在此范围内求n即可;本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征是解题的关键.23.【答案】解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°-∠GFH,∠DHE=180°-∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.【解析】(1)根据矩形的性质得到EH=FG,EH∥FG,得到∠GFH=∠EHF,求得∠BFG=∠DHE,根据菱形的性质得到AD∥BC,得到∠GBF=∠EDH,根据全等三角形的性质即可得到结论;(2)连接EG,根据菱形的性质得到AD=BC,AD∥BC,求得AE=BG,AE∥BG,得到四边形ABGE是平行四边形,得到AB=EG,于是得到结论.本题考查了菱形的性质,矩形的性质,全等三角形的判定和性质,正确的识别作图是解题的关键.24.【答案】解:(1)由题意得,可设函数表达式为:y=kx+b(k≠0),把(20,0),(38,2700)代入y=kx+b,得,解得,∴第一班车离入口处的路程y(米)与时间x(分)的函数表达为y=150x-3000(20≤x≤38);(2)把y=1500代入y=150x-3000,解得x=30,30-20=10(分),∴第一班车从入口处到达塔林所需时间10分钟;(3)设小聪坐上了第n班车,则30-25+10(n-1)≥40,解得n≥4.5,∴小聪坐上了第5班车,等车的时间为5分钟,坐班车所需时间为:1200÷150=8(分),步行所需时间:1200÷(1500÷25)=20(分),20-(8+5)=7(分),∴比他在塔林游玩结束后立即步行到草甸提早了7分钟.【解析】(1)设y=kx+b,运用待定系数法求解即可;(2)把y=1500代入(1)的结论即可;(3)设小聪坐上了第n班车,30-25+10(n-1)≥40,解得n≥4.5,可得小聪坐上了第5班车,再根据“路程、速度与时间的关系”解答即可.本题主要考查了一次函数的应用,熟练掌握待定系数法求出函数解析式是解答本题的关键.25.【答案】解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠FBA与∠EBA互余,∴四边形ABEF是邻余四边形;(2)如图所示(答案不唯一),四边形AFEB为所求;(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE,∵∠EDF=90°,点M是EF的中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴,∵QB=3,∴NC=5,∵AN=CN,∴AC=2CN=10,∴AB=AC=10.【解析】(1)AB=AC,AD是△ABC的角平分线,又AD⊥BC,则∠ADB=90°,则∠FBA与∠EBA互余,即可求解;(2)如图所示(答案不唯一),四边形AFEB为所求;(3)证明△DBQ∽△ECN,即可求解.本题为四边形综合题,涉及到直角三角形中线定理、三角形相似等知识点,这种新定义类题目,通常按照题设顺序逐次求解,较为容易.26.【答案】证明:(1)∵△ABC是等边三角形,∴∠BAC=∠C=60°,∵∠DEB=∠BAC=60°,∠D=∠C=60°,∴∠DEB=∠D,∴BD=BE;(2)如图1,过点A作AG⊥BC于点G,∵△ABC是等边三角形,AC=6,∴BG=,∴在Rt△ABG中,AG=BG=3,∵BF⊥EC,∴BF∥AG,∴,∵AF:EF=3:2,∴BE=BG=2,∴EG=BE+BG=3+2=5,在Rt△AEG中,AE=;(3)①如图1,过点E作EH⊥AD于点H,∵∠EBD=∠ABC=60°,∴在Rt△BEH中,,∴EH=,BH=,∵,∴BG=xBE,∴AB=BC=2BG=2xBE,∴AH=AB+BH=2xBE+BE=(2x+)BE,∴在Rt△AHE中,tan∠EAD=,∴y=;②如图2,过点O作OM⊥BC于点M,设BE=a,∵,∴CG=BG=xBE=ax,∴EC=CG+BG+BE=a+2ax,∴EM=EC=a+ax,∴BM=EM-BE=ax-a,∵BF∥AG,∴△EBF∽△EGA,∴,∵AG=,∴BF=,∴△OFB的面积=,∴△AEC的面积=,∵△AEC的面积是△OFB的面积的10倍,∴,∴2x2-7x+6=0,解得:,,∴或,【解析】(1)根据等边三角形的性质和圆周角定理解答即可;(2)过点A作AG⊥BC于点G,根据等边三角形的性质和勾股定理解得即可;(3)①过点E作EH⊥AD于点H,根据三角函数和函数解析式解得即可;②过点O作OM⊥BC于点M,根据相似三角形的判定和性质解答即可.此题是圆的综合题,关键是根据等边三角形的性质、勾股定理和相似三角形的判定和性质解答.。
浙江省2019年中考数学复习第二部分题型研究题型四 新定义与阅读理解题类型二新概念学习型
第二部分 题型研究题型四 新定义与阅读理解题类型二 新概念学习型针对演练1. 若x 1,x 2是关于x 的方程x 2+bx +c =0的两个实数根,且|x 1|+|x 2|=2|k |(k 是整数),则称方程x 2+bx +c =0为“偶系二次方程”.如方程x 2-6x -27=0,x 2-2x -8=0,x 2+3x -274=0,x 2+6x -27=0, x 2+4x +4=0都是“偶系二次方程”.(1)判断方程x 2+x -12=0是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b ,是否存在实数c ,使得关于x 的方程x 2+bx +c =0是“偶系二次方程”,并说明理由.2. 设二次函数y 1,y 2的图象的顶点分别为(a ,b )、(c ,d ),当a =-c ,b =2d ,且开口方向相同时,则称y 1是y 2的“反倍顶二次函数”.(1)请写出二次函数y =x 2+x +1的一个“反倍顶二次函数”;(2)已知关于x 的二次函数y 1=x 2+nx 和二次函数y 2=nx 2+x ;函数y 1+y 2恰是y 1-y 2的“反倍顶二次函数”,求n .3. 函数y =kx 和y =-k x (k ≠0)的图象关于y 轴对称,我们定义函数y =k x 和y =-k x(k ≠0)相互为“影像”函数:(1)请写出函数y =2x -3的“影像”函数:________; (2)函数________的“影像”函数是y =x 2-3x -5;(3)若一条直线与一对“影像”函数y =2x (x >0)和y =-2x(x <0)的图象分别交于点A 、B 、C (点A 、B 在第一象限),如图,如果CB ∶BA =1∶2,点C 在函数y =-2x(x <0)的“影像”函数上的对应点的横坐标是1,求点B 的坐标.第3题图4. 如图,在平面直角坐标系中,已知点P 0的坐标为(1,0),将线段OP 0按逆时针方向旋转45°,再将其长度伸长为OP 0的2倍,得到线段OP 1,又将线段OP 1按逆时针方向旋转45°,长度伸长为OP 1的2倍,得到线段OP 2,如此下去,得到线段OP 3,OP 4…,OP n (为正整数).(1)求点P 3的坐标;(2)我们规定:把点P n (x n ,y n )(n =0,1,2,3…)的横坐标x n 、纵坐标y n 都取绝对值后得到的新坐标(|x n |,|y n |)称为点P n 的“绝对坐标”,根据图中P n 的分布规律,求出点P n 的“绝对坐标”.第4题图考向2) 几何类(杭州:2015.19;台州:2016.23,2015、2013.24;绍兴:2017.22,2013.22,2012.21)针对训练1. (2017绍兴)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图①,等腰直角四边形ABCD,AB=BC,∠ABC=90°.①若AB=CD=1,AB∥CD,求对角线BD的长;②若AC⊥BD,求证:AD=CD.(2)如图②,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形.求AE的长.第1题图2. 阅读下面的材料:如果一个三角形和一个平行四边形满足条件:三角形的一边与平行四边形的一边重合,三角形这边所对的顶点在平行四边形这边的对边上,则称这样的平行四边形为三角形的“友好平行四边形”,如图①,▱ABEF即为△ABC的“友好平行四边形”.请解决下列问题:(1)仿照以上叙述,说明什么是一个三角形的“友好矩形”;(2)若△ABC是钝角三角形,则△ABC显然只有一个“友好矩形”,若△ABC是直角三角形,其“友好矩形”有______个;(3)若△ABC是锐角三角形,且AB<AC<BC,如图②,请画出△ABC的所有“友好矩形”,指出其中周长最小的“友好矩形”,并说明理由.第2题图)3. (2017常州)如图①,在四边形ABCD 中,如果对角线AC 和BD 相交并且相等,那么我们把这样的四边形称为等角线四边形.(1)①在“平行四边形、矩形、菱形”中,________一定是等角线四边形(填写图形名称);②若M 、N 、P 、Q 分别是等角线四边形ABCD 四边AB 、BC 、CD 、DA 的中点,当对角线AC 、BD 还需要满足________时,四边形MNPQ 是正方形;(2)如图②,已知△ABC 中,∠ABC =90°,AB =4,BC =3,D 为平面内一点. ①若四边形ABCD 是等角线四边形,且AD =BD ,则四边形ABCD 的面积是________; ②设点E 是以C 为圆心,1为半径的圆上的动点,若四边形ABED 是等角线四边形,写出四边形ABED 面积的最大值,并说明理由.第3题图4. (2017黄石)在现实生活中,我们经常会看到许多“标准”的矩形,如我们的课本封面、A4的打印纸等,其实这些矩形的长与宽之比都为2∶1,我们不妨就把这样的矩形称为“标准矩形”.在“标准矩形”ABCD 中,P 为DC 边上一定点,且CP =BC ,如下图所示.(1)如图①,求证:BA =BP ;(2)如图②,点Q 在DC 上,且DQ =CP ,若G 为BC 边上一动点,当△AGQ 的周长最小时,求CG GB的值;(3)如图③,已知AD =1,在(2)的条件下,连接AG 并延长交DC 的延长线于点F ,连接BF ,T 为BF 的中点,M 、N 分别为线段PF 与AB 上的动点,且始终保持PM =BN ,请证明:△MNT 的面积S 为定值,并求出这个定值.第4题图5. 对于一个四边形给出如下定义:如一组对角相等且有一组邻边相等,则称这个四边形为奇特四边形,如图①中,∠B=∠D,AB=AD;如图②中,∠A=∠C,AB=AD则这样的四边形均为奇特四边形.(1)在图①中,若AB=AD=4,∠A=60°,∠C=120°,请求出四边形ABCD的面积;(2)在图②中,若AB=AD=4,∠A=∠C=45°,请直接写出四边形ABCD面积的最大值;(3)如图③,在正方形ABCD中,E为AB边上一点,F是AD延长线上一点,且BE=DF,连接EF,取EF的中点G,连接CG并延长交AD于点H,若EB+BC=m,问四边形BCGE的面积是否为定值?如果是,请求出这个定值(用含m的代数式表示);如果不是,请说明理由.第5题图6. 类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)如图①,在四边形ABCD中,添加一个条件使得四边形A B CD是“等邻边四边形”.请写出你添加的一个条件;(2)小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由;(3)如图②,小红作了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并将Rt△ABC沿∠ABC的平分线BB′方向平移得到△A′B′C′,连接AA′,BC′.小红要使平移后的四边形ABC′A′是“等邻边四边形”,应平移多少距离(即线段BB′的长)?第6题图7. (2017江西)我们定义:如图①,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,我们称△AB′C′是△ABC的“旋补三角形”,△AB′C′边B′C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知(1)在图②,图③中,△AB′C′是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图②,当△ABC为等边三角形时,AD与BC的数量关系为AD=____BC;②如图③,当∠BAC=90°,BC=8时,则AD长为________.猜想论证(2)在图①中,当△A B C为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图④,在四边形ABCD中,∠C=90°,∠D=150°,BC=12,CD=23,DA=6.在四边形内部是否存在点P,使△PDC是△PAB的“旋补三角形”?若存在,给予证明,并求△PAB的“旋补中线”长;若不存在,说明理由.第7题图 答案1. 解:(1)不是.理由如下:∵解方程x 2+x -12=0,得x 1=-4,x 2=3, ∴|x 1|+|x 2|=4+3=2×|3.5|, ∵3.5不是整数,∴方程x 2+x -12=0不是“偶系二次方程”; (2)存在.