2020-2021学年上学期九年级数学上册(人教版)一元二次方程单元测试卷(基础卷)(原卷版)
九年级上学期数学《一元二次方程》单元测试题(含答案)
[解析]
[分析]
利用因式分解法解方程即可.
[详解]x﹣1=0或x﹣2=0,所以x1=1,x2=2.
故选C.
[点睛]本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).
[答案]6-2
[解析]
[分析]
当x=﹣4时,不是方程x2﹣2|x+4|﹣27=0的根,分x>﹣4;x<﹣4两种情况讨论求解.
[详解]①当x>﹣4时;原方程可化为x2﹣2x﹣35=0,解得:x=﹣5(舍去)或x=7;
②当x<﹣4时;原方程可化为x2+2x﹣19=0,解得:x=﹣1+2 或x=﹣1﹣2 ;
6.已知A、B为一元二次方程 两个根,那么 的值为()
A.11B.0C.7D.-7
7.若关于 的一元二次方程 的一个根是0,则 的值是()
A. 1B. -1C. 1或-1D.
8.方程x2+Ax+1=0和x2-x-A=0有一个公共根,则A的值是( )
A. 0B. 1C. 2D. 3
9.关于x的一元二次方程 有两个实数根,那么实数k的取值范围是()
[答案]8
[解析]
试题分析:①若A=6,则方程有实数根,
②若A≠6,则△≥0,∴64﹣4×(A﹣6)×6≥0,整理得:A≤ ,
∴A的最大值为8.
考点:根的判别式.
14.填上适当的数,使等式成立:x2+6x+________=(x+_______)2.
[答案](1).9(2).3
2020秋人教版九年级数学上《一元二次方程》和《圆》测试卷含答案
《一元二次方程》单元测试一.选择题1.已知一元二次方程的两根分别是3和﹣2,则这个方程可以是()A.(x+3)(x﹣2)=0B.x2+x+6=0C.(x﹣3)(x+2)=0D.x2﹣3x+2=02.已知一元二次方程x2﹣6x+c=0有一个根为2,则另一根及c的值分别为()A.2,8B.3,4C.4,3D.4,83.用配方法将二次三项式a2﹣4a+3变形,结果是()A.(a﹣2)2﹣1B.(a+2)2﹣1C.(a+2)2﹣3D.(a﹣2)2﹣64.一元二次方程x2+11x﹣1=0()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根5.由于疫情得到缓和,餐饮行业逐渐回暖,某地一家餐厅重新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x,则x满足的方程是()A.5000(1+x)=6050B.5000(1+2x)=6050C.5000(1﹣x)2=6050D.5000(1+x)2=60506.关于x的一元二次方程(k﹣1)x2﹣2kx+k=0有两个实数根,则k的取值范围是()A.k≥0且k≠1B.k≠1C.k≥0D.k≤07.若关于x的方程ax2+3x+1=0是一元二次方程,则a满足的条件是()A.a≤B.a>0C.a≠0D.a>8.已知一元二次方程x2﹣x=3,则下列说法中正确的是()A.方程有两个相等的实数根B.方程无实数根C.方程有两个不相等的实数根D.不能确定9.若x1是方程ax2﹣4x﹣c=0(a≠0)的一个根,设p=(ax1﹣2)2,q=ac+5,则p与q的大小关系为()A.p<q B.p=q C.p>q D.不能确定10.用公式法x=解一元二次方程3x2+5x﹣1=0中的b是()A.5B.﹣1C.﹣5D.1二.填空题11.一元二次方程x2﹣ax+2=0的一根是1,则a的值是.12.某超市一月份的营业额为200万元,已知二月和三月的总营业额为1000万元,如果平均每月增长率为x,则由题意列方程应为.13.等腰三角形的三边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣8x+n+10=0的两根,则n的值为.14.已知关于x的一元二次方程x2﹣2(k﹣1)x+k(k+2)=0有两个不相等的实数根.(1)写出k的取值范围;(2)写出一个满足条件的k的值,并写出此时方程的根.15.关于x的一元二次方程(2k+3)x2﹣x﹣=0有实数根,则常数k的取值范围是.三.解答题16.解下列方程:(1)2x2+5x+2=0;(2)(x﹣2)(3x﹣5)=1.17.已知关于x的一元二次方程x2﹣(m﹣2)x﹣m=0.(1)求证:无论m取任何的实数,方程总有两个不相等的实数根;(2)如果方程的两实根为x1、x2,且:x12+x22﹣2x1x2=13,求m的值.18.如图,利用一面墙(墙的长度不限),篱笆长20m.(1)围成一个面积为50m2的矩形场地,求矩形场地的长和宽;(2)可以围成一个面积为60m2的矩形场地吗?如果能,求出矩形场地的长和宽;如果不能,请说明理由.19.如图所示,在△ABC中,∠ACB=90°,AB=50cm,AC=40cm,点P从点C开始沿CA边向点A以4cm/s的速度运动,同时,另一点Q从点C开始以3cm/s的速度沿CB边向点B运动.(1)几秒钟后,PQ的长度是15cm?(2)几秒钟后,△PCQ的面积是△ABC面积的?20.如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”.例如,一元二次方程x2+x=0的两个根是x1=0,x2=﹣1,则方程x2+x=0是“邻根方程”.(1)通过计算,判断下列方程是否是“邻根方程”;①x2﹣x﹣6=0;②2x2﹣2x+1=0.(2)已知关于x的方程x2﹣(m﹣1)x﹣m=0(m是常数)是“邻根方程”,求m的值;(3)若关于x的方程ax2+bx+1=0(a、b是常数,a>0)是“邻根方程”,令t=12a﹣b2,试求t的最大值.参考答案一.选择题1.解:∵3+(﹣2)=1,3×(﹣2)=﹣6,∴以3和﹣2为根的一元二次方程可为x2﹣x﹣6=0.故选:C.2.解:设方程的另一个根为t,根据题意得t+2=6,2t=c,解得t=4,c=8.故选:D.3.解:a2﹣4a+3=a2﹣4a+4﹣1=(a﹣2)2﹣1,故选:A.4.解:∵a=1,b=11,c=﹣1,∴△=b2﹣4ac=112﹣4×1×(﹣1)=125>0,∴一元二次方程x2+11x﹣1=0有两个不相等的实数根.故选:A.5.解:设每天的增长率为x,依题意,得:5000(1+x)2=6050.故选:D.6.解:由题意可知:k﹣1≠0且4k2﹣4k(k﹣1)≥0,∴k≥0且k≠1,故选:A.7.解:∵关于x的方程ax2+3x+1=0是一元二次方程,∴a≠0,故选:C.8.解:一元二次方程x2﹣x=3,整理得:x2﹣x﹣3=0,∵a=1,b=﹣1,c=﹣3,∴△=1+12=13>0,则方程有两个不相等的实数根.故选:C.9.解:∵x1是方程ax2﹣4x﹣c=0(a≠0)的一个根,∴ax12﹣4x1=c,则p﹣q=(ax1﹣2)2﹣(ac+5)=a2x12﹣4ax1+1﹣ac﹣5=a(ax12﹣4x1)﹣ac﹣5=ac﹣ac﹣5=﹣5,∴p﹣q<0,∴p<q.故选:A.10.解:3x2+5x﹣1=0中的b=5,故选:A.二.填空题11.解:把x=1代入方程x2﹣ax+2=0得1﹣a+2=0,解得a=3.故答案为:3.12.解:∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×(1+x),∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,∴可列方程为200(1+x)+200(1+x)2=1000,故答案为:200×(1+x)+200×(1+x)2=1000.13.解:当2为底边长时,则a=b,a+b=8,∴a=b=4.∵4,4,2能围成三角形,∴n+10=4×4,解得:n=6;当2为腰长时,a、b中有一个为2,则另一个为6,∵6,2,2不能围成三角形,∴此种情况不存在.故答案为:6.14.解:(1)∵关于x的一元二次方程x2﹣2(k﹣1)x+k(k+2)=0有两个不相等的实数根,∴△=[﹣2(k﹣1)]2﹣4k(k+2)=﹣16k+4>0,解得:k<;(2)当k=0时,原方程为x2+2x=0,∴x(x+2)=0,解得:x1=0,x2=﹣2.∴当k=0时,方程的根为0和﹣2.15.解:根据题意得2k+3≠0且1﹣k≥0且△=(﹣)2﹣4(2k+3)×(﹣)≥0,解得﹣4≤k≤1且k≠﹣.故答案为﹣4≤k≤1且k≠﹣.三.解答题16.解:(1)2x2+5x+2=0,(2x+1)(x+2)=0,2x+1=0或x+2=0,x1=﹣,x2=﹣2;(2)整理得,3x2﹣11x+9=0,∵a=3,b=﹣11,c=9,∴△=b2﹣4ac=(﹣11)2﹣4×3×9=13>0,∴方程有两个不相等的实数根,∴x==,∴x1=,x2=.17.解:(1)证明:∵x2﹣(m﹣2)x﹣m=0,∴△=[﹣(m﹣2)]2﹣4×1×(﹣m)=m2+4>0,∴无论m为任何的实数,方程总有两个不相等的实数根;(2)∵x2﹣(m﹣2)x﹣m=0,方程的两实根为x1、x2,∴x1+x2=m﹣2,x1x2=﹣m,又,∴,∴(m﹣2)2﹣4×(﹣m)=13,解得,m1=3,m2=﹣3,即m的值是3或﹣3.18.解:(1)设垂直于墙的边长为xm,则平行于墙的边长为(20﹣2x)m,依题意,得:x(20﹣2x)=50,整理,得:x2﹣10x+25=0,解得:x1=x2=5,∴20﹣2x=10.答:矩形场地的长为10m,宽为5m.(2)不能,理由如下:设垂直于墙的边长为ym,则平行于墙的边长为(20﹣2y)m,依题意,得:y(20﹣2y)=60,整理,得:y2﹣10y+30=0,∵△=(﹣10)2﹣4×1×30=﹣20<0,∴不能围成一个面积为60m2的矩形场地.19.解:(1)设t秒钟后,PQ的长度是15cm,此时CP=4tcm,CQ=3tcm.∵∠C=90°,∴PQ2=CP2+CQ2,即152=(4t)2+(3t)2,解得:t1=3,t2=﹣3(不合题意,舍去).答:3秒钟后,PQ的长度是15cm.(2)在Rt△ABC中,∠ACB=90°,AB=50cm,AC=40cm,∴BC==30cm.设x秒后,△PCQ的面积是△ABC面积的,此时CP=4xcm,CQ=3xcm.依题意,得:CP•CQ=×AC•BC,即×4x×3x=××40×30,解得:x1=5,x2=﹣5(不合题意,舍去).答:5秒后,△PCQ的面积是△ABC面积的.20.解:(1)①解方程得:(x﹣3)(x+2)=0,x=3或x=﹣2,∵2≠﹣3+1,∴x2﹣x﹣6=0不是“邻根方程”;②x==,∵=+1,∴2x2﹣2x+1=0是“邻根方程”;(2)解方程得:(x﹣m)(x+1)=0,∴x=m或x=﹣1,∵方程x2﹣(m﹣1)x﹣m=0(m是常数)是“邻根方程”,∴m=﹣1+1或m=﹣1﹣1,∴m=0或﹣2;(3)解方程得x=,∵关于x的方程ax2+bx+1=0(a、b是常数,a>0)是“邻根方程”,∴﹣=1,∴b2=a2+4a,∵t=12a﹣b2,∴t=8a﹣a2=﹣(a﹣4)2+16,∵a>0,∴a=4时,t的最大值为16.《圆》单元提升训练一.选择题1.如图,在△ABC中,∠ACB=90°,AC=3,BC=4.以B为圆心作圆与AC相切,则该圆的半径等于()A.2.5B.3C.4D.52.如图,△ABC内接于圆,∠ACB=90°,过点C的切线交AB的延长线于点P,∠P=28°.则∠CAB=()A.62°B.31°C.28°D.56°3.用反证法证明命题:“已知△ABC,AB=AC,求证:∠B<90°.”第一步应先假设()A.∠B≥90°B.∠B>90°C.∠B<90°D.AB≠AC4.一个圆锥的底面半径是4cm,其侧面展开图的圆心角是120°,则圆锥的母线长是()A.8cm B.12cm C.16cm D.24cm5.下列说法中,不正确的是()A.直径是最长的弦B.同圆中,所有的半径都相等C.圆既是轴对称图形又是中心对称图形D.长度相等的弧是等弧6.挂钟的分针长10cm,经过45分钟,它的针尖经过的路程是()A.cm B.15πcm C.cm D.75πcm7.⊙O是△ABC的外接圆,则点O是△ABC的()A.三条边的垂直平分线的交点B.三条角平分线的交点C.三条中线的交点D.三条高的交点8.平面内,⊙O的半径为2,点P到O的距离为2,过点P可作⊙O的切线条数为()A.0条B.1条C.2条D.无数条9.如图,AB是半圆O的直径,AB=5cm,AC=4cm.D是弧BC上的一个动点(含端点B,不含端点C),连接AD,过点C作CE⊥AD于E,连接BE,在点D移动的过程中,BE的取值范围是()A.﹣2<BE≤B.﹣2≤BE<3C.≤BE<3D.﹣≤BE<310.如图,△OAC按顺时针方向旋转,点O在坐标原点上,OA边在x轴上,OA=8,AC=4,把△OAC绕点A按顺时针方向转到△O′AC′,使得点O′的坐标是(4,4)则在这次旋转过程中线段OC扫过部分(阴影部分)的面积为()A.8πB.πC.2πD.48π二.填空题11.已知弦AB把圆周分成1:9两部分,则弦AB所对圆心角的度数为.12.如图,⊙O的半径为1,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则的长为.13.如图所示的一扇形纸片,圆心角∠AOB为120°,半径OA的长为3,用它围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为.14.如图,PA、PB、DE分别切⊙O于点A、B、C,且D、E分别在PA、PB上,若PA=10,则△PDE的周长为.15.从一块直径为4m的圆形铁皮上剪出一个如图所示圆周角为90°的最大扇形,则阴影部分的面积为m2(结果保留π).三.解答题16.如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=30°.(1)求∠BAD的度数;(2)若AD=,求DB的长.17.如图,△ABC是⊙O的内接三角形,BC=4,∠A=30°,求⊙O的直径.18.如图,已知正方形ABCD,AB=4,以点A为圆心,AB为半径画弧得到扇形ABD,现将该扇形围成一圆锥的侧面,求出该圆锥底面圆的半径.19.已知圆锥的高为12,底面直径为10,求圆锥的表面积.20.已知:Rt△ABC,∠C=90°.(1)点E在BC边上,且△ACE的周长为AC+BC,以线段AE上一点O为圆心的⊙O恰与AB、BC边都相切.请用无刻度的直尺和圆规确定点E、O的位置;(2)若BC=8,AC=4,求⊙O的半径.参考答案一.选择题1.解:∵∠ACB=90°,即BC⊥AC,∴当圆的半径等于BC=4时,以B为圆心作圆与AC相切,故选:C.2.解:连接OC,如图,∵PC为切线,∴OC⊥PC,∴∠PCO=90°,∴∠POC=90°﹣∠P=90°﹣28°=62°,∵OA=OC,∴∠A=∠OCA,而∠POC=∠A+∠OCA,∴∠A=×62°=31°.故选:B.3.解:用反证法证明命题:“已知△ABC,AB=AC,求证:∠B<90°.”第一步应先假设∠B≥90°.故选:A.4.解:圆锥的底面周长为2π×4=8πcm,即为展开图扇形的弧长,由弧长公式得=8π,解得,R=12,即圆锥的母线长为12cm.故选:B.5.解:A、直径是最长的弦,说法正确;B、同圆中,所有的半径都相等,说法正确;C、圆既是轴对称图形又是中心对称图形,说法正确;D、长度相等的弧是等弧,说法错误;故选:D.6.解:∵分针经过60分钟,转过360°,∴经过45分钟转过270°,则分针的针尖转过的弧长是l===15π(cm).故选:B.7.解:∵⊙O是△ABC的外接圆,∴点O是△ABC的三条边的垂直平分线的交点.故选:A.8.解:∵⊙O的半径为2,点P到O的距离为2,∴点P在⊙O上,∴过点P可作⊙O的一条切线.故选:B.9.解:如图,由题意知,∠AEC=90°,∴E在以AC为直径的⊙M的上(不含点C、可含点N),∴BE最短时,即为连接BM与⊙M的交点(图中E′点),∵AB是半圆O的直径,∴∠ACB=90°,∴AB=5,AC=4,∴BC=3,CM=2,则BM===,∴BE长度的最小值BE′=BM﹣ME′=﹣2,当BE最长时,即E与C重合,∵BC=3,且点E与点C不重合,∴BE<3,综上,﹣2≤BE<3,故选:B.10.解:过O′作O′M⊥OA于M,则∠O′MA=90°,∵点O′的坐标是(4,4),∴O ′M =4,OM =4,∵AO =8, ∴AM =8﹣4=4,∴tan ∠O ′AM ==,∴∠O ′AM =60°,即旋转角为60°,∴∠CAC ′=∠OAO ′=60°,∵把△OAC 绕点A 按顺时针方向旋转到△O ′AC ′,∴S △OAC =S △O ′AC ′, ∴阴影部分的面积S =S 扇形OAO ′+S △O ′AC ′﹣S △OAC ﹣S 扇形CAC ′=S 扇形OAO ′﹣S 扇形CAC ′=﹣=8π,故选:A .二.填空题11.解:∵弦AB 把圆周分成1:9两部分,∴弦AB 所对圆心角的度数=×360°=36°.故答案为36°.12.解:由圆周角定理得,2∠BAD=∠BOD,∵四边形ABCD是⊙O的内接四边形,∴∠BCD=180°﹣∠BAD,∴180°﹣∠BAD=2∠BAD,解得,∠BAD=60°,∴∠BOD=2∠BAD=120°,∴的长==π,故答案为:π.13.解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=1,即该圆锥底面圆的半径为1.故答案为:1.14.解:∵PA、PB、DE分别切⊙O于A、B、C,∴PA=PB,DA=DC,EC=EB;=PD+DE+PE=PD+DA+EB+PE=PA+PB=10+10=20;∴C△PDE∴△PDE的周长为20;故答案为:20.15.解:∵∠ABC=90°,∴AC为⊙O的直径,即AC=4m,∴AB=AC=2m;∴S阴影=S圆﹣S扇形=π×22﹣=2π;故答案为2π.三.解答题16.解:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵∠B=∠ACD=30°,∴∠BAD=90°﹣∠B=90°﹣30°=60°;(2)在Rt△ADB中,BD=AD=×=3.17.解:连接OB,OC,∵∠A=30°,∴∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴OC=BC=4,∴⊙O的直径=8.18.解:设底面圆的半径为r,根据题意得:2πr=,解得:r=1,所以该圆锥的底面圆的半径为1.19.解:底面直径为10,则底面周长=10π,底面面积=25π;由勾股定理得,母线长=13,圆锥的侧面面积S侧=×10π×13=65π,∴它的表面积S=25π+65π=90π,20.(1)如图,作∠ABC的平分线BO,作线段AB的垂直平分线EG,交BC于E,连接AE交BO于O,则点E、O即为所求作点;(2)解:设AE=BE=x,则CE=8﹣x,在Rt△ACE中,42+(8﹣x)2=x2,解得:x=5,在Rt△ABC中,AB===4,设⊙O的半径为r,∵S△ABE =S△AOB+S△BOE∴×5×4=×4r+×5r ∴r=,即⊙O的半径为.。
人教新版 九年级(上)数学 第21章 一元二次方程 单元测试卷 (解析版)
第21章一元二次方程单元测试一、选择题(共10小题).1.(3分)下列方程是关于x的一元二次方程的是()A.x+2y=0B.x2﹣4y=0C.x2+3x=0D.x+1=02.(3分)一元二次方程(x﹣1)2=0的解是()A.x1=0,x2=1B.x1=1,x2=﹣1C.x1=x2=1D.x1=x2=﹣1 3.(3分)下列方程中,两根分别为2和3的方程是()A.x2﹣x﹣6=0B.x2﹣6x+5=0C.x2+x﹣6=0D.x2﹣5x+6=0 4.(3分)某公司年前缴税20万元,今年缴税24.2万元.若该公司这两年的年均增长率相同,设这个增长率为x,则列方程()A.20(1+x)3=24.2B.20(1﹣x)2=24.2C.20+20(1+x)2=24.2D.20(1+x)2=24.25.(3分)关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,则k的范围是()A.k<1B.k>1C.k≤1D.k≥16.(3分)已知方程x2+bx+a=0有一个根是1,则代数式a+b的值是()A.1B.﹣1C.0D.以上答案都不是7.(3分)对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+c=0,方程ax2+bx+c=0有两个不等的实数根;②若方程ax2+bx+c=0有两个不等的实数根,则方程cx2+bx+a=0也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若m是方程ax2+bx+c=0的一个根,则一定有b2﹣4ac=(2am+b)2成立.其中正确的只有()A.①②B.②③C.③④D.①④8.(3分)解方程(5x﹣1)2=(2x+3)2的最适当方法应是()A.直接开平方法B.配方法C.公式法D.因式分解法9.(3分)以4、9为两边长的三角形的第三边长是方程x2﹣14x+40=0的根,则这个三角形的周长为()A.17或23B.17C.23D.以上都不对10.(3分)已知(x+y)(x+y+2)﹣8=0,则x+y的值是()A.﹣4或2B.﹣2或4C.2或﹣3D.3或﹣2二.填空题(共6小题,满分18分,每小题3分)11.(3分)已知(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,则m=.12.(3分)将方程x2﹣2x+1=4﹣3x化为一般形式为.13.(3分)已知一元二次方程2x2﹣3x=1,则b2﹣4ac=.14.(3分)一元二次方程x2+px﹣2=0的一个根为2,则p的值.15.(3分)若x1,x2是方程x2﹣2mx+m2﹣m﹣1=0的两个根,且x1+x2=1﹣x1x2,则m 的值为.16.(3分)在实数范围内定义一种运算“*”,其规则为a*b=a2﹣b2,根据这个规则,方程(x+2)*5=0的解为.三.解答题(共9小题,满分72分)17.(16分)用指定方法解下列一元二次方程(1)3(2x﹣1)2﹣12=0(直接开平方法)(2)2x2﹣4x﹣7=0(配方法)(3)x2+x﹣1=0(公式法)(4)(2x﹣1)2﹣x2=0(因式分解法)18.(6分)已知关于x的方程x2+ax+a﹣2=0(1)求证:不论a取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a的值及该方程的另一个根.19.(6分)已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当x12﹣x22=0时,求m的值.20.(6分)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?21.(7分)某学校机房有100台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,多少轮感染后机房内所有电脑都被感染?22.(7分)一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款,现有小王购买铅笔,如果给初三年级学生每人买1支,只能按零售价付款,需用(m2﹣1)元,(m为正整数,且m2﹣1>100)如果多买60支,则可按批发价付款,同样需用(m2﹣1)元.(1)设初三年级共有x名学生,则x的取值范围是多少?铅笔的零售价每支多少元?批发价每支应为多少元?(用含x、m的代数式表示)(2)若按批发价每购15支比按零售价每购15支少一元,试求初三年级共有多少学生?并确定m的值.23.(7分)如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A,B同时出发,线段PQ能否将△ABC 分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(2)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C 点出发以2cm/s的速度移动,P、Q同时出发,问几秒后,△PBQ的面积为1cm2?24.(8分)已知,下列n(n为正整数)个关于x的一元二次方程:①x2﹣1=0,②x2+x﹣2=0,③x2+2x﹣3=0,④x2+3x﹣4=0,…,⑪,…(1)上述一元二次方程的解为①,②,③,④.(2)猜想:第n个方程为,其解为.(3)请你指出这n个方程的根有什么共同的特点(写出一条即可).25.(9分)先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?参考答案一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列方程是关于x的一元二次方程的是()A.x+2y=0B.x2﹣4y=0C.x2+3x=0D.x+1=0解:A.x+2y=0含有两个未知数,不合题意;B.x2﹣4y=0含有两个未知数,不合题意;C.x2+3x=0是一元二次方程,符合题意;D.x+1=0中未知数的最高次数不是2次,不合题意;故选:C.2.(3分)一元二次方程(x﹣1)2=0的解是()A.x1=0,x2=1B.x1=1,x2=﹣1C.x1=x2=1D.x1=x2=﹣1解:∵(x﹣1)2=0,∴x﹣1=0,x=1,即x1=x2=1,故选:C.3.(3分)下列方程中,两根分别为2和3的方程是()A.x2﹣x﹣6=0B.x2﹣6x+5=0C.x2+x﹣6=0D.x2﹣5x+6=0解:∵方程的两根分别为2和3,∴2+3=5,2×3=6,∴方程为x2﹣5x+6=0.故选:D.4.(3分)某公司年前缴税20万元,今年缴税24.2万元.若该公司这两年的年均增长率相同,设这个增长率为x,则列方程()A.20(1+x)3=24.2B.20(1﹣x)2=24.2C.20+20(1+x)2=24.2D.20(1+x)2=24.2解:设这个增长率为x,由题意得,20(1+x)2=24.2.故选:D.5.(3分)关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,则k的范围是()A.k<1B.k>1C.k≤1D.k≥1解:∵关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,∴△=(﹣6)2﹣4×9k>0,解得k<1.故选:A.6.(3分)已知方程x2+bx+a=0有一个根是1,则代数式a+b的值是()A.1B.﹣1C.0D.以上答案都不是解:∵方程x2+bx+a=0有一个根是1,∴1+b+a=0,∴a+b=﹣1.故选:B.7.(3分)对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+c=0,方程ax2+bx+c=0有两个不等的实数根;②若方程ax2+bx+c=0有两个不等的实数根,则方程cx2+bx+a=0也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若m是方程ax2+bx+c=0的一个根,则一定有b2﹣4ac=(2am+b)2成立.其中正确的只有()A.①②B.②③C.③④D.①④解:①因为a+c=0,a≠0,所以①a、c异号,所以△=b2﹣4ac>0,所以方程有两个实数根;②若方程ax2+bx+c=0有两个不等的实数根,则△=b2﹣4ac>0,所以方程cx2+bx+a=0也一定有两个不等的实数根;若c=0,则方程cx2+bx+a=0为一次,没有两个不等实数根;③若c是方程ax2+bx+c=0的一个根,当c=0时,ac+b+1=0不一定成立;④若m是方程ax2+bx+c=0的一个根,所以有am2+bm+c=0,即am2=﹣(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[﹣(bm+c)]+4abm+b2=﹣4abm﹣4ac+4abm+b2=b2﹣4ac.所以①④成立.故选:D.8.(3分)解方程(5x﹣1)2=(2x+3)2的最适当方法应是()A.直接开平方法B.配方法C.公式法D.因式分解法解:方程(5x﹣1)2=(2x+3)2的最适当方法应是直接开平方法.故选:A.9.(3分)以4、9为两边长的三角形的第三边长是方程x2﹣14x+40=0的根,则这个三角形的周长为()A.17或23B.17C.23D.以上都不对解:x2﹣14x+40=0,(x﹣4)(x﹣10)=0,x﹣4=0或x﹣10=0,所以x1=4,x2=10,因为4+4<9,不符合三角形三边的关系,所以三角形的第三边长是10,所以三角形的周长=4+9+10=23.