理由如下:∵方程x 2-6x -27=0,x 2+6x -27=0是“偶系二次方程”, ∴假设c =mb 2+n ,当b =-6,c =-27时,有-27=36m +n , ∵x 2=0是“偶系二次方程”,∴n =0,m =-34,∴c =-34b 2.又∵x 2+3x -274=0也是“偶系二次方程”,当b =3时,c =-274=-34×32,∴可设c =-34b 2,对任意一个整数b ,当c =-34b 2时,b 2-4ac =b 2-4c =4b 2,∴x =-b±2|b|2,∴x 1=-32b ,x 2=12b ,∴|x 1|+|x 2|=32|b |+12|b |=2|b |.∵b 是整数,∴对于任意一个整数b ,存在实数c ,当且仅当c =-34b 2时,关于x 的方程,x 2+bx+c =0是“偶系二次方程”.2. 解:(1)∵y =x 2+x +1, ∴y =(x +12)2+34,∴二次函数y =x 2+x +1的顶点坐标为(-12,34),∴二次函数y =x 2+x +1的一个“反倍顶二次函数”的顶点坐标为(12,32),∴反倍顶二次函数的解析式为y =(x -12)2+32=x 2-x +74;(2)y 1+y 2=x 2+nx +nx 2+x =(n +1)x 2+(n +1)x =(n +1)(x 2+x )=(n +1)(x +12)2-n +14, ∴顶点的坐标为(-12,-n +14),y 1-y 2=x 2+nx -nx 2-x =(1-n )x 2+(n -1)x =(1-n )(x 2-x)=(1-n)(x -12)2-1-n4,∴顶点的坐标为(12,-1-n4),由于函数y 1+y 2恰是y 1-y 2的“反倍顶二次函数”,则-2×1-n 4=-n +14, 解得n =13.3. 解:(1)y =-2x -3;【解法提示】令-x =x 得y =-2x -3. (2)y =x 2+3x -5;【解法提示】令-x =x 得y =x 2+3x -5.(3) 如解图,作CC ′⊥x 轴,BB ′⊥x 轴,AA ′⊥x 轴垂足分别为C ′、B′、A′,第3题解图设点B (m ,2m ),A (n ,2n),其中m >0,n >0,由题意,将x =-1代入y =-2x中解得y =2,∴点C (-1,2),∴CC ′=2,BB ′= 2m ,AA ′=2n,又∵A′B′=n -m ,B ′C ′=m +1,CC ′∥BB ′∥AA ′,CB ∶AB =1∶2, 则B′C′∶A′B′=1∶2,则⎩⎪⎨⎪⎧n -m =2(m +1)2m -2n =23(2-2n ),消去n 化简得到3m 2-2m -3=0,解得m =1+103或1-103(舍弃),∴2m =21+103=-2+2103,∴点B 坐标为(1+103,-2+2103).4. 解:(1)根据题意,得OP 3=2OP 2=4OP 1=8OP 0=8, 根据等腰直角三角形的性质,得P 3(-42,42); (2)由题意知,旋转8次之后回到轴的正半轴,在这8次旋转中,点分别落在坐标象限的角平分线上或x 轴或y 轴上, 但各点“绝对坐标”的横、纵坐标均为非负数, 因此,各点的“绝对坐标”可分三种情况:①当P n 的n =0,4,8,12…,则点在x 轴上,则“绝对坐标”为(2n,0) , ②当P n 的n =2,6,10,14…,则点在y 轴上,则“绝对坐标”为(0,2n) ; ③当P n 的n =1,3,5,7,9…,则点在各象限的角平分线上,则“绝对坐标”为(2n-12,2n -12).考向2 几何类针对演练1. 解:(1)①∵AB =CD =1,AB ∥CD , ∴四边形ABCD 是平行四边形, 又∵AB =BC , ∴▱ABCD 是菱形. 又∵∠ABC =90°,∴四边形ABCD为正方形,∴BD=2;②如解图①,连接AC,BD,第1题解图①∵AB=BC,AC⊥BD,∴∠ABD=∠CBD,又∵BD=BD,∴△ABD≌△CBD,∴AD=CD;(2)若EF与BC垂直,则AE≠EF,BF≠EF,∴四边形ABFE不是等腰直角四边形,不符合条件;若EF与BC不垂直,①当AE=AB时,如解图②,此时四边形ABFE是等腰直角四边形,第1题解图②∴AE=AB=5;②当BF=AB时,如解图③,此时四边形ABFE是等腰直角四边形,第1题解图③∴BF =AB =5. ∵DE ∥BF , ∴△PED ∽△PFB ,∴ED FB =PD PB =12, ∴DE =2.5, ∴AE =9-2.5=6.5.综上所述,AE 的长为5或6.5.2. 解:(1)三角形的一边与矩形的一边重合,三角形这边所对的顶点在矩形这边的对边上;(2)2;【解法提示】如解图①的矩形BCAF 、矩形ABED 为Rt △ABC 的两个“友好矩形”;第2题解图(3)此时共有3个“友好矩形”,如解图②的矩形BCDE 、矩形CAFG 及矩形ABHK ,其中的矩形ABHK 的周长最小.理由如下:∵矩形BCDE 、矩形CAFG 及矩形ABHK 均为△ABC 的“友好矩形”,∴这三个矩形的面积相等,令其为S ,设矩形BCDE ,矩形CAFG 及矩形ABHK 的周长分别为L 1,L 2,L 3,△ABC的边长BC =a ,CA =b ,AB =c ,则L 1=2S a +2a ,L 2=2S b +2b ,L 3=2S c+2c ,∴L 1-L 2=(2S a +2a )-(2S b +2b )=2S ab (b -a )+2(a -b )=2(a -b)·ab -S ab,而ab >S ,a>b ,∴L 1-L 2>0,即L 1>L 2,同理可得,L 2>L 3, ∴L 3最小,即矩形ABHK 的周长最小. 3. 解:(1)①矩形;【解法提示】平行四边形和菱形的对角线不相等,矩形的对角线相等,故矩形一定是等角线四边形.②垂直;【解法提示】∵四边形ABCD 是等角线四边形,∴AC =BD ,∵M 、N 、P 、Q 分别是边AB 、BC 、CD 、DA 的中点,∴MN =PQ =12AC ,PN =MQ =12BD ,∴MN =PQ =PN =MQ ,∴四边形MNPQ是菱形,根据“有一个角是直角的菱形是正方形”可知需要四边形MNPQ 有一个角是直角,又易知MN ∥PQ ∥AC ,PN ∥QM ∥BD ,∴要使四边形MNPQ 是正方形需要AC ⊥BD .(2)①3+221; ∵AD =BD ,∴D 在AB 的垂直平分线上, ∵四边形ABCD 是等角线四边形, ∴AC =BD ,在Rt △ABC 中,∠ABC =90°,AB =4,BC =3, ∴AC =5, ∴BD =5,如解图①,取AB 的中点为M ,则DM ⊥AB ,第3题解图①在Rt △ADM 中,AD =BD =5,AM =BM =2,由勾股定理得DM =21; ∴S 四边形ABCD =S △ABD +S △BCD =12AB ·DM +12BC ·BM=12×4×21+12×3×2=3+221; ②四边形ABED 面积最大值为18,理由如下: 如解图②,设AE 与BD 交于点O ,夹角为α,则第3题解图②S 四边形ABED =S △AED +S △ABE =12AE ·ODsin α+12AE ·OBsin α=12AE ·BDsin α,∵AE =BD ,∴S 四边形ABED =12AE 2sin α,∴当AE 最大,且α=90°时,四边形ABED 的面积最大, 此时延长AC 交圆C 于E ,则AE 最大为5+1=6, ∴四边形ABED 的最大面积为12×62=18.4. (1)证明:如解图①所示,第4题解图①∵PC =BC ,∠BCP =90°,∴BP =2BC ,又∵矩形ABCD 为“标准矩形”, ∴AB =2BC , ∴AB =BP ;(2)解:如解图②,作点Q 关于直线BC 对称的点F ,连接AF 交BC 于点E ,连接QE 、GF ,第4题解图②∵DQ =CP ,∴CQ =DP =CF 且AQ 为定值, ∴EQ =EF ,GQ =GF ,∵AQ 为定值,要使△AGQ 的周长最小时, ∴只需AG +GQ =AG +GF 最小, 显然AG +GF ≥AF =AE +EF =AE +EQ , 即当点G 与点E 重合时,△AGQ 的周长最小,此时CG GB =CE EB =CF AB =DPAB,∵DP AB =CD -CP AB =AB -BC AB =1-BC AB =1-22, ∴当△AGQ 的周长最小时,CG GB =1-22; (3)证明:如解图③,MN 交AF 于点K ,连接KT ,第4题解图③由(2)可知,CF =DP , ∴PF =AB 且PF∥AB , ∴四边形ABFP 为平行四边形, 又由PM =BN , ∴MF =AN , ∴△MFK ≌△NAK , ∴点K 为AF 与MN 的中点, 又∵点T 为BF 的中点, ∴KT 为△FAB 的中位线, ∴S △FKT =S △TMK =S △TKN ,∴S △MNT =2S △FKT =12S △FAB =14S 平行四边形ABFP =14×2=24,∴△MNT 的面积S 为定值,这个定值为24. 5. 解:(1)如解图①,设AC 与BD 交于点O ;第5题解图①∵AB =AD ,∠A =60°, ∴△ABD 是等边三角形,∴AB =AD =BD =4, ∠ABD =∠ADB =60°, ∵∠ABC =∠ADC , ∴∠CBD =∠CDB ,∵∠BCD =120°, ∴∠CBD =∠CDB =30°, ∴CB =CD , ∵AB =AD , ∴AC ⊥BD ,∴BO =OD =2,OA =AB ·sin60°=23,OC =OB ·tan30°=233,∴S 四边形ABCD =12·BD ·OA +12·BD ·OC =12·BD ·(OA +OC )=1633;(2)2;【解法提示】如解图②,作DH ⊥AB 于H ,过点B 、D 、C 作圆,连接BD ,第5题解图②∵∠C ′=∠C =45°, ∴当C′B =C′D 时,△BDC ′的面积最大,此时四边形ABC ′D 的面积最大, 易证四边形ABC′D 是菱形, 在Rt △AHD 中,∵∠A =45 °,∠AHD =90°,AD =4, ∴AH =HD =22,∴四边形ABC′D 的面积=AB·DH =82, ∴四边形ABCD 的面积的最大值为8 2.(3)四边形BCGE 的面积是定值,理由如下: 如解图③,连接EC 、CF ,作FM ⊥BC 于M .第5题解图③在△BCE 和△DCF 中, ⎩⎪⎨⎪⎧BE =DF ∠EBC =∠FDC,BC =DC∴△BCE ≌△DCF (SAS), ∴CE =CF , ∵EG =GF , ∴S △ECG =S △FCG , ∵四边形CDFM 是矩形, ∴BC =DC =MF ,DF =BE =CM , ∴BM =m ,BE +FM =m ,∴△FCM ,△DCF ,△BCE 的面积相等, ∴S 四边形BCGE =12·S 四边形BEFM =12·12·m ·m =14m 2.6. 解:(1)AB =BC 或BC =CD 或CD =AD 或AD =AB ; (2)解:小红的结论正确. 理由如下:∵四边形的对角线互相平分, ∴这个四边形是平行四边形, ∵四边形是“等邻边四边形”,∴这个四边形有一组邻边相等, ∴这个“等邻边四边形”是菱形;(3)由∠ABC =90°,AB =2,BC =1,得:AC =5, ∵将Rt △ABC 平移得到Rt △A ′B ′C ′,∴BB ′=AA′,A′B′∥AB,A ′B ′=AB =2,B ′C ′=BC =1,A ′C ′=AC =5, (Ⅰ)如解图①,当AA′=AB 时,BB ′=AA′=AB =2;第6题解图①(Ⅱ)如解图②,当AA′=A′C′时,BB ′=AA′=A′C′ =5;第6题解图②(Ⅲ)当A′C′=BC′=5时,如解图③,延长C′B′交AB 与点D ,则C′B ′⊥AB ,第6题解图③∵BB ′平分∠ABC ,∴∠ABB ′=12∠ABC =45°,∴∠BB ′D =∠ABB′=45°, ∴B ′D =BD ,设B′D=BD =x ,则C′D =x +1,BB ′=2x ,∵根据在Rt △BC ′D 中,BC ′2=C′D 2+BD 2即x 2+(x +1)2=5, 解得:x =1或x =-2(不合题意,舍去), ∴BB ′=2x =2;第6题解图④(Ⅳ)当 BC′=AB =2时,如解图④,与(Ⅲ)方法同理可得: x =-1+72或x =-1-72(舍去),∴BB ′=2x =-2+142.故应平移2或5或2或-2+142的距离.7. 解:(1)①12,②4;【解法提示】①如解图①中,第7题解图①∵△ABC 是等边三角形, ∴AB =BC =AC =AB′=AC′, ∵DB ′=DC′, ∴A D ⊥B ′C ′,∵∠BAC =60°,∠BAC +∠B′AC ′=180°,∴∠B ′=∠C′=30°,∴AD =12AB ′=12BC . ②如解图②中,第7题解图②∵∠BAC =90°,∠BAC +∠B′AC′=180°,∴∠B ′AC ′=∠BAC =90°,∵AB =AB′,AC =AC′,∴△BAC ≌△B ′AC ′,∴BC =B′C ′,∵B ′D =DC′,∴AD =12B ′C ′=12BC =4; (2)猜想:AD =12BC . 理由:如解图③中,延长AD 到M ,使得AD =DM ,连接B′M,C ′M ,第7题解图③∵B ′D =DC ′,AD =DM ,∴四边形AC′MB′是平行四边形,∵∠BAC +∠B′AC′=180°, ∠B ′AC ′+∠AB′M =180°,∴∠BAC =∠MB ′A,∵AB =AB ′,∴△BAC ≌△AB ′M ,∴BC =AM ,∴AD =12BC ; (3)存在.理由:如解图④中,延长AD 交BC 的延长线于M ,作BE ⊥AD 于E ,作线段BC 的垂直平分线交BE 于P ,交BC 于F ,连接PA 、PD 、PC ,作△PCD 的中线PN ,连接DF 交PC 于O ,第7题解图④∵∠ADC =150°,∴∠MDC =30°,∴在Rt △DCM 中,∵CD =23,∠DCM =90°,∠MDC =30°,∴CM =2,DM =4,∠M =60°,在Rt △BEM 中,∵∠BEM =90°,BM =BC +CM =14,∠MBE =30°,∴EM =12BM =7, ∴DE =EM -DM =3,∵AD=6,∴AE=DE,∵BE⊥AD,∴PA=PD,PB=PC,在Rt△CDF中,∵CD=23,CF=6,∴∠CDF=∠CPE=60°,易证△FCP≌△CFD,∴CD=PF,∵CD∥PF,∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC-∠CDP=60°,∴△ADP是等边三角形,∴∠APD=60°,∵∠BPF=∠CPF=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC是△PAB的“旋补三角形”,在Rt△PDN中,∵∠PDN=90°,PD=AD=6,DN=3,∴PN=DN2+PD2=(3)2+62=39.。