故选:C.10.(3分)已知(x+y)(x+y+2)﹣8=0,则x+y的值是()A.﹣4或2B.﹣2或4C.2或﹣3D.3或﹣2解:设x+y=a,原方程可化为a(a+2)﹣8=0即:a2+2a﹣8=0解得a1=2,a2=﹣4∴x+y=2或﹣4故选:A.二.填空题(共6小题,满分18分,每小题3分)11.(3分)已知(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,则m=﹣1.解:∵方程(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,∴|m|=1,m﹣1≠0,解得:m=﹣1.故答案为:﹣1.12.(3分)将方程x2﹣2x+1=4﹣3x化为一般形式为x2+x﹣3=0.解:方程整理得:x2+x﹣3=0,故答案为:x2+x﹣3=013.(3分)已知一元二次方程2x2﹣3x=1,则b2﹣4ac=17.解:由原方程,得2x2﹣3x﹣1=0,∴二次项系数a=2,一次项系数b=﹣3,常数项c=﹣1,∴b2﹣4ac=(﹣3)2﹣4×2×(﹣1)=9+8=17;故答案是:17.14.(3分)一元二次方程x2+px﹣2=0的一个根为2,则p的值﹣1.解:把x=2代入方程x2+px﹣2=0得4+2p﹣2=0,解得p=﹣1.故答案为:﹣1.15.(3分)若x1,x2是方程x2﹣2mx+m2﹣m﹣1=0的两个根,且x1+x2=1﹣x1x2,则m 的值为1.解:∵x1,x2是方程x2﹣2mx+m2﹣m﹣1=0的两个根,∴x1+x2=2m,x1x2=m2﹣m﹣1.∵x1+x2=1﹣x1x2,即2m=1﹣(m2﹣m﹣1),∴m1=﹣2,m2=1.∵方程x2﹣2mx+m2﹣m﹣1=0有两个实数根,∴△=(﹣2m)2﹣4(m2﹣m﹣1)=4m+4≥0,解得:m≥﹣1,∴m=1.故答案为:1.16.(3分)在实数范围内定义一种运算“*”,其规则为a*b=a2﹣b2,根据这个规则,方程(x+2)*5=0的解为x=3或x=﹣7.解:据题意得,∵(x+2)*5=(x+2)2﹣52∴x2+4x﹣21=0,∴(x﹣3)(x+7)=0,∴x=3或x=﹣7.故答案为:x=3或x=﹣7三.解答题(共9小题,满分72分)17.(16分)用指定方法解下列一元二次方程(1)3(2x﹣1)2﹣12=0(直接开平方法)(2)2x2﹣4x﹣7=0(配方法)(3)x2+x﹣1=0(公式法)(4)(2x﹣1)2﹣x2=0(因式分解法)解:(1)3(2x﹣1)2﹣12=0,移项,得3(2x﹣1)2=12,两边都除以3,得(2x﹣1)2=4,两边开平方,得2x﹣1=±2,移项,得2x=1±2,解得:x1=,x2=﹣;(2)2x2﹣4x﹣7=0,两边都除以2,得x2﹣2x﹣=0,移项,得x2﹣2x=,配方,得x2﹣2x+1=,即(x﹣1)2=,解得:x﹣1=±,即x1=1+,x2=1﹣;(3)x2+x﹣1=0,这里a=1,b=1,c=﹣1,∵b2﹣4ac=12﹣4×1×(﹣1)=5,∴x=,解得:x1=,x2=;(4)(2x﹣1)2﹣x2=0,方程左边因式分解,得(2x﹣1+x)(2x﹣1﹣x)=0,即(3x﹣1)(x﹣1)=0,解得:x1=,x2=1.18.(6分)已知关于x的方程x2+ax+a﹣2=0(1)求证:不论a取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a的值及该方程的另一个根.解:(1)∵△=a2﹣4×1×(a﹣2)=a2﹣4a+8=(a﹣2)2+4>0,∴不论a取何实数,该方程都有两个不相等的实数根;(2)将x=1代入方程,得:1+a+a﹣2=0,解得a=,将a=代入方程,整理可得:2x2+x﹣3=0,即(x﹣1)(2x+3)=0,解得x=1或x=﹣,∴该方程的另一个根﹣.19.(6分)已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当x12﹣x22=0时,求m的值.解:(1)由题意有△=(2m﹣1)2﹣4m2≥0,解得,∴实数m的取值范围是;(2)由两根关系,得根x1+x2=﹣(2m﹣1),x1•x2=m2,由x12﹣x22=0得(x1+x2)(x1﹣x2)=0,若x1+x2=0,即﹣(2m﹣1)=0,解得,∵>,∴不合题意,舍去,若x1﹣x2=0,即x1=x2∴△=0,由(1)知,故当x12﹣x22=0时,.20.(6分)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?解:由题意得出:200(10﹣6)+(10﹣x﹣6)(200+50x)+(4﹣6)[(600﹣200)﹣(200+50x)]=1250,即800+(4﹣x)(200+50x)﹣2(200﹣50x)=1250,整理得:x2﹣2x+1=0,解得:x1=x2=1,∴10﹣1=9.答:第二周的销售价格为9元.21.(7分)某学校机房有100台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,多少轮感染后机房内所有电脑都被感染?解:(1)设每轮感染中平均每一台电脑会感染x台电脑,依题意得:1+x+(1+x)x=16,整理得(1+x)2=16,则x+1=4或x+1=﹣4,解得x1=3,x2=﹣5(舍去).答:每轮感染中平均一台电脑会感染3台电脑;(2)∵n轮后,有(1+x)n台电脑被感染,故(1+3)n=4n,∵n=3时,43=64,n=4时,44=256.答:4轮感染后机房内所有电脑都被感染.22.(7分)一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款,现有小王购买铅笔,如果给初三年级学生每人买1支,只能按零售价付款,需用(m2﹣1)元,(m为正整数,且m2﹣1>100)如果多买60支,则可按批发价付款,同样需用(m2﹣1)元.(1)设初三年级共有x名学生,则x的取值范围是多少?铅笔的零售价每支多少元?批发价每支应为多少元?(用含x、m的代数式表示)(2)若按批发价每购15支比按零售价每购15支少一元,试求初三年级共有多少学生?并确定m的值.解:(1)由题意可得,,解得,241≤x≤300,即x的取值范围是:241≤x≤300(x为正整数);铅笔的零售价每支应为:元;铅笔的批发价每支应为:元;(2)由题意可得,15×﹣15×=1,化简,得x2+60x﹣900(m2﹣1)=0,解得,x1=30(m﹣1),x2=﹣30(m+1)(舍去),∴241≤30(m﹣1)≤300,解得,≤m≤11,∴m=10或m=11,当m=10时,m2﹣1=99<100,故m=10不合题意,舍去,当m=11时,m2﹣1=120>100,符合题意,∴m=11,∴x=30(m﹣1)=300,经检验x=300是原分式方程的解,答:初三年级共有300名学生,m的值是11.23.(7分)如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A,B同时出发,线段PQ能否将△ABC 分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(2)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C 点出发以2cm/s的速度移动,P、Q同时出发,问几秒后,△PBQ的面积为1cm2?解:(1)设经过x秒,线段PQ能将△ABC分成面积相等的两部分由题意知:AP=x,BQ=2x,则BP=6﹣x,∴(6﹣x)•2x=××6×8,∴x2﹣6x+12=0,∵b2﹣4ac<0,此方程无解,∴线段PQ不能将△ABC分成面积相等的两部分;(2)设t秒后,△PBQ的面积为1①当点P在线段AB上,点Q在线段CB上时此时0<t≤4由题意知:(6﹣t)(8﹣2t)=1,整理得:t2﹣10t+23=0,解得:t1=5+(不合题意,应舍去),t2=5﹣,②当点P在线段AB上,点Q在线段CB的延长线上时此时4<t≤6,由题意知:(6﹣t)(2t﹣8)=1,整理得:t2﹣10t+25=0,解得:t1=t2=5,③当点P在线段AB的延长线上,点Q在线段CB的延长线上时此时t>6,由题意知:(t﹣6)(2t﹣8)=1,整理得:t2﹣10t+23=0,解得:t1=5+,t2=5﹣,(不合题意,应舍去),综上所述,经过5﹣秒、5秒或5+秒后,△PBQ的面积为1.24.(8分)已知,下列n(n为正整数)个关于x的一元二次方程:①x2﹣1=0,②x2+x﹣2=0,③x2+2x﹣3=0,④x2+3x﹣4=0,…,⑪,…(1)上述一元二次方程的解为①x1=1,x2=﹣1,②x1=1,x2=﹣2,③x1=1,x2=﹣3,④x1=1,x2=﹣4.(2)猜想:第n个方程为x2+(n﹣1)x﹣n=0,其解为x1=1,x2=﹣n.(3)请你指出这n个方程的根有什么共同的特点(写出一条即可).解:(1)①(x+1)(x﹣1)=0,∴x1=1,x2=﹣1.②(x+2)(x﹣1)=0,∴x1=1,x2=﹣2.③(x+3)(x﹣1)=0,∴x1=1,x2=﹣3.④(x+4)(x﹣1)=0,∴x1=1,x2=﹣4.(2)由(1)找出规律,可写出第n个方程为:x2+(n﹣1)x﹣n=0,(x﹣1)(x+n)=0,解得x1=1,x n=﹣n.(3)这n个方程都有一个根是1;另一个根是n的相反数;a+b+c=0;b2﹣4ac=(n+1)2;都有两个不相等的实数根;两个根异号.故答案是:(1)①x1=1,x2=﹣1.②x1=1,x2=﹣2.③x1=1,x2=﹣3.④x1=1,x2=﹣4.(2)x2+(n﹣1)x﹣n=0;x1=1,x2=﹣n.(3)这n个方程都有一个根是1;另一个根是n的相反数;a+b+c=0;b2﹣4ac=(n+1)2;都有两个不相等的实数根;两个根异号.25.(9分)先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?解:(1)m2+m+4=(m+)2+,∵(m+)2≥0,∴(m+)2+≥,则m2+m+4的最小值是;(2)4﹣x2+2x=﹣(x﹣1)2+5,∵﹣(x﹣1)2≤0,∴﹣(x﹣1)2+5≤5,则4﹣x2+2x的最大值为5;(3)由题意,得花园的面积是x(20﹣2x)=﹣2x2+20x,∵﹣2x2+20x=﹣2(x﹣5)2+50∵﹣2(x﹣5)2≤0,∴﹣2(x﹣5)2+50≤50,∴﹣2x2+20x的最大值是50,此时x=5,则当x=5m时,花园的面积最大,最大面积是50m2.。
九年级上册数学《一元二次方程》单元测试卷带答案
A.﹣8、﹣10B.﹣8、10C.8、﹣10D.8、10
6.实数a,b在数轴上的位置如图所示,则关于x的一元二次方程ax2+bx+1=0()
A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.不一定有实数根
人教版数学九年级上学期
《一元二次方程》单元测试
【考试时间:120分钟 分数:120分】
一、选择题(每小题3分,共30分)
1.若关于x的一元二次方程x2+kx+4k2-3=0的两个实数根分别是x1,x2,且满足x1+x2=x1·x2,则k的值是().
A.-1或 B.-1C. D.不存
2.若x=1是方程x2+nx+m=0的根,则m+n的值是()
(1)求AB与BC的长;
(2)当点P运动到边BC上时,试求出使AP长为 时运动时间t 值;
(3)当点P运动到边AC上时,是否存在点P,使△CDP是等腰三角形?若存在,请求出运动时间t的值;若不存在,请说明理由.
答案与解析
一、选择题(每小题3分,共30分)
1.若关于x的一元二次方程x2+kx+4k2-3=0的两个实数根分别是x1,x2,且满足x1+x2=x1·x2,则k的值是().
③∵x2- =0,∴x=±4
④在方程ax2+c=0中,当a>0,c>0时,一定无实根
A. ①②B. ②③C. ③④D. ②④
二、填空题(每小题3分,共24分)
11.把方程2(x﹣2)2=x(x﹣1)化为一元二次方程的一般形式为_____.
12.当m=________时,关于x的方程(m-2)xm2-2+2x-1=0是一元二次方程.
第二十一章 一元二次方程 单元同步密卷训练-2020-2021学年人教版九年级数学上册
一元二次方程 单元同步密卷训练九年级数学人教版(上)一、选择题1. 用配方法解一元二次方程x 2-6x -10=0时,下列变形正确的是( )A .(x +3)2=1B .(x -3)2=1C .(x +3)2=19D .(x -3)2=192. 若关于x 的方程(a -2)x 2-2ax +a +2=0是一元二次方程,则a 的值是( )A .2B .-2C .0D .不等于2的任意实数3. 若方程(x -5)2=19的两根为a 和b ,且a >b ,则下列结论中正确的是( )A .a 是19的算术平方根B .b 是19的平方根C .a -5是19的算术平方根D .b +5是19的平方根4. 用配方法解方程x 2-2x-5=0,原方程应变为( )A .(x+1)2=6B 。
(x+2)2=9C 。
(x-1)2=6D 。
(x-2)2=9。
5. 某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干、小分支的总数是91.设每个支干长出x 个分支,则可列方程为( )A .x 2+x+1=91B .(x+1)2=91C .x 2+x =91D .x 2+1=916. 已知1是关于x 的一元二次方程(m ﹣1)x 2+x+1=0的一个根,则m 的值是【 】A . 1B .﹣1C .0D .无法确定7. 已知0x =是关于x 的一元二次方程22(1)440m x mx m +++-=的一个解,则m 的值是( )(A )1 (B )-1 (C )0或1 (D )0或-18. 随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止至2021年底某市汽车拥有量为16.9万辆.已知2019年底该市汽车拥有量为10万辆.设2019年底至2021年底该市汽车拥有量的年平均增长率为x.根据题意列方程得( )A.10(1+x)2=16.9B.10(1+2x)=16.9C.10(1-x)2=16.9D.10(1-2x)=16.99.已知1是关于x 的一元二次方程(m ﹣1)x 2+x+1=0的一个根,则m 的值是( )A.1B.﹣1C.0D.无法确定10. 方程3 x (x-1)=5(x-1)的根为( )A. x =53B.x =1C.x 1 =1 x 2 =53D. x 1 =1 x 2 =3511.若关于x 的方程a (x+m )2+b =0的解是x 1=2,x 2=﹣1(a ,m ,b 均为常数,a ≠0),则方程a (﹣x ﹣m+1)2+b =0的解是( )A .x 1=1,x 2=﹣2B .x 1=1,x 2=0C .x 1=3,x 2=﹣2D .x 1=3,x 2=012.若方程x 2﹣(m+n )x+mn =0(m ≠0)的根是x 1=x 2=m ,则下列结论正确的是( )A .n =0且n 是该方程的根B .n =m 且n 是该方程的根C .n =m 但n 不是该方程的根D .n =0但n 不是该方程的根二、填空题13. 关于x 的方程(m 2﹣4)x 2+(m ﹣2)x ﹣2=0,当m 满足 时,方程为一元二次方程,当m 满足 时,方程为一元一次方程.14. 公元9世纪,阿拉伯数学家花拉子米在他的名著《代数学》中用图解一元二次方程.他把一元二次方程x 2+2x ﹣35=0写成x 2+2x =35的形式,并将方程左边的x 2+2x 看作是由一个正方形(边长为x )和两个同样的矩形(一边长为x ,另一边长为1)构成的矩尺形,它的面积为35,如图所示,于是只要在这个图形上添加一个小正方形,即可得到一个完整的大正方形,这个大正方形的面积可以表示为:x 2+2x+ =35+ ,整理,得(x+1)2=36.因为x 表示边长,所以x = .15. 方程(x-1)(x+2)(x-3)=0的根是_____ ___.16. 菱形的一条对角线长为8,其边长是方程x 2﹣9x+20=0的一个根,则该菱形的面积为 .17. 已知x =-1是关于x 的方程2x 2+ax -a 2=0的一个根,则a =__________.18. 如果21x -2x -8=0,则1x的值是________. 19. 若方程的两根是x 1、x 2,则代数式的值是 。
数学九年级上册《一元二次方程》单元综合测试(附答案)
人教版数学九年级上学期《一元二次方程》单元测试(试卷满分:150分;考试时间:120分钟)一.选择题(本大题共10小题,每小题4分,满分40分)1.下列方程中,是一元二次方程是()A.2x+3y=4B.x2=0C.x2﹣2x+1>0D.=x+22.一元二次方程ax2+bx=c的二次项系数为a,则常数项是()A.0B.b C.c D.﹣c3.一元二次方程x2=2x的根为()A.x=0B.x=2C.x=0或x=2D.x=0或x=﹣24.一元二次方程x2+4x=2配方后化为()A.(x+2)2=6B.(x﹣2)2=6C.(x+2)2=﹣6D.(x+2)2=﹣25.如果关于x的一元二次方程kx2﹣3x+1=0有两个实数根,那么k的取值范围是()A.k B.k且k≠0C.k且k≠0D.k6.等腰三角形的一边长是3,另两边的长是关于x的方程x2﹣4x+k=0的两个根,则k的值为()A.3B.4C.3或4D.77.《九章算术》内容丰富,与实际生活联系紧密,在书上讲述了这样一个问题“今有垣高一丈,倚木于垣,上与垣齐.引木却行一尺,其木至地.问木长几何?”其内容可以表述为:“有一面墙,高一丈.将一根木杆斜靠在墙上,使木杆的上端与墙的上端对齐,下端落在地面上.如果使木杆下端从此时的位置向远离墙的方向移动1尺,则木杆上端恰好沿着墙滑落到地面上.问木杆长多少尺?”(说明:1丈=10尺)设木杆长x尺,依题意,下列方程正确的是()A.x2=(x﹣1)2+102B.(x+1)2=x2+102C.x2=(x﹣1)2+12D.(x+1)2=x2+128.目前以5G等为代表的战略性新兴产业蓬勃发展.某市2019年底有5G用户2万户,计划到2021年底全市5G用户数累计达到8.72万户.设全市5G用户数年平均增长率为x,则x值为()A.20%B.30%C.40%D.50%9.若α、β是方程x2+2x﹣2020=0的两个实数根,则α2+3α+β的值为()A.2018B.2020C.﹣2020D.404010.如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的两倍,则称这样的方程为“2倍根方程”,以下说法不正确的是()A.方程x2﹣3x+2=0是2倍根方程B.若关于x的方程(x﹣2)(mx+n)=0是2倍根方程,则m+n=0C.若m+n=0且m≠0,则关于x的方程(x﹣2)(mx+n)=0是2倍根方程D.若2m+n=0且m≠0,则关于x的方程x2+(m﹣n)x﹣mn=0 是2倍根方程二.填空题(本大题共6小题,每小题4分,满分24分)11.一元二次方程x2+3x﹣1=0根的判别式的值为.12.方程(x﹣1)2=20202的根是.13.某人感染了某种病毒,经过两轮传染共感染了121人.设该病毒一人平均每轮传染x人,则关于x的方程为.14.如图,EF是一面足够长的墙,用总长为30米的木栅栏(图中的虚线)围一个矩形场地ABCD,中间用栅栏隔成同样三块,若要围成的矩形面积为60平方米,设垂直于墙的边长为x,则可列方程为.15.已知m是方程x2﹣2x﹣1=0的根,则代数式的值是.16.如图是一张长12cm,宽10cm的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是24cm2的有盖的长方体铁盒.则剪去的正方形的边长为cm.三.解答题(共9小题,满分86分,请将解答过程填入答题卡相应位置)17.(本小题8分)解方程:(1)x2﹣5x+1=0;(2)x(x﹣2)+x﹣2=0.18.(本小题8分)如图,小华要为一个长3分米,宽2分米的长方形防疫科普电子小报四周添加一个边框,要求边框的四条边宽度相等,且边框面积与电子小报内容所占面积相等,小华添加的边框的宽度应是多少分米?19.(本小题8分)已知:关于x的方程mx2﹣4x+1=0(m≠0)有实数根.(1)求m的取值范围;(2)若方程的根为有理数,求正整数m的值.20.(本小题8分)如图,有一块矩形纸板,长为20cm,宽为14cm,在它的四角各切去一个同样的正方形,然后将四周突出部分沿虚线折起,就能制作一个无盖方盒,如果要制作的无盖方盒的底面积为160cm2,那么纸板各角应切去边长为多大的正方形?21.(本小题8分)如图,x轴表示一条东西方向的道路,y轴表示一条南北方向的道路,小丽和小明分别从十字路口O点处同时出发,小丽沿着x轴以4千米时的速度由西向东前进,小明沿着y轴以5千米/时的速度由南向北前进.有一颗百年古树位于图中的P点处,古树与x轴、y轴的距离分别是3千米和2千米.问:(1)离开路口后经过多少时间,两人与这棵古树的距离恰好相等?(2)离开路口经过多少时间,两人与这颗古树所处的位置恰好在一条直线上?22.(本小题10分)近年来,随着科技的进步,物质生活丰富的同时,人们对于生活质量的要求也越来越高,特别对室内空气净化、杀菌消毒、消除异味等需求的重视程度有明显提升.某公司研发生产了一款新型空气净化器,每台的成本是4400元,某专卖网店从该公司购进10000台空气净化器,同时向国内、国外进行在线发售.第一周,国内销售每台售价5400元,国内获利100万元;国外销售也售出了相同数量的空气净化器,但每台的成本增加了400元;国外销售每台获得的利润是国内销售每台利润的6倍.(1)该专卖网店国外销售空气净化器第一周的售价是每台多少元?(2)受贸易环境的影响,第二周,国内销售每台售价在第一周的基础上降低a%,销量上涨5a%;国外销售每台售价在第一周的基础上上涨a%,并且在第二周将剩下的空气净化器全部卖完,结果第二周国外的销售总额比国内的销售总额多6993万元,求a的值.23.(本小题10分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想﹣﹣转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.(1)问题:方程x3+x2﹣2x=0的解是x1=0,x2=,x3=;(2)拓展:用“转化”思想求方程=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.24.(本小题12分)如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交线段AB于点D,连结CD.以点A为圆心,AC长为半径画弧,交线段AB于点E,连结CE.(1)求∠DCE的度数.(2)设BC=a,AC=b.①线段BE的长是关于x的方程x2+2bx﹣a2=0的一个根吗?说明理由.②若D为AE的中点,求的值.25.如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s 的速度移动.如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s 的速度移动.如果P,Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P,Q同时出发,问几秒后,△PBQ的面积为1cm2?参考答案一.选择题(本大题共10小题,每小题2分,满分20分)1 2 3 4 5 6 7 8 9 10B DC A C C A C A B 二.填空题(本大题共6小题,每小题3分,满分18分)11.13.12.x1=2021,x2=﹣2019.13.(1+x)2=121.14.x(30﹣4x)=60.15.16.2.三.解答题(共9小题)17.解:(1)x2﹣5x+1=0,∵a=1b=﹣5c=1,△=b2﹣4ac=25﹣4=21>0∴x===x1=,x2=;(2)x(x﹣2)+x﹣2=0,(x﹣2)(x+1)=0,则x﹣2=0或x+1=0,解得x1=2,x2=﹣1;18.解:设小华添加的边框的宽度应是x分米,依题意,得:(3+2x)(2+2x)﹣3×2=3×2,整理,得:2x2+5x﹣3=0,解得:x1=,x2=﹣3(不合题意,舍去).答:小华添加的边框的宽度应是分米.19.解:(1)∵m≠0,∴关于x的方程mx2﹣4x+1=0为一元二次方程,∵关于x的一元二次方程mx2﹣4x+1=0有实数根,∴△=b2﹣4ac=(﹣4)2﹣4×m×1=16﹣4m≥0,解得:m≤4.∴m的取值范围是m≤4且m≠0.(2)∵m为正整数,∴m可取1,2,3,4.当m=1时,△=16﹣4m=12;当m=2时,△=16﹣4m=8;当m=3时,△=16﹣4m=4;当m=4时,△=16﹣4m=0.∵方程为有理根,∴m=3或m=4.20.解:设切去的小正方形的边长为x.(20﹣2x)(14﹣2x)=160.解得x1=2,x2=15.当x=15时,20﹣2x<0,∴x=15不合题意,应舍去.答:纸板各角应切去边长为2cm的正方形.21.解:(1)设离开路口后经过x小时,两人与这棵古树的距离恰好相等.由题意P(2,3).A(4x,0),B(0,5x),∵PA=PB,∴(2﹣4x)2+32=22+(3﹣5x)2,解得x=或0(舍弃),答:经过小时,两人与这棵古树的距离恰好相等.(2)设离开路口经过y小时,两人与这颗古树所处的位置恰好在一条直线上.作PE⊥OB于E,PF⊥OA于F.∵B,P,A共线,∴∠BPE=∠PAF,∴tan∠BPE=tan∠PAF,∴=,解得:y=或0(舍弃),答:离开路口经过小时,两人与这颗古树所处的位置恰好在一条直线上22.解:(1)4400+400+(5400﹣4400)×6=10800(元).答:该专卖网店国外销售空气净化器第一周的售价是每台10800元.(2)第一周国内(国外)的销售数量为1000000÷(5400﹣4400)=1000(台).依题意,得:10800(1+a%)[10000﹣1000﹣1000﹣1000(1+5a%)]﹣5400(1﹣a%)×1000(1+5a%)=69930000,整理,得:a2﹣100=0,解得:a1=10,a2=﹣10(不合题意,舍去).答:a的值为10.23.解:(1)x3+x2﹣2x=0,x(x2+x﹣2)=0,x(x+2)(x﹣1)=0所以x=0或x+2=0或x﹣1=0∴x1=0,x2=﹣2,x3=1;故答案为:﹣2,1;(2)=x,方程的两边平方,得2x+3=x2即x2﹣2x﹣3=0(x﹣3)(x+1)=0∴x﹣3=0或x+1=0∴x1=3,x2=﹣1,当x=﹣1时,==1≠﹣1,所以﹣1不是原方程的解.所以方程=x的解是x=3;(3)因为四边形ABCD是矩形,所以∠A=∠D=90°,AB=CD=3m设AP=xm,则PD=(8﹣x)m因为BP+CP=10,BP=,CP=∴+=10∴=10﹣两边平方,得(8﹣x)2+9=100﹣20+9+x2整理,得5=4x+9两边平方并整理,得x2﹣8x+16=0即(x﹣4)2=0所以x=4.经检验,x=4是方程的解.答:AP的长为4m.24.解:(1)∵BC=BD,∴∠BCD=∠BDC,∵AC=AE,∴∠ACE=∠AEC,∵∠ACB=90°,∴∠BCD+∠ACE﹣∠DCE=90°,又∵在△DCE中,∠BDC+∠AEC+∠DCE=180°,则90°+2∠DCE=180°,∴∠DCE=45°.(2)①线段BE的长是关于x的方程x2+2bx﹣a2=0的一个根.理由如下:由勾股定理得:,∴解关于x的方程x2+2bx﹣a2=0,(x+b)2=a2+b2,得,∴线段BE的长是关于x的方程x2+2bx﹣a2=0的一个根;②∵D为AE的中点,∴,由勾股定理得:,则b2﹣ab=0,故b﹣a=0,整理得:.25.解:(1)设经过x秒,使△PBQ的面积等于8cm2,依题意有(6﹣x)•2x=8,解得x1=2,x2=4,经检验,x1,x2均符合题意.故经过2秒或4秒,△PBQ的面积等于8cm2;(2)设经过y秒,线段PQ能否将△ABC分成面积相等的两部分,依题意有△ABC的面积=×6×8=24,(6﹣y)•2y=12,y2﹣6y+12=0,∵△=b2﹣4ac=36﹣4×12=﹣12<0,∴此方程无实数根,∴线段PQ不能否将△ABC分成面积相等的两部分;(3)①点P在线段AB上,点Q在线段CB上(0<x≤4),设经过m秒,依题意有(6﹣m)(8﹣2m)=1,m2﹣10m+23=0,解得m1=5+,m2=5﹣,经检验,m1=5+不符合题意,舍去,∴m=5﹣;②点P在线段AB上,点Q在射线CB上(4<x≤6),设经过n秒,依题意有(6﹣n)(2n﹣8)=1,n2﹣10n+25=0,解得n1=n2=5,经检验,n=5符合题意.③点P在射线AB上,点Q在射线CB上(x>6),设经过k秒,依题意有(k﹣6)(2k﹣8)=1,k2﹣10k+23=0,解得k1=5+,k2=5﹣,经检验,k1=5﹣不符合题意,舍去,∴k=5+;综上所述,经过(5﹣)秒,5秒,(5+)秒后,△PBQ的面积为1cm2.。