2019年杭州市中考数学试卷及参考答案精解版共13页
2019年杭州市各类高中招生文化考试数 学考生须知:1. 本试卷满分120分,考试时间100分钟。
2. 答题前,在答题纸上写姓名和准考证号。
3. 必须在答题纸的对应答题位置上答题,写在其它地方无效。
答题方式详见答题纸上的说明。
4. 考试结束后,试题卷和答题纸一并上交。
试题卷一. 仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
1. 下列各式中,正确的是A . 2(3)3-=-B . 233-=-C .2(3)3±=± D . 233=±答案:B解析:A 中2(3)3-=;B 正确;C 中2(3)3±=;D 中233=,故选B .2. 正方形纸片折一次,沿折痕剪开,能剪得的图形是A . 锐角三角形B . 钝角三角形C . 梯形D . 菱形 答案:C解析:折一次能得到直角三角形、长方形和梯形.故选C 3. 63(210)⨯=A . 9610⨯ B . 9810⨯ C . 18210⨯ D . 18810⨯ 答案:D解析:6336318(210)210810⨯⨯=⨯=⨯4. 正多边形的一个内角为135°,则该多边形的边数为A . 9B . 8C . 7D . 4 答案:B解析:设边数为n ,正多边形也有n 个内角,180(2)135n n -=,解得8n =,选B .5. 在平面直角坐标系xOy 中,以点(-3,4)为圆心,4为半径的圆A . 与x 轴相交,与y 轴相切B . 与x 轴相离,与y 轴相交C . 与x 轴相切,与y 轴相交D . 与x 轴相切,与y 轴相离 答案:C解析:因为点的横坐标34r -<=,所以与y 轴相交,点的纵坐标44r ==,所以与x 轴相切.6. 如图,函数11y x =-和函数22y x=的图像相交于点M (2,m ),N (-1,n ),若12y y >,则x 的取值范围是A . 1x <-或02x <<B . 1x <-或2x >C . 10x -<<或02x <<D . 10x -<<或2x > 答案:D解析:解:根据图象得到当10x -<<或2x >时,12y y >. 故答案为10x -<<或2x >.7. 一个矩形被直线分成面积为x ,y 的两部分,则y 与x 之间的函数关系只可能是 答案:A解析:因为x y k +=(矩形的面积是一定值),整理得y x k =-+, 由此可知y 是x 的一次函数,图象经过一、二、四象限,x 、y 都不能为0,且x >0,y >0,图象位于第一象限.8. 如图是一个正六棱柱的主视图和左视图,则图中的a =A . 23B . 3C . 2D . 1答案:B解析:解:由正六棱柱的主视图和左视图,可得到正六棱柱的最长的对角线长是4,则边长为2,作AD ⊥BC 于D ,在△ABC 中,AB =AC =2,∠BAC =120°, ∴在直角△ABD 中,∠ABD =30°,AD =1, ∴AB =2,BD =AB •cos 30°3=,即3a =.选B 9. 若2a b +=-,且a ≥2b ,则A . b a 有最小值12B . ba有最大值1C .a b 有最大值2 D . ab有最小值89-答案:C解析:2a b +=-Q ,所以a b 、中至少有一个负数,又有a ≥2b ,所以0b <,22a a b b ≥⇒≤. ab有最大值2 选C 10. 在矩形ABCD 中,有一个菱形BFDE (点E ,F 分别在线段AB ,CD 上),记它们的面积分别为ABCD S 和BFDE S ,现给出下列命题: ①若232ABCD BFDE S S +=,则3tan 3EDF ∠=; ②若2DE BD EF =⋅,则DF =2AD 则A . ①是真命题,②是真命题B . ①是真命题,②是假命题C . ①是假命题,②是真命题D . ①是假命题,②是假命题 答案:A解析:解:①设CF =x ,DF =y ,BC =h ,则由已知菱形BFDE ,BF =DF =y由已知得:()232x y h yh ++= 得32x y =即cos ∠BFC =32, ∴∠BFC =30°, 由已知 ∴∠EDF =30° ∴tan ∠EDF =33所以①是真命题.②已知菱形BFDE ,∴DF =DE1124DEF S DF AD BD EF =⋅=⋅V , 又2DE BD EF =⋅(已知), ∴22DEF S DE DF ==V ,2DF AD DF ∴⋅=,∴DF =2AD ,所以②是真命题.故选:A .二. 认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案 11. 写出一个比-4大的负.无理数_________ 答案:2-解析:因为416-=-,只要根号里面比16小的都行(注意要是无理数不能是4-类似的).如2, 1.5--等等都行.12. 当7x =-时,代数式(25)(1)(3)(1)x x x x ++--+的值为__________答案:-6解析:(25)(1)(3)(1)(8)(1)1(6)6x x x x x x ++--+=++=⨯-=- 13. 数据9.30,9.05,9.10,9.40,9.20,9.10的众数是___________;中位数是_______________ 答案:9.10,9.15解析:把数据从小到大排列9.05,9.10,9.10,9.20,9.30,9.40,所以众数为9.10,中位数为9.109.209.152+=.14. 如图,点A ,B ,C ,D 都在⊙O 上,»CD的度数等于84°,CA 是∠OCD 的平分线,则∠ABD +∠CAO =________° 答案:48︒解析:∵»CD的度数等于84°∴∠DOC =84° ∵ OC =OD ∴∠OCD =48°∵CA 是∠OCD 的平分线 ∴∠OCA =∠ACD =24°∵∠ACD 与∠ABD 是同一段弧上的圆周角 ∴∠ACD =∠ABD ∵ OA =OC ∴∠OCA =∠CAO∠ABD +∠CAO =∠OCA +∠ACD =48° 15. 已知分式235x x x a--+,当2x =时,分式无意义,则a =_______;当6a <时,使分式无意义的x 的值共有_______个. 答案:6,2解析:解:分式无意义,说明当2x =时,分母为0,即4520a -⨯+=,6a =.要使250x x a -+=,2540a ∆=->,所以方程有两个实根,即使分是无意义的x 的值共有2个.16. 在等腰Rt △ABC 中,∠C =90°,AC =1,过点C 作直线l ∥AB ,F 是l 上的一点,且AB =AF ,则点F 到直线BC 的距离为__________ 答案:312± 解析:解:如图,ABC QV 为等腰直角三角形,且1AC =,又有等腰直角三角形的斜边是直角边的2倍,22,2AB AD ∴==,又1162,2AF DF =∴=,16222CF ∴=-2312F H +∴=,为312± 三. 全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤。
浙江省2018年中考数学复习题型研究题型四新定义与阅读理解题类型一新法则运算学习型针对演练
浙江省 2018 年中考复习第二部分题型研究题型四新定义与阅读理解题种类一新法例、运算学习型针对操练1. (2017潍坊)定义[x]表示不超出实数x 的最大整数,如[1.8]=1,[-1.4]=-2,[ - 3] =- 3. 函数y= [ x] 的图象以下图,则方程[ x] =1x2的解为 () 2第 1 题图A. 0 或2B. 0 或 2C. 1 或-2D.2或- 22. (2016 杭州 ) 设a,b 是实数,定义对于@的一种运算以下:@ = ( +)2- ( -) 2,a b a b a b则以下结论:①若 a@b=0,则 a=0或 b=0;②a@(b + c)= a@b+ a@c;③不存在实数a,b,知足 a@b= a2+ 5b2;④设a,b 是矩形的长和宽,若该矩形的周长固定,则当a=b时,@ 的值最大.a b此中正确的选项是()A. ②③④B.①③④C.①②④D.①②③3.定义符号min{ a,b} 的含义为:当a≥b时,min{ a,b}= b;当 a<b 时,min{ a,b}= a,如:min{1,- 3} =- 3,min{ - 4,- 2} =- 4, min{ -x2+ 1,-x} 的最大是 ()5- 1B.5+ 1A. C. 1 D. 0224.我依据指数运算,得出了一种新的运算,下表是两种运算关系的一例:指数21= 222= 423= 8⋯31= 332=933= 27⋯运算log 327=新运算log 22= 1 log 24= 2log 2 8= 3⋯log 33= 1 log 39=2⋯31根据上表律,某同学写出了三个式子:①log 216=4,② log 525=5,③ log 22=- 1.此中正确的选项是()A. ①②B.①③C.②③D.①②③5.于随意数 m、n,定一种运算 m※ n= mn-m-n+3,等式的右是往常的加减和乘法运算.比如: 3※5=3×5- 3-5+ 3= 10. 依据上述定解决:若a<2※x<7,且解集中有两个整数解, a 的取范是________.第 66. 用“ ? ”定一种新运算:于随意数m,n 和抛物 y= ax2,当 y=ax2,? ( m n)2+n,比如:当y=2x 2y=2( x-3)2+4.函后都能够获得 y= a( x- m)? (3 ,4) 后都能够获得数 y= x2? (1, n)后获得的函数象如所示,n=________.7.在平面直角坐系中,平面内任一点(a,b),若定以下三种:①△( a,b)=(- a,b);② O( a,b)=(- a,-b);③Ω( a,b) =( a,-b).依据以上有:△(O(1,2)) = (1 ,- 2) ,那么O( Ω (3 , 4))= ________.8. (2017 山 ) 于函数n m n- 1m-1y= x+ x ,我定y′= nx + mx ( m、n 常数).比如y= x4+ x2, y′=4x3+2x.已知:函数y =13+ (- 1)2+2 ( 常数 ) .3xm x mx m(1) 若方程y′= 0 有两个相等数根,m的________;1(2) 若方程y′=m-4有两个正数根,m的取范________.9. P正整数,定!= ( - 1)(-2) ⋯× 2×1,若!= 24,正整数=PP P P m m ________ .10.定 ) 二队列式.定它的运算法) =ad-bc. 那么当x=1 ,二队列式)) 的 ________.11.于随意的自然数 a,b,定: f ( a)=a× a-1, g( b)=b÷2+1.(1) 求f ( g(6)) -g( f (3)) 的;(2)已知 f ( g( x))=8,求 x 的.12. (2017 家界 ) 理解:定:假如一个数的平方等于-1,i2=- 1,个数 i 叫做虚数位,把形如a+ bi ( a, b 数)的数叫做复数,此中 a 叫个复数的部, b 叫做个复数的虚部.它的加,减,乘法运算与整式的加,减,乘法运算似.比如算: (2 -i ) + (5 +3i ) = (2 + 5) + ( - 1+ 3) i= 7+ 2i ;(1 +i ) ×(2 -i ) =1×2-i+2×i-i2= 2+( - 1+ 2) i+ 1= 3+i;依据以上信息,达成以下:(1) 填空:i3= ________,i4= ________;(2) 算: (1 +i ) ×(3 -4i ) ;(3) 算:i+i2+i3+⋯+i2017 .13. 