数学九年级上册《一元二次方程》单元测试题(含答案)
人教版数学九年级上学期《一元二次方程》单元测试【考试时间:90分钟分数:100分】一.选择题(每题4分,共40分)1.下列方程中,关于x的一元二次方程是( )A.x2﹣x(x+3)=0 B.ax2+bx+c=0C.x2﹣2x﹣3=0 D.x2﹣2y﹣1=02.将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是( )A.﹣4,21 B.﹣4,11 C.4,21 D.﹣8,693.若(m+2)x|m|+mx﹣1=0是关于x的一元二次方程,则( )A.m=±2 B.m=2 C.m=﹣2 D.m≠±24.如图,在长70m,宽40m的矩形花园中,欲修宽度相等的观赏路(阴影部分),要使观赏路面积占总面积的,则路宽xm应满足的方程是( )A.(40﹣x)(70﹣x)=400 B.(40﹣2x)(70﹣3x)=400C.(40﹣x)(70﹣x)=2400 D.(40﹣2x)(70﹣3x)=24005.一元二次方程4x2﹣2x+=0根的情况是( )A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根6.若m是方程x2﹣x﹣1=0的一个根,则m2﹣m+2020的值为( )A.2019 B.2020 C.2021 D.20227.某中学有一块长30cm,宽20cm的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为( )A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×308.某水果园2017年水果产量为50吨,2019年水果产量为70吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为( ) A.50(1﹣x)2=70 B.50(1+x)2=70C.70(1﹣x)2=50 D.70(1+x)2=509.关于x的一元二次方程(a﹣2)x2+x+a2﹣4=0的一个根是0,则a的值是( ) A.0 B.2 C.﹣2 D.2或﹣210.若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为( ) A.B.1 C..4 D.3二.填空题(每题4分,共24分)11.一元二次方程x(x﹣3)=3﹣x的根是.12.若等腰三角形(不是等边三角形)的边长刚好是方程x2﹣9x+18=0的解,则此三角形的周长是.13.若关于x的一元二次方程x2﹣4x﹣m=0有两个不相等的实数根,则实数m的取值范围是.14.若方程x2﹣3x+2=0的两根是α、β,则α+αβ+β=.15.将4个数a、b、c、d排成2行、2列,两边各加一条竖直线记成,这个记号叫做2阶行列式.定义,若,则x=.16.已知关于x方程3x2+2(1﹣a)x﹣a(a+2)=0至少有一实根大于1,则a的取值范围是.三.解答题(每题9分,共36分)17.解方程:(1)x2﹣4=0;(2)(x+3)2=(2x﹣1)(x+3).18.关于x的一元二次方程(m﹣2)x2﹣2x+1=0有实数根.(1)求m的取值范围;(2)当m为正整数时,取一个合适的值代入求出方程的解.19.某公司设计了一款工艺品,每件的成本是40元,为了合理定价,投放市场进行试销:据市场调查,销售单价是50元时,每天的销售量是100件,而销售单价每提高1元,每天就减少售出2件,但要求销售单价不得超过65元.(1)若销售单价为每件60元,求每天的销售利润;(2)要使每天销售这种工艺品盈利1350元,那么每件工艺品售价应为多少元?20.某扶贫单位为了提高贫困户的经济收入,购买了33m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示).(1)若要建的矩形养鸡场面积为90m2,求鸡场的长(AB)和宽(BC);(2)该扶贫单位想要建一个100m2的矩形养鸡场,请直接回答:这一想法能实现吗?答案与解析一.选择题1.解:A、x2﹣x(x+3)=0,化简后为﹣3x=0,不是关于x的一元二次方程,故此选项不合题意;B、ax2+bx+c=0,当a=0时,不是关于x的一元二次方程,故此选项不合题意;C、x2﹣2x﹣3=0是关于x的一元二次方程,故此选项符合题意;D、x2﹣2y﹣1=0含有2个未知数,不是关于x的一元二次方程,故此选项不合题意;故选:C.2.解:∵x2﹣8x﹣5=0,∴x2﹣8x=5,则x2﹣8x+16=5+16,即(x﹣4)2=21,∴a=﹣4,b=21,故选:A.3.解:∵(m+2)x|m|+mx﹣1=0是关于x的一元二次方程,∴|m|=2,且m+2≠0,解得:m=2,故选:B.4.解:由图可得,(40﹣2x)(70﹣3x)=40×70×(1﹣),即(40﹣2x)(70﹣3x)=2400,故选:D.5.解:在方程4x2﹣2x+=0中,∵△=b2﹣4ac=(﹣2)2﹣4×4×=0,∴一元二次方程4x2﹣2x+=0有两个相等的实数根.故选:C.6.解:∵m是方程x2﹣x﹣1=0的一个根,∴m2﹣m﹣1=0,∴m2﹣m=1,∴m 2﹣m +2020=1+2020=2021. 故选:C .7.解:设花带的宽度为xm ,则可列方程为(30﹣2x )(20﹣x )=×20×30, 故选:B .8.解:2018年的产量为50(1+x ),2019年的产量为50(1+x )(1+x )=50(1+x )2, 即所列的方程为50(1+x )2=70. 故选:B .9.解:∵关于x 的一元二次方程(a ﹣2)x 2+x +a 2﹣4=0的一个根是0, ∴a 2﹣4=0, 解得a =±2, ∵a ﹣2≠0, ∴a ≠2, ∴a =﹣2. 故选:C .10.解:由题意可知:a 、b 是方程x 2﹣4x +1=0的两个不同的实数根, ∴由根与系数的关系可知:ab =1,a +b =4, ∴a 2+1=4a ,b 2+1=4b , ∴原式=+= ==1, 故选:B .二.填空题(共6小题) 11.解:x (x ﹣3)+x ﹣3=0, (x ﹣3)(x +1)=0,x ﹣3=0或x +1=0.所以x 1=3,x 2=﹣1.故答案为x 1=3,x 2=﹣1. 12.解:x 2﹣9x +18=0, (x ﹣3)(x ﹣6)=0,x ﹣3=0或x ﹣6=0, x 1=3,x 2=6,因为3+3=6,所以这个三角形的底边长为3,腰长为6, 所以这个三角形的周长为3+6+6=15. 故答案为:15. 13.解:由已知得:△=b 2﹣4ac =(﹣4)2﹣4×1×(﹣m )=16+4m >0, 解得:m >﹣4. 故答案为:m >﹣4.14.解:∵方程x 2﹣3x +2=0的两根是α、β, ∴α+β=3,αβ=2,∴α+αβ+β=α+β+αβ=3+2=5. 故答案为:5.15.解:由题意,得:(x +1)(x +1)﹣(x ﹣1)(1﹣x )=6, ∴x 2+2x +1+x 2﹣2x +1=6, ∴2x 2+2=6, ∴x =±.16.解:将方程左边因式分解得:(x ﹣a )(3x +a +2)=0, ∴方程的解为:x 1=a ,x 2=﹣,∵方程3x 2+2(1﹣a )x ﹣a (a +2)=0至少有一实根大于1, ∴a >1或﹣>1,解得:a >1或a <﹣5, 故答案为:a >1或a <﹣5. 三.解答题(共4小题) 17.解:(1)∵x 2﹣4=0,∴x 2=4,则x 1=2,x 2=﹣2;(2)∵(x +3)2=(2x ﹣1)(x +3), ∴(x +3)2﹣(2x ﹣1)(x +3)=0, ∴(x +3)(﹣x +4)=0, 则x +3=0或﹣x +4=0, 解得x 1=﹣3,x 2=4.18.解:(1)∵关于x 的一元二次方程(m ﹣2)x 2﹣2x +1=0有实数根, ∴△=(﹣2)2﹣4(m ﹣2)=4﹣4m +8=12﹣4m . ∵12﹣4m ≥0, ∴m ≤3,m ≠2. (2)∵m ≤3且m ≠2, ∴m =1或3,∴当m =1时,原方程为﹣x 2﹣2x +1=0.x 1=﹣1﹣,x 2=﹣1+.当m =3时,原方程为x 2﹣2x +1=0.x 1=x 2=1. 19.解:(1)(60﹣40)×[100﹣(60﹣50)×2]=1600(元). 答:每天的销售利润为1600元.(2)设每件工艺品售价为x 元,则每天的销售量是[100﹣2(x ﹣50)]件, 依题意,得:(x ﹣40)[100﹣2(x ﹣50)]=1350, 整理,得:x 2﹣140x +4675=0,解得:x 1=55,x 2=85(不合题意,舍去). 答:每件工艺品售价应为55元. 20.解:(1)设BC =xm ,则AB =(33﹣3x )m , 依题意,得:x (33﹣3x )=90, 解得:x 1=6,x 2=5.当x =6时,33﹣3x =15,符合题意,当x =5时,33﹣3x =18,18>18,不合题意,舍去. 答:鸡场的长(AB )为15m ,宽(BC )为6m . (2)不能,理由如下: 设BC =ym ,则AB =(33﹣3y )m ,依题意,得:y(33﹣3y)=100,整理,得:3y2﹣33y+100=0.∵△=(﹣33)2﹣4×3×100=﹣111<0,∴该方程无解,即该扶贫单位不能建成一个100m2的矩形养鸡场.。
人教版九年级数学上册第二十一章《一元二次方程》测试卷(含答案)
人教版九年级数学上册第二十一章《一元二次方程》测试卷(含答案)一.选择题1.一元二次方程2x2﹣5x+1=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定2.若关于x的一元二次方程(k﹣2)x2+x+k2﹣4=0有一个根是0,则k的值是()A.﹣2B.2C.0D.﹣2或23.关于x的一元二次方程x2﹣2x﹣5=0有()A.两个相等的实数根B.两个不相等的正数根C.两个不相等的负数根D.一个正数根和一个负数根4.已知关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,则m的取值范围是()A.m≥B.m<C.m>且m≠1D.m≥且m≠1 5.关于x的多项式N=x﹣1,M=2x2﹣ax﹣2,a为任意实数,则下列结论中正确的有()个.①若M•N中不含x2项,则a=﹣2;②不论x取何值,总有M≥N;③若关于x的方程M=0的两个解分别为x1=t2,x2=2t﹣3,则实数a的最小值为﹣8;④不论a取何值,关于x的方程(M+N)2﹣(M+N)=6始终有4个不相同的实数解.A.1B.2C.3D.46.下列配方中,变形正确的是()A.x2+2x=(x+1)2B.x2﹣4x﹣3=(x﹣2)2+1C.2x2+4x+3=2(x+1)2+1D.﹣x2+2x=﹣(x+1)2﹣17.某公司今年10月的营业额为2500万元,按计划第四季度的总营业额要达到9100万元,求该公司11、12两个月营业额的月均增长率,设该公司11、12两个月营业额的月均增长率为x,则根据题意可列的方程为()A.2500(1+x)2=9100B.2500[1+(1+x)+(1+x)2]=9100C.2500[(1+x)+(1+x)2]=9100D.9100(1+x)2=25008.已知A=x2+6x+n2,B=2x2+4x+2n2+3,下列结论正确的个数为()①若A=x2+6x+n2是完全平方式,则n=±3;②B﹣A的最小值是2;③若n是A+B=0的一个根,则4n2+=;④若(2022﹣A)(A﹣2019)=2,则(2022﹣A)2+(A﹣2019)2=4.A.1个B.2个C.3个D.4个9.已知关于x的方程x2+(k+3)x+k+2=0,则下列说法正确的是()A.不存在k的值,使得方程有两个相等的实数解B.至少存在一个k的值,使得方程没有实数解C.无论k为何值,方程总有一个固定不变的实数根D.无论k为何值,方程有两个不相等的实数根10.满足(x﹣3)2+(y﹣3)2=6的所有实数对(x,y),使取最小值,此最小值为()A.B.C.D.二.填空题11.对于实数m,n,先定义一种运算“⊗”如下:,若x⊗(﹣2)=10,则实数x的值为.12.德尔塔(Delta)是一种全球流行的新冠病毒变异毒株,其传染性极强.某地有1人感染了德尔塔,因为没有及时隔离治疗,经过两轮传染后,一共有144人感染了德尔塔病毒,如果不及时控制,照这样的传染速度,经过三轮传染后,一共有人感染德尔塔病毒.13.已知m,n是方程x2﹣3x=2的两个根,则式子的值是.14.如图,某生物兴趣小组要在长40米、宽30米的矩形园地种植蔬菜,为便于管理,要在中间开辟一横两纵共三条等宽小路,若蔬菜种植面积为1008平方米,则小路的宽为米.15.欧几里得在《几何原本》中,记载了用图解法解方程x2+ax=b2的方法,类似地我们可以用折纸的方法求方程x2+x﹣1=0的一个正根.如图,一张边长为1的正方形的纸片ABCD,先折出AD,BC的中点E,F,再沿过点A的直线折叠使AD落在线段AF上,点D 的对应点为点H,折痕为AG,点G在边CD上,连接GH,GF,线段BF、DG、CG和GF 中,长度恰好是方程x2+x﹣1=0的一个正根的线段为.三.解答题16.已知a是方程x2﹣2020x+1=0的一个根.求:(1)2a2﹣4040a﹣3的值;(2)代数式a2﹣2019a+的值.17.解方程:(1)2x2﹣4x﹣1=0;(2)3x(x﹣1)=2﹣2x.18.在理解例题的基础上,完成下列两个问题:例题:若m2+2mn+2n2﹣4n+4=0,求m和n的值;解:由题意得:(m2+2mn+n2)+(n2﹣4n+4)=0,∴(m+n)2+(n﹣2)2=0∴,解得.请解决以下问题:(1)若x2+4xy+5y2﹣4y+4=0,求y x的值;(2)若a,b,c是△ABC的边长,满足a2+b2=12a+8b﹣52,c是△ABC的最长边,且c为偶数,则c可能是哪几个数?19.【阅读材料】“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”.如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式中出现完全平方式,再减去这个项,使整个式的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法.例如:求当a取何值,代数式a2+6a+8有最小值?最小值是多少?解:a2+6a+8=a2+6a+32﹣32+8=(a+3)2﹣1因为(a+3)2≥0,所以a2+6a+8≥﹣1,因此,当a=﹣3时,代数式a2+6a+8有最小值,最小值是﹣1.【问题解决】利用配方法解决下列问题:(1)当x取何值时,代数式x2﹣2x﹣1有最小值?最小值是多少?(2)当x=时,代数式2x2+8x+12有最小值,最小值为.20.近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A,B两种型号的空气净化器,两种净化器的销售相关信息如表:A型销售数量(台)B型销售数量(台)总利润(元)51025001052750(1)每台A型空气净化器的销售利润是元;每台B型空气净化器的销售利润是元;(2)该商场计划一次购进两种型号的空气净化器共80台,其中B型空气净化器的进货量不少于A型空气净化器的2倍,为使该商场销售完这80台空气净化器后的总利润最大,那么应该购进A型空气净化器台;B型空气净化器台.(3)已知A型空气净化器的净化能力为300m3/小时,B型空气净化器的净化能力为200m3/小时.某长方体室内活动场地的总面积为300m2,室内墙高3m.该场地负责人计划购买7台空气净化器,每天花费30分钟将室内空气净化一新,如不考虑空气对流等因素,他至少要购买A型空气净化器多少台?参考答案一.选择题1.【解答】解:∵Δ=(﹣5)2﹣4×2×1=25﹣8=17>0,∴一元二次方程2x2﹣5x+1=0有两个不相等的实数根,故选:C.2.【解答】解:把x=0代入(k﹣2)x2+x+k2﹣4=0得:k2﹣4=0,解得k1=2,k2=﹣2,而k﹣2≠0,所以k=﹣2.故选:A.3.【解答】解:x2﹣2x﹣5=0,Δ=b2﹣4ac=(﹣2)2﹣4×1×(﹣5)=24>0,所以方程有两个不相等的实数根,设方程x2﹣2x﹣5=0的两个根为e、f,则ef=﹣5<0,则e和f异号,即方程有一个正数根和一个负数根,故选:D.4.【解答】解:∵关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,∴,解得:m≥且m≠1.故选:D.5.【解答】解:M•N=(x﹣1)(2x2﹣ax﹣2)=2x3﹣(a+2)x2+(a﹣2)x+2,若M•N中不含x2项,则a+2=0,∴a=﹣2,故①正确;当x=0时,N=﹣1,M=﹣2,此时M<N,故②错误;若关于x的方程2x2﹣ax﹣2=0的两个解分别为x1=t2,x2=2t﹣3,则t2+2t﹣3=,∴a=2(t+1)2﹣8,∴当t=﹣1时,a的最小值是﹣8,故③正确;由(M+N)2﹣(M+N)=6得(M+N﹣3)(M+N+2)=0,∴M+N﹣3=0或M+N+2=0,由M+N﹣3=0得2x2+(1﹣a)x﹣6=0,Δ=(1﹣a)2+48>0,∴M+N﹣3=0有两个不相同的实数根,由M+N+2=0得2x2+(1﹣a)x﹣1=0,Δ=(1﹣a)2+8>0,∴M+N+2=0有两个不同的实数根,∴(M+N)2﹣(M+N)=6始终有4个不相同的实数解,故④正确,∴正确的有①③④,共3个,故选:C.6.【解答】解:x2+2x=x2+2x+1﹣1=(x+1)2﹣1,A错误.x2﹣4x﹣3=x2﹣4x+4﹣4﹣3=(x2﹣4x+4)+(﹣4﹣3)=(x﹣2)2﹣7.B错误.2x2+4x+3=2(x2+2x)+3=2(x2+2x+1﹣1)+3=2(x2+2x+1)﹣2×1+3=2(x+1)2﹣2+3=2(x+1)2+1.C正确.﹣x2+2x=﹣(x2﹣2x+1﹣1)=﹣(x2﹣2x+1)+1=﹣(x+1)2+1D错误.故选:C.7.【解答】解:设该公司11、12两个月营业额的月均增长率为x,则可列方程为2500[1+(1+x)+(1+x)2]=9100,故选:B.8.【解答】解:①∵A=x2+6x+n2是完全平方式,∴n=±3,故结论正确;②∵B﹣A=2x2+4x+2n2+3﹣(x2+6x+n2)=x2﹣2x+n2+3=(x﹣1)2+n2+2,而(x﹣1)2+n2≥0,∴B﹣A≥2,∴B﹣A的最小值是2,故结论正确;③∵A+B=x2+6x+n2+2x2+4x+2n2+3=3x2+10x+3n2+3,把x=n代入3x2+10x+3n2+3=0,得3n2+10n+3n2+3=0,即6n2+10n+3=0,解得n=,当n=时,2n+=+=﹣,∴4n2+=(2n+)2﹣4=﹣4=;当n=时,2n+=+=﹣,∴4n2+=(2n+)2﹣4=﹣4=;故结论错误;④∵(2022﹣A+A﹣2019)2=(2022﹣2019)2=(2022﹣A)2+(A﹣2019)2+2(2022﹣A)(A﹣2019)=(2022﹣A)2+(A﹣2019)2+2×2=9,∴(2022﹣A)2+(A﹣2018)2=5;故结论错误;故选B.9.【解答】解:关于x的方程x2+(k+3)x+k+2=0,Δ=(k+3)2﹣4×1×(k+2)=k2+2k+1=(k+1)2≥0,A、当k=﹣1时,Δ=0,此时方程有两个相等的实数解,故此选项错误;B、因为Δ≥0,所以不存在k的值,使得方程没有实数解.故此选项错误;C、解方程得:x1=﹣1,x2=﹣k﹣2,所以无论k为何值,方程总有一个固定不变的实数根﹣1,故此选项正确;D、当k≠﹣1时,方程有两个不相等的实数解,故此选项错误;故选:C.10.【解答】解:令=t,则(x﹣3)2+(y﹣3)2=6可变形为:(x﹣3)2+(tx﹣3)2=6,整理得:(t2+1)x2﹣6(t+1)x+12=0,则Δ=[﹣6(t+1)]2﹣4×(t2+1)×12=36(t+1)2﹣48(t2+1)≥0,t2﹣6t+1≤0,由t2﹣6t+1=[t﹣(3﹣2)][t﹣(3+2)]知t2﹣6t+1≤0的解集为3﹣2≤t≤3+2,故取最小值,此最小值为3﹣2;故选:A.二.填空题11.【解答】解:分两种情况:当x≥﹣2时,∵x⊗(﹣2)=10,∴x2+x﹣2=10,x2+x﹣12=0,(x+4)(x﹣3)=0,x+4=0或x﹣3=0,x1=﹣4(舍去),x2=3,当x<﹣2时,∵x⊗(﹣2)=10,∴(﹣2)2+x﹣2=10,x=8(舍去),综上所述:x=3,故答案为:3.12.【解答】解:设每轮传染中平均一个人传染了x个人,依题意得:1+x+x(1+x)=144,整理得:x2+2x﹣143=0,解得:x1=11,x2=﹣13(不合题意,舍去).144+11×144=1728(人).答:经过三轮传染后,一共有1728人感染德尔塔病毒.故答案为:1728.13.【解答】解:∵m,n是方程x2﹣3x=2的两个根,∴m2=3m+2,n2﹣2=3n,m+n=3,∴m3﹣10m+n=m(3m+2)﹣10m+n=3m2﹣8m+n=3(3m+2)﹣8m+n=m+n+6=3+6=9,n﹣===3,原式=9×3=27.故答案为:27.14.【解答】解:小路的宽为x米.由题意可得:(40﹣2x)(30﹣x)=1008,解得:x1=2,x2=48(不合题意,舍去),答:小路的宽为2米,故答案为:2.15.【解答】解:设DG=m,则GC=1﹣m.由题意可知:△ADG≌△AHG,F是BC的中点,∴DG=GH=m,FC=0.5,根据勾股定理得AF=.∵S正方形=S△ABF+S△ADG+S△CGF+S△AGF,∴1×1=×1×+×1×m+××(1﹣m)+××m,∴m=.∵x2+x﹣1=0的解为:x=,∴取正值为x=.∴这条线段是线段DG.故答案为:DG.三.解答题16.【解答】解:(1)∵a是方程x2﹣2020x+1=0的一个根,∴a2=2020a﹣1,∴a2=2020a﹣1,∴2a2﹣4040a﹣3=2(2020a﹣1)﹣4040a﹣3=4040a﹣2﹣4040a﹣3=﹣5;(2)原式=2020a﹣1﹣2019a+=a+﹣1=﹣1=﹣1=2020﹣1=2019.17.【解答】解:(1)2x2﹣4x﹣1=0,x2﹣2x﹣=0,x2﹣2x=,x2﹣2x+1=,(x﹣1)2=,x﹣1=,∴x1=1+,x2=1﹣;(2)3x(x﹣1)=2﹣2x,3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,∴x﹣1=0或3x+2=0,∴x1=1,x2=﹣.18.【解答】解:(1)∵x2+4xy+5y2﹣4y+4=0,∴x2+4xy+4y2+y2﹣4y+4=0,∴(x+2y)2+(y﹣2)2=0,∴x+2y=0,y﹣2=0,解得x=﹣4,y=2,∴y x=2﹣4=;(2)已知等式整理得:(a﹣6)2+(b﹣4)2=0,解得:a=6,b=4,由△ABC中最长的边是c,∴6≤c<10,∵c为偶数,∴c可能是6或8.19.【解答】解:(1)x2﹣2x﹣1=x2﹣2x+1﹣1﹣1=(x﹣1)2﹣2,因为(x﹣1)2≥0,所以x2﹣2x﹣1≥﹣2,因此,当x=1时,代数式x2﹣2x﹣1有最小值,最小值是﹣2;(2)2x2+8x+12=2(x2+4x)+12=2(x2+4x+4﹣4)+12=2[(x+2)2﹣4]+12=2(x+2)2﹣8+12=2(x+2)2+4,因为(x+2)2≥0,所以2x2+8x+12≥4,因此,当x=﹣2时,代数式2x2+8x+12有最小值,最小值是4;故答案为:﹣2;4.20.【解答】解:(1)设每台A型空气净化器的销售利润是x元,每台B型空气净化器的销售利润是y元,根据题意得:,解得:故答案为:200,150;(2)设购进a台A型空气净化器,总利润为w元,则:w=200a+150(80﹣a)=50a+12000,∵80﹣a≥2a,∴a≤26,∴a的最大值为:26,∵w随a的增大而增大,∴当a=26时,w有最大值,此时.80﹣a=54,故答案为:26,54;(3)设要购买A型空气净化器a台,由题意得:150a+100(7﹣a)≥300×3,解得:a≥4,所以a的最小值为:4,答:至少要购买A型空气净化器4台.。
人教版2020-2021学年九年级数学上册第二十一章一元二次方程单元测试题(含答案)
第二十一章一元二次方程单元测试卷[时间:120分钟 分值:120分]一、选择题(本大题共6小题,每小题3分,共18分) 1.下列方程是一元二次方程的是( ) A.x 2=2x +3 B .x 2+1=2xy C.x 2+1x=3D .2x +y =12.若方程4x 2=81-9x 化成一般形式后,二次项系数为4,则一次项是( ) A.9 B .-9x C.9xD .-93.用配方法解一元二次方程x 2-2x -1=0时,下列配方正确的是( ) A.(x -1)2+1=0 B .(x +1)2+1=0 C.(x -1)2-1=0D .(x -1)2-2=04.若方程x 2+9x +9=0的两根为x 1,x 2,则x 1+x 2-x 1x 2的值为( ) A.-18B .18C.9D .05.学校组织一次乒乓球赛,要求每两队之间都要比赛一场.若共比赛了28场,则有几个球队参赛?设有x 个球队参赛,则列方程为( )A.12x (x +1)=28B.12x (x -1)=28 C.x (x +1)=28D .x (x -1)=286.若方程x 2-9x +18=0的两个根分别是等腰三角形的底边长和腰长,则这个等腰三角形的周长为( )A.12或15 B .12 C.15D .20二、填空题(本大题共6小题,每小题3分,共18分) 7.方程x 2=9x 的解是______________.8.若关于x 的方程(a +2)xa 2-2+3x -5=0是一元二次方程,则a =________. 9.若a 是方程2x 2-4x -6=0的一个根,则代数式a 2-2a 的值是________.10.若关于x 的一元二次方程(m -1)x 2-4x +1=0有两个不相等的实数根,则m 的取值范围为____________.11.设a ,b 是方程x 2+x -2020=0的两个实数根,则a 2+2a +b 的值为________.12.对于实数a ,b ,规定a *b =⎩⎪⎨⎪⎧a 2-ab (a ≥b ),ab -a 2(a <b ).例如2*3,因为2<3,所以2*3=2×3-22=2.若x 1,x 2是方程x 2-2x -3=0的两根,则x 1*x 2=__________.三、解答题(本大题共5小题,每小题6分,共30分) 13.解方程:(1)x 2-4x +2=0; (2)x (x -1)=2(x -1).14.当x 为何值时,代数式(x -1)2与(3-2x )2的值相等?15.已知关于x 的一元二次方程(k +1)x 2-3x -3k -2=0有一个根为-1,求k 的值及方程的另一个根.16.某公司今年1月份的生产成本是400万元,由于改进生产技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2,3,4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.17.已知关于x的一元二次方程x2+(2m-1)x+m2-1=0有实数根.(1)求实数m的取值范围;(2)当m取满足条件的最大整数时,求方程的根.四、解答题(本大题共3小题,每小题8分,共24分)18.已知关于x的一元二次方程x2-(k+3)x+2k+2=0.(1)求证:该方程总有两个实数根;(2)若该方程有一个根小于1,求k的取值范围.19.如图,要设计一幅宽20 cm,长30 cm的图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2∶1,如果要使彩条所占的面积是图案面积的1975,应如何设计彩条的宽度?20.阅读下面的材料,解答后面的问题. 解方程:x 4-3x 2+2=0.解:设x 2=y ,则原方程变为y 2-3y +2=0,解得y 1=1,y 2=2. 当y =1时,x 2=1,解得x =±1; 当y =2时,x 2=2,解得x =± 2.综上所述,原方程的解为x 1=1,x 2=-1,x 3=2,x 4=- 2. 问题:(1)上述解答过程采用的数学思想方法是( ) A.加减消元法 B .代入消元法 C.换元法D .待定系数法(2)采用类似的方法解方程:(x 2-2x )2-x 2+2x -6=0.五、解答题(本大题共2小题,每小题9分,共18分)21.为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元.经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和每台售价x(单位:万元)成一次函数关系.(1)求年销售量y与每台售价x之间的函数关系式(不要求写自变量的取值范围);(2)根据相关规定,每台设备的售价不得高于70万元,若该公司想获得10000万元的年利润,则每台设备的售价应是多少万元?22.如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,那么称这样的方程为“倍根方程”.例如,一元二次方程x2-6x+8=0的根是x1=2,x2=4,则方程x2-6x+8=0是“倍根方程”.(1)根据上述定义,一元二次方程2x2+x-1=0________(填“是”或“不是”)“倍根方程”;(2)若一元二次方程x2-3x+c=0是“倍根方程”,求c的值;(3)若(x-2)(mx-n)=0(m≠0)是“倍根方程”,求代数式4m2-5mn+n2的值.六、解答题(本大题共12分)23.如图所示,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm.点P从点A开始沿AB边向点B以1 cm/s 的速度移动,同时点Q从点B开始沿BC边向点C以2 cm/s的速度移动.(1)经过几秒,点P,Q之间的距离为 6 cm?(2)经过几秒,△PBQ的面积等于8 cm2?(3)若点P沿射线AB方向从点A出发以1 cm/s的速度移动,同时点Q沿射线CB方向从点C出发以2 cm/s 的速度移动,几秒后,△PBQ的面积为1 cm2?参考答案1.A 2.C 3.D 4.A 5.B 6.C 7.x 1=0,x 2=9 8.2 9.310.m<5且m ≠1 11.2019 12.12或-4 13.解:(1)移项,得x 2-4x =-2, (x -2)2=2,x -2=±2, ∴x 1=2+2,x 2=2- 2.(2)x(x -1)=2(x -1),x(x -1)-2(x -1)=0, (x -1)(x -2)=0, x -1=0或x -2=0, ∴x 1=1,x 2=2.14.解:(x -1)2=(3-2x)2,∴x -1=±(3-2x),∴x -1=3-2x 或x -1=-(3-2x),∴x =43或x =2.即当x 的值为43或2时,代数式(x -1)2与(3-2x)2的值相等.15.解:将x =-1代入(k +1)x 2-3x -3k -2=0,解得k =1,∴原方程为2x 2-3x -5=0.设方程的另一个根为x 1,由根与系数的关系可知:-x 1=-52,∴x 1=52.即k 的值为1,方程的另一个根为52.16.解:(1)设每个月生产成本的下降率为x.根据题意,得400(1-x)2=361.解得x 1=0.05=5%,x 2=1.95(不合题意,舍去). 答:每个月生产成本的下降率为5%. (2)361×(1-5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.17.解:(1)根据题意,得Δ=(2m -1)2-4(m 2-1)≥0,解得m ≤54.(2)m 的最大整数值为1,则方程为x 2+x =0,解得x 1=-1,x 2=0. 18.解:(1)证明:∵在方程x 2-(k +3)x +2k +2=0中, Δ=[-(k +3)]2-4×1×(2k +2)=k 2-2k +1=(k -1)2≥0, ∴该方程总有两个实数根.(2)∵x =k +3±(k -1)22=k +3±(k -1)2,∴x 1=2,x 2=k +1.∵该方程有一个根小于1,∴k +1<1,解得k<0,∴k 的取值范围为k<0.19.解:设竖彩条的宽为x cm ,则横彩条的宽为2x cm.由题意,得(30-2x)(20-4x)=30×20×(1-1975),整理,得x 2-20x +19=0,解得x 1=1,x 2=19(不合题意,舍去).∴竖彩条的宽为1 cm ,横彩条的宽为2 cm. 20.解:(1)C(2)设x 2-2x =y ,则原方程变为y 2-y -6=0, 解得y 1=3,y 2=-2.当y =3时,x 2-2x =3,解得x 1=-1,x 2=3; 当y =-2时,x 2-2x =-2,此方程无解. 综上所述,原方程的解为x 1=-1,x 2=3.21.解:(1)∵此设备的年销售量y(单位:台)和每台售价x(单位:万元)成一次函数关系,∴可设y =kx +b.将数据代入可得⎩⎪⎨⎪⎧40k +b =600,45k +b =550,解得⎩⎪⎨⎪⎧k =-10,b =1000,∴年销售量y 与每台售价x 之间的函数关系式是y =-10x +1000. (2)∵每台设备的售价是x 万元,成本价是30万元, ∴每台设备的利润为(x -30)万元. 由题意得(x -30)(-10x +1000)=10000, 解得x 1=80,x 2=50.∵每台设备的售价不得高于70万元,即x ≤70, ∴x =80不合题意,故舍去,∴x =50.∴若该公司想获得10000万元的年利润,则每台设备的售价应是50万元. 22.解:(1)2x 2+x -1=0,(2x -1)(x +1)=0,解得x 1=12,x 2=-1,故一元二次方程2x 2+x -1=0不是“倍根方程”.故应填不是.(2)设方程x 2-3x +c =0的两个根为x 1,x 2,且x 1=2x 2,则x 1+x 2=3x 2=3, ∴x 2=1,∴x 1=2,∴c =x 1x 2=2.(3)由(x -2)(mx -n)=0(m ≠0)是“倍根方程”,且该方程的两根分别为x =2和x =n m ,可知n m =4或nm =1.当nm=4时,n =4m ,则原式=(m -n)(4m -n)=0;当nm =1时,n =m ,则原式=(m -n)(4m -n)=0. 综上所述,代数式4m 2-5mn +n 2的值为0.23.解:(1)设经过x 秒,点P ,Q 之间的距离为 6 cm , 则AP =x cm ,QB =2x cm.∵AB =6 cm ,BC =8 cm ,∴PB =(6-x)cm. ∵在△ABC 中,∠B =90°,∴由勾股定理,得(6-x)2+(2x)2=6,化简,得5x 2-12x +30=0. ∵Δ=b 2-4ac =(-12)2-4×5×30=144-600<0, ∴点P ,Q 之间的距离不可能为 6 cm.(2)设经过y 秒,△PBQ 的面积等于8 cm 2.由题意得12(6-y)·2y =8,解得y 1=2,y 2=4.经检验,y 1,y 2均符合题意. ∴经过2秒或4秒,△PBQ 的面积等于8 cm 2. (3)①当点P 在线段AB 上,点Q 在线段CB 上时,设移动时间为m 秒,则0<m ≤4,依题意得12(6-m)(8-2m)=1,∴m 2-10m +23=0,解得m 1=5+2(舍去),m 2=5-2; ②当点P 在线段AB 上,点Q 在线段CB 的延长线上时, 设移动时间为n 秒,则4<n ≤6,依题意得12(6-n)(2n -8)=1,∴n 2-10n +25=0,解得n 1=n 2=5;③当点P 在线段AB 的延长线上,点Q 在线段CB 的延长线上时,设移动时间为k 秒,则k>6,依题意得12(k -6)(2k -8)=1,∴k 2-10k +23=0,解得k 1=5+2,k 2=5-2(舍去).综上,经过(5-2)秒或5秒或(5+2)秒,△PBQ 的面积为1 cm 2.1、人生如逆旅,我亦是行人。
九年级上册数学《一元二次方程》单元检测卷带答案
九年级上册数学《一元二次方程》单元测试卷(满分120分,考试用时120分钟)一、选择题1.将一元二次方程2316x x +=化为一般式后,二次项系数和一次项系数分别为( )A .3,-6B .3,6C .3,1D . 23,6x x -2.解一元二次方程x 2+4x -1=0,配方正确的是( )A .()223x +=B .()223x -=C .()225x +=D .()225x -= 3.关于x 的方程x 2﹣3x +k =0的一个根是2,则常数k 的值为( )A .1B .2C .﹣1D .﹣24.定义:如果一元二次方程20(a 0)++=≠ax bx c 满足0a b c ++=,那么我们称这个方程为“凤凰”方程. 已知20(a 0)++=≠ax bx c 是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( ). A .a c = B .a b = C .a b = D .a b c == 5.若关于x 的一元二次方程22(1)5320m x x m m -++-+=有一个根为0,则m 的值( ) A .0 B .1或2 C .1 D .26.若关于x 的一元二次方程(A +1)x 2+x +A 2-1=0的一个解是x =0,则A 的值为( ) A .1 B .-1 C .±1 D .07.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出( )A .2根小分支B .3根小分支C .4根小分支D .5根小分支8.关于x 的方程(m +n )x 2+mn 2-(m -n )x =0(m +n ≠0)的二次项系数与一次项系数的和为12,差为2,则常数项为( )A .18B .12C .116D .149.方程(x +1)2=0的根是( )A .x 1=x 2=1B .x 1=x 2=﹣1C .x 1=﹣1,x 2=1D .无实根10.若代数式2x 6x 5-+的值是12,则x 的值为( )A .7或-1B .1或-5C .-1或-5D .不能确定 11.将一元二次方程2230x x --=用配方法化成()2()0x h k k +=≥的形式为( )A .2 (1)4x -=B .2(1)1x -=C .2 (1)4x +=D .2 (1)1x +=12.如果关于x 的一元二次方程(m ﹣3)x 2+3x +m 2﹣9=0有一个解是0,那么m 的值是( )A .﹣3B .3C .±3D .0或﹣3二、填空题13.若方程2234mx x x +-=是关于x 的一元二次方程,则m 的取值范围是_____.14.在实数范围内定义一种运算“*”,其规则为A *B =A 2﹣B 2,根据这个规则,方程(x +2)*5=0的解为_____. 15.若方程2410x x -+=的两根12,x x ,则122(1)x x x 的值为__________.16.已知1x =是一元二次方程220x mx +-=的一根,则该方程的另一个根为_________.三、解答题17.已知:已知关于x 的方程220x mx m ++-=(1)求证:不论m 为何值,方程总有两个不相等的实数根.(2)若该方程的一个根为1,求m 的值及方程的另一个根.18.据统计某市农村2013年人均纯收入是10000元,预计2015年人均纯收入可达到12100元. ()1试求该市农村这两年人均纯收入的平均增长率;() 2按此增长速度2016年该市农村人均纯收入可达到多少元?19.选择适当方法解下列方程:(1)2510x x -+=(用配方法); (2)()()2322x x x -=-;(3)2250x --=;(4)()()22231y y +=-.20.已知关于x 的方程()()22110m x m x m --++=. ()1m 为何值时,此方程是一元一次方程?()2m 为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项. 21.先阅读理解下面的例题,再按要求解答下列问题.求代数式y 2+4y+8的最小值.解:y 2+4y+8=y 2+4y+4+4=(y+2)2+4∵(y+2)2≥0,∴(y+2)2+4≥4∴y 2+4y+8的最小值是4.(1)求代数式m 2+m+1的最小值;(2)求代数式4﹣x 2+2x 的最大值.22.一玩具城以49元/个的价格购进某种玩具进行销售,并预计当售价为50元/个时,每天能售出50个玩具,且在一定范围内,当每个玩具的售价平均每提高0.5元时,每天就会少售出3个玩具()1若玩具售价不超过60元/个,每天售出玩具总成本不高于686元,预计每个玩具售价的取值范围; ()2在实际销售中,玩具城以()1中每个玩具的最低售价及相应的销量为基础,进一步调整了销售方案,将每个玩具的售价提高了%a ,从而每天的销售量降低了2%a ,当每天的销售利润为147元时,求a 的值.23.某林场计划修一条长750m ,断面为等腰梯形的渠道,断面面积为21.6m ,上口宽比渠深多2m ,渠底比渠深多0.4m()1渠道的上口宽与渠底宽各是多少?()2如果计划每天挖土348m ,需要多少天才能把这条渠道挖完?24.阅读第(1)题的解题过程,再解答第(2)题:(1)例:解方程x 2﹣|x |﹣2=0.解:当x ≥0时,原方程可化为x 2﹣x ﹣2=0.解得:x 1=2,x 2=﹣1(不合题意.舍去)当x <0时,原方程可化为x 2+x ﹣2=0.解得:x 1=﹣2,x 2=1(不合题意.舍去)∴原方程的解是x 1=2,x 1=﹣2.(2)请参照上例例题的解法,解方程x 2﹣x |x ﹣1|﹣1=0.参考答案一、选择题1.将一元二次方程化为一般式后,二次项系数和一次项系数分别为( )A .3,-6B .3,6C .3,1D .[答案]A[解析][分析]一元二次方程的一般形式是:A x 2+B x+C =0(A ,B ,C 是常数且A ≠0)特别要注意A ≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中A x 2叫二次项,B x 叫一次项,C 是常数项.其中A ,B ,C 分别叫二次项系数,一次项系数,常数项.[详解]解化成一元二次方程一般形式是,则它的二次项系数是3,一次项系数是-6. 故选A .[点评]此题主要考查了一元二次方程的一般形式,关键把握要确定一次项系数,首先要把方程化成一般形式. 2316x x +=23,6x x -2316x x +=23-610x x +=2.解一元二次方程x 2+4x -1=0,配方正确的是( )A .B .C .D . [答案]C[解析][分析]根据一元二次方程的配方法即可求出答案.[详解]∵x 2+4x-1=0,∴x 2+4x+4=5,∴(x+2)2=5,故选:C .[点评]此题考查一元二次方程,解题关键是熟练运用一元二次方程的解法.3.关于x 的方程x 2﹣3x +k =0的一个根是2,则常数k 的值为( )A .1B .2C .﹣1D .﹣2 [答案]B[解析][分析]根据一元二次方程的解的定义,把x=2代入得4-6+k=0,然后解关于k 的方程即可.[详解]把x=2代入得,4-6+k=0,解得k=2.故答案为:B . ()223x +=()223x -=()225x +=()225x -=2x -3x+k=02x -3x+k=0[点评]本题主要考查了一元二次方程的解,掌握一元二次方程的定义,把已知代入方程,列出关于k 的新方程,通过解新方程来求k 的值是解题的关键.4.定义:如果一元二次方程满足,那么我们称这个方程为“凤凰”方程. 已知是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( ).A .B .C .D .[答案]A[解析] [分析]因为方程有两个相等的实数根,所以根的判别式△=B 2-4A C =0,又A +B +C =0,即B =-A -C ,代入B 2-4AC =0得(-A -C )2-4A C =0,化简即可得到A 与C 的关系.[详解]∵一元二次方程A x 2+B x+C =0(A ≠0)有两个相等的实数根∴△=B 2−4A C =0,又A +B +C =0,即B =−A −C ,代入B 2−4A C =0得(−A −C )2−4A C =0,即(A +C )2−4A C =A 2+2A C +C 2−4A C =A 2−2A C +C 2=(A −C )2=0,∴A =C故选:A[点评]本题考查了一元二次方程根的判别式的应用,根据方程根的情况确定方程中字母系数之间的关系. 5.若关于的一元二次方程有一个根为0,则的值( )A .0B .1或2C .1D .2[答案]D 20(a 0)++=≠ax bx c 0a b c ++=20(a 0)++=≠ax bx c a c =a b =a b =a b c ==x 22(1)5320m x x m m -++-+=m[解析][分析]把x=0代入已知方程得到关于m 的一元二次方程,通过解方程求得m 的值;注意二次项系数不为零,即m-1≠0.[详解]解:根据题意,将x=0代入方程,得:m 2-3m+2=0,解得:m=1或m=2,又m-1≠0,即m≠1,∴m=2,故选:D .[点评]本题考查了一元二次方程的解定义和一元二次方程的定义.注意:本题中所求得的m 的值必须满足:m-1≠0这一条件.6.若关于x 的一元二次方程(A +1)x 2+x +A 2-1=0的一个解是x =0,则A 的值为( )A .1B .-1C .±1D .0[答案]A[解析][分析]方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于A 的方程,从而求得A 的值,且(A +1)x 2+x +A 2-1=0为一元二次方程,即.[详解]把x=0代入方程得到:A 2-1=0解得:A =±1. (A +1)x 2+x +A 2-1=0为一元二次方程 即.+10a ≠-1a ≠∴+10a ≠-1a ≠综上所述A =1.故选:A .[点评]此题考查一元二次方程的解,解题关键在于掌握一元二次方程的求解方法.7.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出()A .2根小分支B .3根小分支C .4根小分支D .5根小分支[答案]B[解析][分析]先设每个支干长出x个分支,则每个分支又长出x个小分支,x个分支共长出x2个小分支;再根据主干有1个,分支有x个,小分支有x2个,列出方程;然后根据一元二次方程的解法求出符合题意的x的值即可. [详解]设每个支干长出x个分支,根据题意得1+x+x•x=13,整理得x2+x-12=0,解得x1=3,x2=-4(不符合题意舍去),即每个支干长出3个分支.故应选B .[点评]此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.8.关于x 的方程(m +n )x 2+-(m -n )x =0(m +n ≠0)的二次项系数与一次项系数的和为,差为2,则常数项为( )A .B .C .D . [答案]A[解析][分析]二次项系数与一次项系数的和为,差为2列方程组求出m 、n 的值,然后可求出常数项. [详解]由题意得 , 解之得, ∴. 故选A .[点评]本题考查了一元二次方程的定义,方程的两边都是整式,只含有一个未知数,并且整理后未知数的最高次数都是2,像这样的方程叫做一元二次方程.对于一元二次方程A x 2+B x +C =0(A ≠0),其中A 是二次项系数,B 是一次项系数,C 是常数项.本题也考查了二元一次方程组的解法. mn 21218121161412()()()()122m n m n m n m n ⎧+--=⎪⎨⎪++-=⎩114m n =⎧⎪⎨=⎪⎩1114=228mn ⨯=9.方程(x +1)2=0的根是( )A .x 1=x 2=1B .x 1=x 2=﹣1C .x 1=﹣1,x 2=1D .无实根[答案]B[解析][分析]根据平方根的意义,利用直接开平方法即可进行求解.[详解](x +1)2=0,解: x +1=0,所以x 1=x 2=﹣1,故选B .[点评]本题主要考查一元二次方程的解法,解决本题的关键是要熟练掌握一元二次方程的解法.10.若代数式的值是,则的值为( )A .7或-1B .1或-5C .-1或-5D .不能确定 [答案]A[解析][分析]首先把方程化为一般形式x 2-6x+5-12=0,即x 2-6x-7=0,用因式分解法求解.[详解]2x 6x 5-+12x 26512,x x -+=265120,x x -+-=2670,x x --=∴解得:故选:A .[点评]考查一元二次方程的解法,掌握一元二次方程的解法是解题的关键.11.将一元二次方程用配方法化成的形式为( ) A .B .C .D .[答案]A[解析] [分析]先移项得,x 2-2x=3,然后在方程的左右两边同时加上1,即可化成(x+h)2=k 的形式.[详解]移项,得x 2-2x=3,配方,得x 2-2x+1=3+1,即(x-1)2=4.故选A .[点评]本题考查了配方法的应用,将一元二次方程x 2-2x-3=0用配方法化成(x+h)2=k (k≥0)的形式,其关键步骤就是移项后,在方程的左右两边加上一次项系数一半的平方.12.如果关于x 的一元二次方程(m ﹣3)x 2+3x +m 2﹣9=0有一个解是0,那么m 的值是( ) A .﹣3B .3C .±3D .0或﹣3[答案]A ()()710,x x -+=70,x -=10,x +=127, 1.x x ==-2230x x --=()2()0x h k k +=≥2 (1)4x -=2(1)1x -=2 (1)4x +=2 (1)1x +=[解析][分析]把X=0代入方程(m-3)x +3x+m -9=0中,解关于m 的一元二次方程,注意m 的取值不能使原方程对二次项系数为0[详解]把x=0代入方程(m-3)x +3X+m -9=0中得:m -9=0解得m=-3或3当m=3时,原方程二次项系数m-3=0,舍去,故选A[点评]此题主要考查一元二次方程的定义,难度不大二、填空题13.若方程是关于的一元二次方程,则的取值范围是_____.[答案][解析][分析]将原方程化为一般式,根据一元二次方程中,二次项系数不能为零求解即可.[详解]原方程可化为:, ∵方程是关于的一元二次方程,∴,即,故答案为:.[点评]本题考查了一元二次方程的定义,掌握二次项系数不能为零这一点是解题关键.222222234mx x x +-=x m 1m ≠()21340m x x -+-=2234mx x x +-=x 10m -≠1m ≠1m ≠14.在实数范围内定义一种运算“*”,其规则为A *B =A 2﹣B 2,根据这个规则,方程(x +2)*5=0的解为_____.[答案]3或-7[解析]据题意得,∵(x+2)*5=(x+2)2-52∴x 2+4x-21=0,∴(x-3)(x+7)=0,∴x=3或x=-7.15.若方程的两根,则的值为__________.[答案]5[解析][分析]根据根与系数的关系求出,代入即可求解.[详解]∵是方程的两根∴=-=4,==1 ∴===4+1=5,故答案为:5.[点评]此题主要考查根与系数的关系,解题的关键是熟知=-,=的运用. 16.已知是一元二次方程的一根,则该方程的另一个根为_________.[答案]-2[解析][分析]由于该方程的一次项系数是未知数,所以求方程的另一解根据根与系数的关系进行计算即可.[详解]2410x x -+=12,x x 122(1)x x x 12x x +12x x ⋅12,x x 2410x x -+=12x x +b a 12x x ⋅c a122(1)x x x 1122x x x x ++1212x x x x ++12x x +b a 12x x ⋅c a1x =220x mx +-=设方程的另一根为x 1,由根与系数的关系可得:1×x 1=-2, ∴x 1=-2.故答案为:-2.[点评]本题考查一元二次方程根与系数的关系,明确根与系数的关系是解题的关键.三、解答题17.已知:已知关于的方程(1)求证:不论为何值,方程总有两个不相等的实数根.(2)若该方程的一个根为1,求的值及方程的另一个根.[答案](1)见解析;(2),方程的另一个根是. [解析][分析](1)由方程的各系数 结合根的判别式可得出△>0,由此即可得出结论(2)将x=1代入原方程,得出关于m 的一元一次方程,解方程求出m 的值,将其代入原方程得出关于x 的一元二次方程,结合根与系数的关系得出方程的另一个解.[详解]解:(1)证明:∵在关于x 的方程中, ,所以不论为何值,方程总有两个不相等的实数根;(2)将x=1代入方程中得出:1+m+m-2=0解得:, x 220x mx m ++-=m m 12m =32-220x mx m ++-=()()22412240m m m =-⨯⨯-=-+>m 1m 2=∴原方程为: ∴ ∵∴ ∴,方程的另一个根是. [点评]本题考查的知识点是根的判别式以及根与系数的关系,熟记每个公式是解题的关键.18.据统计某市农村年人均纯收入是元,预计年人均纯收入可达到元. 试求该市农村这两年人均纯收入的平均增长率;按此增长速度年该市农村人均纯收入可达到多少元?[答案](1);年该市农村人均纯收入可达到元.[解析][详解](1)设该市农村这两年人均纯收入的平均增长率为x,根据题意得:10000(1+x)2=12100,解得:x=0.1或x=﹣2.1(舍去),故该市农村这两年人均纯收入的平均增长率为;(元),答:年该市农村人均纯收入可达到元.[点评]本题主要考查一元二次方程的应用,解此题的关键在于先设出未知数x,再根据题意列出方程求解即可. 213022x x +-=1212b x x a +=-=-11x =232x =-12m =32-201310000201512100()1() 220161?0%()220161331010%()()212100110%13310⨯+=20161331019.选择适当方法解下列方程:(1)(用配方法);(2);(3); (4). [答案](1),;(2),;(3),;(4),.[解析][分析][详解]解:,移项得:,配方得:,即,∴,∴,;,移项,得 ,,或, 2510x x -+=()()2322x x x -=-2250x --=()()22231y y +=-152x +=252x =12x =23x=1x=22x =132y =214y =-()21510x x -+=251x x -=-225255144x x -+=-+2521()24x -=52x -=152x=252x =()()223(2)2x x x -=-()23(2)20x x x ---=()()2360x x x ---=20x -=260x -=,;; , ∵,,∴,∴, ∴,; ; .,,或,,. [点评]掌握一元二次方程的求根方法是解题的关键.20.已知关于的方程. 为何值时,此方程是一元一次方程?为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项.[答案](1)时,此方程是一元一次方程;(2).一元二次方程的二次项系数、一次项系数,常数项.;[解析]12x =23x =()23250x --=2a=b =-5c =-()842548=-⨯⨯-=x ==12x =22x =()224(2)(31)y y +=-()231y y +=±-231y y +=-()231y y +=--132y =214y =-x ()()22110m x m x m --++=()1m ()2m 1m =1m ≠±21m -()1m -+m试题分析:(1)根据一元一次方程的定义可得=0,且m+1≠0,解得m 的值;(2)根据一元二次方程的定义可得≠0,可得m 的取值范围,然后写出一元二次方程的二次项系数、一次项系数及常数项.试题解析:解:(1)=0,且m+1≠0,解得m=1,答:当m=1时,此方程是一元一次方程;(2)≠0,解得m≠±1,答:当m≠±1时,此方程是一元二次方程,其二次项系数为,一次项系数为-(m+1),常数项为m . 考点:一元一次方程的定义;一元二次方程的定义.21.先阅读理解下面的例题,再按要求解答下列问题.求代数式y 2+4y+8的最小值.解:y 2+4y+8=y 2+4y+4+4=(y+2)2+4∵(y+2)2≥0,∴(y+2)2+4≥4∴y 2+4y+8的最小值是4.(1)求代数式m 2+m+1的最小值;(2)求代数式4﹣x 2+2x 的最大值.[答案](1);(2)5. [解析][分析](1)根据题中的解法即可得到答案;(2)同理(1).