定 一种 正整数 n 的运算“ F ”: (1) 当 n 奇数 , 果3n + 5;nn(2) 当 n 偶数 , 果 2k ( 此中 k 是使 2k 奇数的正整数 ) ,而且运算能够重复行.比如 n = 26 ,F ( 2)F (1)F ( 2)―→⋯26 ――→ 13 ――→ 44 ――→11第一次 第二次第三次那么,当 n = 1796 ,第 2010 次“ F ”运算的 果是多少?答案1. A 【分析】由 象可知, y 的取 - 2,- 1, 0, 1,代入方程易得 x 的取 0,±2, ,-2不切合.故A.2. C 【分析】∵ a @b =( a + b ) 2-( a - b ) 2= ( a + b + a - b )( a + b - a + b ) =4ab ,若 a @b = 0, 4ab = 0,∴ a =0 或 b =0,∴①正确; a @(b + c ) =4a ( b + c ) = 4ab +4ac ,a @b +a @c= 4ab + 4ac ,∴ a @(b + c ) = a @b + a @c ,即②正确;∵ a @b = 4ab ,假 a @b = a 2+ 5b 2,那么4ab = a 2+5b 2,即 a 2- 4ab + 5b 2= 0,化 得 ( a - 2b ) 2 +b 2= 0,当 a = b = 0 等式建立,∴③是 的;∵a ,b 是矩形的 和 ,若矩形的周 固定, 2 c, 2 = 2 +2 ,c a b, @ == 4 ( - ) =- 4( a 12c212-) +,∴当 a = c , 4ab 有最大 是 c ,b =c -a a b4ab a c a2c2即 a =b , a @b 的 最大,∴ ④正确; 上所述,正确的有①②④.3. A 【分析】由- x2+ 1=- x ,解得 x = 1- 5 或 x =5+ 1 . 故 min{ - x 2+ 1,-2 22+ 1(x ≤1- 55+ 1- x 或x ≥)x } =2 2,- x (1- 5≤x ≤ 5+ 1)22由上边分析式可知:①当1- 55+12≤ x≤2时, min{ -x+ 1,-x} =-x,其最大值2为5- 1;②当 x≤1-5或 x≥5+ 1时, min{ -x2+ 1,-x} =-x2+ 1,其最大值为2225- 12,- x}的最大值是5-1. 综上可知, min{ -x+ 1.224.B 【分析】①∵24= 16,∴ log 216=4,故①正确;②∵52= 25,∴ log 525= 2,故-111②错误;③∵2=2,∴ log 22=- 1,故③正确.故式子正确的选项是①③.5.4≤a< 5 【分析】依据题意得: 2※x= 2x- 2-x+ 3=x+ 1,∵a<x+ 1< 7,即a-1< x<6解集中有两个整数解,∴3≤a- 1< 4,即a的取值范围为4≤a< 5.6. 2【分析】依据题意得22y= x ? (1, n)是函数 y=( x-1)+ n;由图象得,此函数的极点坐标为 (1 , 2) ,所以此函数的分析式为y=( x-1)2+2,∴ n=2.7. (-3, 4) 【分析】∵Ω (3 ,4) = (3 ,- 4) ,∴O( Ω (3 , 4)) = O(3,- 4) =( - 3,4) .1318.(1) 2; (2) m≤4且m≠2.【分析】 (1) 由于=1 3+ (-1)2+ 2,则y ′=x2+ 2( - 1)x+2,由题可知方程y3xm x mx m m22221 x +2( m-1) x+ m=0有两个相等实数根,则= [2( m- 1)]-4×1×m=0,解得m=2;221221 (2) 由题可知x +2( m-1) x+ m= m-4有两个正数根,整理得x +2( m-1) x+ m- m+4=0≥0有两个正数根,则x1+ x2>0,即5221[2 (m- 1) ] -4( m- m+)≥0- 2( m- 1)> 0,21m-m+> 043 1解得 m≤且m≠ .4 29. 4 【分析】∵P!=P( P- 1)( P-2) ⋯× 2×1=1×2×3×4×⋯×(P- 2)( P-1) P,∴m!=1×2×3×4×⋯×( m-1)× m=24,∵1×2×3×4=24,∴ m=4.10. 0【分析】依据意适当x=1,原式=( x-1) 2= 0.11.解: (1)f ((6)) - ((3))=(6 ÷2+ 1) -(3 ×3- 1) =(4) -(8) =4×4- 1-g g f f g f g(8 ÷2+ 1) = 15- 5=10;(2)∵ f(g ( x))=f ( x÷2+1)=8,f (3)=3×3-1=8,∴ x÷2+1=3,∴ x=4.12.解: (1) -i;1;【解法提示】∵i 2=-1,∴i 3=i 2· i =- i ,i 4= i 2· i 2=1.(2) 原式= 3- 4i+3i-4i2=3-i+ 4=7-i;(3 ) 依据意可得i = i ,i 2=-1,i 3=- i ,i 4=1,i 5= i ,i 6=-1,⋯, i 2016=1,i 2017=i ,∵i +i 2+ i 3+ i 4=0,且2016÷4=504,∴i +i 2+ i 3+ i 4+⋯+ i2 017= i .13.解:依据意得,当 n=1796,1796第一次运算,2=449;2第二次运算, 3n+ 5=3×449+ 5=1352;1352第三次运算,3=169;2第四次运算,3× 169+ 5= 512;512第五次运算,29=1;第六次运算,3× 1+ 5=8;8第七次运算,23=1;能够看出:从第五次开始,结果就不过1,8 两个数轮番出现,且当次为偶数时,结果是 8,次数是奇数时,结果是1,而 2010 是偶数,所以最后结果是8.。
2019年浙江省中考数学《第38讲:阅读理解型问题》总复习讲解
第38讲 阅读理解型问题类型一 应用型:阅读-理解-建模-应用例1 (2019·湖州)如图,已知抛物线C 1∶y =a 1x 2+b 1x +c 1和C 2∶y =a 2x 2+b 2x +c 2都经过原点,顶点分别为A ,B ,与x 轴的另一个交点分别为M 、N,如果点A 与点B ,点M与点N 都关于原点O 成中心对称,则抛物线C 1和C 2为姐妹抛物线,请你写出一对姐妹抛物线C 1和C 2,使四边形ANBM 恰好是矩形,你所写的一对抛物线解析式是__________和__________.【解后感悟】此题通过阅读二次函数的图象与几何变换,用到的知识点是姐妹抛物线的定义、二次函数的图象与性质、矩形的判定,理解构建根据姐妹抛物线的定义得出姐妹抛物线的二次项的系数,一次项系数、常数项之间的关系,利用矩形知识对定义的应用.1.(2019·孝感)我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD 是一个筝形,其中AB =CB ,AD =CD.对角线AC ,BD 相交于点O ,OE ⊥AB ,OF ⊥CB ,垂足分别是E ,F.求证OE =OF.类型二 猜想型:阅读-理解-归纳-验证例2 (2019·衢州)小明在课外学习时遇到这样一个问题:定义:如果二次函数y =a 1x 2+b 1x +c 1(a 1≠0,a 1,b 1,c 1是常数)与y =a 2x 2+b 2x +c 2(a 2≠0,a 2,b 2,c 2是常数)满足a 1+a 2=0,b 1=b 2,c 1+c 2=0,则称这两个函数互为“旋转函数”.求函数y =-x 2+3x -2的“旋转函数”.小明是这样思考的:由函数y =-x 2+3x -2可知,a 1=-1,b 1=3,c 1=-2,根据a 1+a 2=0,b 1=b 2,c 1+c 2=0,求出a 2,b 2,c 2,就能确定这个函数的“旋转函数”.请参考小明的方法解决下面问题:(1)写出函数y =-x 2+3x -2的“旋转函数”;(2)若函数y =-x 2+43mx -2与y =x 2-2nx +n 互为“旋转函数”,求(m +n)2019的值;(3)已知函数y =-12(x +1)(x -4)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 、B 、C 关于原点的对称点分别是A 1,B 1,C 1,试证明经过点A 1,B 1,C 1的二次函数与函数y =-12(x +1)(x -4)互为“旋转函数”.【解后感悟】在仔细阅读后,正确理解新定义,理解其中的内容、方法和思想,阅读特殊范例,归纳验证一般结论.2.(2019·株洲)P 表示n 边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么P与n的关系式是:P=n(n-1)24·(n2-an+b)(其中,a,b是常数,n≥4)(1)填空:通过画图可得:四边形时,P=____________________(填数字),五边形时,P=____________________(填数字);(2)请根据四边形和五边形对角线交点的个数,结合关系式,求a,b的值.(注:本题的多边形均指凸多边形)类型三概括型:阅读-理解-概括-拓展例3(2019·台州)定义:有三个内角相等的四边形叫三等角四边形.(1)三等角四边形ABCD中,∠A=∠B=∠C,求∠A的取值范围;(2)如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C处,折痕分别为DG,DH.求证:四边形ABCD是三等角四边形;(3)三等角四边形ABCD中,∠A=∠B=∠C,若CB=CD=4,则当AD的长为何值时,AB的长最大,其最大值是多少?并求此时对角线AC的长.【解后感悟】本题要对新定义阅读和理解,通过前面问题的解答积累经验,再概括、拓展解决新问题,要注意分类讨论.解题时关键要领会题中所体现的解题方法,运用已有知识深刻理解解题方法的内涵,予以拓展、应用,解决所提问题.3.(2019·绍兴)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长;②若AC⊥BD,求证:AD=CD;(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.类型四探究型:阅读-理解-尝试-探究例4(2019·绍兴)如果抛物线y=ax2+bx+c过定点M(1,1),则称此抛物线为定点抛物线.(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式.小敏写出了一个答案:y=2x2+3x-4,请你写出一个不同于小敏的答案;(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y=-x2+2bx+c+1,求该抛物线顶点纵坐标的值最小时的解析式,请你解答.【解后感悟】此题是二次函数的知识基础上的新定义题,题目较新颖,解答本题的关键是仔细审题,理解题意所给的信息,尝试、探究新问题:抛物线顶点纵坐标的值最小时的解析式,即要构建一个函数,顶点纵坐标为y=(b-1)2+1来解决问题.4.(2019·自贡)观察下表我们把某格中字母和所得的多项式称为特征多项式,例如第1格的“特征多项式”为4x+y,回答下列问题:(1)第3格的“特征多项式”为____________________,第4格的“特征多项式”为____________________,第n格的“特征多项式”为____________________;(2)若第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16,①求x,y的值;②在此条件下,第n格的特征多项式是否有最小值?若有,求出最小值和相应的n值,若没有,说明理由.【阅读理解题】已知坐标平面上的线段AB及点P,任取AB上一点Q,线段PQ长度的最小值称为点P到线段AB的距离,记作d(P→AB).(1)如图所示,已知长度为2个单位的线段MN在x轴上,M点的坐标为(1,0),求点P(1,1)到线段MN的距离d(P→MN);(2)已知坐标平面上点G到线段DE:y=x(0≤x≤3)的距离d(G→DE)=2,且点G的横坐标为1,试求点G的纵坐标.【方法与对策】此题属于一次函数的综合题,运用了点到直线的距离、等腰直角三角形的性质、待定系数法求一次函数的解析式等知识.注意掌握数形结合思想与分类讨论思想的应用.重视这种题型,该题型通过定义,使学生了解概念,再通过第(1)题解答,有更深入的感受来解答第(2)题.这是中考命题方向.【对材料的理解不正确,而造成解题错误】阅读下列材料,然后解答下面的问题:我们知道方程2x+3y=12有无数组解,但在实际生活中,我们往往只需要求出其正整数解,例:由2x +3y =12,得y =12-2x 3=4-23x(x 、y 为正整数),而⎩⎪⎨⎪⎧x>0,4-23x>0,则有0<x<6,又y =4-23x 为正整数,则23x 为正整数,由2与3互质,可知x 为3的倍数,从而x =3,则y =4-23x =2.所以,2x +3y =12的正整数解为⎩⎪⎨⎪⎧x =3,y =2.