[详解] 21m -21m -21m -21m -21m -34(1)m 2+m+1=m 2+m++=(m+)2+≥, 则m 2+m+1的最小值是; (2)4﹣x 2+2x=﹣x 2+2x ﹣1+5=﹣(x ﹣1)2+5≤5,则4﹣x 2+2x 的最大值是5.[点评]本题主要考查了配方法与偶次方的非负性,解此题的关键在于利用配方法得到完全平方式,再利用非负数的性质即可得解.22.一玩具城以元/个的价格购进某种玩具进行销售,并预计当售价为元/个时,每天能售出个玩具,且在一定范围内,当每个玩具的售价平均每提高元时,每天就会少售出个玩具若玩具售价不超过元/个,每天售出玩具总成本不高于元,预计每个玩具售价的取值范围; 在实际销售中,玩具城以中每个玩具的最低售价及相应的销量为基础,进一步调整了销售方案,将每个玩具的售价提高了,从而每天的销售量降低了,当每天的销售利润为元时,求的值.[答案]预计每个玩具售价的取值范围是; 或.[解析][分析]根据题意列不等式组即可得到结论;; 由知最低销售价为元/个,对应销售量为,根据题意列方程即可得到结论. [详解] 解:每个玩具售价元/个,根据题意得, 解得:, 1434123434344950500.53()160686()2()1%a 2%a 147a ()15660x ≤≤()225a =12.5a =()1()2()1565650503140.5--⨯=个()1x 6050495036860.5x x ≤⎧⎪-⎨⎛⎫-⨯≤ ⎪⎪⎝⎭⎩5660x ≤≤答:预计每个玩具售价的取值范围是;由知最低销售价为元/个,对应销售量为, 由题意得:,令,整理得:,解得:,, ∴或.[点评]考查一元二次方程的应用,解决问题的关键是读懂题意,根据题意列出方程和不等式进行求解即可. 23.某林场计划修一条长,断面为等腰梯形的渠道,断面面积为,上口宽比渠深多,渠底比渠深多渠道的上口宽与渠底宽各是多少?如果计划每天挖土,需要多少天才能把这条渠道挖完?[答案]渠道的上口与渠底宽各是米和米; 需要天才能把这条渠道的土挖完.[解析][分析](1)设渠道深x 米,则上口的宽度是(x+2)米,渠底宽(x+0.4)米,根据断面面积为1.6平方米,列出方程,求解即可;(2)根据渠道的长为750米,求出渠道的体积,再根据每天挖土48立方米,即可求出需要的天数.[详解]设渠道深米,则上口的宽度是米,渠底宽米,根据题意得:, 5660x ≤≤()2()1565650503140.5--⨯=个()()561%491412%147a a ⎡⎤+-⨯⨯-=⎣⎦%t a =2321210t t -==114t =218t =25a =12.5a =750m 21.6m 2m 0.4m ()1()2348m ()1 2.8 1.2()225()1x ()2x +()0.4x +()()120.4 1.62x x x ⎡⎤+++=⎣⎦解得:(舍去),,则渠道的上口宽是:(米),渠底宽是(米);答:渠道的上口与渠底宽各是米和米;∵渠道的长为米,∴渠道的体积为(立方米),∵每天挖土立方米,∴需要的天数是:(天),答:需要天才能把这条渠道的土挖完.[点评]考查了一元二次方程的应用,解题的关键是读懂题目,设出未知数,找出等量关系,列方程求解. 24.阅读第(1)题的解题过程,再解答第(2)题:(1)例:解方程x 2﹣|x |﹣2=0.解:当x ≥0时,原方程可化为x 2﹣x ﹣2=0.解得:x 1=2,x 2=﹣1(不合题意.舍去)当x <0时,原方程可化为x 2+x ﹣2=0.解得:x 1=﹣2,x 2=1(不合题意.舍去)∴原方程的解是x 1=2,x 1=﹣2.(2)请参照上例例题的解法,解方程x 2﹣x |x ﹣1|﹣1=0.[答案]x 1=﹣0.5,x 2=1[解析]12x =-20.8x =0.82 2.8+=0.80.4 1.2+= 2.8 1.2()2750750 1.61200⨯=4812004825÷=25[分析]解方程x2﹣|x﹣1|﹣1=0.方程中|x﹣1|的值有两个,所以就要分情况讨论,然后去掉绝对值.一种是当x ﹣1≥0时,求解;另一种情况是当x﹣1<0时,求解.[详解]解:当x﹣1≥0,即x≥1时,原方程可化为x2﹣x(x﹣1)﹣1=0即x﹣1=0,解得x=1当x﹣1<0,即x<1时,原方程可化为x2﹣x(1﹣x)﹣1=0即2x2﹣x﹣1=0,解得x1=﹣0.5,x2=1(不合题意.舍去)∴原方程的解为x1=﹣0.5,x2=1[点评]本题考查了解一元二次方程的应用,易出错的地方是要分情况而解,所以学生容易出现漏解的现象.。
初三数学第一学期第21章 一元二次方程 单元测试卷(含解析)
人教版2022年九年级上册第21章《一元二次方程》单元测试卷班级________ 姓名________ 成绩________一.选择题(共10小题,满分30分,每小题3分)1.下列方程中,是一元二次方程的是()A.y=2x﹣1 B.x2=6 C.5xy﹣1=1 D.2(x+1)=22.一元二次方程x2﹣3x﹣4=0的二次项系数、一次项系数、常数项分别是()A.1,3,﹣4 B.0,3,4 C.0,﹣3,4 D.1,﹣3,﹣43.用配方法解一元二次方程3x2+6x﹣1=0时,将它化为(x+a)2=b的形式,则a+b的值为()A .B .C.2 D .4.方程(x﹣2)2=4(x﹣2)的解为()A.4 B.﹣2 C.4或﹣6 D.6或25.一元二次方程ax2+bx+c=0(a≠0)的求根公式是()A .B .C .D .6.已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,则方程a(x+m﹣2)2+n=0(a≠0)的两根分别为()A.1,5 B.﹣1,3 C.﹣3,1 D.﹣1,57.若关于x的一元二次方程(m﹣1)x2+2x﹣2=0没有实数根,则实数m的取值范围是()A.m <B.m >C.m >且m≠1 D.m≠18.2022年2月6日,中国女足获得亚洲杯冠军!某传媒发布的参赛队员简介视频两天的点击量由原来的5万飙升至150万,若设每天点击量的平均增长率为x,则下列所列方程正确的是()A.5(1+x)2=150 B.5+5(1+x)+5(1+x)2=150C.5x2=150 D.5+5x+5x2=1509.某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排21场比赛,则八年级班级的个数为()A.5 B.6 C.7 D.810.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则其中正确的()A.只有①②B.只有①②④C.①②③④D.只有①②③二.填空题(共6小题,满分24分,每小题4分)11.一元二次方程x2=7x的解是.12.关于x的方程(a﹣1)x2﹣3x+3=0是一元二次方程,则a的取值范围是.13.若a是方程2x2﹣x﹣5=0的一个根,则代数式2a﹣4a2+1的值是.14.方程x2+x﹣1=0的两根为x1、x2,则x1+x2的值为.15.已知a,b是一元二次方程x2+3x﹣8=0的两个实数根,则3a2+8a﹣b的值是.16.已知(a2+b2)(a2+b2﹣2)=8,那么a2+b2=.三.解答题(共7小题,满分46分)17.(6分)解下列方程:(1)(x﹣2)2=5(x﹣2);(2)2x2﹣3x=1.18.(5分)某商场销售一批名牌衬衫,平均每天销售20件,每件盈利40元.为了扩大销售,增加盈利和减少库存,商场决定采取适当的降价措施.经调查发现,如果每件降价1元,则每天可多售2件.商场若想每天盈利1200元,每件衬衫应降价多少元?19.(5分)为提高应急处置能力,某社区计划搭建一个临时物资储备仓库,用来放置应急物资.如图,仓库的两边靠墙(墙足够长),另外两边用总长为58米的铁皮围成,两面墙的夹角为90°,铁皮与墙面均垂直,其中CD边上留有宽2米的通道,且边CD的长不小于30米.若仓库的面积是800平方米,则BC的长应为多少米?20.(6分)已知关于x的一元二次方程x2﹣(m+3)x+3m=0.(1)求证:无论m取任何实数,方程总有实数根;(2)若等腰三角形的其中一边为4,另两边是这个方程的两根,求m的值.21.(7分)请根据图片内容,回答下列问题:(1)每轮传染中,平均一个人传染了几个人?(2)按照这样的速度传染,第三轮将新增多少名感染者(假设每轮传染人数相同)?22.(8分)在理解例题的基础上,完成下列两个问题:例题:若m2+2mn+2n2﹣4n+4=0,求m和n的值;解:由题意得:(m2+2mn+n2)+(n2﹣4n+4)=0,∴(m+n)2+(n﹣2)2=0∴,解得.请解决以下问题:(1)若x2+4xy+5y2﹣4y+4=0,求y x的值;(2)若a,b,c是△ABC的边长,满足a2+b2=12a+8b﹣52,c是△ABC的最长边,且c为偶数,则c可能是哪几个数?23.(9分)阅读理解:材料1:对于一个关于x的二次三项式ax2+bx+c(a≠0),除了可以利用配方法求该多项式的取值范围外,爱思考的小川同学还想到了其他的方法:比如先令ax2+bx+c=y(a≠0),然后移项可得:ax2+bx+(c﹣y)=0,再利用一元二次方程根的判别式来确定y的取值范围,请仔细阅读下面的例子:例:求x2+2x+5的取值范围;解:令x2+2x+5=y∴x2+2x+(5﹣y)=0∴Δ=4﹣4×(5﹣y)≥0∴y≥4∴x2+2x+5≥4.材料2:在学习完一元二次方程的解法后,爱思考的小川同学又想到仿造一元二次方程的解法来解决一元二次不等式的解集问题,他的具体做法如下:若关于x的一元二次方程ax2+bx+c=0(a>0)有两个不相等的实数根x1、x2(x1>x2)则关于x的一元二次不等式ax2+bx+c≥0(a>0)的解集为:x≥x1或x≤x2则关于x的一元二次不等式ax2+bx+c≤0(a>0)的解集为:x2≤x≤x1请根据上述材料,解答下列问题:(1)若关于x的二次三项式x2+ax+3(a为常数)的最小值为﹣6,则a=;(2)求出代数式的取值范围;(3)若关于x的代数式(其中m、n为常数且m≠0)的最小值为﹣4,最大值为7,请求出满足条件的m、n 的值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:A.含有两个未知数,不是一元一次方程,故本选项不合题意;B.x2=6是一元一次方程,故本选项符合题意;C.含有两个未知数,不是一元一次方程,故本选项不合题意;D.是一元一次方程的定义,故本选项不合题意;故选:B.2.【解答】解:一元二次方程x2﹣3x﹣4=0的二次项系数为1,一次项系数为﹣3,常数项为﹣4.故选:D.3.【解答】解:∵3x2+6x﹣1=0,∴3x2+6x=1,x2+2x =,则x2+2x+1=,即(x+1)2=,∴a=1,b =,∴a+b =.故选:B.4.【解答】解:(x﹣2)2=4(x﹣2),移项,得(x﹣2)2﹣4(x﹣2)=0,整理,得(x﹣2)(x﹣2﹣4)=0.所以x﹣2=0或x﹣6=0.所以x1=2,x2=6.故选:D.5.【解答】解:一元二次方程的求根公式为x =,故选:A.6.【解答】解:∵一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,∴方程a(x+m﹣2)2+n=0(a≠0)中x﹣2=﹣3或x﹣2=1,解得:x=﹣1或3,即方程a(x+m﹣2)2+n=0(a≠0)的两根分别为﹣1和3,故选:B.7.【解答】解:∵关于x的一元二次方程(m﹣1)x2+2x﹣2=0没有实数根,∴Δ=22﹣4(m﹣1)×(﹣2)<0,且m﹣1≠0,解得m <,故选:A.8.【解答】解:由题意可得,5+5(1+x)+5(1+x)2=150,故选:B.9.【解答】解:设八年级共有x个班,依题意得:x(x﹣1)=21,整理得:x2﹣x﹣42=0,解得:x1=﹣6(不合题意,舍去),x2=7,∴八年级共有7个班.故选:C.10.【解答】解:①若a+b+c=0,则x=1是方程ax2+bx+c=0的解,由一元二次方程的实数根与判别式的关系可知Δ=b2﹣4ac≥0,故①正确;②∵方程ax2+c=0有两个不相等的实根,∴Δ=0﹣4ac>0,∴﹣4ac>0,则方程ax2+bx+c=0的判别式Δ=b2﹣4ac>0,∴方程ax2+bx+c=0必有两个不相等的实根,故②正确;③∵c是方程ax2+bx+c=0的一个根,则ac2+bc+c=0,∴c(ac+b+1)=0若c=0,等式仍然成立,但ac+b+1=0不一定成立,故③不正确;④若x0是一元二次方程ax2+bx+c=0的根,则由求根公式可得:x0=或x0=∴2ax0+b =或2ax0+b =﹣∴故④正确.故选:B.二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:x2﹣7x=0,x(x﹣7)=0,x=0或x﹣7=0,所以x1=0,x2=7.故答案为:x1=0,x2=7.12.【解答】解:∵方程(a﹣1)x2﹣3x+3=0是一元二次方程,∴a﹣1≠0,∴a≠1,故答案为:a≠1.13.【解答】解:∵a是方程2x2﹣x﹣5=0的一个根,∴2a2﹣a﹣5=0,∴2a2﹣a=5,∴4a2﹣2a=10,∴2a﹣4a2+1=﹣10+1=﹣9,故答案为:﹣9.14.【解答】解:∵方程x2+x﹣1=0的两根为x1、x2,∴x1+x2=﹣1,故答案为:﹣1.15.【解答】解:∵a,b是一元二次方程x2+3x﹣8=0的两个实数根,∴a2+3a=8,a+b=﹣3,∴3a2+8a﹣b=3(a2+3a)﹣(a+b)=3×8﹣(﹣3)=27.故答案为:27.16.【解答】解:设a2+b2=t(t≥0),则t(t﹣2)=8,整理,得(t﹣4)(t+2)=0,解得t=4或t=﹣2(舍去),则a2+b2=4.故答案是:4.三.解答题(共7小题,满分46分)17.【解答】解:(1)(x﹣2)2=5(x﹣2),(x﹣2)2﹣5(x﹣2)=0,(x﹣2)(x﹣2﹣5)=0,x﹣=2=0或x﹣2﹣5=0,所以x1=2,x2=7;(2)2x2﹣3x=1,2x2﹣3x﹣1=0,Δ=(﹣3)2﹣4×2×(﹣1)=17>0,x =,所以x1=,x2=.18.【解答】解:设每件衬衫降价x元,则每件盈利(40﹣x)元,平均每天可售出(20+2x)件,依题意得:(40﹣x)(20+2x)=1200,整理得:x2﹣30x+200=0,解得:x1=10,x2=20.答:每件衬衫应降价10元或20元.19.【解答】解:设CD=x米,则BC=(58+2﹣x)米,依题意得:x(58+2﹣x)=800,整理得:x2﹣60x+800=0,解得:x1=20(不符合题意,舍去),x2=40,∴58+2﹣x=58+2﹣40=20.答:BC的长应为20米.20.【解答】(1)证明:Δ=[﹣(m+3)]2﹣4×1×3m=m2﹣6m+9=(m﹣3)2.∵(m﹣3)2≥0,即Δ≥0,∴无论m取任何实数,方程总有实数根;(2)解:当腰为4时,把x=4代入x2﹣(m+3)x+3m=0,得,16﹣4m﹣12+3m=0,解得m=4;当底为4时,则程x2﹣(m+3)x+3m=0有两相等的实数根,∴Δ=0,∴(m﹣3)2=0,∴m=3,综上所述,m的值为4或3.21.【解答】解:(1)设每轮传染中,平均一个人传染x个人,根据题意,可得(1+x)2=121,解得x1=10,x2=﹣12(舍去),答:每轮传染中,平均一个人传染10个人;(2)根据题意,121×10=1210(名),答:按照这样的速度传染,第三轮将新增1210名感染者.22.【解答】解:(1)∵x2+4xy+5y2﹣4y+4=0,∴x2+4xy+4y2+y2﹣4y+4=0,∴(x+2y)2+(y﹣2)2=0,∴x+2y=0,y﹣2=0,解得x=﹣4,y=2,∴y x=2﹣4=;(2)已知等式整理得:(a﹣6)2+(b﹣4)2=0,解得:a=6,b=4,由△ABC中最长的边是c,∴6≤c<10,∵c为偶数,∴c可能是6或8.23.【解答】解:(1)设y=x2+ax+3,变形为x2+ax+3﹣y=0,∵△≥0,∴a2﹣4(3﹣y)≥0可得y,而由已知y≥﹣6,故3﹣=﹣6,∴a=6或a=﹣6.(2)设y =,变形为3x2+(6+3y)x﹣2﹣y=0,∵△≥0,∴(6+3y)2﹣4×3×(﹣2﹣y)≥0,化简得3y2+16y+20≥0,先求出3y2+16y+20=0的二根y1=﹣2,y2=﹣,∴根据材料二得y或y≥﹣2.(3)设y =,变形得yx2﹣(y+5m)x+2y+n=0,∵△≥0,∴(y+5m)2﹣4y(2y+n)≥0,整理得7y2﹣(10m﹣4n)y﹣25m2≤0,由已知可得﹣4≤y≤7,根据材料二知7y2﹣(10m﹣4n)y﹣25m2=0的二根是y1=﹣4,y2=7,代入整理得,解得或.。
数学九年级上学期《一元二次方程》单元测试卷附答案
九年级上册数学《一元二次方程》单元测试卷[考试时间:90分钟 满分:120分]一.选择题(共12小题)1.下列方程:①5x 2=2y ;②2x (x +3)=x 2﹣5;③0322=++x x ;④﹣x 2+5x =0;⑤3132++xx ;⑥mx 2+n x =0.其中是一元二次方程的有( )A .1个B .2个C .3个D .4个2.一元二次方程2(x 2﹣1)﹣3x =0的二次项系数、一次项系数、常数项依次是( )A .1,﹣1,﹣3B .1,﹣3,﹣1C .2,﹣3,﹣1D .2,﹣3,﹣23.下列语句中正确的是( )A .方程x 2=x 只有一个解x =1B .方程x 2+1=0没有解C .对于任何实数m ,(m ﹣2)x 2+m x +2=0是一元二次方程D .x 2+4=0不是一元二次方程4.若代数式x 2﹣2x ﹣3的值等于0,则x 的值是( )A .3或﹣1B .1或﹣3C .﹣1D .35.用配方法解一元二次方程m 2﹣6m +8=0,结果是下列配方正确的是( )A .(m ﹣3)2=1B .(m +3)2=1C .(m ﹣3)2=﹣8D .(m +3)2=96.已知关于x 的一元二次方程x 2﹣6x +k =0的一个根是1,则另一个根是( )A .5B .﹣5C .﹣6D .﹣77.若关于一元二次方程x 2+2x +k +2=0的两个根相等,则k 的取值范围是( )A .1B .1或﹣1C .﹣1D .28.下列一元二次方程最适合用分解因式法来解的是( )A .(x +1)(x ﹣3)=2B .2(x ﹣2)2=x 2﹣4C .x 2+3x ﹣1=0D .5(2﹣x )2=39.下列方程中,两实数根之和等于2的方程是( )A .x 2+2x ﹣3=0B .x 2﹣2x +3=0C .2x 2﹣2x ﹣3=0D .3x 2﹣6x +1=010.某种药品经过两次降价由原来的每盒12.5元降到每盒8元,如果2次降价的百分率相同,设每次降价的百分率为x ,可列出的方程为( )A .12.5(1+x )2=8B .12.5(1﹣x )2=8C .12.5(1﹣2x )=8D .8(1+x )2=12.5 11.商场销售某种商品,四月份销售了若干件,共获利6万元,五月份把这种商品的单价降低了1元,但销售量比四月份增长了2万件,从而获得的利润比四月份多了2万元,求调价前每件商品的利润是多少元?设调价前每件商品的利润是x 元,则可列方程是( )A .()26261+=⎪⎭⎫ ⎝⎛+-x x B .()6261=⎪⎭⎫ ⎝⎛+-x x C .()26261+=⎪⎭⎫ ⎝⎛-+x x D .()6261=⎪⎭⎫⎝⎛-+x x 12.当x 为何值时,此代数式x 2+14+6x 有最小值( )A .0B .﹣3C .3D .不确定二.填空题(共4小题)13.方程()05112=+---mx x m m 是关于x 的一元二次方程,则m 的取值范围是 .14.若(A 2+B 2)(A 2+B 2﹣2)﹣24=0,则A 2+B 2= .15.如图,在一块矩形的荒地上修建两条互相垂直且宽度相同的小路,使剩余面积是原矩形面积的一半,具体尺寸如图所示.求小路的宽是多少?设小路的宽是x m ,根据题意可列方程为 .第15题16.一个菱形的边长是方程x 2﹣7x +10=0的一个根,其中一条对角线长为6,则该菱形的面积为 .三.解答题(共8小题)17.用合适的方法解方程(1)(x +2)2﹣25=0 (2)x 2+4x ﹣5=0(3)x 2﹣5x +6=0 (4)2x 2﹣7x +3=0.18.当m 为何值时,一元二次方程x 2+(2m ﹣3)x +(m 2﹣3)=0没有实数根?有实数根?19.A ,B ,C 是△A B C 的三边长,且关于x 的方程B (x 2﹣1)﹣2A x +C (x 2+1)=0有两个相等的实根,求证:这个三角形是直角三角形.20.已知x 1,x 2是一元二次方程x 2﹣2x +k +2=0的两个实数根.(1)求k 的取值范围.(2)是否存在实数k ,使得等式21121-=+k x x 成立?如果存在,请求出k 的值;如果不存在,请说明理由.21.用配方法求:(1)3x2﹣4x+8的最小值;(2)﹣2x2+4x﹣1的最大值.22.设x1,x2是一元二次方程3x2﹣x﹣4=0的两个根,不解方程,求下列代数式的值.(1)(x1+5)(x2+5);(2)x12x2+x1x22.23.大名童装平均每天可售出20件,每件盈利40元.因新冠肺炎影响,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装每降价4元,那么平均每天就可多售出8件.如果要盈利1200元,那每件降价多少元?24.合肥长江180艺术街区进行绿化改造,用一段长40m的篱笆和长15m的墙A B ,围城一个矩形的花园,设平行于墙的一边D E的长为x m;(1)如图1,如果矩形花园的一边靠墙A B ,另三边由篱笆C D EF围成,当花园面积为150m2时,求x的值;(2)如图2,如果矩形花园的一边由墙A B 和一节篱笆B F构成,另三边由篱笆A D EF围成,当花园面积是150m2时,求B F的长.答案与解析一.选择题(共12小题)1.下列方程:①5x 2=2y ;②2x (x +3)=x 2﹣5;③;④﹣x 2+5x =0;⑤;⑥mx 2+n x =0.其中是一元二次方程的有( )A .1个B .2个C .3个D .4个[分析]本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.[解答]解:①5x 2=2y ,方程含有两个未知数,故错误;②2x (x +3)=x 2﹣5,符合一元二次方程的定义,正确;③,符合一元二次方程的定义,正确;④﹣x 2+5x =0,符合一元二次方程的定义,正确; ⑤,不是整式方程,故错误; ⑥mx 2+nx =0,方程二次项系数可能为0,故错误.故选:C .2.一元二次方程2(x 2﹣1)﹣3x =0的二次项系数、一次项系数、常数项依次是( )0322=++x x 3132++xx 0322=++x x 3132++xxA .1,﹣1,﹣3B .1,﹣3,﹣1C .2,﹣3,﹣1D .2,﹣3,﹣2[分析]首先将一元二次方程化为一般形式,然后确定二次项系数、一次项系数、常数项即可.[解答]解:2(x2﹣1)﹣3x=0化为一般形式得2x2﹣3x﹣2=0,二次项系数、一次项系数、常数项依次是2,﹣3,﹣2,故选:D .3.下列语句中正确的是()A .方程x2=x只有一个解x=1B .方程x2+1=0没有解C .对于任何实数m,(m﹣2)x2+m x+2=0是一元二次方程D .x2+4=0不是一元二次方程[分析]对于方程x2=x和x2+1=0分别解方程即可判断A 与B 是否正确;一元二次方程中二次项系数不能为0,所以m﹣2≠0,即m≠2;判定一个方程是否为一元二次方程,只要二次项系数不为0即可.[解答]解:A 、方程x2=x的解还可以是0;B 、x2=﹣1,∵任何数的平方一定大于或等于0,∴方程x2+1=0没有解;C 、当m=2时,(m﹣2)x2+m x+2=0中m﹣2=0,原方程不是一元二次方程;D 、x2+4=0是一元二次方程;故选:B .4.若代数式x2﹣2x﹣3的值等于0,则x的值是()A .3或﹣1B .1或﹣3C .﹣1D .3[分析]根据题意得到x2﹣2x﹣3=0,利用因式分解法解方程即可.[解答]解:依题意得:x2﹣2x﹣3=0,整理,得(x﹣3)(x+1)=0,解得x1=3,x2=﹣1.故选:A .5.用配方法解一元二次方程m2﹣6m+8=0,结果是下列配方正确的是()A .(m﹣3)2=1B .(m+3)2=1C .(m﹣3)2=﹣8D .(m+3)2=9[分析]移项,配方,即可得出选项.[解答]解:m2﹣6m+8=0,m2﹣6m=﹣8,m2﹣6m+9=﹣8+9,(m﹣3)2=1,故选:A .6.已知关于x的一元二次方程x2﹣6x+k=0的一个根是1,则另一个根是()A .5B .﹣5C .﹣6D .﹣7[分析]设方程x2﹣6x+k=0的两根为α、β,由根与系数的关系可得出α+β=6,结合α=1即可求出β值.[解答]解:设方程x2﹣6x+k=0的两根为α、β,则有:α+β=6,∵α=1,∴β=6﹣1=5.故选:A .7.若关于一元二次方程x2+2x+k+2=0的两个根相等,则k的取值范围是()A .1B .1或﹣1C .﹣1D .2[分析]根据判别式的意义得到△=22﹣4(k+2)=0,然后解一次方程即可.[解答]解:根据题意得△=22﹣4(k+2)=0,解得k=﹣1.故选:C .8.下列一元二次方程最适合用分解因式法来解的是()A .(x+1)(x﹣3)=2B .2(x﹣2)2=x2﹣4C .x2+3x﹣1=0D .5(2﹣x)2=3[分析]先观察每个方程的特点,根据方程的特点逐个判断即可.[解答]解:A 、不适合用分解因式解方程,故本选项错误;B 、最适合用分解因式解方程,故本选项正确;C 、不适合用分解因式解方程,故本选项错误;D 、不适合用分解因式解方程,故本选项错误;故选:B .9.下列方程中,两实数根之和等于2的方程是()A .x2+2x﹣3=0B .x2﹣2x+3=0C .2x2﹣2x﹣3=0D .3x2﹣6x+1=0[分析]根据根与系数的关系对A 、C 、D 进行判断;根据判别式的意义对B 进行判断.[解答]解:A 、两实数根之和等于﹣2,所以A 选项错误;B 、△=(﹣2)2﹣4×3=﹣8<0,方程没有实数根,所以B 选项错误;C 、两实数根之和等于1,所以C 选项错误;D 、两实数根之和等于﹣2,所以D 选项正确.故选:D .10.某种药品经过两次降价由原来的每盒12.5元降到每盒8元,如果2次降价的百分率相同,设每次降价的百分率为x ,可列出的方程为( )A .12.5(1+x )2=8B .12.5(1﹣x )2=8C .12.5(1﹣2x )=8D .8(1+x )2=12.5 [分析]设该药品平均每次降价的百分率为x ,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是12.5(1﹣x ),第二次后的价格是12.5(1﹣x )2,据此即可列方程求解.[解答]解:根据题意得:12.5(1﹣x )2=8.故选:B .11.商场销售某种商品,四月份销售了若干件,共获利6万元,五月份把这种商品的单价降低了1元,但销售量比四月份增长了2万件,从而获得的利润比四月份多了2万元,求调价前每件商品的利润是多少元?设调价前每件商品的利润是x 元,则可列方程是( )A .B .C .D . [分析]如果设调价前每件商品的利润是x 元,那么四月份的销量为,五月份的单件的利润为(x ﹣1)元,根据题意可列出方程. [解答]解:根据题意,四月份的销量为, 五月份的单件的利润为(x ﹣1)元,可得出方程为. 故选:A .12.当x 为何值时,此代数式x 2+14+6x 有最小值( )()26261+=⎪⎭⎫ ⎝⎛+-x x ()6261=⎪⎭⎫ ⎝⎛+-x x ()26261+=⎪⎭⎫ ⎝⎛-+x x ()6261=⎪⎭⎫⎝⎛-+x x x 6x6()26261+=⎪⎭⎫ ⎝⎛+-x xA .0B .﹣3C .3D .不确定[分析]运用配方法变形x 2+14+6x =(x +3)2+5;得出(x +3)2+5最小时,即(x +3)2=0,然后得出答案.[解答]解:∵x 2+14+6x =x 2+6x +9+5=(x +3)2+5,∴当x +3=0时,(x +3)2+5最小,∴x =﹣3时,代数式x 2+14+6x 有最小值.故选:B .二.填空题(共4小题)13.方程是关于x 的一元二次方程,则m 的取值范围是 m =± .[分析]根据一元二次方程的定义可得m 2﹣1=2,且m ﹣1≠0,再解即可.[解答]解:由题意得:m 2﹣1=2,且m ﹣1≠0,解得:,故答案为:.14.若(A 2+B 2)(A 2+B 2﹣2)﹣24=0,则A 2+B 2= 6 .[分析]把A 2+B 2视为一个整体,设A 2+B 2=y ,则(A 2+B 2)(A 2+B 2﹣2)﹣24=0可化为:y 2﹣2y ﹣24=0,解出y 的值即可,[解答]解:设A 2+B 2=y ,则原方程可化为:y 2﹣2y ﹣24=0,解之得:y 1=6,y 2=﹣4,∴A 2+B 2=6,故答案为6.15.如图,在一块矩形的荒地上修建两条互相垂直且宽度相同的小路,使剩余面积是原矩形面积的一半,具体尺寸如图所示.求小路的宽是多少?设小路的宽是x m ,根据题意可列方程为 . ()05112=+---mx x m m 3±=m 3±=m[分析]把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的种植花草部分是一个长方形,根据长方形的面积公式列方程求解即可.[解答]解:设道路的宽应为x 米,由题意有(30﹣x )(20﹣x )=×30×20. 故答案为:(30﹣x )(20﹣x )=×30×20. 16.一个菱形的边长是方程x 2﹣7x +10=0的一个根,其中一条对角线长为6,则该菱形的面积为 24 .[分析]利用因式分解法解方程得到x 1=2,x 2=5,再根据菱形的性质得到菱形的边长为5,利用勾股定理计算出菱形的另一条对角线长,然后根据菱形的面积公式计算.[解答]解:x 2﹣7x +10=0,(x ﹣2)(x ﹣5)=0,x ﹣2=0或x ﹣5=0,∴x 1=2,x 2=5,∵菱形一条对角线长为6,∴菱形的边长为5,∵菱形的另一条对角线长=,∴菱形的面积=×6×8=24. 三.解答题(共8小题)17.解方程(1)(x +2)2﹣25=0 (2)x 2+4x ﹣5=02121835222=-21(3)x2﹣5x+6=0 (4)2x2﹣7x+3=0.[分析](1)先变形得到(x+2)2=25,然后利用直接开平方法解方程;(2)利用因式分解法解方程;(3)利用因式分解法解方程;(4)利用因式分解法解方程.[解答]解:(1)(x+2)2=25, x+2=±5,所以x1=﹣7,x2=3;(2)解:(x+5)(x﹣1)=0, x+5=0或x﹣1=0,所以x1=﹣5,x2=1;(3)解:(x﹣2)(x﹣3)=0, x﹣2=0或x﹣3=0,所以x1=2,x2=3;(4)解:(2x﹣1)(x﹣3)=0, 2x﹣1=0或x﹣3=0,所以x1=,x2=3.2118.当m 为何值时,一元二次方程x 2+(2m ﹣3)x +(m 2﹣3)=0没有实数根?有实数根?[分析]先计算出△,△=(2m ﹣3)2﹣4(m 2﹣3)=﹣12m +21.当△<0,即﹣12m +21<0,原方程没有实数根,解不等式得到m 的范围;当△≥0,即﹣12m +21≥0,原方程有实数根,解不等式得到m 的范围.[解答]解:△=(2m ﹣3)2﹣4(m 2﹣3)=﹣12m +21,当△<0,即﹣12m +21<0,原方程没有实数根,解不等式﹣12m +21<0得,m >; 当△≥0,即﹣12m +21≥0,原方程有实数根,解不等式﹣12m +21≥0得,m ≤. 所以当m >时,一元二次方程x 2+(2m ﹣3)x +(m 2﹣3)=0没有实数根; 当m ≤时,一元二次方程x 2+(2m ﹣3)x +(m 2﹣3)=0有实数根. 19.A ,B ,C 是△A B C 的三边长,且关于x 的方程B (x 2﹣1)﹣2A x +C (x 2+1)=0有两个相等的实根,求证:这个三角形是直角三角形.[分析]先将原方程化为一元二次方程的一般形式,然后根据根的判别式△=B 2﹣4A C =0证明.[解答]证明:由原方程,得(B +C )x 2﹣2A x ﹣B +C =0,∵关于x 的方程B (x 2﹣1)﹣2A x +C (x 2+1)=0有两个相等的实根,∴△=4A 2﹣4(B +C )(﹣B +C )=0,即A 2﹣C 2+B 2=0,∴A 2+B 2=C 2,∴这个三角形是直角三角形.20.已知x 1,x 2是一元二次方程x 2﹣2x +k +2=0的两个实数根.47474747(1)求k 的取值范围.(2)是否存在实数k ,使得等式成立?如果存在,请求出k 的值;如果不存在,请说明理由. [分析](1)根据方程的系数结合△≥0,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围;(2)根据根与系数的关系可得出x 1+x 2=2,x 1x 2=k +2,结合,即可得出关于k 的方程,解之即可得出k 值,再结合(1)即可得出结论. [解答]解:(1)∵一元二次方程x 2﹣2x +k +2=0有两个实数根,∴△=(﹣2)2﹣4×1×(k +2)≥0,解得:k ≤﹣1.(2)∵x 1,x 2是一元二次方程x 2﹣2x +k +2=0的两个实数根,∴x 1+x 2=2,x 1x 2=k +2.∵, ∴, ∴k 2﹣6=0,解得:k 1=﹣,k 2=.又∵k ≤﹣1, ∴k =﹣.∴存在这样的k 值,使得等式成立,k 值为﹣. 21121-=+k x x 21121-=+k x x 21121-=+k x x 2221212-=+=+k k x x x x 66621121-=+k x x 621.用配方法求:(1)3x 2﹣4x +8的最小值;(2)﹣2x 2+4x ﹣1的最大值.[分析](1)先提取二次项系数,再配方,根据任何数的完全平方一定是非负数即可求解;(2)把原式根据配方法化成:﹣2x 2+4x ﹣1=﹣2(x ﹣1)2+1即可得出最大值.[解答]解:(1)3x 2﹣4x +8所以3x 2﹣4x +8的最小值是. (2)﹣2x 2+4x ﹣1=﹣2(x 2﹣2x +1)+2﹣1=﹣2(x ﹣1)2+1所以﹣2x 2+4x ﹣1的最大值是1.22.设x 1,x 2是一元二次方程3x 2﹣x ﹣4=0的两个根,不解方程,求下列代数式的值.(1)(x 1+5)(x 2+5);(2)x 12x 2+x 1x 22.[分析]根据根与系数的关系得到x 1+x 2=,x 1x 2=﹣, (1)利用多项式乘法得到原式=x 1x 2+5(x 1+x 2)+25,然后利用整体代入的方法计算;(2)利用因式分解得到原式=x 1x 2(x 1+x 2),然后利用整体代入的方法计算.3203233439434322+⎪⎭⎫ ⎝⎛-=-+⎪⎭⎫ ⎝⎛+-=x x x 3203134[解答]解:根据题意得x 1+x 2=,x 1x 2=﹣, (1)原式=x 1x 2+5(x 1+x 2)+25=﹣+5×+25=; (2)原式=x 1x 2(x 1+x 2)=﹣×=﹣. 23.大名童装平均每天可售出20件,每件盈利40元.因新冠肺炎影响,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装每降价4元,那么平均每天就可多售出8件.如果要盈利1200元,那每件降价多少元?[分析]设每件降价x 元,则平均每天可售出件,根据总利润=每件童装获得的利润×销售数量,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.[解答]解:设每件降价x 元,则平均每天可售出件, 依题意,得:(40﹣x )=1200, 整理,得:x 2﹣30x +200=0,解得:x 1=10,x 2=20.又∵要尽量减少库存,∴x =20.答:每件降价20元.24.合肥长江180艺术街区进行绿化改造,用一段长40m 的篱笆和长15m 的墙A B ,围城一个矩形的花园,设平行于墙的一边D E 的长为xm ;(1)如图1,如果矩形花园的一边靠墙A B ,另三边由篱笆C D EF 围成,当花园面积为150m 2时,求x 的值;31343431376343194⎪⎭⎫ ⎝⎛+4820x ⎪⎭⎫ ⎝⎛+4820x ⎪⎭⎫ ⎝⎛+4820x(2)如图2,如果矩形花园的一边由墙A B 和一节篱笆B F 构成,另三边由篱笆A D EF 围成,当花园面积是150m 2时,求B F 的长.[分析](1)设平行于墙的一边D E 的长为xm ,则C D 的长为m ,利用矩形的面积公式即可得出关于x 的一元二次方程,解之取小于15的值即可得出结论;(2)设B F 的长为y ,利用矩形的面积公式即可得出关于y 的一元二次方程,解之即可求出结论. [解答]解:(1)由题意得:(40﹣x )x =150; 解得:x 1=10,x 2=30,∵30>15∴x =30舍去,∴x =10m ;答:x 的值为10m ;(2)设B F =y ;则(25﹣y )(y +15)=150; 解得y 1=15,y 2=﹣5(舍去),答:B F 的长为15m .240x -2121。
人教版九年级上册第21章《一元二次方程》达标测试卷 附答案
4.解:把 x=﹣3 代入方程 x2+ax+a=0 得 9﹣3a+a=0, 解得 a=4.5. 故选:B.
5.解:设全市 5G 用户数年平均增长率为 x,则 2020 年底全市 5G 用户数为 2(1+x)万户, 2021 年底全市 5G 用户数为 2(1+x)2 万户, 依题意,得:2+2(1+x)+2(1+x)2=8.72, 整理,得:x2+3x﹣1.36=0, 解得:x1=0.4=40%,x2=﹣3.4(不合题意,舍去). 故选:C.
项式 x2+2ax﹣3a2 中先加上一项 a2,使它与 x2+2ax 成为一个完全平方式,再减去 a2,整
个式子的值不变,于是有:
x2+2ax﹣3a2
=(x2+2ax+a2)﹣a2﹣3a2
=(x+a)2﹣4a2
=(x+a)2﹣(2a)2
=(x+3a)(x﹣a)
像这样,先添一适当项,使式中出现完全平方式,再减去这项,使整个式子的值不变的
8 / 12
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
∵(a※x)※x= ,
∴(ax+x)x+x= ,
整理得(a+1)x2+x﹣ =0,
根据题意得 a+1≠0 且△=12﹣4(a+1)×(﹣ )=0,
∴a=﹣ .
故答案为﹣ .
三.解答题(共 7 小题,满分 66 分) 19.解:(1)x2+4x=﹣3
1.关于 x 的方程 x +x﹣3=0 是一元二次方程,则( )
人教版九年级数学上册《第21章一元二次方程》单元测试卷-附答案
人教版九年级数学上册《第21章一元二次方程》单元测试卷-附答案学校:___________班级:___________姓名:___________考号:___________1.把一元二次方程(x+2)(x−3)=2x−6)化为一般形式,并写出它的二次项系数为,一次项系数为,常数项为.2.已知(a2−3a+2)x a2−5a+6+3x+5=0是关于x的一元二次方程,则a=.3.将一元二次方程x2−6x=2化成(x+ℎ)2=k的形式,则ℎ=.4.已知方程x2+bx+4=0的一个根是1,则它的另一根是.5.若关于x的一元二次方程(a−2)x2+4x−a2+2a=0有一个根为0,则a=.6.若关于x的一元二次方程(k−3)x2−4kx+4k=3有实数根,则k的取值范围为.7.已知(x2+y2+1)(x2+y2−3)=5,则x2+y2的值等于.8.若关于x的方程(x+ℎ)2+k=0(h,k均为常数)的解是x1=−3,x2=2则关于y的方程(x+ℎ−3)2+k= 0的解是.9.已知x1,x2是方程x2−x−2024=0的两个实数根,则代数式x13−2024x1+x22的值为.10.若实数m,n分别满足m2+2023m+2024=0,n2+2023n+2024=0且m≠n,则1m +1n的值为.11.已知实数a是关于x的一元二次方程x2−2024x+1=0的一个解,则a3−2024a2−2024a2+1的值是.12.等腰三角形的底边长为6,腰长是方程x2−8x+15=0的一个根,则该等腰三角形的周长为.13.若方程x2−17x+60=0的两个不相等的实数根,恰好是一个直角三角形的两条边长,则此直角三角形的第三条边长是.14.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若方程有一根x=−1,则b−a−c=0;②若a+b+c=0,则b2−4ac≥0;③若方程a(x−1)2+b(x−1)+c=0的两个根是x1=2,x2=5那么方程ax2+bx+c=0的两个根为x1=1x2=4;④若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立.其中正确的有个.(填个数)15.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,若设主干长出x个支干,则可列方程为.16.某型号的手机原来每台售价800元,经过两次降价,且每次降价的百分率相同,现在每台售价为512元,则每次降价的百分率是.17.现有一张矩形纸片,其周长为36cm,将纸片的四个角各剪下一个边长为2cm的正方形,然后沿虚线(如图所示)将纸片折成一个无盖的长方体.如果所得的长方体的底面积是24cm2,设原矩形纸片的长是xcm,那么可列出方程为.18.《九章算术》中有一题:“今有二人同立,甲行率六,乙行率四,乙东行,甲南行十步而斜东北与乙会,问甲乙各行几何?”大意是说:“甲、乙二人同时从同一地点出发,甲的速度为6,乙的速度为4,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇,甲、乙各走了多少步?”请问甲走的步数是.19.如图,在矩形ABCD中AB=10cm,AD=8cm点P从点A出发沿AB以2cm/s的速度向点B运动,同时点Q从点B出发沿BC以1cm/s的速度向点C运动,点P到达终点后,P、Q两点同时停止运动,则秒时,△BPQ的面积是6cm2.20.某工厂生产的某种产品按质量分为10个档次,第一档次(最低档次)的产品一天能生产95件,每件利润6元,每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产的是第三档的产品时,每件利润为元;(2)若生产第x档的产品一天的总利润为1120元,则该产品的质量档次为第档.参考答案1.解:(x+2)(x−3)=2x−6x2−3x+2x−6=2x−6x2−x−2x−6+6=0x2−3x=0∴一般形式为:x2−3x=0,二次项系数为1,一次项系数为−3,常数项为0.2.解:∴方程(a2−3a+2)x a2−5a+6+3x+5=0是关于x的一元二次方程∴a2−3a+2≠0,a2−5a+6=2解得a≠1且a≠2,a=1或a=4故a=4故答案为:4.3.解:∴ x2−6x=2∴x2−6x+9=11∴(x−3)2=11∴ℎ=−3.故答案为:−3.4.解:设另一根为m,根据根与系数的关系可得:m×1=4∴m=4∴方程x2+bx+4=0的另一个根是4.故答案为:4.5.解:把x=0代入方程(a−2)x2+4x−a2+2a=0得:−a2+2a=0解得a=0或a=2∴方程(a−2)x2+4x−a2+2a=0是关于x的一元二次方程∴a−2≠0∴a≠2.∴a的值为0.故答案为:0.6.解:∵关于x的一元二次方程(k−3)x2−4kx+4k=3有实数根即方程(k−3)x2−4kx+4k−3=0,且k−3≠0∴Δ=(−4k)2−4(k−3)(4k−3)≥0k≠3解得:k≥35∴k的取值范围为k≥3且k≠35且k≠3.故答案为:k≥357.解:设x2+y2=k∴(k+1)(k−3)=5∴k2−2k−3=5,即k2−2k−8=0∴k=4或k=−2∴x2+y2的值一定是非负数∴x2+y2=4.故答案为:48.解:∵关于x的方程(x+ℎ)2+k=0(ℎ,k均为常数)的解是x1=−3x2=2∴(x+ℎ−3)2+k=0的解是x−3=−3或x−3=2,即x1=0x2=5.故答案为:x1=0x2=5.9.解:把x1代入原方程得:x12−x1−2024=0∴x12−2024=x1∴x1,x2是方程x2−x−2024=0的两个实数根∴x1+x2=−ba =1x1⋅x2=ca=−2024∴x13−2024x1+x22=x1(x12−2024)+x22=x12+x22=(x1+x2)2−2x1⋅x2=12−2×(−2024)=4049;故答案为:4049.10.解:∴实数m,n分别满足m2+2023m+2024=0,n2+2023n+2024=0∴m和n是x2+2023x+2024=0的两个根∴m+n=−2023mn=2024∴1 m +1n=m+nmn=−20232024.故答案为:−2023202411.解:∵实数a是关于x的一元二次方程x2−2024x+1=0的一个解∴a2−2024a+1=0∴a2+1=2024aa2−2024a=−1a3−2024a2−2024 a2+1=a(a2−2024a)−2024 2024a=a×(−1)−1 a=−a−1 a=−a2+1 a=−2024a a=−2024故答案为:−202412.解:∴x2−8x+15=0∴(x−3)(x−5)=0则x−3=0或x−5=0解得x1=3 x2=5①若腰长为3,此时三角形三边长度为3、3、6,显然不能构成三角形,舍去;②若腰长为5,此时三角形三边长度为5、5、6,可以构成三角形所以该等腰三角形的周长为5+5+6=16故答案为:16.13.解:解方程x2−17x+60=0得:x=12或5即直角三角形的两边为12或5当12为直角边时,第三边为:√122+52=13;当12为斜边时,第三边为:√122−52=√119;故答案为:13或√119.14.解:①若方程有一根x=−1,则a−b+c=0,即b−a−c=0,故①正确;②若a+b+c=0,则可知方程有一个根为x=1则b2−4ac≥0,故②正确;③若方程a(x−1)2+b(x−1)+c=0的两个根是x1=2 x2=5所以方程ax2+bx+c=0的两个根为x1=2−1=1,x2=5−1=4故③正确;④若c是方程ax2+bx+c=0的一个根则ac2+bc+c=0当c≠0时,则一定有ac+b+1=0成立,故④错误.综上分析可知:其中正确的是①②③,共3个.故答案为:3.15.解:设主干长出x个支干,小分支的数量为x⋅x=x2(个)根据题意可列出方程:1+x+x2=91故答案为:1+x+x2=91.16.解:设每次降价的百分率是x∴原来每台售价800元,经过两次降价,且每次降价的百分率相同,现在每台售价为512元∴800×(1−x)2=512∴x1=20%,x2=180%>100%(舍去)∴每次降价的百分率是20%.故答案为:20%17.解:设原矩形纸片的长是x cm,则宽为(18−x)cm长方体纸盒的长为(x−4)cm,宽为(18−x−4)cm,高为2cm,由长方体的底面积是24cm2得:(x−4)(18−x−4)=24.故答案为:(x−4)(18−x−4)=24.18.解:设甲、乙两人相遇的时间为t,则乙走了4t步,甲斜向北偏东方向走了(6t−10)步,则依题意得:102+(4t)2=(6t−10)2整理得:20t2−120t=0解得:t1=6,t2=0(不合题意,舍去)∴4t=4×6=24.故甲走的步数是36.故答案为:36.19.解:设运动时间为t秒,则PB=(10−2t)cm,BQ=tcmBP⋅BQ=6cm2∴S△BPQ=12t(10−2t)=6∴12整理得:t2−5t+6=0解得:t1=2t2=3∴2或3秒时,△BPQ的面积是6cm2.故答案为:2或3.20.解:(1)根据题意得:6+2×2=6+4=10(元)∴若生产的是第三档的产品时,每件利润为10元故答案为:10;(2)根据题意得:生产第x档的产品的产量为:[95−5(x−1)]件生产第x档的产品的每件利润为:[6+2×(x−1)]元则[6+2×(x−1)]×[95−5(x−1)]=1120整理得:x2−18x+72=0解得:x1=6,x2=12(不符合题意,舍去)∴若生产第x档的产品一天的总利润为1120元,则该产品的质量档次为第6档故答案为:6.。
初中数学 人教版 九年级上册 第21章 一元二次方程 单元考试测试卷(含解析答案)
初中数学 人教版 九年级上册 第21章 一元二次方程 单元考试测试卷(含解析答案)1 / 6第21章 一元二次方程 单元测试卷一、单选题(共10题;共30分)1.下列方程是关于 的一元二次方程的是 A.B.C.D.2.将一元二次方程x 2-6x+5=0配方后,原方程变形为( )A. (x-3)2=5 B. (x-6)2=5 C. (x-6)2=4 D. (x-3)2=4 3.已知点A (m 2-2,5m+4)在第一象限角平分线上,则m 的值是( )A. 6B. -1C. 2或3D. -1或64.若关于x 的一元二次方程x 2﹣2x ﹣k+1=0有两个不相等的实数根,则一次函数y=kx ﹣k 的大致图象是( )A.B.C.D.5.如果关于 的方程 有两个实数根,则 满足的条件是( )A.B.C.且D.且6.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( ) A. 9人 B. 10人 C. 11人 D. 12人7.已知一个直角三角形的两条直角边的长恰好是方程x 2﹣3x =4(x ﹣3)的两个实数根,则该直角三角形斜边上的中线长是( )A. 3B. 4C. 6D. 2.58.若一元二次方程x 2﹣x ﹣2=0的两根为x 1 , x 2 , 则(1+x 1)+x 2(1﹣x 1)的值是( ) A. 4 B. 2 C. 1 D. ﹣29.王叔叔从市场上买了一块长80cm ,宽70cm 的矩形铁皮,准备制作一个工具箱.如图,他将矩形铁皮的四个角各剪掉一个边长xcm 的正方形后,剩余的部分刚好能围成一个底面积为3000cm 2的无盖长方形工具箱,根据题意列方程为( )A. (80﹣x )(70﹣x )=3000B. 80×70﹣4x 2=3000C. (80﹣2x )(70﹣2x )=3000D. 80×70﹣4x 2﹣(70+80)x=300010.如图的六边形是由甲、乙两个长方形和丙、丁两个等腰直角三角形所组成,其中甲、乙的面积和等于丙、丁的面积和.若丙的一股长为2,且丁的面积比丙的面积小,则丁的一股长为何?( )A. B. C. 2﹣ D. 4﹣2二、填空题(共6题;共18分)11.方程 转化为一元二次方程的一般形式是________.12.一元二次方程的根是________.13.关于x 的一元二次方程(m ﹣3)x 2+x+(m 2﹣9)=0的一个根是0,则m 的值是________. 14.若一元二次方程x 2+2kx+k 2-2k+1=0的两个根分别为x 1 , x 2 , 满足x 12+x 22=4,则k 的值=________。
数学九年级上册《一元二次方程》单元测试卷含答案
人教版数学九年级上学期《一元二次方程》单元测试时间:100分钟满分:100分一.选择题(每题3分,共30分)1.下列方程中,一元二次方程共有()①3x2+x=20 ②2x2﹣3xy+4=0 ③x3﹣x=1 ④x2=1A.1个B.2个C.3个D.4个2.若关于x的方程x2+(m+1)x+m2=0的两个实数根互为倒数,则m的值是()A.﹣1 B.1或﹣1 C.1 D.23.一元二次方程x2+3x﹣1=0的解的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根D.只有一个解4.已知关于x的一元二次方程x2﹣x+a2﹣1=0的一个根为0,则a的值为()A.1 B.﹣1 C.±1 D.5.若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为()A.B.1 C..4 D.36.已知M=m﹣4,N=m2﹣3m,则M与N的大小关系为()A.M>N B.M=N C.M≤N D.M<N7.如图,在△ABC中,AB⊥BE,BD⊥BC,DE=BE,设BE=a,AB=b,AE=c,则以AD和AC 的长为根的一元二次方程是()A.x2﹣2cx+b2=0 B.x2﹣cx+b2=0C.x2﹣2cx+b=0 D.x2﹣cx+b=08.如图,把长40cm,宽30cm的长方形纸板剪掉2个小正方形和2个小长方形(阴影部分即剪掉部分),将剩余的部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm (纸板的厚度忽略不计),若折成长方体盒子的表面积是950cm2,则x的值是()A .3cmB .4cmC .4.8cmD .5cm9.已知x 1,x 2是方程x 2﹣3x ﹣2=0的两根,则x 12+x 22的值为( ) A .5B .10C .11D .1310.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角DA 和DC (两边足够长),再用28m 长的篱笆围成一个面积为192m 2矩形花园ABCD (篱笆只围AB 、BC 两边),在P 处有一棵树与墙CD 、AD 的距离分别是15m 和6m ,现要将这棵树也围在花园内(含边界,不考虑树的粗细),则AB 的长为( )A .8或24B .16C .12D .16或12二.填空题(每题4分,共20分)11.若关于x 的一元二次方程x 2+mx +2n =0有一个根是2,则m +n = .12.已知2是关于x 的方程:x 2﹣2mx +3m =0的一个根,而这个方程的两个根恰好是等腰△ABC 的两条边长,则△ABC 的周长是 .13.若m ,n 是方程x 2+x ﹣1=0的两个实数根,则mn 的值为 .14.若x 1,x 2是方程x 2﹣2mx +m 2﹣m ﹣1=0的两个根,且x 1+x 2=1﹣x 1x 2,则m 的值为 . 15.如图,EF 是一面长18米的墙,用总长为32米的木栅栏(图中的虚线)围一个矩形场地ABCD ,中间用栅栏隔成同样三块.若要围成的矩形面积为60平方米,则AB 的长为 米.三.解答题(每题10分,共50分) 16.解下列方程: (1)x 2+4x ﹣5=0(2)(x﹣3)2=2(3﹣x)17.人们常常在室内摆放一些绿色植物,这样做不仅增加了温馨舒适度,还有助于提高室内空气的质量.前年某小区为更好地提高住户的居住感受,为已入住的住户购置A、B两个品种的绿色植物共900盆.其中,A品种每盆20元,B品种每盆30元(1)已知该小区前年购置这900盆绿色植物共花费23000元,请分别求出已购置的A、B 品种的数量;(2)今年该小区决定再次为已入住的住户购置绿色植物C、D两个新品种.已知C品种今年每盆的价格比A品种前年的价格优惠a%,D品种今年每盆的价格比B品种前年的价格优惠a%.由于小区入住率的提高,今年需要购置C品种的数量比A品种前年购置的数量增加了a%,购置D品种的数量比B品种前年购置的数量增加了a%,于是今年的总花费比前年增加了a%.求a的值.18.先阅读下面的内容,再解决问题.对于形如x2+2xa+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式,但对于二次三项式x2+2xa﹣3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2xa ﹣3a2中先加上一项a2,使它与x2+2xa的和成为一个完全平方式,再减去a2,整个式子的值不变.于是有x2+2xa﹣3a2=(x2+2xa+a2)﹣a2﹣3a2=(x+a)2﹣4a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a)像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为”配方法”.利用”配方法”,解决下列问题:(1)分解因式a2﹣8a+15;(2)若;①当a,b,m满足条件:2a×4b=8m时,直接写出m的值为;②若△ABC的三边长是a、b、c,且c为奇数,求△ABC的周长.19.某商店以每件40元的价格进了一批热销商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品.(1)求该商品平均每月的价格增长率;(2)因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x元,则x为多少元时商品每月的利润可达到4000元.20.滨江某旅行社为吸引市民组团去旅游,推出了如下收费标准:(1)若某单位员工正好有25人,应支付给旅行社旅游费用多少元?(2)某单位组织员工去凤凰古城旅游,共支付给该旅行社旅游费用27000元,请问该单位这次共有多少员工去凤凰古城旅游?参考答案一.选择题1.解:一元二次方程有:3x2+x=20,x2=1,共2个,故选:B.2.解:由题意可知:△=(m+1)2﹣4m2=﹣3m2+2m+1,由题意可知:m2=1,∴m=±1,当m=1时,△=﹣3+2+1=0,当m=﹣1时,△=﹣3﹣2+1=﹣4<0,不满足题意,故选:C.3.