问题:(1)请你写出2x +y =5的一组正整数解:______; (2)若6x -2为自然数,则满足条件的x 的正整数值的个数有( )A .2B .3C .4D .5(3) 九年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?参考答案第38讲 阅读理解型问题【例题精析】例1 连结AB ,根据姐妹抛物线的定义,可得姐妹抛物线的二次项的系数互为相反数,一次项系数相等且不等于零,常数项都是零,设抛物线C 1的解析式为y =ax 2+bx ,根据四边形ANBM 恰好是矩形可得:OA =OM ,∵OA =MA ,∴△AOM 是等边三角形,设OM =2,则点A 的坐标是(1,3),则⎩⎨⎧3=a +b ,0=4a +2b ,解得:⎩⎨⎧a =-3,b =23,则抛物线C 1的解析式为y =-3x 2+23x ,抛物线C 2的解析式为y =3x 2+23x ,故答案为:y =-3x 2+23x ;y =3x 2+23x(答案不唯一,只要符合条件即可).例2 (1)∵a 1=-1,b 1=3,c 1=-2,∴-1+a 2=0,b 2=3,-2+c 2=0,∴a 2=1,b 2=3,c 2=2,∴函数y =-x 2+3x -2的“旋转函数”为y =x 2+3x +2;(2)根据题意得43m =-2n ,-2+n =0,解得m=-3,n =2,∴(m +n)2019=(-3+2)2019=-1;(3)证明:当x =0时,y =-12(x +1)(x -4)=2,则C(0,2),当y =0时,-12(x +1)(x -4)=0,解得x 1=-1,x 2=4,则A(-1,0),B(4,0),∵点A 、B 、C 关于原点的对称点分别是A 1,B 1,C 1,∴点A 1(1,0),B 1(-4,0),C 1(0,-2),设经过点A 1,B 1、C 1的二次函数解析式为y =a 2(x -1)(x +4),把C 1(0,-2)代入得a 2·(-1)·4=-2,解得a 2=12,∴经过点A 1,B 1,C 1的二次函数解析式为y =12(x -1)(x +4)=12x 2+32x -2,而y =-12(x +1)(x -4)=-12x 2+32x +2,∴a 1+a 2=-12+12=0,b 1=b 2=32,c 1+c 2=2-2=0,∴经过点A 1,B 1,C 1的二次函数与函数y =-12(x +1)(x-4)互为“旋转函数”.例3 (1)∵∠A=∠B=∠C,∴3∠A +∠ADC=360°,∴∠ADC =360°-3∠A.∵0°<∠ADC<180°,∴0°<360°-3∠A<180°,∴60°<∠A<120°;(2)证明:∵四边形DEBF 为平行四边形,∴∠E =∠F,且∠E+∠EBF=180°.∵DE =DA ,DF =DC ,∴∠E =∠DAE=∠F=∠DCF,∵∠DAE +∠DAB=180°,∠DCF +∠DCB=180°,∠E +∠EBF=180°,∴∠DAB =∠DCB=∠ABC,∴四边形ABCD 是三等角四边形;(3)①当60°<∠A<90°时,如图1,过点D 作DF∥AB,DE ∥BC ,∴四边形BEDF 是平行四边形,∠DFC =∠B =∠DEA,∴EB =DF ,DE =FB ,∵∠A =∠B=∠C,∠DFC =∠B=∠DEA,∴△DAE ∽△DCF ,AD =DE ,DC =DF =4,设AD =x ,AB =y ,∴AE =y -4,CF =4-x ,∵△DAE ∽△DCF ,∴AE CF =AD CD ,∴y -44-x =x 4,∴y =-14x 2+x +4=-14(x -2)2+5,∴当x =2时,y 的最大值是5,即:当AD =2时,AB 的最大值为5,②当∠A=90°时,三等角四边形是正方形,∴AD =AB =CD =4,③当90°<∠A<120°时,∠D 为锐角,如图2,∵AE =4-AB >0,∴AB <4,综上所述,当AD =2时,AB 的长最大,最大值是5;此时,AE =1,如图3,过点C 作CM⊥AB 于M ,DN ⊥AB 于N ,∵DA =DE ,DN ⊥AB ,∴AN =12AE =12,∵∠DAN =∠CBM,∠DNA =∠CMB=90°,∴△DAN ∽△CBM ,∴AD BC =AN BM,∴BM =1,∴AM =4,CM =BC 2-BM 2=15,∴AC =AM 2+CM 2=16+15=31.例4 (1)答案不唯一,如y =x 2-2x +2.(2)∵y=-(x -b)2+c +b 2+1,∴该抛物线顶点坐标为(b ,c +b 2+1).又∵定点抛物线y =-x 2+2bx +c +1过定点M(1,1),∴1=-1+2b +c +1,即c =1-2b.∴顶点纵坐标为c +b 2+1=1-2b +b 2+1=(b -1)2+1.∴b=1,c =-1时,c +b 2+1最小,即抛物线顶点纵坐标的值最小,此时,抛物线的解析式为y =-x 2+2x.【变式拓展】1.证明:在△ABD 和△CBD 中⎩⎪⎨⎪⎧AB =CB ,AD =CD ,BD =BD ,∴△ABD ≌△CBD(SSS),∴∠ABD =∠CBD,∴BD 平分∠ABC,又∵OE⊥AB,OF ⊥CB ,∴OE =OF.2. (1)1 5(2)将上述值代入公式可得:⎩⎪⎨⎪⎧4×(4-1)24·(16-4a +b )=1,①5×(5-1)24·(25-5a +b )=5,②化简得:⎩⎪⎨⎪⎧4a -b =14,5a -b =19,解之得:⎩⎪⎨⎪⎧a =5,b =6. 3.(1)①∵AB=CD =1,AB ∥CD ,∴四边形ABCD 是平行四边形,∵AB =BC ,∴四边形ABCD 是菱形,∵∠ABC =90°,∴四边形ABCD 是正方形,∴BD =AC =12+12= 2.②如图1,连结AC 、BD.∵AB=BC ,AC ⊥BD ,∴∠ABD =∠CBD,∵BD =BD ,∴△ABD ≌△CBD ,∴AD =CD. (2)若EF⊥BC,则AE≠EF,BF ≠EF ,∴此时四边形ABFE 不是等腰直角四边形,不符合题意.若EF 与BC 不垂直,①当AE =AB 时,如图2,此时四边形ABFE 是等腰直角四边形,∴AE =AB =5.②当BF =AB 时,如图3,此时四边形ABFE 是等腰直角四边形,∴BF =AB =5,∵DE ∥BF ,∴DE ∶BF =PD∶PB=1∶2,∴DE =2.5,∴AE =9-2.5=6.5,综上所述,满足条件的AE 的长为5或6.5.4.(1)12x +9y 16x +16y 4nx +n 2y (2)①∵第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16,∴依题意得:⎩⎪⎨⎪⎧4x +y =-10,8x +4y =-16,解之得:⎩⎪⎨⎪⎧x =-3,y =2,∴x =-3,y =2; ②设最小值为W ,则依题意得:W =4nx +n 2y =-12n +2n 2=2(n -3)2-18,答:有最小值为-18,相应的n 值为3.【热点题型】【分析与解】(1)∵M 点的坐标为(1,0),点P 的坐标为(1,1),根据定义可得PM 就是点P 到线段MN 的距离.∴d (P→MN)=1.(2)在坐标平面内作出线段DE :y =x(0≤x≤3).∵点G 的横坐标为1,∴点G 在直线x =1上,设直线x =1交x 轴于点H ,交DE 于点K.①如图,过点G 1作G 1F ⊥DE 于点F ,则G 1F 就是点G 1到线段DE 的距离.∵线段DE :y =x(0≤x≤3),∴△G 1FK ,△DHK 均为等腰直角三角形,∵d(G 1→DE)=2,∴KF =2,由勾股定理得G 1K =2.又∵KH=OH =1,∴HG 1=3.即G 1的纵坐标为3.②如图,过点O 作G 2O ⊥OE 交直线x =1于点G 2,由题意知△OHG 2为等腰直角三角形,∵OH =1,∴G 2O = 2.∴点G 2同样是满足条件的点.∴点G 2的纵坐标为-1.综上,点G 的纵坐标为3或-1.【错误警示】(1)⎩⎪⎨⎪⎧x =1,y =3或⎩⎪⎨⎪⎧x =2,y =1. (2)C (3)设购买笔记本x 本,钢笔y 支,则3x +5y =35,5y =35-3x ,y =7-35x.∵x 、y 为正整数,∴⎩⎪⎨⎪⎧x>0,7-35x>0,解得0<x<1123,且x 为5的整数倍,∴x 可取5、10,相应的y 的值分别为4、1,∴正整数解为⎩⎪⎨⎪⎧x =5,y =4或⎩⎪⎨⎪⎧x =10,y =1.答:共有两种购买方案:买5本笔记本,4支钢笔或10本笔记本,1支钢笔.2019-2020学年数学中考模拟试卷一、选择题1.使两个直角三角形全等的条件是 A.一锐角对应相等 B.两锐角对应相等 C.一条边对应相等D.两条边对应相等2.已知:32251025x xx x -++﹣M =55x x -+,则M =( )A .x 2B .25x x +C .2105x x x -+D .2105x x x ++3.下列运算正确的是( ) A.a 5﹣a 3=a 2B.6x 3y 2÷(﹣3x )2=2xy 2C.2212a2a -=D.(﹣2a )3=﹣8a 34.把抛物线y =ax 2+bx+c 图象先向左平移2个单位长度,再向下平移3个单位长度,所得的图象的解析式是y =x 2+5x+6,则a ﹣b+c 的值为( ) A.2B.3C.5D.125.如图,⊙O 与正方形ABCD 是两边AB 、AD 相切,DE 与⊙O 相切于点E ,若正方形ABCD 的边长为5,DE =3,则tan ∠ODE 为( )A .32B .23C .25D .136.下列计算,正确的是( ) A .3423a a a +=B .43a a a ÷=C .236a a a ⋅=D .236()a a -=7.如图,在矩形ABCD 中,点E 、F 、G 、H 分别是边AD 、AB 、BC 、CD 的中点,连接EF 、FG 、GH 和HE .若2=AD AB ,用下列结论正确的是( )A .EF AB = B .EF AB =C .EF =D .EF AB =8.已知A,B两地相距120千米,甲、乙两人沿同一条公路从A地出发到B地,乙骑自行车,甲骑摩托车,图中DE,OC分别表示甲、乙离开A地的路程s(单位:千米)与时间t(单位:小时)的函数关系的图象,设在这个过程中,甲、乙两人相距y(单位:千米),则y关于t的函数图象是()A.B.C.D.9.已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小10.某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分.全班40名同学的成绩的中位数和众数分别是()A.75,70 B.70,70 C.80,80 D.75,8011,则它的外接圆的面积为()A.πB.3πC.4πD.12π12.不等式3(x-2)≥x+4的解集是( )A.x≥5B.x≥3C.x≤5D.x≥-5二、填空题13=2,则x的值为_______.14.某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,该学习小组的平均分为__________分.15﹣3_____.16______.17.某时刻在南京中华门监测点监测到PM2.5的含量为55微克/米3,即0.000055克/米3,将0.000055用科学记数法表示为_____.18.如图,△ABC中,∠BAC=120°,点D、E在BC上,AD⊥AC,AE⊥AB,且△ADE是等边三角形,若AD =2,则△ABC的周长等于_____.三、解答题19.如图,线段AB为的直径,点C、E在上,弧BC=弧CE,连接BE、CE,过点C作CM∥BE交AB的延长线于点M.(1)求证:直线CM是圆O的切线;(2)若sin∠ABE=35,BM=4,求圆O的半径.20.如图,四边形ABCD内接于⊙O,点O在AB上,BC=CD,过点C作⊙O的切线,分别交AB,AD的延长线于点E,F.(1)求证:AF⊥EF;(2)若cosA=45,BE=1,求AD的长.21.先化简,再求值:(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2,其中a=﹣6,b=1 322.计算:(13﹣π)0+4cos60°﹣|﹣3|+(12)﹣1.23.(1)计算:+--(12sin45(2)化简:22() a b ab baa a--÷-24.如图是在写字台上放置一本数学书和一个折叠式台灯时的截面示意图,已知数学书AB长25cm,台灯上半节DE长40cm,下半节CD长50cm.当台灯灯泡E恰好在数学书AB的中点O的正上方时,台灯上、下半节的夹角即∠EDC=105°,下半节CD与写字台FG的夹角即∠DCG=75°,求BC的长.(书的厚度和台灯底座的宽度、高度都忽略不计,F ,A ,O ,B ,C ,G 在同一条直线上,参考数据:sin75°≈0.97,cos75°≈0.26;0.1)25.先化简,再计算:2221222x x x x x x x--+--+,其中x 1.【参考答案】*** 一、选择题二、填空题 13.5 14.84151617.5×10-518.三、解答题19.(1)见解析;(2)6. 【解析】 【分析】(1)连接OC 交BE 于G ,根据垂径定理得到OC ⊥BE ,根据平行线的性质得到∠OCM=∠OGB=90°,于是得到结论;(2)根据平行线的性质得到∠ABE=∠OMC ,根据三角函数的定义即可得到结论. 