解:∵△=32﹣4×(﹣1)=13>0,∴方程有两个不相等的实数根.故选:B.4.解:把x=0代入方程x2﹣x+a2﹣1=0得:a2﹣1=0,∴a=±1.故选:C.5.解:由题意可知:a、b是方程x2﹣4x+1=0的两个不同的实数根,∴由根与系数的关系可知:ab=1,a+b=4,∴a2+1=4a,b2+1=4b,∴原式=+===1,故选:B.6.解:N﹣M=(m2﹣3m)﹣(m﹣4)=m2﹣3m﹣m+4=m2﹣4m+4=(m﹣2)2≥0,∴N﹣M≥0,即M≤N,故选:C.7.解:∵AB⊥BE,BD⊥BC,∴∠ABE=∠DBC=90°,在Rt△ABE中,a2+b2=c2,∵DE=BE=a,∴∠EBD=∠EDB,∵∠EBD+∠EBC=90°,∠EDB+∠C=90°,∴∠EBC=∠C,∴CE=BE=a,∴AC=AE+CE=c+a,∵AD+AC=c﹣a+c+a=2c,AD×AC=(c﹣a)(c+a)=c2﹣a2=b2,∴以AD和AC的长为根的一元二次方程可为x2﹣2cx+b2=0.故选:A.8.解:依题意,得:40×30﹣2x2﹣2x•(x+)=950,整理,得:x2+20x﹣125=0,解得:x1=5,x2=﹣25(不合题意,舍去).故选:D.9.解:根据题意得x1+x2=3,x1x2=﹣2,所以x12+x22=(x1+x2)2﹣2x1x2=32﹣2×(﹣2)=13.故选:D.10.解:设AB=xm,则BC=(28﹣x)m,依题意,得:x(28﹣x)=192,解得:x1=12,x2=16.∵P处有一棵树与墙CD、AD的距离分别是15m和6m,∴x2=16不合题意,舍去,∴x=12.故选:C.二.填空题(共5小题)11.解:∵2(n≠0)是关于x的一元二次方程x2+mx+2n=0的一个根,∴4+2m+2n=0,∴n+m=﹣2,故答案为:﹣2.12.解:把x=2代入方程得4﹣4m+3m=0,解得m=4,则原方程为x2﹣8x+12=0,解得x1=2,x2=6,因为这个方程的两个根恰好是等腰△ABC的两条边长,所以△ABC的腰为6,底边为2,则△ABC的周长为6+6+2=14.故答案为14.13.解:∵m,n是方程x2+x﹣1=0的两个实数根,∴mn=﹣1.故答案为:﹣1.14.解:∵x1,x2是方程x2﹣2mx+m2﹣m﹣1=0的两个根,∴x1+x2=2m,x1x2=m2﹣m﹣1.∵x1+x2=1﹣x1x2,即2m=1﹣(m2﹣m﹣1),∴m1=﹣2,m2=1.∵方程x2﹣2mx+m2﹣m﹣1=0有两个实数根,∴△=(﹣2m)2﹣4(m2﹣m﹣1)=4m+4≥0,解得:m≥﹣1,∴m=1.故答案为:1.15.解:∵与墙头垂直的边AD长为x米,四边形ABCD是矩形,∴BC=MN=PQ=x米,∴AB=32﹣AD﹣MN﹣PQ﹣BC=32﹣4x(米),根据题意得:x(32﹣4x)=60,解得:x=3或x=5,当x=3时,AB=32﹣4x=20>18(舍去);当x=5时,AB=32﹣4x=12(米),∴AB的长为12米.故答案为:12.三.解答题(共5小题)16.解:(1)∵x2+4x﹣5=0,∴(x+5)(x﹣1)=0,则x+5=0或x﹣1=0,解得x=﹣5或x=1;(2)∵)(x﹣3)2+2(x﹣3)=0,∴(x﹣3)(x﹣1)=0,则x﹣3=0或x﹣1=0,解得x=3或x=1.17.解:(1)设前年已购置的A、B品种的数量分别为x盆和y盆,由题意得:解得:答:前年已购置的A品种400盆,B品种500盆.(2)由题意得:20(1﹣a%)×400(1+a%)+30(1﹣a%)×500(1+a%)=23000(1+a%)设a%=t则20(1﹣t)×400(1+)+30(1﹣t)×500(1+t)=23000(1+t)化简得:﹣10t2+3t=0∴t(﹣10t+3)=0∴t1=0(舍),t2=∴a%=∴a=30答:a的值为30.18.解:(1)a2﹣8a+15=a2﹣8a+16﹣1=(a﹣4)2﹣12=(a﹣3)(a﹣5)(2)∵;∴(a2﹣14a+49)+(b2﹣8b+16)+|m﹣c|=0∴(a﹣7)2+(b﹣4)2+|m﹣c|=0∴a﹣7=0,b﹣4=0∴a=7,b=4∵2a×4b=8m∴27×44=8m∴27×28=23m时∴215=23m∴15=3m∴m=5;故答案为:5.②由①知,a=7,b=4,∵△ABC的三边长是a,b,c,∴3<c<11,又∵c边的长为奇数,∴c=5,7,9,当a=7,b=4,c=5时,△ABC的周长是:7+4+5=16,当a=7,b=4,c=7时,△ABC的周长是:7+4+7=18,当a=7,b=4,c=9时,△ABC的周长是:7+4+9=20.19.解:(1)设该商品平均每月的价格增长率为m,依题意,得:50(1+m)2=72,解得:m1=0.2=20%,m2=﹣2.2(不合题意,舍去).答:该商品平均每月的价格增长率为20%.(2)依题意,得:(x﹣40)[188+(72﹣x)]=4000,整理,得:x2﹣300x+14400=0,解得:x1=60,x2=240.∵商家需尽快将这批商品售出,∴x=60.答:x为60元时商品每天的利润可达到4000元.20.解:(1)1000×25=25000(元).答:应支付给旅行社旅游费用25000元.(2)设该单位这次共有x名员工去凤凰古城旅游,∵27000÷1000=27>25,27000÷700=38不为整数,∴25<x<25+=40.依题意,得:[1000﹣20(x﹣25)]x=27000,整理,得:x2﹣75x+1350=0,解得:x1=30,x2=45(不合题意,舍去).答:该单位这次共有30名员工去凤凰古城旅游.。
人教版九年级上册数学 第21章 一元二次方程 单元测试卷(含答案)
第21章 一元二次方程 单元测试卷一、填空题1、关于x 的一元二次方程(m ﹣2)x 2+3x+m 2﹣4=0有一个解是0,则m= . 2、已知关于x 的一元二次方程x 2﹣2x+k=0有两个不相等的实数根,则k 的取值范围是 .3、已知圆锥底面圆的半径为6cm ,它的侧面积为60πcm 2,则这个圆锥的高是 .4、已知m 、n 是关于x 的一元二次方程x 2﹣2ax+a 2+a ﹣2=0的两实根,那么m+n 的最大值是 . 5、若α、β是一元二次方程x 2+2x ﹣6=0的两根,则α2+β2= . 6、一元二次方程x 2+mx+2m=0(m ≠0)的两个实根分别为x 1,x 2,则 = .二、选择题7、下列选项中一元二次方程的是( )A .x=2y ﹣3B .2(x+1)=3C .2x 2+x ﹣4D .5x 2+3x ﹣4=08、一元二次方程x 2﹣2x=0的根是( )A .x 1=0,x 2=﹣2B .x 1=1,x 2=2C .x 1=1,x 2=﹣2D .x 1=0,x 2=29、将一块正方形铁皮的四角各剪去一个边长为3cm 的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm 3,则原铁皮的边长为( )A .10cmB .13cmC .14cmD .16cm10、某服装店原计划按每套200元的价格销售一批保暖内衣,但上市后销售不佳,为减少库存积压,两次连续降价打折处理,最后价格调整为每套128元.若两次降价折扣率相同,则每次降价率为( )A .8%B .18%C .20%D .25%11、如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为( )A .1米B .2米C .3米D .4米12、已知直角三角形的两条直角边的长恰好是方程的两根,则此直角三角形的斜边长为( ).A. B.3 C. D.1313、要组织一次篮球邀请赛,参赛的每个队之间都要比赛一场,计划安排15场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( )A .0.5 xx+1)=15B .0.5 x (x ﹣1)=15C .x (x+1)=15D .x (x ﹣1)=1514、由一元二次方程x 2+px+q=0的两个根为p 、q ,则p 、q 等于 ( )A.0B.1C.1或-2D.0或1 15、方程的两根分别为,,且,则的取值范围是 ( )A.3m 1<<B.1m 0<<C.3m 0<<D.3m 2<<四、简答题16、试求实数(≠1),使得方程的两根都是正整数.17、已知关于的一元二次方程有两个实数根和.(1)求实数的取值范围;(2)当时,求的值.18、如图,在矩形ABCD中,AB=4cm,BC=cm,点P从点A出发以1cm/s的速度移动到点B;点P出发几秒后,点P、A的距离是点P、C距离的倍?19、某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)20、某花圃用花盆培育某种花苗,经试验发现每盆花的盈利与每盆花中花苗的株数有如下关系:每盆植入花苗4株时,平均单株盈利5元;以同样的栽培条件,若每盆每增加1株花苗,平均单株盈利就会减少0.5元.要使每盆花的盈利为24元,且尽可能地减少成本,则每盆花应种植花苗多少株?21、一个足球被从地面向上踢出,它距地面高度可以用二次函数刻画,其中表示足球被踢出后经过的时间.(1)解方程,并说明其根的实际意义;(2)求经过多长时间,足球到达它的最高点?最高点的高度是多少?22、随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2014年底拥有家庭轿车64辆,2016年底家庭轿车的拥有量达到100辆.(1)若该小区2014年底到2016年底家庭轿车拥有量的年平均增长率都相同,求该小区到2017年底家庭轿车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,求该小区最多可建室内车位多少个?23、某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500千克,销售价每涨价1元,月销售量就减少10千克.(1) 写出月销售利润y(单位:元) 与售价x(单位:元/千克) 之间的函数解析式.(2)当售价定为多少时会获得最大利润?求出最大利润.(3) 商店想在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为多少?24、如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解答下列问题.(1)问:在第6个图中,黑色瓷砖有__________块,白色瓷砖有__________块;(2)某商铺要装修,准备使用边长为1米的正方形白色瓷砖和长为1米、宽为0.5米的长方形黑色瓷砖来铺地面.且该商铺按照此图案方式进行装修,瓷砖无须切割,恰好能完成铺设.已知白色瓷砖每块100元,黑色瓷砖每块50元,贴瓷砖的费用每平方米15元.经测算总费用为15180元.请问两种瓷砖各需要买多少块?参考答案一、填空题1、﹣2 .【解答】解:把x=0代入一元二次方程(m﹣2)x2+3x+m2﹣4=0,得m2﹣4=0,即m=±2.又m﹣2≠0,m≠2,取m=﹣2.故答案为:m=﹣2.2、k<3 .【解答】解:∴a=1,b=﹣2,c=k,方程有两个不相等的实数根,∴△=b2﹣4ac=12﹣4k>0,∴k<3.故填:k<3.3、8 cm【解答】解:设圆锥的母线长为l,根据题意得l•2π•6=60π,解得l=10,所以圆锥的高==8(cm).故答案为8.4、4 .【解答】解:根据题意得△=4a2﹣4(a2+a﹣2)≥0,解得a≤2,因为m+n=2a,所以m+n≤4,所以m+n的最大值为4.故答案为45、16 .【解答】解:∵α、β是一元二次方程x2+2x﹣6=0的两根,∴α+β=﹣2,αβ=﹣6,∴α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=4+12=16,故答案为:16.6、﹣.【解答】解:∵一元二次方程x2+mx+2m=0(m≠0)的两个实根分别为x1,x2,∴x1+x2=﹣m,x1•x2=2m,∴==﹣.二、选择题7、D【解答】解:A、是二元一次方程,故此选项错误;B、是一元一次方程,故此选项错误;C、不是方程,故此选项错误;D、符合一元二次方程的定义,故此选项正确;故选:D.8、D【解答】解:x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x1=0,x2=2,故选D9、D【解答】解:正方形铁皮的边长应是x厘米,则没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据题意列方程得,(x﹣3×2)(x﹣3×2)×3=300,解得x1=16,x2=﹣4(不合题意,舍去);答:正方形铁皮的边长应是16厘米.故选:D.10、C【解答】解:设每次降价的百分率为x,由题意,得200(1﹣x)2=128,解得:x1=0.2,x2=1.8(不符合题意,舍去).答:每次降价的百分率为20%.故选C11、C【解答】解:设道路的宽为x,根据题意得20x+33x﹣x2=20×33﹣510整理得x2﹣53x+150=0解得x=50(舍去)或x=3所以道路宽为3米.故选C.12、C13、B【解答】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=15.故选B.14、C15、A四、简答题16、解:因式分解得:,所以或.因为,所以,,因为两根都是正整数,所以,.17、解:(1)一元二次方程x2+(2m-1)x+m2=0有两个实数根,∴△=(2m-1)2-4×1×m2=-4m+1≥0,∴m≤;(2)当x12-x22=0时,即(x1+x2)(x1-x2)=0,∴x1-x2=0或x1-x2=0当x1+x2=0,依据一元二次方程根与系数的关系可得x1+x2=-(2m-1)∴-(2m-1)=0,∴m=又∵由(1)一元二次方程x2+(2m-1)x+m2=0有两个实数根时的取值范围是m≤,∴m=不成立,故m无解;当时x1-x2=0,x1=x2,方程有两个相等的实数根,∴△=(2m-1)2-4×1×m2=-4m+1=0,∴m=综上所述,当x1-x2=0时,m=。
数学九年级上学期《一元二次方程》单元检测卷附答案
九年级上册数学《一元二次方程》单元测试卷(满分120分,考试用时120分钟)一、选择题(每小题3分,共36分)1、若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的大致图象可能是DC BA OO O Ox yxyx yyx2.股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再张,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x ,则x 满足的方程是 A . 1011)1(2=+x B . 910)1(2=+x C . 101121=+x D . 91021=+x 3、根据下列表格中代数式c bx ax ++2与x 的对应值,判断方程)0(02≠=++a c bx ax 的一个根x的大致范围是( )x6.17 6.18 6.19 6.20 c bx ax ++2-0.03-0.010.020.06A .6< x <6.17B .6.17< x <6.18C .6.18< x <6.19D .6.19< x <6.20 4.已知2是关于x 的方程x 2﹣2mx +3m =0的一个根,并且这个方程的两个根恰好是等腰三角形A B C 的两条边长,则三角形A B C 的周长为( ) A . 10 B . 14C . 10或14D . 8或105.已知分别是三角形的三边长,则一元二次方程的根的情况是( )A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根6、方程9733322=-+-+x x x x 的全体实数根之积为( )A 、60B 、60-C 、10D 、10- 7、若方程()()02=-+-+-a c x c b x b a 是关于x 的一元二次方程,则必有( ).A .A =B =C B .一根为1 C .一根为-1D .以上都不对8、我们解一元二次方程3x 2﹣6x =0时,可以运用因式分解法,将此方程化为3x (x ﹣2)=0,从而得到两个一元一次方程:3x =0或x ﹣2=0,进而得到原方程的解为x 1=0,x 2=2.这种解法体现的数学思想是( ) A . 转化思想 B . 函数思想 C . 数形结合思想 D . 公理化思想9、定义:如果一元二次方程20(0)ax bx c a ++=≠满足0a b c ++=,那么我们称这个方程为“凤凰”方程. 已知20(0)ax bx c a ++=≠ 是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是A .a c =B .a b =C .b c =D . a b c ==10、小刚在解关于x 的方程A x 2+B x +C =0(A ≠0)时,只抄对了A =1,B =4,解出其中一个根是x =–1.他核对时发现所抄的C 比原方程的C 值小2,则原方程的根的情况是A .不存在实数根B .有两个不相等的实数根C .有一个根是x =–1D .有两个相等的实数根11、有两个一元二次方程:M :20ax bx c ++=,N :20cx bx a ++=,其中0a c +=,以下列四个结论中,错误的是( )A 、如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根; B 、如果方程M 有两根符号相同,那么方程N 的两根符号也相同; C 、如果5是方程M 的一个根,那么15是方程N 的一个根; D 、如果方程M 和方程N 有一个相同的根,那么这个根必是1x =. 12、已知实数m ,n 满足020092=-+m m ,()102009112-≠=--mn n n ,则1n m-=( ). A 、12009 B 、2009 C 、-2009 D 、12009- 二、填空题(每小题3分,共18分)13.如图,在一块长12m,宽8m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m 2,设道路的宽为x m,则根据题意,可列方程为__________.14、等腰三角形三边长分别为2a b 、、,且a b 、是关于x 的一元二次方程2610x x n -+-=的两根,则n 的值为 .15、对于实数A ,B ,定义运算“﹡”:A ﹡B =()()22a ab a b ab b a b ⎧-≥⎪⎨-⎪⎩<.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x 1,x 2是一元二次方程x 2﹣5x+6=0的两个根,则x 1﹡x 2=16、已知关于x 的方程02=++c bx ax 的两根分别为3-和1,则方程02=++a cx bx 的两根为 . 17、如果m ,n 是两个不相等的实数,且满足m 2﹣m =3,n 2﹣n =3,那么代数式2n 2﹣mn +2m +2020= . 18、如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.以下关于倍根方程的说法,正确的是________.(写出所有正确说法的序号).①方程220x x --=是倍根方程;②若(2)()0x mx n -+=是倍根方程,则22450m mn n ++=; ③2pq =,则关于x 的方程230px x q ++=是倍根方程;④若方程20ax bx c ++=是倍根方程,且,则方程20ax bx c ++=的一个根为54. 三、解答题(共46分)19.(6分)如图,四边形 A C D E 是证明勾股定理时用到的一个图形,A 、B 、C 是 Rt ∆A B C 和 Rt ∆B ED 的边长,已知2=AE c ,这时我们把关于 x 的形如220++=ax cx b 二次方程称为“勾系一元二次方程”.请解决下列问题:(1)写出一个“勾系一元二次方程”;(2)求证:关于x的“勾系一元二次方程”220ax cx b的一++= ++=ax cx b,必有实数根;(3)若x=-1是“勾系一元二次方程” 220个根,且四边形A C D E的周长是62,求∆A B C 的面积.20、(8分)某网店准备销售一种多功能旅行背包,计划从厂家以每个120元的价格进货.(1)经过市场调查发现,当每个背包的售价为140元时,月均销量为980个,售价每增长10元,月均销量就相应减少30个,若使这种背包的月均销量不低于800个,每个背包售价应不高于多少元?(2)在实际销售过程中,由于原材料涨价和生产成本增加的原因,每个背包的进价为150元,而每个背包的售价比(1)中最高售价减少了A %(A >0),月均销量比(1)中最低月均销量800个增加了5A %,结果该店销售该背包的月均利润达到了40000元,求在实际销售过程中每个背包售价为多少元?21、(8分)阅读下面例题的解答过程,体会、理解其方法,并借鉴该例题的解法解方程. 例:解方程2110x x ---=解:(1)当10x -≥即1x ≥时.11x x -=-,原方程化为2(1)10x x ---=,即20x x -=,解得1201x x ==,.∵1x ≥,故0x =舍去,1x =是原方程的解 (2)当10x -<即1x <时.1(1)x x -=--,原方程化为2(1)10x x +--=,即220x x +-=,解得1212x x ==-,.∵1x <,故1x =舍去,2x =-是原方程的解. 综上所述,原方程的解为1212x x ==-,. 解方程:22240x x ++-=22. (8分)关于x 的一元二次方程x 2﹣3x +k =0有实数根.(1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程(m ﹣1)x 2+x +m ﹣3=0与方程x 2﹣3x +k =0有一个相同的根,求此时m 的值.23.(8分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=A 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想--转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3+x 2-2x=0,可以通过因式分解把它转化为x(x 2+x-2)=0,解方程x=0和x 2+x-2=0,可得方程x 3+x 2-2x=0的解. (1)问题:方程x 3+x 2-2x=0的解是x 1=0,x 2= ,x 3= ; (2)拓展:用“转化”思想求方程23x x +=的解;(3)应用:如图,已知矩形草坪A B C D 的长A D =8m ,宽A B =3m ,小华把一根长为10m 的绳子的一端固定在点B ,沿草坪边沿B A ,A D 走到点P 处,把长绳PB 段拉直并固定在点P ,然后沿草坪边沿PD 、D C 走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C .求A P 的长.24.(8分)实际问题:某商场为鼓励消费,设计了投资活动.方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有多少种不同的结果?模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果? 表①所取的2个整数1,21,3,2,3如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果? 表②如表②,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有______种不同的结果. (4)从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和共有______种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有___ 种不同的结果. (2)从1,2,3,…,n (n 为整数,且4n ≥)这n 个整数中任取3个整数,这3个整数之和共有______种不同的结果.探究三:从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数,这4个整数之和共有______种不同的结果.归纳结论:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有______种不同的结果. 问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有______种不同的优惠金额. 拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,3n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,这a 个整数之和共有______种不同的结果.参考答案一、选择题(每小题3分,共36分)1、若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的大致图象可能是DC BA[答案]B[分析]根据一元二次方程x 2﹣2x +kB +1=0有两个不相等的实数根, 得到判别式大于0,求出kB 的符号,对各个图象进行判断即可. [解析]∵x 2﹣2x +kB +1=0有两个不相等的实数根, ∴△=4﹣4(kB +1)>0,解得kB <0,A .k >0,B >0,即kB >0,故A 不正确;B .k >0,B <0,即kB <0,故B 正确;C .k <0,B <0,即kB >0,故C 不正确;D .k >0,B =0,即kB =0,故D 不正确; 故选:B .[考点]根的判别式;一次函数的图象..[点评]本题考查的是一元二次方程根的判别式和一次函数的图象,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.2.股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再张,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x ,则x 满足的方程是 A . 1011)1(2=+x B . 910)1(2=+x C . 101121=+x D . 91021=+x [答案]B[分析]我们可以将整个原价假设为1(如果你觉得不放心,也可以假设为a 或m 等与现有字母不冲突的任何字母),那么跌停后的价格就是0.9.之后两天中的第一天,是在0.9的基础上增加了x ,那么就是到了)1(9.0x +;接下去要注意的是:虽然第二天增长率同样为x ,但是起步价变了,已经不是0.9,而是前一天收市之后的)1(9.0x +,它是在)1(9.0x +的基础上增加到了)1(x +倍(请注意增加和增加到的区别),因此,现在的股价是)1()]1(9.0[x x +⋅+,也就是2)1(9.0x +.[解析]跌停后,股价为0.9,连续两天按照x 的增长率增长后,股价为2)1(9.0x +,根据题意,得方程1)1(9.02=+x ,那么正确选项为B .[考点]本题考查了增长率的概念和方程的基本性质[点评]首先必须要分清楚增加(或减少)的这一部分的量和原来的基础“1”有没有关系? 其次,这个基础“1”前后是否发生了变化.3、根据下列表格中代数式c bx ax ++2与x 的对应值,判断方程)0(02≠=++a c bx ax 的一个根x的大致范围是( )A .6< x <6.17B .6.17< x <6.18C .6.18< x <6.19D .6.19< x <6.20 [答案]C[解析]当6.18< x <6.19时,2ax bx c ++的值由负连续变化到正, 说明在6.18< x <6.19范围内一定有一个x 的值,使20ax bx c ++=, 即是方程20ax bx c ++=的一个解.故选C . [考点]利用夹逼法求近似解4.已知2是关于x 的方程x 2﹣2mx +3m =0的一个根,并且这个方程的两个根恰好是等腰三角形A B C 的两条边长,则三角形A B C 的周长为( ) A . 10 B . 14C . 10或14D . 8或10[答案]B[分析]先将x =2代入x 2﹣2mx +3m =0,求出m =4,则方程即为x 2﹣8x +12=0, 利用因式分解法求出方程的根x 1=2,x 2=6,分两种情况: ①当6是腰时,2是等边;②当6是底边时,2是腰进行讨论. 注意两种情况都要用三角形三边关系定理进行检验. [解析]∵2是关于x 的方程x 2﹣2mx +3m =0的一个根,∴22﹣4m +3m =0,m =4,∴x 2﹣8x +12=0,解得x 1=2,x 2=6. ①当6是腰时,2是等边,此时周长=6+6+2=14; ②当6是底边时,2是腰,2+2<6,不能构成三角形. 所以它的周长是14.故选B .[考点]解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形性质. [点评]此题主要考查了一元二次方程的解,解一元二次方程﹣因式分解法,三角形三边关系定理以及等腰三角形的性质,注意求出三角形的三边后,要用三边关系定理检验. 5.已知分别是三角形的三边长,则一元二次方程的根的情况是( )A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根 [答案]A 解析:因为又因为分别是三角形的三边长,所以所以所以方程没有实数根.故答案选A[考点]一元二次方程根的判别式. 6、方程9733322=-+-+x x x x 的全体实数根之积为( ) A 、60 B 、60- C 、10 D 、10- [答案]A[分析]设y x x =-+732,原方程化成23=-yy ,再整理成整式方程求解即可. [解析]设y x x =-+732,则23=-yy ∴0322=--y y ,解得11-=y ,32=y 当11-=y 时,1732-=-+x x ,解得2333±-=x 当32=y 时,3732=-+x x ,解得2=x 或5- ∴()605223332333=-⨯⨯--⨯+- [考点]换元法解分式方程.[点评]本题考查了用换元法解分式方程,解次题的关键是把732-+x x 看成一个整体来计算,即换元法思想.7、若方程()()02=-+-+-a c x c b x b a 是关于x 的一元二次方程,则必有( ).A .A =B =C B .一根为1 C .一根为-1D .以上都不对[答案]B .[解析]A 、当A =B =C 时,A -B =0,B -C =0,则式子不是方程,故错误;B 、把x =1代入方程的左边:A -B +B -C +C -A =0.方程成立,所以x =1是方程(A -B )x 2+(B -C )x +(C -A )=0的解;C 、把x =-1代入方程的左边:A -B +C -B +C -A =2(C -B )=0不一定成立,故选项错误;故选B .[考点]一元二次方程的解8、我们解一元二次方程3x 2﹣6x =0时,可以运用因式分解法,将此方程化为3x (x ﹣2)=0,从而得到两个一元一次方程:3x =0或x ﹣2=0,进而得到原方程的解为x 1=0,x 2=2.这种解法体现的数学思想是( )A . 转化思想B . 函数思想C . 数形结合思想D . 公理化思想[答案]A[解析]我们解一元二次方程3x 2-6x =0时,可以运用因式分解法,将此方程化为3x (x -2)=0,从而得到两个一元一次方程:3x =0或x -2=0,进而得到原方程的解为x 1=0,x 2=2.这种解法体现的数学思想是转化思想.(即将我们不熟悉的一元二次方程转化为熟悉的一元一次方程),故选A .[考点]数学思想9、定义:如果一元二次方程20(0)ax bx c a ++=≠满足0a b c ++=,那么我们称这个方程为“凤凰”方程. 已知20(0)ax bx c a ++=≠ 是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是A .a c =B .a b =C .b c =D . a b c == [答案]B . [分析]由条件可知A +B +C =0,再根据方程根的判别式得到到B 2-4A C =0,整理可得出结论.[解析]由条件可知A +B +C =0,所以B =-(A +C ),又因为方程有两个相等的实数根,所以△=0,即B 2-4A C =0,所以(A +C )2-4A C =0,整理可得(A -C )2=0,所以A =C ,故选B .[考点]根的判别式[点评]本题主要考查一元二次方程判别式与根的情况的判定,由条件到到知A +B +C =0和B 2-4A C =0是解题的关键.10、小刚在解关于x 的方程A x 2+B x +C =0(A ≠0)时,只抄对了A =1,B =4,解出其中一个根是x =–1.他核对时发现所抄的C 比原方程的C 值小2,则原方程的根的情况是A .不存在实数根B .有两个不相等的实数根C .有一个根是x =–1D .有两个相等的实数根[答案]A[解析]∵小刚在解关于x 的方程A x 2+B x +C =0(A ≠0)时,只抄对了A =1,B =4,解出其中一个根是x =–1,∴(–1)2–4+C =0,解得:C =3,故原方程中C =5,则B 2–4A C =16–4×1×5=–4<0,则原方程的根的情况是不存在实数根.故选A .[点睛]此题主要考查了根的判别式,正确得出C 的值是解题关键.11、有两个一元二次方程:M :20ax bx c ++=,N :20cx bx a ++=,其中0a c +=,以下列四个结论中,错误的是( )A 、如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根;B 、如果方程M 有两根符号相同,那么方程N 的两根符号也相同;C 、如果5是方程M 的一个根,那么15是方程N 的一个根; D 、如果方程M 和方程N 有一个相同的根,那么这个根必是1x =.[答案]D .[解析]根据一元二次方程根的判别式和根与系数的关系对各选项逐一分析作出判断:A 、∵M 有两个不相等的实数根,∴△>0,即240b ac ->.∴此时N 的判别式△=240b ac ->,故它也有两个不相等的实数根.B 、∵M 的两根符号相同:即120c x x a⋅=>,∴N 的两根之积=a c >0,故N 两个根也是同号的. C 、如果5是M 的一个根,则有:2550a b c ++=①,我们只需要考虑将15代入N 方程看是否成立,代入得:110255c b a ++=②,比较①与②,可知②式是由①式两边同时除以25得到,故②式成立. D 、比较方程M 与N 可得:将M -N 得到: ()2a c x a c -=-,∴1x =±. 故可知,它们如果有根相同的根可是1或1-.故选D .[考点]一元二次方程根的判别式和根与系数的关系.12、已知实数m ,n 满足020092=-+m m ,()102009112-≠=--mn n n ,则1n m -=( ). A 、12009 B 、2009 C 、-2009 D 、12009- [考点]一元二次方程根与系数的关系.[分析]根据题意:由020092=-+m m 得:011120092=-+⎪⎭⎫ ⎝⎛m m ;由02009112=--n n 得:()()0120092=--+-n n ,又因为1-≠mn ,即n m -≠1,因此可以把m1,n -作为一元二次方程0120092=-+x x 的两根,由根与系数的关系得:200911-=-n m . [解析]∵020092=-+m m ,02009112=--n n ∴011120092=-+⎪⎭⎫ ⎝⎛m m ,()()0120092=--+-n n ∵1-≠mn ∴n m -≠1 ∴把m 1,n -作为一元二次方程0120092=-+x x 的两根 ∴()2009111-=-+=-n m n m [点评]本题考查的是用构造一元二次方程,利用根与系数的关系解答问题,本题的关键是利用已知进行变形是关键所在,不要忽视了1-≠mn 这个条件隐含的题意.二、填空题(每小题3分,共18分)13.如图,在一块长12m,宽8m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m 2,设道路的宽为x m,则根据题意,可列方程为__________.[答案](12–x )(8–x )=77[解析]∵道路的宽应为x 米,∴由题意得,(12–x )(8–x )=77,故答案为:(12–x )(8–x )=77.[点睛]此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.14、等腰三角形三边长分别为2a b 、、,且a b 、是关于x 的一元二次方程2610x x n -+-=的两根,则n 的值为 .[答案]10.[解析]由题意可知,等腰三角形有两种情况:当A , B 为腰时,A =B ,由一元二次方程根与系数的关系,可得A +B =6 ,所以A =B =3,A B =9=n -1, 解得n =10;当2为腰时,A =2 (或B =2),此时2+B =6 (或A +2=6),解得B =4 (A =4),这时三边为2, 2, 4,不符合三角形三边关系,故不合题意.所以n 只能为10.故选B[考点]1.等腰三角形,2.一元二次方程根与系数的关系.15、对于实数A ,B ,定义运算“﹡”:A ﹡B =()()22a ab a b ab b a b ⎧-≥⎪⎨-⎪⎩<.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x 1,x 2是一元二次方程x 2﹣5x+6=0的两个根,则x 1﹡x 2=[答案]3或﹣3[分析]首先解方程x 2﹣5x+6=0,再根据A ﹡B =()()22a ab a b ab b a b ⎧-≥⎪⎨-⎪⎩<,求出x 1﹡x 2的值即可. [解析]∵x 1,x 2是一元二次方程x 2﹣5x+6=0的两个根,∴(x ﹣3)(x ﹣2)=0,解得:x=3或2,①当x 1=3,x 2=2时,x 1﹡x 2=32﹣3×2=3;②当x 1=2,x 2=3时,x 1﹡x 2=3×2﹣32=﹣3.故答案为:3或﹣3.[考点]解一元二次方程-因式分解法.[点评]此题主要考查了因式分解法解一元二次方程以及利用材料分析解决新问题,根据已知进行分类讨论是解题关键.16、已知关于x 的方程02=++c bx ax 的两根分别为3-和1,则方程02=++a cx bx 的两根为 .[答案]211=x ,12=x [分析]因为方程的两个根为3-和1,所以方程可以方程因式为()()013=-+x x a ,用含A 的式子表示B 和C ,代入后面的方程可以用因式分解求出方程的根.[解析]∵02=++c bx ax 的两根为3-和1 ∴()()013=-+x x a整理得:0322=-+a ax ax ∴a b 2=,a c 3-=把B ,C 代入方程02=++a cx bx ,得:0322=+-a ax ax()()0112=--x x a ∴211=x ,12=x [考点]解一元二次方程-因式分解法;一元二次方程的解.[点评]本题考查的是用因式分解法解一元二次方程,把方程的两根代入方程,整理后用含A 的式子表示B 和C ,然后把B ,C 代入后面的方程,用因式分解法可以求出方程的根.17、如果m ,n 是两个不相等的实数,且满足m 2﹣m =3,n 2﹣n =3,那么代数式2n 2﹣mn +2m +2020= .[答案]2031[分析]由于m ,n 是两个不相等的实数,且满足m 2﹣m =3,n 2﹣n =3,可知m ,n 是x 2﹣x ﹣3=0的两个不相等的实数根.则根据根与系数的关系可知:m +n =2,mn =﹣3,又n 2=n +3,利用它们可以化简2n 2﹣mn +2m +2020=2(n +3)﹣mn +2m +2020=2n +6﹣mn +2m +2020=2(m +n )﹣mn +2026,然后就可以求出所求的代数式的值.[解析]由题意可知:m ,n 是两个不相等的实数,且满足m 2﹣m =3,n 2﹣n =3,所以m ,n 是x 2﹣x ﹣3=0的两个不相等的实数根,则根据根与系数的关系可知:m +n =1,mn =﹣3,又n 2=n +3,则2n 2﹣mn +2m +2020=2(n +3)﹣mn +2m +2020=2n +6﹣mn +2m +2020=2(m +n )﹣mn +2026=2×1﹣(﹣3)+2026=2+3+2026=2031.故答案为:2031.[考点]根与系数的关系..[点评]本题考查一元二次方程根与系数的关系,解题关键是把所求代数式化成两根之和、两根之积的系数,然后利用根与系数的关系式求值.18、如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.以下关于倍根方程的说法,正确的是________.(写出所有正确说法的序号).①方程220x x --=是倍根方程;②若(2)()0x mx n -+=是倍根方程,则22450m mn n ++=;③2pq =,则关于x 的方程230px x q ++=是倍根方程;④若方程20ax bx c ++=是倍根方程,且5b a =-,则方程20ax bx c ++=的一个根为54. [答案]②③.[解析]研究一元二次方程20ax bx c ++=是倍根方程的一般性结论,设其中一根为t ,则另一个根为2t ,因此222()(2)32ax bx c a x t x t ax atx t a ++=--=-+, 所以有2902b ac -=;我们记292K b ac =-,即0K =时,方程20ax bx c ++=为倍根方程; 下面我们根据此结论来解决问题: 对于①, 29102K b ac =-=,因此本选项错误; 对于②,2(2)20mx n m x n +--=,而29K (2)(2)02n m m n =---=, ∴22450m mn n ++=,因此本选项正确; 对于③,显然2pq =,而29K 302pq =-=,因此本选项正确; 对于④,由倍根方程的结论知2902b ac -=,又5b a =-,从而有509c a =,所以方程变为:250509ax ax a -+=,∴2945500x x -+=,∴1103x =,253x =,因此本选项错误. 故答案为:②③.[考点]1.新定义;2.根与系数的关系.三、解答题(共46分)19.(6分)如图,四边形 A C D E 是证明勾股定理时用到的一个图形,A 、B 、C 是 Rt ∆A B C 和 Rt ∆B ED 的边长,已知2=AE c ,这时我们把关于 x 的形如220++=ax cx b 二次方程称为“勾系一元二次方程”.请解决下列问题:(1)写出一个“勾系一元二次方程”;(2)求证:关于 x 的“勾系一元二次方程”220++=ax cx b ,必有实数根;(3)若 x = -1是“勾系一元二次方程” 220++=ax cx b 的一个根,且四边形 A C D E 的周长是2,求∆A B C 的面积.[答案](1)235240x x++=(答案不唯一)(2)见解析(3)1.[分析](1)直接找一组勾股数代入方程即可;(2)根据根的判别式即可求解;(3)根据方程的解代入求出A ,B ,C 的关系,再根据完全平方公式的变形进行求解.[解析](1)当A =3,B =4,C =5时,勾系一元二次方程为235240x x++=;(2)依题意得△=(2c)2-4A B =2C 2-4A B ,∵A 2+B 2=C 2,∴2C 2-4A B =2(A 2+B 2)-4A B =2(A -B )2≥0,即△≥0,故方程必有实数根;(3)把x=-1代入得A +B =2C ;∵四边形A C D E 的周长是62,即2(A +B )+ 2C =62,故得到C =2,∴A 2+B 2=4,A +B =22∵(A +B )2= A 2+B 2+2A B ∴A B =2,故∆A B C 的面积为12A B =1.[点睛]此题主要考查一元二次方程的应用,解题的关键是熟知勾股定理、根的判别式及完全平方公式的应用.20、(8分)某网店准备销售一种多功能旅行背包,计划从厂家以每个120元的价格进货.(1)经过市场调查发现,当每个背包的售价为140元时,月均销量为980个,售价每增长10元,月均销量就相应减少30个,若使这种背包的月均销量不低于800个,每个背包售价应不高于多少元?(2)在实际销售过程中,由于原材料涨价和生产成本增加的原因,每个背包的进价为150元,而每个背包的售价比(1)中最高售价减少了A %(A >0),月均销量比(1)中最低月均销量800个增加了5A %,结果该店销售该背包的月均利润达到了40000元,求在实际销售过程中每个背包售价为多少元?[答案](1) 200元;(2) 190元[分析](1)设每个售价应为x元,根据月销量=980-30×14010x-,结合月销量不低于800个,即可得出关于x的一元一次不等式;(2)根据总利润=每个利润×销售数量,即可得出关于A 的一元二次方程,解之取其正值即可得出结论.[解析](1)设使背包的月销量不低于800个,每个售价是x 元,980﹣30×14010x -≥800,解得x ≤200, 故要使背包的月销量不低于800个,每个售价应不高于200元.(2)由题意可得:[200(1﹣A %)﹣150]•800(1+5A %)=40000,整理,得:A %﹣20 (A %)2=0, 解得:A 1=5,A 2=0(不合题意,舍去).故200(1﹣A %)=190(元)答:在实际销售过程中每个背包售价为190元.…[点睛]本题考查了一元一次不等式、一元二次方程在实际问题中的应用---销售利润问题,解题关键是利润问题中数量关系,根据题目给出的条件,找出合适的不等关系和等量关系,列出不等式和方程,再求解.21、(8分)阅读下面例题的解答过程,体会、理解其方法,并借鉴该例题的解法解方程.例:解方程2110x x ---=解:(1)当10x -≥即1x ≥时.11x x -=-,原方程化为2(1)10x x ---=,即20x x -=,解得1201x x ==,. ∵1x ≥,故0x =舍去,1x =是原方程的解(2)当10x -<即1x <时.1(1)x x -=--,原方程化为2(1)10x x +--=,即220x x +-=,解得1212x x ==-,. ∵1x <,故1x =舍去,2x =-是原方程的解.综上所述,原方程的解为1212x x ==-,.解方程:22240x x ++-=[分析]把22240x x ++-=中的绝对值去号求解,分别讨论即可.[解析](1)当20x +≥即2x ≥-时.22x x +=+,原方程化为22(2)40x x ++-=,即220x x +=,解得1202x x ==-,. ∵2x ≥-,故1202x x ==-,是原方程的解.(2)当20x +<即2x <-时.2(2)x x +=-+,原方程化为22(2)40x x -+-=,即2280x x --=,解得1242x x ==-,. ∵2x <-,故1242x x ==-,不是原方程的解.综上所述,原方程的解为1202x x ==-,.[考点]绝对值,解一元二次方程.22. (8分)关于x 的一元二次方程x 2﹣3x +k =0有实数根.(1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程(m ﹣1)x 2+x +m ﹣3=0与方程x 2﹣3x +k =0有一个相同的根,求此时m 的值.[分析](1)利用判别式的意义得到△=(﹣3)2﹣4k ≥0,然后解不等式即可;‘(2)利用(1)中的结论得到k 的最大整数为2,解方程x 2﹣3x +2=0解得x 1=1,x 2=2,把x =1和x =2分别代入一元二次方程(m ﹣1)x 2+x +m ﹣3=0求出对应的m ,同时满足m ﹣1≠0.[解答]解:(1)根据题意得△=(﹣3)2﹣4k ≥0,解得k ≤;(2)k 的最大整数为2,方程x 2﹣3x +k =0变形为x 2﹣3x +2=0,解得x 1=1,x 2=2,∵一元二次方程(m ﹣1)x 2+x +m ﹣3=0与方程x 2﹣3x +k =0有一个相同的根,∴当x =1时,m ﹣1+1+m ﹣3=0,解得m =;当x =2时,4(m ﹣1)+2+m ﹣3=0,解得m =1,而m ﹣1≠0,∴m 的值为.[点评]本题考查了根的判别式:一元二次方程A x 2+B x +C =0(A ≠0)的根与△=B 2﹣4A C 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.23.(8分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=A 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想--转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3+x 2-2x=0,可以通过因式分解把它转化为x(x 2+x-2)=0,解方程x=0和x 2+x-2=0,可得方程x 3+x 2-2x=0的解.。
人教版九年级数学(上)第二十一章《一元二次方程》单元测试卷含答案
【解析】分析:根据关于x的一元二次方程x2-2 x+m=0有两个不相等的实数根可得△=(-2 )2-4m>0,求出m的取值范围即可.
详解:∵关于x的一元二次方程x2-2 x+m=0有两个不相等的实数根,
∴△=(-2 )2-4m>0,
∴m<3,
故选:A.
点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.
(1) (2)
21.已知:关于 的方程 .
(1)不解方程:判断方程根的情况;
(2)若方程有一个根为3,求 的值.
22.已知关于 的一元二次方程 .
(1)试证明:无论 取何值此方程总有两个实数根;
(2)若原方程的两根 , 满足 ,求 的值.
23.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.
【详解】根据题意得x1+x2=﹣ =﹣1,x1x2=﹣ ,故A、B选项错误;
∵x1+x2<0,x1x2<0,
∴x1、x2异号,且负数的绝对值大,故C选项错误;
∵x1为一元二次方程2x2+2x﹣1=0的根,
∴2x12+2x1﹣1=0,
∴x12+x1= ,故D选项正确,
故选D.
【点睛】本题考查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键.
(x-2)(x-4)=0,
x-2=0或x-4=0,
所以x1=2,x2=4,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第21章 一元二次方程检测卷(基础卷)
时间100分钟 满分120分
一 选择题(每小题3分,共30分)
1.(2020 •碑林区期末)下列方程中,是一元二次方程是( )
A .2x +3y =4
B .x 2=0
C .x 2﹣2x +1>0
D .1x =x +2 2.(2020 •百色期末)一元二次方程x 2+6x +9=0的常数项是( )
A .0
B .1
C .6
D .9
3.(2020 •岳西县期末)已知关于x 的方程x 2﹣7x +15=k 的一个根是2,则k 的值是( )
A .﹣5
B .5
C .﹣3
D .﹣11
4.(2020•福州期末)若关于x 的方程x 2﹣m =0有实数根,则m 的取值范围是( )
A .m <0
B .m ≤0
C .m >0
D .m ≥0
5.(2020•岳麓区期末)一元二次方程y 2+y −34=0配方后可化为( )
A .(y +12)2=1
B .(y −12)2=1
C .(y +12)2=12
D .(y −12)2=34 6.(2020•肥城市期末)x =2±√(−2)2−4×3×(−1)2×3是下列哪个一元二次方程的根( )
A .3x 2+2x ﹣1=0
B .2x 2+4x ﹣1=0
C .﹣x 2﹣2x +3=0
D .3x 2﹣2x ﹣1=0
7.(2020•黔东南州)若菱形ABCD 的一条对角线长为8,边CD 的长是方程x 2﹣10x +24=0的一个根,则该菱形ABCD 的周长为( )
A .16
B .24
C .16或24
D .48
8.(2020 •定远县期末)已知关于x 的一元二次方程x 2﹣(2m ﹣1)x +m 2=0有实数根,则m 的取值范围是( )
A .m ≠0
B .m ≤14
C .m <14
D .m >14
9.(2020 •百色期末)设a 、b 是方程x 2+x ﹣2020=0的两个实数根,则(a ﹣1)(b ﹣1)的值为( )
A .﹣2018
B .2018
C .2020
D .2022 10.(2020 •上虞区期末)如图,某小区规划在一个长40m 、宽26m 的长方形场地ABCD 上修建三条同样宽的通道,使其中两条与AB 平行,另一条与AD 平行,其余部分种花草,要使每一块草坪的面积都为144m 2,那么通道的宽x 应该满足的方程为( )
A .(40+2x )(26+x )=40×26
B .(40﹣x )(26﹣2x )=144×6
C .144×6+40x +2×26x +2x 2=40×26
D .(40﹣2x )(26﹣x )=144×6
二、填空题(每小题3分,共15分)
11.(2020 •涟源市期末)填空:x 2﹣2x +3=(x ﹣ )2+2.
12.(2020 •西湖区期末)方程(x ﹣1)2=20202的根是 .
13.(2020•锦州)若关于x 的一元二次方程x 2+kx +1=0有两个相等的实数根,则k 的值为 .
14.(2020•温岭市期中)已知关于x 的一元二次方程(a ﹣2)x 2﹣2x +a 2﹣4=0的常数项是0,则a = .
15.(2019 •江干区期末)若{a +b +c =0a −b +c =0
,则关于x 的方程ax 2+bx +c =0(a ≠0)的解是 . 三、解答题(共75分,8+9+9+9+9+10+10+11)
16.(2020•涪陵区期末)解方程:
(1)x 2﹣4x ﹣1=0;
(2)2(x ﹣1)2﹣8=0.
17.(2020•正宁县月考)当k 取何值时,关于x 的方程(k ﹣5)x 2+(k +2)x +5=0.
(1)是一元一次方程?
(2)是一元二次方程?
18.(2020 •叶集区期末)x取何值时,代数式3x2+6x﹣8的值与1﹣2x2的值互为相反数?
19.(2020 •宝应县期末)已知关于x的一元二次方程3x2+bx﹣2=0.
(1)若b=6,请你求出这个方程的解;
(2)若b为任意数,请判断此时这个方程的根的情况.
20.(2020•高碑店市期末)已知x=2是关于x的方程x2﹣(m+4)x+4m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边长,
(1)求m的值;
(2)求△ABC的周长.
21.(2020•西藏)列方程(组)解应用题
某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为600m2的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长35m,另外三面用69m长的篱笆围成,其中一边开有一扇1m宽的门(不包括篱笆).求这个茶园的长和宽.
22.(2020 •宣城期末)适逢中高考期间,某文具店平均每天可卖出30支2B铅笔,卖出1
支铅笔的利润是1元,经调查发现,零售单价每降0.1元,每天可多卖出10支铅笔,为了使每天获取的利润更多,该文具店决定把零售单价下降x元(0<x<1).
(1)当x为多少时,才能使该文具店每天卖2B铅笔获取的利润为40元?
(2)该文具店每天卖2B铅笔获取的利润可以达到50元吗?如果能,请求出,如果不能,请说明理由.
23.(2020•榕城区期中)先阅读,再解决问题.
阅读:材料一配方法可用来解一元二次方程.例如,对于方程x2+2x﹣1=0可先配方(x+1)2=2,然后再利用直接开平方法求解方程.其实,配方还可以用它来解决很多问题.
材料二对于代数式3a2+1,因为3a2≥0,所以3a2+1≥1,即3a2+1有最小值1,且当a=0时,3a2+1取得最小值为1.
类似地,对于代数式﹣3a2+1,因为﹣3a2≤0,所以﹣3a2+1≤1,即﹣3a2+1有最大值1,且当a=0时,﹣3a2+1取得最大值为1.
解答下列问题:
(1)填空:①当x=时,代数式2x2﹣1有最小值为;
②当x=时,代数式﹣2(x+1)2+1有最大值为.
(2)试求代数式2x2﹣4x+1的最小值,并求出代数式取得最小值时的x的值.
(要求写出必要的运算推理过程)。