【详解】(1)证明:连接OE ,OC∵弧BC=弧CE ∴OC ⊥BE ∵CM ∥BE ∴OC ⊥CM∴直线CM 是圆O 的切线 (2)设半径为r ∵CM ∥BE ∴∠CMO=∠ABE 在Rt △OCM 中sin ∠CMO=OC OM =sin ∠ABE=35 r 3r 6r 45∴==+,解得 ∴圆O 的半径是6 【点睛】本题考查了切线的判定和性质,圆周角定理,解直角三角形,正确的作出辅助线是解题的关键. 20.(1)略;(2)325. 【解析】 【分析】(1)连接AC ,OC ,如图,先证明OC ∥AF ,再根据切线的性质得OC ⊥EF ,从而得到AF ⊥EF ; (2)先利用OC ∥AF 得到∠COE =∠DAB ,在Rt △OCE 中,设OC =r ,利用余弦的定义得到415r r =+,解得r =4,连接BD ,如图,根据圆周角定理得到∠ADB =90°,然后根据余弦的定义可计算出AD 的长. 【详解】解:(1)连接AC ,OC ,如图, ∵CD =BC , ∴CD BC =, ∴∠1=∠2, ∵OA =OC , ∴∠2=∠OCA , ∴∠1=∠OCA , ∴OC ∥AF , ∵EF 为切线, ∴OC ⊥EF , ∴AF ⊥EF ;(2)∵OC∥AF,∴∠COE=∠DAB,在Rt△OCE中,设OC=r,∵cos∠COE=cos∠DAB=45OCOE=,即415rr=+,解得r=4,连接BD,如图,∵AB为直径,∴∠ADB=90°,在Rt△ADB中,cos∠DAB=45 ADAB=,∴AD=45×8=325.【点睛】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理和解直角三角形.21.-8【解析】【分析】原式利用平方差公式,完全平方公式计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【详解】原式=a2﹣4b2﹣a2+4ab﹣4b2+8b2=4ab,当a=﹣6,b=13时,原式=﹣8.【点睛】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.22.【解析】【分析】直接利用负指数幂的性质、零指数幂的性质以及特殊角的三角函数值分别化简得出答案.【详解】(13﹣π)0+4cos60°﹣|﹣3|+(12)﹣1=1+4×12﹣3+2, =1+2﹣3+2, =2. 【点睛】此题主要考查了实数运算,正确化简各数是解题关键.23.1;(2)1a b- 【解析】 【分析】(1)先化简二次根式,计算零指数幂,代入特殊角的三角函数值,然后合并同类二次根式即可; (2)通分计算括号内分式的减法,然后将除法转化为乘法,分子、分母分解因式后约分即可; 【详解】(1)解:原式=122+-⨯1;(2)解:原式=222a b a ab b a a--+÷=()2a b aa ab -⋅- =1a b-. 【点睛】本题考查了含特殊角三角函数的实数运算和分式的混合运算,熟记特殊角三角函数值和分式的运算法则是解决此题的关键. 24.BC 的长约为9.1cm . 【解析】 【分析】过点D 作DM ⊥FG 于M ,DN ⊥EO 于N ,则四边形DMON 是矩形,解直角三角形求出CM 和DN 的长度,结合矩形的知识求出OM 的长,最后根据BC =OM ﹣CM ﹣BO 求出答案. 【详解】如图,过点D 作DM ⊥FG 于M ,DN ⊥EO 于N ,在Rt △CDM 中,∵CD =50,∠DCM =75°,∴CMCD =cos ∠DCM , ∴50CM =cos70°≈0.26,解得,CM≈13. ∵DN ∥FG ,∴∠CDN =∠DCG =75°, 在Rt △DEN 中,∵∠EDN =∠CDE ﹣∠CDN =105°﹣75°=30°,DE =40, ∴DNDE=cos ∠EDN ,∴40DN =cos30°=2,解得,DN =≈34.6. ∵∠DNO =∠NOM =∠DMO =90°, ∴四边形DNOM 是矩形, ∴OM =DN≈34.6,∴BC =OM ﹣CM ﹣BO≈34.6﹣13﹣12.5=9.1(cm). 答:BC 的长约为9.1cm . 【点睛】本题考查解直角三角形、等腰直角三角形的性质、锐角三角函数,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数解答.25.1x x-,【解析】 【分析】原式约分后,利用同分母分式的减法法则计算得到最简结果,将x 的值代入计算即可求出值. 【详解】原式=(1)(2)12(1)1212(1)x x x x x x x x x x x x+-++-⋅-=-=-+,当x时,=.2【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.2019-2020学年数学中考模拟试卷一、选择题1.如图,AB 是半圆O 的直径,D 为半圆上的点,在BA 延长线上取点C ,使得DC =DO ,连结CD 并延长交圆O 于点E ,连结AE ,若∠C =18°,则∠EAB 的度数为( )A .18°B .21°C .27°D .36°2.下列命题中,是假命题的是( ) A .任意多边形的外角和为360°B .在△ABC 和△A′B′C′中,若AB =A′B′,BC =B′C′,∠C =∠C′=90°,则△ABC ≌△A′B′C′ C .在一个三角形中,任意两边之差小于第三边D .同弧所对的圆周角和圆心角相等3.欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其扣,徐以杓酌油沥之,自钱孔入,而钱不湿.因曰:‘我亦无他,唯手熟尔.’”可见技能都能透过反复苦练而达至熟能生巧之境的.若铜钱是直径为4cm 的圆,中间有边长为1cm 的正方形孔,你随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率为( )A.13B.14C.1πD.14π4.如图,⊙O 是△ABC 的外接圆,∠B =60°,OP ⊥AC 交于点P ,OP =43,则⊙O 的半径为( )A .8B .123C .83D .125.合肥市统计局资料显示,2016年全市生产总值为6274.3亿元,2018年全市生产总值为7822.9亿元,假设2017年与2018年这两年的年平均增长率均为x ,则下列方程正确的是( ) A.()6274.3127822.9x += B.()26274.3127822.9x += C.()26274.317822.9x +=D.()()6274.31127822.9x x ++=6.如图所示,在直角坐标系中,A 点坐标为(-3,-2),⊙A 的半径为1,P 为x 轴上一动点,PQ 切⊙A 于点Q ,则当PQ 最小时,P 点的坐标为( )A.(-3,0)B.(-2,0)C.(-4,0)或(-2,0)D.(-4,0)7.不等式组9511x xx m+<+⎧⎨>+⎩的解集是 x>2,则m的取值范围是()A.m<1 B.m≥1C.m≤1D.m>18.一粒某种植物花粉的质量约为0.000037毫克,那么0.000037用科学记数法表示为()A.3.7x10-5B.3.7x10-6C.3.7x10-7D.37x10-59.江西省足协2019年第三次主席办公会在南昌召开,某学校为了激发学生对体育的热情,选拔了23名学生作为校足球队成员,其中足球队23名队员的年龄情况如表:则该校足球队队员年龄的众数和中位数分别是()A.13,14 B.13,13 C.14.13.5 D.16,1410.伴随着经济全球化的发展,中外文化交流日趋频繁,中国以其悠久的历史文化和热情吸引了越来越多的外国游客的光临,据国家统计局统计,2007年至2017年中国累计接待外国游客入境3.1亿人次.小元制作了2007年至2017年外国人入境情况统计图,如图所示.数据来源:国家统计局,2016年含边民入境人数.根据以上信息,下列推断合理的是( )A.2007年45岁以上外国人入境游客约为2611万人次B.外国游客入境人数逐年上升C.每年的外国游客入境人数中,25﹣44岁游客人数占全年游客入境人数的13D.外国游客入境人数较前一年増涨幅度最大的是2017年 11.二元一次方程组4521x y x y +=⎧⎨-=⎩的解为( ) A .11x y =⎧⎨=⎩ B .21x y =-⎧⎨=⎩ C .32x y =-⎧⎨=⎩ D .21x y =⎧⎨=-⎩12.从五个数510152,,,.π-- 中任意抽取一个作为x ,则x 满足不等式2x ﹣1≥3的概率是( ) A .15 B .25 C .35 D .45二、填空题13.如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是( )A .5cmB .6cmC .485cmD .245cm ; 14.一个圆锥的底面半径为3cm ,侧面展开图是半圆,则圆锥的侧面积是_____cm 2.15.如图,△ABC 中,如果AB =AC ,AD ⊥BC 于点D ,M 为AC 中点,AD 与BM 交于点G ,那么S △GDM :S △GAB 的值为_____.16.若()2m 2y m 2x mx 1-=+++是关于自变量x 的二次函数,则m =______.17.如图,点A (m ,6),B (n ,1)在反比例函数k y x=的图象上,AD ⊥x 轴于点D ,BC ⊥x 轴于点C ,点E 在CD 上,CD =5,△ABE 的面积为10,则点E 的坐标是_____.18.计算(3)(4)a a +-的结果等于_______.三、解答题19.如图所示,P 是⊙O 外一点,PA 是⊙的切线,A 是切点,B 是⊙O 上一点,且PA =PB ,连接AO 、BO 、AB ,并延长BO 与切线PA 相交于点Q .(1)求证:PB 是⊙O 的切线;(2)求证:AQ•PQ=BQ•OQ;(3)设∠P =α,若tan ɑ=34,AQ =3,求AB 的长.20.为了解某校九年级学生今年中考立定跳远成绩,随机抽取该年级50名男学生的得分,并把成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表学生立定跳远测试成绩的频数分布直方图请根据图表中所提供的信息,完成下列问题:⑴表中a=____,b=_____,样本成绩的中位数落在_____范围内;⑵请把频数分布直方图补充完整;⑶该校九年级共有400名男生,立定跳远成绩不低于2.25米为优秀,估计该校男学生中考立定跳远成绩优秀以上的学生有多少人?21.在△ABC 中,AB =AC ,⊙O 经过点A 、C 且与边AB 、BC 分别交于点D 、E ,点F 是AC 上一点,»»DE AF =,连接CF 、AF 、AE .(1)求证:△ACF ≌△BAE ;(2)若AC 为⊙O 的直径,请填空:①连接OE 、DE ,当△ABC 的形状为 时,四边形OADE 为菱形;②当△ABC 的形状为 时,四边形AECF 为正方形.22.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答(1)本次参加抽样调查的居民有 人;(2)将条形统计图补充完整;扇形统计图中A 占 ,C 占 ;(3)若有外型完全相同的A 、B 、C 、D 粽子各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他吃到C 粽子的概率.23.(1)化简:22242a a a a÷-- ; (2)若二次函数y =x 2+(c ﹣1)x ﹣c 的图象与横轴有唯一交点,求c 的值.24.先化简再求值:22221111x x x x x x --⎛⎫÷-- ⎪-+⎝⎭,其中x 是不等式组30223x x x +>⎧⎪-⎨<+⎪⎩的最大整数解. 25.如图,四边形ABCD 中,//CD AB ,= 90ABC ∠︒,AB BC =,将BCD ∆绕点B 逆时针旋转90︒得到BAE ∆,连接CE ,过点B 作BG CE ⊥于点F ,交AD 于点G .(1)如图,CD AB =.①求证:四边形ABCD 是正方形;②求证:G 是AD 中点;(2)如图,若CD AB <,请判断G 是否仍然是AD 的中点?若是,请证明;若不是,请说明理由.【参考答案】***一、选择题二、填空题13.D14.π15.1:4.16.217.(3,0)18.212a a --三、解答题19.(1)证明见解析(2)证明见解析(3【解析】【分析】(1)易证△PAO ≌△PBO (SSS ),根据全等三角形的性质结合切线的性质,即可得出∠PBO =90°,进而即可证出PB 是⊙O 的切线;(2)根据同角的补角相等可得出∠AOQ =∠APB ,根据等腰三角形及全等三角形的性质可得出∠ABQ =∠OPQ,结合∠AQB=∠OQP即可证出△QAB∽△QOP,根据相似三角形的性质可得出AQ BQOQ PQ=,即AQ•PQ=BQ•OQ;(3)设AB与PO交于点E,则AE⊥PO,通过解直角三角形可求出OA的长度,结合(2)的结论可得出PQ 的长度,利用勾股定理可得出PO的长度,利用面积法即可得出AE的长度,进而即可求出AB的长度.【详解】(1)证明:在△PAO和△PBO中,PA PB AO BO PO PO=⎧⎪=⎨⎪=⎩,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO.∵PA是⊙的切线,A是切点,∴∠PAO=90°,∴∠PBO=90°,∴PB是⊙O的切线.(2)证明:∵∠APB+∠PAO+∠AOB+PBO=360°,∴∠APB+∠AOB=180°.又∵∠AOQ+∠AOB=180°,∴∠AOQ=∠APB.∵OA=OB,∴∠ABQ=∠BAO=12∠AOQ.∵△PAO≌△PBO,∴∠OPQ=∠OPB=12∠APB,∴∠ABQ=∠OPQ.又∵∠AQB=∠OQP,∴△QAB∽△QOP,∴AQ BQOQ PQ=,即AQ•PQ=BQ•OQ.(3)解:设AB与PO交于点E,则AE⊥PO,如图所示.∵∠AOQ=∠APB,∴tan∠AOQ=34.在Rt△OAQ中,∠OAQ=90°,tan∠AOQ=34,AQ=3,∴AO=4,OQ=5=,∴BQ =BO+OQ =9.∵AQ•PQ=BQ•OQ,∴PQ =15,∴PA =PQ ﹣AQ =12,∴PO = .由面积法可知:AE =PA AD PQ ⋅=,∴AB =2AE .【点睛】本题考查了全等三角形的判定与性质、相似三角形的判定与性质、切线的判定与性质、三角形的面积以及解直角三角形,解题的关键是:(1)利用全等三角形的性质找出∠PBO =∠PAO =90°;(2)根据相似三角形的判定定理找出△QAB ∽△QOP ;(3)利用面积法求出AE 的长度.20.(1)1,25,2.25≤x<2.5;(2)见解析;(3)320【解析】【分析】(1)根据频数分布直方图可以求得a 的值,进而可以求得b 的值和样本成绩的中位数落在哪一组内;(2)根据(1)中的结果可以将频数分布直方图补充完整;(3)根据频数分布表中的数据可以求得该校男学生中考立定跳远成绩优秀以上的学生有多少人.【详解】解:(1)有频数分布直方图可知,a=1,b=50-1-9-15=25,样本成绩的中位数落在2.25≤x<2.5范围内,故答案为:1,25,2.25≤x<2.5;(2)补充完整的频数分布直方图如图所示;(3)251540032050+⨯=(人) 故答案为:320人.【点睛】本题考查频数分布表、频数分布直方图、中位数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.(1)详见解析;(2)①等边三角形;②当△ABC 是等腰直角三角形时,四边形AECF 为正方形.【解析】【分析】(1)由圆的内接四边形性质可得CFA AEB ∠∠=,由“AAS ”可证ACF BAE ∆∆≌;(2)① 四边形OADE 为菱形,可得OA OE DE AD ===,可得AOD DOE ∆∆, 都是等边三角形,可求120AOE ∠︒=,可得60ACB ∠︒=,即可求解;② 四边形AECF 为正方形,90FCE FAE F AF CF ∠︒∠∠===,=,可证ACF BAE ∆∆≌,可得45EAD FCA ∠∠︒==,可得90CAB ∠︒=,即可求解. 【详解】证明:(1)∵四边形AECF 是圆内接四边形CFA AEB ∴∠∠=DE AF =ACF DAE CFA AEB AB AC ∴∠∠∠∠=,且=,=ACF BAE AAS ∴∆∆≌()(2)①如图:若四边形OADE 为菱形;OA OE DE AD ∴===OA OD AD OE OD DE ∴==,==AOD DOE ∴∆∆, 都是等边三角形60AOD DOE ∴∠∠︒==120AOE ∴∠︒=2AOE ACB ∠∠=60ACB AC AB ∴∠︒=,且=∴△ABC 是等边三角形,∴当△ABC 是等边三角形时,四边形OADE 为菱形;故答案为:等边三角形②若四边形AECF 为正方形,90FCE FAE F AF CF ∴∠︒∠∠===,=45FAC FCA CAE∴∠∠︒∠===ACF BAE∆∆≌45EAD FCA∴∠∠︒==90CAB AC AB∴∠︒=,且=,∴△ABC是等腰直角三角形,∴当△ABC是等腰直角三角形时,四边形AECF为正方形,【点睛】本题主要考查了圆的综合,全等三角形的判定和性质,菱形的性质,正方形的性质,圆的有关知识,熟练运用这些性质进行推理是解题关键.22.(1)600;(2)30% , 20%;(3)见解析,12.【解析】【分析】(1)根据B类有60人,所占的百分比是10%即可求解;(2)利用总人数减去其他类型的人数即可求得C类型的人数,然后根据百分比的意义求解;(3)利用列举法即可求解.【详解】(1)本次参加抽样调查的居民人数是60÷10%=600(人),故答案为:600;(2)A组所对应的百分比是180600×100%=30%,C组的人数是600﹣180﹣60﹣240=120(人),所占的百分比是120600×100%=20%,故答案为:30%,20%;(3)画树状图如下:则他吃到C 粽的概率是61122=. 【点睛】 本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了概率的知识,用到的知识点为:概率=所求情况数与总情况数之比.23.(1)2(2)a a a -+ ;(2)c =﹣1. 【解析】【分析】(1)利用除法法则转化为分式乘法,然后再进行计算即可;(2)由二次函数图象与x 轴有唯一交点,可得出△=(c+1)2=0,解之即可得出c 的值.【详解】 (1)原式=()()22222a a a a a -+-=2(2)a a a -+;(2)∵二次函数y =x 2+(c ﹣1)x ﹣c 的图象与横轴有唯一交点,∴△=(c ﹣1)2﹣4×1×(﹣c)=(c+1)2=0,解得:c =﹣1,∴c 的值为﹣1.【点睛】本题考查了抛物线与x 轴的交点以及分式的乘除法,解题的关键是:(1)牢记分式运算的法则;(2)牢记“△=b 2﹣4ac =0时,抛物线与x 轴有1个交点”.24.13- 【解析】【分析】先将分式化简,再求出不等式组,利用分式有意义时分母不等于0,求出x 的值代入即可解题.【详解】 解:原式2(2)121(1)1(1)x x x x x x x ⎛⎫---+=÷ ⎪+⎝-⎭+ (2)1(1)(1)(2)x x x x x x x -+=∙+-- =11x - ∵x 2﹣1≠0,x ﹣2≠0,x≠0∴x≠±1且x≠2,且x≠0。
2019年浙江省杭州市中考数学试题(解析版).docx
2019年杭州市中考数学试卷一、选择题(本大题有10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个符合题目要求)1.计算下列各式,值最小的是 ( ) A .20+19? B .2019+? C .2019+-? D .2019++- 【考点】实数【解析】8A =- 7B =- 7C =- 6D =- 【答案】故选A2.在平面直角坐标系中,点(),2A m 与点()3,b n 关于y 轴对称,则 ( )A . 3m =,2n =B .3m =-,2n =C .2m =,3n =D .2m =-,3n =【考点】直角坐标系【解析】A ,B 关于y 轴对称,则横坐标互为相反数,纵坐标相同 【答案】故选B3.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B 两点,若3PA =,则PB = ( ) A .2 B .3 C .4 D .5【考点】圆与切线长【解析】因为PA 和PB 与⊙O 相切,所以PA =PB =3 【答案】故选B4.已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( ) A .()237230x x +-= B .()327230x x +-= C .()233072x x +-= D .()323072x x +-= 【考点】一元一次方程【解析】设男生x 人,则女生有(30-x )人,由题意得:()323072x x +-=【答案】故选D5.点点同学对数据26,36,36,46,5■,52进行统计分析,发现其中一个两位数被墨水涂污看不到了,则计算结果与被涂污数字无关的是 ( ) A .平均数 B .中位数 C .方差 D .标准差 【考点】数据【解析】这组数据中的中位数是41,与涂污数字无关 【答案】故选B6.如图,在ABC △中,D 、E 分别在AB 边和AC 边上,//DE BC ,M 为BC 边上一点(不与B 、C 重合),连结AM 交DE 于点N ,则 ( )PA .AD AN AN AE = B .BD MN MN CE = C .DN NE BM MC = D .DN NEMC BM=【考点】相似三角形【解析】∵//DE BC ,∴△ADN ∽△ABM ,△ANE ∽△AMC ∴,DN AN AN NE DN NE BM AM AM MC BM MC ==? 【答案】故选C7.在ABC △中,若一个内角等于另外两个角的差,则 ( ) A .必有一个角等于30° B . 必有一个角等于45° C . 必有一个角等于60° D . 必有一个角等于90° 【考点】三角形内角和【解析】设三角形的一个内角为x ,另一个角为y ,则三个角为(180°-x -y ),则有三种情况: ①(180)9090x y x y y x y =-︒--⇒=+=oo或 ②(180)9090y x x y x x y =---⇒=+=o o o 或 ③(180)9090x y x y x y --=-⇒==ooo或综上所述,必有一个角等于90° 【答案】故选D8.已知一次函数1y ax b =+和2y bx a =+()a b ≠,函数1y 和2y 的图象可能是 ( )A .B .C .D .【考点】一次函数的图象【解析】①当0,0a b >>,1y 、2y 的图象都经过一、二、三象限 ②当0,0a b <<,1y 、2y 的图象都经过二、三、四象限③当0,0a b ><,1y 的图象都经过一、三、四象限,2y 的图象都经过一、二、四象限④当0,0a b <>,1y 的图象都经过一、二、四象限,2y 的图象都经过一、三、四象限满足题意的只有A【答案】故选A9.如图,一块矩形木板ABCD 斜靠在墙边,(OC OB ^,点A 、B 、C 、D 、O 在同一平面内),已知AB a =,AD b =,BCO x ?.则点A 到OC 的距离等于 ( )E N MD CBAA . sin sin a x b x +B .cos cos a x b x +C .sin cos a x b x +D .cos sin a x b x +【考点】三角函数、矩形的性质 【解析】过点A 作AE ⊥OB 于点E ,因为四边形ABCD 是矩形,且AB =a ,AD =b 所以BC =AD =b ,∠ABC =90° 所以∠ABE =∠BCO =x因为sin OB x BC =,cos BEx AB= 所以sin OB b x =,cos BE a x =所以点A 到OC 的距离cos sin d BE OB a x b x =+=+【答案】故选D10.在平面直角坐标系中,已知a b ¹,设函数()()y x a x b =++的图像与x 轴有M 个交点,函数()()11y ax bx =++的图像与x 轴有N 个交点,则 ( )A . 1M N =-或1M N =+B . 1M N =-或2M N =+C . M N =或1M N =+D . M N =或1M N =- 【考点】二次函数与x 轴交点问题【解析】对于函数()()y x a x b =++,当0y =时,函数与x 轴两交点为(-a ,0)、(-b ,0),∵a b ≠,所以有2个交点,故2M =对于函数()()11y ax bx =++①0a b ≠≠,交点为11(,0),(,0)a b --,此时2N M N =⇒= ②0,0a b =≠,交点为1(,0)b -,此时11N M N =⇒=+③0,0b a =≠,交点为1(,0)a-,此时11N M N =⇒=+综上所述,M N =或1M N =+【答案】故选C二、填空题(本大题有6小题,每小题4分,共24分)11.因式分解:21x -= . 【考点】因式分解【解析】二项用平方差公式,22211(1)(1)x x x x -=-=+-【答案】(1)(1)x x +-12.某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这()m n +个数据的平均数等于 . 【考点】数据统计E【解析】平均数等于总和除以个数,所以平均数mx nym n+=+【答案】mx nym n++13.如图,一个圆锥形冰激凌外壳(不计厚度).已知其母线长为12cm ,底面圆半径为3cm ,则这个冰激凌外壳的侧面积等于 2cm (计算结果精确到个位).【考点】圆锥的侧面积【解析】3123636 3.14113.04113S rl πππ==⨯⨯==⨯=≈侧 【答案】11314.在直角三角形ABC 中,若2AB AC =,则cos C = . 【考点】解直角三角形【解析】如图所示,分两种情况讨论,AC 可以是直角边,也可以是斜边 ①当AC 是斜边,设AB =x ,则AC =2x ,由勾股定理可得: BCx,则cos BC C AC === ①当AC 是直角边,设AB =x ,则AC =2x ,由勾股定理可得: BC,则cos AC C BC ====综上所述,cos C =15.某函数满足当自变量1x =时,函数值0y =;当自变量0x =时,函数值1y =,写出一个满足条件的函数表达式 . 【考点】函数的解析式【解析】答案不唯一,可以是一次函数,也可以是二次函数【答案】1y x =-+或21y x =-+或1y x =-等16.如图,把某矩形纸片ABCD 沿EF 、GH 折叠(点E 、H 在AD 边上,点F 、G 在BC 边上),使得点B 、点C 落在AD 边上同一点P 处,A 点的对称点为A ¢点,D 点的对称点为D ¢点,若90FPG ??,A EP ¢△的面积为4,D PH ¢△的面32x积为1,则矩形ABCD 的面积等于 .【考点】矩形性质、折叠 【解析】∵A'E ∥PF∴∠A'EP=∠D'PH又∵∠A=∠A'=90°,∠D=∠D'=90° ∴∠A'=∠D'∴△A'EP ~△D'PH又∵AB=CD ,AB=A'P ,CD=D'P ∴A'P= D'P 设A'P=D'P=x∵S △A'EP :S △D'PH =4:1 ∴A'E=2D'P=2x∴S △A'EP =2112422A E A P x x x ''⨯⨯=⨯⨯== ∵0x >∴2x = ∴A'P=D'P=2 ∴A'E=2D'P=4∴EP ==∴1=2PH EP =∴112DH D H A P ''===∴415AD AE EP PH DH =+++=+=+∴2AB A P '==∴25)10ABCD S AB AD =⨯=⨯=矩形【答案】10三、解答题(本大题有7个小题,共66分)17.(本题满分6分)化简:242142x x x ----圆圆的解答如下: ()()2224214224422x x x x x x x x--=-+----=-+ 圆圆的解答正确吗?如果不正确,写出正确的解答.D 1A 1G PFECDB AH【解析】圆圆的解答不正确.正确解答如下:原式242(2)4(2)(2)(2)(2)(2)(2)x x x x x x x x x +-=--+-+-+-24(24)(4)(2)(2)x x x x x -+--=+-(2)(2)(2)x x x x --=+-2x x =-+.18.(本题满分8分)称重五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称重读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克)⑴补充完整乙组数据的折线统计图;⑵①甲、乙两组数据的平均数分别为x 甲、x 乙,写出x 甲与x 乙之间的等量关系;②甲、乙两组数据的平均数分别为2S 甲、2S 乙,比较2S 甲与2S 乙的大小,并说明理由.【解析】(1)补全折线统计图,如图所示.(2)①50x x =+甲乙.②22S S =甲乙,理由如下:因为2222221[(2)(2)(3)(1)(4)]5S x x x x x =--+-+--+--+-乙乙乙乙乙乙实际称重读数和记录数据统计表4-1-32-2544947524854321乙组甲组数据序号实际称量读数折线统计图 记录数据折线统计图222221[(4850)(5250)(4750)(4950)(5450)]5x x x x x =--+--+--+--+--乙乙乙乙乙222221[(48)(52)(47)(49)(54)]5x x x x x =-+-+-+-+-甲甲甲甲甲 2S =甲, 所以22S S =甲乙.19.(本题满分8分)如图,在ABC △中,AC AB BC <<.⑴已知线段AB 的垂直平分线与BC 边交于点P ,连结AP ,求证:2APC B ??;⑵以点B 为圆心,线段AB 的长为半径画弧,与BC 边交于点Q ,连结AQ ,若3AQC B ??,求B Ð的度数.【解析】(1)证明:因为点P 在AB 的垂直平分线上, 所以PA=PB , 所以∠PAB=∠B ,所以∠APC=∠PAB+∠B=2∠B. (2)根据题意,得BQ=BA , 所以∠BAQ=∠BQA , 设∠B=x ,所以∠AQC=∠B+∠BAQ=3x , 所以∠BAQ=∠BQA=2x , 在△ABQ 中,x +2x +2x =180°, 解得x =36°,即∠B=36°.20.(本题满分10分)方方驾驶小汽车匀速地从A 地行使到B 地,行驶里程为480千米,设小汽车的行使时间为t (单位:小时),行使速度为v (单位:千米/小时),且全程速度限定为不超过120千米/小时.⑴求v 关于t 的函数表达式;⑵方方上午8点驾驶小汽车从A 出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围.②方方能否在当天11点30分前到达B 地?说明理由.【解析】(1)根据题意,得480vt =,PCBAQABC所以480v t=, 因为4800>,所以当120v ≤时,4t ≥, 所以480(4)v t t=≥ (2)①根据题意,得4.86t ≤≤, 因为4800>, 所以4804806 4.8v ≤≤, 所以80100v ≤≤②方方不能在11点30分前到达B 地.理由如下: 若方方要在11点30分前到达B 地,则 3.5t <, 所以4801203.5v >>,所以方方不能在11点30分前到达B 地. 21.(本题满分10分)如图,已知正方形ABCD 的边长为1,正方形CEFG 的面积为1S ,点E 在CD 边上,点G 在BC 的延长线上,设以线段AD 和DE 为邻边的矩形的面积为2S ,且12S S =.⑴求线段CE 的长;⑵若点H 为BC 边的中点,连结HD ,求证:HD HG =.【解析】根据题意,得AD=BC=CD=1,∠BCD=90°. (1)设CE=x (0<x <1),则DE=1-x , 因为S 1=S 2,所以x 2=1-x , 解得x(负根舍去), 即(2)因为点H 为BC 边的中点,GFE H DCBA所以CH=12,所以因为CG=CE=12,点H ,C ,G 在同一直线上,所以HG=HC+CG=12+12=2,所以HD=HG22.(本题满分12分)设二次函数()()12y x x x x =--(1x 、2x 是实数).⑴甲求得当0x =时,0y =;当1x =时,0y =,乙求得当12x =时,12y =-.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由;⑵写出二次函数的对称轴,并求出该函数的最小值(用含1x 、2x 的代数式表示);⑶已知二次函数的图像经过()0,m ,()1,n 两点(m 、n 是实数),当1201x x <<<时, 求证:1016mn <<.【解析】(1)乙求得的结果不正确,理由如下: 根据题意,知图象经过点(0,0),(1,0), 所以(1)y x x =-, 当12x =时,1111(1)2242y =⨯-=-≠-, 所以乙求得的结果不正确. (2)函数图象的对称轴为122x x x +=, 当122x x x +=时,函数有最小值M , 212121212()224x x x x x x M x x ++-⎛⎫⎛⎫=--=- ⎪⎪⎝⎭⎝⎭(3)因为12()()y x x x x =--, 所以12m x x =,12(1)(1)n x x =--,所以2212121122(1)(1)()()mn x x x x x x x x =--=--22121111[()][()]2424x x =--+⋅--+因为1201x x <<<,并结合函数(1)y x x =-的图象, 所以211110()244x <--+≤,221110()244x <--+≤所以1016mn <≤, 因为12x x ≠,所以1016mn <<23.(本题满分12分)如图,已知锐角ABC △内接于⊙O , OD BC ^于点D ,连结AO . ⑴若60BAC ??.①求证:12OD OA =;②当1OA =时,求ABC △面积的最大值; ⑵点E 在线段OA 上,OE OD =,连接DE ,设A B C m O E D??,ACB n OED ??(m 、n 是正数), 若ABC ACB ??,求证:20m n -+=【解析】(1)①证明:连接OB ,OC , 因为OB=OC ,OD ⊥BC , 所以∠BOD=12∠BOC=12×2∠BAC=60°, 所以OD=12OB=12OA ②作AF ⊥BC ,垂足为点F , 所以AF ≤AD ≤AO+OD=32,等号当点A ,O ,D 在同一直线上时取到 由①知,所以△ABC的面积113222BC AF =⋅≤= 即△ABC(2)设∠OED=∠ODE=α,∠COD=∠BOD=β, 因为△ABC 是锐角三角形, 所以∠AOC+∠AOB+2∠BOD=360°,11 即()180m n αβ++=o (*) 又因为∠ABC<∠ACB ,所以∠EOD=∠AOC+∠DOC2m αβ=+因为∠OED+∠ODE+∠EOD=180°, 所以2(1)180m αβ++=o (**) 由(*),(**),得2(1)m n m +=+, 即20m n -+=。
中考数学选填题压轴题突破 重难点突破四 新定义与阅读理解的综合判断
③若m+n=0且m≠0,则关于x的方程(x-3)(mx+n)=0是3倍根方程
④若3m+n=0且m≠0,则关于x的方程x2+(m-n)x-mn=0是3倍根方程
A.ቤተ መጻሕፍቲ ባይዱ个
B.3个
C.2个
D.1个
有意义),则k=0.
其中正确的个数为
( C)
A.2
B.3
C.4
D.5
6.★如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一
个根为另一个根的三倍,则称这样的方程为“3倍根方程”,以下说法
中正确的有
( B)
①方程x2-4x+3=0是3倍根方程
②若关于x的方程(x-3)(mx+n)=0是3倍根方程,则m+n=0
确的个数是
( C)
A.1
B.2
C.3
D.4
4.★(2022·重庆)在多项式x-y-z-m-n中任意加括号,加括号后仍 只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操 作”.例如:(x-y)-(z-m-n)=x-y-z+m+n,x-y-(z-m)-n =x-y-z+m-n,……. 下列说法:
重难点突破四 新定义与阅读理解的综合
判断
1.★阅读理解:如果一个正整数m能表示为两个正整数a,b的平方和,
即m=a2+b2,那么称m为广义勾股数,则下面的四个结论:①7不是广义
勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;
④两个广义勾股数的积是广义勾股数.其中正确的个数是 ( C )
A.0
B.1
C.2
D.3
2.★(2022·涪陵区期末)规定不超过实数x的最大整数称为x的整数部
分,记作[x],例如[9.85]=9,[3]=3,[ 10]=3.下列说法:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二部分题型研究
题型四新定义与阅读理解题
类型一新法则、运算学习型
针对演练
1. (2018潍坊)定义[x]表示不超过实数x的最大整数,如[1.8]=1,[-1.4]
=-2,[-3]=-3.函数y=[x]的图象如图所示,则方程[x]=1
2
x2的解为( )
第1题图
A. 0或 2
B. 0或2
C. 1或- 2
D. 2或- 2
2. (2018杭州)设a,b是实数,定义关于@的一种运算如下:a@b=(a+
b)2-(a-b)2,则下列结论:
①若a@b=0,则a=0或b=0;
②a@(b+c)=a@b+a@c;
③不存在实数a,b,满足a@b=a2+5b2;
④设a,b是矩形的长和宽,若该矩形的周长固定,则当a=b时,a@b
的值最大.
其中正确的是( )
A. ②③④
B. ①③④
C. ①②④
D. ①②③
3. 定义符号min{a,b}的含义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a,如:min{1,-3}=-3,min{-4,-2}=-4,则min{-x2+1,-x}的最大值是( )
A. 5-1
2
B.
5+1
2
C. 1
D. 0
4. 我们根据指数运算,得出了一种新的运算,下表是两种运算对应关系的一组实例:
指
根据上表规律,某同学写出了三个式子:①log 216=4,②log 525=5,③log 21
2
=-1.其中正确的是( )
A. ①②
B. ①③
C. ②③
D. ①②③
5. 对于任意实数m 、n ,定义一种运算m ※n =mn -m -n +3,等式的右边是通常的加减和乘法运算.例如:3※5=3×5-3-5+3=10.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a 的取值范围是________.
第6题图
6. 用“♥”定义一种新运算:对于任意实数m ,n 和抛物线y =ax 2,当y =ax 2♥(m ,n)后都可以得到y =a(x -m)2+n ,例如:当y =2x 2♥(3,4)后都可以得到y =2(x -3)2+4.函数y =x 2♥(1,n)后得到的函数图象如图所示,则n =________.。